Sample records for cu zn ni

  1. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals.

    PubMed

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2015-08-01

    The aim of this work was to assess the suitability of Miscanthus × giganteus and Spartina pectinata link to Cu, Ni, and Zn phytoremediation. A 2-year microplot experiment with the tested grasses growing on metal-contaminated soil was carried out. Microplots with cement borders, measuring 1 × 1 × 1m, were filled with Haplic Luvisols soil. Simulated soil contamination with Cu, Ni, and Zn was introduced in the following doses in mg kg(-1): 0-no metals, Cu1-100, Cu2-200, Cu3-400, Ni1-60, Ni2-100, Ni3-240, Zn1-300, Zn2-600, and Zn3-1200. The phytoremediation potential of grasses was evaluated using a tolerance index (TI), bioaccumulation factor (BF), bioconcentration factor (BCF), and translocation factor (TF). S. pectinata showed a higher tolerance to soil contamination with Cu, Ni, and Zn compared to M. × giganteus. S. pectinata was found to have a high suitability for phytostabilization of Zn and lower suitability of Cu and Ni. M. × giganteus had a lower phytostabilization potential than S. pectinata. The suitability of both grasses for Zn phytoextraction depended on the age of the plants. Both grasses were not suitable for Cu and Ni phytoextraction. The research showed that one-season studies were not valuable for fully assessing the phytoremediation potential of perennial plants.

  2. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  3. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  4. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    PubMed

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  5. Structure and mechanism of Cu- and Ni-substituted analogs of metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Spadafora, Lauren J.; Hajdin, Christine E.; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to further probe metal binding to metallo-β-lactamase L1 (mβl L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equivalents of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher kcat (96 s−1) and Km (224 μM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equivalent of Ni and 0.3 equivalents of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by 1H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. 1H NMR spectra demonstrate that Ni(II) binds in the Zn2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn2 site modulates substrate preference in mβ1 L1. These studies demonstrate that the Zn2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with β-lactam containing antibiotics. PMID:19228020

  6. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  7. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  8. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  9. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  10. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    NASA Astrophysics Data System (ADS)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  11. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. Electronic supplementary information (ESI) available: Synthesis and TEM images of pure ZnO nanocrystals. Photocatalytic testing procedures and degradation curves. SEM and TEM images, SAED pattern and EDS spectra and maps of parts of Cu-ZnO hybrid samples. A schematic image of coincident lattice matching between Cu and ZnO. STEM-EDS elemental maps and XRD pattern of the Cu@CuNi-ZnO sample. Comparative synthetic parameters. See DOI: 10.1039/c6nr02055k

  12. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  13. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  14. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210more » mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl« less

  15. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    PubMed Central

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao; Pryds, Nini

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  16. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  17. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  18. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  19. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  1. Differential tolerance of Sulfolobus strains to transition metals

    USGS Publications Warehouse

    Miller, K.W.; Sass, Risanico S.; Risatti, J.B.

    1992-01-01

    Sulfolobus acidocaldarius strains 98-3 and B12, and S. solfataricus ATCC 35091 were evaluated for tolerance to Cd, Co, Cu, Ni, Zn and Mg. The tolerance of strains 98-3 and ATCC 35091 to these metals was Mg > Zn > Cd > Cu ??? Co > Ni. For B12, however, the order of tolerance was Mg > Cd > Zn = Co > Ni > Cu. Tolerance to these metals is also presented as a potentially useful taxonomic indicator.

  2. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China.

    PubMed

    Niu, Siping; Gao, Liangmin; Zhao, Junjie

    2017-09-03

    This study was conducted to pursue the heavy metals in the soil and plants of a typical restored coal-mining area, China. The average concentrations of Cu, Zn, Cr, Ni, and Pb in soil were 26.4, 76.1, 188.6, 34.3, and 50.2 mg kg -1 , respectively, implying a significant accumulation of Cr, Ni, and Pb compared with the background values. Contamination factor indicates that the soil underwent none to medium pollution by Cu and Zn, medium to strong by Cr, none to strong by Pb, and medium pollution by Ni while the pollution load index means that the soil was subjected to intermediate contamination. Based on the critical threshold values to protect the plants, the investigated metals were unable to affect the plants. One-way ANOVA analysis shows that Cu, Zn, and Pb in plants varied with plant tissues. Cu-Cr, Cu-Ni, Zn-Ni, Zn-Pb, Cr-Ni, and Ni-Pb pairs had significant positive correlation both in soil and in plants due to the similar soil characteristics and plant physiologies. Correspondence analysis indicates that Pb was more likely to be accumulative in stems and leaves. In addition, the levels of Cu and Cr in plant followed an order of roots > stems > leaves; Zn and Ni leaves ≥ stems > roots; and Pb followed stems ≥ leaves > roots. Generally, this study suggests that the plants like Ligustrum lucidum Aiton and Weigela hortensis, which are capable of accumulating Cr, Ni, and Pb, should be the predominant species in the studied area.

  3. Chemical fractionation of heavy metals in urban soils of Guangzhou, China.

    PubMed

    Lu, Ying; Zhu, Feng; Chen, Jie; Gan, Haihua; Guo, Yanbiao

    2007-11-01

    Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominantly located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron-Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.

  4. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties.

    PubMed

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H 2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  6. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  7. Effect of Cu2+ substitution on the magnetic properties of co-precipitated Ni-Cu-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramakrishna, K. S.; Srinivas, Ch.; Tirupanyam, B. V.; Ramesh, P. N.; Meena, S. S.; Potukuchi, D. M.; Sastry, D. L.

    2017-05-01

    Spinel ferrite nanoparticles with chemical equation NixCu0.1Zn0.9-xFe2O4 (x = 0.5, 0.6, 0.7) have been synthsized using co-precipitation method followed by heat treatment at a temperature of 200 °C for 2h. The results of XRD, FE-SEM and VSM studies are reported. XRD patterns confirm the formation of cubic spinel phase of ferrite samples along with small amount of a secondary phase of α-Fe2O3 whose concentration decreases as Ni2+ concentration increases. The crystallite sizes (in the range of 7.5-13.9 nm) increase and the lattice parameter decreases with increase in Ni2+ ion concentration. These values are comparable to those of NiZn ferrite without Cu substitution. It has been observed that there is a considerable reduction in saturation magnetisation (Ms). This and differences in other magnetic parameters are attributed to considerable changes in cation distribution or core shell interactions of NiZn ferrite with 10 mole% Cu substitution in the place of Zn.

  8. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic interactions with cluster and spin-glass type growth. - Highlights: • Lattice defects/vacancies attributed high T{sub c} –ferromagnetism. • Transition metal and rare earth ions deform the wurtzite ZnO lattice to induce defects. • Oxygen vacancies are more favorable than Zn with Ni, Cu, Ce into ZnO. • Defects assisted long-range ferromagnetism of doped ZnO include cluster and spin-glass growth.« less

  9. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  10. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  11. Synthesis, structural, optical and dielectric properties of transition metal doped ZnMnO nanoparticles by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Dar, M. A.; Varshney, Dinesh

    2018-02-01

    Nanocrystalline samples of Zn0.94Mn0.06O and transition metal (TM) doped Zn0.94Mn0.01TM0.05O (TM = Co, Ni, and Cu) were prepared by sol-gel auto combustion method. X-ray diffraction (XRD) pattern infers that all synthesized samples except Zn0.94Mn0.01Ni0.05O and Zn0.94Mn0.01Cu0.05O with secondary phases of NiO and CuO are in single phase with hexagonal wurtzite structure (P63mc space group). Raman spectroscopy reveals four vibrational phonon modes are centered at 331, 380, 410, and 438 cm-1, assigned as E2 (H)-E2(L), A1(TO), E1(TO), and E1(LO) modes, respectively. A Raman spectrum of Zn0.94Mn0.01TM0.05O is entirely different from undoped Zn0.94Mn0.06O sample. Also, the infrared spectrum of transition metal doped samples is completely different from undoped Zn0.94Mn0.06O. Similar spectra are observed for Zn0.94Mn0.01Co0.05O, Zn0.94Mn0.01NiO, Zn0.94Mn0.01Cu0.05O and Zn0.94Mn0.01Zn0.05O samples. It was found that the band gap of Zn0.94Mn0.06O increased from 3.19 to 3.25eV by doping 5% transition metal oxide. Improved dielectric constant and reduced dielectric loss is measured for Zn0.94Mn0.01Ni/Cu0.05O as compared to Zn0.94Mn0.06O.

  12. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  13. In Situ Distribution and Speciation of Toxic Copper, Nickel, and Zinc in Hydrated Roots of Cowpea1[W][OA

    PubMed Central

    Kopittke, Peter M.; Menzies, Neal W.; de Jonge, Martin D.; McKenna, Brigid A.; Donner, Erica; Webb, Richard I.; Paterson, David J.; Howard, Daryl L.; Ryan, Chris G.; Glover, Chris J.; Scheckel, Kirk G.; Lombi, Enzo

    2011-01-01

    The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based x-ray fluorescence microscopy and x-ray absorption spectroscopy, the distribution and speciation of copper (Cu), nickel (Ni), and zinc (Zn) was examined in situ using hydrated roots of cowpea (Vigna unguiculata) exposed to 1.5 μm Cu, 5 μm Ni, or 40 μm Zn for 1 to 24 h. After 24 h of exposure, most Cu was bound to polygalacturonic acid of the rhizodermis and outer cortex, suggesting that binding of Cu to walls of cells in the rhizodermis possibly contributes to the toxic effects of Cu. When exposed to Zn, cortical concentrations remained comparatively low with much of the Zn accumulating in the meristematic region and moving into the stele; approximately 60% to 85% of the total Zn stored as Zn phytate within 3 h of exposure. While Ni concentrations were high in both the cortex and meristem, concentrations in the stele were comparatively low. To our knowledge, this is the first report of the in situ distribution and speciation of Cu, Ni, and Zn in hydrated (and fresh) plant tissues, providing valuable information on the potential mechanisms by which they are toxic. PMID:21525332

  14. The Environment Quality, Speciation and their Origins of Heavy Metals in Surficial Sediments in Central Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.

    2016-02-01

    The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.

  15. Risk assessment of heavy metals via consumption of vegetables collected from different supermarkets in La Rochelle, France.

    PubMed

    Cherfi, Abdelhamid; Cherfi, Malika; Maache-Rezzoug, Zoulikha; Rezzoug, Sid-Ahmed

    2016-03-01

    In this study, a food survey was carried out with two purposes: (1) to investigate the levels of nickel (Ni), zinc (Zn), and copper (Cu) in various vegetables randomly collected in supermarkets of La Rochelle and (2) to assess the potential health risk for consumers by estimating the daily intake (EDI) and the target hazard quotient (THQ) for each heavy metal. The concentrations of Ni, Cu, and Zn in selected foodstuffs were detected within the following ranges: (3.2-9.6), (25.2-104.7), and (10.8-75.6) mg/kg (DW), respectively. Results showed that metals are more likely to accumulate in fruit vegetables (8.8, 63.8 and 47.8 mg/kg DW for Ni, Cu, and Zn, respectively), followed by leafy vegetables (6.5, 60.9 and 42.6 mg/kg DW for Ni, Cu, and Zn, respectively) and finally root vegetables (5.4, 40.0 and 27.3 mg/kg DW for Ni, Cu, and Zn, respectively). The levels of the metals match with those reported for similar vegetables from some other parts of the world. For all foodstuffs, EDI and THQ were below the threshold values for Cu (EDI 11.30; THQ 0.283) and Zn (EDI 6.86; THQ 0.023), while they exceeded the thresholds for Ni (EDI 20.71; THQ 1.035), indicating an obvious health risk over a life time of exposure.

  16. Effect of Zn addition on bulk microstructure of lead-free solder SN100C

    NASA Astrophysics Data System (ADS)

    Nur Nadirah M., K.; Nurulakmal M., S.

    2017-12-01

    This paper reports the effect of adding Zn (0.5 wt% Zn, 1.0 wt% Zn) to the bulk microstructure and intermetallic compound (IMC) formation of commercial SN100C (Sn-0.7Cu-0.05Ni+Ge) lead-free solder alloy. Solder alloys were prepared by melting SN100C ingot and Zn shots, and subsequently casted into steel mold. Samples were ground and polished for XRF, and polished samples were then etched for microstructure analysis. Microstructure of bulk solder and the IMC were observed using SEM equipped with EDX. SEM result showed the addition of 0.5 wt% Zn resulted in increased grain size of β-Sn matrix but further addition of Zn (1 wt%) reduced the size of β-Sn dendrites in the bulk solder. Several intermetallic compounds (IMCs) were observed distributed in the Sn matrix; Cu-Zn, Ni-Zn and Cu-Zn-Ni IMC but in relatively small percentage compared to Cu-Zn and Ni-Zn. These particles could be considered as effective nucleating agent that led to finer β-Sn grains. It is expected that the finer β-Sn will contribute towards higher solder strength and the various IMCs present could act as suppressant for Sn diffusion which will then tend to reduce the IMC growth during thermal aging.

  17. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    PubMed Central

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  19. Relationship between the Cu-spin fluctuation and superconductivity in La2-xSrxCu1-y(Zn, Ni)yO4 (x = 0.15) studied by the μSR and magnetic-susceptibility

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Oki, N.; Risdiana; Yairi, S.; Koike, Y.; Watanabe, I.

    2007-09-01

    We have investigated effects of Zn and Ni on the Cu-spin dynamics and superconductivity from the zero-field muon-spin-relaxation (ZF-μSR) and magnetic-susceptibility, χ, measurements for the optimally doped La 2- xSr xCu 1- y(Zn, Ni) yO 4 with x = 0.15, changing y finely up to 0.10. The ZF-μSR measurements have revealed that, in the Zn-substituted case, the magnetic correlation between Cu-spins starts to develop at y = 0.01 with increasing y, followed by the formation of a magnetic order at y = 0.02-0.03. In the Ni-substituted case, on the other hand, the magnetic correlation starts to develop at y = 0.02-0.03. These results indicate that the formation of a magnetic order requires a larger amount of Ni than that of Zn, which is consistent with our previous result for x = 0.13. The χ measurements have revealed that the superconducting volume fraction strongly decreases by a small amount of Zn and its decrease is stronger than that by a small amount of Ni. According to the stripe model, therefore, it is concluded that, even for x = 0.15, the dynamical stripe correlations of spins and holes are pinned and stabilized by Zn and Ni, leading to the formation of the static stripe order and the suppression of superconductivity.

  20. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Macdonald, Landan; Croll, Lisa M; Dahn, J R

    2013-02-11

    Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO.

  1. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  2. Low-cost and facile synthesis of Ni(OH)2/ZnO nanostructures for high-sensitivity glucose detection

    NASA Astrophysics Data System (ADS)

    Strano, V.; Mirabella, S.

    2018-01-01

    An efficient electrode for non-enzymatic glucose detection is produced with low-cost techniques on a Cu wire. ZnO nanorods (NRs) were grown on a Cu wire by chemical bath deposition and were used as the substrate for pulsed electrodeposition of nanostructured Ni(OH)2 flakes. The effect of the electrodeposition potential on the final morphology and electrochemical behavior of the Ni(OH)2/ZnO/Cu structures is reported. ZnO NRs resulted to be well dressed by Ni(OH)2 flakes and were tested as glucose sensing electrodes in 0.1 M NaOH solution, showing high sensitivities (up to 3 mA mM-1 cm-2) and long-term stability. The presence of ZnO NRs was shown to improve the performance of the glucose sensor in terms of electrochemical stability over the time and sensitivity compared to Ni(OH)2/Cu sample. The reported data demonstrate a simple, versatile and low-cost fabrication approach for effective glucose sensing system within a urban mines framework.

  3. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    PubMed

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  4. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3

    NASA Astrophysics Data System (ADS)

    Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao

    2017-01-01

    Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.

  5. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.

    PubMed

    Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun

    2014-08-01

    Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control.

  6. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China.

    PubMed

    Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu

    2015-09-01

    Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.

  7. Analysis of the Metals in Soil-Water Interface in a Manganese Mine

    PubMed Central

    Ren, Bozhi; Wang, Qian; Chen, Yangbo; Ding, Wenjie; Zheng, Xie

    2015-01-01

    In order to reveal the influence of the metals of soil-water interface in a manganese mine (Xiangtan, China), on local water environment, there are six kinds of metals (Mn, Ni, Cu, Zn, Cd, and Pb) characterized by measuring their concentration, correlation, source, and special distribution using principal component analysis, single factor, and Nemero comprehensive pollution index. The results showed that the corresponding average concentration was 0.3358, 0.045, 0.0105, 0.0148, 0.0067, and 0.0389 mg/L. The logarithmic concentration of Mn, Zn, and Pb was normal distribution. The correlation coefficients (between Mn and Pb, Mn and Zn, Mn and Ni, Cu and Zn, Cu and Pb, and Zn and Cd) were found to range from 0.5 to 0.6, and those between Cu and Ni and Cu and Cd were below 0.3. It was found that Zn and Mn pollution were caused primarily by ore mining, mineral waste transportation, tailing slag, and smelting plants, while Cu and Ni mainly originate from the mining industry activities and the traffic transportation in the mining area. In addition, the Cd was considered to be produced primarily from the agricultural or anthropogenic activities. The pollution indexes indicated that metal pollution degree was different in soil-water interface streams as listed in increasing order of pollution level as Zn > Ni > Cu > Pb > Mn > Cd. For all of the pollution of the soil-water interface streams, there was moderate metal pollution but along the eastern mine area the pollution seemed to get more serious. There was only a small amount of soil-water interface streams not contaminated by the metals. PMID:26167333

  8. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    NASA Astrophysics Data System (ADS)

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  9. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.

    PubMed

    Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid

    2016-04-01

    It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study. This study provides the basic information to develop policies for controlling the trace elements inputs into agricultural soils of the study area.

  10. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  11. Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland).

    PubMed

    Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Żołnierz, Ludwik; Rajsz, Adam; Kempers, Alexander J

    2017-08-01

    Calluna vulgaris, Carex rigida, Deschampsia flexuosa, Nardus stricta and Vaccinium myrtillus are abundant in the vegetation of mountainous areas in Northern and Central Europe. Knowledge of their ability to accumulate increased amounts of metals could be useful in the evaluation of environmental pollution in the alpine tundra of high mountains. Additionally, this investigation may contribute to understanding the rate and direction of recent vegetation change in Karkonosze and similar types of environments. Our investigation revealed that Carex rigida, C. vulgaris and V. myrtillus contain excessive Mn concentrations in shoots with the highest BF for this element compared to the BFs of other elements. C. rigida, with Cu, Mn and Zn concentrations exceeding the toxicity thresholds for plants, seems to be the best metal phytoaccumulator for Nardus stricta grasslands Carici (rigidae)-Nardetum (CrN) and alpine heathlands Carici (rigidae)-Festucetum airoidis (CrFa) associations in the Karkonosze. Based on relevant BFs >1, it can be stated that the following plant available metals were transferred to shoots: Cu, Mn and Ni by C. vulgaris; Cd, Cu, Mn, Ni and Zn by C. rigida; Cd, Cu, Mn, Ni and Zn by D. flexuosa; Cu, Mn, Ni and Zn by N. stricta and Cu, Mn and Zn by V. myrtillus.

  12. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    PubMed

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl 2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m 2  × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl 2 . Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  13. Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, D.; Leygraf, C.

    Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less

  14. The formation of unsaturated zones within cemented paste backfill mixtures-effects on the release of copper, nickel, and zinc.

    PubMed

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2018-05-13

    Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.

  15. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.

  16. Accumulation and chemical fractionation of heavy metals in andisols after a different, 6-year fertilization management.

    PubMed

    Zhao, Bingzi; Maeda, Morihiro; Zhang, Jiabao; Zhu, Anning; Ozaki, Yasuo

    2006-03-01

    Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary.

  17. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  18. Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption.

    PubMed

    Taweel, Abdulali; Shuhaimi-Othman, M; Ahmad, A K

    2013-07-01

    Concentrations of the heavy metals copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) and nickel (Ni) were determined in the liver, gills and muscles of tilapia fish from the Langat River and Engineering Lake, Bangi, Selangor, Malaysia. There were differences in the concentrations of the studied heavy metals between different organs and between sites. In the liver samples, Cu>Zn>Ni>Pb>Cd, and in the gills and muscle, Zn>Ni>Cu>Pb>Cd. Levels of Cu, Cd, Zn and Pb in the liver samples from Engineering Lake were higher than in those from the Langat River, whereas the Ni levels in the liver samples from the Langat River were greater than in those from Engineering Lake. Cd levels in the fish muscle from Engineering Lake were lower than in that from the Langat River. Meanwhile, the Cd, Zn and Pb levels in the fish muscle from the Langat River were lower than in that from Engineering Lake, and the Ni levels were almost the same in the fish muscle samples from the two sites. The health risks associated with Cu, Cd, Zn, Pb and Ni were assessed based on the target hazard quotients. In the Langat River, the risk from Cu is minimal compared to the other studied elements, and the concentrations of Pb and Ni were determined to pose the greatest risk. The maximum allowable fish consumption rates (kg/d) based on Cu in Engineering Lake and the Langat River were 2.27 and 1.51 in December and 2.53 and 1.75 in February, respectively. The Cu concentrations resulted in the highest maximum allowable fish consumption rates compared with the other studied heavy metals, whereas those based on Pb were the lowest. A health risk analysis of the heavy metals measured in the fish muscle samples indicated that the fish can be classified at one of the safest levels for the general population and that there are no possible risks pertaining to tilapia fish consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Using Two-Proton Transfer to Study H and He Burning Reactions of Type-1 X-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Soltesz, Douglas; Massey, Thomas N.; Voinov, Alexander; Meisel, Zach

    2017-09-01

    The reaction rate of the 59Cu(p,γ)60Zn has been identified to have a significant impact on the light curve of X-ray bursts, controlling the reaction flow out of the Ni-Cu cycle impacting the late-time light curve. Using two proton transfer, 58Ni(3He,n)60Zn can be used to study the 59Cu(p,γ)60Zn reaction. We are currently using the neutron evaporation spectrum from 58Ni(3He,n)60Zn in order to extract the level density of 60Zn and constrain 59Cu(p,γ)60Zn. To augment the (3He,n) technique for lower level-density compound nuclides, a silicon detector array is currently being developed for use in determining charged-particle decay branching ratios from discrete states. The present status of data analysis and detector development will be discussed, as well as future plans. This work was supported in part by the U.S. DOE through Grant No. DE-FG02-88ER40387.

  20. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Purohit, Mamta S; Dave, Shailesh R

    2015-08-01

    Metal pollution due to the huge electronic waste (E-waste) accumulation is widespread across the globe. Extraction of copper, zinc and nickel from computer printed circuit boards (c-PCB) with a two-step bleaching process using ferric sulphate generated by Leptospirillum ferriphilum dominated consortium and the factors influencing the process were investigated in the present study. The studied factors with 10 g/L pulp density showed that pH 2.0 was optimum which resulted in 87.50-97.80% Cu-Zn-Ni extraction. Pre-treatment of PCB powder with acidified distilled water and NaCl solution showed 3.80-7.98% increase in metal extraction corresponding to 94.08% Cu, 99.80% Zn and 97.99% Ni extraction. Particle size of 75 μm for Cu and Zn while 1680 μm for Ni showed 2-folds increase in metal extraction, giving 97.35-99.80% Cu-Zn-Ni extraction in 2-6 days of reaction time. Whereas; 2.76-3.12 folds increase in Cu and Zn extraction was observed with the addition of 0.1% chelating agents. When the studies were carried out with high pulp density, ferric iron concentration of 16.57 g/L was found to be optimum for metal extraction from 75 g/L c-PCB and c-PCB addition in multiple installments resulted in 8.81-26.35% increase in metal extraction compared to single addition. The studied factors can be implemented for the scale-up aimed at faster recovery of multimetals from E-waste and thereby providing a secondary source of metal in an eco-friendly manner. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    PubMed Central

    Shuhaimi-Othman, M.; Nur-Amalina, R.; Nadzifah, Y.

    2012-01-01

    Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals. PMID:22666089

  2. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major

    PubMed Central

    Shuhaimi-Othman, Mohammad; Yakub, Nadzifah; Ramle, Nur-Amalina; Abas, Ahmad

    2011-01-01

    Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed, and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni). Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean. PMID:21559091

  3. Geofractionation of heavy metals and application of indices for pollution prediction in paddy field soil of Tumpat, Malaysia.

    PubMed

    Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2013-12-01

    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.

  4. Rice seed toxicity tests for organic and inorganic substances

    USGS Publications Warehouse

    Wang, W.

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species. A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr (VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>>Pb>Cd>Zn> Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>>glyphosate>bromacil.

  5. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    PubMed

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels (RI were 33.7-116) and the most important contaminating element was Cd with a middle-level potential ecological risk (Er(i) were 18.0-48.9).

  6. Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.

  7. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  8. A Novel Cu-10Zn-1.5Ni-0.34Si Alloy with Excellent Mechanical Property Through Precipitation Hardening

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Mingpu; Li, Zhou; Dong, Qiyi; Jia, Yanlin; Xiao, Zhu; Zhang, Rui; Yu, Hongchun

    2016-11-01

    A novel Cu-10Zn-1.5Ni-0.34Si alloy was designed to replace the expensive tin-phosphor bronze in this paper. The alloy had better comprehensive mechanical properties than traditional C5191 alloy. The aged Cu-10Zn-1.5Ni-0.34Si alloy had a hardness of 220 HV, electrical conductivity of 28.5% IACS, tensile strength of 650 MPa, yield strength of 575 MPa and elongation of 13%. Ni2Si precipitates formed during aging, and the crystal orientation relationship between matrix and precipitates was: (001)α//(001)δ, and [110]α//[100]δ. Ductile fracture surface with deep cavities was found in the alloy. Solid solution strengthening, deformation strengthening and precipitation strengthening were found to be core strengthening mechanisms in the alloy.

  9. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  10. Mobilities and leachabilities of heavy metals in sludge with humus soil.

    PubMed

    Zhu, Rui; Wu, Min; Yang, Jian

    2011-01-01

    Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly found in Fe/Mn oxide-bound (F3) and organic matter/sulfide-bound (F4) forms. For Zn, exchangeable (F1), carbonate-bound (F2), and F3 forms were transformed to F4 and residual forms (F5). For Ni, F1 and F2 forms were transformed to F1, F2, and F3 forms. Both Cu and Pb were strongly associated with the stable forms F4 and F5. For Cu, F2 and F3 forms were major contributors, while for Pb, F3 and F4 forms were major contributors to F5. Humus soil dosage and pH conditions in the sludge were strongly correlated with the forms of heavy metals. Five forms were used to evaluate metal mobilities in the initial and final sludge mixtures. The mobilities of the four heavy metals studied decreased after 28 days. The metal mobilities in the final sludge mixtures were ranked in the following order: Ni > Zn > Cu = Pb. Leaching tests showed that the mobilities of Zn and Ni in lower pH conditions (pH 4) were higher than those in higher pH conditions (pH 8).

  11. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions.

    PubMed

    Nagai, Takashi; De Schamphelaere, Karel A C

    2016-11-01

    The authors investigated the effect of binary mixtures of zinc (Zn), copper (Cu), cadmium (Cd), and nickel (Ni) on the growth of a freshwater diatom, Navicula pelliculosa. A 7 × 7 full factorial experimental design (49 combinations in total) was used to test each binary metal mixture. A 3-d fluorescence microplate toxicity assay was used to test each combination. Mixture effects were predicted by concentration addition and independent action models based on a single-metal concentration-response relationship between the relative growth rate and the calculated free metal ion activity. Although the concentration addition model predicted the observed mixture toxicity significantly better than the independent action model for the Zn-Cu mixture, the independent action model predicted the observed mixture toxicity significantly better than the concentration addition model for the Cd-Zn, Cd-Ni, and Cd-Cu mixtures. For the Zn-Ni and Cu-Ni mixtures, it was unclear which of the 2 models was better. Statistical analysis concerning antagonistic/synergistic interactions showed that the concentration addition model is generally conservative (with the Zn-Ni mixture being the sole exception), indicating that the concentration addition model would be useful as a method for a conservative first-tier screening-level risk analysis of metal mixtures. Environ Toxicol Chem 2016;35:2765-2773. © 2016 SETAC. © 2016 SETAC.

  12. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  13. CORRELATION OF THE PARTITIONING OF DISSOLVED ORGANIC MATTER FRACTIONS WITH THE DESORPTION OF CD, CU, NI, PB AND ZN FROM 18 DUTCH SOILS

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...

  14. Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?

    PubMed

    Carmona-Chit, Eréndira; Carrillo-González, Rogelio; González-Chávez, Ma Del Carmen A; Vibrans, Heike; Yáñez-Espinosa, Laura; Delgado-Alvarado, Adriana

    2016-09-01

    Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further.

  15. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  16. Distribution of metal concentrations in sediments of the coastal zone of the Gulf of Riga and open part of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Seisuma, Z.; Kulikova, I.

    2012-11-01

    The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.

  17. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    PubMed

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  18. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  19. Transport and {Tc} anomalies around x = 0.22 in La{sub 2{minus}x}Sr{sub x}Cu{sub 1{minus}y}M{sub y}O{sub 4} (M = Zn, Ga, Ni): Possibility of charge and/or spin ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Y.; Kakinuma, N.; Aoyama, M.

    1999-12-01

    Transport and {Tc} anomalies around x = 0.22 in La{sub 2{minus}x}Sr{sub x}CuO{sub 4} have been studied through the partial substitution of Zn, Ga and Ni for Cu. It has been found that the value of x where the anomalies occur shifts to lower x values through the Zn substitution, while it shifts to larger x values through the Ga substitution, and it disappears through the Ni substitution. There is a possibility that an order of holes and/or spins, such as the so-called stripe order, is formed or fluctuates around x = 0.22 in La{sub 2{minus}x}Sr{sub x}CuO{sub 4}.

  20. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    PubMed

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  1. Spatial distribution and ecological risk assessment of heavy metal on surface sediment in west part of Java Sea

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea

    2017-01-01

    The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).

  2. Distribution of heavy metals and foraminiferal assemblages in sediments of Biscayne Bay, Florida, USA

    USGS Publications Warehouse

    Carnahan, E.A.; Hoare, A.M.; Hallock, P.; Lidz, B.H.; Reich, C.D.

    2008-01-01

    Heavy-metal pollution is an issue of concern in estuaries influenced by agriculture, urban, and harbor activities. Foraminiferal assemblages have been shown to be effective indicators of pollution. Sediment samples (n = 110) from Biscayne Bay were analyzed for heavy metals, foraminiferal assemblages, and grain-size distribution. Highest Cu, Zn, Cr, Hg, Pb, and Ni concentrations were found closest to Miami and near the mouths of several canals along the western margin of the bay. Few samples exceeded limits of possible biological effects as defined by previous studies. Ammonia and Cribroelphidium, two known stress-tolerant genera, correlated positively with Cu, Zn, Hg, and Ni (r ??? 0.43). Symbiont-bearing foraminifers, Archaias, Laevipeneroplis, and Androsina, correlated negatively with Cu, Zn, Hg, and Ni (r ??? -0.26).

  3. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  4. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  5. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; ...

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  6. [Speciation Distribution and Risk Assessment of Heavy Metals in Typical Material Roof Dusts].

    PubMed

    Li, Dun-zhu; Guan, Yun-tao; Liu, An; Li, Si-yuan

    2015-09-01

    With the modified BCR sequential extraction procedure, the chemical speciation and risk for 10 heavy metals (Ba, Co, Cr, Cu, Mn, Ni, Pb, Sb, Sr and Zn) in roof dusts were investigated. The subjects of this study were collected from four typical material paved roofs (i. e., ceramic tile, concrete, metal and asphalt) in southeast China. The results indicated that the average contents of heavy metals in roof dust significantly exceeded road dust. The analysis of chemical fraction showed that the acid soluble/exchangeable fraction of Zn was much higher than other elements, the existence of Pb and Cu was mainly in oxidization fraction, while other heavy metals dominated by the residual fraction. The mobility sequence percentages for all roof dust samples decreased in the order of Pb > Zn > Cu >Mn > Co >Sr > Sb > Ni > Ba > Cr, and it should be noted that Pb, Zn, Cu, Mn and Co all have more than 50% proportion in mobility sequence. Based on environmental risk assessment, the highest values of contamination factors (Cf) and risk assessment code (RAC) consistently was observed in Zn, which indicated that Zn had relatively high ecological risk. Health risk assessment showed that the non-carcinogenic hazard indexes (HI) of heavy metals decreased in the order of Pb > Cr > Sb > Zn > Mn > Cu > Ba > Ni > Co > Sr, the HI of heavy metals for adults were lower than safe value while the HI of Pb for children was higher than safe value, suggesting that they will not harm the adult's health except Pb for children. The carcinogenic risk for Cr, Co and Ni were all below the threshold values, which indicated that there was no carcinogenic risk.

  7. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  8. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals.

    PubMed

    Dey, Priyadarshini; Gola, Deepak; Mishra, Abhishek; Malik, Anushree; Kumar, Peeyush; Singh, Dileep Kumar; Patel, Neelam; von Bergen, Martin; Jehmlich, Nico

    2016-11-15

    In the present study, five fungal strains viz., Aspergillus terreus AML02, Paecilomyces fumosoroseus 4099, Beauveria bassiana 4580, Aspergillus terreus PD-17, Aspergillus fumigatus PD-18, were screened for simultaneous multimetal removal. Highest metal tolerance index for each individual metal viz., Cd, Cr, Cu, Ni, Pb and Zn (500mg/L) was recorded for A. fumigatus for the metals (Cd, 0.72; Cu, 0.72; Pb, 1.02; Zn, 0.94) followed by B. bassiana for the metals (Cd, 0.56; Cu, 0.14; Ni, 0.29; Zn, 0.85). Next, the strains were exposed to multiple metal mixture (Cd, Cr, Cu, Ni, Pb and Zn) of various concentrations (6, 12, 18, 30mg/L). Compared to other strains, B. bassiana and A. fumigatus had higher cube root growth (k) constants indicating their better adaptability to multi metal stress. After 72h, multimetal accumulation potential of B. bassiana (26.94±0.07mg/L) and A. fumigatus (27.59±0.09mg/L) were higher than the other strains at initial multimetal concentration of 30mg/L. However, considering the post treatment concentrations of individual metals in multimetal mixture (at all the tested concentrations), A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    PubMed

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  10. Levels and speciation of heavy metals in soils of industrial Southern Nigeria.

    PubMed

    Olajire, A A; Ayodele, E T; Oyedirdan, G O; Oluyemi, E A

    2003-06-01

    A knowledge of the total content of trace metals is not enough to fully assess the environmental impact of polluted soils. For this reason, the determination of metal species in solution is important to evaluate their behaviour in the environment and their mobilization capacity. Sequential extraction procedure was used to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) from four contaminated soils of Southern Nigeria into six operationally defined geochemical species: water soluble, enchangeable, carbonates, Fe-Mn oxide, organic and residual. Metal recoveries were within +/- 10% of the independently determined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractions was found in the exchangeable fraction, while Cu and Zn were significantly associated with the organic fraction. The carbonate fraction contained on average 14, 18.6, 12.6, 13 and 11% and the residual fraction contained on average 47, 18, 33, 50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming that mobility and bioavailability of these metals are related to the solubility of the geochemical form of the metals, and that they decrease in the order of extraction sequence, the apparent mobility and potential bioavailability for these five metals in the soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes of copper and nickel correlated positively and significantly with the total content of metals, while mobility indexes of cadmium and zinc correlated negatively and significantly with the total content of metals.

  11. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant.

    PubMed

    Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui

    2013-09-01

    The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.

    PubMed

    Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

    2015-04-01

    Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.

  13. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  14. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  15. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  16. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  17. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    PubMed

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  18. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be related to their solubility and chemical forms, and that they decrease with each successive extraction step, then the apparent mobility and bioavailability of these five heavy metals in ASM increase in the order of Cu < As < Ni < Fe < Zn. The SEM/AVS ratio was less than one in eight replicate ASM samples, indicating that the ASM was non-toxic with regards to having a low probability of bioavailable metals in the pore water.

  19. Preliminary assessment of heavy metals in water, sediment and macrophyte ( Lemna minor) collected from Anchar Lake, Kashmir, India

    NASA Astrophysics Data System (ADS)

    Showqi, Irfana; Lone, Farooq Ahmad; Naikoo, Mehrajuddin

    2018-06-01

    Water samples, sediments and free floating macrophytic plant, Lemna minor specimens were collected from five designated sites in Anchar lake (Srinagar, J&K, India) to assess its heavy metal (Cu, Cr, Zn, Ni, Cd, Pb) load and changes on seasonal basis. The concentration of heavy metals was determined using atomic absorption spectroscopy. Most of the samples were found within limits of maximum permissible concentrations as recommended by WHO (Guidelines for drinking water quality, pp 491-493, 2006). During all the seasons, highest concentration of all heavy metals (Cu, Cr, Zn, Ni, Cd, Pb) was recorded at highly polluted sites of the lake viz. near agricultural fields (S1), near settlements (S3) and SKIMS (S4). These sites received huge agrochemical run-off from the surrounding agricultural fields, solid and liquid wastes from the nearby catchment areas and effluents from Sher-e-Kashmir Institute of Medical Sciences (SKIMS) compared to control site lake centre (S5). Furthermore, most of the metals in water and sediment were found with highest concentration during autumn (Viz., Cu-1.5 ppm; Zn-0.38 ppm; Ni-1.89 ppm; Pb-0.84 ppm in water and Cu-26.9 ppm; Zn-13.6 ppm; Pb-4.33 ppm in sediment) and summer (Viz., Cr-0.68 ppm in water and Ni-4.8 ppm; Cd-2.6 ppm; Cr-8.01 ppm in sediment) seasons. Also in Lemna minor plant highest concentration was observed during summer season (Cu-29.09 ppm; Zn-19.11 ppm; Ni-5.7 ppm; Cd-1.34 ppm; Cr-9.18 ppm and Pb-9.77 ppm). From these observations, it was found that the sources of heavy metals in Anchar lake were both natural and anthropogenic ones. This study recommended that continuous monitoring of heavy metals (Viz; Cu, Cr, Zn, Ni, Cd and Pb) in water, sediment and other aquatic biota of Anchar lake should be directed to protection of ecological status of the lake and its surrounding area.

  20. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0

  1. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh

    2012-08-15

    50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol

    NASA Astrophysics Data System (ADS)

    Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin

    2015-04-01

    A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.

  3. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  4. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu

    PubMed Central

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  5. Synthesis, characterization and anti-microbial activity of a novel macrocyclic ligand derived from the reaction of 2,6-pyridinedicarboxylic acid with homopiperazine and its Co(II), Ni(II), Cu(II), and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Soleimani, Esmaiel

    2011-05-01

    The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).

  6. Simultaneous determination of suspended particulate trace metals (Co, Ni, Cu, Zn, Cd and Pb) in seawater with small volume filtration assisted by microwave digestion and flow injection inductively coupled plasma mass spectrometer.

    PubMed

    Nakatsuka, Seiji; Okamura, Kei; Norisuye, Kazuhiro; Sohrin, Yoshiki

    2007-06-26

    A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.

  7. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    PubMed

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p < 0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.

  8. E.s.r., magnetic, optical and biological (SOD and antimicrobial) studies of imidazolate bridged Cu II-Zn II and Cu II-Ni II complexes with tris(2-amino ethyl)amine as capping ligand: a plausible model for superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Singh, Nripendra; Shukla, K. K.; Patel, R. N.; Chauhan, U. K.; Shrivastava, R.

    2003-11-01

    X-band e.s.r. and optical absorption spectra of the imidazolate bridged heterobimetallic complexes [(tren)Cu-E-Im-Zn-(tren)](ClO 4) 3 and [(tren)Cu-E-Im-Ni-(tren)](ClO 4) 3, where trentris(2-aminoethyl)amine, E-Im=2-ethylimidazolate ion and the related mononuclear complexes [Cu(tren)](ClO 4) 2 and [(tren)Cu-E-ImH)](ClO 4) 2 have been described. Biological activities (superoxide dismutase and antimicrobial) have also been measured and compared with reported complexes.

  9. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  10. Atmospheric deposition of trace elements at urban and forest sites in central Poland - Insight into seasonal variability and sources

    NASA Astrophysics Data System (ADS)

    Siudek, Patrycja; Frankowski, Marcin

    2017-12-01

    This paper includes the results of chemical composition of bulk deposition samples collected simultaneously at urban (Poznań city) and forest (Jeziory) sites in central Poland, between April 2013 and October 2014. Rainwater samples were analyzed for trace elements (As, Zn, Ni, Pb, Cu, Cr, Cd) and physicochemical parameters. Overall, three metals, i.e. Zn, Pb and Cu were the most abundant anthropogenic constituents of rainwater samples from both locations. In Poznań city, the rainwater concentrations of trace elements did not differ significantly between spring and summer. However, they were elevated and more variable during the cold season (fall and winter), suggesting strong contribution from local high-temperature processes related to coal combustion (commercial and residential sector). In contrast to the urban site, relatively low variability in concentrations was found for Cu, Ni, Zn at the forest site, where direct impact of emission from vehicle traffic and coal-fired combustion (power plants) was much lower. The bulk deposition fluxes of Ni, As, Pb and Zn at this site exhibited a clear trend, with higher values during the cold season (fall and winter) than in spring and summer. At the urban site, the sums of total bulk deposition fluxes of Zn, Cu, Pb, Ni, As, Cr, Cd were as follows: 8460.4, 4209.2, 2247.4, 1882.1, 606.6, 281.6 and 31.4 μg m- 2. In addition, during the winter season, a significantly higher deposition fluxes of Cu and Zn were observed for rain (on average 103.8 and 129.4 μg m- 2, respectively) as compared to snow (19.7 μg Cu m- 2 and 54.1 μg Zn m- 2). This suggests that different deposition pattern of trace elements for rain, mixed and snow was probably the effect of several factors: precipitation type, changes in emission and favorable meteorological situation during rain events.

  11. Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure.

    PubMed

    Pignotti, Emanuela; Guerra, Roberta; Covelli, Stefano; Fabbri, Elena; Dinelli, Enrico

    2018-09-01

    Sediments from the Pialassa Piomboni coastal lagoon (NE Italy) were studied to assess the degree of contamination and ecological risk related to trace metals by combining a geochemical characterization of bulk sediments with the assessment of the bioavailable forms of trace metals. With this purpose, sediment contamination (Cd, Cu, Hg, Ni, Pb, and Zn) was assessed by Enrichment Factors (EFs), and potential bioavailability by the Simultaneously Extracted Metals and Acid Volatile Sulfides (SEM-AVS) approach (Cd, Cu, Ni, Pb, and Zn), and by Sequential Extraction Procedure (Co, Cr, Cu, Ni, Pb, and Zn). On average, Cr and Ni exhibited no contamination (EF ≤1.5), and a predominance in the residual fraction of the sediment, indicating natural origin for these metals. Cu, Pb and Zn displayed a local contamination, which resulted in a higher proportion of Cu bound to the reducible and oxidizable fractions (~30% and ~40% as median, respectively), and Pb mostly associated with the reducible phase (~60% as median). Hence, Cu and Pb could be mobilized when environmental conditions become reducing or oxidizing. Zn resulted mainly partitioned into the reducible and residual fractions (~50% as median, in both fractions). The Risk Assessment Code (RAC) indicated that approximately 30% of samples had >10% of total Zn weakly bound to the sediment, suggesting a medium risk of exposure for aquatic organisms. RAC results were consistent with the ∑SEM-AVS findings, pointing to possible adverse effects for aquatic biota in ~30% of samples, with Zn mostly accounting for the total metal bioavailability. Hg showed a moderate to very severe enrichment, indicating that a substantial amount of this metal derives from anthropogenic sources and may pose adverse effects on the aquatic biota of the Pialassa Piomboni lagoon. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  13. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  14. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland

    PubMed Central

    Radziemska, Maja; Fronczyk, Joanna

    2015-01-01

    Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium. PMID:26512684

  15. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland.

    PubMed

    Radziemska, Maja; Fronczyk, Joanna

    2015-10-23

    Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium.

  16. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area.

    PubMed

    Hossain, M A; Furumai, H; Nakajima, F

    2009-01-01

    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  17. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  18. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    PubMed

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  19. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China.

    PubMed

    Guan, Qingyu; Wang, Feifei; Xu, Chuanqi; Pan, Ninghui; Lin, Jinkuo; Zhao, Rui; Yang, Yanyan; Luo, Haiping

    2018-02-01

    Hexi Corridor is the most important base of commodity grain and producing area for cash crops. However, the rapid development of agriculture and industry has inevitably led to heavy metal contamination in the soils. Multivariate statistical analysis, GIS-based geostatistical methods and Positive Matrix Factorization (PMF) receptor modeling techniques were used to understand the levels of heavy metals and their source apportionment for agricultural soil in Hexi Corridor. The results showed that the average concentrations of Cr, Cu, Ni, Pb and Zn were lower than the secondary standard of soil environmental quality; however, the concentrations of eight metals (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn) were higher than background values, and their corresponding enrichment factor values were significantly greater than 1. Different degrees of heavy metal pollution occurred in the agricultural soils; specifically, Ni had the most potential for impacting human health. The results from the multivariate statistical analysis and GIS-based geostatistical methods indicated both natural sources (Co and W) and anthropogenic sources (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn). To better identify pollution sources of heavy metals in the agricultural soils, the PMF model was applied. Further source apportionment revealed that enrichments of Pb and Zn were attributed to traffic sources; Cr and Ni were closely related to industrial activities, including mining, smelting, coal combustion, iron and steel production and metal processing; Zn and Cu originated from agricultural activities; and V, Ti and Mn were derived from oil- and coal-related activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast).

    PubMed

    Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H

    2015-12-30

    The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  2. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  3. Distribution of selected heavy metals in sediments of the Agueda river (Central Portugal).

    PubMed

    dos Reis, Anabela Ribeiro; Parker, Andrew; Carter, Joy; Ferreira, Martim Portugal

    2005-01-01

    The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 microm fraction, in order to assess their potential availability to the environment, investigating the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) > (organics) > (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.

  4. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.

  5. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India.

    PubMed

    Manjula, Menon; Mohanraj, R; Devi, M Prashanthi

    2015-05-01

    Heavy metals continue to remain as a major environmental concern in spite of emission control measures. In this study, we analyzed the concentrations of heavy metals (Fe, Cr, Mn, Ni, Cu, Zn, and Cd) in the feathers of 11 species of birds collected from urban and rural areas of Tiruchirappalli, Southern India. Metal concentrations followed the order: Fe > Cu > Zn > Cr > Mn > Ni > Cd. Irrespective of sample locations, heavy metals such as Fe, Cr, Ni, Zn, and Cu were detected in high concentrations, while Cd and Mn were observed in lower concentrations. In contrary to our assumption, there were no statistically significant intraspecific and urban-rural differences in the metal concentrations except for Zn. Pairwise comparisons among species irrespective of metal type showed significant interspecific differences between Acridotheres tristis and Centropus phasianinus, A. tristis and Milvus migrans, C. phasianinus and M. migrans, M. migrans and Eudynamys scolopaceus, and Psittacula krameri and E. scolopaceus. Principal component analysis carried out for urban data extracted Ni, Mn, Zn, Fe, and Cu accounting for 48% variance implying dietary intake and external contamination as important sources for metals. In the rural, association of Zn, Cd, Ni, and Cr suggests the impact of metal fabrication industries and leather tanning operations.

  6. Red fox (Vulpes vulpes Linnaeus, 1758) as biological indicator for environmental pollution in Hungary.

    PubMed

    Heltai, Miklós; Markov, Georgi

    2012-10-01

    Our aim were to establish the metal (Cu, Ni, Zn, Co, Cd, and Pb) levels of red fox liver and the kidney samples (n = 10) deriving from central part of Hungary and compare the results with other countries' data. According to our results the concentrations of residues of the targeted elements (mg/kg dry weight) in liver and kidney samples were, respectively in liver: Cu: 21.418, Zn: 156.928, Ni: 2.079, Co: 1.611, Pb: 1.678 and Cd: 0.499; and kidney samples: Cu: 9.236; Zn: 87.159; Ni: 2.514; Co: 2.455; Pb: 2.63 and Cd: 0.818. Pb levels of Hungarian red fox liver samples significantly exceed the values of Italian specimens' samples, whilst the same element's concentrations of Hungarian red fox kidney samples were higher than the results published in Germany.

  7. Investigation of collision-induced dissociation products and structures of gas-phase [ M·GlyGlyHis-H]+ ( M = Fe, Ni, Cu, and Zn) complexes.

    PubMed

    Gannamani, Bharathi; Shin, Joong-Won

    2017-02-01

    Collision-induced dissociation is carried out for electrosprayed [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , [Cu·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + complexes. [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + yield metal-bound peptide sequence ions and dehydrated ions as primary products, whereas [Cu·GlyGlyHis-H] + generates a more extensive series of metal-bound sequence ions and a product arising from the unusual loss of a formaldehyde moiety; dehydration is significantly suppressed for this complex. Density functional theory calculations show that the copper ion-deprotonated peptide binding energy is substantially higher than those in other complexes, suggesting that there is a correlation between ion-ligand binding energy and their fragmentation behavior.

  8. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).

    PubMed

    Sokolowski, A; Wolowicz, M; Hummel, H

    2001-10-01

    Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.

  9. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  10. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel

    2017-06-03

    The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.

  12. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China.

    PubMed

    Wu, Lei; Liu, Guijian; Zhou, Chuncai; Liu, Rongqiong; Xi, Shanshan; Da, Chunnian; Liu, Fei

    2018-01-01

    The concentrations, spatial distribution, fractionation characteristics, and potential ecological risks of trace elements (Cu, Pb, Zn, Cr, Ni, and Co) in the surface sediment samples collected from 32 sites in Chaohu Lake were investigated. The improved BCR sequential extraction procedure was applied to analyze the chemical forms of trace elements in sediments. The enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (PERI), and risk assessment code (RAC) were employed to evaluate the pollution levels and the potential ecological risks. The results found that the concentrations of Cu, Pb, Zn, Cr, Ni, and Co in the surface sediments were 78.59, 36.91, 161.84, 98.87, 38.92, and 10.09 mg kg -1 , respectively. The lower concentrations of Cu, Pb, Zn, Cr, and Ni were almost found in the middle part of the lake, while Co increased from the western toward the eastern parts of the lake. Cr, Ni, Co, and Zn predominantly existed in the residual fractions, with the average values of 76.35, 59.22, 45.60, and 44.30%, respectively. Cu and Pb were mainly combined with Fe/Mn oxides in reducible fraction, with the average values of 66.4 and 69.1%, respectively. The pollution levels were different among the selected elements. Cu had the highest potential ecological risk, while Cr had the lowest potential ecological risk.

  13. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.

    PubMed

    Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M

    2010-01-04

    A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).

  15. Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuaries

    USGS Publications Warehouse

    Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.

    1998-01-01

    The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.

  16. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  17. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  18. Physico-Chemical and Heavy Metal Profiles of Top Soils Sourced from Abandoned Lead-Zinc Mines at Enyigba, Ameri and Ameka Villages, Abakaliki District, Ebonyi State, South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Osayande, D. A.; Azi, E. D.; Obayagbona, N.; Ovwasa, O. M.; Anegbe, B.

    2016-12-01

    Twenty (20) soil samples were collected from several abandoned old Pb - Zn mines located in Enyigba, Ameri, Ameka villages in the Abakaliki district of Ebonyi State, South-Eastern Nigeria. The soils were analyzed for Fe, Mn, Cu, Zn, Pb, Cd, Ni, Cr, V, pH, organic carbon and Electrical Conductivity using routine procedures. The physic-chemical analyses showed that pH values were generally low. The Electrical conductivity of the soils were high while organic carbon content in the soil was generally low. The heavy metal mean trend indicated that Pb (86) > Zn (64) > Cu (20) > Cd (15) > Ni (7) > Cr (6) > V (1). Fe and Mn values were also high. The variations observed for the heavy metal suggested both geogenic and anthropogenic activities were responsible for their distribution. Soil contamination was assessed on the basis of contamination factor (CF) and enrichment factor (EF). The CF values for the soil revealed moderate contamination for Ni, Cr, V, Zn and Mn, while Pb and Cd showed high contamination. The results of enrichment factor (EF) showed that using Fe concentration in the background value, Ni, Cr, V and Mn had moderate enrichment, Pb and Zn showed significant enrichment while Cd indicated high enrichment. The results of the principal component and cluster analyses showed that Zn, Cu, Cd, Pb metal originated from similar source but may have been significantly influenced by anthropogenic activities, while Ni, Cr, V were attributable to geogenic sources.

  19. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    PubMed

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  20. Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory

    PubMed Central

    Venkataramanan, Natarajan Sathiyamoorthy; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-01-01

    Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen. PMID:19468328

  1. Copper and zinc contamination in oysters: subcellular distribution and detoxification.

    PubMed

    Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan

    2011-08-01

    Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.

  2. Free metal ion depletion by "Good's" buffers. III. N-(2-acetamido)iminodiacetic acid, 2:1 complexes with zinc(II), cobalt(II), nickel(II), and copper(II); amide deprotonation by Zn(II), Co(II), and Cu(II).

    PubMed

    Lance, E A; Rhodes, C W; Nakon, R

    1983-09-01

    Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.

  3. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  4. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    NASA Astrophysics Data System (ADS)

    Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin

    2011-12-01

    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.

  5. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  6. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  7. The effect of Ti-B on stabilization of Cu-Zn-Al martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stipcich, M.; Romero, R.

    1998-10-05

    The application of shape memory effect in devices requires, in many cases, stable and reliable transformation temperatures. However, as a consequence of diffusional processes, in Cu-based shape memory alloys, reverse transformation temperature significantly rises after aging at temperatures above room temperature. This generally unwanted behavior is usually referred to as the stabilization of martensite. Numerous investigations have been carried out on this subject as reviewed by Ahlers and Chandrasekaran et al. Within the Cu-based alloys the Cu-Zn-Al are claimed to be more prone to stabilization than Cu-Al-Ni on aging. It has been proposed that in the Cu-Zn-Al the stabilization ismore » due to the interchange of Cu and Zn atoms assisted by vacancies, changing, consequently, the long range order inherited from the {beta} phase. In the present work, the authors investigate the stabilization behavior of polycrystalline samples of stress induced Cu-Zn-Al and Cu-Zn-Al-B martensite.« less

  8. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gineys, N., E-mail: nathalie.gineys@mines-douai.fr; EMDouai, LGCgE-MPE-GCE, F-59508 Douai; Aouad, G.

    2011-11-15

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C{sub 3}S, 18% C{sub 2}S, 8% C{sub 3}A and 8% C{sub 4}AF). The threshold limits formore » Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO{sub 2}) and Sn reacted with lime to form a calcium stannate (Ca{sub 2}SnO{sub 4}). Cu changed the crystallisation process and affected therefore the formation of C{sub 3}S. Indeed a high content of Cu in clinker led to the decomposition of C{sub 3}S into C{sub 2}S and of free lime. Zn, in turn, affected the formation of C{sub 3}A. Ca{sub 6}Zn{sub 3}Al{sub 4}O{sub 15} was formed whilst a tremendous reduction of C{sub 3}A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.« less

  9. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.

    PubMed

    Eliku, Temesgen; Leta, Seyoum

    2017-04-01

    Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg -1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg -1 ), Pb (0.54 ± 0.11 mg kg -1 ), Zn (14.4 ± 0.72 mg kg -1 ), Cu (2.84 ± 0.27 mg kg -1 ), and Ni (1.09 ± 0.11 mg kg -1 ) in Cabbage and for Cr (2.63 ± 0.11 mg kg -1 ) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.

  10. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  11. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. Methods We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. Results For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose–response relationship. However, for lung AC, only Cu and Ni had a significant dose–response relationship. As for females, those achieving a statistically significant dose–response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. Conclusion The current study suggests that a dose–response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant mechanism should be explored further. PMID:23575356

  12. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  13. Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia (Borneo Island).

    PubMed

    Nagarajan, R; Jonathan, M P; Roy, Priyadarsi D; Wai-Hwa, L; Prasanna, M V; Sarkar, S K; Navarrete-López, M

    2013-08-15

    Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821-6097 μg g(-1)), Mn (11.57-90.22 μg g(-1)), Cr (51.50-311 μg g(-1)), Ni (18-51 μg g(-1)), Pb (8.81-84.05 μg g(-1)), Sr (25.95-140.49 μg g(-1)) and Zn (12.46-35.04 μg g(-1)). Compared to the eco-toxicological values, Cr>Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu>Unpolluted sediments, ERL, LEL; Pb>Unpolluted sediments and Ni>ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  15. ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,

    DTIC Science & Technology

    1980-03-01

    alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and

  16. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest.

    PubMed

    Costa-Böddeker, Sandra; Hoelzmann, Philipp; Thuyên, Lê Xuân; Huy, Hoang Duc; Nguyen, Hoang Anh; Richter, Otto; Schwalb, Antje

    2017-01-30

    Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)

    NASA Astrophysics Data System (ADS)

    Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto

    2017-04-01

    The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.

  18. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  19. Investigation of the martensitic transformation of (Cu-Zn-Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Naat, N. A.; Mohammed, M. A.

    2017-02-01

    (Cu-Zn-Ni) shape memory alloy with different percent have been prepared by using high frequency induction furnace under argon atmosphere. All of the specimens obtained from this alloys were heated in furnace for (15 minutes at 865°C) for homogenization and quenched in iced-water. Comparisons has been made with data obtained via differential scanning calorimetry (DSC) and energy-dispersive X-ray spectroscopy (EDS). The metallographic analyses were carried out by using optical microscopy (OM).

  20. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.

    PubMed

    Pedron, F; Petruzzelli, G; Barbafieri, M; Tassi, E

    2009-05-01

    In microcosm experiments, the use of inorganic and organic amendments has been studied as potential agents to reduce heavy metal bioavailability in an acidic soil highly contaminated by Cu, Zn and Ni, that has to be remediated by phytoremediation. The concentrations of heavy metals in the original soil (O-Soil) produced phytotoxic effects with a strong reduction in biomass yield that hinder the utilization of this technology. To overcome phytotoxicity the use of three immobilizing agents was evaluated. The results obtained showed that all the strategies decreased the mobile fractions of heavy metals in soil and increased the metal removal efficiency. In the case of Brassica juncea the best results for Zn and Ni were obtained after zeolites addition (Z-Soil) with an increase of about 6 times with respect to the value found in the O-Soil. In the case of Cu, the more efficient treatment was Ca(OH)(2) addition (Ca-Soil). The B. juncea plants accumulated Cu amounts 8 times greater than in the O-Soil. For this metal, relevant results were obtained also with compost, that increased the amount of Cu in the plants of 7 times with respect to the O-Soil. Similar results were obtained with Helianthus annuus the highest Zn and Ni accumulation was detected in the Z-Soil and compost-treated soils (C-Soil), with an increase of nearly 11 times with respect to the accumulation in the O-Soil. In the case of Cu the highest increase of total uptake was found in the C-Soil: 28 times higher than in the O-Soil. Total accumulation in Poa annua plants showed the highest removal efficiency in the Z-Soil for all metals. The values obtained increased of 4, 11 and 12 times for Cu, Zn and Ni, respectively.

  1. Metals in coastal zones impacted with urban and industrial wastes: Insights on the metal accumulation pattern in fish species

    NASA Astrophysics Data System (ADS)

    La Colla, Noelia S.; Botté, Sandra E.; Marcovecchio, Jorge E.

    2018-05-01

    The pollution of aquatic environments is a worldwide problem of difficult solution since these areas are used for the disposal and dilution of anthropogenic wastes. This study evaluated the concentrations of Cd, Cu, Ni and Zn in the gills, liver and muscle tissues of six economically important fish species from the Bahía Blanca estuary in Argentina, a coastal environment that is under anthropogenic pressure. Metal contents in 147 fish samples were determined by digestion and a subsequent analysis with an ICP OES. The concentrations (μg/g, wet weight) of each metal in the fish tissues ranged from below the limit of detection for the four metals to 5.2 in the case of Cd, 340 for Cu, 20 for Ni, and 101 for Zn. The results suggested that metal burden in fishes varied with the species and metal elements, with Cd, Cu and Zn mean maximum accumulation towards the liver tissue. Ni showed a high number of samples with concentrations below the limit of detection. Among species, Cynoscion guatucupa was found to have the highest concentrations of Cu and Zn in the liver tissues, whereas the gills and liver tissues of Mustelus schmitti showed the lowest levels of Ni and Zn. As regards the human health risks, two samples of muscle tissue belonging to C. guatucupa reached to Cd levels that exceeded the permissible levels for human consumption. Moreover, the estimated daily intakes calculated suggest that people would not experience significant health risks from the intake of individual metals through fish consumption.

  2. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    NASA Astrophysics Data System (ADS)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  3. Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China.

    PubMed

    Zhaoyong, Zhang; Xiaodong, Yang; Shengtian, Yang

    2018-01-08

    This study sought to analyze heavy metal (Pb, Zn, Cu, Ni, Mn, and Fe) pollution status in the waters of Aibi Lake in northwest China through the use of an applied comprehensive pollution index, health risk model, and multivariate statistical analyses in combination with the lake's land use types. Results showed that (1) the maximum (average) values of the heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 0.0644 (0.0123), 0.0006 (0.0002), 0.0009 (0.0032), 0.1235 (0.0242), 0.0061 (0.0025), and 0.0222 (0.0080) μg/L, respectively. Among these, in all the samples, Pb and Ni exceeded the standard and acceptable values put forth by the World Health Organization by 21.13 and 25.67%, respectively. Ni also exceeded (30.16%) the third grade of the Environmental Quality Standards for Surface Water of China. The levels of the six heavy metals were all within the fishery and irrigation water quality standard ranges in China. (2) The average values for single pollution index of heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 1.000, 0.0006, 0.0009, 3.000, 0.060, and 0.070, respectively, among which Ni levels indicated moderate to significant pollution, while others indicated healthy levels. (3) Health risk evaluation showed that the R n values for Pb, Zn, Cu, Mn, and Fe were 1.8 × 10 -4 , 5.33 × 10 -9 , 4.80 × 10 -7 , 1.08 × 10 -6 , and 2.51 × 10 -7  a -1 , respectively, of which, in all samples, Pb and Ni contents all exceeded the maximum acceptable risk levels according to the International Commission on Radiological Protection (ICRP) as well as the U.S. Environment Protection Agency. (4) Combining with multivariate statistical analyses along with the land use distribution within the lake basin, Pb, Zn, Cu, Ni, and Mn were mainly influenced by the agriculture production and emission from urban lives and traffics, and Fe mainly originated from the natural environment. The results of this research can provide reference values for heavy metal pollution prevention in Aibi Lake as well as for environmental protection of rump lakes in the arid regions of northwest China and Central Asia.

  4. [In Process Citation].

    PubMed

    Wang, Bingsong; Li, Yijun; Wu, Xiaolu; Liu, Qingqing; Tang, Xue; Wang, Zuo

    2016-03-25

    Objetivos: oligoelementos como zinc (Zn), hierro (Fe) y cobre (Cu) tienen una influencia significativa en el mantenimiento de la función inmune y del metabolismo normales; modulan la función immune e influyen en la susceptibilidad del organismo ante infecciones. Pero la relación entre trazas de estos elementos y la bronconeumonía resultó incierta. Métodos: en este estudio fueron incluidos 28 niños con bronconeumonía y 46 niños sanos agrupados por edad. Se determinaron los niveles de Zn, Cu, Fe, calcio (Ca) y/o magnesio (Mg) en el suero de los niños con bronconeumonía y sin ella mediante espectrofotometría de absorción atómica. Resultados: los resultados muestran que varios niveles de microelementos como Zn, Ca, Mg y Fe en el grupo con bronconeumonía son menores que en el grupo control. En el grupo de niños con bronconeumonía el nivel de Ca en el suero está asociado positivamente con el zinc (Zn) (p < 0,05) y el hierro (Fe) (p < 0,05), mientras que hay una correlación positiva entre el cobre (Cu) y el calcio (Ca) (p < 0,05), magnesio (mg) (p < 0,05). Conclusión: el nivel de oligoelemento en el suero puede estar asociado con el riesgo de bronconeumonía entre los niños.

  5. Hair geochemical composition of children from Vilnius kindergartens as an indicator of environmental conditions.

    PubMed

    Taraškevičius, Ričardas; Zinkutė, Rimantė; Gedminienė, Laura; Stankevičius, Žilvinas

    2017-05-23

    The research is based on analysis data of Cr, Cu, Mn, Ni, V, Zn (metals) and S in the hair of 47 girls and 63 boys from eight Vilnius kindergartens and the distribution pattern of high metal concentrations and bioavailability in snow-cover dust, also dust samples from vents of characteristic pollution sources. The kindergartens were selected according to topsoil total contamination index and dust-related indices. Significantly higher Cu, Mn, Ni and Zn concentrations in the hair of girls (means are 1.1, 1.9, 1.3, 1.2 times higher) and the differences between hair of genders according to inter-element correlation and clustering were found. Analysis of Spearman correlation coefficients between metal concentrations in hair of each gender and dust metal concentrations or metal loading rates at their residence sites revealed that for Mn, Cu and Zn, they are insignificant, while for Cr, Ni, Pb and V, they are mainly significant positive (except V in female hair). The correlation of the contents of Cr, Ni and V in dust with respective concentrations in hair was more significant for boys (p < 0.001) than for girls. Only a few cases with a significant Cr, Ni, Cu, Pb and Zn increase were revealed in hair of children attending polluted kindergartens in comparison with control. It was concluded that relationship between metal concentrations in hair and dust-related indices is more expressed for children's residence sites than for their kindergarten sites. The gender-based grouping and site-by-site study design are recommended in the studies of reflection of environmental exposure in hair.

  6. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  7. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran.

    PubMed

    Mirzaei Aminiyan, Milad; Baalousha, Mohammed; Mousavi, Rouhollah; Mirzaei Aminiyan, Farzad; Hosseini, Hamideh; Heydariyan, Amin

    2018-05-01

    Heavy metal (HM) contamination in road dust is a potential environmental and human health threat. The sources, concentrations, spatial distribution, and ecological risk of As, Cd, Cu, Cr, Ni, Pb, and Zn in road dust in Rafsanjan City, Iran, were investigated. Pollution was assessed using the enrichment factor (EF). The potentially harmful effects of HMs were evaluated by calculating the potential ecological risk factor of individual metals (E r ) and of multiple metals (RI) using the Hakanson method. Correlation and principal component analyses (PCA) were applied to identify HM pollution sources. The concentrations of HMs in road dust were higher (ca. 5-10 folds) than their natural background values. The EF and E r increased according to the following order Cu > Pb > As > Zn > Cd > Cr > Ni and Cu > Cd > Pb > As > Ni > Zn > Cr, respectively. Thus, Cu is regarded as the pollutant of highest concern. Based on potential ecological risk index (RI) spatial distribution, all parts of Rafsanjan are characterized by significantly high potential ecological risk. HM concentration heat maps, PCA, and correlation analysis suggest that Cu, Pb, As, Cd, and Zn may have originated from the same source and follow the same spatial distribution pattern. These metals originated mainly from anthropogenic sources like copper mining and smelting plants, industrial and chemical activities, inordinate application of chemical fertilizers and pesticides in farmlands, and heavy traffic. Ni and Cr are likely to origniate from the industrial activities and traffic load in Rafsanjan City.

  8. Metal contamination in campus dust of Xi'an, China: a study based on multivariate statistics and spatial distribution.

    PubMed

    Chen, Hao; Lu, Xinwei; Li, Loretta Y; Gao, Tianning; Chang, Yuyu

    2014-06-15

    The concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in campus dust from kindergartens, elementary schools, middle schools and universities of Xi'an, China were determined by X-ray fluorescence spectrometry. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were used to analyze the data and to identify possible sources of these metals in the dust. The spatial distributions of metals in urban dust of Xi'an were analyzed based on the metal concentrations in campus dusts using the geostatistics method. The results indicate that dust samples from campuses have elevated metal concentrations, especially for Pb, Zn, Co, Cu, Cr and Ba, with the mean values of 7.1, 5.6, 3.7, 2.9, 2.5 and 1.9 times the background values for Shaanxi soil, respectively. The enrichment factor results indicate that Mn, Ni, V, As and Ba in the campus dust were deficiently to minimally enriched, mainly affected by nature and partly by anthropogenic sources, while Co, Cr, Cu, Pb and Zn in the campus dust and especially Pb and Zn were mostly affected by human activities. As and Cu, Mn and Ni, Ba and V, and Pb and Zn had similar distribution patterns. The southwest high-tech industrial area and south commercial and residential areas have relatively high levels of most metals. Three main sources were identified based on correlation coefficient analysis, PCA, CA, as well as spatial distribution characteristics. As, Ni, Cu, Mn, Pb, Zn and Cr have mixed sources - nature, traffic, as well as fossil fuel combustion and weathering of materials. Ba and V are mainly derived from nature, but partly also from industrial emissions, as well as construction sources, while Co principally originates from construction. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Six complexes based on bis(imidazole/benzimidazole-1-yl)pyridazine ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-01-01

    Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.

  10. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    PubMed Central

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal sources. Moreover, this study can be used as the fundamental data for the cell toxicity study of the subway-oriented heavy metal-containing particulate matter. PMID:24278519

  11. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    PubMed Central

    Kuriakose, Sini; Avasthi, D K

    2015-01-01

    Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864

  12. Heavy metals in Tuskegee Lake crayfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrationsmore » of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.« less

  13. [Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China].

    PubMed

    Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming

    2008-12-01

    One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.

  14. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    PubMed

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  15. Trace metal pollution assessment in the surface sediments of nearshore area, off Calicut, southwest coast of India.

    PubMed

    Srinivas, Reji; Shynu, R; Sreeraj, M K; Ramachandran, K K

    2017-07-15

    Metal concentrations (Al, Cr, Ni, Cu, Zn, and Pb), grain size, and total organic carbon content in 29 surface sediment samples from the nearshore area off Calicut were analyzed to determine their distribution and pollution status. Surface sediments were dominantly silts with low percentage of clay and sand at nearshore and offshore areas. The mean metal concentrations were in the following order: Cr>Ni>Zn>Pb>Cu. The enrichment factor and geo-accumulation index of metals suggest that the surface sediments were not polluted by Zn and moderately polluted by Cu and Ni. By contrast, Cr and Pb showed significant enrichment levels. Results from a multivariate statistical analysis suggested that the spatial enrichment of these heavy metals was related to sediment type. Thus, the sediment distribution and their metal enrichment were mainly controlled by local hydrodynamic conditions that caused the winnowing of fine-grained sediments. Copyright © 2017. Published by Elsevier Ltd.

  16. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China

    PubMed Central

    Chen, Hao; Lu, Xinwei; Gao, Tianning; Chang, Yuyu

    2016-01-01

    The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn) in campus dust from kindergartens, elementary schools, middle schools, and universities in the city of Xi’an, China, were determined by X-ray fluorescence spectrometry. The pollution levels and hotspots of metals were analyzed using a geoaccumulation index and Local Moran’s I, an indicator of spatial association, respectively. The dust samples from the campuses had metal concentrations higher than background levels, especially for Pb, Zn, Co, Cu, Cr, and Ba. The pollution assessment indicated that the campus dusts were not contaminated with As, Mn, Ni, or V, were moderately or not contaminated with Ba and Cr and were moderately to strongly contaminated with Co, Cu, Pb, and Zn. Local Moran’s I analysis detected the locations of spatial clusters and outliers and indicated that the pollution with these 10 metals occurred in significant high-high spatial clusters, low-high, or even high-low spatial outliers. As, Cu, Mn, Ni, Pb, V, and Zn had important high-high patterns in the center of Xi’an. The western and southwestern regions of the study area, i.e., areas of old and high-tech industries, have strongly contributed to the Co content in the campus dust. PMID:27271645

  18. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    PubMed Central

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  19. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-02-01

    Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.

  20. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics.

    PubMed

    Faraji, Fariborz; Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Alimardani, Navid

    2018-07-01

    In this study, Aspergillus niger (A. niger) as an environmentally friendly agent for fungal bioleaching of waste printed circuit boards (WPCBs) was employed. D-optimal response surface methodology (RSM) was utilized for optimization of the bioleaching parameters including bioleaching method (one step, two step and spent medium) and pulp densities (0.5 g L -1 to 20 g L -1 ) to maximize the recovery of Zn, Ni and Cu from WPCBs. According to the high performance liquid chromatography analysis, citric, oxalic, malic and gluconic acids were the most abundant organic acids produced by A.niger in 21 days experiments. Maximum recoveries of 98.57% of Zn, 43.95% of Ni and 64.03% of Cu were achieved based on acidolysis and complexolysis dissolution mechanisms of organic acids. Based on the kinetic studies, the rate controlling mechanism for Zn dissolution at one step approach was found to be diffusion through liquid film, while it was found to be mixed control for both two step and spent medium. Furthermore, rate of Cu dissolution which is controlled by diffusion in one step and two step approaches, detected to be controlled by chemical reaction at spent medium. It was shown that for Ni, the rate is controlled by chemical reaction for all the methods studied. Eventually, it was understood that A. niger is capable of leaching 100% of Zn, 80.39% of Ni and 85.88% of Cu in 30 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  2. Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai

    2008-09-01

    Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.

  3. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment.

    PubMed

    Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin

    2017-01-01

    Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.

  4. [Contamination and health risk for heavy metals via consumption of vegetables grown in fragmentary vegetable plots from a typical nonferrous metals mine city].

    PubMed

    Li, Ru-Zhong; Pan, Cheng-Rong; Xu, Jing-Jing; Chen, Jing; Jiang, Yan-Min

    2013-03-01

    A systematic survey of As, Ni, Cu, Pb, Cd and Zn concentrations in eight kinds of vegetables (involving 226 samples) and their corresponding soils at 35 sampling sites in the fragmentary vegetable plots of a typical nonferrous metals mine city, Tongling, was carried out for assessing heavy metal pollution, bio-accumulation ability and potential health risk to local inhabitants due to exposure via consumption of vegetables. The results showed that: (1) The soils of the studied vegetable plots were seriously contaminated by heavy metals and the mean concentrations of As, Ni, Cu, Pb, Cd and Zn reached 96.96, 56.64, 1 247.82, 313.59, 6.743 and 600.96 mg x kg(-1), respectively, all significantly exceeding the soil background value of Tongling city; (2) The mean values of integrated pollution index corresponding to eight varieties of vegetables were all higher than the threshold value (i. e. 3.0) of heavy pollution; (3) In general, the largest bioaccumulation factor of heavy metals in vegetables was As, followed by Ni and Cu, and the order of pollution degree of heavy metals in vegetables was Ni > Zn > Cu > Pb > As > Cd; (4) The target hazard quotients (THQs) of As, Ni, Cu, Pb, Cd and Zn were 17.92, 1.01, 10.14, 0.73, 0.21 and 1.93, respectively. Arsenic and copper were the major risk contributors for inhabitants since the THQs of them respectively mounted to 56.10% and 31.75% of the total THQ value according to the average vegetable consumption; (5) The estimated daily intake (DI) of As, Ni, Cu, Pb, Cd and Zn from vegetables was 324.38, 1 211.25, 24 326.25, 176.25, 12.75 and 34 800 microg x d(-1) for adult residents, respectively; and (6) The target cancer risk (TR) of vegetables polluted by As to individual human health was 8.06 x 10(-3), significantly higher than the management standard (i. e. 10(-6) - 10(-4)) of United States Environmental Protection Agency (US EPA) and the standard (i. e. 5.0 x 10(-5)) of International Commission on Radiological Protection (ICRP), indicating that it was quite unsafe for the general population to consume vegetables from the studied fragmentary plots.

  5. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  6. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE PAGES

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui; ...

    2017-11-01

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  7. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  8. The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils.

    PubMed

    Yin, Yujun; Impellitteri, Christopher A; You, Sun-Jae; Allen, Herbert E

    2002-03-15

    The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution extraction ratio and the roles of soil properties on metal desorption. Dcsorption was examined for each metal by computing distribution coefficients (Kd) for each metal in each soil where Kd = [M]soil/[M]solution, Results from soil:solution ratio studies demonstrated that Kd values for the metals tended to increase with increasing soil:solution ratio. This result also held true for distribution of soil organic matter (SOM). Because the soil:solution ratio has a significant effect on measured metal distributions, we selected a high soil:solution ratio to more closely approach natural soil conditions. Copper showed strong affinity to operationally defined dissolved organic matter (DOM). In this study, DOM was operationally defined based on the total organic carbon (TOC) content in 0.45-microm or 0.22-microm filtrates of the extracts. The Kd of Cu correlated linearly (r2 = 0.91) with the Kd of organic matter (Kd-om) where the Kd-om is equal to SOM as measured by Walkley-Black wet combustion and converted to total carbon (TC) by a factor of 0.59. These values representing solid phase TC were then divided by soluble organic carbon as measured by TOC analysis (DOM). The conversion factor of 0.59 was employed in order to construct Kd-om values based on solid phase carbon and solution phase carbon. SOM plays a significant role in the fate of Cu in soil systems. Soil-solution distribution of Ni and Zn, as well as the activity of free Cu2+, were closely related to SOM, but not to DOM. Kd values for Ni, Zn and free Cu2+ in a particular soil were divided by the SOM content in the same soil. This normalization of the Kd values for Ni, Zn, and free Cu2+ to the SOM content resulted in significant improvements in the linear relationships between non-normalized Kd values and soil pH. The semi-empirical normalized regression equations can be used to predict the solubility of Ni and Zn and the activity of free Cu2+ as a function of pH.

  9. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  10. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  11. The AMBRE project: Iron-peak elements in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Š.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Worley, C. C.; de Pascale, M.

    2017-04-01

    Context. The pattern of chemical abundance ratios in stellar populations of the Milky Way is a fingerprint of the Galactic chemical history. In order to interpret such chemical fossils of Galactic archaeology, chemical evolution models have to be developed. However, despite the complex physics included in the most recent models, significant discrepancies between models and observations are widely encountered. Aims: The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. Methods: We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and α element (Mg) chemical abundances for 4666 stars, adopting classical LTE spectral synthesis and 1D atmospheric models. Our observational data collection is composed of high-resolution, high signal-to-noise ratios HARPS and FEROS spectra, which were previously parametrised by the AMBRE project. Results: We used the bimodal distribution of the magnesium-to-iron abundance ratios to chemically classify our sample stars into different Galactic substructures: thin disc, metal-poor and high-α metal rich, high-α, and low-α metal-poor populations. Both high-α and low-α metal-poor populations are fully distinct in Mg, Cu, and Zn, but these substructures are statistically indistinguishable in Mn and Ni. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Also, both thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Yet, Mn looks very different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. The [Zn/Fe] trends look very similar to those of [α/Fe] trends. The typical dispersion of results in both discs is low (≈0.05 dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (≈0.035 dex). Conclusions: It is clearly demonstrated that Zn is an α-like element and could be used to separate thin and thick disc stars. Moreover, we show that the [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. From the comparison with Galactic chemical evolutionary models, we conclude that some recent models can partially reproduce the observed Mg, Zn, and, Cu behaviours in thin and thick discs and metal-poor sequences. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. The very low scatter (≈0.05 dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration. Based on observations collected at ESO telescopes under the AMBRE programme. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A22

  12. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles

    PubMed Central

    Lin, Sijie; Zhao, Yan; Xia, Tian; Meng, Huan; Zhaoxia, Ji; Liu, Rong; George, Saji; Xiong, Sijing; Wang, Xiang; Zhang, Haiyuan; Pokhrel, Suman; Mädler, Lutz; Damoiseaux, Robert; Lin, Shuo; Nel, Andre E.

    2014-01-01

    Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO and Co3O4) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependant hatching interference in the embryos, with the exception of Co3O4 which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn2+. This hypothesis is based on the presence of metal–sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA sensitive. In conclusion, we demonstrate that high content imaging of embryo development, morphological abnormalities and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo. PMID:21851096

  13. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio

    2015-09-01

    Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

  14. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  15. Percolation-induced plasmonic state and double negative electromagnetic properties of Ni-Zn Ferrite/Cu granular composite materials

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Kono, Koji; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-05-01

    Complex permeability and permittivity spectra of Ni-Zn Ferrite/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. The electrical conductivity σ shows insulating properties in the volume fraction of Cu particles below φ = 0.14. A large jump in conductivity was observed between φ = 0.14 and 0.24 indicating that the Cu particles make metallic conduction between this interval. Hence, the percolation threshold φC, was estimated to be 0.14. A percolation-induced low frequency plasmonic state with negative permittivity spectrum was observed from φ = 0.14-0.24. Meanwhile the negative permeability was observed at φ = 0.16, 0.19 and 0.24. Hence the DNG characteristic was realized in these Cu volume content in the frequency range from 105 MHz to 2 GHz.

  16. The environmental impact of informal and home productive arrangement in the jewelry and fashion jewelry chain on sanitary sewer system.

    PubMed

    Salles, Fernanda Junqueira; Sato, Ana Paula Sayuri; Luz, Maciel Santos; Fávaro, Déborah Inês Teixeira; Ferreira, Francisco Jorge; da Silva Paganini, Wanderley; Olympio, Kelly Polido Kaneshiro

    2018-04-01

    The outsourcing informal home practices adopted in jewelry and fashion jewelry chain can cause toxic substance elimination in the effluents and raise a concern for its environmental impact. This study evaluates if this informal work alters the concentration of potentially toxic elements (PTEs: As, Cd, Cr total and Cr-VI, Cu, Hg, Ni, Pb, Sn, and Zn) in the sewage network. The sanitary sewage samples (n = 540) were collected in 15 manholes during two campaigns in three different areas of Limeira-SP, Brazil (industrial area, with informal work and without known industrial/informal activity). The sewage sludge (n = 12), raw (n = 12), and treated sewage (n = 12) were collected in two wastewater treatment plants (WWT: AS and TATU) operating with different treatment process. The PTE determination was performed by ICP-OES, direct mercury analysis, and UV-Vis spectroscopy. Cr-VI, Cu, Ni, and Zn were the only elements above the quantification limit. Four samples exceeded Cu or Zn values permitted to be discharged into sewage system; however, the concentration average was lower than that established by Brazilian legislation. A difference was found between values above and below the 75th percentile for campaign and total organic carbon values (p < 0.015). The AS-treated sewage presented low concentrations of Cu (p < 0.05), Zn (p = 0.02), and Ni (p = 0.01) compared to treated sewage from TATU. In the sludge samples, the Cu means exceeded the limits of the Brazilian legislation (1500 mg kg -1 ) and the Zn results were very close to the limits (2800 mg kg -1 ). The heterogeneity of the results can indicate the sporadic nature of the PTE's sanitary disposal. PTEs used in jewelry and fashion jewelry chain may precipitate on the sludge, where presented high concentrations of Cu and Zn which require controlled destination.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related tomore » the interfacial stress developed on cooling from deposition temperature.« less

  18. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  19. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; Almadani, Sattam A; El-Sorogy, Abdelbaset

    2017-11-13

    To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

  20. Distribution of Bioactive Trace Metals (Fe, Co, Ni, Cu and Zn) in the semiarid Kuwait Bay, stressed by natural and anthropogenic processes

    NASA Astrophysics Data System (ADS)

    Al-Said, T. F.; Pokavanich, T.; Al-Hashem, A.; Kedila, R.

    2016-02-01

    Kuwait is in the northwestern part of the Arabian Gulf and receives flow from Shatt Al-Arab River as the main fresh water input to the Gulf. Kuwait's waters can be described as eutrophic, euphotic, and highly saline waters. The main objective of the study is to assess spatial and temporal distribution of Cu, Co, Zn, Fe and Ni, nutrients such as nitrate and phosphate, chlorophyll-a and physical variables along transects in Kuwait's Waters. No systematic research on bioactive metals has been studied in the region. Concentration of trace metal in the shallow Kuwait Bay was relatively high and decreased towards the southern water. This is attributed to higher sewage input, domestic and industrial effluents, dust storms and human activities. Cu, Ni, Fe, Zn and Co levels were measured using proven tested methodology i.e., Adsorptive Cathodic Stripping Voltammetry (Ad-CSV) and Flow Injection Analyzer (FIA). Surface seawater samples were collected from 26 stations using clean polyethylene sampling devices from four transects during two seasons in 2015. Average concentrations of Copper, Nickel, Cobalt, Zinc and chlorophyll-a corresponded to 14.99, 22.32, 0.74, 14.56 nM and 3.05µg/L during June 2015. These values indicated lower concentrations compared to previously published values from Kuwait's waters: Cu 48.52, Ni 26.12, Co 4.69, Zn 93.86 nM. Two transects conducted during summer 2015 showed positive relationship between metals (Cu, Co and Ni) and chlorophyll. Strong and apparent correlation was observed between cobalt and chlorophyll-a in Kuwait Bay indicating that these micronutrient are abundant and higher than phytoplankton essential requirements. Recent measured Fe concentration 7.95nM in Kuwait Bay was comparable to values found in similar coastal water. Latest results obtained during the transactional surveys and processes involved in Kuwait's waters will be shown and discussed during the presentation.

  1. iMAST Quarterly, Number 2, 2000

    DTIC Science & Technology

    2000-01-01

    Metal Iron N2 Metal Niobium N2 Metal Al12Si N2 Metal Al6061 N2 Metal CCC (Al 9Ce 5Cr 2.8 Co) N2 Metal Pech 1 (Al 12 Zn 3Mg 1 Cu 0.25Mn N2 Metal...Cu 38Ni N2 Metal Nichrome (80/20) N2 Metal Ni 5Al N2 Metal Cr3 C2 –25Ni Cr N2 Metal Co 29Cr 6Al 1Y (Amdry 920) N2 Metal Co 32Ni 20Cr 8Al N2 Metal 316...St. Steel N2 Metal Ancorsteel 1000 N2 Metal Ti 35Zr 10Nl N2 Metal Al Alloys + SiC (15%) (No. 12-17) N2 Metal Al, Zn + 10-15% HA N2 Metal (HA

  2. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?

    PubMed

    Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J

    2013-01-01

    In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and variability in TTFs between the organisms found in different habitats, and years sampled.

  3. A novel fractionation approach for water constituents - distribution of storm event metals.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-05-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.

  4. A novel fractionation approach for water constituents – distribution of storm event metals

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2014-01-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891

  5. Spatial Variability and Distribution of the Metals in Surface Runoff in a Nonferrous Metal Mine

    PubMed Central

    Ren, Bozhi; Chen, Yangbo; Zhu, Guocheng; Wang, Zhenghua; Zheng, Xie

    2016-01-01

    The spatial variation and distribution features of the metals tested in the surface runoff in Xikuangshan Bao Daxing miming area were analyzed by combining statistical methods with a geographic information system (GIS). The results showed that the maximum concentrations of those five kinds of the metals (Sb, Zn, Cu, Pb, and Cd) in the surface runoff of the antimony mining area were lower than the standard value except the concentration of metal Ni. Their concentrations were 497.1, 2.0, 1.8, 22.2, and 22.1 times larger than the standard value, respectively. This metal pollution was mainly concentrated in local areas, which were seriously polluted. The variation coefficient of Sb, Zn, Cu, Ni, Pb, and Cd was between 0.4 to 0.6, wherein the Sb's spatial variability coefficient is 50.56%, indicating a strong variability. Variation coefficients of the rest of metals were less than 50%, suggesting a moderate variability. The spatial structure analysis showed that the squared correlation coefficient (R 2) of the models fitting for Sb, Zn, Cu, Ni, Pb, and Cd was between 0.721 and 0.976; the ratio of the nugget value (C 0) to the abutment value (C + C 0) was between 0.0767 and 0.559; the semivariogram of Sb, Zn, Ni, and Pb was in agreement with a spherical model, while semivariogram of Cu and Cd was in agreement with Gaussian model, and both had a strong spatial correlation. The trend and spatial distribution indicated that those pollution distributions resulting from Ni, Pb, and Cd are similar, mainly concentrated in both ends of north and south in eastern part. The main reasons for the pollution were attributed to the residents living, transportation, and industrial activities; the Sb distribution was concentrated mainly in the central part, of which the pollution was assigned to the mining and the industrial activity; the pollution distributions of Zn and Cu were similar, mainly concentrated in both ends of north and south as well as in west; the sources of the metals were widely distributed. PMID:27069713

  6. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.

    PubMed

    Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R

    2010-12-01

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.

  7. A comprehensive analysis of heavy metals in urban road dust of Xi'an, China: Contamination, source apportionment and spatial distribution.

    PubMed

    Pan, Huiyun; Lu, Xinwei; Lei, Kai

    2017-12-31

    A detailed investigation was conducted to study heavy metal contamination in road dust from four regions of Xi'an, Northwest China. The concentrations of eight heavy metals Co, Cr, Cu, Mn, Ni, Pb, Zn and V were determined by X-Ray Fluorescence. The mean concentrations of these elements were: 30.9mgkg -1 Co, 145.0mgkg -1 Cr, 54.7mgkg -1 Cu, 510.5mgkg -1 Mn, 30.8mgkg -1 Ni, 124.5mgkg -1 Pb, 69.6mgkg -1 V and 268.6mgkg -1 Zn. There was significant enrichment of Pb, Zn, Co, Cu and Cr based on geo-accumulation index value. Multivariate statistical analysis showed that levels of Cu, Pb, Zn, Co and Cr were controlled by anthropogenic activities, while levels of Mn, Ni and V were associated with natural sources. Principle component analysis and multiple linear regression were applied to determine the source apportionment. The results showed that traffic was the main source with a percent contribution of 53.4%. Natural sources contributed 26.5%, and other anthropogenic pollution sources contributed 20.1%. Clear heavy metal pollution hotspots were identified by GIS mapping. The location of point pollution sources and prevailing wind direction were found to be important factors in the spatial distribution of heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Intake of essential minerals and metals via consumption of seafood from the Mediterranean Sea.

    PubMed

    Storelli, M M

    2009-05-01

    Edible marine species (fish and cephalopod molluscs) from the Mediterranean Sea were analyzed for their metal content (Hg, Cd, Pb, Cr, Cu, Zn, and Ni). Human health risks posed by these elements via dietary intake of seafood were assessed based on the provisional tolerable weekly intake, reference dose, and recommended dietary allowances. Metal concentrations varied widely among the different organisms, indicating species-specific accumulation. On a wet weight basis, the maximum concentrations of Hg were found in fish (1.56 microg g(-1)), and the maximum concentrations of cadmium were found in cephalopod molluscs (0.82 microg g(-1)), whereas for Pb the concentrations were generally low (fish, 0.01 to 1.18 microg g(-1); cephalopod molluscs, 0.03 to 0.09 microg g(-1)). For the essential metals, cephalopods had higher concentrations (Cr, 0.40 microg g(-1); Zn, 33.03 microg g(-1); Cu, 23.77 microg g(-1); Ni, 2.12 microg g(-1)) than did fish (Cr, 0.17 microg g(-1); Zn, 8.43 microg g(-1); Cu, 1.35 microg g(-1); Ni, 1.13 microg g(-1)). The estimated weekly intake of Cd and Pb indicated increased health risks through the consumption of various seafoods. Conversely, a health risk was ascribed to the intake of Hg from consumption of certain fish, such as albacore (10.92 microg kg(-1) body weight) and thornback ray (5.25 microg kg(-1) body weight). Concerning the essential metals, cephalopod mollusc consumption made an important contribution to daily dietary intake of Cu, Zn, and Ni.

  9. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  10. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses.

    PubMed

    Trujillo-González, Juan Manuel; Torres-Mora, Marco Aurelio; Keesstra, Saskia; Brevik, Eric C; Jiménez-Ballesta, Raimundo

    2016-05-15

    Soil pollution is a key component of the land degradation process, but little is known about the impact of soil pollution on human health in the urban environment. The heavy metals Pb, Zn, Cu, Cr, Cd and Ni were analyzed by acid digestion (method EPA 3050B) and a total of 15 dust samples were collected from streets of three sectors of the city with different land uses; commercial, residential and a highway. The purpose was to measure the concentrations of heavy metals in road sediment samples taken from urban sites under different land uses, and to assess pollution through pollution indices, namely the ecological risk index and geoaccumulation index. Heavy metals concentrations (mg/kg) followed the following sequences for each sector: commercial sector Pb (1289.4)>Cu (490.2)>Zn (387.6)>Cr (60.2)>Ni (54.3); highway Zn (133.3)>Cu (126.3)>Pb (87.5)>Cr (9.4)>Ni (5.3); residential sector Zn (108.3)>Pb (26.0)>Cu (23.7)>Cr (7.3)>Ni (7.2). The geoaccumulation index indicated that the commercial sector was moderately to strongly polluted while the other sectors fell into the unpolluted category. Similarly, using the ecological risk index the commercial sector fell into the considerable category while the other sectors classified as low risk. Road dust increased along with city growth and its dynamics, additionally, road dust might cause a number of negative environmental impacts, therefore the monitoring this dust is crucial. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun

    A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere ofmore » metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.« less

  12. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  13. Level of heavy metals in some edible marine fishes of mangrove dominated tropical estuarine areas of Hooghly River, north east coast of Bay of Bengal, India.

    PubMed

    De, T K; De, M; Das, S; Ray, R; Ghosh, P B

    2010-10-01

    The muscles of some important marine fishes collected in and around Hooghly estuarine coastal areas were analyzed for the heavy metals Cu, Zn, Ni, Cd, Cr and Pb. The concentration range of Cu (16.22-47.97 ppm), Pb (12.40-19.96 ppm) and Zn (12.13-44.74 ppm) were recorded comparatively higher and were similar to that found in contaminated areas. On the other hand the ranges of Ni (2.20-3.69 ppm), Cr (0-3.89 ppm) and Cd (0.62-1.20 ppm) were almost equal to those carried out over a wide range of geographical areas. The degree of bioaccumulations was metal-specific as well as species-specific in nature. The toxic groups of metals (Pb and Cd) showed higher variability than the essential metals (Cu, Zn and Ni). The calculated intake value of metals (week⁻¹ kg⁻¹ body wt) varied from 14.88 to 27.60 of Pb, 0.87 to 1.68 of Cd, 0.0 to 5.45 of Cr, 22.70 to 137.16 of Cu, 3.08 to 5.17 of Ni and 16.98 to 62.60 of Zn through human consumption of these fishes and were compared with those of standard Provisional Tolerable Weekly Intake value (PTWI) per kg body weight as stipulated by WHO. The PTWI(Cal) values of Pb in some of the fishes recorded marginally excess values and may indicate a health risk through consumption of successive 7 days in a week.

  14. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  15. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II)

    NASA Astrophysics Data System (ADS)

    McCabe, Jacob W.; Vangala, Rajpal; Angel, Laurence A.

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. [Figure not available: see fulltext.

  17. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II).

    PubMed

    McCabe, Jacob W; Vangala, Rajpal; Angel, Laurence A

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. Graphical abstract ᅟ.

  18. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  1. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  2. Trace-metal accumulation, distribution, and fluxes in forests of the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, A.J.

    1985-01-01

    Forest floor was sampled at 78 sites in nine northeastern states in the USA and analyzed for Cu, Zn, Ni, and Cd. Higher levels of trace metals occurred in the southern half of the study region. Earlier work identified that Pb accumulated in the forest floor of the high-elevation regions of New England. The distribution of Pb, Cu, Zn, Ni, and Cd within the forest floor was studied at three different forested states in New England. The greatest concentration of Pb, Cu, Zn, Ni, and Cd occurred in the Oe horizon of the forest floor in all three forests. Thismore » is the zone of greatest biological activity in the forest floor. Because it receives relatively high rates of atmospheric deposition, Camels Hump in northern Vermont was studied in greater detail. Lead concentration and amount in the forest floor increased between 550 and 1160 m elevation. Comparisons with 1966 and 1977 samples from the same stands showed that Pb, Cu, and Zn concentrations increased by as much as 148% in the intervening 14 years. Estimated deposition rates of Pb, Cu, and Zn based on accumulation rates agreed with regional deposition rates reported in the literature. Lead concentrations were an order of magnitude lower in mineral soil and vegetation than in forest floor. Thus the most likely source of forest floor Pb is the atmosphere. Lead was strongly retained by the forest floor and approximately 3% of the current Pb content of the forest floor is added each year by atmospheric deposition. At the current accumulation rates, the amount of Pb in the forest floor will double in three to four decades.« less

  3. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  4. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    PubMed

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  6. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops.

    PubMed

    Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H

    2013-01-01

    The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    PubMed

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?

    PubMed

    Warming, Marlies; Hansen, Mette G; Holm, Peter E; Magid, Jakob; Hansen, Thomas H; Trapp, Stefan

    2015-07-01

    This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentrations (mg/kg dw) of As were 0.002-0.21, Cd 0.03-0.25, Cr < 0.09-0.38, Cu 1.8-8.7, Ni < 0.23-0.62, Pb 0.05-1.56, and Zn 10-86. Generally, elemental concentrations in the crops do not reflect soil concentrations, nor exceed legal standards for Cd and Pb in food. Hazard quotients (HQs) were calculated from soil ingestion, vegetable consumption, measured trace element concentrations and tolerable intake levels. The HQs for As, Cd, Cr, Cu, Ni, and Zn do not indicate a health risk through urban gardening in Copenhagen. Exposure to Pb contaminated sites may lead to unacceptable risk not caused by vegetable consumption but by unintentional soil ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mulliken's populations and electron momentum densities of transition metal tungstates using LCAO scheme

    NASA Astrophysics Data System (ADS)

    Meena, B. S.; Heda, N. L.; Ahuja, B. L.

    2018-05-01

    We have computed the Mulliken's populations (MP) and electron momentum densities (EMDs) for TMWO4 (TM=Co, Ni, Cu and Zn) using linear combination of atomic orbitals (LCAO) scheme. The latest hybridization of Hartree-Fock (HF) and density functional theory (DFT) under the framework of LCAO approximations (so called WC1LYP and B1WC) have been employed. The theoretical EMDs have been compared with the available experimental data which show that WC1LYP scheme gives slightly better agreement with the experimental data for all the reported tungstates. Such trend shows the applicability of Lee-Yang-Parr (LYP) correlation energies within hybrid approximations in predicting the electronic properties of these compounds. Further, the MP data show the charge transfer from Co/Ni/Cu/Zn and W to O atoms. In addition, we have plotted the total EMDs at the same normalized area which show almost similar type of localization of 3d electrons (in real space) of Cu and Zn, which is lower than that of Ni and Co atoms in their tungstates environment.

  10. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS.

    PubMed

    Kiran, K; Suresh Kumar, K; Suvardhan, K; Janardhanam, K; Chiranjeevi, P

    2007-08-17

    2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0+/-0.2 and eluted with 6 ml of 1M HNO3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 microg ml(-1). The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.

  11. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  12. [Analysis and assessment of atmospheric pollution based on accumulation characterization of heavy metals in Platanus acerifolia leaves].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Wang, Cheng-Run

    2014-03-01

    The present work was aimed to evaluate the heavy metal pollution in the atmosphere of Huainan City. We measured and clustered the accumulation of six heavy metals in Platanus acerifolia leaves in 20 sampling fields with six types of environmental conditions, and analyzed the EF value of heavy metal enrichment in the leaves. The results showed that the accumulations in Platanus acerifolia leaves varied according to different types of metals, following the order of Zn > Cu > Cr > Ni > Pb > Cd. Environmental conditions also had great influence on the accumulation of heavy metals. Cd and Cu were mostly found in cement plant and mine, respectively, and Cr, Ni, Pb and Zn were significant higher in main road, compared with other environmental conditions. The average values of EF for all the metals expect Cr in scenic and village area were over 1. The average values of EF for all the metals in mine, power plant, main road and cement plant were above 3. The overall pollution condition of heavy metals in Huainan City followed the order of Cd > Cu > Zn > Ni > Pb > Cr.

  13. Chemometric analysis of voltammetric data on metal ion binding by selenocystine.

    PubMed

    Gusmão, Rui; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2012-06-28

    The behavior of selenocystine (SeCyst) alone or in the presence of various metal ions (Bi(3+), Cd(2+), Co(2+), Cu(2+), Cr(3+), Ni(2+), Pb(2+), and Zn(2+)) was studied using differential pulse voltammetry (DPV) over a wide pH range. Voltammetric data matrices were analyzed using chemometric tools recently developed for nonlinear data: pHfit and Gaussian Peak Adjustment (GPA). Under the experimental conditions tested, no evidence was found for the formation of metal complexes with Bi(3+), Cu(2+), Cr(3+), and Pb(2+). In contrast, SeCyst formed electroinactive complexes with Co(2+) and Ni(2+) and kinetically inert but electroactive complexes with Cd(2+) and Zn(2+). Titrations with Cd(2+), Co(2+), Ni(2+), and Zn(2+) produced data that were reasonably consistent with the formation of stable 1:1 M(SeCyst) complexes.

  14. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy

    2012-01-01

    The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.

  15. Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt national park, North Dakota

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1988-01-01

    Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.

  16. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban.

    PubMed

    Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu

    2017-05-01

    This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.

  17. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  18. Study of copper-free back contacts to thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  19. Exploring the color of transition metal ions in irregular coordination geometries: new colored inorganic oxides based on the spiroffite structure, Zn(2-x)M(x)Te3O8 (M = Co, Ni, Cu).

    PubMed

    Tamilarasan, S; Sarma, Debajit; Bhattacharjee, S; Waghmare, U V; Natarajan, S; Gopalakrishnan, J

    2013-05-20

    We describe the synthesis, crystal structures, and optical absorption spectra of transition metal-substituted spiroffite derivatives, Zn(2-x)M(x)Te3O8 (M(II) = Co, Ni, Cu; 0 < x ≤ 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 °C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M(II)-O bonds (1.898-2.236 Å) and one longer Zn/M(II)-O bond (2.356-2.519 Å). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn(2-x)M(x)Te3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M(II)-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M(II) = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn(2-x)M(x)Te3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

  20. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran.

    PubMed

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine

    2017-10-01

    Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  2. Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique

    PubMed Central

    Díaz-Raviña, Montserrat; Bååth, Erland; Frostegård, Åsa

    1994-01-01

    A thymidine incorporation technique was used to determine the tolerance of a soil bacterial community to Cu, Cd, Zn, Ni, and Pb. An agricultural soil was artificially contaminated in our laboratory with individual metals at three different concentrations, and the results were compared with the results obtained by using the plate count technique. Thymidine incorporation was found to be a simple and rapid method for measuring tolerance. Data obtained by this technique were very reproducible. A linear relationship was found between changes in community tolerance levels obtained by the thymidine incorporation and plate count techniques (r = 0.732, P < 0.001). An increase in tolerance to the metal added to soil was observed for the bacterial community obtained from each polluted soil compared with the community obtained from unpolluted soil. The only exception was when Pb was added; no indication of Pb tolerance was found. An increase in the tolerance to metals other than the metal originally added to soil was also observed, indicating that there was multiple heavy metal tolerance at the community level. Thus, Cu pollution, in addition to increasing tolerance to Cu, also induced tolerance to Zn, Cd, and Ni. Zn and Cd pollution increased community tolerance to all five metals. Ni amendment increased tolerance to Ni the most but also increased community tolerance to Zn and, to lesser degrees, increased community tolerance to Pb and Cd. In soils polluted with Pb increased tolerance to other metals was found in the following order: Ni > Cd > Zn > Cu. We found significant positive relationships between changes in Cd, Zn, and Pb tolerance and, to a lesser degree, between changes in Pb and Ni tolerance when all metals and amendment levels were compared. The magnitude of the increase in heavy metal tolerance was found to be linearly related to the logarithm of the metal concentration added to the soil. Threshold tolerance concentrations were estimated from these linear relationships, and changes in tolerance could be detected at levels of soil contamination similar to those reported previously to result in changes in the phospholipid fatty acid pattern (Å. Frostegård, A. Tunlid, and E. Bååth, Appl. Environ. Microbiol. 59: 3605-3617, 1993). PMID:16349314

  3. Electronic and optical properties of Cu2XSnS4 (X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of native defect pairs

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-05-01

    Reducing or controlling cation disorder in Cu2ZnSnS4 is a major challenge, mainly due to low formation energies of the anti-site pair ( CuZn - + ZnCu +) and the compensated Cu vacancy ( VCu - + ZnCu +). We study the electronic and optical properties of Cu2XSnS4 (CXTS, with X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of defect pairs, by employing the first-principles method within the density functional theory. The calculations indicate that these compounds can be grown in either the kesterite or stannite tetragonal phase, except Cu2CaSnS4 which seems to be unstable also in its trigonal phase. In the tetragonal phase, all six compounds have rather similar electronic band structures, suitable band-gap energies Eg for photovoltaic applications, as well as good absorption coefficients α(ω). However, the formation of the defect pairs ( C u X + X Cu) and ( V Cu + X Cu) is an issue for these compounds, especially considering the anti-site pair which has formation energy in the order of ˜0.3 eV. The ( C u X + X Cu) pair narrows the energy gap by typically ΔEg ≈ 0.1-0.3 eV, but for Cu2NiSnS4, the complex yields localized in-gap states. Due to the low formation energy of ( C u X + X Cu), we conclude that it is difficult to avoid disordering from the high concentration of anti-site pairs. The defect concentration in Cu2BeSnS4 is however expected to be significantly lower (as much as ˜104 times at typical device operating temperature) compared to the other compounds, which is partly explained by larger relaxation effects in Cu2BeSnS4 as the two anti-site atoms have different sizes. The disadvantage is that the stronger relaxation has a stronger impact on the band-gap narrowing. Therefore, instead of trying to reduce the anti-site pairs, we suggest that one shall try to compensate ( C u X + X Cu) with ( V Cu + X Cu) or other defects in order to stabilize the gap energy.

  4. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China.

    PubMed

    Leung, Anna O W; Duzgoren-Aydin, Nurdan S; Cheung, K C; Wong, Ming H

    2008-04-01

    The recycling of printed circuit boards in Guiyu, China, a village intensely involved in e-waste processing, may present a significant environmental and human health risk. To evaluate the extent of heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn) contamination from printed circuit board recycling, surface dust samples were collected from recycling workshops, adjacent roads, a schoolyard, and an outdoor food market. ICP-OES analyses revealed elevated mean concentrations in workshop dust (Pb 110,000, Cu 8360, Zn 4420, and Ni 1500 mg/kg) and in dust of adjacent roads (Pb 22,600, Cu 6170, Zn 2370, and Ni 304 mg/kg). Lead and Cu in road dust were 330 and 106, and 371 and 155 times higher, respectively, than non e-waste sites located 8 and 30 km away. Levels at the schoolyard and food market showed that public places were adversely impacted. Risk assessment predicted that Pb and Cu originating from circuit board recycling have the potential to pose serious health risks to workers and local residents of Guiyu, especially children, and warrants an urgent investigation into heavy metal related health impacts. The potential environmental and human health consequences due to uncontrolled e-waste recycling in Guiyu serves as a case study for other countries involved in similar crude recycling activities.

  6. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi'an, China.

    PubMed

    Wang, Qian; Lu, Xinwei; Pan, Huiyun

    2016-10-01

    A study on heavy metal pollution was undertaken in the re-suspended road dusts from different functional areas in Xi'an City of China to investigate the impacts of human activities and land uses on urban environment. The concentrations of Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined using X-ray fluorescence spectrometry, and their accumulations were analyzed using enrichment factor. Correlation analysis, principal component analysis, and cluster analysis, combined with the concentration property and enrichment factor, were used to identify the possible sources of heavy metals investigated. The investigated re-suspended road dusts had Co, Cr, Cu, Pb, and Zn concentrations higher than background levels. Samples from different functional areas had diverse heavy metal concentration levels. Co, Cr, Cu, Pb, and Zn presented moderate/significant enrichment in the samples. The source analyses indicated that Mn, Ni, V, Pb, and Zn had the mixed sources of nature and traffic, Cr and Cu mainly originated from traffic source, while Co was primarily derived from construction source. Traffic and construction activities had a significant impact on urban environment. This preliminary research provides a valuable basis for urban environment protection and management.

  7. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China.

    PubMed

    Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang

    2017-04-01

    The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.

  9. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  10. 40 CFR 413.64 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7... of daily values for 4 consecutive monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100...

  11. 40 CFR 413.64 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7... of daily values for 4 consecutive monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100...

  12. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  13. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    PubMed

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [Calculation of environmental dredging depth of heavy sediments in Zhushan Bay of Taihu Lake metal polluted].

    PubMed

    Jiang, Xia; Wang, Wen-Wen; Wang, Shu-Hang; Jin, Xiang-Can

    2012-04-01

    Horizontal distribution of heavy metals in surface sediments of Zhushan Bay was investigated, and core sediment samples were collected in the representative area. Core sediments were divided into oxide layer (A), polluted layer (B), upper polluted transition layer(C1), lower polluted transition layer(C2) and normal mud layer(D) from top to bottom. The change of total contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and contents of biological available Cr, Ni, Cu, Zn, As, Cd, Pb with depths were analyzed. Ecological risk assessment of heavy metals in sediments was done by potential ecological risk index method. At last, environmental dredging depth was calculated. The results shows that the contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 30.56-216.58, 24.07-59.95, 16.71-140.30, 84.31-193.43, 3.39-22.30, 0.37-1.59, 0.00-0.80 and 9.67-99.35 mg x kg(-1), respectively. The average concentrations of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 79.74, 37.74, 44.83, 122.39, 10.39, 0.77, 0.14 and 40.08 mg x kg(-1), respectively. Heavy metals in the surface sediments of Zhushan Bay mainly distribute in the west bank and the estuaries of Taige canal, Yincun Port, and Huanshan River,and Cd pollution is relatively serious. There is an accumulative effect of heavy metals in Zhushan Bay, and the contents of biological available metals decrease with depths. Ecological risk grades of Cd in layer A and B are high, and the comprehensive potential ecological risk grades of each layer are in middle or low. The environmental dredging layers are A and B, and the average dredging depth is 0.39 m.

  15. Effect of flood events on transport of suspended sediments, organic matter and particulate metals in a forest watershed in the Basque Country (Northern Spain).

    PubMed

    Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E

    2016-11-01

    An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia.

    PubMed

    Zarcinas, Bernhard A; Ishak, Che Fauziah; McLaughlin, Mike J; Cozens, Gill

    2004-12-01

    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).

  17. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mapanda, F.; Mangwayana, E. N.; Nyamangara, J.; Giller, K. E.

    Contamination of leafy vegetables ( Brassica species) by copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), lead (Pb) and chromium (Cr), and the subsequent human exposure risks, were determined at two sites in the City of Harare, where wastewater is used for irrigating vegetables. The concentrations of heavy metals (mg kg -1 dry wt.) in vegetable leaves ranged from 1.0 to 3.4 for Cu, 18 to 201 for Zn, 0.7 to 2.4 for Cd, 2.5 to 6.3 for Ni, 0.7 to 5.4 for Pb and 1.5 to 6.6 for Cr. Bio-concentration factors in the range of 0.04-3 were obtained, with Zn and Cd having the highest concentration factors of 1.6 and 3, respectively. Estimated intakes rates of heavy metals from consumption of the vegetables in mg day -1 ranged from 0.04 to 0.05 for Cu, 0.6 to 3.3 for Zn, 0.02 to 0.04 for Cd, 0.05 to 0.1 for Ni, 0.05 to 0.09 for Pb and 0.05 to 0.1 for Cr. Cadmium intake rates were above their recommended minimum risk levels (MRLs) at both sites, while Cu, Ni, Cr and Pb had daily intakes above 40% of their MRLs. Potential health risks, particularly from Cd intake, existed for the daily consumers of the leafy vegetables at both Mukuvisi and Pension sites. Thus, although the practice of growing leafy vegetables using wastewater for irrigation is aimed at producing socio-economic benefits, it is not safe and may not be sustainable in the long-term. There is need for an improved food quality assurance system to ensure that the vegetables comply with existing standards on heavy metal concentrations.

  18. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. Copyright © 2015. Published by Elsevier B.V.

  19. Genetic and physiological responses of Bacillus subtilis to metal ion stress.

    PubMed

    Moore, Charles M; Gaballa, Ahmed; Hui, Monica; Ye, Rick W; Helmann, John D

    2005-07-01

    Metal ion homeostasis is regulated principally by metalloregulatory proteins that control metal ion uptake, storage and efflux genes. We have used transcriptional profiling to survey Bacillus subtilis for genes that are rapidly induced by exposure to high levels of metal ions including Ag(I), Cd(II), Cu(II), Ni(II) and Zn(II) and the metalloid As(V). Many of the genes affected by metal stress were controlled by known metalloregulatory proteins (Fur, MntR, PerR, ArsR and CueR). Additional metal-induced genes are regulated by two newly defined metal-sensing ArsR/SmtB family repressors: CzrA and AseR. CzrA represses the CadA efflux ATPase and the cation diffusion facilitator CzcD and this repression is alleviated by Zn(II), Cd(II), Co(II), Ni(II) and Cu. CadA is the major determinant for Cd(II) resistance, while CzcD protects the cell against elevated levels of Zn(II), Cu, Co(II) and Ni(II). AseR negatively regulates itself and AseA, an As(III) efflux pump which contributes to arsenite resistance in cells lacking a functional ars operon. Our results extend the range of identified effectors for the As(III)-sensor ArsR to include Cd(II) and Ag(I) and for the Cu-sensor CueR to include Ag(I) and, weakly, Cd(II) and Zn(II). In addition to systems dedicated to metal homeostasis, specific metal stresses also strongly induced pathways related to cysteine, histidine and arginine metabolism.

  20. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.

    2015-06-01

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.

  1. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  3. Impurity-induced staggered polarization and antiferromagnetic order in spin-12 Heisenberg two-leg ladder compound SrCu2O3: Extensive Cu NMR and NQR studies

    NASA Astrophysics Data System (ADS)

    Ohsugi, S.; Tokunaga, Y.; Ishida, K.; Kitaoka, Y.; Azuma, M.; Fujishiro, Y.; Takano, M.

    1999-08-01

    We report characteristics of impurity-induced staggered polarization (IISP) and antiferromagnetic long-range order (AF-LRO) in the gapped spin-1/2 Heisenberg two-leg ladder compound SrCu2O3 (Sr123). We have carried out comprehensive NMR and NQR investigations on three impurity-doped systems, Sr(Cu1-xMx)2O3 (M=Zn, Ni) with x<=0.02 and Sr1-xLaxCu2O3 with x<=0.03. Either the Zn or Ni impurity that is nonmagnetic depletes a single spin on the ladders, whereas the La impurity is believed to dope electrons onto the ladders. The width of the Lorentzian Cu NMR spectrum increases with the increase in impurity content x and follows the Curie-like temperature (T) dependence as W/T. The W's for the Zn- and Ni-doped samples (M doping) are larger than for the La-doped one (La doping). The NMR spectra were fit by assuming that unpaired spin S0=1/2 induced next to impurity on the rung for the Zn and Ni doping (S0=1/4 for the La doping) creates the staggered spin polarization along the leg, which decreases exponentially from S0. In Sr123, an instantaneous spin-correlation length ξ0 was theoretically predicted as ξ0/a~3-8, where a is the lattice spacing between the Cu sites along the leg. However, a correlation length ξs/a estimated from the IISP along the leg was found to be much longer than ξ0/a in x=0.001 and 0.005. The notable result is that ξs/a that was found to be T independent is scaled to mean distances DAV=1/(2x) between the Zn and Ni impurities and DAV=1/x between the La impurities. When DAV=500 for x=0.001 (Zn doping), ξs/a~50 is estimated. The significantly broadened NQR spectrum has provided unambiguous evidence for the AF-LRO in the Zn and Ni doping (x=0.01 and 0.02). Rather uniform AF moments at the middle Cu sites between the impurities are estimated to be about 0.04μB at 1.4 K along the a axis. By assuming that exponential decay constants of AF moments are equivalent to ξs/a's for the IISP, the size of an AF moment next to the impurity is deduced as SAF~1/4. We propose that these exponential distributions of IISP and AF moments along the two-leg suggest that an interladder interaction is in a weakly coupled quasi-one-dimensional (WC-Q1D) regime. The formula of TN=J0exp(-DAV/(ξs/a)) based on the WC-Q1D model explains TN(exp)=3 K (x=0.01) and 5.8 K (x=0.02) quantitatively and predicts to be as small as TN=0.09 K for x=0.001 using J0=2000 K. On the other hand, there is no evidence of AF-LRO for the La doping (x=0.02 and 0.03) down to 1.4 K, nevertheless their ξs/a's are almost equivalent to those in the Zn and Ni doping (x=0.01 and 0.02). We remark that the Q1D-IISP is dramatically enhanced by the interladder interaction even though so weak, once the impurity breaks up the quantum coherence in the short-range resonating valence bond (RVB) state with the gap. On the one hand, we propose that TN is determined by a strength of the interladder interaction and a size of S0.

  4. 40 CFR 413.74 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5 6.8 (d) Alternatively... days shall not exceed CN,T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total...

  5. 40 CFR 413.74 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5 6.8 (d) Alternatively... days shall not exceed CN,T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total...

  6. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties.

    PubMed

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-22

    A novel ZnO nanorod array (NR)/CuAlO(2) nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO(2) laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of -2 to +2 V were observed in this heterojunction with the increase of Zn(2+) ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm(-2) was obtained under AM 1.5 illumination with 100 mW cm(-2) light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  7. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-01

    A novel ZnO nanorod array (NR)/CuAlO2 nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO2 laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of - 2 to + 2 V were observed in this heterojunction with the increase of Zn2 + ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm - 2 was obtained under AM 1.5 illumination with 100 mW cm - 2 light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  8. Heavy Metals Uptake by Asian Swamp Eel, Monopterus albus from Paddy Fields of Kelantan, Peninsular Malaysia: Preliminary Study

    PubMed Central

    Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2012-01-01

    Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb), cadmium (Cd) and nickel (Ni) whereas muscle showed the lowest total metal accumulation of Zn, Pb, copper (Cu), Cd and Ni. Based on the Malaysian Food Regulation, the levels of Zn and Cu in edible parts (muscle and skin) were within the safety limits. However, Cd, Pb and Ni exceeded the permissible limits. By comparing with the maximum level intake (MLI), Pb, Ni and Cd in edible parts can still be consumed. This investigation indicated that M. albus from paddy fields of Kelantan are safe for human consumption with little precaution. PMID:24575231

  9. Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz

    2015-03-30

    We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less

  10. PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit noards manufacturing workshop.

    PubMed

    Zhou, Peng; Guo, Jie; Zhou, Xiaoyu; Zhang, Wei; Liu, Lili; Liu, Yangcheng; Lin, Kuangfei

    2014-10-01

    A typical Printed Circuit Board (PCB) manufacturer was chosen as the object of this study. During PCB processing, fine particulate matter and heavy metals (Cu, Zn, Pb, Cr, Cd and Ni) will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle (TSP), PM10 and PM2.5 in the off-site were 106.3, 90.0 and 50.2μg/m(3), respectively, while the concentrations of TSP, PM10 and PM2.5 in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to 212.3μg/m(3), respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu>Pb (Cr)>Ni>Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu (which ranged from 4.02 to 56.31mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to 0.078mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10(-6), except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry. Copyright © 2014. Published by Elsevier B.V.

  11. Mineralogic sources of metals in leachates from the weathering of sedex, massive sulfide, and vein deposit mining wastes

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, P.L.; Seal, R.R.; Piatak, N.M.; Lowers, H.

    2011-01-01

    Weathered mine waste consists of oxidized primary minerals and chemically unstable secondary phases that can be sources of readily soluble metals and acid rock drainage. Elevated concentrations of metals such as Cd, Cu, Fe, Mn, Ni, Pb, and Zn are observed in deionized water-based leachate solutions derived from complex sedex and Cu-Pb-Zn mine wastes. Leachate (USGS FLT) from the Elizabeth mine, a massive sulfide deposit, has a pH of 3.4 and high concentrations of Al (16700 ug/L), Cu (440 ug/L), and Zn (8620 ug/L). Leachate from the sedex Faro mine has a pH of 3.5 and high concentrations of Al (2040 ug/L), Cu (1930 ug/L), Pb (2080 ug/L), and Zn (52900 ug/L). In contrast, higher-pH leachates produced from tailings of polymetallic vein deposits have order of magnitude lower metal concentrations. These data indicate that highly soluble secondary mineral phases exist at the surface of waste material where the samples were collected. Sulfide minerals from all sites exhibit differential degrees of weathering, from dissolution etched grain rims, to rinds of secondary minerals, to skeletal remnants. These microscale mineral-dissolution textures enhance weathering and metal teachability of waste material. Besides the formation of secondary minerals, sulfide grains from dried tailings samples may be coated by amorphous Fe-Al-Si minerals that also adsorb metals such as Cu, Ni, and Zn.

  12. Measurements of labile Cd, Cu, Ni, Pb, and Zn levels at a northeastern Brazilian coastal area under the influence of oil production with diffusive gradients in thin films technique (DGT).

    PubMed

    de Souza, João M; Menegário, Amauri A; de Araújo Júnior, Marcus A G; Francioni, Eleine

    2014-12-01

    In this work, the ability of the diffusive gradients in thin films technique (DGT) was evaluated for monitoring the concentrations, and estimating the availability, of metals at a northeastern Brazilian coastal area under the influence of oil production. Three sites with an average distance between 0m (EM-1), 100 m (EM-2), and 1,000 m (EM-3) of a submarine outfall-I (Guamaré-RN, Brazil) and another site (GA-1) with an average distance of 12,000 m east of Outfall I, near the city of Galinhos, were studied. DGT units were deployed at the same sites in three campaigns from July, 2010 to June, 2011. Effects on the accuracy of analytical results regarding the deployment time, gel porosity, and thickness were evaluated. There was no difference between the measurements obtained with two sets of DGT devices, those assembled with open or restrictive pore gel, respectively, showing that organic metallic species are not present near the submarine outlet. After 21 day deployments in a region (near Submarine Outfall I) that receives produced waters that have been treated, there was evidence of biofilm formation on DGT membranes. However, it was demonstrated that the biofilm interference with DGT measurements was negligible. Data found in this work show that total concentrations of Cd, Cu, Pb, Ni, and Zn in seawater samples collected at sites GA-1 and EM-1 in two campaigns were below 0.33, 1.67, 0.47, 0.70, 2.86 ng mL(-1) respectively. For the first time, labile levels of Cd, Cu, Pb, Ni, and Zn in an area under the influence of oil production were determined. DGT measurements allowed the verification of the effects of temporal variation on levels of Zn and Ni. There were no effects of spatial variations on levels of Cd, Cu, Ni, Pb, and Zn at the four studied sites, suggesting no contamination of these metals at the northeastern Brazilian coastal area investigated in this work. Copyright © 2014. Published by Elsevier B.V.

  13. Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulfs, North Aegean Sea, Greece.

    PubMed

    Stamatis, Nikolaos; Ioannidouw, Despina; Christoforidis, Achilleas; Koutrakis, Emmanouil

    2002-11-01

    Surface sediment samples from Strymonikos and Ierissos Gulfs were analyzed for Cu, Pb, Zn, Cr and Ni. The results showed that the sediment of Ierissos Gulf is more polluted with Cu, Pb, and Zn as compared to that of Strymonikos Gulf. The benthal area located off the load-out facility of the mining operations in the town of Stratoni, in Ierissos Gulf is established as the most polluted region. The distribution of Cr and Ni in both gulfs indicates the natural origin of these metals with the weathering of Strymon River and of other smaller rivers rocks being responsible for their enrichment.

  14. Evaluating three trace metal contaminated sites: a field and laboratory investigation.

    PubMed

    Murray, P; Ge, Y; Hendershot, W H

    2000-01-01

    Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.

  15. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  16. Determination of heavy metals by ICP-OES and F-AAS after preconcentration with 2,2'-bipyridyl and erythrosine.

    PubMed

    Feist, Barbara; Mikula, Barbara; Pytlakowska, Katarzyna; Puzio, Bozena; Buhl, Franciszek

    2008-04-15

    The applicability of 2,2'-bipyridyl and erythrosine co-precipitation method for the separation and preconcentration of some heavy metals, such as Cd, Co, Cu, Ni, Pb and Zn in actual samples for their determination by ICP-OES and F-AAS was studied. Experimental conditions influencing the recovery of the investigated metals, such as pH, molar ratio of 2,2'-bipyridyl to erythrosine, the effect of time on co-precipitation were optimized. The analytical characteristics of the method (e.g. limit of detection, sensitivity, linear range and preconcentration factor) were obtained. The limits of detection LOD (ng mL(-1)) of the ICP-OES (F-AAS) method were: Cd: 4.0 (7.75), Co: 3.1 (57.2), Cu: 18 (10.3), Ni 21.3 (32.8), Pb: 35.9 (29.2) and Zn: 10.2 (6.90). The recovery of all the elements tested was more than 93%. The influence of inorganic matrix was examined. The proposed method was applied to determination of Cd, Co, Cu, Ni, Pb and Zn in vegetables and certified reference material (NCS ZC85006 Tomato).

  17. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  18. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  19. Distribution and enrichment of heavy metals in Sabratha coastal sediments, Mediterranean Sea, Libya

    NASA Astrophysics Data System (ADS)

    Nour, Hamdy E.; El-Sorogy, Abdelbaset S.

    2017-10-01

    In order to assess heavy metal pollutants in Sabratha coastal sediments, Mediterranean Sea, Libya, 30 sediment samples were collected for Fe, Cu, Pb, Mn, Cd, Co, Ni and Zn analysis using Atomic Absorption Spectrometry. The analysis indicated that, the Sabratha 's coastal sediments were enriched with Cd, Pb, Cu, Ni, Co and Zn (EF = 81.48, 17.26, 12.80, 11.42, 9.85 and 8.56 respectively). The highest levels of Mn, Cu, Ni, Pb and Co were recorded nearby the Mellitah complex oil and gas station in the western Libyan region, while the highest levels of Zn and Cd were recorded at the central part of the study area nearby fishing port and Sabratha hospital. Average values of Cd, Pb and Co were mostly higher than the ones recorded from the Arabian and Oman gulfs, the Red Sea, the Gulf of Aqaba, the Caspian Sea, coast of Tanzania and the background shale and the earth's crust. The high levels of most of the studied heavy metals suggested significant anthropogenic sources along Sabratha coast. The results of the present study provide a useful background for further marine studies on the Mediterranean area.

  20. Anthropogenic metal enrichment of snow and soil in north-eastern European Russia.

    PubMed

    Walker, T R; Young, S D; Crittenden, P D; Zhang, H

    2003-01-01

    Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.

  1. Heavy metals characteristics of settled particles of streets dust from Diwaniyah City- Qadisiyah Governorate - Southern Iraq

    NASA Astrophysics Data System (ADS)

    Al-Dabbas, Moutaz A.; Mahdi, Khalid H.; Al-Khafaji, Raad; Obayes, Kawthar H.

    2018-05-01

    Road-side dust samples were collected from selected areas of Diwaniyah city-Qadisiyah Governorate - Southern Iraq. The heavy metals (Fe, Co, Ni, Cu, Zn and Pb) in these streets dust samples were studied and used as indicator for pollution by using three of main indices (I-geo, CF, and PLI). Determination of heavy metal in the roadside dust is with XRD and XRF methods. I-geo for Co, Zn, Pb, and Ni in the studied sites shows relative values of class 1, which indicated the slightly polluted, while I-geo for Fe and Cu shows relative values of class 0, which indicated no pollution. The contamination factor for Co, Zn, Pb, and Ni classified as class 2, which indicate moderately contamination, while the contamination factor for Fe and Cu classified as class 1, which indicate low contamination. PLI values in the all of studied sites classified as class 2 (Deterioration on site quality) indicating local pollution, as well as denote perfection with (class 0) of no pollution. The distribution pattern of metals percentages was affected by gases emitted from transportation vehicles as well as the prevailing wind direction.

  2. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    PubMed

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  4. The effect of abandoned mining ponds on trace elements dynamics in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Gabarrón, María; Faz, Ángel; Zornoza, Raúl; Acosta, Jose A.

    2017-04-01

    In semiarid climate regions lack of vegetation and dryer climate contribute to erosion of abandoned mining surface areas making them up important potential sources of metal pollution into the environment. The objectives of this study were to determine the influence of mine ponds in agriculture and forest soils, and identify the dynamic of metals in the soil-plant system for native plant species (Ballota hirsuta) and crop species (Hordeum vulgare) in two ancient mining districts: La Unión and Mazarrón. To achieve these objectives, wastes samples from mine ponds and soil samples (rhizosphere and non-rhizosphere soils) from natural and agricultural lands were collected. In addition, six plants (Ballota hirsuta) from natural area and 3 plants (Hordeum vulgare) from crops were collected. Physicochemical properties and total, water soluble and bioavailable metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and arsenic were measured in waste/soil samples. The chemical speciation of metals in soil was estimated by a sequential extraction procedure. For plants analyses, each plant were divided in roots, stem and leaves and metal content measured by ICP-MS. Results indicated that mine, natural and agricultural soils were contaminated by As, Cd, Cu, Pb, and Zn. Chemical partitioning revealed higher mobility of metals in mine ponds than natural and agriculture soils while only Fe and As are completely bound to the soil matrix due to the mineralogical compositions of soils. The accumulation of metals in Ballota hirsuta in La Union decrease as Fe>As>Cr>Ni>Cu>Zn>Cd>Mn>Co>Pb while in Mazarrón did as As>Fe>Cr>Pb>Cu>Ni>Co>Mn>Zn>Cd. Ballota hirsuta showed high ability to bio-accumulate Cu, Cr, Fe, Ni, and As, transferring a large amount to edible parts without exceeding the toxicity limits for animals. Results for barley plants (Hordeum vulgare) showed the ability to absorb and accumulate As, Fe, Mn, Pb and Zn, although the transfer ability of As, Cd and Pb was lower. Although the behavior of metals reflects a root barrier effect, the amount of Pb in grain overreached the permissible limit in aliments.

  5. Comparative study of synthesis, structural and magnetic properties of Cu2+ substituted Co-Ni, Co-Zn and Co-Mg nano ferrites

    NASA Astrophysics Data System (ADS)

    Ramakrishna, A.; Murali, N.; Margarette, S. J.; Samatha, K.; Veeraiah, V.

    2018-02-01

    Mixed ferrites of the form Co0.5M0.1Cu0.4Fe2O4 (M = Ni, Zn and Mg) have been synthesized using the sol-gel auto combustion technique. Structural analyses are carried out using powder X-ray diffraction to idntify pure ferrite phases. SEM analysis revealed clear crystal morphology with relatively uniform grain sizes with polygonal structures. The FT-IR studies also confirm the bond formation and cation vibrations at low (365-392 cm-1) and high (579-587 cm-1) bands that correspond to the tetrahedral and octahedral sites, respectively. The magnetic properties studied through vibrating sample magnetometer showed that the Ni substituted sample has more magnetic character by exhibiting the highest saturation magnetization.

  6. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    PubMed

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals.

    PubMed

    Akinci, Gorkem; Guven, Duyusen E; Ugurlu, Sanem Keles

    2013-12-01

    Urban rivers having different catchment areas and properties are investigated in order to infer their heavy metal contribution to the Izmir Inner Bay. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the waters and sediments of these rivers were measured and compared with the limit values given in the Sediment Quality Guidelines and Screening Quick Reference Tables (SQuiRTs). Metal concentrations in the sediments were determined to be between 0.5 and 3.5 mg kg(-1), 10 to 221.5 mg kg(-1), 28 to 153.5 mg kg(-1), 13 to 103.5 mg kg(-1), 31.5 to 157 mg kg(-1), and 124 to 1065.5 mg kg(-1) for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. Higher metal concentrations in river waters were observed in rainy seasons, and Cu and Zn were frequently found above the critical limits. The correlations between the concentrations in waters, sediments, and wash off fluxes of the river catchments were statistically investigated and evaluated. Strong correlations between Ni-Cr (r = 0.618, p < 0.01), Ni-Zn (r = 0.578, p < 0.01), and Zn-Pb (r = 0.590, p < 0.01) concentrations in water were found. The metal load entering the inner bay was found to be 28.2 tons per year. The fluxes (mg m(-2) per day) were generally high in large catchments with high annual flows, in regions with high runoff coefficients, and in areas hosting industrial activities. The strong correlations between the heavy metal fluxes suggest that the atmospheric pollution, which influences the whole city, may be the major source of these metals.

  8. Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni, and Zn on growth and development of the insect predator Podisus maculiventris (Say).

    PubMed

    Cheruiyot, Dorothy J; Boyd, Robert S; Coudron, Thomas A; Cobine, Paul A

    2013-06-01

    Increased metal availability in the environment can be detrimental for the growth and development of all organisms in a food web. In part, this toxicity is due to biotransfer or bioaccumulation of metals between trophic levels. We evaluated the survival, growth, and development of a generalist Hemipteran predator (Podisus maculiventris) when fed herbivorous prey (Spodoptera exigua) reared on artificial diet amended with Cu, Zn, Ni, and Co. Predator nymphs were fed S. exigua larvae raised on diet amended with sublethal (Minimum Sublethal Concentration or MSC) or lethal (Minimum Lethal Concentration or MLC) concentrations of each metal, as well as control diet. We determined if metals were biotransferred or bioaccumulated from the diet to herbivore and predator, as well as if predator growth or survival was affected by herbivore diet. Podisus maculiventris fed herbivores raised on MLC levels of both Cu and Zn took significantly longer to mature to adults, whereas their overall survival was not affected by prey diet metal concentration for any metal. Adult weights were significantly reduced for predators raised on herbivores reared on diets amended with the MLC of Cu and Zn. Copper and Zn were bioaccumulated from diet to herbivore and from herbivore to predator, whereas Ni was biotransferred (although concentrations decreased as trophic level increased). The pattern for Co was more complex, with biotransfer the main outcome. Our results show that availability of metals in a food web can affect growth and development of a hemipteran predator, and that metals are transferred between trophic levels, with metal-specific biotransfer and bioaccumulation outcomes.

  9. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    PubMed

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  10. Characterization of ternary bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis?Tris) and the comparison of five crystal structures of Bis?Tris complexes*1

    NASA Astrophysics Data System (ADS)

    Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio

    2004-09-01

    Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.

  11. Biomonitoring of Trace Metals in the Keban Dam Reservoir (Turkey) Using Mussels (Unio elongatulus eucirrus) and Crayfish (Astacus leptodactylus).

    PubMed

    Varol, Memet; Sünbül, Muhammet Raşit

    2018-01-03

    Freshwater mussels and crayfish are commonly used as biomonitors of trace metals. In the present study, the concentrations of ten metals were determined in mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus) collected from the Keban Dam Reservoir in Turkey. The significant spatial differences in concentrations of studied metals except As in mussels were not found. However, Co, Cr, Cu, and Zn concentrations in mussels and As, Co, Cu, Fe, Pb, and Zn concentrations in crayfish showed significant seasonal differences. As, Cd, and Mn levels in mussels were about nine times higher than those in crayfish. The concentrations of Cd, Cr, Cu, Pb, Zn, and inorganic As in crayfish and mussels were lower than maximum permissible levels. When compared with other biomonitoring studies using mussels and crayfish, high concentrations of As, Cd, Co, Cr, and Ni in mussels and Cr and Ni in crayfish were observed due to lithogenic sources and anthropogenic activities in the basin. Bioconcentration factor values of Fe, Mn, Cd, and Zn in mussels and Zn, Cu, Fe, and Co in crayfish were > 1000, which indicates that both U. e. eucirrus and A. leptodactylus have potential to bioaccumulate these metals. Therefore, attention should be paid to mussels and crayfish from ecological and human health perspective, because they are potential vectors of metals to higher trophic levels.

  12. Trace metals in Bermuda rainwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jickells, T.D.; Knap, A.H.; Church, T.M.

    1984-02-20

    The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less

  13. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  14. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Ruby; Singh, Sudhir Kumar; Shukla, D. N.

    2017-11-01

    The present study includes a systematic analysis of sediment contamination by heavy metals of the River Ghaghara flowing through the Uttar Pradesh and Bihar in Indian Territory. To estimate the geochemical environment of the river, seven heavy metals, namely Co, Cu, Cr, Ni, Cd, Zn, and Pb were examined from the freshly deposited river bed sediment. All the sediment samples were collected on a seasonal basis for the assessment of fluctuation in 2014-2015 and after preparation samples were analyzed using standard procedure. Result showed that heavy metal concentration ranged between 11.37 and 18.42 mg/kg for Co, 2.76 and 11.74 mg/kg for Cu, 61.25 and 87.68 mg/kg for Cr, 15.29 and 25.59 mg/kg for Ni, 0.21 and 0.28 mg/kg for Cd, 13.26 and 17.59 mg/kg for Zn, 10.71 and 14.26 mg/kg for Pb in different season. Metal contamination factor indicates the anthropogenic input in the river sediment was in the range of (0.62-0.97) for Co, (0.04-0.26) for Cu, (0.68-0.97) for Cr, (0.22-0.38) for Ni, (0.70-0.93) for Cd, (0.14-0.19) for Zn, and (0.54-0.71) for Pb. The highest contamination degree of the sediment was noticed as 4.01 at Ayodhya and lowest as 3.16 at Katerniaghat. Geo-accumulation index was noted between (0 and 1) which showed that sediment was uncontaminated to moderately contaminated and may have adverse affects on freshwater ecology of the river. Pollution load index (PLI) was found highest at Chhapra which was 0.45 and lowest at Katerniaghat which was 0.35 and it indicates that the river sediment has a low level of contamination. Significant high correlation was observed between Co, Cu, and Zn, it suggests same source of contamination input is mainly due to human settlement and agriculture activity. Positive correlation between Zn, Co, Cu, Cr, and Ni indicated a natural origin of these elements in the river sediment. Cluster analysis suggests grouping of similar polluted sites. The strong similarity between Co, Zn, Pb, Ni, Cu, and Cd showed relationship of these metals come from the same origin, which is possibly from natural and anthropogenic input which was also confirmed by correlation analysis. Using the various pollution indicators it was found that the river bed sediment is less contaminated by toxic metals during the study but the sediment quality may degrade in the near future due to increasing anthropogenic inputs in the river basin, hence proper management strategies are required to control the direct dumping of wastewater in the river.

  15. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  16. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    PubMed

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  17. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland.

    PubMed

    Chowdhury, Ranju; Favas, Paulo J C; Jonathan, M P; Venkatachalam, Perumal; Raja, P; Sarkar, Santosh Kumar

    2017-11-30

    The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (I geo ) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Generalized stacking fault energies of alloys.

    PubMed

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  19. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    USGS Publications Warehouse

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.

  20. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

    PubMed

    Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey

    2017-01-01

    Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.

  1. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan

    2013-01-01

    A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.

  2. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C

    2012-06-30

    We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  4. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  5. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran.

    PubMed

    Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah

    2017-04-01

    This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  7. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  8. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  9. Synthesis and structural characterization of transition metal doped MgO: Mg0.95Mn0.01TM0.04O (TM = Co, Ni, Cu)

    NASA Astrophysics Data System (ADS)

    Islam, Ishtihadah; Khandy, Shakeel Ahmad; Hafiz, Aurangzeb Khurram

    2018-05-01

    In the present work, preparation and characterization of transition metal doped MgO: Zn0.94Mn0.01TM0.05O (TM = Co, Ni and Cu) nano-particles have been reported. Transition metal doped samples of MgO were synthesized by Sol gel auto combustion method. Structural characterisation from XRD and SEM show the formation of single-phase primary particles, nearly of spherical shaped nano-crystallites. The crystallite size was found to be 78.2, 67.02, 78.11 and 64 nm for pure, Co, Cu and Ni doped MgMnO nano-particles, respectively. Hence, the average crystallite size increases monotonously from Co to Cu doping.

  10. Applied Crystallography - Proceedings of the XVth Conference

    NASA Astrophysics Data System (ADS)

    Morawiec, H.; Ströż, D.

    1993-06-01

    The Table of Contents for the full book PDF is as follows: * Foreword * The International Centre for Diffraction Data and Its Future Developments * The Rietveld Method - A Historical Perspective * Real Structure in Quantitative Powder Diffraction Phase Analysis * Neutron Focusing Optics in Applied Crystallography * The Crystal Structures of Oxygen Deficient Rare Earth Oxides * Short-Range Order in Layer-Structured Ba1-xSrxBi2Nb2O9 Ferroelectrics * Radial Distribution Function as a Tool of Structural Studies on Noncrystalline Materials * Determination of Radial Distribution Function (RDF) of Electrodeposited Cu-Cd Alloys After Annealing * Spheres Packing as a Factor Describing the Local Environment and Structure Stability * X-Ray Stress Measurement of Samples Combined with Diffraction Line Analysis * Phase Stability and Martensitic Transformation in Cu-Zn and Cu-Zn-Al Single Crystals * Order, Defects, Precipitates and the Martensitic Transformation in β Cu-Zn-Al * Effect of γ Precipitates on the Martensitic Transformation in Cu-Zn-Al Alloys * Phase Transitions and Shape Memory Effect in a Thermomechanically Treated NiTi Alloy * Structure of Martensite and Bainite in CuAlMn Alloys * Glass-Ceramics * Mechanism of Texture Formation at the Rolling of Low Stacking Fault Energy Metals and Alloys * Shear Texture of Zinc and the Conditions of Its Occuring * The Development of Texture of ZnAlMg Sheets Depending on Deformation Geometry * Texture Stability of the D.S. NiAlMoCrTi Alloy After Heat Treatment * X-Ray Diffraction Method for Controlling of Texture Evolution in Layers * Texture and Lattice Imperfections Study of Some Low Alloyed Copper Alloys * Selected Examples of the Calculation of the Orientation Distribution Function for Low Crystal and Sample Symmetries * Automatical X-Ray Quantitative Phase Analysis * Application of a PC Computer for Crystallographic Calculations * Electron Diffraction Analysis using a Personal Computer * CA.R.INE Crystallography Version 2.1-1992 * PC-MINREF: The Computer Program Package for Neutron Refinement of Incommensurate Multiphase Crystal and Magnetic Structures on IBM PC Computers * Possibilities of Deflections from Stoichiometry Investigation for Phases of b1-b37 Structure by X-Ray Method * A Computer Program: “Measurement of Elastic Constants of Phases in Nontextured Polycrystalline Materials by X-Ray Method” * Crystallite Sizes and Lattice Strains of Hydrogenatid Tungsten Carbid Powder * The Bragg-Case Images of Dislocations at Different Absorption * Extended X-Ray Bremsstrahlung Isochromat of Molybdenum * Size Distribution Determination of Heterogeneity Regions in Electrodeposited Metals by Saxs Method * The Possibility of the Application of the CH2I2 - Paraffin Oil Mixture as a Masking Liquid for Metal/Carrier Systems in Saxs Investigations * Investigation on Mechanical Alloying and Amorphisation Processes by the Rietveld Method * Growth of β' Phase Single Crystals of Sn-Sb Alloy * Effect of Oxygen Agglomeration on Structure of Annealed Cz-Si Single Crystal * X-Ray Investigation of Non-Uniform Stress Fields * Problem of Polytype Structures Series for Martensitic Phases of Metals and Alloys * Structure of Strain-Induced Martensite in β-CuZnAl Alloy * The Effect of Heat Treatment on the Phase Transitions in NiTiCo Shape Memory Alloy * 9R → 18R Phase Transformation in Cu-13Zn-8Al Alloy * Effect of Austenite Thermal Instability on Characteristics of Martensitic Transformation in Fe-Ni Alloys * Vacuum Annealing Study of Thin Ti Layers on High Carbon Steel Substrates * Vacuum Annealing Study of Thin Ta Layers on High Carbon Steel Substrates * Investigation of Speed of Ionic Sputtering of NiTi Alloys in Sea 02 Auger Spectrometer * Effect of Precipitation Hardening on Thermal Stability of Austenite in Fe-Ni Alloys * Structure of 18Cr-25Ni-Nb L Steel After Two Years Operation in Catalytic Tubes * Influence of Magnetic Field on Mechanical Barkhausen Effect Stress Dependence in Steel * Precipitation Structure in High Strength Aluminium Alloys * Morphology of Laser Treated Al-Zn and Al-Fe Alloys * Structure of Rapidly Solidified AlFe and AlFeNi Ribbons After Continuous Heating * X-Ray Diffractometric Investigations of Anatase—Rutile Titanium Dioxide Forms Transformation in the Presence of Some Additives * Investigations on Phase Transformation of Coprecipitated Iron-Magnesium Hydroxides * Determination of the Crystallinity of Polymer Blends by X-Ray Diffraction Method * XPD Study of the Selected Magnesium Compounds with the Expected Pharmacological Activity * Supermolecular Structure of the Nylon 6.10 Crystallized from the Melt and Its Changes During Heating * The Analysis of Substructural Parameters of PZT-Type Ferroelectric Ceramics

  11. Selected heavy metals and selenium in the blood of black sea turtle (Chelonia mydas agasiizzi) from Sonora, Mexico.

    PubMed

    Ley-Quiñónez, C P; Zavala-Norzagaray, A A; Réndon-Maldonado, J G; Espinosa-Carreón, T L; Canizales-Román, A; Escobedo-Urías, D C; Leal-Acosta, M L; Hart, C E; Aguirre, A A

    2013-12-01

    The concentration of heavy metals (Zn, Cd, Ni, Cu, Mn) and selenium (Se) was analyzed in blood collected from 12 black turtles (Chelonia mydas agasiizzi) captured in Canal del Infiernillo, Punta Chueca, Mexico. The most abundant metals were Zn (63.58 μg g(-1)) and Se (7.66 μg g(-1)), and Cd was the lower (0.99 μg g(-1)). The sequential concentrations of trace metals were Zn > Se > Cu > Mn > Ni > Cd. In conclusion, this information is important as a baseline when using blood as tissue analysis of heavy metals; however, these levels could represent recent exposure in foraging grounds of black turtles in the Sea of Cortez.

  12. Proton and deuteron induced reactions on natGa: Experimental and calculated excitation functions

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam-Rebeles, R.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2015-09-01

    Cross-sections for reactions on natGa, induced by protons (up to 65 MeV) and deuterons (up to 50 MeV), producing γ-emitting radionuclides with half-lives longer than 1 h were measured in a stacked-foil irradiation using thin Ga-Ni alloy (70-30%) targets electroplated on Cu or Au backings. Excitation functions for generation of 68,69Ge, 66,67,68,72Ga and 65,69mZn on natGa are discussed, relative to the monitor reactions natAl(d,x)24,22Na, natAl(p,x)24,22Na, natCu(p,x)62Zn and natNi(p,x)57Ni. The results are compared to our earlier measurements, the scarce literature values and to the results of the code TALYS 1.6 (online database TENDL-2014).

  13. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    USGS Publications Warehouse

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen fugacities from stage A to stage B, while temperature and oxygen fugacities decrease from stage B to stage C. The Co/Ni ratio of pyrite depends discriminates between the different mineralizing stages in the Yuleken porphyry copper deposit: Py II, associated with the deformation stage B and Cu-enrichment, shows higher Co/Ni ratios and enrichments of Pb, Zn, Mo, Te and Sb than the pyrites formed during the other two stages. The Co/Ni ratio of pyrite can not only apply to discriminate the submarine exhalative, magmatic or sedimentary origins for ore deposits but also can distinguish different ore-forming stages in a single porphyry Cu deposit. Thus, Co/Ni ratio of pyrites may act as an important exploration tool to distinguish pyrites from Cu-rich versus barren area. Furthermore, the distribution of Cu, Mo, Pb, Au, Bi, Sb and Zn in the variably deformed pyrite is proportional to the extent of deformation of the pyrites, indicating in accordance with variable physicochemical conditions different element migration behavior during the different stages of deformation and, thus, mineralisation.

  14. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    PubMed

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  15. Heavy metal distribution in sediments from Calabar River, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ntekim, E. E. U.; Ekwere, S. J.; Ukpong, E. E.

    1993-08-01

    The concentration and areal distribution of selected metals (Pb, Zn, Cu, Cd, Ni, Fe, and Cr) in the sediments of the Calabar River were studied to determine the extent of anthropogenic input and to estimate the effects of dumping industrial waste materials into the river. The concentrations of Pb, Zn, and Cu indicate relatively moderate pollution mainly on the left-hand side of the river while Ni, Cr, Co, Cd, and Fe levels are below values found to have adverse effects on the lives of marine biota. High metal contents are found close to industrial establishments and so enhanced metal concentrations are related to industrial sewage and metal leaching from garbage and solid waste dumps.

  16. K β to K α X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn

    NASA Astrophysics Data System (ADS)

    Anand, L. F. M.; Gudennavar, S. B.; Bubbly, S. G.; Kerur, B. R.

    2015-12-01

    The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K β to K α intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak 137Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others' work, establishing a good agreement.

  17. UV Spectra of Tris(2,2'-bipyridine)-M(II) Complex Ions in Vacuo (M = Mn, Fe, Co, Ni, Cu, Zn).

    PubMed

    Xu, Shuang; Smith, James E T; Weber, J Mathias

    2016-11-21

    We present electronic spectra in the π-π* region of a series of tris(bpy)-M(II) complex ions (bpy = 2,2'-bipyridine; M = Mn, Fe, Co, Ni, Cu, Zn) in vacuo for the first time. By applying photodissociation spectroscopy to cryogenically cooled and mass selected [M II (bpy) 3 ] 2+ ions, we obtain the intrinsic spectra of these ions at low temperature without perturbation by solvent interaction or crystal lattice shifts. This allows spectroscopic analysis of these complex ions in greater detail than possible in the condensed phase. We interpret our experimental data by comparison with time-dependent density functional theory.

  18. Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ co-doped CeO2 solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan

    2018-08-01

    The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy concentration and the lattice defects in the solid solutions. On the other hand, the doped Cu2+ and Zn2+ ions could also play an important role in the catalytic process.

  19. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.

    PubMed

    Klink, Agnieszka

    2017-02-01

    The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

  20. A drift correction optimization technique for the reduction of the inter-measurement dispersion of isotope ratios measured using a multi-collector plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Doherty, W.; Lightfoot, P. C.; Ames, D. E.

    2014-08-01

    The effects of polynomial interpolation and internal standardization drift corrections on the inter-measurement dispersion (statistical) of isotope ratios measured with a multi-collector plasma mass spectrometer were investigated using the (analyte, internal standard) isotope systems of (Ni, Cu), (Cu, Ni), (Zn, Cu), (Zn, Ga), (Sm, Eu), (Hf, Re) and (Pb, Tl). The performance of five different correction factors was compared using a (statistical) range based merit function ωm which measures the accuracy and inter-measurement range of the instrument calibration. The frequency distribution of optimal correction factors over two hundred data sets uniformly favored three particular correction factors while the remaining two correction factors accounted for a small but still significant contribution to the reduction of the inter-measurement dispersion. Application of the merit function is demonstrated using the detection of Cu and Ni isotopic fractionation in laboratory and geologic-scale chemical reactor systems. Solvent extraction (diphenylthiocarbazone (Cu, Pb) and dimethylglyoxime (Ni) was used to either isotopically fractionate the metal during extraction using the method of competition or to isolate the Cu and Ni from the sample (sulfides and associated silicates). In the best case, differences in isotopic composition of ± 3 in the fifth significant figure could be routinely and reliably detected for Cu65/63 and Ni61/62. One of the internal standardization drift correction factors uses a least squares estimator to obtain a linear functional relationship between the measured analyte and internal standard isotope ratios. Graphical analysis demonstrates that the points on these graphs are defined by highly non-linear parametric curves and not two linearly correlated quantities which is the usual interpretation of these graphs. The success of this particular internal standardization correction factor was found in some cases to be due to a fortuitous, scale dependent, parametric curve effect.

  1. Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast

    NASA Astrophysics Data System (ADS)

    Minkina, T. M.; Fedorov, Yu. A.; Nevidomskaya, D. G.; Pol'shina, T. N.; Mandzhieva, S. S.; Chaplygin, V. A.

    2017-09-01

    Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil-plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).

  2. Tuning the electrical conductance of metalloporphyrin supramolecular wires

    NASA Astrophysics Data System (ADS)

    Noori, Mohammed; Aragonès, Albert C.; di Palma, Giuseppe; Darwish, Nadim; Bailey, Steven W. D.; Al-Galiby, Qusiy; Grace, Iain; Amabilino, David B.; González-Campo, Arántzazu; Díez-Pérez, Ismael; Lambert, Colin J.

    2016-11-01

    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10-2 G0 for Ni-DPP up to 8.10-2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.

  3. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  4. β-Decay Half-Lives of Co76,77, Ni79,80, and Cu81: Experimental Indication of a Doubly Magic Ni78

    NASA Astrophysics Data System (ADS)

    Xu, Z. Y.; Nishimura, S.; Lorusso, G.; Browne, F.; Doornenbal, P.; Gey, G.; Jung, H.-S.; Li, Z.; Niikura, M.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Baba, H.; Franchoo, S.; Isobe, T.; John, P. R.; Kojouharov, I.; Kubono, S.; Kurz, N.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Şahin, E.; Sakurai, H.; Schaffner, H.; Stefan, I. G.; Suzuki, D.; Taniuchi, R.; Werner, V.

    2014-07-01

    The half-lives of 20 neutron-rich nuclei with Z =27-30 have been measured at the RIBF, including five new half-lives of Co76(21.7-4.9+6.5 ms), Co77(13.0-4.3+7.2 ms), Ni79(43.0-7.5+8.6 ms), Ni80(23.9-17.2+26.0 ms), and Cu81(73.2±6.8 ms). In addition, the half-lives of Co73-75, Ni74-78, Cu78-80, and Zn80-82 were determined with higher precision than previous works. Based on these new results, a systematic study of the β-decay half-lives has been carried out, which suggests a sizable magicity for both the proton number Z =28 and the neutron number N=50 in Ni78.

  5. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China

    PubMed Central

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518

  6. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    PubMed

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  7. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.

    PubMed

    Lai, Hung-Yu; Juang, Kai-Wei; Chen, Zueng-Sang

    2010-01-01

    A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.

  8. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    PubMed

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  9. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China.

    PubMed

    Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan

    2009-07-30

    Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.

  10. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  11. Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.

    PubMed

    Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan

    2012-04-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.

  12. Bioaccumulation of Heavy Metals in Water, Sediments, and Tissues and Their Histopathological Effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Muhammad Iftikhar; Gulfam, Naila; Siraj, Muhammad; Zaidi, Farrah; Ahmadullah; Abidullah; Fatima, Syeda Hira; Noreen, Shumaila; Hamidullah; Shah, Zafar Ali; Qadir, Fazli

    2018-01-01

    The present investigation aimed to assess the concentrations of selected heavy metals in water and sediments and their bioaccumulation in tissues of freshwater mussels and their histopathological effects on the digestive gland, gills, and gonads of Anodonta cygnea. Water, sediments, and freshwater mussel samples were collected at four sites, that is, reference and polluted sites, along the Kabul River, Khyber Pakhtunkhwa. The polluted sites were receiving effluents from the industrial, agricultural, municipal, and domestic sources. The order of metals in the water was Zn > Pb > Ni > Cu > Mn > Fe > Cr > Cd, in sediments the order was Fe > Zn > Cr > Ni > Mn > Pb > Cu > Cd, and in the soft tissues the order was Fe > Zn > Mn > Pb > Cu > Cr > Ni > Cd. Histopathological alterations observed in polluted sites of Kabul River were inflammation, hydropic vacuolation, and lipofuscin pigments (in digestive gland), gill lamellar fusion, dilated hemolymphatic sinus, clumping, and generation of cilia and hemocytic infiltration (in gills), and atresia, necrosis, granulocytoma, hemocytic infiltration, and lipofuscin pigments (in gonads). The histopathological alterations in the organs of Anodonta cygnea can be considered as reliable biomarkers in biomonitoring of heavy metal pollution in aquatic ecosystems. PMID:29693003

  13. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    PubMed

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  15. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China.

    PubMed

    Wang, Xuemei; Liu, Honggao; Zhang, Ji; Li, Tao; Wang, Yuanzhong

    2017-03-04

    The heavy metal contents (Co, Cu, Fe, Mn, Ni, and Zn) of eight species of wild edible mushrooms from China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrophotometry after microwave digestion. The contents of Co, Cu, Fe, Mn, Ni, and Zn in caps of mushroom samples were 0.7-7.2, 16.2-70.4, 371-1315, 12.5-29.8, 7.1-58.5, and 77.8-187.4 mg kg -1 dry matter (dm), respectively, while considerable differences were found to be 1.8-25.9, 9.8-36.3, 288-6762, 13.3-103.9, 5.9-78.7, and 38.7-118 mg kg -1 dm for stipes. The results indicated that higher levels of Co, Fe, and Ni were found in the mushrooms samples analyzed. Zinc and manganese levels were similar to previous reports, whereas Cu was lower than literature values. Correlation analysis suggested that significant correlations were found between the minerals determined and the greatest amount of contamination is associated with Co, Mn, Ni, and Fe. The results of this study indicate that heavy metal contents in mushroom species are mainly related to the mineral resources of sampling sites.

  16. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    PubMed

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  18. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  19. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China.

    PubMed

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu

    2018-06-15

    The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt.

    PubMed

    El Nemr, Ahmed; El-Said, Ghada F; Ragab, Safaa; Khaled, Azza; El-Sikaily, Amany

    2016-12-01

    Zn, Cu, Ni, V, Al, Pb, Cd, Hg, lipid and water contents were determined in the soft tissues of different shellfish species collected along the Red Sea shoreline. Metal contents showed a descending order of Zn > Cu > Ni > Al > V > Pb > Cd > Hg. The leachable concentrations found in the sediments gathered from the studied locations gave another descending order: Al > Zn > Ni > Pb > V > Cu > Cd. The determined leachable heavy metal contents in the sediment did not exceed the NOAA and CCME (Anonymous 1999) sediment quality guidelines. Accordingly, the sediments along the Egyptian Red Sea area did not pose any adverse impacts on the biological life. According to the hazard quotient (HQ) calculations for heavy metal contents in the soft tissue of shellfish, mercury did not pose any risk on human health; whereas, the other determined heavy metals gave HQ values of 1 < HQ < 10 and showed a possibility of risk on the long term. Cu is above the desirable levels in mussels. The RQ calculations of toddlers and adults reflected that Cu was the only heavy metal that had an adverse effect on toddlers' health. Based on the human organizations (EPA, BOE, MAFF, and NHMRC) that proposed safety concentrations of heavy metals, the studied shellfish were somewhat safe for human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    NASA Astrophysics Data System (ADS)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked to explain the isotopically light Zn found in 3 out of 18 samples of PM10.

  2. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  3. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns.

    PubMed

    Zhang, Yue; Banks, Charles

    2006-02-01

    The biosorption of Cu, Pb, Zn and Ni from a mixed solution of the metals was investigated in continuous flow packed columns containing polyurethane immobilised biomass. The characteristics and biosorption properties of Sphagnum moss, the brown seaweed Ascophyllum nodosum, waste biomass from the preparation of sunflower oil, and whole plant maize were compared. All the biomass types showed a preference for the sequestration of Pb followed by Cu, with Ni and Zn having roughly equal affinity. With continuous metal loading to the column there was an initial binding of all metals and then a displacement of the lower affinity metals by those with a high affinity. This led to a chromatographic effect in the column with breakthrough concentrations for low-affinity metals higher than the concentration in the feed. A similar phenomenon was found on desorption using acidic solutions where low-affinity metals were desorbed preferentially. The results also indicated that despite competitive displacement of one metal species by another the biomass appeared to succeed in retaining some low-affinity metal species indicating that there may be selective sites present with different affinity characteristics. When using a multi-metal solution with Cu, Pb, Zn and Ni at equal 10 mgl(-1) concentrations as column influent, the total quantities of metal sequestered were: seaweed, 117.3 mg g(-1); sunflower waste, 33.2 mg g(-1); Sphagnum moss, 32.5 mg g(-1); and maize, 2.3 mg g(-1). The use of an acid base potentiometric titration showed a relationship between the number of acid functional groups and biosorption capacity, although this was not proportional for the biomass types studied. It can, however, be used in conjunction with a simple classification of metals into high and low-affinity bands to make a preliminary assessment of a biosorption system.

  4. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Vertical variation of potential mobility of heavy metal in sediment to groundwater of the Kanto plain, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, S.; Hachinohe, S.; Ishiyama, T.; Hamamoto, H.; Oguchi, C. T.

    2014-12-01

    Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.

  6. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    PubMed

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: An example from the Shima River, Pearl River Delta.

    PubMed

    Gao, Lei; Wang, Zhuowei; Shan, Jiju; Chen, Jianyao; Tang, Changyuan; Yi, Ming; Zhao, Xinfeng

    2016-12-01

    Metal pollution in sediments from the Shima River, a typical transboundary watercourse in the Pearl River Delta area, was investigated. Sediment cores were collected at eight sites from the upper to the lower reaches crossing Shenzhen, Dongguan and Huizhou cities. Sediment physicochemical properties and the total concentrations of trace metals (V, Cr, Co, Ni, Cu, Zn, As, Cd and Pb) were determined. The results showed that riverine sediment was significantly polluted by Cr (content range: 13.8-469mgkg -1 ), Ni (14.1-257mgkg -1 ), Cu (10.8-630mgkg -1 ), Zn (50.2-1700mgkg -1 ) and Cd (0.172-2.26mgkg -1 ). The geoaccumulation indices (I geo ) of trace metals decreased in the order Cd>Zn>Ni>Cu>Co>Cr>Pb>As>V. The pollution load indices and potential ecological risk indices (RI) at the sampling sites were similar, with more severe pollution and greater risk presenting in the upper and middle reaches (S1-S6) compared with the lower reaches (S7 and S8). Cd contributed significantly (77.2-87.6%) to the RI. Source identification based on multivariate statistical techniques, including principal component analysis (PCA), correlation analysis (CA) and hierarchical cluster analysis (HACA), was performed to differentiate the origins of trace metals. PCA and CA yielded similar results, indicating that As and V originated from natural sources (e.g., parent materials) and that the other metals were related to anthropogenic activities. HACA based on the I geo showed that Cd was associated mainly with fertilizers, and the origins of Cr, Ni, Cu and Zn were probably industrial effluents, whereas Co and Pb were related to traffic activities. HACA of sediment cores suggested that Dongguan and Shenzhen cities contribute large quantities of metals to the riverine sediment, whereas few metals were discharged from Huizhou City. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com; Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera; Shafie, Afza, E-mail: afza@petronas.com.my

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize,more » shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.« less

  9. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.

    PubMed

    Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei

    2015-09-01

    The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt

    NASA Astrophysics Data System (ADS)

    Redwan, Mostafa; Elhaddad, Engy

    2017-10-01

    This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.

  11. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R

    2014-11-01

    E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.

  12. Approach to study of Cu, Ni and Zn content in soil for ecotoxicological risk assessment

    NASA Astrophysics Data System (ADS)

    Boluda, R.; Marimon, L.; Gil, C.; Roca-Pérez, L.

    2009-04-01

    Current Spanish legislation on contaminated soils defines contaminated soil as "that whose characteristics have been negatively altered by the presence of dangerous human-derived chemical components whose concentration is such that it is an unacceptable risk for human health or the environment and has been expressly declared as such by legal ruling". Regarding heavy metals, the Spanish Autonomous Communities will promote measures to obtain generic reference values to declare a soil to be contaminated. In the Valencian Community, these reference values still do not exist. So if the protection of ecosystems is considered a priority to declare a soil to be contaminated and to assess the level of risk, emergency toxicity tests and seed growth in land plants are resorted to, or tests with aquatic organisms or other experiments with leached soils obtained by standard procedures are carried out. We studied the toxic effects of calcareous contaminated soils by Cu, Ni and Zn on marine bacterium Vibrio fisheri (MicrotoxR test assay) (1) and on barley (Hordeum vulgare L.) in plate (germination index) (2) and pot (UNE 77301) (3) experiments for the purpose of establishing the Cu, Ni and Zn concentrations in soil which may lead to toxicity in order to observe, therefore, whether there is any likelihood of these pollutants coming into contact with any receptor and if adverse effects exist for living beings and the environment. The results showed significant differences among the three types of tests done but, in all cases, the concentrations needed to reflect toxicity effect on organisms were around 20 -70 (Cu and Ni) to 1000 (Zn) times higher than the levels of the control soils. The sensitivity order of the bio-assay was: (1) < (3) < (2). We would like to thank Spanish government-MICINN for partial funding and support (MICINN, project CGL2006-09776).

  13. Heavy metal distribution and water quality characterization of water bodies in Louisiana's Lake Pontchartrain Basin, USA.

    PubMed

    Zhang, Zengqiang; Wang, Jim J; Ali, Amjad; DeLaune, Ronald D

    2016-11-01

    The seasonal variation in physico-chemical properties, anions, and the heavy metal (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) concentration was evaluated in water from nine different rivers in Lake Pontchartrain Basin, Louisiana, USA. The water quality parameters were compared with toxicity reference values (TRV), US Environmental Protection Agency (USEPA) drinking/aquatic life protection, and WHO standards. Among physico-chemical properties, pH, DO, and turbidity were high during spring, while, EC, temperature, and DOC were high during summer and vice versa. The anion study revealed that the concentrations of F - , Cl - , and NO 3 - were higher during summer and Br - and SO 4 - were higher during spring. Our research findings showed anion concentration decreased in the order of Cl -  > SO 4 -  > NO 3 -  > Br -  > F - , in accordance with the global mean anion concentration. The dissolved heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb) except Zn were higher during spring than summer. None of the rivers showed any Cd pollution for both seasons. Co showed higher concentrations in Amite River, Mississippi River, Industrial Canal, and Lacombe Bayou during summer. The Cr concentration was higher than WHO drinking water standards, implicating water unsuitability for drinking purposes in all the rivers associated with the Lake Pontchartrain Basin. Cu showed no pollution risk for the study area. Mn and Co were similar to concentration in Lacombe Bayou, Liberty Bayou, Blind River, and Industrial Canal. Mn levels were greater than WHO standards for the Tickfaw River, Tangipahoa River, and Blind River in both seasons. Blind River, Tangipahoa River, Tickfaw River, and Amite River will require more monitoring for determining possible Mn pollution. Ni content in river water during both seasons showed low pollution risk. Liberty Bayou and Industrial Canal concentrations were closer to the WHO regulatory standards, indicating possible risk of Pb pollution in these water bodies. The Zn content was near the USEPA aquatic life standards in summer for all water bodies. None of the rivers showed any risk associated with Cd, Co, Cu, and Ni levels but medium to higher risk to aquatic life from Cr and Zn for both seasons for most of the rivers. Metal fractionation revealed the decreasing order of inert > labile > organic. The high inert fraction in the rivers under study reflects the major contribution of natural sources in Lake Pontchartrain Basin. The labile and organic forms of Cd, Cu, Ni, and Zn pose potential higher risk to the aquatic life in the Lake Pontchartrain Basin.

  14. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  15. Metal amounts in the lichen Ramalina duriaei (De Not. ) Bagl. transplanted at biomonitoring sites around a new coal-fired power station after 1 year of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, J.

    1987-06-01

    The lichen Ramalina duriaei (De Not.) Bagl. was transplanted to 22 biomonitoring sites for 1 year (1981-1982). The amounts of Ni, Cr, Cu, Zn, Pb, Mn, and Fe in the lichen material were measured at the end of the transplantation period and the data were compared with the amounts of five of these metals (Ni, Cr, Cu, Zn, and Pb) which were detected in the same lichen species transplanted in the same study area during the 1979-1980 period. The differences between the amounts of the five metals detected during the two periods are discussed. The increase in amounts of somemore » of the metals in the 1981-1982 lichen material (Pb, Ni, and probably Cr) reflects the increase in the total number of motor vehicles between the two periods within the study area. The decrease of Zn in the lichen after the second period reflects a decrease in the use of Zn as a constituent of foliar nutrients in agriculture used for crop spraying. The increase of Cr and Ni in the transplanted lichen after the 1981-1982 period probably also reflects, apart from vehicle pollution, a certain emission from the 250-m-high stacks of a new coal-fired electricity-generating power station.« less

  16. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  17. [Determination and correlation analysis of trace elements in Boletus tomentipes].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao

    2011-07-01

    The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.

  18. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  19. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.

    PubMed

    Ahmed, Dalia A; Slima, Dalia F

    2018-05-01

    Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.

  20. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: Bioavailability, ecological risk assessment and source analysis on a centennial timescale.

    PubMed

    Kang, Xuming; Song, Jinming; Yuan, Huamao; Duan, Liqin; Li, Xuegang; Li, Ning; Liang, Xianmeng; Qu, Baoxiao

    2017-09-01

    Heavy metal contamination is an essential indicator of environmental health. In this work, one sediment core was used for the analysis of the speciation of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) in Jiaozhou Bay sediments with different grain sizes. The bioavailability, sources and ecological risk of heavy metals were also assessed on a centennial timescale. Heavy metals were enriched in grain sizes of < 63µm and were predominantly present in residual phases. Moreover, the mobility sequence based on the sum of the first three phases (for grain sizes of < 63µm) was Mn > Pb > Cd > Zn > Cu >Ni > Cr > As. Enrichment factors (EF) indicated that heavy metals in Jiaozhou Bay presented from no enrichment to minor enrichment. The potential ecological risk index (RI) indicated that Jiaozhou Bay had been suffering from a low ecological risk and presented an increasing trend since 1940s owing to the increase of anthropogenic activities. The source analysis indicated that natural sources were primary sources of heavy metals in Jiaozhou Bay and anthropogenic sources of heavy metals presented an increasing trend since 1940s. The principal component analysis (PCA) indicated that Cr, Mn, Ni, Cu and Pb were primarily derived from natural sources and that Zn and Cd were influenced by shipbuilding industry. Mn, Cu, Zn and Pb may originate from both natural and anthropogenic sources. As may be influenced by agricultural activities. Moreover, heavy metals in sediments of Jiaozhou Bay were clearly influenced by atmospheric deposition and river input. Copyright © 2017. Published by Elsevier Inc.

  1. [Characteristics and Risk Assessment of Heavy Metals in Core Sediments from Lakes of Tibet].

    PubMed

    Guo, Bi-xi; Liu, Yong-qin; Zhang, Fan; Hou, Ju-zhi; Zhang, Hong-bo

    2016-02-15

    To explore the source of heavy metals in lake sediments and their hazard to environment on Tibetan Plateau, China, heavy metal (Cu, Zn, Cd, Pb, Cr, Co, Ni and As) levels in surface sediments of 18 lakes were investigated. Inductively Coupled Plasma Mass Spectrometry (ICP-MS, X-7 series) was used to determine the contents of heavy metals and the concentrations of carbon and nitrogen in sediment samples were analyzed by element analyzer (Vario Max CN, Elementar, Germany). The average concentrations for Cu, Zn, Cd, Pb, Cr, Co, Ni and As were 24.61 mg x kg(-1), 70.14 mg x kg(-1), 0.26 mg x kg(-1), 25.43 mg x kg(-1), 74.12 mg x kg(-1), 7.93 mg x kg(-1), 33.85 mg x kg(-1), 77.69 mg x kg(-1). It was found that heavy-metal concentrations in Tibet sediments were higher than those in Antarctic, but lower than those in the regions affected by anthropogenic activities. The contents of Cu, Zn, Pb, Cr and Co in the samples were lower than the background values of Tibet. Correlation analysis and principal components analysis (PCA) were used to analyze the origins of heavy metals. The result showed that Cu, Zn, Cd, Pb, Co, Ni and As came from soil in drainage basin and atmospheric deposition. Cr was mainly affected by human activities. Assessment on ecological risk of heavy metals was carried out using Hakanson's method and cluster analysis (CA). Assessment on ecological risk indicated that Pumoyum Co, Longmo Co and Bangong Co were at low risks, Bieruoze Co was at high ecological risk level and the other lakes were at different risk levels.

  2. Heavy Metal Contents of Soils, Durum and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Soils are vital for regulating the biological effects and mobility of metals in nature. Iron and zinc are some of the essential nutrients for plants and animals, while other metals are potentially toxic such as lead and cadmium. Toxic heavy metals (HMs) can be taken up easily by organisms. HMs inputs to soil via the application of metal-contained fertilizers often exceed outputs in crops and drainage waters, thus toxic HMs content in many agricultural soils tends to be gradually increasing. Thus adverse human health effects due to soil-plant and plant-human transfer of HMs have been enhanced. HMs may cause harmful effects on human health due to the ingestion of food grain grown in soils. The objectives of this study were (1) to understand the chemistry of metals in soils for managing their agricultural and ecological impacts, (2) to identify metal uptakes of different genotypes of wheat. Concentrations of HMs (Cd, Zn, Ni, Mn, Cu, Mo, Pb) in wheat were investigated in different agricultural areas in Southeast, Turkey. The results showed that concentrations of HMs were in following order: Mn>Ni>Zn>Cu>Pb>Mo>Cd in surface and next to surface soil and Mn>Zn>Cu>Pb> Ni>Mo>Cd in wheat, respectively. HMs concentrations of several soil samples exceeded the permissible limits of Europe standard except for Ni and Mn. In addition, concentration of Cd, Zn, Cu, and Pb were higher in bread wheat than in durum wheat; however, concentration of Mn, Ni and Mo were higher in durum wheat than in bread wheat. Unusual amount of heavy metals found in some fertilizers used in the Southeast region of Turkey, it becomes an important subject to determine the amount of metals added to the soil every year. Heavy metals uptake by plants still remains to be an interest for researchers. As the heavy metals contents of plants were below the threshold levels, we conclude that the quality of wheat is high and it should receive attention in national and international markets. Keywords: Heavy Metals (HMs), Soil, Durum and Bread Wheat, Fertilizers.

  3. Element accumulation in tall fescue and alfalfa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stucky, D.J.; Newman, T.S.

    This study was initiated to examine the effect of three application rates of dried anaerobically digested sludge on two different soil media on the establishment, yield, duration, and element accumulation in tall fescue and alfalfa. In a greenhouse study, acid strip-mine spoil and agricultural soil were used to compare plant growth in sewage-amended and untreated media. Sludge was applied at 0, 314, and 627 metric tons/hectare to the agricultural soil control and the strip mine spoil. Plant yields were significantly higher for strip-mine spoil amended with 627 metric tons/ha and for agricultural soil amended with 314 and 627 metric tons/ha.more » Concentrations of Mn, Ni, Cd, Zn, and Cu were measured in plants and soils. Concentrations of Mn, Zn, Ni, and Cd in tall fescue and alfalfa grown in strip-mine spoils were higher at higher sludge application rates. Sludge application rate did not affect Cu uptake. Concentrations of Mn, Zn, Ni, and Cd in tall fescue were highest during the 180 toese is the fluctuation in nutrient salt concentrations:agreement of experimental and calculated data is obtton beam.« less

  4. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less

  5. Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment.

    PubMed

    Park, Seong-Jik; Kang, Ku; Lee, Chang-Gu; Choi, Jae-Woo

    2018-05-18

    The objectives of this study are to assess the effectiveness of limestone (LS), steel slag (SS), and activated carbon (AC) as capping materials to sequester trace metals including As, Cd, Cr, Cu, Ni, Pb, and Zn in heavily contaminated marine sediments and to minimize the release of these metals into the water column. A flat flow tank was filled with 10 mm of capping material, contaminated sediments, and seawater, and the metal concentrations were monitored over 32 d. After completion of the flow tank experiments, the sediments below the capping material were sampled and were sequentially extracted. SS effectively reduced the As, Cr, Cu, Ni, Pb, and particularly Cd elution from the contaminated sediments to the overlying seawater. Adsorption and surface precipitation were the key mechanisms for interrupting the release of cationic trace metals by SS. LS was appropriate for interrupting the release of only Cu and Pb with high hydrolysis reaction constants. AC capping could interrupt the release of Cr, Cu, Ni, and particularly Zn from the sediments by binding with the metals via electrostatic interaction. The results obtained from the sequential extraction revealed that LS capping is appropriate for stabilizing Zn, whereas AC is appropriate for Cd and Pb. LS, SS, and AC can be applied effectively for remediation of sediments contaminated by trace metals because it interrupts their release and stabilizes the trace metals in the sediments.

  6. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil environment.

  7. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis.

    PubMed

    Zhang, Xiaowen; Wei, Shuai; Sun, Qianqian; Wadood, Syed Abdul; Guo, Boli

    2018-09-15

    Characterizing the distribution and defining potential sources of arsenic and heavy metals are the basic preconditions for reducing the contamination of heavy metals and metalloids. 71 topsoil samples and 61 subsoil samples were collected by grid method to measure the concentration of cadmium (Cd), arsenic (As), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni) and chromium (Cr). Principle components analysis (PCA), GIS-based geo-statistical methods and Positive Matrix Factorization (PMF) were applied. The results showed that the mean concentrations were 9.59 mg kg -1 , 51.28 mg kg -1 , 202.07 mg kg -1 , 81.32 mg kg -1 and 771.22 mg kg -1 for Cd, As, Pb, Cu and Zn, respectively, higher than the guideline values of Chinese Environmental Quality Standard for Soils; while the concentrations of Ni and Cr were very close to recommended value (50 mg kg -1 , 200 mg kg -1 ), and some site were higher than guideline values. The soil was polluted by As and heavy metals in different degree, which had harmful impact on human health. The results from principle components analysis methods extracted three components, namely industrial sources (Cd, Zn and Pb), agricultural sources (As and Cu) and nature sources (Cr and Ni). GIS-based geo-statistical combined with local conditions further apportioned the sources of these trace elements. To better identify pollution sources of As and heavy metals in soil, the PMF was applied. The results of PMF demonstrated that the enrichment of Zn, Cd and Pb were attributed to industrial activities and their contribution was 24.9%; As was closely related to agricultural activities and its contribution was 19.1%; Cr, a part of Cu and Ni were related to subsoil and their contribution was 30.1%; Cu and Pb came from industry and traffic emission and their contribution was 25.9%. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017. Published by Elsevier GmbH.

  9. Ni(ii)/Cu(ii)/Zn(ii) 5,5-diethylbarbiturate complexes with 1,10-phenanthroline and 2,2'-dipyridylamine: synthesis, structures, DNA/BSA binding, nuclease activity, molecular docking, cellular uptake, cytotoxicity and the mode of cell death.

    PubMed

    Yilmaz, Veysel T; Icsel, Ceyda; Suyunova, Feruza; Aygun, Muhittin; Aztopal, Nazlihan; Ulukaya, Engin

    2016-06-21

    New 5,5-diethylbarbiturate (barb) complexes of Ni(ii), Cu(ii) and Zn(ii) with 1,10-phenanthroline (phen) and 2,2'-dipyridylamine (dpya), namely [Ni(phen-κN,N')3]Cl(barb)·7H2O (), [Cu(barb-κN)(barb-κ(2)N,O)(phen-κN,N')]·H2O (), [Cu(barb-κN)2(phen-κN,N')] (), [Zn(barb-κN)2(phen-κN,N')]·H2O (), [Ni(barb-κ(2)N,O)(dpya-κN,N')2]Cl·2H2O (), [Cu(barb-κ(2)N,O)2(dpya-κN,N')]·2H2O () and [Zn(barb-κN)2(dpya-κN,N')] (), were synthesized and characterized by elemental analysis, UV-vis, FT-IR and ESI-MS. The structures of the complexes were determined by X-ray crystallography. Notably, and were fluorescent in MeOH : H2O at rt. The interaction of the complexes with fish sperm (FS) DNA and bovine serum albumin (BSA) was investigated in detail by various techniques. The complexes exhibited groove binding along with a partial intercalative interaction with DNA, while the hydrogen bonding and hydrophobic interactions played a major role in binding to BSA. It is noteworthy that exhibited the highest affinity towards DNA and BSA. Enzyme inhibition assay showed that show a preference for both A/T and G/C rich sequences in pUC19 DNA, while and display a binding specificity to the G/C and A/T rich regions, respectively. These findings were further supported by molecular docking. The cellular uptake studies suggested that was deposited mostly in the membrane fraction of the cells. Among the present complexes, exhibited a very strong cytotoxic effect on A549, MCF-7, HT-29 and DU-145 cancer cells, being more potent than cisplatin. Moreover, induces cell death through the apoptotic mode obtained by flow cytometry.

  10. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    PubMed

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  11. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  12. Effect of Barothermal Treatment on the Structure and the Mechanical Properties of a High-Strength Eutectic Al-Zn-Mg-Cu-Ni Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Karpova, Zh. A.

    2017-11-01

    The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al‒Zn-Mg-Cu-Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).

  13. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China.

    PubMed

    Wei, Xin; Gao, Bo; Wang, Peng; Zhou, Huaidong; Lu, Jin

    2015-02-01

    Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer.

    PubMed

    Uber, Jorge Salinas; Estrader, Marta; Garcia, Jordi; Lloyd-Williams, Paul; Sadurní, Anna; Dengler, Dominik; van Slageren, Joris; Chilton, Nicholas F; Roubeau, Olivier; Teat, Simon J; Ribas-Ariño, Jordi; Aromí, Guillem

    2017-10-04

    Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H 4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M 4 L 2 (py) 6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu 2 Ni 2 L 2 (py) 6 ] (5), [Co 2 Ni 2 L 2 (py) 6 ] (6), [Co 2 Cu 2 L 2 (py) 6 ] (7), [Cu 2 Zn 2 L 2 (py) 6 ] (8), and [Ni 2 Zn 2 L 2 (py) 6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (T M =3.59 and 6.03 μs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Health Risks and Contamination Levels of Heavy Metals in Dusts from Parks and Squares of an Industrial City in Semi-Arid Area of China

    PubMed Central

    Han, Xiufeng; Lu, Xinwei; Qinggeletu; Wu, Yongfu

    2017-01-01

    The contamination characteristics and health risk of barium (Ba), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), arsenic (As), mercury (Hg), and cadmium (Cd) in samples of dust gathered from squares and parks of Baotou city, an industrial city situated in a semi-arid location of the northwest China were investigated. The contents of Ba, Co, Cr, Cu, Mn, Ni, V, Pb, and Zn in the collected dust samples were determined using X-ray fluorescence spectrometry, while the contents of As and Hg in the dust were investigated by use of the ICP-MS. Further, cadmium was quantified through the atomic absorption spectrometry. Levels of contamination of heavy metals analyzed in the dust samples were evaluated using the Geo-Accumulation index (Igeo) as well as through a Pollution Load Index (PLI). Their health risks to children and adults were evaluated based on the US EPA model of health risk. The findings portrayed that the mean concentrations of Ba, Co Cr, Cu, Pb, V, Cd, and Hg were elevated as compared with their local soil background values. Mean values of Igeo illustrate the order of Co > Cr> Cd > Hg > Pb > Cu > Ba > V > Ni > Mn > Zn > As. It was evident that dusts from the parks and squares were “unpolluted” to “moderately polluted”. Assessment of health risk depicts that ingestion is the foremost route of exposure in regard to the heavy metals, then the dermal adsorption follows. Hg exposure from dust might also set impending health threats to children. Besides, the cancer risks of Co, Cr, Ni, Cd, and As are considered to be within the presently tolerable range. PMID:28783109

  16. Trace metals in liver from bluefish, tautog, and tilefish in relation to body length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, H.C.; Eisler, R.

    1977-09-01

    Livers from bluefish, tilefish and tautog collected during the summer of 1971 off the New Jersey coast were analyzed for Cd, Cr, Cu, Fe, Mn, Ni, and Zn by atomic absorption spectrophotometry. Liver ash from male and female tautog contained decreasing concentrations of Ni with increasing body length. Smaller males also contained greater levels of Cr and Cu in liver than larger tautogs. Larger tilefish contained proportionately more Cd, Cu, and Fe in liver than smaller tilefish. Decreasing levels of Mn and Zn with body length were apparent only for females. Livers from larger male bluefish were associated with highermore » concentrations of Fe than those from smaller males, while those from larger females contained lower concentrations of Cr than those from smaller females. The data suggest that future comparisons for trace metals which vary as a function of size be made only among fish of the same length.« less

  17. Quantification of chemical elements in blood of patients affected by multiple sclerosis.

    PubMed

    Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni

    2005-01-01

    Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).

  18. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  19. K{sub β} to K{sub α} X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, L. F. M.; Gudennavar, S. B., E-mail: shivappa.b.gudennavar@christuniversity.in; Bubbly, S. G.

    The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K{sub β} to K{sub α} intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak {sup 137}Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others’ work, establishing a good agreement.

  20. Two novel macroacyclic schiff bases containing bis-N 2O 2 donor set and their binuclear complexes: synthesis, spectroscopic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail

    2009-03-01

    Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).

  1. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii.

    PubMed

    Ewert, Jacob; Glück, Claudia; Strasdeit, Henry; Fischer, Lutz; Stressler, Timo

    2018-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) belongs to the group of metallopeptidases with two bound metal ions per subunit (M1M2(PepA)) and is specific for the cleavage of N-terminal glutamic (Glu) and aspartic acid (Asp) and, in low amounts, serine (Ser) residues. Our group recently characterized the first PepA from a Lactobacillus strain. However, the characterization was performed using synthetic para-nitroaniline substrates and not original peptide substrates, as was done in the current study. Prior to the characterization using original peptide substrates, the PepA purified was converted to its inactive apo-form and eight different metal ions were tested to restore its activity. It was found that five of the metal ions were able to reactivate apo-PepA: Co 2+ , Cu 2+ , Mn 2+ , Ni 2+ and Zn 2+ . Interestingly, depending on the metal ion used for reactivation, the activity and the pH and temperature profile differed. Exemplarily, MnMn(PepA), NiNi(PepA) and ZnZn(PepA) had an activity optimum using MES buffer (50mM, pH 6.0) and 60°C, whereas the activity optimum changed to Na/K-phosphate-buffer (50mM, pH 7.0) and 55°C for CuCu(PepA). However, more important than the changes in optimum pH and temperature, the kinetic properties of PepA were affected by the metal ion used. While all PepA variants could release N-terminal Glu or Asp, only CoCo(PepA), NiNi(PepA) and CuCu(PepA) could release Ser from the particular peptide substrate. In addition, it was found that the enzyme efficiency (V max /K M ) and catalytic mechanism (positive cooperative binding (Hill coefficent; n), substrate inhibition (K IS )) were influenced by the metal ion. Exemplarily, a high cooperativity (n>2),K IS value >20mM and preference for N-terminal Glu were detected for CuCu(PepA). In summary, the results suggested that an exchange of the metal ion can be used for tailoring the properties of PepA for specific hydrolysis requirements. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less

  3. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    PubMed

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy).

    PubMed

    Adamo, P; Arienzo, M; Bianco, M R; Terribile, F; Violante, P

    2002-08-05

    The total contents and the chemical and mineralogical forms of the metals Fe, Al, Cu, Co, Cr, Pb, Zn, Ni and Mn in the horizons of a soil profile, representative of an area devoted to stocking raw materials in the dismantled iron-steel industrial plant of ILVA of Bagnoli (Naples), were studied by physical and chemical methods. The geological setting of the study area is the result of volcanic activity in the Phlegrean Fields, a group of polygenic volcanoes to the west of Naples, which give rise to the parent soil material. Soil morphology appeared to be strongly disturbed by the occurrence and stratification of materials used in the industrial process. Fine sediments illuviation down the profile resulted in the occurrence of silt and clay coatings. The total contents of Cu, Co, Cr, Pb, Zn and Ni, in the whole soil samples, especially in the surface layers, were above the regulatory levels (Cu 120, Co 20, Cr 150, Pb 100, Zn 150, Ni 120 mg kg(-1)) stated by the Italian Ministry of Environment for soils in public, private and residential areas, and below the levels (Cu 600, Co 250, Cr 800, Pb 1000, Zn 1500, Ni 500 mg kg(-1)) outlined for soils and subsoils of industrial and commercial areas (Gazzetta Ufficiale della Repubblica Italiana, 1999). Speciation of heavy metals and the determination of the different chemical pools in the fraction < 2 mm identified the large presence of elements trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. A constant amount of Cu was associated with organic compounds. A significant amount of Zn (> 20%) was extracted in diluted acetic acid solution, indicating that the element was present in a more readily and potentially available form. In the clay fraction (< 2 microm) heavy metals were associated with both amorphous and crystalline iron forms. The presence of iron-rich clay coatings was evident in the illuvial pores of deeper horizons. Enrichment in Cu, Co, Cr and Zn of the coatings was observed. Possible translocation of metals down through the soil profile mainly bound to fine particles of relatively inert forms of iron is hypothesised. The dispersion in water of the clay fraction resulted in an average percentage dispersion of approximately 20% with a peak of 41.7% at 68-72 cm depth. Magnetite, goethite, hematite, calcite and quartz mixed with K-feldspars, clynopyroxenes and mica occurred in the coarse sand fractions (2-0.2 mm) of the soil samples from all the surface horizons. Talcum and goethite together with clay minerals at 1.4 nm, kaolinite and illite were found in the clays (< 2 microm).

  5. Calcium deficiency and CaCO/sub 3/ on micronutrient status of plants grown in solution culture. [Lycopersicon esculentum, Phaseolus vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Cha, J.W.; Alexander, G.V.

    Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less

  6. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

  7. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria.

    PubMed

    Isimekhai, Khadijah A; Garelick, Hemda; Watt, John; Purchase, Diane

    2017-07-01

    Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p < 0.001) in the dry season than in the wet season. The concentrations of Cu (329-7106 mg kg -1 ), Pb (115-9623 mg kg -1 ) and Zn (508-8178 mg kg -1 ) were consistently higher than international soil guideline values. Using a sequential extraction method, the potential bioavailability of the heavy metals was indicated as Cd > Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.

  8. New observations on the Ni-Co ores of the southern Arburese Variscan district (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Naitza, Stefano; Secchi, Francesco; Oggiano, Giacomo; Cuccuru, Stefano

    2015-04-01

    Among the European Variscan regions, the Arburese district, located in the Paleozoic basement of SW Sardinia (Italy) is remarkable for its metallogenic complexity, and offers good opportunities to investigate time/space and genetic links between post-collisional Variscan intrusive magmatism and mineral deposits. The district hosts a large variety of mineral deposits and occurrences, which include the Pb-Zn (Cu, Ag) mesothermal veins of the Montevecchio Lode System, one of the largest and richest Variscan hydrothermal ore deposit of Europe, now exhausted. Ore deposits are genetically related to the emplacement of the Late Variscan (304±1 Ma) Arbus Pluton, a granitoid composite intrusion ranging from monzogabbroic to granodioritic and to peraluminous leucogranitic rock-types. After more than a century of geological studies in the area, several metallogenic issues are still unresolved; among them, the occurrence in the southern sectors of little known polymetallic Ni-Co-(Pb-Zn-Cu-Ag-Bi) veins, a kind of mineralization quite unusual for the Sardinian basement. These hydrothermal deposits are hosted by very low-grade metamorphic rocks at short distance from the intrusion, where contact effect generate also hornfels. Spatial, structural and textural characters of the hydrothermal system are coherent and in apparent continuity with those of the Montevecchio Lode System. Ni-Co ores are hosted by a system of parallel, 1-2 m thick high-angle veins that discontinuously follow the southwestern and southern contacts of the Arbus Pluton for about 7 km. They constantly dip SSW, sideways with respect to the pluton contact, and show a prevalence of fracture infilling (banded and brecciated) textures, with alternating quartz and siderite bands, cockades and frequent inclusions of wallrock fragments. Wallrocks are usually silicified, bleached and/or sericitized. Systematic studies of ore textures and parageneses from different veins along the system have been performed by standard ore microscopy and SEM-EDS. Ore minerals associations include Ni-Co (Fe, Sb) arsenides/sulfoarsenides (nickeline, rammelsbergite, skutterudite, safflorite, gersdorffite, breithauptite, lollingite, cobaltite), Pb-Zn-Cu-Ag-Bi sulfides (galena, sphalerite, chalcopyrite, tetrahedrite/freibergite, bismuthinite, proustite/pyrargirite, stephanite), native Bi and native Ag. Ore textures and mineral phases relationships allow to envisage the following paragenetic sequence: 1) deposition of quartz (I) and a Ni monoarsenide (nickeline), and antimonide (breithauptite) followed by 2) Ni-,Ni-Co, Co- and Fe- di-, tri- arsenides and sulfoarsenides (rammelsbergite, skutterudite, safflorite, löllingite, cobaltite), with bismuthinite and native Bi; 3) deposition of abundant siderite, with quartz (II), Pb-Zn-Cu-Ag sulfides and sulfosalts and rare native Ag, followed at last by 4) calcite. This sequence depicts a polyphased evolution with alternating gradual and abrupt changes of the physicochemical parameters of a mesothermal fluid initially characterized by Ni-As-(Sb) contents, subsequently evolved to higher contents of As, Co and Bi, and, finally, enriched in S, allowing Pb, Zn, Cu deposition as sulfides and sulfosalts.Thus, the fine alternating rims of pure nickeline (NiAs) and breithauptite (NiSb) in nickeline individuals, detected by SEM-EDS, may be explained by repeated compositional re-equilibrations due to variable As and Sb contents of the fluids; increases in As, and, moreover, the sudden appearance of siderite and sulfides after brecciations indicate further re-opening of the system, related to hydrothermal fracturing and syn-depositional tectonics.

  9. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of Levels, Sources and Health Hazards of Road-Dust Associated Toxic Metals in Jalalabad and Kabul Cities, Afghanistan.

    PubMed

    Jadoon, Waqar Azeem; Khpalwak, Wahdatullah; Chidya, Russel Chrispine Garven; Abdel-Dayem, Sherif Mohamed Mohamed Ali; Takeda, Kazuhiko; Makhdoom, Masood Arshad; Sakugawa, Hiroshi

    2018-01-01

    This study was designed to investigate selected road-dust associated heavy metals, their relations with natural and anthropogenic sources, and potential human and environmental health risks. For this purpose, 42 and 36 road-dusts samples were collected from Jalalabad and Kabul cities (Afghanistan), respectively. The following elements were found in descending concentrations: Mn, Zn, Pb, Ni, Cu, Cr, Co, and Cd in Jalalabad; and Mn, Zn, Ni, Cu, Cr, Pb, Co, and Cd in Kabul. Except for Ni, all the elemental contents were less than the Canadian permissible limits in residential/parkland soils. Principle Component Analysis and enrichment of Cd, Cu, Ni, Pb, and Zn pointed to anthropogenic sources, whereas Co, Cr, and Mn indicated crustal inputs. Broadly, Cd monomial risk index ([Formula: see text]) was considerable; however, one site each in both cities showed high risk ([Formula: see text] ≥ 350). The potential ecological risk (RI) is mostly low; however, at some sites, the risk was considerable. Ingestion appeared to be the main exposure route (99%) for heavy metals and contributed > 90% to noncancerous (all residents), as well as 92% (children) and 75-89% (adults) cancerous risks. The noncancerous risks of all metals and their integrated risks for all residents were within acceptable levels. Moreover, potential cancer risks in children from Ni and Cr were slightly higher than the US-EPA safe levels but were within acceptable levels for adults. This study found higher risks to children and therefore recommends proper management and ways to control metals pollution load in these areas to decrease human health and RIs.

  11. Metal Concentrations in Sediment And Biota of the Huludao Coast in Liaodong Bay and Associated Human and Ecological Health Risks.

    PubMed

    Gao, Mi; Klerks, Paul L; Wu, Xing; Chen, Hongxing; Xie, Lingtian

    2016-07-01

    This study assessed the contamination extent and potential ecological and human health impacts for chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in sediments and indigenous benthic organisms along the coastal area of Huludao, China. We analyzed a total of eight species: two benthic fish species, two bivalves, two snails, and two decapod crustaceans. Cu, Zn, and Cd levels in sediment exceeded the Chinese marine sediment quality criteria. The geoaccumulation index was highest for Cd followed in a decreasing order by Zn, Pb, Cu, Ni, and Cr. Metal levels were highest in the four mollusk species. The oyster and veined rapa whelk had the highest bioaccumulation factors, indicating that these two species would be well suited for monitoring the metal pollution in this area. Our comparison of estimated daily intake values for human consumption of the seafood species to the Food and Agricultural Organization-recommended daily dietary allowances indicate potential health risks from the intake of Cd from all shellfish other than our crab species and Zn intake from oyster consumption. An analysis of target hazard quotients identified noncarcinogenic health risks from Cd (in all shellfish analyzed except for our crab species), Cu, and Zn (in oysters and veined rapa whelks). Moreover, an analysis of cancer risk from Pb ingestion detected an increased risk for consumption of all shellfish except for the crab species. Health risks seem especially pronounced for the consumption of oysters and the veined rapa whelks; a seafood advisory may be warranted for these mollusks.

  12. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Bačeva, Katerina

    2015-01-01

    Bioavailability of metals occurring in soil is the basic source of its accumulation in vegetables and herbs. The impact of soil pollution (due to urban and mining areas) on the food chain presents a challenge for many investigations. Availability of metals in a potentially polluted soil and their possible transfer and bioaccumulation in sorrel (Rumex acetosa), spinach (Spinacia oleracea) and common nettle (Urtica dioica), were examined. Microwave digestion was applied for total digestion of the plant tissues, while on the soil samples open wet digestion with a mixture of acids was applied. Three extraction methods were implemented for the bioavailable metals in the soil. Atomic emission spectrometry with inductively coupled plasma was used for determination of the total contents of 21 elements. Significant enrichments in agricultural soil for As, Pb and Zn (in urban area), Cd, Cu and Ni (in a copper mine area), compared with the respective values from European standards were detected. On the basis of three different extraction methods, higher availability was assumed for both lithogenic and anthropogenic elements. Translocation values >1 were obtained for As, Cd, Cu, Ni, Pb and Zn. Higher bioconcentrating value was obtained only for Cd, while the bioaccumulation values vary from 0.17 for Cd to 0.82 for Zn. The potential availability of hazardous metals in urban and mining soils is examined using DTPA-TEA-CaCl2 (urban) and HCl (Cu-mines areas). Our results suggested that S. oleracea and R. acetosa have a phytostabilization potential for Cd, Cu, Ni and Pb, while U. dioica only for Cu. R. acetosa has a potential for phytoextraction of Cd in urban and copper polluted areas.

  13. Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations.

    PubMed

    Ketrat, Sombat; Maihom, Thana; Wannakao, Sippakorn; Probst, Michael; Nokbin, Somkiat; Limtrakul, Jumras

    2017-11-20

    The oxidation of CO by N 2 O over metal-organic framework (MOF) M 3 (btc) 2 (M = Fe, Cr, Co, Ni, Cu, and Zn) catalysts that contain coordinatively unsaturated sites has been investigated by means of density functional theory calculations. The reaction proceeds in two steps. First, the N-O bond of N 2 O is broken to form a metal oxo intermediate. Second, a CO molecule reacts with the oxygen atom of the metal oxo site, forming one C-O bond of CO 2 . The first step is a rate-determining step for both Cu 3 (btc) 2 and Fe 3 (btc) 2 , where it requires the highest activation energy (67.3 and 19.6 kcal/mol, respectively). The lower value for the iron compound compared to the copper one can be explained by the larger amount of electron density transferred from the catalytic site to the antibonding of N 2 O molecules. This, in turn, is due to the smaller gap between the highest occupied molecular orbital (HOMO) of the MOF and the lowest unoccupied molecular orbital (LUMO)  of N 2 O for Fe 3 (btc) 2 compared to Cu 3 (btc) 2 . The results indicate the important role of charge transfer for the N-O bond breaking in N 2 O. We computationally screened other MOF M 3 (btc) 2 (M = Cr, Fe, Co, Ni, Cu, and Zn) compounds in this respect and show some relationships between the activation energy and orbital properties like HOMO energies and the spin densities of the metals at the active sites of the MOFs.

  14. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina.

    PubMed

    Bilos, C; Colombo, J C; Presa, M J

    1998-01-01

    Suspended particulate matter (SPM), sandy sediments and Asiatic clams were collected at seven sites along 150 km of the Río de la Plata coast to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 7.4-109; Cr: 75-408; Mn: 525-1341 microg(-1)), sediments (Cr: 16-27; Zn: 26-99; Mn: 221-489 microg(-1)) and bivalves (Cd: 0.5-1.9; Ni: 1.3-6.4; Cr: 1.3-11; Mn: 15-81; Cu: 28-89; Zn: 118-316 microg g(-1)) are comparable to those reported for other moderately polluted world rivers. Cu levels in Asiatic clams are among the highest, similar to those reported for heavily polluted sites. SPM Cu and Cr concentrations displayed a clear geographical trend with values increasing with proximity to major urban centers. Sediments showed a less clear pattern possibly due to their coarse nature (>98% sand) and higher proportion of mineral-associated residual metals. The clams showed a complex pattern due to the variability introduced by size-related factors and the natural dynamics of SPM in the estuary. Cr and Mn showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations near the turbidity maximum zone, possibly reflecting enhanced particle retention. Cu, Cd and Ni showed no clear geographical pattern, whereas Zn increased in the clams collected in the most industrialized area. A significant relationship with clam size was observed for Cu (positive) and Zn (negative) suggesting different physiological requirements for both metals with age. A principal component analysis confirmed these geographical and size-related trends.

  15. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.

    2007-01-01

    The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.

  16. Critical Elements in Fly Ash from the Combustion of Bituminous Coal in Major Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Bielowicz, Barbara; Botor, Dariusz; Misiak, Jacek; Wagner, Marian

    2018-03-01

    The concentration of critical elements, including such REE as Fe, Co, W, Zn, Cr, Ni, V, Mn, Ti, Ag, Ga, Ta, Sr, Li, and Cu, in the so-called fly ash obtained from the 9 Polish power plants and 1 thermal power station has been determined. The obtained values, compared with the global average concentration in bituminous coal ash and sedimentary rocks (Clarke values), have shown that the enrichment of fly ash in the specified elements takes place in only a few bituminous coal processing sites in Poland. The enrichment factor (EF) is only slightly higher (the same order of magnitude) than the Clarke values. The enrichment factor in relation to the Clarke value in the Earth's crust reached values above 10 in all of the examined ashes for the following elements: Cr, Ni, V, W, and, in some ash samples, also Cu and Zn. The obtained values are low, only slightly higher than the global average concentrations in sedimentary rocks and bituminous coal ashes. The ferromagnetic grains (microspheres) found in bituminous coal fly ashes seem to be the most economically prospective in recovery of selected critical elements. The microanalysis has shown that iron cenospheres and plerospheres in fly ash contain, in addition to enamel and iron oxides (magnetite and hematite), iron spinels enriched in Co, Cr, Cu, Mn, Ni, W, and Zn.

  17. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  18. Hyperspectral estimation of soil heavy metals in Guanzhong area, Shaanxi province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Cheng, Jie; Wang, Huanyuan; Tong, Wei; Ma, Zenghui

    2017-10-01

    In this study, the contents of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pub in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD Field Spec HR (350 ˜ 2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal hyper spectral estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb was established by regression method. Comparing the reflection characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results show that: (1) the reflectance spectrum improves the signal-to-noise ratio of the reflectance spectrum after the transformation of NOR, MSC and SNV. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb by PLSR method were 0.7002, 0.7852, 0.687, 0.8036, 0.8619, 0.5765, 0.5451, 0.9912, and 0.6182.

  19. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  20. Assessment of metal contents in spices and herbs from Saudi Arabia.

    PubMed

    Seddigi, Z S; Kandhro, G A; Shah, F; Danish, E; Soylak, Mustafa

    2016-02-01

    In the recent years, there has been a growing interest in monitoring heavy metal contamination of spices/herbs. Spices and herbs are sources of many bioactive compounds that can improve the tastes of food as well as influence digestion and metabolism processes. In the present study, the levels of some essential and toxic elements such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), lead (Pb), and cadmium (Cd), present in common spices/herbs that were purchased from the local market in Saudi Arabia, were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide mixture. Samples from the following spices/herbs were used: turmeric, cloves, black pepper, red pepper, cumin, legume, cinnamon, abazir, white pepper, ginger, and coriander. The concentration ranges for the studied elements were found as 48.8-231, 4.7-19.4, 2.5-10.5, below detection level (BDL)-1.0, 8.8-490, 1.0-2.6, and BDL-3.7 µg g(-1) for Fe, Zn, Cu, Cr, Mn, Ni, and Pb, respectively, while Cd and Co levels were below the detection limit. Consumers of these spices/herbs would not be exposed to any risk associated with the daily intake of 10 g of spices per day as far as metals Fe, Zn, Cu, Cr, Mn, Ni, and Pb are concerned. © The Author(s) 2013.

  1. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands.

    PubMed

    Baken, Stijn; Degryse, Fien; Verheyen, Liesbeth; Merckx, Roel; Smolders, Erik

    2011-04-01

    Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.

  2. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China.

    PubMed

    Feng, Jingjing; Chen, Xiaolin; Jia, Lei; Liu, Qizhen; Chen, Xiaojia; Han, Deming; Cheng, Jinping

    2018-04-10

    Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher's exact test.

  3. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  4. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet

    2017-01-01

    The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.

  5. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  6. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Potential human health risk from consumption of metallic elements-contaminated benthic mollusks from Don Hoi Lot sandbar, Thailand.

    PubMed

    Khidkhan, Kraisiri; Imsilp, Kanjana; Poapolathep, Amnart; Poapolathep, Saranya; Tanhan, Phanwimol

    2017-04-15

    Environmental pollutants have raised more concerns for human health risk, especially via consumption of contaminated food. Terrestrial as well as aquatic animals are capable of bioaccumulation a variety of toxic substances including metallic elements. With increasing anthropogenic activities along the coastal areas, living organisms have more chances to be exposed to released contaminants. In this study, seven metallic elements (Cd, Cu, Fe, Mn, Ni, Pb and Zn) were determined in sediments and water from Don Hoi Lot sandbar, Samutsongkharm province, Thailand. Potential human health risks via the consumption of two benthic bivalves Solen corneus (Larmarck, 1818) and Meretrix meretrix (Linnaeus, 1758) were also estimated using the target hazard quotients (THQs). The variations of metallic element concentrations were apparent between wet and dry season. Fe was the predominate metallic element in the sediment and the remaining were Mn>Pb>Zn>Ni>Cu>Cd. Whereas metallic element concentrations in water were Pb>Ni>Fe>Zn>Cu>Mn>Cd. PCA analysis confirmed that the contaminations of these metallic elements were from Mae Klong river surface water. Most Pb THQ values in both S. corneus and M. meretrix were >1 indicating that human health risk is of concern. However, the sum of THQs of an individual metallic element should also be considered since multiple metallic elements exposure is so common. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Size distribution, characteristics and sources of heavy metals in haze episode in Beijing.

    PubMed

    Duan, Jingchun; Tan, Jihua; Hao, Jiming; Chai, Fahe

    2014-01-01

    Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) > As (58.1%) > Cd (57.9%) > Zn (57.7%) > Cu (55.8%) > Ni (53.5%) > Cr (52.2%) > Mn (49.2%) > V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO4(2-) etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.

  9. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea

    USGS Publications Warehouse

    Szymczycha, Beata; Kroeger, Kevin D.; Pempkowiak, Janusz

    2016-01-01

    Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1–2.8 nmol L− 1), Co (8.70–8.76 nmol L− 1), Cr (18.1–18.5 nmol L− 1), Mn (2.4–2.8 μmol L− 1), Pb (1.2–1.5 nmol L− 1), Zn (33.1–34.0 nmol L− 1). Concentrations of Cu (0.5–0.8 nmol L− 1) and Ni (4.9–5.8 nmol L− 1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.

  10. Hydrometallurgical Treatment for Mixed Waste Battery Material

    NASA Astrophysics Data System (ADS)

    Ma, L. W.; Xi, X. L.; Zhang, Z. Z.; Huang, Z. Q.; Chen, J. P.

    2017-02-01

    Hydrometallurgical experiments are generally required to assess the appropriate treatment process before the establishment of the industrial recovery process for waste battery materials. The effects of acid systems and oxidants in metal leaching were studied. The comprehensive leaching effects of the citric acid were superior to the sulfuric acid. The potassium permanganate inhibits the dissolution of metals. Thermodynamic calculations showed that metals precipitate more easily in sulfuric acid system than in citric acid system. The Fe precipitation efficiency in sulfuric acid system was 90% at pH 3.5, but with considerable losses of Co (30%) and Ni (40%). The proper pH and organic/aqueous (O/A) ratio for Fe and Zn removal with Di-(2-ethylhexyl) phosphoric acid extraction were 2 and 0.5, respectively; while for the removal of Cu and Mn, the best pH and O/A ratio were 3 and 0.75, respectively. Crude manganese carbonate and a cobalt-nickel enriched liquid were obtained by selective precipitation in raffinate using an ammonium bicarbonate solution. In citric acid systems, the precipitation efficiency of Co, Ni, Mn, Fe, Cu and Zn were less than 20% at pH 7. The proper pH and O/A ratio for the separation of the metals in two groups (Ni/Co/Cu and Mn/Fe/Zn) were 1.5 and 2. The cobalt-nickel-copper enriched liquid was finally obtained.

  11. Correlations in metal release profiles following sorption by Lemna minor.

    PubMed

    Üçüncü Tunca, Esra; Ölmez, Tolga T; Özkan, Alper D; Altındağ, Ahmet; Tunca, Evren; Tekinay, Turgay

    2016-08-02

    Following the rapid uptake of contaminants in the first few hours of exposure, plants typically attempt to cope with the toxic burden by releasing part of the sorbed material back into the environment. The present study investigates the general trends in the release profiles of different metal(loid)s in the aquatic macrophyte Lemna minor and details the correlations that exist between the release of metal(loid) species. Water samples with distinct contamination profiles were taken from Nilüfer River (Bursa, Turkey), Yeniçağa Lake (Bolu, Turkey), and Beyşehir Lake (Konya, Turkey) and used for release studies; 36 samples were tested in total. Accumulation and release profiles were monitored over five days for 11 metals and a metalloid ((208)Pb, (111)Cd, (52)Cr,(53)Cr,(60)Ni,(63)Cu,(65)Cu,(75)As,(55)Mn, (137)Ba, (27)Al, (57)Fe, (66)Zn,(68)Zn) and correlation, cluster and principal component analyses were employed to determine the factors that affect the release of these elements. Release profiles of the tested metal(loid)s were largely observed to be distinct; however, strong correlations have been observed between certain metal pairs (Cr/Ni, Cr/Cu, Zn/Ni) and principal component analysis was able to separate the metal(loid)s into three well-resolved groups based on their release.

  12. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  13. Environmental characterisation of sewage sludge/paper ash-based composites in relation to their possible use in civil engineering.

    PubMed

    Mladenovič, Ana; Hamler, Sandra; Zupančič, Nina

    2017-01-01

    The environmental acceptability of geotechnical composites made of treated municipal sewage sludge (SwS) and paper ash (PA) after two different curing periods has been investigated. The mineral composition of such composites, including their content of major oxides, is mainly influenced by the PA. The content of potentially toxic elements (PTEs) in the initial materials and in the composites varies considerably. In the SwS the Ba, Cd, Cr, Cu, Hg, Ni and Zn contents are above the legally permitted limits. The PTE content of PA are lower, but still somewhat above the permitted values for Ba and Cu. Mixing these two materials together resulted in a decrease in the PTE, but the Ba, Cu and Zn contents are still too high for agricultural application. However, leachates from composites that had been cured for 28 days are highly alkaline, and the As, Ba, Cd, Cr, Hg, Mo, Ni, Pb and Zn contents in them are well below the permitted values. The Cu contents (2.4 to 5.4 mg/kg) are above the permitted limit for inert material, but inside the range for non-hazardous material. In a leachate of composite which was prepared with fresh PA and a lower PA to SwS ratio, the Cu content was 1.4 mg/kg, since fresh PA is more reactive and therefore has a higher ability to immobilise Cu. Therefore, such mixtures can be utilised for covers and liners for sanitary landfills.

  14. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  15. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis

    PubMed Central

    Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Kowalski, Artur; Rogala, Piotr; Strzyżewski, Wojciech; Łabędź, Wojciech; Kanicky, Viktor

    2015-01-01

    The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity. PMID:26357659

  16. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea

    NASA Astrophysics Data System (ADS)

    Hamed, Mohamed A.; Emara, Ahmed M.

    2006-05-01

    Levels of the heavy metals Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Iron (Fe) and Manganese (Mn) were determined in coastal water, sediments and soft tissues of the gastropod limpet, Patella caerulea, and the bivalve, Barbatus barbatus, from seven different stations in the western coast of the Gulf of Suez. The concentrations of heavy metals in water ranged between 3.37-4.78, 18.83-21.46, 2.75-3.17, 0.22-0.27, 0.99-1.21, 2.69-3.65, 3.75-4.56 μg L - 1 and 23.82-32.78 mg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The corresponding concentration values in the sediments were 8.65-12.16, 51.78-58.06, 36.52-42.15, 3.23-3.98, 9.03-12.75, 34.31-49.63, 3.28-4.56 and 64.20-70.22 μg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The highest accumulated metals were Fe, Zn and Mn in both P. caerulea and B. barbatus, while the lowest one was Cd. The accumulation of metals was more pronounced in P. caerulea than B. barbatus. The highest concentrations of all metals in water, sediments and mollusca were recorded at Adabiya harbour north of the Gulf, while the lowest concentrations were recorded at Gabal El-Zeit and Hurghada. Land based activities and ships awaiting berth are the main source of metal pollution in the northern part of the Gulf.

  17. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

    PubMed Central

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-01-01

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water. PMID:29140287

  18. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    PubMed

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    PubMed

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  20. Cation separation and preconcentration using columns containing cyclen and cyclen-resorcinarene derivatives.

    PubMed

    Li, Na; English, Christopher; Eaton, Ammon; Gillespie, Austin; Ence, T C; Christensen, Taylor J; Sego, Adam; Harrison, Roger G; Lamb, John D

    2012-07-06

    The selectivity and separation of transition metal ions on two columns packed with cyclen-based macrocycles adsorbed onto 55% cross-linked styrene-divinylbenzene resin are presented. The N-cyclen and cyclen-resorcinarene stationary phases were made by adsorbing hydrophobically substituted N-cyclen or a cyclen-resorcinarene derivative (cyclenbowl) on the resin, respectively. The stability constants of cyclen with transition metal ions demonstrate that cyclen has selectivity for Cu²⁺ over other transition metal ions. Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ ions were separated from Cu²⁺ using HNO₃ eluent with the cyclenbowl column. The preconcentration of Cu²⁺ in parts per billion level from a high concentration matrix of Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ ions was achieved in the cyclenbowl column using a nitric acid eluent gradient. Recovery of Cu²⁺ at >98% was obtained based on direct interaction of metal ion and cyclen. Although Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ were not separated by HNO₃ eluent, addition of oxalic acid yielded a very good separation. A retention mechanism is proposed for the latter system in which the protonated cyclen units attract negatively charged HC₂O₄⁻ ions that cooperate with cyclen sites in retaining transition metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China.

    PubMed

    Chen, Tong-Bin; Zheng, Yuan-Ming; Lei, Mei; Huang, Ze-Chun; Wu, Hong-Tao; Chen, Huang; Fan, Ke-Ke; Yu, Ke; Wu, Xiao; Tian, Qin-Zheng

    2005-07-01

    Assessing the concentration of potentially harmful heavy metals in the soil of urban parks is imperative in order to evaluate the potential risks to residents and tourists. To date, little research on soil pollution in China's urban parks has been conducted. To identify the concentrations and sources of heavy metals, and to assess the soil environmental quality, samples were collected from 30 urban parks located in the city of Beijing. Subsequently, the concentrations of Cu, Ni, Pb and Zn in the samples were analyzed. The investigation revealed that the accumulations of Cu and Pb were readily apparent in the soils. The integrated pollution index (IPI) of these four metals ranged from 0.97 to 9.21, with the highest IPI in the densely populated historic center district (HCD). Using multivariate statistic approaches (principal components analysis and hierarchical cluster analysis), two factors controlling the heavy metal variability were obtained, which accounted for nearly 80% of the total variance. Nickel and Zn levels were controlled by parent material in the soils, whereas Cu, Pb and, in part, Zn were accounted for mainly by anthropogenic activities. The findings presented here indicate that the location and the age of the park are important factors in determining the extent of heavy metal, particularly Cu and Pb, pollution. In addition, the accumulation of Zn did not appear to reach pollution levels, and no obvious pollution by Ni was observed in the soils of the parks in Beijing.

  2. Heavy metal tolerance and removal potential in mixed-species biofilm.

    PubMed

    Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana

    2017-08-01

    The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.

  3. Comparative study of Ni and Cu doped ZnO nanoparticles: Structural and optical properties

    NASA Astrophysics Data System (ADS)

    Thakur, Shaveta; Thakur, Samita; Sharma, Jyoti; Kumar, Sanjay

    2018-05-01

    Nanoparticles of undoped and doped (0.1 M Ni2+ and Cu2+) ZnO are synthesized using chemical precipitation method. The crystallite size, morphology, chemical bonding and optical properties of as prepared nanoparticles are determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV-visible spectra. XRD analysis shows that the prepared samples are single phase and have hexagonal wurtzite structure. The crystallite size of the doped and undoped nanoparticles is determined using Scherrer method. The crystallite size is found to be increased with concentration of nickel and copper. All stretching and vibrational bands are observed at their specific positions through FTIR. The increase in band gap can be attributed to the different chemical nature of dopant and host cation.

  4. Metals in Some Edible Fish and Shrimp Species Collected in Dry Season from Subarnarekha River, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2015-08-01

    The concentration of As, Cd, Cu, Fe, Pb, Ni, Zn, Cr, Co and Sr were determined in five fish and one shrimp species collected from the Subarnarekha River during pre-monsoon season using inductively coupled plasma-mass spectrometry for a risk assessment and source apportionment study. Concentrations of metals in the fish and shrimp exceeded the recommended food standards for As, Cu, Ni, Cd and Zn in many samples. Principal component analysis suggested both innate and anthropogenic activities as contributing sources of metal in the fish and shrimp. The calculated target hazard quotients and hazard indices indicated that high concentrations of metals in some species at some locations present an appreciable risk to the health of consumers of these species.

  5. 40 CFR 413.54 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN,T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  6. 40 CFR 413.54 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN,T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  7. 40 CFR 413.44 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  8. 40 CFR 413.44 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  9. Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Assar, S. T.; Abosheiasha, H. F.; El Sayed, A. R.

    2017-01-01

    Nanoparticles of Ni0.35Cu0.15Zn0.5Fe2O4 and Mg0.35Cu0.15Zn0.5Fe2O4, have been synthesized by citrate precursor method. Then some of the prepared samples have been irradiated by γ-rays of 60Co radioactive source at room temperature with doses of 1 Mrad and 2 Mrad, at a dose rate of 0.1 Mrad/h to study the effect of γ-rays irradiation on some structural, magnetic and electrical properties of the samples. The X-ray diffraction analysis (XRD), transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer measurements have been used to investigate the samples. The XRD results show that the irradiation has caused a decrease in the crystallite size and the measured density and an increase in the porosity, specific surface area, and microstrain in the case of Ni-Cu-Zn ferrite whereas in the case of Mg-Cu-Zn ferrite the reverse trend has been noticed. The lattice constant of the investigated samples has been increased with the increase of irradiation due to the conversion of Fe3+ (0.67 Å) to Fe2+ (0.76 Å). The magnetization results show an increase in saturation and remnant magnetizations for the two prepared ferrites after γ-rays irradiation. The main reason of this behavior is most probably due to the redistribution of the cations between A and B sites. The cation distribution has been proposed such that the values of theoretical and experimental magnetic moment are identical and increase as the magnetization increases. Moreover, a theoretical estimation of the lattice constant has been calculated on the basis of the proposed cation distribution for each sample and compared with the corresponding experimental values obtained by XRD analysis; where they have been found in a good agreement with each other. This can be considered as another confirmation of the validity of the cation distribution. Moreover, the cation distribution is thought to play an important role in increasing the values of dc conductivity of all samples with increasing the irradiation dose. The frequency dependence of ac conductivity, dielectric constant and dielectric loss of all samples have been studied. The Cole-Cole plots of (Z″ vs. Z‧) give different two overlapping incomplete semi-circles depending upon the electrical parameters. Also, The Cole-Cole plots of (M″ vs. M‧) insure that the electric stiffness is the dominant property of the investigated samples.

  10. Effect of Sintering Temperature on Magnetic Core-Loss Properties of a NiCuZn Ferrite for High-Frequency Power Converters

    NASA Astrophysics Data System (ADS)

    Yan, Yi; Ngo, Khai D. T.; Hou, Dongbin; Mu, Mingkai; Mei, Yunhui; Lu, Guo-Quan

    2015-10-01

    In an effort to find a magnetic material for making low-loss magnetic components for high-power-density converters, we investigated the magnetic core-loss characteristics of a commercial NiCuZn ferrite (LSF 50) at 5 MHz as a function of the sintering temperature of the ferrite powder. The ferrite powder was compacted into toroid cores and then sintered at 850°C, 900°C, 950°C, 1000°C, and 1050°C for 2 h. The sintered densities of the cores increased at higher sintering temperatures. The magnetic properties of the sintered cores—complex permeability and core-loss density—were measured. We found that both the real and imaginary parts of the relative permeability increased with sintering temperature. The core-loss results at 5 MHz showed that the cores sintered at 950°C and 1000°C had the lowest core-loss densities, being two to three times lower than that of a commercial NiZn ferrite (4F1) core. Microstructures of the sintered cores were examined by scanning electron microscopy; the grains grew significantly at higher sintering temperatures.

  11. Soil trace element changes during a phytoremediation trial with willows in southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Tremblay, Gilbert; Munro, Lara; Masse, Jacynthe; Labrecque, Michel

    2017-07-03

    This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow ("Fish Creek" - Salix purpurea, SV1 - Salix x dasyclados and SX67 - Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO 3 -extractable and H 2 O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.

  12. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have been analysed on the proton microprobe at CSIRO in Sydney. The main trace elements in the sulfide inclusions are Zn, Pb, Ag, and Se. Other trace elements are below detection limits, which are normally at a level of several ppm. Zn concentrations (120 +/- 40 ppm) in sulphides are similar to those in silicate melts. This indicates that separation of the sulfide melt does not affect Zn contents of silicate melts. On the contrary, Ag (30 +/- 10 ppm) and Pb (40 +/- 10 ppm) contents in sulphides are at least in order of magnitude higher than in the silicate melt, and thus separation of the immiscible sulfide melt can significantly decrease Pb and Ag contents of the silicate magma. The widespread occurrence of sulfide inclusions, which were also described in olivine phenocrysts from ocean island basalts, indicates common saturation at low pressure of mantle-derived magmas with reduced sulfur.

  13. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China.

    PubMed

    Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang

    2017-05-01

    A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Combined Thermodynamic-Kinetic Analysis of the Interfacial Reactions between Ni Metallization and Various Lead-Free Solders

    PubMed Central

    Laurila, Tomi; Vuorinen, Vesa

    2009-01-01

    In this paper we will demonstrate how a thermodynamic-kinetic method can be utilized to rationalize a wide range of interfacial phenomena between Sn-based lead-free solders and Ni metallizations. First, the effect of P on the interfacial reactions, and thus on the reliability, between Sn-based solders and electroless Ni/immersion Au (ENIG) metallizations, will be discussed. Next, the effect of small amounts of Cu in Sn-based solders on the intermetallic compound (IMC), which forms first on top of Ni metallization, will be covered. With the help of thermodynamic arguments a so called critical Cu concentration for the formation of (Cu,Ni)6Sn5 can be determined as a function of temperature. Then the important phenomenon of redeposition of (Au,Ni)Sn4 layer on top of Ni3Sn4 IMC will be discussed in detail. The reasons leading to this behaviour will be rationalized with the help of thermodynamic information and an explanation of why this phenomenon does not occur when an appropriate amount of Cu is present in the soldering system will be given. Finally, interfacial reaction issues related to low temperature Sn-Zn and Sn-Bi based solders and Ni metallization will be discussed.

  15. Distribution and solid-phase speciation of toxic heavy metals of bed sediments of Bharali tributary of Brahmaputra River.

    PubMed

    Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P

    2011-06-01

    Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.

  16. Assessment of spatial variability of heavy metals in Metropolitan Zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis.

    PubMed

    Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe

    2013-01-01

    This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.

  17. Toxic Metals Enrichment in the Surficial Sediments of a Eutrophic Tropical Estuary (Cochin Backwaters, Southwest Coast of India)

    PubMed Central

    Martin, G. D.; George, Rejomon; Shaiju, P.; Muraleedharan, K. R.; Nair, S. M.; Chandramohanakumar, N.

    2012-01-01

    Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable. PMID:22645488

  18. High Pressure Properties of a Ba-Cu-Zn-P Clathrate-I

    DOE PAGES

    Dolyniuk, Juli -Anna; Kovnir, Kirill

    2016-08-12

    Here, the high pressure properties of the novel tetrel-free clathrate, Ba 8Cu 13.1Zn 3.3P 29.6, were investigated using synchrotron powder X-ray diffraction. The pressure was applied using a diamond anvil cell. No structural transitions or decomposition were detected in the studied pressure range of 0.1–7 GPa. The calculated bulk modulus for Ba 8Cu 13.1Zn 3.3P 29.6 using a third-order Birch-Murnaghan equation of state is 65(6) GPa at 300 K. This bulk modulus is comparable to the bulk moduli of Ge- and Sn-based clathrates, like A 8Ga 16Ge 30 (A = Sr, Ba) and Sn 19.3Cu 4.7P 22I 8, but lowermore » than those for the transition metal-containing silicon-based clathrates, Ba 8 T xSi46–x, T = Ni, Cu; 3 ≤ x ≤ 5.« less

  19. Novel Cu(I)-selective chelators based on a bis(phosphorothioyl)amide scaffold.

    PubMed

    Amir, Aviran; Ezra, Alon; Shimon, Linda J W; Fischer, Bilha

    2014-08-04

    Bis(dialkyl/aryl-phosphorothioyl)amide (BPA) derivatives are versatile ligands known by their high metal-ion affinity and selectivity. Here, we synthesized related chelators based on bis(1,3,2-dithia/dioxaphospholane-2-sulfide)amide (BTPA/BOPA) scaffolds targeting the chelation of soft metal ions. Crystal structures of BTPA compounds 6 (N(-)R3NH(+)) and 8 (NEt) revealed a gauche geometry, while BOPA compound 7 (N(-)R3NH(+)) exhibited an anti-geometry. Solid-state (31)P magic-angle spinning NMR spectra of BTPA 6-Hg(II) and 6-Zn(II) complexes imply a square planar or tetrahedral geometry of the former and a distorted tetrahedral geometry of the latter, while both BTPA 6-Ni(II) and BOPA 7-Ni(II) complexes possibly form a polymeric structure. In Cu(I)-H2O2 system (Fenton reaction conditions) BTPA compounds 6, 8, and 10 (NCH2Ph) were identified as most potent antioxidants (IC50 32, 56, and 29 μM, respectively), whereas BOPA analogues 7, 9 (NEt), and 11 (NCH2Ph) were found to be poor antioxidants. In Fe(II)-H2O2 system, IC50 values for both BTPA and BOPA compounds exceeded 500 μM indicating high selectivity to Cu(I) versus the borderline Fe(II)-ion. Neither BTPA nor BOPA derivatives showed radical scavenging properties in H2O2 photolysis, implying that inhibition of the Cu(I)-induced Fenton reaction by both BTPA and BOPA analogues occurred predominantly through Cu(I)-chelation. In addition, NMR-monitored Cu(I)- and Zn(II)-titration of BTPA compounds 8 and 10 showed their high selectivity to a soft metal ion, Cu(I), as compared to a borderline metal ion, Zn(II). In summary, lipophilic BTPA analogues are promising highly selective Cu(I) ion chelators.

  20. Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas.

    PubMed

    Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M

    2015-09-01

    Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  2. A baseline study on the concentration of trace elements in the surface sediments off Southwest coast of Tamil Nadu, India.

    PubMed

    Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga

    2018-01-01

    Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration.

    PubMed

    O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V

    2013-10-15

    An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.

  4. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques.

    PubMed

    Malik, Riffat Naseem; Nadeem, Muhammad

    2011-12-01

    Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO(3)-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl(-), and NH(4)-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.

  6. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.

  7. Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X-ray fluorescence.

    PubMed

    Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento

    2014-04-01

    Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®

  8. Heavy metal levels in dune sands from Matanzas urban resorts and Varadero beach (Cuba): Assessment of contamination and ecological risks.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O; Denis Alpízar, Otoniel

    2015-12-30

    Concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in dune sands from six urban and suburban Matanzas (Cuba) resorts and Varadero beach were estimated by X-ray fluorescence analysis. Ranges of metal contents in dune sands show a strong variation across the studied locations (in mg/kg(-1)): 20-2964 for Cr, 17-183 for Ni, 17-51 for Cu, 18-88 for Zn and 5-29 for Pb. The values of contamination factors and contamination degrees how that two of the studied Matanzas's resorts (Judio and Chirry) are strongly polluted. The comparison with Sediment Quality Guidelines shows that dune sands from Judio resort represent a serious risk for humans, due to polluted Cr and Ni levels, while sands from the rest of the studied resorts, including Varadero beach, do not represent any risk for public use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    PubMed

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  11. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    NASA Astrophysics Data System (ADS)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  12. Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, Talal; El-Sorogy, Abdelbaset

    2017-05-01

    An assessment of marine pollution due to heavy metals was made to coastal sediments collected from Al-Khobar coastline, in the Arabian Gulf, Saudi Arabia by analyzing of Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Mo, Sr, Se, As, Fe, Co and Ni using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The results indicated that the distribution of most metals was largely controlled by inputs of terrigenous material and most strongly associated with distribution of Al in sediments. In general Sr, Cr, Zn, Cu, V, Hg, Mo and Se show severe enrichment factors. Average values of Cu and Hg highly exceed the ERL and the Canadian ISQG values. Average Ni was higher than the ERL and the ERM values. The severe enrichment of some metals in the studied sediment could be partially attributed to anthropogenic activities, notably oil spills from exploration, transportation and from saline water desalination plants in Al-Khobar coast, and other industrial activities in the region.

  13. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  14. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    PubMed

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng

    2016-04-15

    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.

  15. Metals in some lagoons of Mexico.

    PubMed

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-02-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed.

  16. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    PubMed

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into account to control soil pollution and to curtail metal contamination to the food chain in the areas of Wenling, which were the most polluted by toxic metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey).

    PubMed

    Omwene, Philip Isaac; Öncel, Mehmet Salim; Çelen, Meltem; Kobya, Mehmet

    2018-06-07

    Mining activities in addition to the geology of Mustafakemalpaşa catchment have for long been linked to its deteriorating water and sediment quality. This study assessed contamination levels of heavy metals and other major elements (Pb, As, B, Cd, Zn, Cr, Mo, Co, Ni, Cu, and Ag) in surface sediments of the area, and identified possible pollution sources. Sediment quality indicators, such as contamination factor (CF), enrichment factor (EF), geo-accumulation index (I geo ) and sediment quality guidelines were used, in addition to multivariate statistical technics; Pearson Correlation Matrix (PCM), Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The highest contamination (annual average > 110 mg kg -1 ) was revealed by B, Cr, Ni, Zn and As. Moreover, As, Cd and Ni levels exceeded their respective probable effect concentrations (PEC), posing a potential negative impact to biota. The highest I geo values were recorded for Cr, B, Ni, As and Zn, and occurred near urban settlements and mining sites, particularly of coal and chromium. The present study also suggests use of site rank index (SRI) as an alternative to pollution load index (PLI), since the former is derived from the data of interest and eliminates arbitrary classifications. The sources of heavy metals in the sediments were attributed to fly ashes of coal-powered plants, urban waste leachate and weathering of sulfide ore minerals for Pb, Zn and Cu; urban-industrial wastes and mining wastes for Ni. Although Cr, As, Cd and B were ascribed to natural occurrence, their presences in river sediment is accelerated by mining. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Fortes, A. Dominic; Browning, Frank; Wood, Ian G.

    2012-05-01

    Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4-H2O system. Lower hydrates in the MgSO4-H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20-30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an `intermediate' phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/ c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.

  19. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    DTIC Science & Technology

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  20. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization.

    PubMed

    da Rosa Couto, Rafael; Faversani, Jéssica; Ceretta, Carlos Alberto; Ferreira, Paulo Ademar Avelar; Marchezan, Carina; Basso Facco, Daniela; Garlet, Luana Paula; Silva, Jussiane Souza; Comin, Jucinei José; Bizzi, Cezar Augusto; Flores, Erico Marlon Moraes; Brunetto, Gustavo

    2018-05-30

    Heavy metals and bromine (Br) derived from organic and industrialized fertilizers can be absorbed, transported and accumulated into parts of plants ingested by humans. This study aimed to evaluate in an experiment conducted under no-tillage for 10 years, totaling 14 applications of pig slurry manure (PS), pig deep-litter (PL), dairy slurry (DS) and mineral fertilizer (MF), the heavy metal and Br contents in soil and in whether the grains produced by corn (Zea mays L.) and wheat (Triticum aestivum L.) under these conditions could result in risk to human health. The total contents of As, Cd, Pb, Cr, Ni, Cu, Zn and Br were analyzed in samples of fertilizers, waste, soil, shoots and grains of corn and wheat. Afterwards, enrichment factor (EF), accumulation factor (AF), health risk index (HRI), target hazard quotient (THQ) and target cancer risk (TCR) were determined. Mineral fertilizer exhibited the highest As and Cr content, while the highest levels of Cu and Zn were found in animal waste. The contents of As, Cd, Cr, Cu, Ni, Pb and Zn in soil were below the limits established by environmental regulatory agencies. However, a significant enrichment factor was found for Cu in soil with a history of PL application. Furthermore, high Zn contents were found in shoots and grains of corn and wheat, especially when the plants were grown in soil with organic waste application. Applications of organic waste and mineral fertilizer provided high HRI and THQ for Br and Zn, posing risks to human health. The intake of corn and wheat fertilized with pig slurry manure, swine deep bed, liquid cattle manure and industrialized mineral fertilizer did not present TCR. Copyright © 2018. Published by Elsevier Inc.

  1. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  2. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    PubMed Central

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  3. Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca.

    PubMed

    Cáceres Choque, Luis Fernando; Ramos Ramos, Oswaldo E; Valdez Castro, Sulema N; Choque Aspiazu, Rigoberto R; Choque Mamani, Rocío G; Fernández Alcazar, Samuel G; Sracek, Ondra; Bhattacharya, Prosun

    2013-12-01

    Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8-156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.

  4. Determination of bioavailable macro- and microelements from agricultural soil using different extractants

    NASA Astrophysics Data System (ADS)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar

    2015-04-01

    Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation and that neither of these macroelements is in correlation with the concentration of microelements isolated with the same extractant. The concentrations of Cu and S extracted from soil by distilled water during 16 h are in correlation. These elements could have entered only through the soil surface layer while grapevines were primarily treated by fungicide copper(II)-sulphate. In addition, the concentration of S is correlated with the concentrations of Mn, P and Na. It can be assumed that the correlation between these elements points to their origin from the pesticides used in agriculture production.

  5. [Characteristics of heavy metal elements and their relationship with magnetic properties of river sediment from urban area in Lanzhou].

    PubMed

    Wang, Bo; Zhao, Shuang; Xia, Dun-sheng; Yu, Ye; Tian, Shi-li; Jia, Jia; Jiang, Xiao-rong

    2011-05-01

    The contents of As, Co, Cr, Cu, Ni, Pb, V and Zn in the surface sediments from 8 rivers in urban area in Lanzhou were monitored by ecological risk which was assessed by the potential ecological Håkanson index, and the index of geoaccumulation (Igeo), sediment enrichment factor (R), and environmental magnetism. The results showed that: (1) the potential ecological risk of heavy metals of As, Co, Ni, V in surface sediments from 8 rivers were low, which belonged to low ecological risk. But the risk of heave metals Cr, Pb, Zn in surface sediments from Yuer river was high, which belonged to middle ecological risk, and in downstream of Yuer river, the element of Cu belonged to high ecological risk. (2) The rivers in Lanzhou could be divided into four groups according to the heavy mental pollution degree: first type, such as Paihong river, Shier river, Yuer river and Shuimo river, called downstream concentrate type; second type, such as Qili river, called upstream concentrate type; third type, such as Luoguo river and Dasha river, called less affected type; fourth type, Lanni river, which polluted heavily in up and downstream; (3) The correlation analysis between magnetic parameters and element contents show that the parameters which mainly reflect the concentration of the magnetic minerals (X, SIRM, Ms) have close association with Cr, Ni, Pb, Zn, Cu, So we can infer that the magnetic minerals in deposits samples mainly came from electroplating effluent, motor vehicle emission, and domestic sewage. SIRM/X shows a strong correlation with Cr, Ni, Pb, Zn, indicating the distribution of anthropogenic particulates. (4) The magnetic minerals(X, SIRM, Ms) have a strong correlation with the geoaccumulation (Igeo) than potential ecological risk index and enrichment factor (R). These results suggest a possible approach for source identification of magnetic material in pollution studies and the validity of using magnetic measurements to mapping the polluted area.

  6. An analysis of human exposure to trace elements from deliberate soil ingestion and associated health risks.

    PubMed

    Ngole-Jeme, Veronica M; Ekosse, Georges-Ive E; Songca, Sandile P

    2018-01-01

    Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.

  7. Common barbel (Barbus barbus) as a bioindicator of surface river sediment pollution with Cu and Zn in three rivers of the Danube River Basin in Serbia.

    PubMed

    Morina, Arian; Morina, Filis; Djikanović, Vesna; Spasić, Sladjana; Krpo-Ćetković, Jasmina; Kostić, Bojan; Lenhardt, Mirjana

    2016-04-01

    River sediments are a major source of metal contamination in aquatic food webs. Due to the ability of metals to move up the food chain, fishes, occupying higher trophic levels, are considered to be good environmental indicators of metal pollution. The aim of this study was to analyze the metal content in tissues of the common barbel (Barbus barbus), a rheophilous cyprinid fish widely distributed in the Danube Basin, in order to find out if it can be used as a bioindicator of the metal content in the river sediment. We analyzed bioavailable concentrations of 15 elements (Al, As, B, Ba, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sr, and Zn) in sediments of the Danube (D), the Zapadna Morava (ZM), and the Južna Morava (JM) using the inductively coupled plasma spectroscopy (ICP-OES). The barbel specimens were collected in the proximity of sediment sampling sites for the analysis of metals in four tissues, gills, muscle, intestine, and liver. The sediment analysis indicated that the ZM is the most polluted with Cu, Ni, and Zn compared to other two rivers. The JM had the lowest concentrations of almost all observed elements, while the Danube sediments were mainly characterized by higher concentrations of Pb. The fish from the ZM had the highest concentration of Cu and Ni in the liver and intestine, and of Zn in the muscle tissue, which was in accordance with the concentrations of these metals in the sediment. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) was used for further analyses of metal interactions with fish tissues. The results suggest that the barbel can potentially be used as a bioindicator of sediment quality with respect to metal contamination.

  8. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii

    USGS Publications Warehouse

    De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.

    2004-01-01

    Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.

  9. The case for metamorphic base metal mineralization: pyrite chemical, Cu and S isotope data from the Cu-Zn deposit at Kupferberg in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.

    2017-12-01

    The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early diagenetic pyrite contained in Early Paleozoic shale units.

  10. Adsorption of heavy metals from water using banana and orange peels.

    PubMed

    Annadural, G; Juang, R S; Lee, D J

    2003-01-01

    Liquid-phase adsorption removal of Cu2+, Co2+, Ni2+, Zn2+, and Pb2+ in the concentration range of 5-25 mg/L using low-cost banana and orange peel wastes was examined at 30 degrees C. Under comparable conditions, the amount of adsorption decreased in the order Pb2+ > Ni2+ > Zn2+ > Cu2+ > Co2+ for both adsorbents. The adsorption isotherms could be better described by the Freundlich equation. The amount of adsorption increased with increasing pH and reached a plateau at pH > 7, which was confirmed by the variations of zeta potentials. The application potential of such cellulose-based wastes for metal removal (up to 7.97 mg Pb2+ per gram of banana peel at pH 5.5) at trace levels appeared to be promising.

  11. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate.

    PubMed

    Radulović, Milanka D; Cvetković, Olga G; Nikolić, Snezana D; Dordević, Dragana S; Jakovljević, Dragica M; Vrvić, Miroslav M

    2008-09-01

    It was demonstrated that during the growth of Aureobasidium pullulans strain CH-1 on the acid hydrolysate of peat from the Vlasina Lake, the content of metals (Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr) decreased due to biosorption. The reduction in the metal content was found to be in the range (%): 38.2-62.2, 67.7-97.3, 0.02-62.05, 0.05-23.97, 0.16-4.24, 3.45-51.72, 1.18-35.82, 0.86-44.44, for Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr, respectively. During this process, the metals were accumulated in the biomass, while pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans strain CH-1, was found not to bind the above-mentioned metals.

  12. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine.

    PubMed

    Marmolejo-Rodríguez, Ana Judith; Prego, Ricardo; Meyer-Willerer, Alejandro; Shumilin, Evgueni; Cobelo-García, Antonio

    2007-01-01

    Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 microm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods. Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05-0.34, 6-95, 0.7-31, 9-26, 2-18, and 53-179 mgkg(-1), respectively; Al and Fe ranges of 24-127, and 26-69 mgg(-1) correspondingly. Cadmium was found to be significantly labile in the sediments (20-100%), followed by Co (0-35%), Ni (3-16%) and Zn (0-25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (<4%). According with the total metal concentrations, background levels and normalised enrichment factors (NEF) of the metals studied, the impact of the Peña Colorada iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.

  13. Cation hydrolysis and the regulation of trace metal composition in seawater

    NASA Astrophysics Data System (ADS)

    Kumar, M. Dileep

    1987-08-01

    Thermodynamic calculations have been performed for cation hydrolysis, including temperatures from 2°C to the high values of significance near Mid-Oceanic Ridge Systems (MORS). Eighteen elements with wide range of residence times ( t) in seawater (Mn, Th, Al, Bi, Ce, Co, Cr(III), Fe, Nd, Pb, Sc, Sm, Ag, Cd, Cu, Hg, Ni and Zn) have been considered. A model for the regulation of trace metal composition in seawater by cation hydrolytic processes, including those at MORS, is presented. Results show an increase in the abundance of neutral metal hydroxyl species with increase in temperature. During hydrothermal mixing, as the temperature increases, transformation from lower positive hydroxyl complexes to higher or neutral complexes would occur for Cd, Ce, Co, Cr(III), Cu, Mn, Nd, Ni, Pb, Sm and Zn. pH values for adsorption of the metal ion onto solid surfaces have direct relation with pH values of hydrolysis. Co, Mn and Pb could be oxidized to higher states (at Mn-oxide surfaces) that would occur even at MORS. Ce can also be oxidized at 25°C. Solubility calculations show that Al, Bi, Cr(III), Sc, Fe and Th are saturated while Ce, Nd and Sm are not with respect to their oxyhydroxide solids at their concentrations in seawater at 25°C. Cu, Hg, Ni and Zn reach saturation equilibrium at 250°C, whereas Co, Mn and Pb exhibit unsaturation. The results suggest an increase in scavenging capacity of a cation with rise in temperature.

  14. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials.

    PubMed

    Elshahawy, Waleed M; Watanabe, Ikuya; Kramer, Phillip

    2009-12-01

    This study investigated the cytotoxicity of elemental ions contained in four fixed prosthodontic materials (gold, nickel-chromium, stainless-steel alloys and CAD-CAM ceramics). According to the determination of elements released from prosthodontic materials by using inductively coupled plasma mass spectroscopy, similar amounts of elements Pd, Ag, Zn, Cu, Ni, Cr, Mo, Be, Fe, Al, and K were prepared as salt solutions. Wells with a tenfold higher concentration of the tested elements were used as positive controls, while a well without any tested element was used as a negative control. These salt solutions were tested for cytotoxicity by culturing mouse L-929 fibroblasts in the salt solutions for a 7-day period of incubation. Then, the percentage of viable cells for each element was measured using trypan blue exclusion assay. The data (n=5) were statistically analyzed by ANOVA/Tukey test (p<0.05). The results showed a statistically significant difference for the cytotoxic effect of the tested elements salt solutions. For the released element concentrations the lowest percentage of viable cells (mean+/-SD) was evident with Zn, Cu or Ni indicating that they are the highly toxic elements. Be and Ag were found to be intermediate in cytotoxic effect. Fe, Cr, Mo, Al, Pd or K were found to be the least cytotoxic elements. Zn and Cu released from gold alloys, and Ni released from nickel-chromium alloys, which are commonly used as fixed prosthodontic restorations, show evidence of a high cytotoxic effect on fibroblast cell cultures.

  15. Quaternary M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (M = Ni, Zn, Co, Mn) ferrite oxides: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocarlan, Radu George; Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen; Pui, Aurel, E-mail: aurel@uaic.ro

    2016-09-15

    Highlights: • Superparamagnetic quaternary nanoferrite (M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4,} where M = Mn, Zn, Co, Ni) were obtained. • C, O, H and metals were observed by XPS analysis. • Phases purity were confirmed by XRD diffraction and crystallite size (3–10 nm) were determind. - Abstract: We report the synthesis of M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (where M = Mn, Zn, Co, Ni) nanoparticles using the coprecipitation method in the presence of carboxymethyl cellulose (CMC) as the in-situ surfactant. The crystalline structure and surface morphology were examined by means of X-ray diffraction (XRD) and scanning electron microscopymore » (SEM) and it was established that the average diameter of the magnetic nanoparticles (MNPs) is in the range of 3–10 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) show that the MNPs are activated by the hydrophilic groups of the surfactant, which coat them and enhance their stability. The vibrating sample magnetometry measurements show the superparamagnetic behavior of the nanoparticles. Due to their small crystallite size, which implies large surface area, and their functionalization with organic groups, the obtained nanoparticles could have medical and catalytic applications.« less

  16. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India.

    PubMed

    Maiti, Subodh Kumar; Jaiswal, Shishir

    2008-01-01

    A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November-December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.

  17. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    PubMed

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  18. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    PubMed

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  19. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  20. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  1. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements.

    PubMed

    Magiera, Tadeusz; Zawadzki, Jarosław; Szuszkiewicz, Marcin; Fabijańczyk, Piotr; Steinnes, Eiliv; Fabian, Karl; Miszczak, Ewa

    2018-03-01

    An important problem in soil magnetometry is unraveling the soil contamination signal in areas with multiple emitters. Here, geophysical and geochemical measurements were performed at four sites on a north - south transect along the Pasvik River in the Barents Region (northern Norway). These sites are influenced by depositions from the Bjørnevatn iron mine and a Ni-Cu smelter in Nikel, Russia. To relate the degree and type of pollution from these sources to the corresponding magnetic signal, the topsoil concentrations of 12 Potentially Toxic Elements (PTEs) (As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Se, Ti, Zn), were determined, magnetic hysteresis parameters and thermomagnetic properties were measured. In situ magnetic low-field susceptibility decreases from north to south with increasing distance from the iron mine. Relatively large magnetic multidomain grains of magnetite and/or titanomagnetite are responsible for the strong magnetic signal from the topsoil close to Bjørnevatn. These particles are related to increased enrichment factors of As, Mo and Cu, yielding high positive correlation coefficients with susceptibility values. At a site furthest away from the iron mine and located 7 km from the Ni-Cu smelter magnetic susceptibility values are much lower but significant positive correlations on the level of p < .1 with 8 PTEs (Ni, Cu, Co, Se, As, Zn, Cd, Cr) have been observed. The magnetic signal in this area is due to fine-grained primary sulphides and secondary fine-grained magnetite and/or maghemite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of divalent cations and La3+ on contractility and ecto-ATPase activity in the guinea-pig urinary bladder.

    PubMed Central

    Ziganshin, A U; Ziganshina, L E; Hoyle, C H; Burnstock, G

    1995-01-01

    1. Several cations (Ba2+, Cd2+, Co2+, Cu2+, Mn2+, Ni2+, Zn2+ and La3+, all as chloride salts, 1-1000 microM) were tested in the guinea-pig urinary bladder for their ability to: (i) modify contractile responses to electrical field stimulation (EFS), ATP, alpha,beta-methylene ATP (alpha,beta-meATP), carbachol (CCh), and KCl; (ii) affect ecto-ATPase activity. 2. Ba2+ (10-1000 microM) concentration-dependently potentiated contractile responses evoked by EFS (4-16 Hz), ATP (100 microM), alpha,beta-meATP (1 microM), CCh (0.5 microM), and KCl (30 mM). Ni2+ at concentrations of 1-100 microM also potentiated contractility of the urinary bladder, but at concentrations tested its effect was not concentration-dependent. Cu2+ at a concentration of 10 microM and Cd2+ at a concentration of 1 microM potentiated responses to all stimuli, except KCl. Ni2+ at a concentration of 1000 microM and Cd2+ at a concentration of 100 microM inhibited contractions evoked by all stimuli, and at a concentration of 1000 microM Cd2+ abolished any contractions. Responses to ATP and alpha,beta-meATP were selectively inhibited by Cu2+, Zn2+ or La3+, each at a concentration of 1 mM. 3. Cu2+, Ni2+, Zn2+ and La3+ (100-1000 microM) concentration-dependently inhibited ecto-ATPase activity in the urinary bladder smooth muscle preparations, while Ba2+ and Mn2+ were without effect, and Cd2+ and Co2+ caused significant inhibition only at a concentration of 1000 microM. 4. There was no correlation between the extent of ecto-ATPase inhibition and the effect on contractile activity of any of the cations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7735690

  3. Porous framework of T{sub 2}[Fe(CN){sub 6}].xH{sub 2}O with T=Co, Ni, Cu, Zn, and H{sub 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, M.; Reguera, L.; Rodriguez-Hernandez, J.

    2008-11-15

    The materials under study were prepared from aqueous solutions of ferrocyanic acid and salts of the involved transition metals and their crystal structure solved and refined from X-ray powder diffraction data. Complementary information from thermogravimetric, infrared and Moessbauer data was also used for the structural study. Three different crystal structures were found: hexagonal (P-3) for Zn with the zinc atom coordinated to three N ends of CN groups plus a water molecule, cubic (Pm-3m) for Ni and Cu, and monoclinic (P2{sub 1}/m) for Co. For Ni and Cu the obtained solids have an open channel framework related to 50% ofmore » vacancies for the building unit, [Fe(CN){sub 6}]. In the as-synthesized material the framework free volume is occupied by coordinated and hydrogen-bonded water molecules. These of hexacyanoferrates (II) have received certain attention as prototype of materials for the hydrogen storage. In the anhydrous phase of Ni and Cu, 50% of the metal (T) coordination sites, located at the cavities surface, will be available to interact with the hydrogen molecule. However, when the crystal waters are removed the porous frameworks collapse as it is suggested by H{sub 2} and CO{sub 2} adsorption data. For Co, a structure of stacked layers was found where the cobalt atoms have both tetrahedral and octahedral coordination. The layers remain together through a network of hydrogen-bonding interactions between coordinated and weakly bonded water molecules. No H{sub 2} adsorption was observed in the anhydrous phase of Co. For Zn, the porous framework remains stable on the water removal but with a system of narrow channels and a small available volume, also inaccessible to H{sub 2}. - Graphical abstract: Structure of stacked layers for CO{sub 2}[Fe(CN){sub 6}].xH{sub 2}O.« less

  4. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex.

    PubMed

    Zhulidov, Alexander V; Robarts, Richard D; Pavlov, Dmitry F; Kämäri, J; Gurtovaya, Tatiana Yu; Meriläinen, J J; Pospelov, Igor N

    2011-10-01

    The Norilsk industrial ore smelting complex (Taymyr Peninsula, Russian Federation) has significantly impacted many components of local terrestrial and aquatic environments. Whether it has had a major impact on the wider Russian Arctic remains controversial as studies are scarce. From 1986 to 2004, data on heavy metal (Cu, Ni, Zn, Hg, Cd and Hg) concentrations in fish (burbot), moss, lichens, periphyton, hydric soils and snow in and around Norilsk and the most northern parts of the Taymyr Peninsula were analysed. Very high concentrations of Cu (203 μg L⁻¹ ± 51 μg L⁻¹) and Ni (113 μg L⁻¹ ± 15 μg L⁻¹) were found in the water of the Schuchya River close to Norilsk. Heavy metal concentrations in burbot liver were highest in Lake Pyasino near Norilsk compared to other study regions that were >100 km distant. From 1989-1996, Cu (121 μg L⁻¹ ± 39 μg L⁻¹ SD), Zn (150 μg L⁻¹) ± 70 μg L⁻¹) and Ni (149 μg L⁻¹ ± 72 μg L⁻¹) snow concentrations were greatest in Norilsk, but were low elsewhere. By 2004, these concentrations had dropped significantly, especially for Cu-74 μg L⁻¹ (±18.7 μg L⁻¹ SD), Zn-81.7 μg L⁻¹ (± 31.3 μg L⁻¹ SD) and Ni-80 μg L⁻¹(±18.0 μg L⁻¹ SD). Norilsk and its surroundings are subject to heavy pollution from the Norilsk metallurgical industry but these are absent from the greater Arctic region due to the prevailing winds and the Byrranga Mountains. Pollution abatement measures have been made so further investigations are necessary in order to assess their efficiency.

  5. Trace metal concentrations in snow from the Yukon River Basin, Alaska and Canada

    USGS Publications Warehouse

    Wang, B.; Gough, L.; Hinkley, T.; Garbarino, J.; Lamothe, P.

    2005-01-01

    We report here on metal concentrations in snow collected from the Yukon River basin. Atmospheric transport of metals and subsequent deposition is a known mechanism for introducing metals into the northern environment. Potential sources of airborne elements are locally generated terrestrial sources, locally derived anthropogenic sources, and long range atmospheric transport. Sites were distributed along the Yukon River corridor and within the southeastern, central, and western basin areas. Snow samples were taken in the spring of 2001 and 2002 when the snow pack was at its maximum. Total-depth composite samples were taken from pits using clean techniques. Mercury was analyzed using cold vapor atomic fluorescence spectrometry. All other elements were analyzed by inductively coupled plasma-mass spectrometry. In samples from remote sites, the concentration for selected metals ranged from: 0.015 - 0.34 ug/L for V, 0.01 - 0.22 ug/L for Ni, < 0.05 - 0.52 ug/L for Cu, 0.14 - 2.8 ug/L for Zn, 0.002 - 0.046 ug/L for Cd, 0.03 - 0.13 ug/L for Pb, 0.00041 - 0.0023 ug/L for filtered-Hg. Because the entire snow pack was sampled and there was no evidence of mid-season thaw, these concentrations represent the seasonal deposition. There was no significant difference in the seasonal deposition of V, Ni, Cu, Zn, Cd, and Pb at these sites between 2001 and 2002, and no north-south or east-west trend in concentrations. Samples taken from within communities, however, had significantly higher concentrations of V, Ni, Cu, Zn, and Cd in 2001, and Ni, Cu, and Pb in 2002 relative to the remote sites. Our data indicate that the atmospheric deposition of metals in the Yukon River basin is relatively uniform both spatially and temporally. However, communities have a measurable but variable effect on metal concentrations. Copyright ASCE 2005.

  6. Nuclear Data Sheets for A=62

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols A. L.; Tuli J.; Nichols,A.L.

    Experimental nuclear spectroscopic data for known nuclides of mass number 62 (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge) have been evaluated and presented together with adopted properties of levels and {gamma} rays. New high-spin data are available for {sup 62}Ga, and {sup 62}Zn. Results of in-beam {gamma}-ray studies for {sup 62}Cu producing high-spin states are in conflict in terms of gamma-ray placements and branching ratios. In the opinion of the evaluators, a detailed study of high-spin structures in {sup 62}Cu is needed to obtain a consistent and confident level scheme. Precise studies of superallowed {beta} decaymore » of {sup 62}Ga to {sup 62}Zn by several groups have extended the decay scheme. No significant new data, since the 2000 NDS for A = 62 (2000Hu18), have been reported for {sup 62}Co, {sup 62}Ni and {sup 62}Cu. No data are yet available for excited states in {sup 62}Ti and {sup 62}V, and those for {sup 62}Cr and {sup 62}Ge are scarce. The level lifetime data are available in very few cases. The radioactive decay schemes of {sup 62}Ti and {sup 62}Ge are unknown, and those for {sup 62}V, {sup 62}Cr and 92-ms {sup 62}Mn are scantily known. The data presented here supersede those in the earlier NDS publications.« less

  7. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Li, Huiming; Wang, Jinhua; Wang, Qin'geng; Qian, Xin; Qian, Yu; Yang, Meng; Li, Fengying; Lu, Hao; Wang, Cheng

    2015-02-01

    A four-step sequential extraction procedure was used to study the chemical fractionation of As and heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in fine particulate matter (PM2.5) collected from Nanjing, China. The mass concentrations of most PM2.5 samples exceeded the 24 h standard (75 μg/m3) recommended by the new national ambient air quality standard of China. The most abundant elements were Fe, Zn and Pb, while As and Cd were present at the lowest concentrations. As, Cd, Cu, Mn, Pb and Zn were mostly present in the two mobile fractions, including the soluble and exchangeable fraction (F1), and carbonates, oxides and reducible fraction (F2). Fe had the highest proportion present in the residual fraction (F4). Relatively high proportions of the metals Ni and Cr were present in the oxidizable and sulfidic fraction (F3). High proportions of Zn, As and Cu and lower proportions of Cd, Cr and Fe were present in the potentially mobile phases. The enrichment factor, contamination factor and risk assessment code were calculated to analyze the main sources and assess the environmental risks of the metals in PM2.5. The carcinogenic risks of As, Cd, Ni and Pb were all lower than the accepted criterion of 10-6, whereas the carcinogenic risks of Cr for children and As and Cr for adults were higher than 10-6. The non-carcinogenic health risk of As and heavy metals because of PM2.5 exposure for children and adults were lower than but close to the safe level of 1.

  8. Distribution and accumulation of metals in tadpoles inhabiting the metalliferous streams of eastern Chalkidiki, northeast Greece.

    PubMed

    Kelepertzis, Efstratios; Argyraki, Ariadne; Valakos, Efstratios; Daftsis, Emmanouil

    2012-10-01

    The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182 mg/kg), Pb (103-4,490 mg/kg), Zn (494-11,460 mg/kg), Mn (1,620-13,310 mg/kg), Cd (1.2-82 mg/kg), Ni (57-163 mg/kg), and Cr (38-272 mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.

  9. Chthamalus montagui as biomonitor of metal contamination in the northwest coast of Portugal.

    PubMed

    Reis, Pedro A; Salgado, Maria Antónia; Vasconcelos, Vitor

    2012-09-01

    The concentrations of seven metals (Cd, Cr, Cu, Fe, Mn, Ni and Zn) were determined in coastal seawaters and soft and hard tissues of the barnacle Chthamalus montagui from the northwest coast of Portugal to assess the potential use of C. montagui as biomonitor of metal contamination. The results of this study showed that C. montagui soft tissues can be used for monitoring metal bioavailabilities in these coastal seawaters: (1) there were significant correlations (p < 0.05) between the metal concentrations in soft tissues and their concentrations in seawaters and (2) barnacle soft tissues were sensitive to spatial variation of metal bioavailabilities, accumulating different amounts of metals in different locations. The range of concentrations in tissues were: 0.59-1.7 mg Cd kg(-1), 0.5-3.2 mg Cr kg(-1), 0.72-3.0 mg Ni kg(-1), 1.2-6.7 mg Cu kg(-1), 9-26 mg Mn kg(-1), 214-785 mg Fe kg(-1) and 178-956 mg Zn kg(-1); (3) mean logarithmic bioaccumulation factors (log BAF) of Fe, Cr and Cd were higher, 5.49, 4.93 and 4.46, respectively, than mean log BAFs of Mn, Zn, Cu and Ni, 4.03, 3.97, 3.74 and 3.61, respectively. In contrary, C. montagui shell plates were not a good matrix to monitor metal bioavailability in these coastal seawaters, with no significant correlations (p < 0.05) between metal concentrations in the shell and in seawater. Regarding the high Zn concentrations obtained in the coastal seawaters and C. montagui soft tissues, all seawaters from northwest coast of Portugal should be classified as "moderately/remarkably polluted".

  10. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai.

    PubMed

    Bai, Yang; Wang, Min; Peng, Chi; Alatalo, Juha M

    2016-03-01

    We investigated the horizontal and vertical distribution of heavy metals (Hg, Pb, Zn, Cu, Cd, As, Ni, and Cr) in soils in the water source protection zone for Shanghai to study the origins of these metals, their connections with urbanization, and their potential risk posed on the ecosystem. Determination of metal concentrations in 50 topsoil samples and nine soil profiles indicated that Hg, Pb, Zn, and Cu were present in significantly higher concentrations in topsoil than in deep soil layers. The spatial distributions of Hg, Pb, Zn, and Cu and contamination hotspots for these metals in the study area were similar to those near heavy industries and urban built-up areas. Emissions from automobiles resulted in increased soil concentrations of Cu, Pb, and Zn along roadsides, while high concentrations of Hg in the soil resulted from recent atmospheric deposition. Calculation of the potential ecological risk indicated that the integrative risk of these heavy metals in most areas was low, but a few sites surrounding high density of factories showed moderate risks.

  12. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah--feeding tributary of the Rawal Lake Reservoir, Pakistan.

    PubMed

    Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl

    2014-02-01

    Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.

  13. Polymorphism of the bivalent metal vanadates MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Mocała, Krzysztof; Ziółkowski, Jacek

    1987-08-01

    Based on the literature data, our former findings and additional DTA and high-temperature X-ray studies performed for CdV 2O 6, MgV 2O 6, and MnV 2O 6, a consistent scheme of the phase transformations of the MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) metavanadates is constructed at normal pressure between room temperature and melting points. Three types of structures exist for the considered compounds: brannerite type (B), pseudobrannerite type (P), and NiV 2O 6 type (N). The following phase transformations have been observed: Me = Mg, B → P at 535°C; Me = Mn, B → P at 540°C; Me = Co, N → B at 660°C; Me = Cu, B (with triclinic distortion) → B at 625°C (secondary order); and Me = Cd, B → P at 170°. CaV 2O 6P, NiV 2O 6N, and ZnV 2O 6B exist in unique form in the entire temperature range. P-form seems to be favored by Me of larger ionic radii. N-form seems to appear at a peculiar d-shell structure and small Me size. Preliminary explanation of the dependence of the structure type on Me size is offered. New X-ray data are given for CdV 2O 6B, CdV 2O 6P, MgV 2O 6B, MgV 2O 6P, and MnV 2O 6P.

  14. Characteristics and impacts of trace elements in atmospheric deposition at a high-elevation site, southern China.

    PubMed

    Nie, Xiaoling; Wang, Yan; Li, Yaxin; Sun, Lei; Li, Tao; Yang, Minmin; Yang, Xueqiao; Wang, Wenxing

    2017-10-01

    To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg -1 , respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.

  15. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment.

    PubMed

    Sounthararajah, Danious Pratheep; Loganathan, Paripurnanda; Kandasamy, Jayakumar; Vigneswaran, Saravanamuthu

    2017-02-01

    Permeable pavement systems (PPS) are a widely-used treatment measure in sustainable stormwater management and groundwater recharge. However, PPS are not very efficient in removing heavy metals from stormwater. A pilot scale study using zeolite or basalt as bed material in PPS removed 41-72%, 67-74%, 38-43%, 61-72%, 63-73% of Cd, Cu, Ni, Pb, and Zn, respectively, from synthetic stormwater (pH 6.5; Cd, Cu, Ni, Pb, and Zn concentrations of 0.04, 0.6, 0.06, 1.0, and 2.0 mg L -1 , respectively) over a period of 80 h. The total volume of stormwater that passed through the PPS was equivalent to runoff in 10 years of rainfall in Sydney, Australia. The concentrations of metals in the PPS effluent failed fresh and marine water quality trigger values recommended in the Australian and New Zealand guidelines. An addition of a post-treatment of a horizontal filter column containing a titanate nano-fibrous (TNF) material with a weight < 1% of zeolite weight and mixed in with granular activated carbon (GAC) at a GAC:TNF weight ratio of 25:1 removed 77% of Ni and 99-100% of all the other metals. The effluent easily met the required standards of marine waters and just met those concerning fresh waters. Batch adsorption data from solutions of metals mixtures fitted the Langmuir model with adsorption capacities in the following order, TNF ≫ zeolite > basalt; Pb > Cu > Cd, Ni, Zn. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Extending the basic function of lattice oxygen in lepidocrocite titanate - The conversion of intercalated fatty acid to liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Maluangnont, Tosapol; Arsa, Pornanan; Sooknoi, Tawan

    2017-12-01

    We report herein the basicity of the external and internal lattice oxygen (OL) in lepidocrocite titanates with respect to CO2 and palmitic acid, respectively. Several compositions have been tested with different types of the metal M aliovalently (co)substituted for Ti, K0.8[MyTi2-y]O4 (M = Li, Mg, Fe, Co, Ni, Cu, Zn, Cu/Ni and Cu/Zn). The low CO2 desorption peak temperature (70-100 °C) suggests that the external OL sites are weakly basic similar to TiO2. However, the internal OL sites are sufficiently basic to deprotonate palmitic acid, forming the intercalated potassium palmitate at the interlayer spaces. The latter serves as a two-dimensional (2D) molecular reactor for the production of liquid hydrocarbon fuels via deoxygenation under atmospheric N2. A relationship has been observed between the yield of the liquid products vs the partial charge of the lattice oxygen (δO). Since the deoxygenation pathway is highly dependent on the metal substitution, the redox-active sites might also play some roles. The co-substituted K0.8[Cu0.2Ni0.2]Ti1.6O4 produced 68.0% yield of the liquid products, with 51% saturated and 15% unsaturated C15 hydrocarbons at 350 °C.

  17. Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: Concentration and metal association.

    PubMed

    Choi, Mansik; Park, Jongkyu; Cho, Dongjin; Jang, Dongjun; Kim, Miseon; Choi, Jongwoo

    2015-09-15

    The concentration and source of trace metals in the artificial lake An-Dong, which has widespread abandoned mines and a Zn smelter upstream of the drainage basin, were investigated. Soils (18ea), stream waters (15ea) and sediments (15ea) in the main channel and five tributaries downstream of the Zn smelter towards the lake (~ 50 km downstream) were collected. And two core sediments were also taken from the middle of the lake. All samples were analyzed for trace metals in bulk and in a 1N HCl-leached fraction. Although the soil and stream sediments consisted mostly of sand-sized grains, concentrations of metals (Cu, Zn, Cd and Pb) were very high in all samples, including soils, stream waters and sediments at sites near the Zn smelter. However the metal concentrations decreased rapidly downstream, suggesting that the area of impact of the smelter lies within 5 km. Highly enriched metal concentrations were also found in dated core sediments from the lake; while the highest concentrations of Co, Ni, As, Cu, Zn, Cd and Pb were detected in the bottom of the sediment core (dated 1980) they decreased towards 2000, and only Cu, Zn and Cd concentrations increased again in present-day samples. Since the temporal variation in metal concentrations appeared consistent with historical variation in ore mining and Zn smelter production rates, a model combining the production rates of each was developed, which estimated 3%, 12% and 7% contributions from Zn smelter compared to ore mining production rate to levels of Cu, Cd and Zn, respectively, suggesting the different pathways by different sources. In addition, analysis of Cd/Zn and Cu/Zn ratios showed that contamination from ore mining decreased from 1980 to 2000, and smelting processes were most likely responsible for metal enrichment (Cu, Cd and Zn) from 2000 to the present. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Epidemiological Study on Metal Pollution of Ningbo in China

    PubMed Central

    Li, Zhou; Su, Hong; Wang, Li; Hu, Danbiao; Zhang, Lijun; Fang, Jian; Jin, Micong; Song, Xin; Shi, Hongbo; Mao, Guochuan

    2018-01-01

    Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), chromium (Cr), nickel (Ni), zinc (Zn), and mercury (Hg) in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS). Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1) Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2) The pollution index (PI) of Cd and Zn in soil (1.069, 1.584, respectively) suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3) A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4) Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5) Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China. PMID:29495631

  19. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%). Copyright 2009 Elsevier B.V. All rights reserved.

  20. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

Top