Sample records for cu zn se

  1. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    NASA Astrophysics Data System (ADS)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  2. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  3. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  4. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  5. Changes in urinary Cu, Zn, and Se levels in cancer patients after treatment with Sha Shen Mai Men Dong Tang

    PubMed Central

    Lai, Tung-Yuan; Kuo, Hsien-Wen

    2015-01-01

    Sha Shen Mai Men Dong Tang (SMD-2; 沙參麥冬湯 shā shēn mài dōng tāng) is a Chinese medicinal herb (CMH; 中草藥 zhōng cǎo yào) used to treat symptoms associated with cancer therapy. The objective of this study was to assess the effect of SMD-2 on the levels of urinary copper (Cu), zinc (Zn), and selenium (Se) in lung cancer patients and head and neck cancer patients receiving chemoradiotherapy. Forty-two head and neck cancer patients and 10 lung cancer patients participated in our clinical trial. Each patient received chemoradiotherapy for 4 weeks. In addition, each patient was treated with SMD-2 for 8 weeks, including 2 weeks prior to and after the chemoradiotherapy treatment. Comparison of urinary Cu, Zn, and Se levels and the ratios of Zn to Cu and Se to Cu at three time points in the two types of cancer were assessed using the generalized estimating equations (GEEs). After the patients received chemoradiotherapy for 4 weeks, SMD-2 treatment was found to be associated with a significant decrease in urinary Cu levels, whereas urinary Zn and Se levels increased significantly. In addition, the ratios of Zn to Cu and Se to Cu in the urine samples of these patients also increased significantly. Both the urinary Zn levels and the ratio of Zn to Cu in head and neck cancer patients were significantly higher than in lung cancer patients. Urinary Zn and Se levels and the ratios of Zn to Cu and Se to Cu, but not urinary Cu levels, increased significantly during and after treatment when assessed using the GEE model. The SMD-2 treatments significantly increased Zn and Se levels in the urine of head and neck cancer patients. Increased Zn and Se levels in urine strengthened immune system. PMID:27114935

  6. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  7. Potential of Cultivated Ganoderma lucidum Mushrooms for the Production of Supplements Enriched with Essential Elements.

    PubMed

    Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika

    2016-03-01

    Ganoderma lucidum is an important medicinal mushroom species and there is continuous interest in its bioactive properties. This study evaluated whether it may additionally serve as a nutritional supplement for the trace elements: selenium (Se), copper (Cu), and zinc (Zn). Mushrooms were cultivated on substrates enriched with 0.1 to 0.8 mM of inorganic Se alone or in combination with Zn and/or Cu. Supplementation increased accumulation of the elements in fruiting bodies regardless of the applied cultivation model. G. lucidum demonstrated the ability to accumulate significant amounts of organic Se, maximally amounting to (i) over 44 mg/kg when the substrate was supplemented only with Se, (ii) over 20 mg/kg in the Se+Cu model, (iii) over 25 mg/kg in the Se+Zn model, and (iv) 15 mg/kg in the Se+Cu+Zn model. The accumulation of Cu and Zn steadily increased with their initial substrate concentrations. Maximum concentrations found after supplementation with 0.8 mM amounted to over 55 mg/kg (Se+Zn) and 52 mg/kg (Se+Cu+Zn) of Zn, and 29 mg/kg (Se+Cu) and over 31 mg/kg (Se+Cu+Zn) of Cu. The greater the supplemented concentration and number of supplemented elements, the lower the biomass of G. lucidum fruiting bodies. Nevertheless, it still remained high when the substrate was supplemented up to 0.4 mM with each element. These results highlight that G. lucidum can easily incorporate elements from the substrate and that, when biofortified, its dried fruiting bodies may serve as a nutritional source of these essential elements. © 2016 Institute of Food Technologists®

  8. ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect

    DOE PAGES

    Liu, Wenyan; Zhang, Yu; Wang, Dan; ...

    2015-08-13

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half-maximum (FWHM) and power efficiencies (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed littlemore » due to the low emission temperature coefficients of 0.022, 0.050 and 0.068 nm/°C for red-, yellow- and green-emitting ZnCuInS/ZnSe/ZnS QDs. Lastly this indicates that ZnCuInS/ZnSe/ZnS QDs are more suitable for down-conversion LEDs compared to CdSe QDs.« less

  9. Abundant defects and defect clusters in kesterite Cu2ZnSnS4 and Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Chen, Shiyou; Wang, Lin-Wang; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai

    2013-03-01

    Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing intensive attention as the light-absorber materials in thin-film solar cells. A large variety of intrinsic defects can be formed in these quaternary semiconductors, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. We will present our first-principles calculation study on a series of intrinsic defects and defect clusters in Cu2ZnSnS4 and Cu2ZnSnSe4, and discuss: (i) strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the dominant CuZn antisites and Cu vacancies which determine the intrinsic p-type conductivity, and their dependence on the elemental ratios; (iii) the high population of charge-compensated defect clusters (like VCu + ZnCu and 2CuZn + SnZn) and their contribution to non-stoichiometry ; (iv) the deep-level defects which act as recombination centers. Based on the calculation, we will explain the experimental observation that Cu poor and Zn rich conditions give the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells with high S composition. Supported by NSF of China, JCAP: a U.S. DOE Energy Innovation Hub, Royal Society of U.K. and EPSRC, and U.S. DOE.

  10. Electronic Structure and Optical Properties of Cu2ZnGeSe4 : First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Park, J.-S.; Donohue, A. L.; Christensen, S. T.; To, B.; Beall, C.; Wei, S.-H.; Repins, I. L.

    2015-11-01

    Cu2ZnGeSe4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric function ɛ =ɛ1+i ɛ2 spectrum of polycrystalline Cu2ZnGeSe4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peak shapes and relative intensities between experimental spectra and the calculated ɛ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. The complex refractive index N =n +i k , normal-incidence reflectivity R , and absorption coefficients α are calculated from the modeled ɛ spectrum, which are also compared with those of Cu2ZnSnSe4 . The spectral features for Cu2ZnGeSe4 appear to be weaker and broader than those for Cu2ZnSnSe4 , which is possibly due to more structural imperfections presented in Cu2ZnGeSe4 than Cu2ZnSnSe4 .

  11. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  12. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  13. Impact of stacking order on the microstructural properties of Cu2ZnGeSe4 thin film absorber layer

    NASA Astrophysics Data System (ADS)

    Mary, G. Swapna; Chandra, G. Hema; Sunil, M. Anantha; Subbaiah, Y. P. Venkata; Gupta, Mukul; Rao, R. Prasada

    2018-05-01

    Six possible multiple stacks of Cu-ZnSe-Ge with selenium incorporation at a precursor stage were prepared using electron beam evaporation followed by vacuum selenization at 475 °C for 30 min to investigate the role of stacking order on the growth and properties of Cu2ZnGeSe4 films. The X-ray diffraction measurements affirm the existence of various binary and ternary phases (ZnSe, Cu2Se, GeSe2 and Cu2GeSe3) for all the precursor stacks. These phases are completely diminished after selenization at 475 °C except a minor co-existence of ZnSe (111) phase along with dominant Cu2ZnGeSe4 (112) phase for stack A: (Cu/Se/ZnSe/Se/Ge/Se) × 4. The Raman measurements for selenized multiple stack A, revealed two major A3, A1 modes at 206 cm-1 and 176 cm-1 and one minor E5 mode at 270 cm-1 corresponding to CZGSe phase. The surface morphology and the elemental distribution across the thickness found to vary significantly with the change of stacking order. The selenized multiple stacks A films shows densely packed flake and capsule shaped grains. The selenized stack A found to have a direct energy band gap of 1.60 eV, showing p-type conductivity with a Hall mobility of 22 cm2 (Vs)-1.

  14. Copper/zinc and copper/selenium ratios, and oxidative stress as biochemical markers in recurrent aphthous stomatitis.

    PubMed

    Ozturk, Perihan; Belge Kurutas, Ergul; Ataseven, Arzu

    2013-10-01

    Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Patients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se-CAT, Se-GPx, and Cu-MDA parameters, but negative correlations between Se-Cu, Se-MDA, Cu-CAT, Cu-SOD1 and Cu-GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  15. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    PubMed

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  16. Soft x-ray spectroscopy of a complex heterojunction in high-efficiency thin-film photovoltaics: Intermixing and Zn speciation at the Zn(O,S)/Cu(In,Ga)Se 2 interface

    DOE PAGES

    Mezher, Michelle; Garris, Rebekah; Mansfield, Lorelle M.; ...

    2016-11-11

    In this study, the chemical structure of the Zn(O,S)/Cu(In,Ga)Se 2 interface in high-efficiency photovoltaic devices is investigated using X-ray photoelectron and Auger electron spectroscopy, as well as soft X-ray emission spectroscopy. We find that the Ga/(Ga+In) ratio at the absorber surface does not change with the formation of the Zn(O,S)/Cu(In,Ga)Se 2 interface. Furthermore, we find evidence for Zn in multiple bonding environments, including ZnS, ZnO, Zn(OH) 2, and ZnSe. We also observe dehydrogenation of the Zn(O,S) buffer layer after Ar+ ion treatment. Similar to high-efficiency CdS/Cu(In,Ga)Se 2 devices, intermixing occurs at the interface, with diffusion of Se into the buffer,more » and the formation of S—In and/or S—Ga bonds at or close to the interface.« less

  17. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    PubMed

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  18. Electronic Structure and Optical Properties of Cu 2ZnGeSe 4. First-Principles Calculations and Vacuum-Ultraviolet Spectroscopic Ellipsometric Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sukgeun; Park, Ji-Sang; Donohue, Andrea

    2015-11-19

    Cu 2ZnGeSe 4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric functionϵ=ϵ1+iϵ2 spectrum of polycrystalline Cu 2ZnGeSe 4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peakmore » shapes and relative intensities between experimental spectra and the calculated ϵ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. We found that the complex refractive index N=n+ik, normal-incidence reflectivity R, and absorption coefficients α are calculated from the modeled ϵ spectrum, which are also compared with those of Cu 2ZnSnSe 4 . The spectral features for Cu 2ZnGeSe 4 appear to be weaker and broader than those for Cu 2ZnSnSe 4 , which is possibly due to more structural imperfections presented in Cu 2ZnGeSe 4 than Cu 2ZnSnSe 4 .« less

  19. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  20. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.

    PubMed

    Li, Jianjun; Wang, Hongxia; Wu, Li; Chen, Cheng; Zhou, Zhiqiang; Liu, Fangfang; Sun, Yun; Han, Junbo; Zhang, Yi

    2016-04-27

    It is a challenge to fabricate high quality Cu2ZnSnSe4 (CZTSe) film with low Cu content (Cu/(Zn + Sn) < 0.8). In this work, the growth mechanisms of CZTSe films under different Se vapor composition are investigated by DC-sputtering and a postselenization approach. The composition of Se vapor has important influence on the compactability of the films and the diffusion of elements in the CZTSe films. By adjusting the composition of Se vapor during the selenization process, an optimized two step selenization process is proposed and highly crystallized CZTSe film with low Cu content (Cu/(Zn + Sn) = 0.75) is obtained. Further study of the effect of Cu content on the morphology and photovoltaic performance of the corresponding CZTSe solar cells has shown that the roughness of the CZTSe absorber film increases when Cu content decreases. As a consequence, the reflection loss of CZTSe solar cells reduces dramatically and the short circuit current density of the cells improve from 34.7 mA/cm(2) for Cu/(Zn + Sn) = 0.88 to 38.5 mA/cm(2) for Cu/(Zn + Sn) = 0.75. In addition, the CZTSe solar cells with low Cu content show longer minority carrier lifetime and higher open circuit voltage than the high Cu content devices. A champion performance CZTSe solar cell with 10.4% efficiency is fabricated with Cu/(Zn + Sn) = 0.75 in the CZTSe film without antireflection coating.

  1. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2 SeO3 as Se source and investigating optical properties.

    PubMed

    Khafajeh, R; Molaei, M; Karimipour, M

    2017-06-01

    In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A simulation study to improve the efficiency of ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells by composition-ratio control

    NASA Astrophysics Data System (ADS)

    Sharbati, S.; Norouzzadeh, E.; Mohammadi, S.

    2018-04-01

    This work investigates the impact of the conduction-band offset (CBO) and valence band offset (VBO) on the performance of Zn (O, S)/Cu2ZnSn (S, Se)4 solar cells by numerical simulations. The band gap alignment at the buffer-CZTS layer interface are controlled by the sulfur-to-oxygen and sulfur-to-selenium ratios. The simulation results show that the high sulfur content in the Zn (O, S) layer makes a big offset in the conduction band and high oxygen content in the in the Zn (O, S) layer eventuates in large valence band offset, that descends Cu2ZnSn (S, Se)4 solar cell performance. We established an initial device model based on an experimental device with world record efficiencies of 12.6%. This study shows that most suitable heterojunction for ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells is when sulfur content ranging 19%-50% in the Zn (O, S) and 30%-50% in the CZTSSe. The efficiency of Cu2ZnSn (S, Se)4 solar cells will be achieved to 14.3%.

  3. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency.

    PubMed

    Qi, Yafang; Tian, Qingwen; Meng, Yuena; Kou, Dongxing; Zhou, Zhengji; Zhou, Wenhui; Wu, Sixin

    2017-06-28

    The partial substitution of Cu + with Ag + into the host lattice of Cu 2 ZnSn(S,Se) 4 thin films can reduce the open-circuit voltage deficit (V oc,deficit ) of Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH 2 ) and 1,2-ethylenediamine (en) and used for the formation of (Cu 1-x Ag x ) 2 ZnSn(S,Se) 4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the V oc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.

  4. Cultivation of Agaricus bisporus enriched with selenium, zinc and copper.

    PubMed

    Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika

    2017-02-01

    Agaricus bisporus (white button mushroom) is an important culinary and medicinal species of worldwide importance. The present study investigated for the first time whether it may be grown on substrates supplemented with Se alone or in combination with Cu and/or Zn (0.1-0.8 mmol L -1 ) to produce fruiting bodies of increased nutritional value. As found, substrate supplementation did not affect yielded biomass up to 0.6 mmol L -1 element concentrations regardless of the cultivation model. At 0.8 mmol L -1 Se + Cu and Se + Zn supplementation biomass comparable with controls still developed. The accumulation of trace elements in the fruiting bodies generally increased over the concentration gradient reaching its maximum at 0.6 mmol L -1 (for Se + Zn and Se + Cu + Zn) and 0.8 mmol L -1 (for Se and Se + Cu). The organic Se constituted the greatest share in total Se quota. As calculated, each 10 g of dried fruiting bodies of A. bisporus obtained from 0.6 or 0.8 mmol L -1 supplementation would represent 342-469% of the Recommended Daily Allowance (RDA) for Se, 43.4-48.5% for Cu and 5.2-5.8% for Zn. Considering inexpensive methods of A. bisporus cultivation, global popularity and use of this mushroom, its biofortification with Se, Cu and Zn could have a practical application in deficiency prevention and assisted treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. High-speed electrodeposition of copper-tin-zinc stacks from liquid metal salts for Cu2ZnSnSe4 solar cells.

    PubMed

    Steichen, Marc; Malaquias, João C; Arasimowicz, Monika; Djemour, Rabie; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen; Dale, Phillip J

    2017-01-16

    Cu 2 ZnSnSe 4 -based solar cells with 5.5% power conversion efficiency were fabricated from Cu/Sn/Zn stacks electrodeposited from liquid metal salts. These electrolytes allow metal deposition rates one order of magnitude higher than those of other deposition methods.

  6. Point defects in Cu 2 ZnSnSe 4 (CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition: Point defects in Cu 2 ZnSnSe 4 (CZTSe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelhas, L. T.; Stone, K. H.; Harvey, S. P.

    The interest in Cu2ZnSn(S,Se)4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a Voc deficit, where the Voc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. To directly determine the level of Cu/Zn ordering, wemore » have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. To understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less

  7. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  8. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  9. Zn–Se–Cd–S Interlayer Formation at the CdS/Cu 2 ZnSnSe 4 Thin-Film Solar Cell Interface

    DOE PAGES

    Bär, Marcus; Repins, Ingrid; Weinhardt, Lothar; ...

    2017-06-14

    The chemical structure of the CdS/Cu 2ZnSnSe 4 (CZTSe) interface was studied by a combination of electron and X-ray spectroscopies with varying surface sensitivity. We find the CdS chemical bath deposition causes a 'redistribution' of elements in the proximity of the CdS/CZTSe interface. In detail, our data suggest that Zn and Se from the Zn-terminated CZTSe absorber and Cd and S from the buffer layer form a Zn-Se-Cd-S interlayer. Here, we find direct indications for the presence of Cd-S, Cd-Se, and Cd-Se-Zn bonds at the buffer/absorber interface. Thus, we propose the formation of a mixed Cd(S,Se)-(Cd,Zn)Se interlayer. We also suggestmore » the underlying chemical mechanism is an ion exchange mediated by the amine complexes present in the chemical bath.« less

  10. Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films

    NASA Astrophysics Data System (ADS)

    Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang

    2017-12-01

    Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.

  11. The influence of sequence of precursor films on CZTSe thin films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping

    2017-02-01

    The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).

  12. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  13. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.

    PubMed

    Du, Jun; Du, Zhonglin; Hu, Jin-Song; Pan, Zhenxiao; Shen, Qing; Sun, Jiankun; Long, Donghui; Dong, Hui; Sun, Litao; Zhong, Xinhua; Wan, Li-Jun

    2016-03-30

    The enhancement of power conversion efficiency (PCE) and the development of toxic Cd-, Pb-free quantum dots (QDs) are critical for the prosperity of QD-based solar cells. It is known that the properties (such as light harvesting range, band gap alignment, density of trap state defects, etc.) of QD light harvesters play a crucial effect on the photovoltaic performance of QD based solar cells. Herein, high quality ∼4 nm Cd-, Pb-free Zn-Cu-In-Se alloyed QDs with an absorption onset extending to ∼1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs). Due to the small particle size, the developed QD sensitizer can be efficiently immobilized on TiO2 film electrode in less than 0.5 h. An average PCE of 11.66% and a certified PCE of 11.61% have been demonstrated in the QDSCs based on these Zn-Cu-In-Se QDs. The remarkably improved photovoltaic performance for Zn-Cu-In-Se QDSCs vs Cu-In-Se QDSCs (11.66% vs 9.54% in PCE) is mainly derived from the higher conduction band edge, which favors the photogenerated electron extraction and results in higher photocurrent, and the alloyed structure of Zn-Cu-In-Se QD light harvester, which benefits the suppression of charge recombination at photoanode/electrolyte interfaces and thus improves the photovoltage.

  14. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter.

    PubMed

    Kim, Jeehwan; Hiroi, Homare; Todorov, Teodor K; Gunawan, Oki; Kuwahara, Masaru; Gokmen, Tayfun; Nair, Dhruv; Hopstaken, Marinus; Shin, Byungha; Lee, Yun Seog; Wang, Wei; Sugimoto, Hiroki; Mitzi, David B

    2014-11-26

    High-efficiency Cu2ZnSn(S,Se)4 solar cells are reported by applying In2S3/CdS double emitters. This new structure offers a high doping concentration within the Cu2ZnSn(S,Se)4 solar cells, resulting in a substantial enhancement in open-circuit voltage. The 12.4% device is obtained with a record open-circuit voltage deficit of 593 mV. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. INFLUENCE OF THE CHEMICAL POTENTIAL ON THE CARRIER EFFECTIVE MASS IN THE THERMOELECTRIC SOLID SOLUTION Cu2Zn1-xFexGeSe4

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Day, Tristan; Schechtel, Eugen; Snyder, G. Jeffrey; Tremel, Wolfgang

    2013-08-01

    In this paper, we describe the synthesis and characterization of the solid solution Cu2Zn1-xFexGeSe4. Electronic transport data have been analyzed using a single parabolic band model and have been compared to Cu2+xZn1-xGeSe4. The effective mass of these undoped, intrinsically hole conducting materials increases linearly with increasing carrier concentration, showing a non-parabolic transport behavior within the valence band.

  16. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    PubMed

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  17. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies

    PubMed Central

    Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys. PMID:24058329

  18. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  19. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  20. Artificial twin-layer configurations of Zn(O,S) films by radio frequency sputtering in all dry processed eco-friendly Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Fan, Yu; Li, Xiaodong; Lin, Shuping; Liu, Yang; Shi, Sihan; Wang, He; Zhou, Zhiqiang; Zhang, Yi; Sun, Yun

    2018-03-01

    Cu(In,Ga)Se2 thin film solar cells are of great interest for research and industrial applications with their high conversion efficiencies, long-term stability and significant lifetimes. Such a solar cell of a p-n junction consists of p-type Cu(In,Ga)Se2 films as a light absorber and n-type CdS as a buffer layer, which often emerges with intrinsic ZnO. Aimed at eco-friendly fabrication protocols, a large number of strategies have been investigated to fabricate a Cd-free n-type buffer layer such as Zn(O,S) in Cu(In,Ga)Se2 solar cells. Also, if the Zn(O,S) films are prepared by coevaporation or sputtering, it will offer high compatibility with the preferred mass production. Here, we propose and optimize a dry method for Zn(O,S) deposition in a radio frequency sputtering. In particular, the strategy for the twin-layer configurations of Zn(O,S) films not only greatly improve their electrical conductance and suppress charge carrier recombination, but also avoid degradation of the Zn(O,S)/Cu(In,Ga)Se2 interfaces. Indeed, the high quality of such twin Zn(O,S) layers have been reflected in the similar conversion efficiencies of the complete solar cells as well as the large short-circuit current density, which exceeds the CdS reference device. In addition, Zn(O,S) twin layers have reduced the production time and materials by replacing the CdS/i-ZnO layers, which removes two fabrication steps in the multilayered thin film solar cells. Furthermore, the device physics for such improvements have been fully unveiled with both experimental current-voltage and capacitance-voltage spectroscopies and device simulations via wxAMPS program. Finally, the proposed twin-layer Zn(O,S)/Cu(In,Ga)Se2 interfaces account for the broadening of the depletion region of photogenerated charge carriers, which greatly suppress the carrier recombination at the space charge region, and eventually lead to the more efficient collection of charge carriers at both electrodes.

  1. Influence of Selenization Time on Microstructural, Optical, and Electrical Properties of Cu2ZnGeSe4 Films

    NASA Astrophysics Data System (ADS)

    Swapna Mary, G.; Hema Chandra, G.; Anantha Sunil, M.; Gupta, Mukul

    2018-01-01

    We have studied the effects of selenization time on the microstructural, optical, and electrical properties of stacked (Cu/Se/ZnSe/Se/Ge/Se) × 4 layers to demonstrate growth of Cu2ZnGeSe4 (CZGSe) thin films. Electron beam evaporation was used to deposit CZGSe films on glass substrates for selenization in high vacuum at 450°C for different times (15 min, 30 min, 45 min, and 60 min). The incomplete reaction of the precursor layers necessitates selenization at higher temperature for different durations to achieve desirable microstructural and optoelectronic properties. Energy-dispersive spectroscopic measurements revealed that the stacked layers selenized at 450°C for 30 min were nearly stoichiometric with atomic ratios of Cu/(Zn + Ge) = 0.88, Zn/Ge = 1.11, and Se/(Cu + Zn + Ge) = 1.03. X-ray diffraction analysis revealed that the stacks selenized at 450°C for 30 min crystallized in tetragonal stannite structure. Selenization-time-dependent Raman measurements of the selenized stacks are systematically presented to understand the growth of CZGSe. The elemental distribution through depth as a function of selenization time was investigated using secondary-ion mass spectroscopy. The ionic valency of the constituent elements in CZGSe films selenized at 450°C for 30 min was examined using high-resolution x-ray photoelectron spectroscopy. Significant changes were observed in the surface morphology of the stacked layers with increase in selenization time. The effects of defects on the electrical properties and of binary phases on the optical properties are discussed.

  2. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    PubMed

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p < .05) in examined patients than in the control group and after NB-UVB. We have found decrease in TAS in the serum of vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  3. Investigation of post-thermal annealing on material properties of Cu-In-Zn-Se thin films

    NASA Astrophysics Data System (ADS)

    Güllü, H. H.; Parlak, M.

    2017-12-01

    The Cu-In-Zn-Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn. The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu-In-Zn-Se compound. They were in the polycrystalline nature without any post-thermal process, and the main orientation was found to be in the (112) direction with tetragonal crystalline structure. With increasing annealing temperature, the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm. The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2. However, EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film. According to the optical analysis, the transmittance values of the films increased with the annealing temperature. The absorption coefficient of the films was calculated as around 105 cm-1 in the visible region. Moreover, optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature. The temperature-dependent dark- and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.

  4. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S) 2 and Cu 2ZnSn(Se,S) 4 devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  5. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  6. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S) 2 and Cu 2ZnSn(Se,S) 4 devices

    DOE PAGES

    Varley, J. B.; Lordi, V.

    2014-08-08

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  7. Point defects in Cu 2ZnSnSe 4(CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition

    DOE PAGES

    Schelhas, L. T.; Stone, K. H.; Harvey, S. P.; ...

    2017-07-25

    We report that the interest in Cu 2ZnSn(S,Se) 4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se 2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a V oc deficit, where the V oc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. Tomore » directly determine the level of Cu/Zn ordering, we have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. Finally, to understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less

  8. Effects of the copper content on the structural and electrical properties of Cu2ZnSnSe4 bulks

    NASA Astrophysics Data System (ADS)

    Tsega, Moges; Dejene, F. B.; Koao, L. F.

    2016-01-01

    We have investigated the concept of defect in CuxZnSnSe4 (x=1.6-2.0) and Cuy(Zn0.9Sn1.1)Se4 (y= 1.6-2.0) bulks prepared by liquid-phase sintering at 600 °C for 2 h with soluble sintering aids of Sb2S3 and Te. All samples were found to exhibit p-type semiconductor for CuxZnSnSe4, while n-type of behavior obtained at y= 1.8-2.0 for Cuy(Zn0.9Sn1.1)Se4 pellets. The Cu vacancy acts as an acceptor point defect to form the p-type semiconductor, and Sn4+ acts as a donor to form the n-type behavior for the Sn-rich CZTSe. SEM images of pellets show dense surface morphology, and increase in grain size upon Cu inclusion. The largely increased Hall mobility and the slightly changed carrier concentration for Cuy(Zn0.9Sn1.1)Se4 with increasing the Cu content is related to the types of its defects. At y=2.0 with carrier concentration of 4.88×1017 cm-3 showed the highest mobility of around 58 cm2/V s. Based upon the proposed point defects, the CZTSe property can be consistently explained.

  9. Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis.

    PubMed

    Arikan, Deniz Cemgil; Coskun, Ayhan; Ozer, Ali; Kilinc, Metin; Atalay, Filiz; Arikan, Tugba

    2011-12-01

    It has been shown that the trace elements and lipids play role in the growth, development and maintenance of bones. We aimed to investigate serum selenium (Se), zinc (Zn), copper (Cu) and lipid (total cholesterol, triglyceride (TG), high density lipoprotein-cholesterol, low-density lipoprotein-cholesterol) levels in postmenopausal women with osteoporosis, osteopenia and in healthy controls, and to determine the relationship between Se, Zn, Cu and lipid parameters and bone mineral density (BMD). The study included 107 postmenopausal women; 35 healthy (group 1), 37 osteopenic (group 2) and 35 osteoporotic (group 3). The women in all three groups were carefully matched for body mass index (BMI). Serum concentrations of Se, Zn and Cu were measured by atomic absorption spectrophotometry. Plasma Se, Cu, Zn and lipid levels were similar in all groups (p > 0.05). When we combined the women in each of the three groups, and considered them as one group (n = 107) we found a positive correlation between BMI and lumbar vertebra BMD, femur neck BMD, femur total BMD; a positive correlation between TG and femur neck BMD, femur total BMD; a positive correlation between Zn and lumbar vertebra BMD (total T score) (p < 0.05). There was no correlation between Se, Cu, Zn, P and lipid parameters (p > 0.05). Although BMI has a positive effect on BMD, trace elements and lipids, except Zn and TG, did not directly and correlatively influence BMD. Further studies are needed to clarify the role and relationship of trace elements and lipid parameters in postmenopausal osteoporosis.

  10. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  11. Evaluation of local trace element status and 8-Iso-prostaglandin F2α concentrations in patients with Tinea pedis.

    PubMed

    Miraloglu, Meral; Kurutas, Ergul Belge; Ozturk, Perihan; Arican, Ozer

    2016-01-01

    Tinea pedis (TP) is an infection of the feet caused by fungi. The infectious diseases caused by dermatophytes are mainly related to the enzymes produced by these fungi. Up to the now, the local 8-iso-prostaglandin F2α (8-iso-PGF2α), concentration as oxidative stress biomarker and trace elements status have not been published in patients with TP. The aim of this study is to evaluate the relationship between oxidative stress and trace elements (Cu, Zn, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Forty-three consecutive patients with a diagnosis of unilateral interdigital TP were enrolled in this study. The samples were obtained by scraping the skin surface. 8-iso-PGF2α concentrations in scraping samples were determined by ELISA. In addition, the levels of Se, Zn and Cu in scraping samples were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in 8-iso-PGF2α concentrations (p < 0.05). When compared to non-lesional area, Zn and Se levels were significantly lower on lesional area, whereas Cu levels was higher on the lesional area than the non-lesional area (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Cu and 8-iso-PGF2α parameters, but negative correlations between Se-Cu; Se-8-iso-PGF2α parameters in lesional area. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher on the lesional area than the non-lesional area (p < 0.05). According to sex and fungal subtypes, there was no significant difference in the concentrations of 8-iso-PGF2α and trace elements in patients with TP (p > 0.05). Our results showed that there is a possible link between oxidative stress (increased 8-iso-PGF2α concentrations) and imbalanced of trace elements status in lesional area of TP patients. The use of antifungal agents together with both Zn and Se drugs could be helpful in the both regression of disease and in shortening the duration of disease.

  12. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  13. Method for forming silver-copper mixed kesterite semiconductor film

    DOEpatents

    Gershon, Talia S.; Gunawan, Oki; Lee, Yun S.; Mankad, Ravin

    2018-01-23

    After forming a layer of a Cu-deficient kesterite compound having the formula Cu.sub.2-xZn.sub.1+xSn(S.sub.ySe.sub.1-y).sub.4, wherein 0

  14. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    PubMed Central

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2016-01-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04–1.51 eV with high optical-absorption coefficients (~104 cm−1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales. PMID:27748406

  15. Low concentrations of selenium and zinc in nails are associated with childhood asthma.

    PubMed

    Carneiro, Maria Fernanda Hornos; Rhoden, Claudia Ramos; Amantéa, Sérgio Luis; Barbosa, Fernando

    2011-12-01

    The purpose of this study was to investigate possible associations between Zn, Se, Cu, Mn, and Co concentrations in nails and asthma in a young population from a Southern Brazil city. Additionally, correlations between these chemical elements among asthmatic and non-asthmatic children were evaluated. Before nail collection (n = 165), children were asked to complete the International Study of Asthma and Allergies in Childhood questionnaire. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry. The chi-square test was used to evaluate the association between element concentrations in nails and the respiratory outcome. To evaluate correlations between the elements, we used the Spearman correlation test. For all tests, the significance level was set at 95% (P ≤ 0.05). Children included in the highest quartile of nail Se and Zn concentration presented a fivefold decrease in the prevalence ratio of asthma while children in the lowest Se range presented an almost 2.5-fold increase in the asthma prevalence ratio. There were weak to strong correlations between Cu vs. Zn, Cu vs. Co, Cu vs. Se, Zn vs. Se, Zn vs. Mn, and Mn vs. Co in both asthmatic and non-asthmatic children. Interestingly, non-asthmatics also presented correlations between Co vs. Se and Zn. Taken together, our results clearly demonstrated an association between concentrations of selenium and zinc and childhood asthma and the usefulness of nail as a noninvasive matrix to detect minerals imbalance in asthma patients.

  16. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study.

    PubMed

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2017-12-01

    Psoriasis is a common, an inflammatory skin disease. Trace elements may play an active role in the pathogenesis of psoriasis. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) and c-reactive protein (CRP) in the serum of patients with psoriasis. In this case-control study sixty patients with psoriasis and fifty-eight healthy people were examined. Serum levels of Se, Zn and Cu were determined by atomic absorption spectrometry. Cu/Zn ratio was calculated. TAS was measured spectrophotometrically. CRP was analyzed by immunoturbidimetric method. Clinical activity of psoriasis was evaluated using Psoriasis Area and Severity Index (PASI). Serum concentration of Se in patients with psoriasis (71.89±16.90μg/L) was lower as compared to the control group (79.42±18.97μg/L) and after NB-UVB. Cu level of patients was higher (1.151±0.320mg/L) as compared to controls (1.038±0.336mg/L), but Zn level did not differ. We observed higher Cu/Zn ratio (p<0.05) in examined patients than in the control group and after NB-UVB. We found decrease TAS before and after NB-UVB. CRP levels was found to be normal range. A significant correlation coefficient between CRP and Cu/Zn was observed. The study showed some disturbances in the serum levels of trace elements and TAS in psoriatic patients. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Essential trace elements in amyotrophic lateral sclerosis (ALS): Results in a population of a risk area of Italy.

    PubMed

    Forte, Giovanni; Bocca, Beatrice; Oggiano, Riccardo; Clemente, Simonetta; Asara, Yolande; Sotgiu, Maria Alessandra; Farace, Cristiano; Montella, Andrea; Fois, Alessandro Giuseppe; Malaguarnera, Michele; Pirina, Pietro; Madeddu, Roberto

    2017-09-01

    Sardinian (Italy) island population has a uniquely high incidence of amyotrophic lateral sclerosis (ALS). Essential trace element levels in blood, hair, and urine of ALS Sardinian patients were investigated in search of valid biomarkers to recognize and predict ALS. Six elements (Ca, Cu, Fe, Mg, Se, and Zn) were measured in 34 patients compared to 30 age- and sex-matched healthy controls by a validated method. Levels of Ca and Cu in blood and of Se and Zn in hair were significantly higher in ALS than in controls, while urinary excretion of Mg and Se was significantly decreased. The selected cut-off concentrations for these biomarkers may distinguish patients with or without ALS with sufficient sensitivity and specificity. Many positive (as Se-Cu and Se-Zn) and negative associations (as Ca-Mg and Ca-Zn) between elements suggested that multiple metals involved in multiple mechanisms have a role in the ALS degeneration.

  18. BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy

    BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.

  19. Preparation of Cu{sub 2}ZnSnSe{sub 4} solar cells by low-temperature co-evaporation and following selenization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Chao, E-mail: chao.gao@kit.edu; Hetterich, Michael; Schnabel, Thomas

    2016-01-04

    Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films are prepared by a two-step method which involves co-evaporation of Cu, Zn, Sn, and Se on molybdenum-coated soda-lime glass at low substrate temperature and a following selenization. Solar cells with efficiencies of up to 6.5% can be achieved. The influence of the selenium deposition rates during co-evaporation and the nitrogen pressure during selenization on the properties of the CZTSe films are investigated. It is found that these two parameters can significantly affect the morphology and crystallinity of the CZTSe films. The possible reasons for the experimental results are discussed.

  20. Enhanced thermoelectric performance through grain boundary engineering in quaternary chalcogenide Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Zhu, Yingcai; Liu, Yong; Tan, Xing; Ren, Guangkun; Yu, Meijuan; Hu, Tiandou; Marcelli, Augusto; Xu, Wei

    2018-04-01

    Quaternary chalcogenide Cu2ZnSnSe4 (CZTSe) is a promising wide band-gap p-type thermoelectric material. The structure and thermoelectric properties of lead substituted Cu2ZnSn1-xPbxSe4 are investigated. Lead primarily exists in the framework of PbSe as demonstrated by x-ray diffraction and calculation of x-ray absorption near-edge structure spectroscopy. The second phase distributes at the boundaries of CZTSe with thickness in several hundreds of nanometer. With appropriate grain boundary engineering, the enhancement of power factor and a decrease of thermal conductivity can be achieved simultaneously. As a result, a maximum figure of merit zT of 0.45 is obtained for the sample with x=0.02 at 723K.

  1. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure

    PubMed Central

    2014-01-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein. PMID:25593559

  2. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  3. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options - CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

  4. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.; He, X.

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to stronglymore » favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.« less

  5. Optoelectrical, structural and morphological characterization of Cu2ZnSnSe4 compound used in photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Leguizamon, A.; Dussan, A.; Gordillo, G.

    2016-10-01

    In this work, results are reported concerning the effect of the deposition parameters on the structural properties of Cu2ZnSnSe4 (CZTSe) thin films, grown through a chemical reaction of the metallic precursors by co-evaporation in a two-stage process. XRD measurements revealed that the samples deposited by selenization of Cu and Sn grow in the kesterite phase (CZTSe), respectively. Effect of the deposition temperature and mass ratio Cu/ZnSe on the transport properties of CZTSe films were analyzed. It was also found that the electrical conductivity of the thin films is affected by the transport of free carriers in extended states of the conduction band as well as for variable range hopping transport mechanisms, each one predominating in a different temperature range. The molecular and morphological effect on the compound through Raman and AFM measurements was studied.

  6. Effects of a long-acting, trace mineral, reticulorumen bolus on range cow productivity and trace mineral profiles.

    PubMed

    Sprinkle, J E; Cuneo, S P; Frederick, H M; Enns, R M; Schafer, D W; Carstens, G E; Daugherty, S B; Noon, T H; Rickert, B M; Reggiardo, C

    2006-06-01

    The objectives were to determine if strategic supplementation of range cows with a long-acting (6 mo), trace mineral, reticulorumen bolus containing Cu, Se, and Co would: (1) increase cow BCS and BW, and calf birth, weaning, and postweaning weights, or weight per day of age (WDA); (2) increase liver concentrations of Cu or Zn in cows, or blood Se, Cu, or Zn concentrations in cows and calves; and (3) vary by cow breed for any of these response variables. There were 192 control and 144 bolused Composite cows (C; 25% Hereford, Angus, Gelbevieh, and Senepol or Barzona); 236 control and 158 bolused Hereford (H) cows; and 208 control and 149 bolused Brahman cross (B) cows used in a 3-yr experiment. Cows were weighed and scored for body condition in January, May, and September, and all bolused cows received boluses in January. Each year, from among the 3 breed groups a subset of 15 control and 15 bolused cows (n = 90) had samples obtained in January and May for liver Cu and Zn, blood Se, and serum Cu and Zn. As for cows, blood and serum from the calves of these cows were sampled each year in May and September for Cu, Se, and Zn. There was a significant breed x year x treatment interaction (P = 0.001) for cow weight loss from January to May. Calf WDA, weaning, and postweaning weights did not differ (P > 0.40) between bolused and control cows, but there was a significant (P = 0.022) breed x year x treatment interaction for birth weight. Liver Cu was deficient (< 75 ppm; P < 0.001) in control cows and adequate (< 75 to 90 ppm) for bolused cows. Liver Cu differed by year (P < 0.001). Blood Se was adequate (< 0.1 ppm) for all cows except in January 2001 and 2002. There was no difference (P > 0.50) in blood Se between treatment groups in January, but bolused cows had greater (P < 0.01) blood Se in May. Breed differences for blood Se concentrations existed for bolused cows, with B having greater (P < 0.05) blood Se than either C or H cows. Breed differences also existed for control cows, with H having less blood Se (P < 0.04) than B or C cows. Calves from bolused cows had greater blood Se than calves from control cows (P = 0.01). Supplementation via a long-acting trace mineral bolus was successful in increasing liver Cu in cows and blood Se in cows and calves, but the responses varied by year. Bolus administration had variable effects on BW change in early lactation, depending on breed and year, which may indicate the need for breed- and year-specific supplementation programs.

  7. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.

  8. Season and location effects on serum and liver mineral concentrations of Senepol cattle on St Croix, Virgin Islands.

    PubMed

    Wildeus, S; McDowell, L R; Fugle, J R

    1992-11-01

    Serum and liver concentrations of selected macro- and trace minerals were determined in Senepol cattle at 8 sites (4 each in a high and low rainfall region) during the dry and wet season on St Croix. At each site an average of 15 mature, lactating cows, grazing native grass/legume pastures without supplementation were blood sampled each season. Liver samples were collected (n = 51) at slaughter from mature animals originating from the same sites. A preliminary analysis indicated no differences in serum mineral concentrations between mature lactating cows and growing heifers. There were differences between sites for serum magnesium (Mg) (P < 0.001), copper (Cu) (P < 0.05) selenium (Se) (P < 0.001) and zinc (Zn) (P < 0.01) in the dry season, and for Cu (P < 0.01), iron (Fe) (P < 0.001) and Zn (P < 0.01) in the wet season. Higher (P < 0.001) serum concentrations of Mg, Cu, Fe and Zn were observed in the dry season, while Se was higher (P < 0.01) in the wet season. Liver concentrations of Cu and Fe were lower (P < 0.01) and liver molybdenum (Mo) (P < 0.001) and Se (P < 0.05) higher during the dry season. The seasonal differences in serum Cu, Se and Zn concentrations have not been observed in other studies in the Central American region. More than 50% of serum samples were deficient in phosphorus (P) regardless of season, and in Cu and Zn during the wet season. Mineral supplementation should be considered.

  9. Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Negash, Bethlehem G.

    Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as well order in which precursors are introduced into a reaction system. We report a new solution based sulfoselenide preparation route which has been used to synthesize high purity Cu2ZnSn(S xSe1-x)4 nanoparticles. Uniform phase Cu 2ZnSn(SxSe1-x)4 nanoparticles were successfully synthesized over a wide range of varying chalcogen ratios. It was found that anion precursor solution plays a key role in determining the morphology & phase purity of the final nanoparticles, as observed from X-ray Diffraction (XRD) and Raman spectroscopy. A uniform sulfoselenide solution is needed to produce high purity Cu2ZnSn(SxSe1-x )4 nanoparticles with narrow phase distribution. Moreover, the relative reactivity of each anion must be balanced in order to yield uniform phase nanoparticles. The findings of this study as well as the reported mixed chalcogen precursor preparation route can be applied in various industries, including photovoltaics to produce uniform phase, solution processed sulfoselenide nanoparticles.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelhas, L. T.; Stone, K. H.; Harvey, S. P.

    We report that the interest in Cu 2ZnSn(S,Se) 4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se 2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a V oc deficit, where the V oc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. Tomore » directly determine the level of Cu/Zn ordering, we have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. Finally, to understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less

  11. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  12. Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging

    PubMed Central

    2015-01-01

    Construction of self-illuminating semiconducting nanocrystals, also called quantum dots (QDs), has attracted much attention recently due to their potential as highly sensitive optical probes for biological imaging applications. Here we prepared a self-illuminating QD system by doping positron-emitting radionuclide 64Cu into CdSe/ZnS core/shell QDs via a cation-exchange reaction. The 64Cu-doped CdSe/ZnS QDs exhibit efficient Cerenkov resonance energy transfer (CRET). The signal of 64Cu can accurately reflect the biodistribution of the QDs during circulation with no dissociation of 64Cu from the nanoparticles. We also explored this system for in vivo tumor imaging. This nanoprobe showed high tumor-targeting ability in a U87MG glioblastoma xenograft model (12.7% ID/g at 17 h time point) and feasibility for in vivo luminescence imaging of tumor in the absence of excitation light. The availability of these self-illuminating integrated QDs provides an accurate and convenient tool for in vivo tumor imaging and detection. PMID:24401138

  13. Effect of Pressure on the Stability and Electronic Structure of ZnO0.5S0.5 and ZnO0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Manotum, R.; Klinkla, R.; Phaisangittisakul, N.; Pinsook, U.; Bovornratanaraks, T.

    2017-12-01

    Structures and high-pressure phase transitions in ZnO0.5S0.5 and ZnO0.5Se0.5 have been investigated using density functional theory calculations. The previously proposed structures of ZnO0.5S0.5 and ZnO0.5Se0.5 which are chalcopyrite ( I\\bar{4}2d ), rocksalt ( Fm3m ), wurtzite ( P63 mc ) and CuAu-I ( P\\bar{4}m2 ) have been fully investigated. Stabilities of these materials have been systematically studied up to 40 GPa using various approaches. We have confirmed the stability of the chalcopyrite structure up to 30 GPa for which the CuAu-I structure has been previously proposed. However, our calculation revealed that CuAu-I is not a stable structure under 32 GPa and 33 GPa for both ZnO0.5S0.5 and ZnO0.5Se0.5, respectively, which could explain the failure in several attempts to fabricate these materials under such conditions. We have also examined the pressure-dependence of the bandgap and electronic structure up to 30 GPa. We can conclude from our PDOS analysis that the applied pressure does not change the atomic state characters of electronic states near the top of valence and the bottom of conduction bands, but mainly modifies the dominant Zn-3d atomic state of the deep Bloch state at -1 eV below Fermi level.

  14. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2010-12-01

    We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.

  15. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    PubMed Central

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be

    2016-01-01

    The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366

  16. Trace Mineral Micronutrients and Chronic Periodontitis-a Review.

    PubMed

    Gaur, Sumit; Agnihotri, Rupali

    2017-04-01

    Trace mineral micronutrients are imperative for optimum host response. Populations worldwide are prone to their insufficiency owing to lifestyle changes or poor nutritional intake. Balanced levels of trace minerals like iron (Fe), zinc (Zn), selenium (Se) and copper (Cu) are essential to prevent progression of chronic conditions like periodontitis. Their excess as well as deficiency is detrimental to periodontal health. This is specifically true in relation to Fe. Furthermore, some trace elements, e.g. Se, Zn and Cu are integral components of antioxidant enzymes and prevent reactive oxygen species induced destruction of tissues. Their deficiency can worsen periodontitis associated with systemic conditions like diabetes mellitus. With this background, the present review first focusses on the role of four trace minerals, namely, Fe, Zn, Se and Cu in periodontal health followed by an appraisal of the data from case control studies related to their association with chronic periodontitis.

  17. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  18. Use of PIXE to measure serum copper, zinc, selenium, and bromine in patients with hematologic malignancies

    NASA Astrophysics Data System (ADS)

    Beguin, Y.; Bours, V.; Delbrouck, J.-M.; Robaye, G.; Roelandts, I.; Fillet, G.; Weber, G.

    1990-04-01

    The use of PIXE allowed for a simultaneous determination of serum copper (Cu), zinc (Zn), selenium (Se) and bromine (Br), in various groups of patients with hematologic malignancies. In 78 patients with acute nonlymphocytic leukemia, it was observed that (1) serum Se was significantly lower than in healthy controls and correlated inversely with the tumor burden; (2) serum bromine was normal at diagnosis but dropped dramatically after intensive chemotherapy, before recovering progressively over a period of months; and (3) pretreatment serum copper and zinc were significant prognostic factors of the chance to achieve a complete remission. In 50 patients with chronic lymphocytic leukemia, it was observed that (1) serum Cu and Cu/Zn ratio were useful indices of the disease activity, which were independent of a nonspecific acute phase reaction; and (2) Zn deficiency could contribute to immune dysfunction. In 119 patients with myeloproliferative disorders or myelodysplasic syndromes, serum Cu and Zn levels were mostly dependent on nonspecific factors, such as age and inflammation.

  19. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.

    PubMed

    Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa

    2016-02-14

    We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.

  20. Industrial perspectives on earth abundant, multinary thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Gershon, Talia; Gunawan, Oki; Antunez, Priscilla; Bishop, Douglas; Seog Lee, Yun; Gokmen, Tayfun; Sardashti, Kasra; Chagarov, Evgueni; Kummel, Andrew

    2017-03-01

    The most efficient earth abundant, non-toxic thin film multelemental PV devices are fabricated from Cu, Zn, Sn, S and Se, with the chemical formula of Cu2ZnSn(S x Se1-x )4 (CZTS,Se). This material has enjoyed relatively rapid increases in efficiency from its inception to its present-day power conversion efficiency of 12.6%. But further increases in efficiency have been hampered by the inability to substantially increase Voc, the open circuit voltage. In this review article we will discuss the fundamentals of this important kesterite material including methods of film growth, post growth processing and device fabrication. Detailed studies of the properties of CZTS,Se including chemical, structural and electronic as well as full device electrical characterization have been performed in an effort to coax out the critical issues that limit performance. These experimental studies, enhanced by density functional theory calculations have pointed to fundamental bulk point defects, such as Cu-Zn antisites, and clusters of defects, as the primary culprits in limiting Voc increases. Improvements in device performance through grain boundary passivation and interface modifications are described. Exfoliation of functioning solar cells to expose the back surface along with engineering of new back contacts designed to impose electrostatic fields that drive electron-hole separation and increase Voc are discussed. A parallel route to increasing device performance by alloying Ag with CZTS,Se in order to inhibit Cu-Zn antisite defect formation has shown significant improvement in material properties. Finally, applications of high S (and hence higher Voc) CZTS,Se based devices to energy harvesting for ‘Internet-of-Things’ devices is discussed.

  1. Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Shoushuai; Jiang, Zhenwu; Wu, Li; Ao, Jianping; Zeng, Yu; Sun, Yun; Zhang, Yi

    2018-01-01

    Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non-toxicity. However, the record efficiency of 12.6% for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)Se2 (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount investigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including: (1) the band alignment optimization at buffer/CZTS(e) interface, (2) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (3) the passivation of rear interface, (4) the passivation of front interface, and (5) the etching of secondary phases.

  2. Stability of Cd 1–xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE PAGES

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; ...

    2017-02-08

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  3. Stability of Cd 1–xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  4. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH) 2 [1; L = HC(CMeNAr) 2 and Ar = 2,6-iPr 2 C 6 H 3 ] with (MesCu) 4 and ZnEt 2 , respectively. The resulting clusters with the core structures of Al 2 Se 4 Cu 4 and Al 2 Se 4 Zn 3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  5. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  6. A resistance ratio change phenomenon observed in Al doped ZnO (AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou

    2018-03-01

    In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.

  7. Pulse electro-deposition of copper on molybdenum for Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cell applications

    NASA Astrophysics Data System (ADS)

    Bi, Jinlian; Yao, Liyong; Ao, Jianping; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2016-09-01

    The issues of rough surface morphology and the incorporated additives of the electro-deposited Cu layers, which exists in electrodeposition-based processes, is one of the major obstacles to improve the efficiency of Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) solar cells. In this study, the pulse current electro-deposition method is employed to deposit smooth Cu film on Mo substrate in CuSO4 solution without any additives. Grain size of the deposited Cu film is decreased by high cathode polarization successfully. And the concentration polarization, which results from high pulse current density, is controlled successfully by adjusting the pulse frequency. Flat Cu film with smooth surface and compact structure is deposited as pulse current density @ 62.5 mA cm-2, pulse frequency @100,000 Hz, and duty cycle @ 25%. CIGSe and CZTSe absorber films with flat surface and uniform elemental distribution are prepared by selenizing the stacking metal layers electro-deposited by pulse current method. Finally, the CIGSe and CZTSe solar cells with conversion efficiency of 10.39% and 7.83% respectively are fabricated based on the smooth Cu films, which are better than the solar cells fabricated by the rough Cu film deposited by direct current electro-deposition method.

  8. Hole mobility enhancement of Cu-deficient Cu{sub 1.75}Zn(Sn{sub 1−x}Al{sub x})Se{sub 4} bulks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw; Tsega, Moges

    2013-10-15

    Cu-deficient Cu{sub 1.75}ZnSn{sub 1−x}Al{sub x}Se{sub 4} (x=0–0.6) bulks were prepared by a liquid-phase reactive sintering method at 600 {sup °}C with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring electrical properties of Al-doped CZTSe as a function of dopant concentration. Al-CZTSe pellets at x=0.4 with electrical conductivity of 57.2 S cm{sup −1} showed the highest hole mobility of 32.5 cm{sup 2} V{sup −1} s{sup −1}. The high mobility is mainly contributed from the low atomic scattering factor of Al. The high carrier concentration and slightly changed lattice parameter of Al-CZTSe are related tomore » the types of its defects. - Graphical abstract: The controls in electrical properties and the changes in lattice parameters of Cu-deficient Cu{sub 2}ZnSnSe{sub 4} by doping Al{sup 3+} on the Sn{sup 4+} site. Display Omitted - Highlights: • Cu-deficient Cu{sub 1.75}Zn(Sn{sub 1−x}Al{sub x})Se{sub 4} was prepared by liquid-phase sintering at 600 °C. • Sintering aids of Sb{sub 2}S{sub 3} and Te were used for reactive sintering. • Al-CZTSe at x=0.4 showed the extremely high mobility of 32.5 cm{sup 2} V{sup −1} s{sup −1}. • Al-CZTSe reached large grains of 2−3 μm, while it was <1.0 μm for the undoped. • Electrical properties of Al-CZTSe pellets changed with the Al content.« less

  9. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    PubMed

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  10. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  11. Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells

    NASA Astrophysics Data System (ADS)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.

    2013-09-01

    We report measurement of minority carrier diffusion length (Ld) for high performance Cu2ZnSn(S,Se)4 (CZTSSe) solar cells in comparison with analogous Cu(In,Ga)(S,Se)2 (CIGSSe) devices. Our Ld extraction method involves performing systematic measurements of the internal quantum efficiency combined with separate capacitance-voltage measurement. This method also enables the measurement of the absorption coefficient of the absorber material as a function of wavelength in a finished device. The extracted values of Ld for CZTSSe samples are at least factor of 2 smaller than those for CIGSSe samples. Combined with minority carrier lifetime (τ) data measured by time-resolved photoluminescence, we deduce the minority carrier mobility (μe), which is also relatively low for the CZTSSe samples.

  12. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites

    PubMed Central

    Tellez, Marisa; Merchant, Mark

    2015-01-01

    Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363

  13. Select metal and metalloid surveillance of free-ranging Eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina).

    PubMed

    Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W

    2015-08-01

    The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.

  14. Selected heavy metals and selenium in the blood of black sea turtle (Chelonia mydas agasiizzi) from Sonora, Mexico.

    PubMed

    Ley-Quiñónez, C P; Zavala-Norzagaray, A A; Réndon-Maldonado, J G; Espinosa-Carreón, T L; Canizales-Román, A; Escobedo-Urías, D C; Leal-Acosta, M L; Hart, C E; Aguirre, A A

    2013-12-01

    The concentration of heavy metals (Zn, Cd, Ni, Cu, Mn) and selenium (Se) was analyzed in blood collected from 12 black turtles (Chelonia mydas agasiizzi) captured in Canal del Infiernillo, Punta Chueca, Mexico. The most abundant metals were Zn (63.58 μg g(-1)) and Se (7.66 μg g(-1)), and Cd was the lower (0.99 μg g(-1)). The sequential concentrations of trace metals were Zn > Se > Cu > Mn > Ni > Cd. In conclusion, this information is important as a baseline when using blood as tissue analysis of heavy metals; however, these levels could represent recent exposure in foraging grounds of black turtles in the Sea of Cortez.

  15. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  16. Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Gokmen, Tayfun; Warren, Charles W.; Cohen, J. David; Todorov, Teodor K.; Barkhouse, D. Aaron R.; Bag, Santanu; Tang, Jiang; Shin, Byungha; Mitzi, David B.

    2012-06-01

    Admittance spectra and drive-level-capacitance profiles of several high performance Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with bandgap ˜1.0-1.5 eV are reported. In contrast to the case for Cu(In,Ga)(S,Se)2, the CZTSSe capacitance spectra exhibit a dielectric freeze out to the geometric capacitance plateau at moderately low frequencies and intermediate temperatures (120-200 K). These spectra reveal important information regarding the bulk properties of the CZTSSe films, such as the dielectric constant and a dominant acceptor with energy level of 0.13-0.2 eV depending on the bandgap. This deep acceptor leads to a carrier freeze out effect that quenches the CZTSSe fill factor and efficiency at low temperatures.

  17. Protection of methamphetamine nigrostriatal toxicity by dietary selenium.

    PubMed

    Kim, H C; Jhoo, W K; Choi, D Y; Im, D H; Shin, E J; Suh, J H; Floyd, R A; Bing, G

    1999-12-18

    Multiple dose administration of methamphetamine (MA) results in long-lasting toxic effects in the nigrostriatal dopaminergic system. These effects are considered to be primarily due to oxidative damage mediated by increased production of hydrogen peroxide or other reactive oxygen species in the dopaminergic system. The present study was designed to determine the protective effects of dietary antioxidant selenium on MA-induced neurotoxicity in the nigrostriatal dopaminergic system. Male C57BL/6J mice were fed either selenium-deficient (< 0.01 ppm Se) or selenium-replete (0.2 ppm Se) diets for 90 days. MA treatment decreased the dopamine (DA) levels in the striatum and substantia nigra (SN) of both Se-replete and Se-deficient animals. However, in Se-replete animals, this DA depletion was significantly attenuated in both the striatum and SN. A novel observation is that MA administration resulted in increased activity of Cu,Zn-SOD in the brains of both Se-deficient and Se-replete animals. However, MA administration to Se-deficient animals exhibited a higher Cu,Zn-SOD activity in the nigrostriatal system than the control animals. Elevated malondialdehyde (MDA) levels in the striatum and SN were also observed in Se-deficient MA-treated animals. Se repletion significantly increased the glutathione peroxidase (GPx) activity and the ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) in the MA-treated animals. In conclusion, we have shown that dietary Se attenuated methamphetamine neurotoxicity and that this protection involves GPx-mediated antioxidant mechanisms. Even though Cu,Zn-SOD activity was significantly elevated by MA treatment, the role of this enzyme in MA-mediated neurotoxicity is not yet clear.

  18. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  19. Determination of the Electrical Junction in Cu(In, Ga)Se2 and Cu2ZnSnSe4 Solar Cells with 20-nm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Moutinho, Helio

    2016-11-21

    We located the electrical junction (EJ) of Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnSe4 (CZTS) solar cells with ~20-nm accuracy using a scanning capacitance spectroscopy (SCS) technique. A procedure was developed to prepare the cross-sectional samples and grow critical high-quality insulating layers for the SCS measurement. We found that CIGS has a buried homojunction with the EJ located at ~40 nm inside the CIGS/CdS interface. An n-type CIGS was probed in the region 10-30 nm away from the interface. By contrast, the CZTS/CdS cells have a heterointerface junction with a shallower EJ (~20 nm) than CIGS. The EJ is ~20 nm frommore » the CZTS/CdS interface, which is consistent with asymmetrical carrier concentrations of the p-CZTS and n-CdS in a heterojunction cell. The unambiguous determination of the junction locations helped explain the large open circuit voltage difference between the state-of-the-art devices of CIGS and CZTS.« less

  20. Selenization of Cu2ZnSnS4 Enhanced the Performance of Dye-Sensitized Solar Cells: Improved Zinc-Site Catalytic Activity for I3.

    PubMed

    Wang, Xiuwen; Xie, Ying; Bateer, Buhe; Pan, Kai; Jiao, Yanqing; Xiong, Ni; Wang, Song; Fu, Honggang

    2017-11-01

    Cu 2 ZnSnS 4 (CZTS) and Cu 2 ZnSn(S,Se) 4 (CZTSSe) as promising photovoltaic materials have drawn much attention because they are environmentally benign and earth-abundant elements. In this work, the monodispersed, low-cost Cu 2 ZnSnS 4 nanocrystals with small size have been controllably synthesized via a wet chemical routine. And CZTSSe could be easily prepared after selenization of CZTS. When they are employed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), the power conversion efficiency (PCE) has been improved from 3.54% to 7.13% as CZTS is converted to CZTSSe, which is also compared to that of Pt (7.62%). The exact reason for the enhanced catalytic activity of I 3 - is discussed with the work function and density functional theory (DFT) when CZTSSe converted from CZTS. The results of a Kelvin probe suggest that the work function of CZTSSe (5.61 eV) is closer to that of Pt (5.65 eV) and higher than that of CZTS, which matched the redox shuttle potential better. According to the theory calculation, all the atomic and bond populations changed significantly when Se replaced partly the S on the CZTS system, especially in the Zn site. During the catalytic process as CEs, the adsorption energy obviously increased compared to those at other sites when I 3 - adsorbed on the Zn site in CZTSSe. So, Zn plays an important role for the reduction of I 3 - after CZTS is converted to CZTSSe. Based on above analysis, the reason for enhanced performance of DSSCs when CZTS converted to CZTSSe is mainly due to the enhancement of Zn-site activity. This work is beneficial for understanding the catalytic reaction mechanism of CZTS(Se) as CEs of DSSCs.

  1. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens

    NASA Astrophysics Data System (ADS)

    Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc

    2015-09-01

    Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.

  2. The association of oxidant-antioxidant status in patients with chronic renal failure.

    PubMed

    Aziz, Manal A; Majeed, Ghanim H; Diab, Kareem S; Al-Tamimi, Raid J

    2016-01-01

    Oxidative stress has been linked to disease progression, including chronic renal failure (CRF). The aim of the present study was to determine malondialdehyde (MDA) as a sign of lipid peroxidation, and to investigate the association between antioxidant activities and three trace elements, in 49 patients with CRF. The erythrocyte and plasma trace elements [selenium (Se), zinc (Zn), and copper (Cu)] and antioxidant defense levels were determined: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), vitamins E and C. The obtained values were compared with 42 age- and sex-matched healthy controls. There were significantly lower mean values of plasma Se, GPx, vitamins E and C, erythrocyte Se, SOD and CAT levels in the patient group compared to the control group (p < 0.001). Plasma MDA showed a significant increase in all CRF patients in comparison with controls. No significant difference was found in plasma Cu, Zn, and erythrocyte GPx, Cu and Zn levels between patient and control groups. These findings indicate oxidative stress is present in patients of CRF, and may serve to establish a simple protocol for evaluation of renal function.

  3. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.

    PubMed

    Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg

    2017-01-15

    Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (E H ), pH, iron (Fe), manganese (Mn), sulfate (SO 4 2- ), chloride (Cl - ), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu 2+ to Cu 1+ . Mobilization of Se was high under low E H in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO 4 2- in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with E H and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into account due to increased mobilization and the potential environmental risks associated with food security in utilizing these soils for flooded agricultural and fisheries systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Essential trace elements in milk and blood serum of lactating donkeys as affected by lactation stage and dietary supplementation with trace elements.

    PubMed

    Fantuz, F; Ferraro, S; Todini, L; Mariani, P; Piloni, R; Salimei, E

    2013-11-01

    The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (-38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions, the mineral profile of donkey milk was not dependent on dietary TE supply.

  5. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  6. Chemometric analysis of voltammetric data on metal ion binding by selenocystine.

    PubMed

    Gusmão, Rui; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2012-06-28

    The behavior of selenocystine (SeCyst) alone or in the presence of various metal ions (Bi(3+), Cd(2+), Co(2+), Cu(2+), Cr(3+), Ni(2+), Pb(2+), and Zn(2+)) was studied using differential pulse voltammetry (DPV) over a wide pH range. Voltammetric data matrices were analyzed using chemometric tools recently developed for nonlinear data: pHfit and Gaussian Peak Adjustment (GPA). Under the experimental conditions tested, no evidence was found for the formation of metal complexes with Bi(3+), Cu(2+), Cr(3+), and Pb(2+). In contrast, SeCyst formed electroinactive complexes with Co(2+) and Ni(2+) and kinetically inert but electroactive complexes with Cd(2+) and Zn(2+). Titrations with Cd(2+), Co(2+), Ni(2+), and Zn(2+) produced data that were reasonably consistent with the formation of stable 1:1 M(SeCyst) complexes.

  7. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V.; Pillai, Vijayamohanan K.

    2014-07-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr06917f

  8. [The eye and nutrition].

    PubMed

    Amemiya, T

    1999-12-01

    To examine the effect of vitamins and trace elements on ocular tissue. Rats or mice were fed diets deficient in the trace elements Zn, Cu, Mn, Se, Mg, and Cr or in vitamins A, B12, C, and E. In some rats Al and vitamin A were injected in excessive amounts. We studied the conjunctiva, cornea, retina, and optic nerve with a light microscope, transmission and scanning electron microscopes, an energy dispersive X-ray analyser, and an ion microscope. Histochemical, cytochemical, and immunohistochemical techniques were applied to the pathological specimens. Deficiencies of Zn, Cu, Mn, and vitamins A, C and E caused a loss of goblet cells in the conjunctiva and a prominent decrease of microvilli and microplicae in the conjunctiva and cornea. The elements in the goblet cells were changed in these conditions. In addition, epithelial cells showed poor fibrous development and abnormal distribution of chromatin in the nucleus. Zn, Cu, Mn, and vitamins A and E deficiencies caused photoreceptor cells to degenerate and disappear. Se deficiency reduced the horizontal and amacrine cells. Vitamin B12 deficiency reduced nerve fibers in the nerve fiber layer of the retina. Mg deficiency induced multifocal necrosis in the retinal pigment epithelium and apoptotic nuclear changes in the photoreceptor cells. Cr deficiency showed abnormal phagocytosis of the photoreceptor outer segment discs in the retinal pigment epithelium. Vitamin B12 was found to be related to the circadian rhythm in the retina. Deficiencies of Zn, Cu, Mn, and vitamins A, B12, and E induced degeneration and disappearance of myelin lamellae in the myelinated optic nerve fibers. In hypervitaminosis A, lipid droplets appeared in the retinal pigment epithelium and alcohol dehydrogenase disappeared in the retinal pigment epithelium and photoreceptor outer segments. Excessive Al was toxic to the retina, which showed disappearance of photoreceptor cells. Al deposits were seen in dendrites and neurons in the outer plexiform layer. Zn seemed to be necessary for corneal epithelial cell wound healing. Trace elements usually are contained in enzymes, which have many metabolic functions. They are related to synthesis and breakdown of many substances. Some trace elements such as Zn, Cu, Mn, and Se and vitamins including vitamins A, C, and E prevent peroxidation of lipids. Some vitamins have an affinity for specific tissues such as epithelial cells, nerve fibers, and neuronal cells and are needed for cell differentiation, development, and maintenance. Cu, Zn, Mn, Se, Mg, and Cr and vitamins A, B12, C, and E are necessary for maintenance of cellular structure and metabolism.

  9. The eye and nutrition

    PubMed

    Amemiya

    2000-05-01

    Purpose: To examine the effect of vitamins and trace elements on ocular tissue.Materials and Methods: Rats or mice were fed diets deficient in the trace elements Zn, Cu, Mn, Se, Mg, and Cr or in vitamins A, B(12), C, and E. In some rats Al and vitamin A were injected in excessive amounts. We studied the conjunctiva, cornea, retina, and optic nerve with a light microscope, transmission and scanning electron microscopes, an energy dispersive X-ray analyzer, and an ion microscope. Histochemical, cytochemical, and immunohistochemical techniques were applied to the pathological specimens.Results: Deficiencies of Zn, Cu, Mn, and vitamins A, C and E caused a loss of goblet cells in the conjunctiva and a prominent decrease of microvilli and microplicae in the conjunctiva and cornea. The elements in the goblet cells were changed in these conditions. In addition, epithelial cells showed poor fibrous development and abnormal distribution of chromatin in the nucleus.Zn, Cu, Mn, and vitamins A and E deficiencies caused photoreceptor cells to degenerate and disappear. Se deficiency reduced the horizontal and amacrine cells. Vitamin B(12) deficiency reduced nerve fibers in the nerve fiber layer of the retina. Mg deficiency induced multifocal necrosis in the retinal pigment epithelium and apoptotic nuclear changes in the photoreceptor cells. Cr deficiency showed abnormal phagocytosis of the photoreceptor outer segment discs in the retinal pigment epithelium. Vitamin B(12) was found to be related to the circadian rhythm in the retina.Deficiencies of Zn, Cu, Mn, and vitamins A, B(12), and E induced degeneration and disappearance of myelin lamellae in the myelinated optic nerve fibers.In hypervitaminosis A, lipid droplets appeared in the retinal pigment epithelium and alcohol dehydrogenase disappeared in the retinal pigment epithelium and photoreceptor outer segments. Excessive Al was toxic to the retina, which showed disappearance of photoreceptor cells. Al deposits were seen in dendrites and neurons in the outer plexiform layer.Zn seemed to be necessary for corneal epithelial cell wound healing.Discussion: Trace elements usually are contained in enzymes, which have many metabolic functions. They are related to synthesis and breakdown of many substances. Some trace elements such as Zn, Cu, Mn, and Se and vitamins including vitamins A, C, and E prevent peroxidation of lipids. Some vitamins have an affinity for specific tissues such as epithelial cells, nerve fibers, and neuronal cells and are needed for cell differentiation, development, and maintenance.Conclusion: Cu, Zn, Mn, Se, Mg, and Cr and vitamins A, B(12), C, and E are necessary for maintenance of cellular structure and metabolism.

  10. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    PubMed

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  11. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published literature for COGO, NSHO, and AGWT. Se concentrations in liver tissue for all 3 species were below the 10 ppm, ww threshold suggested for potential harmful effects in non-breeding ducks. Cd, Cu, and Zn concentrations in liver tissues were generally within normal background levels for all 3 species. IFPBM was inversely correlated with Se (r = -0.29) in COGO, Cu (r = -0.30) and Zn (r = -0.32) in NSHO, and with Zn (r = -0.62) in AGWT. Abdominal fat mass was inversely correlated with Se (r = -0.32) in COGO, Cu (r = -0.23) and Zn (r = -0.21) in NSHO, and with Zn (r = -0.81) in AGWT. Spleen mass was inversely correlated with Hg (r = -0.42) in COGO, and Se (r = -0.36) in AGWT. Liver mass was inversely correlated with Hg (r = -0.56) and Zn (r = -0.71) in AGWT, and with Se (r = -0.47) in NSHO. Pancreas mass was inversely correlated with Zn in (r = -0.70) AGWT. Our results indicate GSL waterfowl may experience reduced body condition due to environmental contaminants. However, these relationships should be evaluated in other annual cycle periods and GSL waterbirds. Contaminant pathways to waterfowl need to be elucidated and water quality standards for GSL should be developed. Finally, human consumption of COGO and NSHO from GSL should be limited.

  12. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process.

    PubMed

    Liu, Fangyang; Zeng, Fangqin; Song, Ning; Jiang, Liangxing; Han, Zili; Su, Zhenghua; Yan, Chang; Wen, Xiaoming; Hao, Xiaojing; Liu, Yexiang

    2015-07-08

    A facile sol-gel and selenization process has been demonstrated to fabricate high-quality single-phase earth abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaic absorbers. The structure and band gap of the fabricated CZTSSe can be readily tuned by varying the [S]/([S] + [Se]) ratios via selenization condition control. The effects of [S]/([S] + [Se]) ratio on device performance have been presented. The best device shows 8.25% total area efficiency without antireflection coating. Low fill factor is the main limitation for the current device efficiency compared to record efficiency device due to high series resistance and interface recombination. By improving film uniformity, eliminating voids, and reducing the Mo(S,Se)2 interfacial layer, a further boost of the device efficiency is expected, enabling the proposed process for fabricating one of the most promising candidates for kesterite solar cells.

  13. Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B.

    2011-06-01

    Energy band alignments between CdS and Cu2ZnSn(SxSe1-x)4 (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  14. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.

    PubMed

    Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas

    2013-11-07

    The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.

  15. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    PubMed

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  16. Effect of Mg incorporation on solution-processed kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Caballero, Raquel; Haass, Stefan G.; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E.

    2018-01-01

    The introduction of the alkaline-earth element Mg into Cu2ZnSn(S,Se)4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu2Zn1-xMgxSn(S,Se)4 absorber layers with variable Mg content x=0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu2SnSe3, MgSe2, MgSe and SnSe2 occurs in agreement with literature predictions. A lower Mg content of x=0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration NCV of 1 x 1016 cm-3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  17. Serum trace elements in obese women with or without diabetes

    PubMed Central

    Yerlikaya, F. Hümeyra; Toker, Aysun; Arıbaş, Alpay

    2013-01-01

    Background & objectives: Relationship of trace elements with obesity and diabetes is complex, alterations in their metabolism can be induced by the diseases and their complications. To study the role of the trace elements in diabetes and obesity, serum trace elements levels (Cr, Se, Fe, Zn, Cu and Mn) were measured in obese women with or without diabetes as well as healthy women. Further, correlation between serum trace elements levels and glucose, insulin, homeostasis model assessment (HOMA-IR), glycated haemoglobin (HbA1c), body mass index (BMI), waist circumferences, waist -to -hip ratio and high-sensitivity C-reactive protein(hsCRP) were also determined in these women. Methods: This study was performed with morbidly obese (BMI >40 kg/m2) women with diabetes (n=41), without diabetes (n=45) and 50 healthly non obese women. Anthropometric measurements were taken and levels of serum Zn, Cr, Fe Cu and Mn were determined. Biochemical parameters included serum glucose, insulin, lipids, haemoglobin, hsCRP and HbA1C. Results: The levels of Zn (P<0.001), Mn (P<0.05), Fe (P<0.05) were significantly lower and the level of Cu (P<0.001) and Cu / Zn ratio (P<0.05) were significantly higher in the diabetic obese women than those of the healthy women. Also, the levels of Zn and Fe were significantly lower and the levels of Cu were significantly higher in the non diabetic obese women than those of the healthy group. Serum Zn levels negatively and serum Cu levels positively correlated with anthropometric values in diabetic and non diabetic obese women. Further, serum Zn, Mn and Cr levels negatively correlated and serum Se levels positively correlated glycaemia control parameters in diabetic obese women. In addition, serum Zn levels negatively correlated with hsCRP in diabetic and nondiabetic obese females. Interpretation & conclusions: Our findings showed significant association between Zn and Fe deficiencies and obesity. Also, obese women with diabetes may be at a greater risk of developing imbalances and deficiencies of trace elements compared with obese women without diabetes. PMID:23563378

  18. Relative populations of excited levels within the ground configuration of Si-like Cu, Zn, Ge and Se ions

    NASA Technical Reports Server (NTRS)

    Datla, R. U.; Roberts, J. R.; Bhatia, A. K.

    1991-01-01

    Populations of 3p2 1D2, 3P1, 3P2 levels in Si-like Cu, Zn, Ge, and Se ions have been deduced from the measurements of absolute intensities of magnetic dipole transitions within the 3s2 3p2 ground configuration. The measured population ratios are compared with theoretical calculations based on the distorted-wave approximation for the electron collisions and a semiclassical approximation for the proton collisions. The observed deviation from the statistical distribution for the excited-level populations within the ground configuration along the silicon isoelectronic sequence is in agreement with theoretical prediction.

  19. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  20. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  1. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers.

    PubMed

    Genther, O N; Hansen, S L

    2014-02-01

    Trace minerals (TM) are vital to health and growth of livestock, but low dietary concentrations and dietary antagonists may reduce mineral status and feeder cattle TM status is usually unknown at arrival. The objective of this study was to examine the effect of TM status on response to mineral injection in beef cattle. Forty steers were equally assigned to diets for an 84-d depletion period: control (CON; supplemental Cu, Mn, Se, and Zn) or deficient (DEF; no supplemental Cu, Mn, Se, or Zn plus Fe and Mo as TM antagonists). Lesser liver Cu and Se concentrations (79.0 ± 11.60 and 1.66 ± 0.080 mg/kg DM, respectively) in DEF steers compared with CON steers (228.8 ± 11.60 and 2.41 ± 0.080 mg/kg DM, respectively) on d 71 of depletion indicated mild deficiencies of these TM (P < 0.001). On d 1 of the 85-d repletion period, 10 steers within each dietary treatment were injected with sterilized saline (SAL) or Multimin90 (MM), containing 15, 10, 5, and 60 mg/mL of Cu, Mn, Se, and Zn, respectively, at a dose of 1 mL/68 kg BW. All steers were fed the same repletion diet supplemented with Cu, Mn, Se, and Zn to meet or exceed NRC recommendations. Blood was collected on d 0 and 1, and blood and liver biopsies were collected on d 8, 15, 29, 57, and 85 postinjection. Red blood cell lysate manganese-superoxide dismutase activity was greater in MM (P = 0.02), suggesting incorporation of injectable TM into a biological process. The increase in liver Se in response to MM was greater in CON vs. DEF (P = 0.02), suggesting TM from injection were used rather than stored in DEF steers. Liver Se and Cu (P < 0.05) were elevated through at least d 30 by MM. Dietary TM deficiency decreased neutrophil bacteria killing ability and increased myeloperoxidase (MPO) degranulation (P < 0.04) as measured on d 0, 1, 13, and 14 during the repletion period while injection had no impact. Within CON animals, total MPO was greater in animals that received TM injection, but injection did not affect MPO within DEF steers (P = 0.007). Overall, TM from an injectable mineral were used differently between TM adequate and mildly deficient steers.

  2. Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle.

    PubMed

    Bicalho, M L S; Lima, F S; Ganda, E K; Foditsch, C; Meira, E B S; Machado, V S; Teixeira, A G V; Oikonomou, G; Gilbert, R O; Bicalho, R C

    2014-07-01

    The objective of this study was to evaluate the relationship between selected minerals' serum levels, energy metabolites, oxidative stress indicators, IL-8 and haptoglobin levels, and the potential for uterine diseases. Additionally, we investigated the effect of injectable trace mineral supplementation (ITMS) on metabolism, immune function, and animal health under field conditions involving a dairy herd with high milk production. The study was conducted in 1 dairy farm located near Ithaca, New York, with 270 multiparous cows were enrolled from October 3, 2012 until January 10, 2013. Cows were randomly allocated into 1 of 2 treatments groups: ITMS or control. Cows randomly assigned to the ITMS group received 2 injections of trace minerals at 230 and 260 d of gestation; each injection contained 300 mg of Zn, 50mg of Mn, 25mg of Se, and 75 mg of Cu. Retained placenta (RP) and metritis were diagnosed and treated by trained farm personnel. Clinical endometritis evaluation was performed by the investigators. Blood mineral levels, plasma nonesterified fatty acids and serum β-hydroxybutyrate concentrations, plasma IL-8 concentrations, serum haptoglobin concentration, and serum superoxidase dismutase and plasma glutathione peroxidase activities were measured at various time points before and after calving. Four groups of mixed general linear models were fitted to the data using MIXED procedure of SAS. Injectable trace mineral-supplemented cows had increased serum concentration of Cu, Se, and Zn. Conversely, ITMS did not affect energy metabolites or immune and oxidative stress parameters. Serum concentration of Ca, Cu, K, Mg, Mo, Ps, Pt, Se, and Zn varied according to days relative to parturition. Cows with RP had reduced serum concentrations of Ca, Mg, Mo, and Zn when compared with cows without RP. Cows affected with metritis had significantly lower serum concentrations of Ca, Mo, soluble P, total P, Se, and Zn than nonaffected cows. Serum concentration of Ca, Cu, Mo, and Zn were reduced in cows diagnosed with endometritis in comparison to nonaffected ones. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Impact of the deposition conditions of buffer and windows layers on lowering the metastability effects in Cu(In,Ga)Se2/Zn(S,O)-based solar cell

    NASA Astrophysics Data System (ADS)

    Naghavi, Negar; Hildebrandt, Thibaud; Bouttemy, Muriel; Etcheberry, Arnaud; Lincot, Daniel

    2016-02-01

    The highest and most reproducible (Cu(In,Ga)Se2 (CIGSe) based solar-cell efficiencies are obtained by use of a very thin n-type CdS layer deposited by chemical bath deposition (CBD). However because of both Cadmium's adverse environmental impact and the narrow bandgap of CdS (2.4-2.5 eV) one of the major objectives in the field of CIGSe technology remains the development and implementation in the production line of Cd-free buffer layers. The CBDZn( S,O) remains one the most studied buffer layer for replacing the CdS in Cu(In,Ga)Se2-based solar cells and has already demonstrated its potential to lead to high-efficiency solar cells up to 22.3%. However one of the key issue to implement a CBD-Zn(S,O) process in a CIGSe production line is the cells stability, which depends both on the deposition conditions of CBD-Zn(S,O) and on a good band alignment between CIGSe/Zn(S,O)/windows layers. The most common window layers applied in CIGSe solar cells consist of two layers : a thin (50-100 nm) and highly resistive i-ZnO layer deposited by magnetron sputtering and a transparent conducting 300-500 nm ZnO:Al layer. In the case of CBD-Zn(S,O) buffer layer, the nature and deposition conditions of both Zn(S,O) and the undoped window layer can strongly influence the performance and stability of cells. The present contribution will be specially focused on the effect of condition growth of CBD-Zn(S,O) buffer layers and the impact of the composition and deposition conditions of the undoped window layers such as ZnxMgyO or ZnxSnyO on the stability and performance of these solar cells.

  4. Reduced Cu(InGa)Se 2 Thickness in Solar Cells Using a Superstrate Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafarman, William N.

    This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se 2 manufacturing by reducing the thickness of the Cu(InGa)Se 2 absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se 2 thicknesses less than 1 µm. The primary objective wasmore » to demonstrate a Cu(InGa)Se 2 cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se 2 deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se 2 but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light is incident through the substrate into the back of the absorber layer. The primary junction is then formed after Cu(InGa)Se 2 deposition. This allows the potential benefits of superstrate cells for optical enhancement while maintaining processing advantages of the substrate configuration and avoiding the harmful effects of high temperature deposition on p-n junction formation. Backwall devices have outperformed substrate cells at absorber thicknesses of 0.1-0.5 µm through enhanced JSC due to easy incorporation of a Ag reflector and, with light incident on the absorber, the elimination of parasitic absorption in the CdS buffer. An efficiency of 9.7% has been achieved for a backwall Cu(InGa)Se 2 device with absorber thickness ~0.4 μm. A critical achievement that enabled implementation of the backwall cell was the development of a transparent back contact using MoO 3 or WO 3. Processes for controlled deposition of each material by reactive rf sputtering from metal targets were developed. These contacts have wide bandgaps making them well-suited for application as contacts for backwall devices as well as potential use in bifacial cells and as the top cell of tandem CuInSe 2-based devices. Optical enhancement will be critical for further improvements. Wet chemical texturing of ZnO films has been developed for a simple, low cost light-trapping scheme for backwall superstrate devices to enhance long wavelength quantum efficiency. An aqueous oxalic acid etch was developed and found to strongly texture sputtered ZnO with high haze ≈ 0.9 observed across the whole spectrum. And finally, advanced optical models have been developed to assist the characterization and optimization of Cu(InGa)Se 2 cells with thin absorbers« less

  5. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran.

    PubMed

    Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah

    2017-04-01

    This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polaronic transport in Ag-based quaternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy; Woods, Lilia M.; Nolas, George S.

    2017-09-01

    Low temperature resistivity measurements on dense polycrystalline quaternary chalcogenides Ag2+xZn1-xSnSe4, with x = 0, 0.1, and 0.3, indicate polaronic type transport which we analyze employing a two-component Holstein model based on itinerant and localized polaron contributions. Electronic structure property calculations via density functional theory simulations on Ag2ZnSnSe4 for both energetically similar kesterite and stannite structure types were also performed in order to compare our results to those of the compositionally similar but well known Cu2ZnSnSe4. This theoretical comparison is crucial in understanding the bonding that results in polaronic type transport for Ag2ZnSnSe4, as well as the structural and electronic properties of both crystal structure types. In addition to possessing this unique electronic transport, the thermal conductivity of Ag2ZnSnSe4 is low and decreases with increasing silver content. This work reveals unique structure-property relationships in materials that continue to be of interest for thermoelectric and photovoltaic applications.

  7. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    DOEpatents

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  8. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Role of Anionogenic Elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) In The Formation of Technogenic Geochemical Anomalies

    NASA Astrophysics Data System (ADS)

    Abrosimova, Natalya; Bortnikova, Svetlana

    2017-12-01

    The study was conducted on the example of sulphide-containing mine tailings with a varying amount of sulphide and arsenide minerals, from three distinct tailings dumps situated in Russia: Karabash Mine Site, South Ural; Komsomolsk tailings impoundment, Kemerovo region; Khovu-Aksy mine site, Tuva Republic. The aim of the study was to compare the mobility of anionogenic elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) and their role in migration, precipitation, and concentration of metals during the water-tailings interaction depending on the physicochemical parameters (pH, Eh) of the medium and the mineral composition of the waste material. Using slightly acidic leaching experiments the quantitative estimation of mobile forms of elements is given. Based on the compositions of the obtained water leaching solutions, aqueous speciation of chemical elements and saturation index of key minerals in the experimental solutions were calculated. The results of calculating forms of chemical elements made it possible to construct series of mobility of metals and metalloids in solutions with different physicochemical parameters. In the alkaline conditions, Sb>As>Cd>Cu>Zn>Fe>Pb, when the medium is acidified, the series changes, As>Cd>Cu>Zn>Pb>Sb>Fe in weakly alkaline conditions, Sb>Mn>As>Zn>Fe however, when the medium is acidified, the series changes to Cd>Mn>Pb>Cu>Zn>Sb>Ni>Fe>As under acidic conditions Cd>Cu>Zn>Pb>Mn>Fe>Se>Mo>Sb>As>Ni. The mineral composition of the tailings was investigated, which will allow to determine the sources of toxic elements and to understand the processes of secondary mineral formation in technogenic objects. Arsenopyrite and pyrite predominate in the heavy fraction of the Komsomolsk tailings impoundment, arsenopyrite grains are often corroded, Sb contained in Sb oxide and Sb sulfide. The pyrite and barite are determined in the solid matter of the Karabash Mine Site and chalcopyrite, sphalerite, tennantite Cu3AsS3, and tetrahedrite (Cu,Fe)12Sb4S13 are determined in the form of inclusions in grains of pyrite.

  10. Levels of Essential Elements in Different Medicinal Plants Determined by Using Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    2018-01-01

    The objective of this study was to investigate the content of essential elements in medicinal plants in the Kingdom of Saudi Arabia (KSA). Five different medical plants (mahareeb (Cymbopogon schoenanthus), sheeh (Artemisia vulgaris), harjal (Cynanchum argel delile), nabipoot (Equisetum arvense), and cafmariam (Vitex agnus-castus)) were collected from Madina city in the KSA. Five elements Fe, Mn, Zn, Cu, and Se were determined by using inductively coupled plasma mass spectrometry (ICP-MS). Fe levels were the highest and Se levels were the lowest in all plants. The range levels of all elements in all plants were as follows: Fe 193.4–1757.9, Mn 23.6–143.7, Zn 15.4–32.7, Se 0.13–0.92, and Cu 11.3–21.8 µg/g. Intakes of essential elements from the medical plants in infusion were calculated: Fe 4.6–13.4, Mn 6.7–123.2, Zn 7.0–42.7, Se 0.14–1.5, and Cu 1.5–5.0 µg/dose. The calculated intakes of essential elements for all plants did not exceed the daily intake set by the World Health Organization (WHO) and European Food Safety Authority (EFSA). These medicinal plants may be useful sources of essential elements, which are vital for health. PMID:29744234

  11. Potential Fluctuations and Localization Effects in CZTS Single Crystals, as Revealed by Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri

    2018-03-01

    Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.

  12. Enhanced Thermoelectric Properties of Cu 2ZnSnSe 4 with Ga-doping

    DOE PAGES

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; ...

    2015-08-10

    Gallium doped Cu 2ZnSnSe 4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S 2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are partmore » of the continuing effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.« less

  13. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    PubMed

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  14. Determination of Zn/Cu ratio and oligoelements in serum samples by total reflection X-ray fluorescence spectrometry for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Marcó P., L. M.; Jiménez, E.; Hernández C., E. A.; Rojas, A.; Greaves, E. D.

    2001-11-01

    The method of quantification using the Compton peak as an internal standard, developed in a previous work, was applied to the routine determination of Fe, Cu, Zn and Se in serum samples from normal individuals and cancer patients by total reflection X-ray fluorescence spectrometry. Samples were classified according to age and sex of the donor, in order to determine reference values for normal individuals. Results indicate that the Zn/Cu ratio and the Cu concentration could prove to be useful tools for cancer diagnosis. Significant differences in these parameters between the normal and cancer group were found for all age ranges. The multielemental character of the technique, coupled with the small amounts of sample required and the short analysis time make it a valuable tool in clinical analysis.

  15. Effect of Magnesium Incorporation on Solution-Processed Kesterite Solar Cells.

    PubMed

    Caballero, Raquel; Haass, Stefan G; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E

    2018-01-01

    The introduction of the alkaline-earth element Magnesium (Mg) into Cu 2 ZnSn(S,Se) 4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu 2 Zn 1-x Mg x Sn(S,Se) 4 absorber layers with variable Mg content x = 0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu 2 SnSe 3 , MgSe 2 , MgSe and SnSe 2 occurs in agreement with literature predictions. A lower Mg content of x = 0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration N CV of 1 × 10 16 cm -3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  16. Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.

    2014-01-01

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  17. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  18. Regulation of Zn/Sn ratio in kesterite absorbers to boost 10% efficiency of Cu2ZnSn(S, Se)4 solar cells

    NASA Astrophysics Data System (ADS)

    Min, Xue; Shi, Jiangjian; Guo, Linbao; Yu, Qing; Zhang, Pengpeng; Tian, Qingwen; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo; Wu, Sixin

    2018-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51627803, 51402348, 51421002, 51372270, and 51372272) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

  19. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination. With these techniques, the extension of the depletion layer from CdSe into ZnO was determined to be vital to suppression of interfacial recombination. However, depletion of the ZnO also restricted the effective diffusion core for electrons and slowed their transport. Thus, materials and geometries should be chosen to allow for a depletion layer that suppresses interfacial recombination without impeding electron transport to the point that it is detrimental to cell performance. Thin film solar cells are another promising technology that can reduce costs by relaxing material processing requirements. CuInxGa (1-x)Se (CIGS) is a well studied thin film solar cell material that has achieved good efficiencies of 22.6%. However, use of rare elements raise concerns over the use of CIGS for global power production. CuSbS2 shares chemistry with CuInSe2 and also presents desirable properties for thin film absorbers such as optimal band gap (1.5 eV), high absorption coefficient, and Earth-abundant and non-toxic elements. Despite the promise of CuSbS2, direct characterization of the material for solar cell application is scarce in the literature. CuSbS2 nanoplates were synthesized by a colloidal hot-injection method at 220 °C in oleylamine. The CuSbS2 platelets synthesized for 30 minutes had dimensions of 300 nm by 400 nm with a thickness of 50 nm and were capped with the insulating oleylamine synthesis ligand. The oleylamine synthesis ligand provides control over nanocrystal growth but is detrimental to intercrystal charge transport that is necessary for optoelectronic device applications. Solid-state and solution phase ligand exchange of oleylamine with S2- were used to fabricate mesoporous films of CuSbS2 nanoplates for application in solar cells. Exchange of the synthesis ligand with S2- resulted in a two order of magnitude increase in 4-point probe conductivity. Photoexcited carrier lifetimes of 1.4 ns were measured by time-resolved terahertz spectroscopy, indicating potential for CuSbS2 as a solar cell absorber material.

  20. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    PubMed

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  2. Modification of defects and potential fluctuations in slow-cooled and quenched Cu2ZnSnSe4 single crystals

    NASA Astrophysics Data System (ADS)

    Bishop, Douglas M.; McCandless, Brian; Gershon, Talia; Lloyd, Michael A.; Haight, Richard; Birkmire, Robert

    2017-02-01

    Recent literature reports have shown the ability to manipulate Cu-Zn cation ordering for Cu2ZnSnSe4 (CZTSe) via low temperature treatments. Theoretical arguments suggest that one of the major roadblocks to higher VOC—significant band tailing—could be improved with increased cation order; however, few direct measurements have been reported and significant device improvements have not yet been realized. This report investigates electrical properties, defects, and devices from quenched and slow-cooled single crystals of CZTSe. The extent of disorder was characterized by Raman spectroscopy as well as x-ray diffraction, where the change in Cu-Zn order can be detected by a changing c/a ratio. Quenched samples show higher acceptor concentrations, lower hole mobilities, and a lower-energy photoluminescence (PL) peak than crystals cooled at slower rates, consistent with a reduction in the bandgap. In addition, samples quenched at the highest temperatures showed lower PL yield consistent with higher quantities of deep defects. Devices fabricated using slow-cooled CZTSe single crystals showed improved efficiencies, most notably with increased VOC; however, low temperature intensity-dependent photoluminescence measurements continue to indicate the existence of potential fluctuations. We discuss the possibility that potential fluctuations in slow-cooled samples may be related to the inability to achieve a long range order of the Cu-Zn sub-lattice resulting in local regions of high and low levels of cation order, and consequent local variations in the bandgap. The presence of significant potential fluctuations, even after the slow-cooling step, suggests the difficulty in eliminating band-tailing in this system, and thus, additional approaches may be needed for significant reduction of the VOC deficit.

  3. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  4. Subcellular distribution of trace elements in the liver of sea turtles.

    PubMed

    Anan, Yasumi; Kunito, Takashi; Sakai, Haruya; Tanabe, Shinsuke

    2002-01-01

    Subcellular distribution of Cu, Zn, Se, Rb, Mo, Ag, Cd and Pb was determined in the liver of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Japan. Also, hepatic cytosol from sea turtles was applied on a Sephadex G-75 column and elution profiles of trace elements were examined. Copper, Zn, Se, Rb, Ag and Cd were largely present in cytosol in the liver of both species, indicating that cytosol was the significant site for the accumulation of these elements in sea turtles. In contrast, Mo and Pb were accumulated specifically in nuclear and mitochondrial fraction and microsomal fraction, respectively. Gel filtration analysis showed that Cu, Zn, Ag and Cd were bound to metallothionein (MT) in the cytosol of sea turtles. To our knowledge, this is the first report on the association of trace elements with MT in sea turtles.

  5. Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts

    PubMed Central

    Karamać, Magdalena

    2009-01-01

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by ~90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested. PMID:20054482

  6. Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.

    PubMed

    Karamać, Magdalena

    2009-12-22

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.

  7. Comparison of serum trace element levels in patients with or without pre-eclampsia.

    PubMed

    Farzin, Leila; Sajadi, Fattaneh

    2012-10-01

    In developing countries, nutritional deficiency of essential trace elements is a common health problem, particularly among pregnant women because of increased requirements of various nutrients. Accordingly, this study was initiated to compare trace elements status in women with or without pre-eclampsia. In this study, serum trace elements including zinc (Zn), selenium (Se), copper (Cu), calcium (Ca) and magnesium (Mg) were determined by using atomic absorption spectrometry (AAS) in 60 patients and 60 healthy subjects. There was no significant difference in the values of Cu between two groups (P > 0.05). A significant difference in Zn, Se, Ca and Mg levels were observed between patients with pre-eclampsia and control group (P < 0.001, P<0.01, P<0.01 and P<0.001, respectively). Zn, Se, Ca and Mg levels were found to be 76.49 ± 17.62 μg/ dl, 8.82 ± 2.10 μg/ dl, 8.65 ± 2.14 mg/dl and 1.51 ± 0.34 mg/dl in Pre-eclamptic cases, and these values were found statistically lower compared to the controls (100.61 ± 20.12 μg/dl, 10.47 ± 2.78 μg/dl, 9.77 ± 3.02 mg/dl and 1.78 ± 0.27 mg/dl, respectively). While Cu levels were 118.28 ± 16.92 and 116.55 ± 15.23 μg/dl in the patients and the healthy subjects, respectively. In addition, no significant difference was found between two groups with respect to Hemoglobin Concentration (HbC) and Total White Blood Cell Count (TWBC) (P>0.05). Our findings indicate that the levels of Zn, Se, Ca and Mg are significantly altered in pregnant women with pre-eclampsia. This research shows that these deficiencies can not due to hemodilution.

  8. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  9. CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1- x N Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh

    2017-03-01

    Cu2ZnSnSe4 (CZTSe) films for solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target, followed by two-step post-selenization at 500-600°C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. The p-type CZTSe and the n-type In x Ga1- x N films were characterized. The properties of CZTSe changed with the selenization temperature and the In x Ga1- x N with its indium content. With the CdS-free modeling for a solar cell structure, the In0.15Ga0.85N/In0.3Ga0.7N/CZTSe solar cell device had an improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. Current density of ˜48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1% are reported. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves that sputtered III-nitride films have their merits.

  10. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  11. Electronically active defects in the Cu2ZnSn(Se,S)4 alloys as revealed by transient photocapacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, D. Westley; Warren, Charles W.; Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.; Cohen, J. David

    2012-10-01

    Transient photocapacitance (TPC) spectra were obtained on a series of Cu2ZnSn(Se,S)4 absorber devices with varying Se:S ratios, providing bandgaps (Eg) between 1 eV and 1.5 eV. Efficiencies varied between 8.3% and 9.3% for devices with Eg ≤ 1.2 eV and were near 6.5% for devices with Eg ≥ 1.4 eV. The TPC spectra revealed a band-tail region with Urbach energies at or below 18 meV for the first group, but in the 25-30 meV range for the higher band-gap samples. A deeper defect band centered near 0.8 eV was also observed in most samples. We identified a correlation between the Urbach energies and the voltage deficit in these devices.

  12. Roofing as a source of nonpoint water pollution.

    PubMed

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff.

  13. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

    PubMed

    Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck

    2015-08-12

    We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

  14. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell

    PubMed Central

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-01-01

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>1020 cm−3) and mobilities (up to 20 cm2 V−1 s−1) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell. PMID:25753657

  15. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell.

    PubMed

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-03-10

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>10(20) cm(-3)) and mobilities (up to 20 cm(2) V(-1) s(-1)) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell.

  16. Discrimination between mineralized and unmineralized alteration zones using primary geochemical haloes in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran

    NASA Astrophysics Data System (ADS)

    Parsapoor, A.; Khalili, M.; Maghami, M.

    2017-08-01

    Primary geochemical haloes were studied at the Darreh-Zar porphyry Cu-deposit, southern Iran. In terms of geochemical signatures, high K2O/Na2O enrichment, HREEs and HFSE's depletion in the potassic alteration, high (La/Sm)cn, (La/Yb)cn and (Gd/Yb)cn ratios in mineralized sericitic and potassic zones and notable depletion in the REEs content in argillic alteration is recognized. Further, Mg, Li, Sc, P enrichment and W depletion can serve to separate potassic alteration from the other altered zones, while (Eu/Eu*)cn and (Ce/Ce*)cn don't show pronounced changes in different alteration zones. The coupled positive Tl, Se, S, Rb, Co, Cs, Mo, K and negative Te, Ta, Ti, Sr, Rb, As, Bi, Ga, Hf, In, Mn, Zn and Zr anomalies can be adequately used in discriminating between the mineralized zones (potassic, chlorite-sericite and sericite alterations) and the barren (propylitic zone). The behavior of the trace elements on isocon diagrams reveal that HFSEs are depleted in mineralized altered zones and display variations in the amounts in the barren facies. Zonality index in the axial direction from drill holes 146 to 124 estimates the zonality sequence as Pb-Zn-Ag-Cu-Pb-Zn in the surface horizons. The calculated zonality in five drill holes and six levels indicates that the level of 550 m at the DH 117 in the central part of the area has the highest value (0.76) for Cu. The zonality sequence from the surface to the depth is variable and can be demonstrated as follow: DH 146: Pb-Zn-Cu-Mo-Ag; DH 137: Zn-Cu-Mo-Pb-Ag; DH 117: Ag-Zn-Pb-Mo-Cu; DH: 121: Cu-Mo-Zn-Ag-Pb; DH 136: Pb-Ag-Zn-Cu-Mo; DH 124: Zn-Mo-Cu-Pb-Ag. Available data of the enrichment factors shows different enrichment for copper and molybdenum (i.e. EF > 10), selenium and silver (i.e. EF > 5), tin and LREEs (i.e. 1 < EF < 5).

  17. Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth

    PubMed Central

    2018-01-01

    Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals. PMID:29569443

  18. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste

    USGS Publications Warehouse

    Al-Abed, S. R.; Hageman, P.L.; Jegadeesan, G.; Madhavan, N.; Allen, D.

    2006-01-01

    Evaluation of metal leaching using a single leach test such as the Toxicity Characteristic Leaching Procedure (TCLP) is often questionable. The pH, redox potential (Eh), particle size and contact time are critical variables in controlling metal stability, not accounted for in the TCLP. This paper compares the leaching behavior of metals in mineral processing waste via short-term extraction tests such as TCLP, Field Leach Test (FLT) used by USGS and deionized water extraction tests. Variation in the extracted amounts was attributed to the use of different particle sizes, extraction fluid and contact time. In the controlled pH experiments, maximum metal extraction was obtained at acidic pH for cationic heavy metals such as Cu, Pb and Zn, while desorption of Se from the waste resulted in high extract concentrations in the alkaline region. Precipitation of iron, caused by a pH increase, probably resulted in co-precipitation and immobilization of Cu, Pb and Zn in the alkaline pH region. A sequential extraction procedure was performed on the original waste and the solid residue from the Eh-pH experiments to determine the chemical speciation and distribution of the heavy metals. In the as-received waste, Cu existed predominantly in water soluble or sulfidic phases, with no binding to carbonates or iron oxides. Similar characteristics were observed for Pb and Zn, while Se existed mostly associated with iron oxides or sulfides. Adsorption/co-precipitation of Cu, Se and Pb on precipitated iron hydroxides was observed in the experimental solid residues, resulting in metal immobilization above pH 7.

  19. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    PubMed

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  20. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolas, George S., E-mail: gnolas@usf.edu; Hassan, M. Shafiq; Dong, Yongkwan

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficientmore » and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.« less

  1. Unique properties of halide perovskites as possible origins of the superior solar cell performance.

    PubMed

    Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa

    2014-07-16

    Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The role of Sb in solar cell material Cu 2ZnSnS 4

    DOE PAGES

    Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...

    2017-03-03

    In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu 2ZnSnS 4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe 2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, Sb Sn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration,more » Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less

  3. Obtaining Large Columnar CdTe Grains and Long Lifetime on CdSe, MgZnO, or CdS Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amarasinghe, Mahisha; Colegrove, Eric M; Moseley, John

    CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer canmore » be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro-optical applications. Computational simulations indicate that increasing grain size from 1 to 7 um can be equivalent to decreasing grain-boundary recombination velocity by three orders of magnitude. Here, large high-quality grains enable CdTe lifetimes exceeding 50 ns.« less

  4. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  5. Elastic and optical properties of Cu2ZnSn(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Camps, I.; Coutinho, J.; Mir, M.; da Cunha, A. F.; Rayson, M. J.; Briddon, P. R.

    2012-11-01

    Cu2ZnSn(S1 - xSex)4 (CZT(S, Se)) is emerging as a very credible alternative to CuIn1 - xGaxSe2 (CIGS) as the absorber layer for thin film solar cells. The former compound has the important advantage of using abundant Zn and Sn instead of the expensive In and Ga. A better understanding of the properties of CZT(S, Se) is being sought through experimental and theoretical means. Thus far, however, very little is known about the fundamental properties of the CZT(S, Se) alloys. In this work, theoretical studies on the structural, elastic, electronic and optical properties of CZT(S, Se) alloys through first-principles calculations are reported. We use a density functional code (aimpro), along with the Padé parametrization for the local density approximation to the exchange correlation potential. For the alloying calculations we employed 64 atom supercells (approximately cubic) with a 2 × 2 × 2 k-point sampling set. These supercells possess a total of 32 chalcogen species and the CZTSexS1 - x alloys are described by using the ordered alloy approximation. Accordingly, to create a perfectly diluted alloying host, the species type of the 32 chalcogen sites is selected randomly with uniform probability x and 1 - x for Se and S, respectively. Properties of alloys (structural, elastic, electronic and optical) are obtained by averaging the results of ten supercell configurations generated for each composition. For each configuration, lattice vectors and atomic positions were allowed to relax (although enforcing the tetragonal lattice type) and the Murnaghan equation of state was fitted to the total energy data. The results presented here permit a better understanding of the properties of the CZT(S, Se) alloys which in turn result in the design of more efficient solar cells.

  6. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

  7. Ethnic studies of dietary intakes of zinc, copper, iron, and calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, C.; Figueroa, M.; Tam, C.F.

    1986-01-01

    Immigrants, such as S.E. Asians who live in the L.A. area, often suffer high incidences of diseases. It is of interest to examine ethnic eating patterns whether they influence dietary Zn, Cu, Fe, Ca, protein and Kcal, which are essential for proper immune functions. Three-day dietary intake of adult ethnic groups, Asian(A)(N=18), Caucasian(C)(26), Black(B)(7), Latino(L)(12), Middle Easterner(ME)(9) and Filipino(F)(6) were analyzed for Zn, Cu, Fe, Ca, protein and Kcal by Ohio Data Base Foods II(ODBF) then statistically compared by PROPHET. Zn and Cu were also analyzed by hand calculation(HC). No statistical differences were observed for mean Zn between groups analyzedmore » by ODBF whereas HC of mean Zn between A vs C (A=11.3 +/- S.D.2.9 mg vs C=8.8 +/- 2.8, P<0.01) and A vs L (11.3+/-2.9 vs L=8.9+/-2.2, P<0.05) were statistically different. No differences were found for Cu between the groups. By ODBF, none of mean Cu or Zn met 2/3 RDA for any of the groups. For Fe, no differences were found between groups and only 50% of the subjects met 2/3 RDA. Significant differences were observed for Ca only between A vs C and B vs C. Both A and B had lower mean Ca than C. All groups had adequate protein. Mean Kcal of all groups were found to be at or about 2/3 RDA. Both insufficient Kcal and eating patterns contribute to inadequate Cu, Zn, and Fe intakes and hence may affect immune competency.« less

  8. Ecosystems supporting clusters of sporadic TSEs demonstrate excesses of the radical-generating divalent cation manganese and deficiencies of antioxidant co factors Cu, Se, Fe, Zn. Does a foreign cation substitution at prion protein's Cu domain initiate TSE?

    PubMed

    Purdey, M

    2000-02-01

    Analyses of food chains supporting isolated clusters of sporadic TSEs (CWD in N Colorado, scrapie in Iceland, CJD in Slovakia) demonstrate a consistent 2 1/2+ fold greater concentration of the pro-oxidant divalent cation, manganese (Mn), in relation to normal levels recorded in adjoining TSE-free localities. Deficiencies of the antioxidant co factors Cu/Se/Zn/Fe and Mg, P and Na were also consistently recorded in TSE foodchains. Similarities between the clinical/pathological profile of TSEs and Mn delayed psycho-neurotoxicity in miners are cited, and a novel theory generated which suggests that sporadic TSE results from early life dependence of TSE susceptible genotypes on ecosystems characterised by this specific pattern of mineral imbalance. Low Cu/Fe induces an excessive absorption of Mn in ruminants and an increased oxidation of Mn2+ into its pro oxidant species, Mn3+, which accumulates in mitochondria of CNS astrocytes in Mn SOD deficient genotypes. Deficiencies of scavenger co factors Cu/Zn/Se/Fe in the CNS permits Mn3+ initiated chain reactions of auto-oxidant mediated neuronal degeneration to proliferate, which, in turn, up-regulates the expression of the Cu-metalloprotein, prion protein (PrP). Once the rate of PrP turnover and its demand for Cu exceeds the already depleted supply of Cu within the CNS, PrP can no longer bind sufficient Cu to maintain its conformation. Mn3+ substitutes at the vacated Cu domain on PrP, thus priming up a latent capacity for lethal auto-oxidative activity to be carried along with PrP like a 'trojan horse'; where Mn 3+ serves as the integral 'infectious' transmissible component of the misfolded PrP-cation complex. The Mn overactivation of concanavalin A binding to glycoprotein and Mn-initiated autoxidation results in a diverse pathological profile involving receptor capping, aggregation/modification of CNS membrane/cytoskeletal proteins. TSE ensues. The BSE/nv CJD strain entails a 'synthetic' induction of the same CNS mineral disturbance, where 'in utero' exposure to Cu-chelating insecticides/Mn supplements accelerates the onset of a more virulent 'strain' of adolescent TSE. Copyright 2000 Harcourt Publishers Ltd.

  9. Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, Talal; El-Sorogy, Abdelbaset

    2017-05-01

    An assessment of marine pollution due to heavy metals was made to coastal sediments collected from Al-Khobar coastline, in the Arabian Gulf, Saudi Arabia by analyzing of Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Mo, Sr, Se, As, Fe, Co and Ni using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The results indicated that the distribution of most metals was largely controlled by inputs of terrigenous material and most strongly associated with distribution of Al in sediments. In general Sr, Cr, Zn, Cu, V, Hg, Mo and Se show severe enrichment factors. Average values of Cu and Hg highly exceed the ERL and the Canadian ISQG values. Average Ni was higher than the ERL and the ERM values. The severe enrichment of some metals in the studied sediment could be partially attributed to anthropogenic activities, notably oil spills from exploration, transportation and from saline water desalination plants in Al-Khobar coast, and other industrial activities in the region.

  10. Post-entry and volcanic contaminant abundances of zinc, copper, selenium, germanium and gallium in stratospheric micrometeorites

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1995-01-01

    Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.

  11. Acute and subacute response of iron, zinc, copper and selenium in pigs experimentally infected with Actinobacillus pleuropneumoniae.

    PubMed

    Humann-Ziehank, Esther; Menzel, Anne; Roehrig, Petra; Schwert, Barbara; Ganter, Martin; Hennig-Pauka, Isabel

    2014-10-01

    This study was performed to characterise the response of iron (Fe), zinc (Zn), copper (Cu) and selenium (Se) in bacterial-induced porcine acute phase reaction (APR). Twenty piglets were challenged by aerosolic infection with Actinobacillus pleuropneumoniae (A.pp.) serotype 2, ten piglets serving as controls. Blood sampling was done initially and at day 4 and 21 after infection, collection of liver tissue was done at day 21 (autopsy). A.pp.-infection caused fever and respiratory symptoms. APR at day 4 after infection was marked by an increase in total white blood cells, granulocytes and monocytes in whole blood samples and an increase in globulin/albumin ratio (G/A), α2-globulins, C-reactive protein, haptoglobin, ceruloplasmin (Cp), Cu and Se in serum. Concurrently, there was a decrease in haemoglobin (Hb) and packed cell volume (PCV) in whole blood as well as a decrease in albumin, transferrin, total iron binding capacity and Fe in serum and Zn in plasma. The subacute stage at day 21 was characterised by progressively increased concentrations of G/A, β-globulins and γ-globulins reflecting the specific immune reaction. Hb and PCV showed further decreases, all other parameters returned to the initial concentrations. Glutathione peroxidase activity in plasma and liver tissue remained unaffected by A.pp.-infection. The liver concentration (day 21) of Zn was found to be higher, that of Se was lower in the A.pp.-group, whereas hepatic concentrations of Cu and Fe were not affected by A.pp.-infection. In summary, the acute and subacute stages of A.pp.-infection were accurately characterised by the APR-related parameters. Se was only marginally affected by the A.pp.-infection. The elevated plasma Cu concentration may be a side effect of the transient hepatic induction of Cp synthesis. Zn responded, being distinctly reduced in plasma and probably having been sequestered in the liver tissue. Reduction in serum Fe can be regarded as an unspecific defence mechanism in A.pp.-infection to withdraw Fe from bacterial acquisition systems.

  12. Locating the electrical junctions in Cu(In,Ga)Se 2 and Cu 2ZnSnSe 4 solar cells by scanning capacitance spectroscopy

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moutinho, Helio; ...

    2016-08-09

    Here, we determined the electrical junction (EJ) locations in Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSnSe 4 (CZTS) solar cells with ~20-nm accuracy by developing scanning capacitance spectroscopy (SCS) applicable to the thin-film devices. Cross-sectional sample preparation for the SCS measurement was developed by high-energy ion milling at room temperature for polishing the cross section to make it flat, followed by low-energy ion milling at liquid nitrogen temperature for removing the damaged layer and subsequent annealing for growing a native oxide layer. The SCS shows distinct p-type, transitional, and n-type spectra across the devices, and the spectral features change rapidly withmore » location in the depletion region, which results in determining the EJ with ~20-nm resolution. We found an n-type CIGS in the region next to the CIGS/CdS interface; thus, the cell is a homojunction. The EJ is ~40 nm from the interface on the CIGS side. In contrast, such an n-type CZTS was not found in the CZTS/CdS cells. The EJ is ~20 nm from the CZTS/CdS interface, which is consistent with asymmetrical carrier concentrations of the p-CZTS and n-CdS in a heterojunction cell. Our results of unambiguously determination of the junction locations contribute significantly to understanding the large open-circuit voltage difference between CIGS and CZTS.« less

  13. A comparative study on charge carrier recombination across the junction region of Cu{sub 2}ZnSn(S,Se){sub 4} and Cu(In,Ga)Se{sub 2} thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halim, Mohammad Abdul, E-mail: halimtsukuba2012@gmail.com; Islam, Muhammad Monirul; Luo, Xianjia

    A comparative study with focusing on carrier recombination properties in Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) and the CuInGaSe{sub 2} (CIGS) solar cells has been carried out. For this purpose, electroluminescence (EL) and also bias-dependent time resolved photoluminescence (TRPL) using femtosecond (fs) laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decaymore » time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent V{sub OC} suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.« less

  14. Locating the electrical junctions in Cu(In,Ga)Se 2 and Cu 2ZnSnSe 4 solar cells by scanning capacitance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moutinho, Helio

    Here, we determined the electrical junction (EJ) locations in Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSnSe 4 (CZTS) solar cells with ~20-nm accuracy by developing scanning capacitance spectroscopy (SCS) applicable to the thin-film devices. Cross-sectional sample preparation for the SCS measurement was developed by high-energy ion milling at room temperature for polishing the cross section to make it flat, followed by low-energy ion milling at liquid nitrogen temperature for removing the damaged layer and subsequent annealing for growing a native oxide layer. The SCS shows distinct p-type, transitional, and n-type spectra across the devices, and the spectral features change rapidly withmore » location in the depletion region, which results in determining the EJ with ~20-nm resolution. We found an n-type CIGS in the region next to the CIGS/CdS interface; thus, the cell is a homojunction. The EJ is ~40 nm from the interface on the CIGS side. In contrast, such an n-type CZTS was not found in the CZTS/CdS cells. The EJ is ~20 nm from the CZTS/CdS interface, which is consistent with asymmetrical carrier concentrations of the p-CZTS and n-CdS in a heterojunction cell. Our results of unambiguously determination of the junction locations contribute significantly to understanding the large open-circuit voltage difference between CIGS and CZTS.« less

  15. Quantitative analysis of optical and recombination losses in Cu(In,Ga)Se{sub 2} thin-film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Lytvynenko, V. Yu.; Maslyanchuk, O. L.

    2016-04-15

    Optical and recombination losses in a Cu(In,Ga)Se{sub 2} thin-film solar cell with a band gap of 1.36–1.38 eV are theoretically analyzed. The optical transmittance of the ZnO and CdS layers through which the radiation penetrates into the absorbing layer is determined. Using optical constants, the optical loss caused by reflection at the interfaces (7.5%) and absorption in the ZnO and CdS layers (10.2%) are found. To calculate the recombination loss, the spectral distribution of the quantum efficiency of CdS/CuIn{sub 1–x}Ga{sub x}Se{sub 2} is investigated. It is demonstrated that, taking the drift and diffusion components of recombination at the front andmore » rear surfaces of the absorber into account, the quantum efficiency spectra of the investigated solar cell can be analytically described in detail. The real parameters of the solar cell are determined by comparing the calculated results and experimental data. In addition, the losses caused by the recombination of photogenerated carriers at the front and rear surfaces of the absorbing layer (1.8% and <0.1%, respectively), at its neutral part (7.6%), and in the space-charge region of the p–n heterojunction (1.0%) are determined. A correction to the parameters of Cu(In,Ga)Se{sub 2} is proposed, which enhances the charge-accumulation efficiency.« less

  16. Usual dietary intakes of selected trace elements (Zn, Cu, Mn, I, Se, Cr, and Mo) and biotin revealed by a survey of four-season 7-consecutive day weighed dietary records in middle-aged Japanese dietitians.

    PubMed

    Imaeda, Nahomi; Kuriki, Kiyonori; Fujiwara, Nakako; Goto, Chiho; Tokudome, Yuko; Tokudome, Shinkan

    2013-01-01

    We aimed to identify food sources of selected trace elements (Zn, Cu, Mn, I, Se, Cr, Mo) and biotin in the Japanese diet and to assess usual dietary intakes based on the ratios of within-person to between-person variance. Subjects were 98 middle-aged dietitians living in central Japan who participated in a survey of four-season 7 consecutive day weighed diet records. Based on the latest Standard Tables of Food Composition in Japan published in 2010, food sources of selected nutrients were located according to a contribution analysis, and computed usual dietary intakes. Dietary intakes were checked with the Dietary Reference Intakes for Japanese 2010. Prevalence of inadequacy in a group was determined using the Estimated Average Requirement cut-point method. The major contributors to selected trace elements and biotin were not only meat and milk, but also traditional Japanese food items, including rice, tofu and tofu products, fish, seaweed, chicken eggs, fermented soy bean seasonings, and green tea. Medians of usual intakes were estimated for Zn (men 8.9 mg, women 8.4 mg), Cu (1.32 mg, 1.21 mg), Mn (3.73 mg, 3.76 mg), I (312 μg, 413 μg), Se (97 μg, 94 μg), Cr (10 μg, 9 μg), Mo (226 μg, 184 μg), and biotin (51.7 μg, 47.6 μg). The prevalence of inadequacy of dietary intakes was high for Zn, Cu and Cr. Regarding I, the proportion above the Tolerant Upper Level was overestimated based on the crude mean value. We first identified food sources of selected trace elements and biotin in the Japanese diet, and assessed the usual intakes.

  17. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    USGS Publications Warehouse

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  18. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  19. PM2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies

    NASA Astrophysics Data System (ADS)

    Fang, T.; Guo, H.; Verma, V.; Peltier, R. E.; Weber, R. J.

    2015-06-01

    Water-soluble redox-active metals are potentially toxic due to the ability to catalytically generate reactive oxygen species (ROS) in vivo, leading to oxidative stress. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), we developed a method to quantify water-soluble elements, including redox-active metals, from a large number of filter samples (N = 530) in support of the Center's health studies. PM2.5 samples were collected during 2012-2013 at various sites (three urban, two rural, a near-road, and a road-side site) in the southeastern US, using high-volume samplers. Water-soluble elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Sr, Ba, and Pb) were determined by extracting filters in deionized water and re-aerosolized for analyses by X-ray fluorescence (XRF) using an online aerosol element analyzer (Xact, Cooper Environmental). Concentrations ranged from detection limits (nominally 0.1 to 30 ng m-3) to 1.2 μg m-3, with S as the most abundant element, followed by Ca, K, Fe, Cu, Zn, and Ba. Positive Matrix Factorization (PMF) identified four factors that were associated with specific sources based on relative loadings of various tracers. These include: brake/tire wear (with tracers Ba and Cu); biomass burning (K); secondary formation (S, Se, and WSOC); and mineral dust (Ca). Of the four potentially toxic and relatively abundant metals (redox active Cu, Mn, Fe, and redox-inactive Zn), 51 % of Cu, 32 % of Fe, 17 % of Mn, and 45 % of Zn, were associated with the brake/tire factor. Mn was mostly associated with the mineral dust factor (45 %). These two factors were higher in warm (dryer) periods that favored particle re-suspension. Zn was found in a mixture of factors, with 26 % associated with mineral dust, 14 % biomass burning, and 13 % secondary formation. Roughly 50 % of Fe and 40 % of Cu was apportioned to the secondary formation factor, likely through increased solubility by sulfur-driven aerosol acidity. Linkages between sulfate and water-soluble Fe and Cu may account for some of the past observed associations between sulfate/sulfur oxide and health outcomes. For Cu, Mn, Fe, and Zn, only Fe was correlated with PM2.5 mass (r = 0.73-0.80). Overall, mobile source emissions generated through mechanical processes (re-entrained road dust, tire and break wear) and processing by secondary sulfate were major contributors to water-soluble metals known to be capable of generating ROS.

  20. Determination of the Extent of Trace Metals Pollution in Soils, Sediments and Human Hair at e-Waste Recycling Site in Ghana.

    PubMed

    Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi

    2017-10-01

    The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.

  1. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Du, H. W.; Li, Y.

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature.more » The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.« less

  2. Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se)2 Thin Film Solar Cell through Interface Engineering.

    PubMed

    Park, Gi Soon; Chu, Van Ben; Kim, Byoung Woo; Kim, Dong-Wook; Oh, Hyung-Suk; Hwang, Yun Jeong; Min, Byoung Koun

    2018-03-28

    An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se) 2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a CIGS thin film suitable for interface engineering, we designed a novel "3-step chalcogenization process" for Cu 2- x Se-derived grain growth and a double band gap grading structure. Considering S-rich surface of the CIGS thin film, an alternative ternary (Cd,Zn)S buffer layer is adopted to build favorable "spike" type conduction band alignment instead of "cliff" type. Suppression of interface recombination is elucidated by comparing recombination activation energies using a dark J- V- T analysis.

  3. Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.; He, X.

    Here, to compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In,Ga)Se 2 (CIGSe), and Cu 2ZnSn(S,Se) 4 (CZTSSe), improving the n-type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdSmore » or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.« less

  4. Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics

    DOE PAGES

    Varley, J. B.; Lordi, V.; He, X.; ...

    2017-07-17

    Here, to compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In,Ga)Se 2 (CIGSe), and Cu 2ZnSn(S,Se) 4 (CZTSSe), improving the n-type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdSmore » or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.« less

  5. Serum trace elements in obese Egyptian children: a case–control study

    PubMed Central

    2014-01-01

    Background To date, only a few studies on child obesity concerned Trace Elements (TE). TE is involved in the pathogenesis of obesity and obesity related diseases. We tried to assess trace elements status [zinc (Zn), copper (Cu), selenium (Se), iron (Fe), and chromium (Cr)] in obese Egyptian children and their relationships with serum leptin and metabolic risk factors of obesity. Methods This was a case–control study performed with 80 obese children (BMI ≥ 95thcentile for age and gender) and 80 healthy non-obese children with comparable age and gender as the control group. For all subjects, serum Zn, Cu, Se, Fe, ferritin and Cr as well as biochemical parameters including lipid profile, serum glucose and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Levels of serum leptin were measured by (enzyme-linked immunosorbent assay [ELISA] method), and serum insulin was measured by an electrochemiluminesce immunoassay. Results Compared to the control group, serum Zn, Se, and Fe levels were significantly lower (all P < 0.01) and serum Cu level was significantly higher (P < 0.01) in the obese children. Meanwhile, no significant differences were observed in serum ferritin or Cr levels (P > 0.05). A significant negative correlation was found between serum leptin and zinc levels in the obese children (r = −0.746; P < 0.01). Further, serum Zn showed significant negative correlations with total cholesterol TC levels (P < 0.05) and were positively correlated with high density lipoprotein- cholesterol HDL-C levels (P < 0.01) in the obese children. In addition, serum Se levels showed significant positive correlations with HOMA-IR values in the obese children (P < 0.01). Conclusion The obese children may be at a greater risk of developing imbalance (mainly deficiency) of trace elements which may be playing an important role in the pathogenesis of obesity and related metabolic risk factors. PMID:24555483

  6. Comparison of serum trace element levels in patients with or without pre-eclampsia

    PubMed Central

    Farzin, Leila; Sajadi, Fattaneh

    2012-01-01

    Objective: In developing countries, nutritional deficiency of essential trace elements is a common health problem, particularly among pregnant women because of increased requirements of various nutrients. Accordingly, this study was initiated to compare trace elements status in women with or without pre-eclampsia. Materials and Methods: In this study, serum trace elements including zinc (Zn), selenium (Se), copper (Cu), calcium (Ca) and magnesium (Mg) were determined by using atomic absorption spectrometry (AAS) in 60 patients and 60 healthy subjects. Results: There was no significant difference in the values of Cu between two groups (P > 0.05). A significant difference in Zn, Se, Ca and Mg levels were observed between patients with pre-eclampsia and control group (P < 0.001, P<0.01, P<0.01 and P<0.001, respectively). Zn, Se, Ca and Mg levels were found to be 76.49 ± 17.62 μg/ dl, 8.82 ± 2.10 μg/ dl, 8.65 ± 2.14 mg/dl and 1.51 ± 0.34 mg/dl in Pre-eclamptic cases, and these values were found statistically lower compared to the controls (100.61 ± 20.12 μg/dl, 10.47 ± 2.78 μg/dl, 9.77 ± 3.02 mg/dl and 1.78 ± 0.27 mg/dl, respectively). While Cu levels were 118.28 ± 16.92 and 116.55 ± 15.23 μg/dl in the patients and the healthy subjects, respectively. In addition, no significant difference was found between two groups with respect to Hemoglobin Concentration (HbC) and Total White Blood Cell Count (TWBC) (P>0.05). Conclusion: Our findings indicate that the levels of Zn, Se, Ca and Mg are significantly altered in pregnant women with pre-eclampsia. This research shows that these deficiencies can not due to hemodilution. PMID:23825993

  7. Thermoelectric Properties of In-Doped Cu2ZnGeSe4

    NASA Astrophysics Data System (ADS)

    Chetty, R.; Bali, A.; Femi, O. E.; Chattopadhyay, K.; Mallik, R. C.

    2016-03-01

    Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A2BCD4 (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1- x In x Se4 ( x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I- 42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373-673 K. The electrical resistivity of all the samples initially decreased up to ˜470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit ( zT) of the doped sample showed an increase as compared to the undoped compound.

  8. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  9. Thin film solar cells: research in an industrial perspective.

    PubMed

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  10. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrriermore » transport and defect properties are properly optimized.« less

  11. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    PubMed

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  12. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  13. Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells

    NASA Astrophysics Data System (ADS)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.

    2014-07-01

    We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.

  14. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    PubMed

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  15. Comparison and Interpretation of Admittance Spectroscopy and Deep Level Transient Spectroscopy from Co-Evaporated and Solution-Deposited Cu2ZnSn(Sx, Se1-x)4 Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, A. E.; Lund, E. A.; Kosyak, V.

    2016-11-21

    Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in themore » solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.« less

  16. The effects of di(2-ethylhexyl) phthalate and/or selenium on trace element levels in different organs of rats.

    PubMed

    Erkekoglu, Pinar; Arnaud, Josiane; Rachidi, Walid; Kocer-Gumusel, Belma; Favier, Alain; Hincal, Filiz

    2015-01-01

    Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05mg Se/kg diet for 5 weeks, and supplementation group were on 1mg Se/kg diet. DEHP treated groups received 1000mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated. Copyright © 2014. Published by Elsevier GmbH.

  17. Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily).

    PubMed

    Varrica, D; Aiuppa, A; Dongarrà, G

    2000-05-01

    Major and trace element concentrations were determined in two lichen species (Parmelia conspersa and Xanthoria calcicola) from the island of Vulcano and all around Mt. Etna. In both areas, the average concentrations of Al, Ca, Mg, Fe, Na, K, P and Ti are substantially greater than those of other elements. Several elements (Br, Pb, Sb, Au, Zn, Cu) resulted enriched with respect to the local substrates. The Br and Pb enrichment factors turned out to be the highest among those calculated in both areas. Data indicate that mixing between volcanic and automotive-produced particles clearly explains the range of Pb/Br shown by lichen samples. Sb is also enriched, revealing a geogenic origin at Vulcano and a prevailing anthropic origin at Mt. Etna. Distribution maps of the enrichment factors show a generalized enrichment of Au and Zn near Mt. Etna, whereas Cu appears to be enriched prevalently in the NE-SE area. The highest levels of Au and Cu at Vulcano occur E-SE from the craters, following the prevailing wind direction.

  18. Sensors based on visible collective resonances of plasmonic lattices

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Campbell, Quinn

    2016-09-01

    We show arrays of large gold nanodisks on glass substrates can support strong optical features with narrow spectral widths associated with their collective plasmonic-lattice modes. Our results show that these modes can offer significant sensitivity to the refractive index of the environment, far more than those of individual nanodisks. We show the visible collective modes supported by such arrays can distinctively detect a monolayer of biotin with high resolution. We use donor (CdSe/ZnS) and acceptor (CuInS/ZnS) quantum dots to investigate the field properties of these arrays after deposition of a thick layer of a silicon. We demonstrate a distinct increase of emission of CuInS/ZnS quantum dots, indicating the possibility of enhancement of energy transfer between these two types of quantum dots.

  19. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer

    PubMed Central

    Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2017-01-01

    Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727

  20. Chromium Diffusion Doping on ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Journigan, Troy D.; Chen, K.-T.; Chen, H.; Burger, A.; Schaffers, K.; Page, R. H.; Payne, S. A.

    1997-01-01

    Chromium doped zinc selenide crystal have recently been demonstrated to be a promising material for near-IR room temperature tunable lasers which have an emission range of 2-3 micrometers. In this study a new diffusion doping process has been developed for incorporation of Cr(+2) ion into ZnSe wafers. This process has been successfully performed under isothermal conditions, at temperatures above 800 C. Concentrations in excess of 10(exp 19) Cr(+2) ions/cu cm, an order of magnitude larger than previously reported in melt grown ZnSe material, have been obtained by diffusion doping, as estimated from optical absorption measurements. The diffusivity was estimated to be about 10(exp -8) sq cm/sec using a thin film diffusion model. Resistivity was derived from current-voltage measurements and in the range of 10(exp 13) and 10(exp 16) omega-cm. The emission spectra and temperature dependent lifetime data will also be presented and discussed.

  1. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  2. "Invisible" gold and PGE elements in synthetic crystals of sphalerite and covellite: A EPMA, LA-ICP-MS and XAFS study

    NASA Astrophysics Data System (ADS)

    Tonkacheev, Dmitry; Chareev, Dmitry; Abramova, Vera; Tagirov, Boris

    2016-04-01

    Sphalerite and covellite are widespread minerals in the different genetic types of deposits and forms under the various conditions. The purpose of this work is to determine the possible range of concentration and chemical state of Au and PGE (Pt, Pd, Rh) in sphalerite (Zn,Fe) S and covellite (CuS). These minerals were synthesized using gas transport and salt flux techniques. The crystals of ZnS were grown using the gas transport method at 850°C and the salt flux one using NaCl/KCl, CsCl/NaCl/KCl, and LiCl/RbCl eutectic mixtures at 850, 645 and 470°C, respectively. CuS crystals were synthesized using the salt flux method in RbCl/LiCl melt at 470 and 340°C. The trace metal activity was always controlled by the presence of pure metal or its sulfide, and, therefore, the concentration of these elements in synthesized phases represent the maximum possible value for given T/f(S2) synthesis parameters. The LA-ICP-MS and/or EPMA techniques were used to determine the Au concentration in synthesized phases. The concentration of Au in sphalerite, synthesized at 850°C with admixture of Cd, Se, In, Fe, and Mn, reached 0.3wt%, whereas the sphalerite cell parameter extremely increased up to 5.4161Å relatively to 5.4060 Å for pure ZnS. It was found that the observed high Au concentration is caused by the presence of In (2091±46 ppm Au in sample with Fe and In in comparison with 14±7 for Se-bearing ZnS, 94±12 ppm for Fe-Mn-bearing sphalerite, and 96±46 for Fe-bearing sphalerite. The concentration of Au in Fe-bearing sphalerite synthesized at 645°C does not exceed 5 ppm. Therefore, increase of temperature results in the increase of Au concentration in sphalerite. The concentration of Au in another Fe-bearing-sphalerite series synthesized using gas transport method at 850°C various from 200 to 500 ppm and depends on the iron content. This fact could be related to the oxidation state or Fe in ZnS-FeS solid solution series. The concentration of Pt and Pd, Rh in sphalerite is below the detection limit of LA-ICP-MS (~30 ppb). However, these trace elements change the cathodoluminescence properties of ZnS. The concentration or gold in covellite was determined by both LA-ICP-MS and EPMA techniques and the final values clearly fit together. The maximum concentration can be observed at 450° and equal to 0.3wt%. This value changes minor due to the increasing of the temperature. In principle, adding admixtures of In, Zn, Se, Cu, Sb, Bi did not affect on the concentration of Au. However, in experiment where sulfur is excessive and a mixture of In, Zn, Se, Cu, Sb, Bi, were added the concentration of Au is equal 0.128+0.028 ppm. The gold distribution in covellite and sphalerite is always homogeneous. According to XANES data, atoms of Au in the crystal structure covellite is in triangles, formed by the atoms of Cu. In sphalerite gold is in "invisible" state too.

  3. Band tailing and efficiency limitation in kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Gokmen, Tayfun; Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2013-09-01

    We demonstrate that a fundamental performance bottleneck for hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells with efficiencies reaching above 11% can be the formation of band-edge tail states, which quantum efficiency and photoluminescence data indicate is roughly twice as severe as in higher-performing Cu(In,Ga)(S,Se)2 devices. Low temperature time-resolved photoluminescence data suggest that the enhanced tailing arises primarily from electrostatic potential fluctuations induced by strong compensation and facilitated by a lower CZTSSe dielectric constant. We discuss the implications of the band tails for the voltage deficit in these devices.

  4. Utilization of macrominerals and trace elements in pregnant heifers with distinct feed efficiencies.

    PubMed

    Dias, R S; Montanholi, Y R; Lopez, S; Smith, B; Miller, S P; France, J

    2016-07-01

    The objective of the study was to evaluate utilization of dietary minerals and trace elements in pregnant heifers with distinct residual feed intakes (RFI). Feed intake, body weight (BW), and body composition traits were recorded in 36 crossbred heifers over a period of 37 wk, starting shortly after weaning at 8.3 (0.10; standard deviation) mo of age with an average BW of 276 (7.8) kg. Both BW and body composition were monitored regularly throughout the study, whereas individual feed intake was assessed during the last 84 d of the trial. Data recorded were used to calculate RFI for each heifer. Heifers were ranked based on RFI and assigned to high (n=14) or low (n=10) RFI groups. After the RFI study, 24 selected heifers [age 18.2 (0.14) mo; 87.5 (4.74) d in gestation; 497 (8.5) kg of BW] were used in an indirect digestibility trial (lignin as internal marker). Heifers were fed a ration containing corn silage, haylage, and a mineral premix in which Ca, P, K, Na, Mg, S, Cu, Fe, Mn, Mo, Se, Zn, and Co were provided in the diet according to National Research Council requirements of pregnant replacement heifers. The digestibility trial lasted 1 wk, during which samples of feces were gathered twice daily, and blood and liver biopsy samples were collected on the last day. We noted no significant differences between low- and high-RFI heifers in dry matter digestibility. Apparent absorption of Cu, Zn, and Mn was increased in heifers with low RFI, and apparent absorption of Co tended to be greater for these animals. Concentrations of macrominerals and trace elements in serum of pregnant heifers were similar for both groups except for Se, which was increased in the serum of low-RFI heifers. Liver concentrations of Cu, Fe, Mn, Mo, Se, and Zn did not differ between low- and high-RFI heifers. In conclusion, whereas improved absorption of some trace elements (Cu, Zn, Mn, and Co) and increased Se serum concentration appear to be associated with superior feed efficiency in pregnant heifers, further studies are needed to investigate the causality of such relationships. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1-x)4 solid solutions

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.

    2012-06-01

    Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

  6. Impact of a trace element supplementation programme on health and performance of cross-breed (Bos indicus x Bos taurus) dairy cattle under tropical farming conditions: a double-blinded randomized field trial.

    PubMed

    Dermauw, V; Dierenfeld, E; Du Laing, G; Buyse, J; Brochier, B; Van Gucht, S; Duchateau, L; Janssens, G P J

    2015-06-01

    Small-scale urban dairy farms (n = 16) in and around Jimma, Ethiopia with cross-bred (Bos indicus × Bos taurus) cows were enrolled in a double-blinded intervention study to investigate the effect of a trace element supplementation programme on trace element status and milk concentrations as well as performance [body condition score (BCS), milk yield, leptin], milk composition, antioxidant status (ferric-reducing ability of plasma (FRAP), thiobarbituric acid-reactive substances (TBARS)], blood biochemistry, serum proteins and immune response (antibody titre upon rabies vaccination). The farms were allocated to a (1) placebo or (2) Cu, Zn, Se, Co and I supplementation treatment for 150 d. On days 0 and 120, four lactating cows per farm were sampled for milk and plasma, and on day 150 for serum, following primo-vaccination. Cu deficiency was present in 17% and marginal Se deficiency in 30% of initially sampled cows, while no Zn shortage was detected. Over 120 days, trace element supplementation caused a bigger increase in plasma Se and Cu concentrations, but also a larger decrease of plasma Fe concentrations. A larger increase in milk Se concentrations was observed in the supplemented group, whereas none of the other elements were affected. BCS decreased more over time in the supplemented group. None of the other parameters of performance and antioxidant status nor milk composition or blood biochemistry was affected by treatment. Antibody response to rabies vaccination did not differ between groups, whereas α1-globulins tended to be lower and β-globulins tended to be higher in the supplemented group. In conclusion, despite improved Cu and Se status and Se concentrations in milk, cows on tropical urban dairy farms did not seem to benefit from trace element supplementation, with respect to the parameters investigated. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  7. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  8. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  9. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  10. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F.; Ma, Z. Q.

    2016-08-01

    The carriers' behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se2 thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely VSe, InCu and (InCu+VCu), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of EC-0.08, EC-0.20 and EC-0.25 eV, respectively. The InCu and (InCu+VCu) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se2 layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (InCu+VCu) and Vse defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se2 conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  11. Characterization of PVT Grown ZnSe by Low Temperature Photoluminescence

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun

    1998-01-01

    ZnSe, a II-VI semiconductor with a large direct band gap of 2.7 eV at room temperature and 2.82 eV at 10 K, is considered a promising material for optoelectric applications in the blue-green region of the spectrum. Photoemitting devices and diode laser action has been demonstrated as a result of decades of research. A key issue in the development of II-VI semiconductors is the control of the concentration of the various impurities. The II-VI semiconductors seem to defy the effort of high level doping due to the well known self compensation of the donors and the acceptors. A good understanding of roles of the impurities and the behavior of the various intrinsic defects such as vacancies, interstitials and their complexes with impurities is necessary in the development and application of these materials. Persistent impurities such as Li and Cu have long played a central role in the photoelectronic properties of many II-VI compounds, particularly ZnSe. The shallow centers which may promote useful electrical conductivity are of particular interest. They contribute the richly structured near gap edge luminescence, containing weak to moderate phonon coupling and therefore very accessible information about the energy states of the different centers. Significance of those residual impurities which may contribute such centers in II-VI semiconductors must be fully appreciated before improved control of their electrical properties may be possible. Low temperature photoluminescence spectroscopy is an important source of information and a useful tool of characterization of II-VI semiconductors such as ZnSe. The low temperature photoluminescence spectrum of a ZnSe single crystal typically consists of a broad band emission peaking at 2.34 eV, known as the Cu-green band, and some very sharp lines near the band gap. These bands and lines are used to identify the impurity ingredients and the defects. The assessment of the quality of the crystal based on the photoluminescence analysis is then possible. In this report we present the characterization of a ZnSe single crystal as grown by the physical vapor transport method, with special intention paid to the possible effects of the gravitational field to the growth of the crystal.

  12. Spray pyrolysis synthesized Cu(In,Al)(S,Se)2 thin films solar cells

    NASA Astrophysics Data System (ADS)

    Aamir Hassan, Muhammad; Mujahid, Mohammad; Woei, Leow Shin; Wong, Lydia Helena

    2018-03-01

    Cu(In,Al)(S,Se)2 thin films are prepared by the Spray pyrolysis of aqueous precursor solutions of copper, indium, aluminium and sulphur sources. The bandgap of the films was engineered by aluminium (Al) doping in CISSe films deposited on molybdenum (Mo) coated glass substrate. The as-sprayed thin films were selenized at 500 °C for 10 min. Cadmium sulphide (CdS) buffer layer was deposited by chemical bath deposition process. Solar cell devices were fabricated with configuration of glass/Mo/CIASSe/CdS/i-ZnO/AZO. The solar cell device containing thin film of Cu(In,Al)(S,Se)2 with our optimized composition shows j-V characteristics of Voc = 0.47 V, jsc = 21.19 mA cm-2, FF = 52.88% and power conversion efficiency of 5.27%, under AM 1.5, 100 mW cm-2 illumination.

  13. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakane, Akihiro; Tamakoshi, Masato; Fujimoto, Shohei

    2016-08-14

    In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer ismore » then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu{sub 2}ZnSnSe{sub 4}, Cu{sub 2}ZnSnS{sub 4}, and Cu{sub 2}ZnSn(S,Se){sub 4}], zincblende CdTe solar cells, and hybrid perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.« less

  14. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining a wide surface band gap, as seen in Cu-poor films. A novel absorber was prepared Cu-rich with a final In-Se treatment to produce a Cu-poor surface, and compared directly to Cu-poor and Cu-rich produced samples. Despite reduced Cu at the surface, the novel absorber was found to have a surface band gap similar to that of traditional, Cu-poor grown absorbers. Furthermore, estimation of the near-surface bulk band gap suggests a narrowing of the band gap away from the surface, similar to highly efficient, Cu-poor grown absorbers. Long-term degradation is another concern facing solar cells, as heat and moistures stress can result in reduced efficiencies over time. The interface of the back contact material and absorber layer in (Au/Cu)/CdTe/CdS thin-film structures from the University of Toledo were investigated after a variety of accelerated stress treatments with the aim of further understanding the chemical and/or electronic degradation of this interface. Sulfur migration to the back contact was observed, along with the formation of Au-S and Cu-S bonds. A correlation between heat stress under illumination and the formation of Cu-Cl bonds was also found. Nanocomposite materials hold promise as a next-generation photovoltaic material and for use in LED devices, due in part to the unique ability to tune the absorption edge of the film by adjusting the semiconductor particle size, and the prospective for long-range charge-carrier (exciton) transport through the wide band gap matrix material. Thin films of CdTe were sputter deposited onto ZnO substrates at the University of Arizona and studied before and after a short, high temperature annealing to further understand the effects of annealing on the CdTe/ZnO interface. A clumping of the CdTe layer and the formation of Cd- and Te-oxides was observed using surface microscopy and photoelectron spectroscopy techniques. These findings help to evaluate post-deposition annealing as a treatment to adjust the final crystallinity and optoelectronic properties of these films. Through publication and/or discussion with collaborators, each project presented in this dissertation contributed to the understanding of the chemical and electronic properties of the material surface, near-surface bulk, and/or interfaces formed. The information gained on these unique chalcogenide materials will assist in designing more efficient and successful optoelectronic devices for the next generation of solar cells and LEDs.

  15. Thermoelectric Behavior of Low Thermal Conductivity Cu-based and IV-V Chalcogenides

    NASA Astrophysics Data System (ADS)

    Olvera, Alan Anthony

    In an ever-changing global environment, energy-related issues have become a central feature in the day-to-day conversations of the general public. A niche field that has recently made major advancements in conversion performance is thermoelectric (TE) energy conversion, where progress in material optimization has resulted in the highest efficiency thermoelectric materials to date. This includes superionic copper chalcogenides and IV-VI selenide compounds, such as Cu2Se and PbSe. Hence, this work focuses on the reliable synthesis and characterization of thermoelectric Cu-based and IV-V compounds. The electronic and optical properties of Cu-based energy conversion materials are greatly affected by synthesis-induced defects. To alleviate this issue, a novel method is developed using the topochemical redox reaction of CuSe 2 into the desired material. It is predicted that CuSe2 -serves as a sacrificial structural template for the facile synthesis of structurally related materials. This was specifically verified in the case of CuInSe 2, where CuSe2 is gradually transformed into CuInSe 2 when reacted with elemental indium. Evidently, this synthetic method is a potential avenue for new material prediction and fabrication of novel composite materials. Using the method described, a composite of CuInSe2 and the known TE material, Cu2Se, is formed. Considering the structural similarity of both compounds, the efficiency of Cu2Se is drastically increased due to enhanced carrier mobility provided by tetrahedral indium subunits. These subunits simultaneously disrupt phonon propagation which result in reduced thermal conductivity and increased TE efficiency (ZT ≈ 2.6 at 850K). More significant is the increased chemical stability of Cu2Se while under applied current and temperature. It is observed that 1 mol % indium stabilizes Cu-ion migration, encouraging the commercialization of Cu 2Se. Currently, CuAgSe is the only promising n-type Cu-based superionic TE material. Accordingly, to find a compatible material for p-type Cu2Se at high temperatures, a series of materials with the formula Cu4-xAgxSe2 were synthesized. It was found that the composition of Cu3AgSe2 ( x = 1) is a two-phase mixture at low temperatures but becomes a single-phase p-type superionic material above 440 K. On the other hand, CuAg 3Se2 (x = 3) remains a two-phase n-type mixture throughout the measured temperature range, contrary to reports of CuAg3Se2 as a single-phase high temperature material. The most important finding is the high temperature n-type behavior of CuAgSe (x = 2), which is the first instance of CuAgSe as an n-type superionic material above 470 K. It is proposed that off-stoichiometry leads to p-type behavior of CuAgSe. Moving to IV-V compounds, a detailed experimental and computational study of the material Pb7Bi4Se13 shows excellent thermoelectric properties for a non-optimized system. It behaves as an n-type material with a small band gap of about 0.23 eV, which is confirmed by band structure calculations and experimental results. It demonstrates ultralow thermal conductivity largely due to the complex atomic-scale structure and heavy constituent atoms. This results in a ZT of approximately 0.9 at 775 K, which is a promising value for further optimization. Additional results from CuSe2 structural template reactions show that several composite materials and new materials can be predicted and synthesized. This includes Cu2Se-Cu(Ga,Al)Se2 composites and new materials such as Cu(Zn,Ni)1.5Se2 and CuPb 0.75Se2. Further work in Sn-Bi-Se compounds is discussed due their complex crystal structure that may result in promising thermoelectric properties. Finally, the preliminary results of high entropy chalcogenides are presented with discussion on future development.

  16. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition.

    PubMed

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-02-23

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~10(4) cm(-1)). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm(2), 0.43 and 0.59%, respectively.

  17. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    NASA Astrophysics Data System (ADS)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  18. The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong

    2016-10-01

    The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.

  19. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  20. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  1. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A

    2017-08-01

    The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.

  2. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.

    PubMed

    Liu, Hongbo; Yang, Jian; Gan, Juli

    2010-11-01

    Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.

  3. Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

    PubMed Central

    Dhiman, Anju; Nanda, Arun; Ahmad, Sayeed

    2011-01-01

    The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species, Citrus sinensis and Psidium guajava. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in C. sinensis (sweet orange) fruit peel and P. guajava (guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at P < 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in C. sinensis fruit peel and P. guajava leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe. PMID:21976824

  4. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Wan, Dong-Yu; Lv, Hang; Cao, Zhi-Ran; Wu, Sheng-Mei

    2017-12-01

    Quantum dots (QDs) are semiconductor nanoparticles (NPs) that offer valuable functionality for cellular labeling, drug delivery, solar cells and quantum computation. In this study, we reported that CdSe QDs could be bio-synthesized in Bacillus licheniformis. After optimization, the obtained CdSe QDs exhibited a uniform particle size of 3.71±0.04nm with a maximum fluorescence emission wavelength at 550nm and the synthetical positive ratio can reach up to 87%. Spectral properties, constitution, particle sizes and crystalline phases of the CdSe QDs were systematically and integrally investigated. The CdSe QD-containing Bacillus licheniformis cells were further used as whole fluorescent bio-probes to detect copper (II) (Cu 2+ ) in water, which demonstrated a low limit of detection (0.91μM). The assay also showed a good selectivity for Cu 2+ over other ions including Al 3+ , Cd 2+ , Mg 2+ , K + , Na + , NH 4 + , Zn 2+ , CH 3 COO + , Pb 2+ and I - . Our study suggests the fluorescent CdSe QDs-containing Bacillus licheniformis bio-probes as a promising approach for detection of Cu 2+ in complex solution environment. Copyright © 2017. Published by Elsevier Inc.

  5. Bismuth selenides from St. Andreasberg, Germany: an oxidised five-element style of mineralisation and its relation to post-Variscan vein-type deposits of central Europe

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Ließmann, Wilfried; Jian, Wei; Lehmann, Bernd

    2017-10-01

    Carbonate veinlets at Roter Bär, a former underground mine in the polymetallic St. Andreasberg vein district of the Harz Mountains, Germany, host selenide minerals that are characterised as Bi-Ag-bearing clausthalite (PbSe), tiemannite (HgSe), guanajuatite (Bi2Se3) and a number of selenides of Bi, Zn, Cu, Ag and Pd. An unnamed Bi-Pb-Ag selenide species with some Hg and Cu, ideally Bi4Pb3Ag2Se10, is reported here. Specular hematite is disseminated within the clausthalite, at the marginal zones of which other selenide minerals are located. The occurrence of bohdanowiczite (AgBiSe2) and umangite (Cu3Se2) constrains the formation temperature to ≤120 °C, and the selenide-hematite assemblage (plus barite in the carbonate gangue) identifies highly oxidised conditions. Selenide assemblages of Pb, Bi, Ag, with and without Co and Ni, occur in many parts of the Variscan basement of central Europe (Harz, Erzgebirge, Schwarzwald and Bohemian Massif) and represent a high-oxidation variety of five-element (Ag-As-Bi-Co-Ni) veins.

  6. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.

  7. Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-05-01

    The efficiencies of solar cells based on kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are limited by a low open-circuit voltage due to high rates of non-radiative electron-hole recombination. To probe the origin of this bottleneck, we calculate the band offset of CZTS(Se) with CdS, confirming a weak spike of 0.1 eV for CZTS/wurtzite-CdS and a strong spike of 0.4 eV for CZTSe/wurtzite-CdS. We also consider the effects of temperature on the band alignment, finding that increasing temperature significantly enhances the spike-type offset. We further resolve an outstanding discrepancy between the measured and calculated phonon frequencies for the kesterites, and use these to estimate the upper limit of electron and hole mobilities based on optic phonon Fröhlich scattering, which uncovers an intrinsic asymmetry with faster (minority carrier) electron mobility.

  8. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.

    PubMed

    Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M

    2016-03-01

    Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.

  9. Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X-ray fluorescence.

    PubMed

    Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento

    2014-04-01

    Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®

  10. Cu(In,Ga)Se2 Solar Cells with Amorphous In2O3-Based Front Contact Layers.

    PubMed

    Koida, Takashi; Ueno, Yuko; Nishinaga, Jiro; Higuchi, Hirohumi; Takahashi, Hideki; Iioka, Masayuki; Shibata, Hajime; Niki, Shigeru

    2017-09-06

    Amorphous (a-) In 2 O 3 -based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (J sc ) of Cu(In,Ga)Se 2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (V oc ). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and V oc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 10 15 to 3 × 10 18 cm -3 . The decrease in FF and V oc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In 2 O 3 :H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In 2 O 3 -based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the V oc of the CIGS solar cells and the mini-modules.

  11. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less

  12. Hepatic minerals of white-tailed and mule deer in the southern Black Hills, South Dakota

    USGS Publications Warehouse

    Zimmerman, T.J.; Jenks, J.A.; Leslie, David M.; Neiger, R.D.

    2008-01-01

    Because there is a paucity of information on the mineral requirements of free-ranging deer, data are needed from clinically healthy deer to provide a basis for the diagnosis of mineral deficiencies. To our knowledge, no reports are available on baseline hepatic mineral concentrations from sympatric white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using different habitats in the Northern Great Plains. We assessed variation in hepatic minerals of female white-tailed deer (n=42) and mule deer (n=41). Deer were collected in February and August 2002 and 2003 from study areas in Custer and Pennington Counties, South Dakota, in and adjacent to a wildfire burn. Hepatic samples were tested for levels (parts per million; ppm) of aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), sodium (Na), sulfur (S), thalium (T1), and zinc (Zn). We predicted that variability in element concentrations would occur between burned and unburned habitat due to changes in plant communities and thereby forage availability. We determined that Zn, Cu, and Ba values differed (P???0.05) between habitats. Because of the nutritional demands of gestation and lactation, we hypothesized that elemental concentrations would vary depending on reproductive status; Cd, Cu, Ca, P, Mn, Mo, Na, and Zn values differed (P???0.05) by reproductive status. We also hypothesized that, due to variation in feeding strategies and morphology between deer species, hepatic elemental concentrations would reflect dietary differences; Ca, Cu, K, Co, Mo, Se, and Zn differed (P???0.05) between species. Further research is needed to determine causes of variation in hepatic mineral levels due to habitat, reproductive status, and species. ?? Wildlife Disease Association 2008.

  13. Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus).

    PubMed

    Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A

    2011-03-01

    The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.

  14. Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization

    NASA Astrophysics Data System (ADS)

    de Almeida, M. R. H.; Barbano, E. P.; de Carvalho, M. F.; Tulio, P. C.; Carlos, I. A.

    2015-04-01

    The galvanostatic technique was used to analyze the electrodeposition of Cu-Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu-Zn films were whitish golden, light golden, golden/gray depending on the Cu2+/Zn2+ ratios in the electrodeposition bath, deposition current density (jdep) and charge density (qdep). The highest current efficiency was ∼54.0%, at jdep -1.0 mA cm-2 and qdep 0.40 C cm-2 in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower jdep. Also, for same jdep the Cu content increased with qdep. Scanning electron microscopy showed that Cu-Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at jdep -20.0 mA cm-2 and qdep 10.0 C cm-2. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu-Zn electrodeposits obtained at jdep -8.0, -20.0 and -40.0 mA cm-2, in each case, with qdep 2.0 and 10.0 C cm-2, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn5 and Cu5Zn8. Galvanostatic electrodeposits of Cu-Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications, especially for decorative purposes.

  15. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  16. Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.

    The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less

  17. Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts

    DOE PAGES

    Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.; ...

    2017-03-23

    The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less

  18. Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress.

    PubMed

    Ghazi Harsini, Shahab; Habibiyan, Mahmood; Moeini, Mohammad Mehdi; Abdolmohammadi, Ali Reza

    2012-09-01

    This experiment was conducted to evaluate the effects of dietary vitamin E, selenium (Se), and a combination of the two, on the performance, serum metabolites and oxidative stability of skeletal muscle of broilers during heat stress. The broilers raised in either a thermoneutral (23.9°C constant) or heat stress (23.9°C to 37°C cycling) environment were assigned to 6 dietary treatments (0, 0.5, or 1 mg/kg Se; 125 and 250 mg/kg vitamin E; or 0.5 mg/kg Se plus 125 mg/kg vitamin E) from 1 to 49 days of age. At the end of the experiment, blood samples were collected from chicks, the chicks sacrificed, and pectoralis superficialis muscle was used for measurement of malondialdehyde (MDA) concentration and enzyme activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). The heat-stressed chicks consumed less feed, gained less weight, and had higher feed conversion ratio when compared to thermoneutral chicks (P<0.05). Serum concentrations of iron (Fe) and zinc (Zn) were decreased by heat stress (P<0.05), whereas the serum concentrations of copper (Cu), glucose, and uric acid were significantly increased under heat stress (P<0.05). The chicks that received supplemental of vitamin E exhibited significantly higher serum concentrations of Zn (P<0.05) and significantly lower concentrations of Cu, glucose, and uric acid (P<0.05) when exposed to heat stress. Dietary Se also caused a significant decrease in serum glucose, uric acid, and Cu concentrations of heat-stressed broilers (P<0.05), but had no significant effect on Zn concentration (P>0.05). The GPx activity remained relatively constant (P>0.05), though SOD activity and MDA levels in skeletal muscle were enhanced on exposure to heat stress (P<0.05). The heat-stressed chicks that received the combined supplementary level of vitamin E and Se had the lowest concentration of MDA and the highest activity of SOD in the skeletal muscle (P<0.05). Dietary Se also caused a significant increase in enzyme activity of GPx in the skeletal muscle (P<0.05). These results indicate that the derangement of blood parameters and oxidative stability in broilers under heat stress are improved by supplemental vitamin E and Se.

  19. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface.

    PubMed

    Hwang, Suhwan; Larina, Liudmila; Lee, Hojin; Kim, Suncheul; Choi, Kyoung Soon; Jeon, Cheolho; Ahn, Byung Tae; Shin, Byungha

    2018-06-20

    We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se 2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH 4 OH, H 2 O, and/or aqueous solution of Cd 2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH 4 OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH 4 OH treatment. However, the addition of Cd 2+ ions to the NH 4 OH aqueous solution suppressed the etching of the OVC by NH 4 OH, explaining why such a negative effect of NH 4 OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.

  20. Anemia induced by high zinc intake in chicks: Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimentel, J.L.; Greger, J.L.; Cook, M.E.

    1991-03-15

    The mechanisms by which excess Zn induced anemia in chickens was assessed in 8 studies in which chicks were randomly assigned to a 2 {times} 2 factorial arrangement of treatments with 60 or 2,000 {mu}g Zn and 10 or 250 {mu}g Cu/g diet. Less Fe-59 appeared in the plasma 1 hour after a labeled meal when chicks were fed excess Zn in 1 of 2 studies but less Fe-59 appeared in livers of chicks fed excess Zn in both studies. The decrease of Fe-59 uptake into tissues paralleled a decrease in Fe concentrations in livers and tibiotarsi. These differences inmore » tissue Fe did not reflect differences in Fe excretion because excretion and incorporation into tissues of injected Fe-59 was not affected by high Zn intake. Although excess Zn decreased tissue Cu concentrations, excess Zn, per se, did not affect cytosolic superoxide dismutase activity, the in vivo t 1/2 of erythrocytes, or erythrocyte hemolysis in vitro. The decrease in body weight of chicks fed excess Zn indicated that protein synthesis and/or degradation could be affected. Increased incorporation of C-14 tyrosine into liver and bone marrow of chicks fed excess Zn suggested increased protoporphyrin synthesis or metallothionein synthesis. These results indicated that decreased Fe absorption was the primary mechanism by which excess Zn induced anemia.« less

  1. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electrophoretic deposition of Cu2ZnSn(S0.5Se0.5)4 films using solvothermal synthesized nanoparticles

    NASA Astrophysics Data System (ADS)

    Badkoobehhezaveh, Amir Masoud; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2018-01-01

    In this paper, a simple, practical, and fast solvothermal route is presented for synthesizing the Cu2ZnSn(S0.5Se0.5)4 nanoparticles (CZTSSe). In this method, the precursors were dissolved in triethylenetetramine and placed in an autoclave at 240 °C for 1 h under controlled pressure and constant stirring. After washing the samples for several times with absolute ethanol, the obtained CZTSSe nanoparticles were successfully deposited on fluorine doped tin oxide substrates by convenient electrophoretic deposition (EPD) using colloidal nanoparticles. The most appropriate parameters for EPD of pre-synthesized CZTSSe nanoparticles which result in proper surface properties, controlled thickness, and high film quality are investigated by adjusting applied voltage, pH, and deposition time. X-ray diffraction pattern and Raman spectroscopy of the pre-synthesized nanoparticles show kesterite structure formation. The particle size of the CZTSSe nanoparticles is in the range of 100 to 400 nm and for some agglomerates, it is about 2 µm confirmed by scanning electron microscope. The deposited film with optimized parameter has acceptable quality without any crack in it with the thickness of about 4-5 µm. Energy-dispersive X-ray spectroscopy confirms that the chemical composition of the samples is in near stoichiometric Cu-poor and Zn-rich region, which guarantees the p-type character of the film. The diffuse reflectance spectroscopy also demonstrates that the optical band gap of the sample is about 1.2 eV.

  3. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  4. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Zaccaroni, Annalisa; Olivieri, Vincenzo; Amorena, Michele

    2014-04-01

    Heavy metal (As, Cd, Cu, Pb, Zn, Hg and Se) concentrations in the muscle and bone of four fish species (Mullus barbatus, Merluccius merluccius, Micromesistius poutassou, and Scomber scombrus) from the central Adriatic Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated. Samples were analyzed by inductively coupled plasma-atomic emission spectrophotometry with automatic dual viewing. In the muscle, results of linear regression analysis showed that, except for mercury, significant relationships between metal concentrations and fish size were negative. Only mercury levels were positively correlated with Atlantic mackerel size (p < 0.05). No significant variations of heavy metal concentrations were observed in muscles of the examined species, but a significant difference (p < 0.01) was found for As, Cd, Pb, and Se concentrations in bone. All the investigated metals showed higher values in the muscle than in bone, except for lead and zinc. Regarding cadmium, lead, and mercury maximum levels, set for the edible portion by European legislation, several samples exceeded these values, confirming the heavy metal presence in species caught near the Jabuka Pit.

  5. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  6. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition

    PubMed Central

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R.; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M.; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-01-01

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~104 cm−1). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm2, 0.43 and 0.59%, respectively. PMID:26902556

  7. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Versatile hydrothermal synthesis of one-dimensional composite structures

    NASA Astrophysics Data System (ADS)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  9. Biogeochemistry of Metals in Periodic Cicada

    NASA Astrophysics Data System (ADS)

    Robinson, G. R.; Sibrell, P. L.; Boughton, C. J.; Yang, L. H.; Hancock, T. C.

    2005-05-01

    Metal concentrations were measured in three species of 17-year periodic cicadas (Magicicada spp.) to determine the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils and evaluate whether these metal concentrations might threaten wildlife. Collections were made in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during Brood X emergence in May and June 2004. Periodic cicadas emerge synchronously at high density after 13 or 17 years of underground development, feeding on xylem fluids, and molt into their adult form leaving a keratin exoskeleton shell. They are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland settings. Soil concentrations at the collection sites vary over one order of magnitude for Co, Cu, Fe, Hg, Mn, Mo, Se, and Zn and over two orders of magnitude for As, Au, and Pb. The concentration levels of metals in adult periodic cicadas do not pose a dietary threat to birds and other wildlife that preferentially feed upon cicadas during emergence events. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. Average adult cicada body concentrations for As, Cu, Hg, Pb, and Zn are 3, 64, 0.015, 0.4, and 160 mg/Kg (dry weight), respectively. Much of the cicada nymph body load of metals is partitioned into the molt exoskeleton. Elements, such as Al, Fe, and Pb, are strongly enriched in the exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe, Co, and Pb, when normalized to inert soil constituents such as aluminum and cerium, are similar between the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) may control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, show strong enrichment in cicada tissues relative to soil, implying selective absorption by xylem fluids and/or cicada nymph during development. Chalcophile elements, such as As and heavy metals, accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in exoskeleton show a positive correlation with soil metal concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry, but bioessential elements S, Mn, Fe, and Zn show differences by sex and Cu and Zn by species.

  10. Determination and interpretation of the optical constants for solar cell materials

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroyuki; Fujimoto, Shohei; Tamakoshi, Masato; Kato, Masato; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Tampo, Hitoshi; Chikamatsu, Masayuki; Shibata, Hajime

    2017-11-01

    Solar cell materials in thin film form often exhibit quite rough surface, which makes the accurate determination of the optical constants using spectroscopic ellipsometry (SE) quite difficult. In this study, we investigate the effect of the rough surface on the SE analysis and establish an analysis procedure, which is quite helpful for the correction of the underestimated roughness contribution. As examples, the roughness analyses for CuInSe2 and CH3NH3PbI3 hybrid-perovskite thin films are presented. Moreover, to interpret the dielectric functions of emerging solar cell materials, such as CH3NH3PbI3 and Cu2ZnSnSe4, the optical transition analyses are performed based on density functional theory (DFT). The excellent agreement observed between the experimental and DFT results allows the detailed assignment of the transition peaks, confirming the importance of DFT for revealing fundamental optical characteristics.

  11. Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-01-01

    We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.

  12. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    PubMed

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  13. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran.

    PubMed

    Mirzaei Aminiyan, Milad; Baalousha, Mohammed; Mousavi, Rouhollah; Mirzaei Aminiyan, Farzad; Hosseini, Hamideh; Heydariyan, Amin

    2018-05-01

    Heavy metal (HM) contamination in road dust is a potential environmental and human health threat. The sources, concentrations, spatial distribution, and ecological risk of As, Cd, Cu, Cr, Ni, Pb, and Zn in road dust in Rafsanjan City, Iran, were investigated. Pollution was assessed using the enrichment factor (EF). The potentially harmful effects of HMs were evaluated by calculating the potential ecological risk factor of individual metals (E r ) and of multiple metals (RI) using the Hakanson method. Correlation and principal component analyses (PCA) were applied to identify HM pollution sources. The concentrations of HMs in road dust were higher (ca. 5-10 folds) than their natural background values. The EF and E r increased according to the following order Cu > Pb > As > Zn > Cd > Cr > Ni and Cu > Cd > Pb > As > Ni > Zn > Cr, respectively. Thus, Cu is regarded as the pollutant of highest concern. Based on potential ecological risk index (RI) spatial distribution, all parts of Rafsanjan are characterized by significantly high potential ecological risk. HM concentration heat maps, PCA, and correlation analysis suggest that Cu, Pb, As, Cd, and Zn may have originated from the same source and follow the same spatial distribution pattern. These metals originated mainly from anthropogenic sources like copper mining and smelting plants, industrial and chemical activities, inordinate application of chemical fertilizers and pesticides in farmlands, and heavy traffic. Ni and Cr are likely to origniate from the industrial activities and traffic load in Rafsanjan City.

  14. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    PubMed

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  16. Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.

    PubMed

    Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young

    2018-09-01

    The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.

  17. Fabrication of CuInS2/ZnS quantum dots-based white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Chun; Su, Yu-Sheng; Chung, Shu-Ru

    2017-09-01

    Among solid-state lighting technology, phosphor-converted white light-emitting diodes (pc-WLEDs) are excellent candidates to replace incandescent lamps for their merit of high energy conservation, long lifetime, high luminous efficiency as well as polarized emissions. Semiconductor quantum dots (QDs) are emerging color tunable emissive light converters. They have shown significant promise as light emitters, as solar cells, and in biological imaging. It has been demonstrated that the pc-WLED devices integrated with red emissive ZnCdSe QDs show improved color rendering index of device. However, cadmium-based QDs have limited future owing to the well-known toxicity. Recently, non-cadmium luminescence materials, i.e. CuInS2-based QDs, are investigated as desirable low toxic alternatives. Particularly, CuInS2-based QDs exhibit very broad emissions spectra with full width at half maximum (FWHM) of 100-120 nm, large Stokes shifts of 200 300 meV and finely-tunable emissions. In order to adjust emission wavelengths and improved quantum yield (QY), CuInS2/ZnS (CIS/ZnS) core/shell structure was introduced. Therefore, CIS/ZnS QDs have been extensively investigated and be used as color converter in solid-state lighting. Synthesis and application of CuInS2/ZnS core/shell QDs are conducted using a hot injection route. CIS/ZnS core/shell QDs with molar ratio of Cu:In equal to 1:4 are prepared. For WLED fabrication, the CIS/ZnS QD is dispersed in toluene first, and then it is blended with transparent acrylic-based UV resin. Subsequently, the commercial green-emitting Lu3Al5O12: Ce3+ (LuAG) phosphors are mixed with QDs-resin mixture. After that, the QDs-phosphors-resin mixtures are put in the oven at 140 °C for 1 h to evaporate the toluene. Subsequently, the homogeneous QDs-phosphors-resin mixture is dropped on the top of a blue LED chip (InGaN). Then, the device is cured by 400 W UV light to form WLED. The emission wavelength of CIS/ZnS QD exhibits yellow region of 552 nm with QY of 76 %, and with relatively broad bandwidth of 86 nm. The structure of CIS/ZnS belongs to chalcopyrite phase and its average particle size is 3.2 nm. The luminous efficacy, color rendering index (CRI), correlated color temperature (CCT), and CIE chromaticity coordinate of WLED is 47 lm/W, 89, 5661 K, and (0.33, 0.29), respectively.

  18. An over 18%-efficiency completely buffer-free Cu(In,Ga)Se2 solar cell

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Nishinaga, Jiro; Koida, Takashi; Shibata, Hajime

    2018-07-01

    In this letter, an independently certified photovoltaic efficiency of 18.4% demonstrated from a completely buffer-layer-free Cu(In,Ga)Se2 (CIGS) solar cell is reported. A Si-doped CIGS thin film was used as the photoabsorber layer and a conductive B-doped ZnO (BZO) front electrode layer was directly deposited on the CIGS layer. Metastable acceptor activation by heat-light soaking treatment was performed to maximize the efficiency. The results presented here are expected to serve as a benchmark for simplified-structure CIGS devices as well as a reference for discussions on the role of buffer layers used in conventional CIGS solar cells.

  19. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes.

    PubMed

    Chantana, Jakapan; Kato, Takuya; Sugimoto, Hiroki; Minemoto, Takashi

    2018-04-04

    Development of Cd-free Cu(In,Ga)(S,Se) 2 (CIGSSe)-based thin-film solar cells fabricated by an all-dry process is intriguing to minimize optical loss at a wavelength shorter than 520 nm owing to absorption of the CdS buffer layer and to be easily integrated into an in-line process for cost reduction. Cd-free CIGSSe solar cells are therefore prepared by the all-dry process with a structure of Zn 0.9 Mg 0.1 O:Al/Zn 0.8 Mg 0.2 O/CIGSSe/Mo/glass. It is demonstrated that Zn 0.8 Mg 0.2 O and Zn 0.9 Mg 0.1 O:Al are appropriate as buffer and transparent conductive oxide layers with large optical band gap energy values of 3.75 and 3.80 eV, respectively. The conversion efficiency (η) of the Cd-free CIGSSe solar cell without K-treatment is consequently increased to 18.1%. To further increase the η, the Cd-free CIGSSe solar cell with K-treatment is next fabricated and followed by posttreatment called the heat-light-soaking (HLS) + light-soaking (LS) process, including HLS at 110 °C followed by LS under AM 1.5G illumination. It is disclosed that the HLS + LS process gives rise to not only the enhancement of carrier density but also the decrease in the carrier recombination rate at the buffer/absorber interface. Ultimately, the η of the Cd-free CIGSSe solar cell with K-treatment prepared by the all-dry process is enhanced to the level of 20.0%.

  20. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Liu, Huarong; Fan, Ximei

    2017-09-01

    Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4 \\cdot H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electrons from the interface and enhanced the photocatalytic property of T-ZnOw.

  1. Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase

    PubMed Central

    Bourne, Yves; Redford, Susan M.; Steinman, Howard M.; Lepock, James R.; Tainer, John A.; Getzoff, Elizabeth D.

    1996-01-01

    Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable β-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key β-barrel common to the eukaryotic CuZnSODs. However, the β-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key β-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance. PMID:8917495

  2. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka?

    PubMed

    Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana

    2016-06-01

    The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.

  3. Cement Dust Exposure and Perturbations in Some Elements and Lung and Liver Functions of Cement Factory Workers

    PubMed Central

    Richard, Egbe Edmund; Augusta Chinyere, Nsonwu-Anyanwu; Jeremaiah, Offor Sunday; Opara, Usoro Chinyere Adanna; Henrieta, Etukudo Maise; Ifunanya, Egbe Deborah

    2016-01-01

    Background. Cement dust inhalation is associated with deleterious health effects. The impact of cement dust exposure on the peak expiratory flow rate (PEFR), liver function, and some serum elements in workers and residents near cement factory were assessed. Methods. Two hundred and ten subjects (50 workers, 60 residents, and 100 controls) aged 18–60 years were studied. PEFR, liver function {aspartate and alanine transaminases (AST and ALT) and total and conjugated bilirubin (TB and CB)}, and serum elements {lead (Pb), copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), selenium (Se), chromium (Cr), zinc (Zn), and arsenic (As)} were determined using peak flow meter, colorimetry, and atomic absorption spectrometry, respectively. Data were analysed using ANOVA and correlation at p = 0.05. Results. The ALT, TB, CB, Pb, As, Cd, Cr, Se, Mn, and Cu were significantly higher and PEFR, Fe, and Zn lower in workers and residents compared to controls (p < 0.05). Higher levels of ALT, AST, and Fe and lower levels of Pb, Cd, Cr, Se, Mn, and Cu were seen in cement workers compared to residents (p < 0.05). Negative correlation was observed between duration of exposure and PEFR (r = −0.416, p = 0.016) in cement workers. Conclusions. Cement dust inhalation may be associated with alterations in serum elements levels and lung and liver functions while long term exposure lowers peak expiratory flow rate. PMID:26981118

  4. Trace elements and antioxidant enzymes in Behçet's disease.

    PubMed

    Saglam, K; Serce, A F; Yilmaz, M I; Bulucu, F; Aydin, A; Akay, C; Sayal, A

    2002-07-01

    Free oxygen radicals and insufficiency of antioxidant enzymes have been implicated in the pathogenesis of Behçet's disease (BD). Trace elements function as cofactors to antioxidant enzymes. The antioxidant system and trace elements were investigated in many different studies, including BD, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in BD to contribute to the knowledge of pathogenesis and treatment of this disease. We examined glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities together with selenium (Se), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels in plasma and erythrocytes of 50 patients with BD and 30 healthy controls. It was found that in patients with BD, erythrocyte GSH-Px and SOD activities and erythrocyte Se, plasma Fe, Mn, and Zn levels were significantly lower than those of controls and that plasma Cu, erythrocyte Zn, and Mn levels were significantly higher in patients with BD. Insufficient antioxidant enzyme activities were observed in patients with BD. The mechanism(s) of this phenomenon is not clear. Therefore, supplementation with trace elements involved in the antioxidative processes may increase scavenger enzyme activities, and consequently, an improvement in clinical symptoms may be expected.

  5. Cryoprotective role of organic Zn and Cu supplementation in goats (Capra hircus) diet.

    PubMed

    Arangasamy, Arunachalam; Krishnaiah, Mayasula Venkata; Manohar, Narasimhaiah; Selvaraju, Sellappan; Rani, Guvvala Pushpa; Soren, Nira Manik; Reddy, Ippala Janardhan; Ravindra, Janivara Parameshwaraiah

    2018-04-01

    The current study focused on cryopreservation and assessment of characters of post-thaw semen of indigenous Osmanabadi bucks maintained with standard diet, supplemented with different concentrations of organic zinc (Zn), copper (Cu) or in combination, for a period of 180 days. The different doses of organic Zn and Cu were fed per kg DM basis, Zn groups (low: Zn20, medium: Zn40 and high: Zn60), Cu groups: (low: Cu12.5, medium: Cu25 and high: Cu37.5) and combination of Zn + Cu groups (low: Zn20 + Cu12.5, medium: Zn40 + Cu25 and high: Zn60 + Cu37.5) respectively. The control group bucks were maintained mainly on the basal diet without any additional mineral supplementation. Two hundred and forty (240) semen samples were collected from 40 bucks aged 11 months, through electro ejaculator method, processed and analysed for sperm quality parameters both at pre freeze and post-thaw stage. The semen samples were diluted in Tris egg yolk extender, cooled and equilibrated for 4 h at 5 °C, cryopreserved using programmable freezer (PLANER Kryo 360-1.7) and stored at -196 °C. The organic trace minerals (Zn, Cu and Zn + Cu) protected the spermatozoa against the cryoinjury and maintained higher post-thaw semen parameters except in high Zn group. Additional feeding of organic Cu and Zn to bucks had a protective role and resulted in higher sperm liveability, plasma membrane and acrosome integrities, motility and velocity and reduced oxidative stress in supplemented goats (P < 0.05). Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Palhares, Leticia F.

    The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.

  7. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  8. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    USGS Publications Warehouse

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayigit, A.I.; Bulut, Y.; Karayigit, G.

    A total of 48 samples, feed coals (FCs), fly ashes (FAs) and bottom ashes (BAs), which were systematically collected once a week over an eight-week period from boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity from Soma power plant, have been evaluated for major and trace elements (Al, Ca, Fe, K, Mg, Mn, Na, Ti, S, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Ge, Hf, Hg, Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, Tl, U, V, Y, Zn, Zr, and REEs) to get information onmore » behavior during coal combustion. This study indicates that some elements such as Hg, Bi, Cd, As, Pb, Ge, Tl, Sn, Zn, Sb, B show enrichments in FAs relative to the BAs in both group boiler units. In addition to these, Cs, Lu, Tm, and Ga in Units B1-4 and S in Units B5-6 also have enrichments in FAs. Elements showing enrichments in BAs in both group boiler units are Ta, Mn, Nb. In addition to these, Se, Ca, Mg, Na, Fe in Units B1-4 and Cu in Units B5-6 also have enrichments in BAs. The remaining elements investigated in this study have no clear segregation between FAs and BAs. Mass balance calculations with the two methods show that some elements, S, Ta, Hg, Se, Zn, Na, Ca in Units B1-4, and Hg, S, Ta, Se, P in Units B5-6, have volatile behavior during coal combustion in the Soma power plant. This study also implies that some elements, Sb and Tb in Units B1-4 and Sb in Units B5-6, have relatively high retention effects in the combustion residues from the Soma power plant.« less

  10. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Xueliang; Zou, Xingli; Lu, Xionggang; Lu, Changyuan; Cheng, Hongwei; Xu, Qian; Zhou, Zhongfu

    2016-11-01

    The electrodeposition of Zn and Cu-Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu-Zn alloy films have also been electrodeposited directly from CuO-ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu-Zn alloy depends on the electrodeposition potential.

  11. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Schatz, Hendrik; Beers, Timothy C.

    2014-08-10

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 ≤λ ≤ 2360 Å wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I.more » The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range –2.8 < [Fe/H] <–0.6, ([As/Fe]) = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, ([Se/Fe]) = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 ≤A ≤ 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. ([Cu II/Cu I]) = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.« less

  12. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing.

    PubMed

    Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo

    2017-03-01

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO 4 - exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO 4 was added. Likewise, Cu XANES spectra for CuO and CuSO 4 -exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.

  13. Complete transformation of ZnO and CuO nanoparticles in ...

    EPA Pesticide Factsheets

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  14. Optimization of Post-selenization Process of Co-sputtered CuIn and CuGa Precursor for 11.19% Efficiency Cu(In, Ga)Se2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Han, Kaikai; Kuang, Zhongcheng; Jin, Ranran; Hu, Junxia; Guo, Longfei; Liu, Ya; Lu, Zhangbo; Du, Zuliang

    2017-04-01

    In this work, CuInGa alloy precursor films are fabricated by co-sputtering of CuIn and CuGa targets simultaneously. After selenization in a tube-type rapid thermal annealing system under a Se atmosphere, the Cu(In, Ga)Se2 (CIGS) absorber layers are obtained. Standard soda lime glass (SLG)/Mo/CIGS/CdS/i-ZnO/ITO/Ag grid structural solar cells are fabricated based on the selenized CIGS absorbers. The influences of selenization temperatures on the composition, crystallinity, and device performances are systematically investigated by x-ray energy dispersive spectroscopy, x-ray diffraction, Raman spectroscopy, and the current density-voltage ( J- V) measurement. It is found that the elemental ratio of Cu/(In + Ga) strongly depends on the selenization temperatures. Because of the appropriate elemental ratio, a 9.92% conversion efficiency is reached for the CIGS absorber selenized at 560°C. After the additional optimization by pre-annealing treatment at 280°C before the selenization, a highest conversion efficiency of 11.19% with a open-circuit ( V oc) of 456 mV, a short-circuit ( J sc) of 40.357 mA/cm2 and a fill factor of 60.82% without antireflection coating has been achieved. Above 13% efficiency improvement was achievable. Our experimental findings presented in this work demonstrate that the post-selenization of co-sputtered CuIn and CuGa precursor is a promising way to fabricate high quality CIGS absorbers.

  15. Cu,Zn superoxide dismutase: cloning and analysis of the Taenia solium gene and Taenia crassiceps cDNA.

    PubMed

    Parra-Unda, Ricardo; Vaca-Paniagua, Felipe; Jiménez, Lucia; Landa, Abraham

    2012-01-01

    Cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) catalyzes the dismutation of superoxide (O(2)(-)) to oxygen and hydrogen peroxide (H(2)O(2)) and plays an important role in the establishment and survival of helminthes in their hosts. In this work, we describe the Taenia solium Cu,Zn-SOD gene (TsCu,Zn-SOD) and a Taenia crassiceps (TcCu,Zn-SOD) cDNA. TsCu,Zn-SOD gene that spans 2.841 kb, and has three exons and two introns; the splicing junctions follow the GT-AG rule. Analysis in silico of the gene revealed that the 5'-flanking region has three putative TATA and CCAAT boxes, and transcription factor binding sites for NF1 and AP1. The transcription start site was a C, located at 22 nucleotides upstream of the translation start codon (ATG). Southern blot analysis showed that TcCu,Zn-SOD and TsCu,Zn-SOD genes are encoded by a single copy. The deduced amino acid sequences of TsCu,Zn-SOD gene and TcCu,Zn-SOD cDNA reveal 98.47% of identity, and the characteristic motives, including the catalytic site and β-barrel structure of the Cu,Zn-SOD. Proteomic and immunohistochemical analysis indicated that Cu,Zn-SOD does not have isoforms, is distributed throughout the bladder wall and is concentrated in the tegument of T. solium and T. crassiceps cysticerci. Expression analysis revealed that TcCu,Zn-SOD mRNA and protein expression levels do not change in cysticerci, even upon exposure to O(2)(-) (0-3.8 nmol/min) and H(2)O(2) (0-2mM), suggesting that this gene is constitutively expressed in these parasites. Published by Elsevier Inc.

  16. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  17. Mineral deficiency status of ranging zebu (Bos indicus) cattle around the Gilgel Gibe catchment, Ethiopia.

    PubMed

    Dermauw, Veronique; Yisehak, Kechero; Belay, Duguma; Van Hecke, Thomas; Du Laing, Gijs; Duchateau, Luc; Janssens, Geert P J

    2013-06-01

    Mineral deficiencies in cattle, widespread in East Africa, impair optimal health and production and consequently place a great burden on the farmers' income. Therefore, detection of shortages and imbalances of specific minerals is essential. Our objective was to evaluate the mineral status of grazing cattle around the Gilgel Gibe catchment in Ethiopia and associated factors. In study I, individual animal plasma and herd faecal Ca, P, Mg, Na, K, S, Fe, Zn, Mn and Cu concentrations were determined in adult zebu cattle (Bos indicus; n=90) grazing at three altitudes around the catchment, whilst recording body condition score and sex. In study II, liver samples of adult male zebu cattle (n=53) were analysed for Cu, Zn, Fe, Se and Mo concentrations and inspected for parasitic infections. Plasma and liver analyses revealed a Cu deficiency problem in the area, since 68 and 47 % of cattle, respectively, were Cu deprived according to diagnostic criteria for Bos taurus cattle. High hepatic Mo concentrations in 17 % of cases might reflect excessive dietary Mo intake. Liver Se and plasma Na concentrations were too low in 92 and 80 % of cattle. Plasma Mn concentrations were largely below the detection limit. Plasma Cu as well as Ca concentrations were lower in the lowest altitude compared to the highest altitude group (P<0.05), whereas lean to medium cattle had lower plasma Cu concentrations (P<0.05). No differences in hepatic mineral concentrations were detected between cattle with different types of parasitic infection. In conclusion, bovine mineral deficiencies were present in the Gilgel Gibe area and were associated with grazing altitude and body condition score.

  18. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  19. CIGS thin film solar cell prepared by reactive co-sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  20. Dietary mineral supplies in Africa

    PubMed Central

    Joy, Edward J M; Ander, E Louise; Young, Scott D; Black, Colin R; Watts, Michael J; Chilimba, Allan D C; Chilima, Benson; Siyame, Edwin W P; Kalimbira, Alexander A; Hurst, Rachel; Fairweather-Tait, Susan J; Stein, Alexander J; Gibson, Rosalind S; White, Philip J; Broadley, Martin R

    2014-01-01

    Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting harvestplus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks. PMID:24524331

  1. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  2. Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Yao, Bin; Li, Yongfeng; Ding, Zhanhui; Deng, Rui; Sui, Yingrui; Zhang, Zhenzhong; Zhao, Haifeng; Zhang, Ligong

    2018-01-01

    In the present work, we designed and prepared Cu2ZnSn(S,Se)4 (CZTSSe)-based solar cells with a new structure of Al/ITO/ZnO/CdS/CZTSSe/WO3/Mo/SLG (S1-5) by depositing about 5-nm-thick WO3 layer with monoclinic structure on the back electrode Mo/SLG of solar cells with the convention structure of Al/ITO/ZnO/CdS/CZTSSe/Mo/SLG (S2), with the aim of improving the power conversion efficiency (PCE) of CZTSSe-based solar cells. It is found that the average open circuit voltage (Voc) increases from 346.7 mV of the S2 cells to 400.9 mV of the S1-5 cells, the average short circuit current density (Jsc) from 26.4 mA/cm2 to 32.1 mA/cm2 and the filling factor (FF) from 33.8 to 40.0 by addition of the WO3 layer, which results in that the average PCE increases from 3.10% of the S2 cells to 5.14% of the S1-5 cells. The average increasing percent of the PCE is 65.8%. The increase in Voc, Jsc and FF of the S1-5 cells compared to the S2 cells is attributed to that the WO3 layer prevent the Se coming from Se ambient and CZTSSe to react with the Mo to form MoSe2 and other second phases, which makes the shunt resistance (Rsh) of the S1-5 increase and the series resistance (Rs) and reverse saturation current density (J0) decrease compared to the S2 cells. The decreased J0 is main factor of improvement of the PCE. A mechanism of influence of the Rsh, Rs and J0 on the PCE is also revealed. Our result demonstrates that addition of the WO3 layer with a reasonable thickness can be a promising technical route of improving the PCE of the CZTSSe-based solar cell.

  3. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    PubMed

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  4. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    PubMed

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil

    NASA Astrophysics Data System (ADS)

    Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang

    2010-12-01

    Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.

  6. Analysis of future generation solar cells and materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.

  7. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  8. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  9. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system.

    PubMed

    Zeng, Xianwei; Xiong, Dehua; Zhang, Wenjun; Ming, Liqun; Xu, Zhen; Huang, Zhanfeng; Wang, Mingkui; Chen, Wei; Cheng, Yi-Bing

    2013-08-07

    In this paper, low-cost counter electrodes (CEs) based on water-soluble multiwall carbon nanotube (MWCNT) and Cu2ZnSnSe4 nanoparticle (CZTSe NP) composites have been successfully introduced into a quantum dot-sensitized solar cell (QDSC) system. Suitable surface modification allows the MWCNTs and CZTSe NPs to be homogeneously dispersed in water, facilitating the subsequent low-temperature spray deposition of high quality composite films with different composite ratios. The electrochemical catalytic activity of the composite CEs has been critically compared by electrochemical impedance spectroscopy and Tafel-polarization analysis. It is found that the composite CE at the MWCNT : CZTSe ratio of 0.1 offers the best performance, leading to an optimal solar cell efficiency of 4.60%, which is 50.8% higher than that of the Pt reference CE. The as-demonstrated higher catalytic activity of the composite CEs compared to their single components could be ascribed to the combination of the fast electron transport of the MWCNTs and the high catalytic activity of CZTSe NPs.

  10. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    PubMed

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

  11. Improvement of the photovoltaic performance of Cu2ZnSn(S x Se1-x )4 solar cells by adding polymer in the precursor solution

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Li, Yong-Feng; Yao, Bin; Ding, Zhan-Hui; Deng, Rui; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong

    2018-03-01

    Kesterite Cu2ZnSn(S x Se1-x )4 (CZTSSe) thin films and related solar cells were successfully fabricated by a facile sol-gel method and selenization process. The influence of Polyvinylpyrrolidone (PVP) additive on the properties of the CZTSSe films and the power conversion efficiency (PCE) of the solar cells were investigated. The results reveal that the qualities of CZTSSe films can be manipulated by incorporating a small amount of PVP. With addition of 1 wt% of PVP, the smoothness and grain size of the CZTSSe films were greatly improved. The contact at the CZTSSe/Mo interface was also improved. As a result, the optimized PCE of solar cells improved from 2.24% to 4.34% after the addition of 1 wt% PVP due to the decrease of recombination at the interfaces. These results suggest that polymer addition in the precursor solution is a promising method for obtaining high quality of CZTSSe films and high-performance solar cells.

  12. Electrochemical corrosion behavior, microstructure and magnetic properties of sintered Nd-Fe-B permanent magnet doped by CuZn5 powders

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Wang, Z.; Sun, C.; Yue, M.; Liu, Y. Q.; Zhang, D. T.; Zhang, J. X.

    2014-05-01

    Nd-Fe-B permanent magnets with a small amount of CuZn5 powders doping were prepared by conventional sintered method. The effects of CuZn5 contents on magnetic properties and microstructure, electrochemical corrosion resistance of sintered Nd-Fe-B magnets were systematically studied. The results show that the magnetic properties of magnets do not have a significant variation by CuZn5 powders doping; the coercivity of magnets rises gradually, while the remanence of the magnets decreases a little with increasing of the CuZn5 amount. The CuZn5 doped magnets have more positive corrosion potential, Ecorr, and much lower corrosion current density, icorr, than the magnets without CuZn5 doping, indicating CuZn5 doping could improve the corrosion resistance. Both Zn and Cu enrich mainly into the Nd-rich phase, fully improve the wettability between the Nd-rich phase and the Nd2Fe14B phase, and repair the defects of the main phase, so the coercivity of magnets doped with CuZn5 powders rises. Such microstructure modification effectively restrains the aggressive inter-granular corrosion. As a result, the CuZn5 doped magnet possesses excellent corrosion resistance in NaCl electrolyte.

  13. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest.

    PubMed

    Costa-Böddeker, Sandra; Hoelzmann, Philipp; Thuyên, Lê Xuân; Huy, Hoang Duc; Nguyen, Hoang Anh; Richter, Otto; Schwalb, Antje

    2017-01-30

    Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterization of efficiency-limiting resistance losses in monolithically integrated Cu(In,Ga)Se2 solar modules

    PubMed Central

    Yoon, Ju-Heon; Park, Jong-Keuk; Kim, Won Mok; Lee, JinWoo; Pak, Hisun; Jeong, Jeung-hyun

    2015-01-01

    The cell-to-module efficiency gap in Cu(In,Ga)Se2 (CIGS) monolithically integrated solar modules is enhanced by contact resistance between the Al-doped ZnO (AZO) and Mo back contact layers, the P2 contact, which connects adjacent cells. The present work evaluated the P2 contact resistance, in addition to the TCO resistance, using an embedded transmission line structure in a commercial-grade module without using special sample fabrication methods. The AZO layers between cells were not scribed; instead, the CIGS/CdS/i-ZnO/AZO device was patterned in a long stripe to permit measurement of the Mo electrode pair resistance over current paths through two P2 contacts (Mo/AZO) and along the AZO layer. The intercept and slope of the resistance as a function of the electrode interval yielded the P2 contact resistance and the TCO resistance, respectively. Calibration of the parasitic resistances is discussed as a method of improving the measurement accuracy. The contribution of the P2 contact resistance to the series resistance was comparable to that of the TCO resistance, and its origin was attributed to remnant MoSe2 phases in the P2 region, as verified by transmission electron microscopy. PMID:25573530

  15. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  16. Wintering greater scaup as biomonitors of metal contamination in federal wildlife refuges in the Long Island Region

    USGS Publications Warehouse

    Cohen, J.B.; Barclay, J.S.; Major, A.R.; Fisher, J.P.

    2000-01-01

    Tissues of greater scaup (Aythya marila mariloides) and components of their habitat (sediment, plankton, macroalgae, and invertebrates) were collected for heavy metal analysis in the winter of 1996-97 from US Department of the Interior wildlife refuges in the Long Island region. Geographic and temporal relationships between the concentration of nine metals in tissue and in habitat components were examined. In greater scaup tissues and habitat components, concentrations of As and Se were highest in Branford, Connecticut; Pb values were greatest in Oyster Bay, New York; and Hg concentrations were largest in Sandy Hook, New Jersey. Over the course of the winter, the concentration of Hg in liver increased, and concentrations of Cd, Cr, Cu, Hg, Pb, Se, and Zn in kidney decreased. Based on several criteria derived from geographic and temporal trends, metals were ranked using the apparent biomonitoring efficacy of greater scaup (As = Cr > Cu = Pb = Zn = Hg > Se = Cd > Ni). Although the seasonal migration and daily mobility of greater scaup are drawbacks to using this species as a sentinel for metal pollution, it was possible to demonstrate a relationship between geographic and temporal patterns of metals in habitat and greater scaup tissue. However, most metal concentrations in tissue were below thresholds known to adversely affect health of waterfowl.

  17. Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.

    2015-08-06

    We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less

  18. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  19. Trace elements levels in centenarian 'dodgers'.

    PubMed

    Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo

    2016-05-01

    Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, P<0.001), but higher Fe (1.3 (0.4, 4.7) vs 1.1 (0.5, 8.4)μg/mL, P=0.003) and Se (85.7 (43.0, 256.7) vs 77.8 (24.3, 143.8)ng/mL, P=0.002) values compared with elderly controls. The logistic regression analysis identified the combination of Cu and Se as significant predictor variables associated with successful aging (P=0.001), while receiver operating characteristic (ROC) analysis confirmed that Cu and Se (either alone or in combination) were independent variables associated with healthy aging. An 'improved' trace element profile (reduced Cu and elevated Se, which are involved in key physiological processes) could play a role in the resistance to disease showed by centenarian 'dodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.

  1. Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2 BaSn(S,Se)4 Absorber.

    PubMed

    Shin, Donghyeop; Zhu, Tong; Huang, Xuan; Gunawan, Oki; Blum, Volker; Mitzi, David B

    2017-06-01

    In recent years, Cu 2 ZnSn(S,Se) 4 (CZTSSe) materials have enabled important progress in associated thin-film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu 2 BaSnS 4 (CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two-step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high-quality nominally pinhole-free films with large (>1 µm) grains of selenium-incorporated (x = 3) Cu 2 BaSnS 4- x Se x (CBTSSe) for high-efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single-junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air-annealing step, a CBTSSe-based PV device with 5.2% PCE (total area 0.425 cm 2 ) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se-rich Cu 2 BaSnS 4- x Se x family for high-efficiency and earth-abundant PV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial variation distribution, uncertainties and control policies

    NASA Astrophysics Data System (ADS)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-04-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have received worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we established the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocated the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn during the period of 1949-2012, have been increased by about 22-128 times at an annual average growth rate of 5.1-8.0%, amounting to about 79 570 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metals smelting represent the dominant sources for Hg / Cd, As / Se / Pb / Cr / Ni / Mn / Co, Sb / Cu, and Zn, respectively. In terms of spatial variation, the majority of emissions were concentrated in relatively developed regions, especially for the northern, eastern and southern coastal regions. In addition, because of the flourishing nonferrous metals smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on accounting of the current and future demand of energy-saving and pollution reduction in China.

  3. Cell metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    NASA Astrophysics Data System (ADS)

    Milgram, S.; Carrière, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.

    2007-07-01

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  4. Cs promoted oxidation of Zn and CuZn surfaces: a combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Sanjay; Rodriguez, JoséA.; Hrbek, Jan

    1997-07-01

    The interaction of O 2 with Zn, {Cs}/{Zn} and {Cs}/{CuZn} surfaces was investigated using photoemission and ab initio self-consistent-field (SCF) calculations. On zinc films, the sticking probability of O 2 is extremely low (10 -3-10 -2), and O 2 exposures in the range of 10 3 to 10 4 langmuirs are necessary to produce a significant adsorption of oxygen and the transformation of metallic zinc into zinc oxide. The presence of sub monolayer coverages of cesium enhances the oxidation rate of zinc by 2-3 orders of magnitude. In the {Cs}/{Zn} system, the alkali atom donates electrons to zinc. This charge transfer facilitates the formation of Zn→O 2 dative bonds and breaking of the OO bond. For the coadsorption of Cs and O 2 on Zn(001), the larger the electron transfer from Zn into the O 2 (1 πg) orbitals, the bigger the adsorption energy of the molecule and the elongation of the OO bond. In general, cesium does not promote the oxidation of copper. In the {Cs}/{CuZn} system, copper withdraws electrons from zinc. The presence of copper in the {Cs}/{CuZn} system inhibits the oxidation of the Zn component compared with the {Cs}/{Zn} system by lowering the electron density on the Zn atoms. After exposing the {Cs}/{CuZn} system to O 2, zinc is oxidized at a rate that is larger than that found for clean CuZn surfaces and smaller than seen in {Cs}/{Zn} surfaces. Molecular hydrogen is found to have no effect on oxidized Cu, Zn and CuZn films. However, atomic hydrogen reduces ZnO to metallic zinc and CuO to Cu 2O. In the oxidized CuZn alloy, CuO is reduced first followed by the reduction of ZnO. A comparison of the behavior of O 2/Cs/Zn and H 2O/Cs/Zn systems shows that while O 2 causes severe oxidation of Cs promoted Zn surfaces, H 2O has little or no effect.

  5. Compositional ratio effect on the surface characteristics of CuZn thin films

    NASA Astrophysics Data System (ADS)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  6. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Hongwen; Zhang, Liqiang; Wu, Kewei; Yu, Qing; Chen, Ru; Yang, Hangsheng; Peng, Xinsheng; Ye, Zhizhen

    2012-11-01

    A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous CuO quasi-monocrystalline nanosheets prepared at 25 °C with a thickness of ca. 10 nm and large specific surface area of 80.32 m2 g-1 is investigated intensively. These CuO nanosheets demonstrate a superior catalytic activity for CO oxidation, with features of high CO conversion efficiency (47.77 mmolCO g-1CuO h-1 at 200 °C), which is close to that reported for previously investigated supported-CuO catalysts, and a low apparent activation energy Ea (53.3 kJ mol-1).A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous CuO quasi-monocrystalline nanosheets prepared at 25 °C with a thickness of ca. 10 nm and large specific surface area of 80.32 m2 g-1 is investigated intensively. These CuO nanosheets demonstrate a superior catalytic activity for CO oxidation, with features of high CO conversion efficiency (47.77 mmolCO g-1CuO h-1 at 200 °C), which is close to that reported for previously investigated supported-CuO catalysts, and a low apparent activation energy Ea (53.3 kJ mol-1). Electronic supplementary information (ESI) available: Raman spectrum of Zn2Cu2 prepared at 25 °C (Fig. S1); content ratios of Zn/Cu for Zn2Cu2, Zn4Cu2 and Zn6Cu2 samples prepared at 25 °C measured by ICP-MS (Table S1); representative TEM images of Cu2, Zn2Cu2, Zn4Cu2 and Zn6Cu2 samples prepared at 25 °C (Fig. S2); size distributions along two perpendicular directions for Cu2, Zn2Cu2, Zn4Cu2 and Zn6Cu2 samples prepared at 25 °C (Fig. S3); the characteristic parameters of Cu2, Zn2Cu2, Zn4Cu2 and Zn6Cu2 samples prepared at 25 °C (Table S2); the characteristic parameters of Cu2, Zn2Cu2, Zn4Cu2 and Zn6Cu2 samples prepared at 35 °C (Table S3); SEM images of Zn2Cu2 products prepared at 20 °C, 25 °C, 30 °C and 50 °C (Fig. S4); the characteristic parameters of Zn2Cu2 prepared at 20 °C, 25 °C, 30 °C and 50 °C (Table S4); pH values of Cu2, Zn2Cu2, Zn4Cu2 and Zn6Cu2 solution without adding 1.6 mmol AE aqueous solution at 25 °C (Table S5); SEM images of Ag2Cu2, Mg2Cu2, Al2Cu2 prepared at 25 °C and EDS spectrum of Al2Cu2 (Fig. S5); the characteristic parameters of Cu2, Zn2Cu2, Ag2Cu2, Mg2Cu2 and Al2Cu2 samples prepared at 25 °C (Table S6); UV-Vis spectrum of Cu2 nanosheets prepared at 25 °C (Fig. S6); photograph of the Tyndall effect for the Cu2 solution prepared at 25 °C and UV-Vis absorption changes of Evans blue solutions after filtering the 80 ml Cu2 solution products (Fig. S7); FTIR spectrum of Cu2 nanosheets prepared at 25 °C (Fig. S8); Cu2p XPS spectrum of Cu2 nanosheets prepared at 25 °C (Fig. S9); detailed reaction rates of catalytic CO oxidation at different temperatures (Table S7); XRD pattern and SEM image of Cu2 sample after 6 hours of catalytic reaction (Fig. S10); nitrogen adsorption-desorption isotherms at 77 K of Zn4Cu2 prepared at 25 °C (Fig. S11). See DOI: 10.1039/c2nr32729e

  7. Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)

    NASA Astrophysics Data System (ADS)

    Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto

    2017-04-01

    The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.

  8. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Thyroid functions and trace elements in pediatric patients with exogenous obesity.

    PubMed

    Cayir, Atilla; Doneray, Hakan; Kurt, Nezahat; Orbak, Zerrin; Kaya, Avni; Turan, Mehmet Ibrahim; Yildirim, Abdulkadir

    2014-02-01

    Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p = 0.006). Zn levels in the patient group were significantly low compared to the control group (p = 0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p = 0.001, p = 0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.

  10. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.

  11. Optimization of Cu-Zn Massive Sulphide Flotation by Selective Reagents

    NASA Astrophysics Data System (ADS)

    Soltani, F.; Koleini, S. M. J.; Abdollahy, M.

    2014-10-01

    Selective floatation of base metal sulphide minerals can be achieved by using selective reagents. Sequential floatation of chalcopyrite-sphalerite from Taknar (Iran) massive sulphide ore with 3.5 % Zn and 1.26 % Cu was studied. D-optimal design of response surface methodology was used. Four mixed collector types (Aer238 + SIPX, Aero3477 + SIPX, TC1000 + SIPX and X231 + SIPX), two depressant systems (CuCN-ZnSO4 and dextrin-ZnSO4), pH and ZnSO4 dosage were considered as operational factors in the first stage of flotation. Different conditions of pH, CuSO4 dosage and SIPX dosage were studied for sphalerite flotation from first stage tailings. Aero238 + SIPX induced better selectivity for chalcopyrite against pyrite and sphalerite. Dextrin-ZnSO4 was as effective as CuCN-ZnSO4 in sphalerite-pyrite depression. Under optimum conditions, Cu recovery, Zn recovery and pyrite content in Cu concentrate were 88.99, 33.49 and 1.34 % by using Aero238 + SIPX as mixed collector, CuCN-ZnSO4 as depressant system, at ZnSO4 dosage of 200 g/t and pH 10.54. When CuCN was used at the first stage, CuSO4 consumption increased and Zn recovery decreased during the second stage. Maximum Zn recovery was 72.19 % by using 343.66 g/t of CuSO4, 22.22 g/t of SIPX and pH 9.99 at the second stage.

  12. Synthesis of ZnO/CuO and TiO{sub 2}/CuO nanocomposites for light and ultrasound assisted degradation of a textile dye in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzakki, Afifah; Shabrany, Hesni; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id

    2016-04-19

    ZnO/CuO and TiO2/CuO nanocomposites with different Zn/Cu and Ti/Cu ratios were prepared using sol-gel method. The obtained composite samples were used as catalyst. Methylene blue was used as a model of textile dye to evaluate their photocatalytic, sonocatalytic and photosonocatalytic activities. X-ray diffraction and energy dispersive X- ray analysis confirmed that only monoclinic CuO and hexagonal wurtzite ZnO structures are present in ZnO/CuO nanocomposites, while in TiO2/CuO nanocomposites monoclinic CuO and anatase TiO2 structures were observed. The degradation of methylene blue indicated that the incorporation of CuO in ZnO/CuO and TiO2/CuO nanocomposites exhibited an appreciable higher photocatalytic activity, which wasmore » mainly attributed to the extended photoresponding range and more light energy could be utilized than pure ZnO and TiO2.« less

  13. [In Process Citation].

    PubMed

    Wang, Bingsong; Li, Yijun; Wu, Xiaolu; Liu, Qingqing; Tang, Xue; Wang, Zuo

    2016-03-25

    Objetivos: oligoelementos como zinc (Zn), hierro (Fe) y cobre (Cu) tienen una influencia significativa en el mantenimiento de la función inmune y del metabolismo normales; modulan la función immune e influyen en la susceptibilidad del organismo ante infecciones. Pero la relación entre trazas de estos elementos y la bronconeumonía resultó incierta. Métodos: en este estudio fueron incluidos 28 niños con bronconeumonía y 46 niños sanos agrupados por edad. Se determinaron los niveles de Zn, Cu, Fe, calcio (Ca) y/o magnesio (Mg) en el suero de los niños con bronconeumonía y sin ella mediante espectrofotometría de absorción atómica. Resultados: los resultados muestran que varios niveles de microelementos como Zn, Ca, Mg y Fe en el grupo con bronconeumonía son menores que en el grupo control. En el grupo de niños con bronconeumonía el nivel de Ca en el suero está asociado positivamente con el zinc (Zn) (p < 0,05) y el hierro (Fe) (p < 0,05), mientras que hay una correlación positiva entre el cobre (Cu) y el calcio (Ca) (p < 0,05), magnesio (mg) (p < 0,05). Conclusión: el nivel de oligoelemento en el suero puede estar asociado con el riesgo de bronconeumonía entre los niños.

  14. Survey of Nuclear Activations for Intense Proton and Deuteron Beams

    DTIC Science & Technology

    1992-12-24

    1.115 64Zn(d,t)6𔃽 Zn -5.60 ÷ 38 min 2.34 0.51 64Zn(d,a)’ 2 Cu 7.52 ÷ 9.8 min 2.93 0.51 6’Zn(d,2p) 64Cu -2.01 - 12.8 hr 0.575 - c,o+ 12.8 hr 0.656...and for the activation of 5aCo by deuterons on a natural nickel target. 43 THICK-TARGET YIELDS Copper Target 1000 63Cu(d,p) 64Cu 65Cu(d,p)66Cu o 100 6...activation of 1 5 Zn by deuterons and for the GCZn(d,n)"Ga, ’,IZn(d,p)60 Zn, 6SZn(d,p)69mZn, 6 6 Zn(d,(X) 64Cu , and 68Zn(d,2n)6,8Ga reactions in a natural zinc target. 45

  15. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*

    PubMed Central

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-01-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  16. Electrodeposition of CuZn Alloys from the Non-Cyanide Alkaline Baths

    NASA Astrophysics Data System (ADS)

    Li, Minggang; Wei, Guoying; Hu, Shuangshuang; Xu, Shuhan; Yang, Yejiong; Miao, Qinfang

    2015-10-01

    Effect of copper sulfate on CuZn alloys electroplating from non-cyanide baths are investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements are used to characterize the CuZn alloys electroplating system in order to analyze the nucleation and growth mechanism. The reduction of Cu and CuZn alloy on sheet iron substrates shows an instantaneous nucleation process. However, the reduction of Zn on sheet iron substrates shows a progressive nucleation process. The structure and surface morphology of CuZn alloys are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of CuZn alloys obtained with 50 g L-1 copper sulfate presents a smooth and compact deposit and the size of crystal particle is uniform.

  17. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. Electronic supplementary information (ESI) available: Synthesis and TEM images of pure ZnO nanocrystals. Photocatalytic testing procedures and degradation curves. SEM and TEM images, SAED pattern and EDS spectra and maps of parts of Cu-ZnO hybrid samples. A schematic image of coincident lattice matching between Cu and ZnO. STEM-EDS elemental maps and XRD pattern of the Cu@CuNi-ZnO sample. Comparative synthetic parameters. See DOI: 10.1039/c6nr02055k

  18. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage.

    PubMed

    Skrivan, M; Skrivanová, V; Marounek, M

    2005-10-01

    An experiment was conducted to evaluate the effect of dietary content and combinations of Zn, Fe, and Cu on deposition of these elements in egg components, liver, and excreta. Excreta were applied as a manure to a lawn, and 3 mo later soil and herbage samples were taken and analyzed. The experiment comprised 144 hens in 8 groups. The basal diet contained Zn, Fe, and Cu at 63.4, 92.8, and 9.0 mg/kg, respectively. It was supplemented with 1, 2, or 3 trace elements (inorganic forms) at 80 mg of Zn/kg, 120 mg of Fe/kg, and 25 mg of Cu/kg. Recovery of Zn, Fe, and Cu in eggs of hens fed the basal diet was 10.7, 9.8, and 4.4% of the alimentary intake, respectively. A Zn-Cu antagonism was observed; deposition of Zn in the yolk was significantly decreased by Cu addition and vice versa (P < 0.01). Supplementation of the basal diet with Fe increased Fe concentration in egg yolk and white by 6.3 and 2.2%, respectively. The combination of Fe with Zn and Cu, however, increased Fe concentration in the yolk and white by 36.7 and 34.9%, respectively (P < 0.01). The enrichment of eggs with the other elements was marginal (Cu) or absent (Zn). Effects of Zn, Fe, and Cu of the basal diet on liver concentrations of these elements were relatively small, and no antagonism between Zn and Cu was apparent. Supplementation of the basal diet with the combination of Zn and Fe, however, significantly decreased hepatic concentration of Cu. On the other hand, Cu supplementation significantly increased Fe concentration in livers of hens fed the Fe-supplemented diet (P < 0.01). Concentrations of Zn, Fe, and Cu in excreta were related to their dietary content. High concentrations of Zn, Fe, and Cu in excreta corresponded with limited deposition of the 3 elements in eggs and liver. Concentrations of Zn, Fe, and Cu in herbage correlated significantly with the supply of these elements by hen excreta into soil. The Zn supplied by hen excreta was more stable than Fe and Cu; thus Zn could accumulate in the soil.

  19. Radiative transitions in highly doped and compensated chalcopyrites and kesterites: The case of Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Teixeira, J. P.; Sousa, R. A.; Sousa, M. G.; da Cunha, A. F.; Fernandes, P. A.; Salomé, P. M. P.; Leitão, J. P.

    2014-12-01

    The theoretical models of radiative recombinations in both CuIn1 -xGaxSe2 chalcopyrite and Cu2ZnSnS4 kesterite, and related compounds, were revised. For heavily doped materials, electrons are free or bound to large donor agglomerates which hinders the involvement of single donors in the radiative recombination channels. In this work, we investigated the temperature and excitation power dependencies of the photoluminescence of Cu2ZnSnS4-based solar cells in which the absorber layer was grown through sulphurization of multiperiod structures of precursor layers. For both samples the luminescence is dominated by an asymmetric band with peak energy at ˜1.22 eV, which is influenced by fluctuating potentials in both conduction and valence bands. A value of ˜60 meV was estimated for the root-mean-square depth of the tails in the conduction band. The radiative transitions involve the recombination of electrons captured by localized states in tails of the conduction band with holes localized in neighboring acceptors that follow the fluctuations in the valence band. The same acceptor level with an ionization energy of ˜280 meV was identified in both absorber layers. The influence of fluctuating potentials in the electrical performance of the solar cells was discussed.

  20. Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Shin, Byungha; Reuter, Kathleen B.; Todorov, Teodor; Mitzi, David B.; Guha, Supratik

    2011-01-01

    We have carried out detailed microstructural studies of phase separation and grain boundary composition in Cu2ZnSnS4 based solar cells. The absorber layer was fabricated by thermal evaporation followed by post high temperature annealing on hot plate. We show that inter-reactions between the bottom molybdenum and the Cu2ZnSnS4, besides triggering the formation of interfacial MoSx, results in the out-diffusion of Cu from the Cu2ZnSnS4 layer. Phase separation of Cu2ZnSnS4 into ZnS and a Cu-Sn-S compound is observed at the molybdenum-Cu2ZnSnS4 interface, perhaps as a result of the compositional out-diffusion. Additionally, grain boundaries within the thermally evaporated absorber layer are found to be either Cu-rich or at the expected bulk composition. Such interfacial compound formation and grain boundary chemistry likely contributes to the lower than expected open circuit voltages observed for the Cu2ZnSnS4 devices.

  1. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE PAGES

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan; ...

    2017-08-21

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  2. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  3. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    PubMed Central

    Kuriakose, Sini; Avasthi, D K

    2015-01-01

    Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864

  4. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  5. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  6. Effects of CuZnAl Particles on Properties and Microstructure of Sn-58Bi Solder

    PubMed Central

    Yang, Fan; Zhang, Liang; Liu, Zhi-quan; Zhong, Su Juan; Ma, Jia; Bao, Li

    2017-01-01

    With the purpose of improving the properties of the Sn-58Bi lead-free solder, micro-CuZnAl particles ranging from 0 to 0.4 wt % were added into the low temperature eutectic Sn-58Bi lead-free solder. After the experimental testing of micro-CuZnAl particles on the properties and microstructure of the Sn-58Bi solders, it was found that the wettability of the Sn-58Bi solders was obviously improved with addition of CuZnAl particles. When the addition of CuZnAl particles was 0.2 wt %, the wettability of the Sn-58Bi solder performed best. At the same time, excessive addition of CuZnAl particles led to poor wettability. However, the results showed that CuZnAl particles changed the melting point of the Sn-58Bi solder slightly. The microstructure of the Sn-58Bi solder was refined by adding CuZnAl particles. When the content of CuZnAl addition was between 0.1 and 0.2 wt %, the refinement was great. In addition, the interfacial IMC layer between new composite solder and Cu substrate was thinner than that between the Sn-58Bi solder and Cu substrate. PMID:28772917

  7. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    PubMed

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    PubMed

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  10. Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico.

    PubMed

    Zavala-Norzagaray, A A; Ley-Quiñónez, C P; Espinosa-Carreón, T L; Canizalez-Román, A; Hart, C E; Aguirre, A A

    2014-11-01

    This study determined the concentrations of heavy metals in blood collected from Pacific Ridley sea turtles (Lepidochelys olivacea) inhabiting the coast of Guasave, Mexico, in the Gulf of California. The highest reported metal concentration in blood was Zn, followed by Se. Of nonessential toxic metals, As was reported in higher percentage compared to Cd. The concentrations of metals detected were present as follows: Zn > Se > Mn > As > Ni > Cd > Cu. Cd concentration in blood is higher in our population in comparison with other populations of L. olivacea, and even higher in other species of sea turtles. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements, and is easily accessible and nonlethal for sea turtles.

  11. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.

    PubMed

    Kim, Bojeong; McBride, Murray B

    2009-01-01

    A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

  12. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  13. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  14. Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments

    USGS Publications Warehouse

    Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.

    2010-01-01

    This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.

  15. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements.

    PubMed

    Magiera, Tadeusz; Zawadzki, Jarosław; Szuszkiewicz, Marcin; Fabijańczyk, Piotr; Steinnes, Eiliv; Fabian, Karl; Miszczak, Ewa

    2018-03-01

    An important problem in soil magnetometry is unraveling the soil contamination signal in areas with multiple emitters. Here, geophysical and geochemical measurements were performed at four sites on a north - south transect along the Pasvik River in the Barents Region (northern Norway). These sites are influenced by depositions from the Bjørnevatn iron mine and a Ni-Cu smelter in Nikel, Russia. To relate the degree and type of pollution from these sources to the corresponding magnetic signal, the topsoil concentrations of 12 Potentially Toxic Elements (PTEs) (As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Se, Ti, Zn), were determined, magnetic hysteresis parameters and thermomagnetic properties were measured. In situ magnetic low-field susceptibility decreases from north to south with increasing distance from the iron mine. Relatively large magnetic multidomain grains of magnetite and/or titanomagnetite are responsible for the strong magnetic signal from the topsoil close to Bjørnevatn. These particles are related to increased enrichment factors of As, Mo and Cu, yielding high positive correlation coefficients with susceptibility values. At a site furthest away from the iron mine and located 7 km from the Ni-Cu smelter magnetic susceptibility values are much lower but significant positive correlations on the level of p < .1 with 8 PTEs (Ni, Cu, Co, Se, As, Zn, Cd, Cr) have been observed. The magnetic signal in this area is due to fine-grained primary sulphides and secondary fine-grained magnetite and/or maghemite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Molecular cloning and characterization of Siamese crocodile (Crocodylus siamensis) copper, zinc superoxide dismutase (CSI-Cu,Zn-SOD) gene.

    PubMed

    Sujiwattanarat, Penporn; Pongsanarakul, Parinya; Temsiripong, Yosapong; Temsiripong, Theeranan; Thawornkuno, Charin; Uno, Yoshinobu; Unajak, Sasimanas; Matsuda, Yoichi; Choowongkomon, Kiattawee; Srikulnath, Kornsorn

    2016-01-01

    Superoxide dismutase (SOD, EC 1.15.1.1) is an antioxidant enzyme found in all living cells. It regulates oxidative stress by breaking down superoxide radicals to oxygen and hydrogen peroxide. A gene coding for Cu,Zn-SOD was cloned and characterized from Siamese crocodile (Crocodylus siamensis; CSI). The full-length expressed sequence tag (EST) of this Cu,Zn-SOD gene (designated as CSI-Cu,Zn-SOD) contained 462bp encoding a protein of 154 amino acids without signal peptides, indicated as intracellular CSI-Cu,Zn-SOD. This agreed with the results from the phylogenetic tree, which indicated that CSI-Cu,Zn-SOD belonged to the intracellular Cu,Zn-SOD. Chromosomal location determined that the CSI-Cu,Zn-SOD was localized to the proximal region of the Siamese crocodile chromosome 1p. Several highly conserved motifs, two conserved signature sequences (GFHVHEFGDNT and GNAGGRLACGVI), and conserved amino acid residues for binding copper and zinc (His(47), His(49), His(64), His(72), His(81), Asp(84), and His(120)) were also identified in CSI-Cu,Zn-SOD. Real-time PCR analysis showed that CSI-Cu,Zn-SOD mRNA was expressed in all the tissues examined (liver, pancreas, lung, kidney, heart, and whole blood), which suggests a constitutively expressed gene in these tissues. Expression of the gene in Escherichia coli cells followed by purification yielded a recombinant CSI-Cu,Zn-SOD, with Km and Vmax values of 6.075mM xanthine and 1.4×10(-3)mmolmin(-1)mg(-1), respectively. This Vmax value was 40 times lower than native Cu,Zn-SOD (56×10(-3)mmolmin(-1)mg(-1)), extracted from crocodile erythrocytes. This suggests that cofactors, protein folding properties, or post-translational modifications were lost during the protein purification process, leading to a reduction in the rate of enzyme activity in bacterial expression of CSI-Cu,Zn-SOD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities.

    PubMed

    Lu, Yi-Hsuan; Lin, Wei-Hao; Yang, Chao-Yao; Chiu, Yi-Hsuan; Pu, Ying-Chih; Lee, Min-Han; Tseng, Yuan-Chieh; Hsu, Yung-Jung

    2014-08-07

    An environmentally benign antisolvent method has been developed to prepare Cu(2+)-doped ZnO nanocrystals with controllable dopant concentrations. A room temperature ionic liquid, known as a deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of the ZnO-containing DES into a bad solvent which shows no solvation to ZnO, ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding Cu(2+) ions to the bad solvent, the growth of ZnO from the antisolvent process was accompanied by Cu(2+) introduction, resulting in the formation of Cu(2+)-doped ZnO nanocrystals. The as-prepared Cu(2+)-doped ZnO showed an additional absorption band in the visible range (400-800 nm), which conduced to an improvement in the overall photon harvesting efficiency. Time-resolved photoluminescence spectra, together with the photovoltage information, suggested that the doped Cu(2+) may otherwise trap photoexcited electrons during the charge transfer process, inevitably depressing the photoconversion efficiency. The photoactivity of Cu(2+)-doped ZnO nanocrystals for photoelectrochemical water oxidation was effectively enhanced in the visible region, which achieved the highest at 2.0 at% of Cu(2+). A further increase in the Cu(2+) concentration however led to a decrease in the photocatalytic performance, which was ascribed to the significant carrier trapping caused by the increased states given by excessive Cu(2+). The photocurrent action spectra illustrated that the enhanced photoactivity of the Cu(2+)-doped ZnO nanocrystals was mainly due to the improved visible photon harvesting achieved by Cu(2+) doping. These results may facilitate the use of transition metal ion-doped ZnO in other photoconversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems.

  18. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements.

    PubMed

    Voruganti, V Saroja; Klein, Gordon L; Lu, Hong-Xing; Thomas, Suchmor; Freeland-Graves, Jeanne H; Herndon, David N

    2005-09-01

    Major burns are associated with impaired Zn and Cu status. These micronutrients are essential for bone matrix formation, linear growth, and wound healing. This study evaluated the status of Zn and Cu in burned children and assessed adequacy of supplementation. Six children, mean total body surface area (TBSA), 54+/-9% (S.D.), were recruited. Nutrient intakes, plasma, wound exudate, and 24h urine samples were collected and analyzed for Zn and Cu. Bone mineral content was assessed by dual energy X-ray absorptiometry. Dietary Zn and Cu were three times the dietary reference, and mean plasma concentrations of Zn and Cu were low at admission and discharge. Urinary Zn was elevated at admission, whereas Cu was elevated at both times. Wound Zn and Cu concentrations exceeded plasma concentrations, suggesting that inflammatory wound exudate was a primary route of loss. We demonstrate that burn injury in children results in low plasma levels of Zn and Cu that are inadequately compensated during hospitalization.

  19. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gao, Shiyong; Zhang, Jiejing; Li, Wenqiang; Jiao, Shujie; Nie, Yanguang; Fan, Huaiyun; Zeng, Zhi; Yu, Qingjiang; Wang, Jinzhong; Zhang, Xitian

    2018-01-01

    Large-area ZnO/Cu2O heterojunction have been successfully synthesized on Cu foil through a simple two-step solution method at near room temperature. The field emission scanning electron microscopy characterization indicates that the morphology of as-prepared Cu2O film grown on Cu foil is octahedral structure with diameter of ∼450 nm and ZnO is nanorod arrays structure with diameter of ∼150 nm. The current-voltage measurement of ZnO/Cu2O heterojunction shows a typical rectifying characteristics. Moreover, the photocatalytic test indicates that ZnO/Cu2O heterojunction exhibits high photocatalytic efficient for degradation of congo red dyes. The possible photocatalytic mechanism of ZnO/Cu2O heterojunction is also presented.

  20. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function

    NASA Astrophysics Data System (ADS)

    Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.

    2017-12-01

    First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.

  1. Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells

    DOE PAGES

    Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; ...

    2016-09-20

    In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn 1-xMg xO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Gamore » dopants were added, the electron concentrations were on the order of 10 17 cm -3 or 10 20 cm -3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu 2ZnSnS 4 (CZTS), Cu(In, Ga)Se 2 (CIGS) and other solar cell absorbers.« less

  2. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins.

    PubMed

    Atanasova, Milena; Petkova, Zlatina; Pechlivanova, Daniela; Dragomirova, Petya; Blazhev, Alexander; Tchekalarova, Jana

    2013-10-01

    Oxidative stress is implicated in the pathogenesis of both hypertension and epileptogenesis, therefore it could be used as a tool for studying co-morbidity of hypertension and epilepsy. Clinical data suggest that melatonin is a potent antioxidant that is effective in the adjunctive therapy of hypertension and neurodegenerative diseases. The present study aimed to explore and compare the efficacy of chronic pretreatment with melatonin infused via subcutaneous osmotic mini-pumps for 14 days (10 mg/kg per day) on kainic acid (KA)-induced status epilepticus, oxidative stress and expression of heat shock protein (HSP) 72 in spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. SHRs showed higher lipid peroxidation (LP) in the frontal cortex and hippocampus and decreased cytosolic superoxide dismutase (SOD/CuZn) production in the frontal cortex compared to Wistar rats. Status epilepticus (SE) induced by KA (12 mg/kg, i.p.) was accompanied by increased LP and expression of HSP 72 in the hippocampus of the two strains and increased SOD/CuZn production in the frontal cortex of SHRs. Melatonin failed to suppress seizure incidence and intensity though the latency for seizure onset was significantly increased in SHRs. Melatonin attenuated the KA-induced increase in the level of LP in the hippocampus both in SHRs and Wistar rats. However, an increased activity in SOD/CuZn and mitochondrial SOD Mn as well as reduced expression of HSP 72 in the hippocampus was observed only in Wistar rats pretreated with melatonin. Taken together, the observed strain differences in the efficacy of chronic melatonin exposure before SE suggest a lack of a direct link between the seizure activity and the markers of oxidative stress and neurotoxicity. © 2013.

  3. Characteristics and impacts of trace elements in atmospheric deposition at a high-elevation site, southern China.

    PubMed

    Nie, Xiaoling; Wang, Yan; Li, Yaxin; Sun, Lei; Li, Tao; Yang, Minmin; Yang, Xueqiao; Wang, Wenxing

    2017-10-01

    To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg -1 , respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.

  4. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  5. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.

    PubMed

    Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa

    2018-10-15

    Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3  mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier B.V.

  6. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  7. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay response by HaCuZnSOD. Our findings demonstrated that HaCuZnSOD is an important antioxidant, which might be involved in the host antioxidant defense mechanism against oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    PubMed

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  9. Investigation of the 66Zn(p,2pn) 64Cu and 68Zn(p,x) 64Cu nuclear processes up to 100 MeV: Production of 64Cu

    NASA Astrophysics Data System (ADS)

    Szelecsényi, F.; Steyn, G. F.; Kovács, Z.; Vermeulen, C.; van der Meulen, N. P.; Dolley, S. G.; van der Walt, T. N.; Suzuki, K.; Mukai, K.

    2005-11-01

    Cross-sections of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes were measured on highly enriched zinc targets using the stacked-foil activation technique up to 100 MeV. The new cross-sections were compared to literature data. The optimum energy range for production of 64Cu was found to be 70 → 35 MeV on 66Zn and 37 → 20 MeV on 68Zn. The thick-target yields were determined as 777 MBq/μAh (21.0 mCi/μAh) and 185 MBq/μAh (5.0 mCi/μAh), respectively. The yields of the longer-lived contaminant copper radioisotopes (i.e. 61Cu when using 66Zn as target material and both 61Cu and 67Cu in the case of 68Zn target material) were also calculated. The results obtained from the present study indicate that both reactions are suited for the production of 64Cu at a medium energy cyclotron. The optimum energy ranges are also complementary therefore the potential to utilize tandem targetry exists.

  10. Thermal and Electrical Transport Study on Thermoelectric Materials Through Nanostructuring and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang

    Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, kappaph of single crystal Bi2Te 3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the eDeltamin/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 - 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating kappae and kappaph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 - 300 K) and applied magnetic fields (0 - 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5].

  11. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  12. Fiber-fed time-resolved photoluminescence for reduced process feedback time on thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, I. L.; Egaas, B.; Mansfield, L. M.

    2015-01-15

    Fiber-fed time-resolved photoluminescence is demonstrated as a tool for immediate process feedback after deposition of the absorber layer for CuIn{sub x}Ga{sub 1-x}Se{sub 2} and Cu{sub 2}ZnSnSe{sub 4} photovoltaic devices. The technique uses a simplified configuration compared to typical laboratory time-resolved photoluminescence in the delivery of the exciting beam, signal collection, and electronic components. Correlation of instrument output with completed device efficiency is demonstrated over a large sample set. The extraction of the instrument figure of merit, depending on both the initial luminescence intensity and its time decay, is explained and justified. Limitations in the prediction of device efficiency by thismore » method, including surface effect, are demonstrated and discussed.« less

  13. SXRF determination of trace elements in chondrule rims in the unequilibrated CO3 chondrite, ALH A77307

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.

    1993-01-01

    The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.

  14. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  15. The Attenuation of Central Angiotensin II-dependent Pressor Response and Intra-neuronal Signaling by Intracarotid Injection of Nanoformulated Copper/Zinc Superoxide Dismutase

    PubMed Central

    Rosenbaugh, Erin G.; Roat, James; Gao, Lie; Yang, Rui-Fang; Manickam, Devika S.; Yin, Jing-Xiang; Schultz, Harold D.; Bronich, Tatiana K.; Batrakova, Elena V.; Kabanov, Alexander V.; Zucker, Irving H.; Zimmerman, Matthew C.

    2010-01-01

    Adenoviral-mediated overexpression of the intracellular superoxide (O2•−) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O2•−, as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K+ current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo. PMID:20378166

  16. Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections

    PubMed Central

    Wisniewska, Monika; Cremer, Malte; Wiehe, Lennart; Becker, Niels-Peter; Rijntjes, Eddy; Martitz, Janine; Renko, Kostja; Bührer, Christoph; Schomburg, Lutz

    2017-01-01

    Copper (Cu) and zinc (Zn) are essential trace elements for regular development. Acute infections alter their metabolism, while deficiencies increase infection risks. A prospective observational case-control study was conducted with infected (n = 21) and control (n = 23) term and preterm newborns. We analyzed trace element concentrations by X-ray fluorescence, and ceruloplasmin (CP) by Western blot. Median concentration of Cu at birth (day 1) was 522.8 [387.1–679.7] μg/L, and Zn was 1642.4 ± 438.1 μg/L. Cu and Zn correlated positively with gestational age in control newborns. Cu increased in infected newborns from day 1 to day 3. CP correlated positively to Cu levels at birth in both groups and on day 3 in the group of infected neonates. The Cu/Zn ratio was relatively high in infected newborns. Interleukin (IL)-6 concentrations on day 1 were unrelated to Cu, Zn, or the Cu/Zn ratio, whereas C-reactive protein (CRP) levels on day 3 correlated positively to the Cu/Zn -ratio at both day 1 and day 3. We conclude that infections affect the trace element homeostasis in newborns: serum Zn is reduced, while Cu and CP are increased. The Cu/Zn ratio combines both alterations, independent of gestational age. It may, thus, constitute a meaningful diagnostic biomarker for early-onset infections. PMID:28358335

  17. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    PubMed

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  18. Effectiveness of selenium on acrylamide toxicity to retina

    PubMed Central

    Ali, Mervat Ahmed; Aly, Eman Mohamed; Elawady, Amal Ibrahim

    2014-01-01

    AIM To investigate the hematological parameters, biochemical and electrophysiological role of acrylamide (ACR) in the retina and to assess whether selenium (Se) has protective potential in experimental oral intoxication with ACR. METHODS Sixty Wistar age matched-albino rats (3mo) weighing 195-230 g comprised of both sex were divided into 4 groups. Group I served as the control one in which animals take saline; group II was animals administrated ACR in dose of 15 mg/kg body weight per day for 28d; group III was animals received ACR then additionally Se (0.1 mg/kg body weight) for 28d; and group IV was animals received Se only (0.1 mg/kg body weight) for 28d. Blood analysis and serum trace element levels (Fe, Cu, and Zn) were measured. The electroretinogram (ERG) was recorded, the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) in the retinal tissues were determined. Moreover the regulation of ion channels such as calcium, sodium and potassium were studied. All measurements were done for all groups after 28d. RESULTS Administration of ACR in group II caused a significant decrease (P<0.05) in hemoglobin (Hb), red blood cells (RBCs), hematocrit (HCT), white blood cells (WBCs) and lymphocyte of rats. A significant decrease (P<0.05) in Zn level, and alkaline phosphatase enzyme was observed compared to control. ERG which is a reflection of the electric activity in the retina; a- and-b wave amplitudes in ACR group had a reduction of 40% and 20% respectively. These changes accompanied by significant increases (P<0.05) in MDA level in the ACR group, in contrast with GSH-Px which is significant decreased (P<0.05). Moreover sodium and calcium were significant increased but potassium was significant decreased (P<0.05) compared to control group. There were no significant differences between group III (treated with Se) and control in all hematological parameter. Also serum trace elements levels (Cu, Fe and Zn), alkaline phosphatase enzyme and electric activity of the retina didn't change compared to control due to Se treatment. CONCLUSION This study provides evidence for the protective effect of Se on acrylamide induced toxicity by reducing oxidative stress. PMID:25161930

  19. Estimation of genetic parameters and detection of quantitative trait loci for minerals in Danish Holstein and Danish Jersey milk.

    PubMed

    Buitenhuis, Bart; Poulsen, Nina A; Larsen, Lotte B; Sehested, Jakob

    2015-05-21

    Bovine milk provides important minerals, essential for human nutrition and dairy product quality. For changing the mineral composition of the milk to improve dietary needs in human nutrition and technological properties of milk, a thorough understanding of the genetics underlying milk mineral contents is important. Therefore the aim of this study was to 1) estimate the genetic parameters for individual minerals in Danish Holstein (DH) (n=371) and Danish Jersey (DJ) (n=321) milk, and 2) detect genomic regions associated with mineral content in the milk using a genome-wide association study (GWAS) approach. For DH, high heritabilities were found for Ca (0.72), Zn (0.49), and P (0.46), while for DJ, high heritabilities were found for Ca (0.63), Zn (0.57), and Mg (0.57). Furthermore, intermediate heritabilities were found for Cu in DH, and for K, Na, P and Se in the DJ. The GWAS revealed a total of 649 significant SNP markers detected for Ca (24), Cu (90), Fe (111), Mn (3), Na (1), P (4), Se (12) and Zn (404) in DH, while for DJ, a total of 787 significant SNP markers were detected for Ca (44), Fe (43), K (498), Na (4), Mg (1), P (94) and Zn (3). Comparing the list of significant markers between DH and DJ revealed that the SNP ARS-BFGL-NGS-4939 was common in both breeds for Zn. This SNP marker is closely linked to the DGAT1 gene. Even though we found significant SNP markers on BTA14 in both DH and DJ for Ca, and Fe these significant SNPs did not overlap. The results show that Ca, Zn, P and Mg show high heritabilities. In combination with the GWAS results this opens up possibilities to select for specific minerals in bovine milk.

  20. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  1. Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey.

    PubMed

    Vural, Alaaddin

    2015-08-01

    Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.

  2. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  3. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    NASA Astrophysics Data System (ADS)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  4. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weidong; Cao, Di; Jin, Yunxue

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  5. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE PAGES

    Gao, Weidong; Cao, Di; Jin, Yunxue; ...

    2018-04-18

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  6. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    DOEpatents

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  7. Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).

    PubMed

    Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E

    2008-04-01

    Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.

  8. Toxic and essential elements in five tree nuts from Hangzhou market, China.

    PubMed

    Ni, Zhanglin; Tang, Fubin; Yu, Qing; Liu, Yihua

    2016-12-01

    In this study, a total of 35 tree nut samples of walnut, pecan, pine seed, hickory nut and torreya were obtained from 5 farm product markets in Hangzhou, China, and investigated for essential (Cr, Mn, Fe, Mo, Cu, Zn, Se and Sr) and toxic (Al, As, Cd and Pb) elements by inductively coupled plasma-mass spectroscopy. Mean elemental concentrations of different tree nuts were in the following ranges: Cr 0.26-0.78 mg kg -1 , Mn 42.1-174 mg kg -1 , Fe 33.7-43.9 mg kg -1 , Mo 0.11-0.48 mg kg -1 , Cu 10.3-17.6 mg kg -1 , Zn 21.6-56.1 mg kg -1 , Se 0.015-0.051 mg kg -1 , Al 1.44-37.6 mg kg -1 , As 0.0062-0.047 mg kg -1 , Cd 0.016-0.18 mg kg -1 and Pb 0.0069-0.029 mg kg -1 . The estimated provisional tolerable daily intake of Al, As, Cd and Pb was much lower than the provisional tolerable daily intake.

  9. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  10. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  11. Trace elements levels in the serum, urine, and semen of patients with infertility.

    PubMed

    Sağlam, Hasan Salih; Altundağ, Hüseyin; Atik, Yavuz Tarık; Dündar, Mustafa Şahin; Adsan, Öztug

    2015-01-01

    Studies suggest that trace elements may have an adverse impact on male reproduction, even at low levels. We tried to investigate the relationships between these metals and semen quality in various body fluids among men with infertility. A total of 255 samples of blood, semen, and urine were collected from 85 men suffering from infertility. Inductively coupled plasma-optical emission spectrometry was used for the determination of 22 trace elements. We compared the results of the semen parameters with the results of the element determinations. Because of the high proportion of samples with values lower than the limit of detection for a number of the elements, only 8 of a total 22 trace elements were determined in the samples. When the concentrations of sperm were classified according to the World Health Organization's guidelines for normospermia, oligospermia, and azoospermia, statistically significant differences were found among Zn, Ca, Al, Cu, Mg, Se, and Sr concentrations in various serum, sperm, and urine samples (P < 0.05). In the present study, we found significant correlations between concentrations of Zn, Ca, Al, Cu, Mg, Se, and Sr and semen parameters in various body fluids.

  12. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  13. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    PubMed

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.

  14. Synthesis and characterization of Cu-Zn/TiO2 for the photocatalytic conversion of CO2 to methane.

    PubMed

    Rana, Adeem Ghaffar; Ahmad, Waqar; Al-Matar, Ali; Shawabkeh, Reyad; Aslam, Zaheer

    2017-05-01

    Different Cu-Zn/TiO 2 catalysts were synthesized by using the wet impregnation method. The prepared catalysts were used for the conversion of CO 2 into methane by photocatalysis. Various characterization techniques were used to observe the surface morphology, crystalline phase, Brunauer-Emmett-Teller (BET) surface area, presence of impregnated Cu and Zn, and functional group. Scanning electron microscope analysis showed spherical morphology, and slight agglomeration of catalyst particles was observed. BET analysis revealed that the surface area of the catalyst was decreased from 10 to 8.5 m 2 /g after impregnation of Cu and Zn over TiO 2 support. Synergetic effect of Cu and Zn over TiO 2 support (Cu 2.6 /TiO 2 , Zn 0.5 /TiO 2 and Cu 2.6 -Zn 0.5 /TiO 2 ) and the effects of Cu loading (0, 1.8, 2.1, 2.6 and 2.9 wt%) were also investigated at different feed molar ratios of H 2 /CO 2 (2:1 and 4:1). The Cu 2.6 -Zn 0.5 /TiO 2 catalyst showed a maximum conversion of 14.3% at a feed molar ratio of 4. The addition of Zn over the catalyst surface increased the conversion of CO 2 from 10% to 14.3% which might be due to synergy of Cu and Zn over TiO 2 support.

  15. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    USGS Publications Warehouse

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen fugacities from stage A to stage B, while temperature and oxygen fugacities decrease from stage B to stage C. The Co/Ni ratio of pyrite depends discriminates between the different mineralizing stages in the Yuleken porphyry copper deposit: Py II, associated with the deformation stage B and Cu-enrichment, shows higher Co/Ni ratios and enrichments of Pb, Zn, Mo, Te and Sb than the pyrites formed during the other two stages. The Co/Ni ratio of pyrite can not only apply to discriminate the submarine exhalative, magmatic or sedimentary origins for ore deposits but also can distinguish different ore-forming stages in a single porphyry Cu deposit. Thus, Co/Ni ratio of pyrites may act as an important exploration tool to distinguish pyrites from Cu-rich versus barren area. Furthermore, the distribution of Cu, Mo, Pb, Au, Bi, Sb and Zn in the variably deformed pyrite is proportional to the extent of deformation of the pyrites, indicating in accordance with variable physicochemical conditions different element migration behavior during the different stages of deformation and, thus, mineralisation.

  16. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots.

    PubMed

    Moussa, Hatem; Merlin, Christophe; Dezanet, Clément; Balan, Lavinia; Medjahdi, Ghouti; Ben-Attia, Mossadok; Schneider, Raphaël

    2016-03-05

    3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu(2+) ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu(2+) ions, which could be useful for medical or photocatalytic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1.

    PubMed

    Bhunia, Manas K; Hughes, James T; Fettinger, James C; Navrotsky, Alexandra

    2013-06-25

    Metal-organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data. The enthalpy of formation (ΔHf) of the as-synthesized Cu-HKUST-H2O ([Cu3TMA2·3H2O]·5DMF) is -52.70 ± 0.34 kJ per mole of Cu. The ΔHf for Zn-HKUST-DMF ([Zn3TMA2·3DMF]·2DMF) is -54.22 ± 0.57 kJ per mole of Zn. The desolvated Cu-HKUST-dg [Cu3TMA2] has a ΔHf of 16.66 ± 0.51 kJ/mol per mole Cu. The ΔHf for Zn-HKUST-amorph [Zn3TMA2·2DMF] is -3.57 ± 0.21 kJ per mole of Zn. Solvent stabilizes the Cu-HKUST-H2O by -69.4 kJ per mole of Cu and Zn-HKUST-DMF by at least -50.7 kJ per mole of Zn. Such strong chemisorption of solvent is similar in magnitude to the strongly exothermic binding at low coverage for chemisorbed H2O on transition metal oxide nanoparticle surfaces. The strongly exothermic solvent-framework interaction suggests that solvent can play a critical role in obtaining a specific secondary building unit (SBU) topology.

  18. Defect evolution and its impact on the ferromagnetism of Cu-doped ZnO nanocrystals upon thermal treatment: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Yuqian; Zhang, Q. K.; Qi, N.; Chen, Z. Q.; Wang, S. J.; Li, P. H.; Mascher, P.

    2017-01-01

    CuO/ZnO nanocomposites with 4 at. % CuO were annealed in air at various temperatures between 100 and 1200 °C to produce Cu-doped ZnO nanocrystals. X-ray diffraction shows that a CuO phase can be observed in the CuO/ZnO nanocomposites annealed at different temperatures, and the Cu-doped ZnO nanocrystals are identified to be of wurtzite structure. The main peak (101) appears at slightly lower diffraction angles with increasing annealing temperature from 400 up to 1200 °C, which confirms the successful doping of Cu into the ZnO lattice above 400 °C. Scanning electron microscopy indicates that most particles in the CuO/ZnO nanocomposites are isolated when annealing at 100-400 °C, but these particles have a tendency to form clusters or aggregates as the annealing temperature increases from 700 to 1000 °C. Positron annihilation measurements reveal a large number of vacancy defects in the interface region of the nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room-temperature ferromagnetism can be observed in the CuO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. However, there may be several different origins of ferromagnetism in the CuO/ZnO nanocomposites. At low annealing temperatures, the ferromagnetism originates from the CuO nanograins, and the ferromagnetism of CuO nanograins decreases with an increase in the grain size after subsequent higher temperature annealing, which leads to the weakening of ferromagnetism in the CuO/ZnO nanocomposites. After annealing from 400 to 1000 °C, the ferromagnetism gradually vanishes. The ferromagnetism is probably induced by Cu substitution but is mediated by vacancy defects in the CuO/ZnO nanocomposites. The disappearance of ferromagnetism coincides well with the recovery of vacancy defects. It can be inferred that the ferromagnetism is mediated by vacancy defects that are distributed in the interface region.

  19. Cyclotron production of 61Cu using natural Zn & enriched 64Zn targets

    NASA Astrophysics Data System (ADS)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I.

    2012-12-01

    Copper-61 (61Cu) shares with 64Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study 61Cu was produced using the 64Zn(p,α)61Cu reaction on natural Zn or enriched 64Zn targets. The enriched 64Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30μA; at 11.7, 14.5 or 17.6MeV over 30-60min. The 61Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The 64Zn target material was recovered after each run, for re-use. In a direct comparison with enriched 64Zn-target results, 61Cu production using the cheaper natZn target proved to be an effective alternative.

  20. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.

    PubMed

    Cao, De-ju; Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, Ru-xiao; Liu, Cheng; Liu, Ren-jing; Liang, Yue-gan; Li, Hao; Shi, Xiao-dong

    2015-11-01

    Effects of various concentrations of Cu(2+) and Zn(2+) (0.0, 0.1, 0.25, 0.5, or 1.0 mg/L) on the growth, malondialdehyde (MDA), the intracellular calcium, and physiological characteristics of green algae, Cladophora, were investigated. Low Zn(2+) concentrations accelerated the growth of Cladophora, whereas Zn(2+) concentration increases to 0.25 mg/L inhibited its growth. Cu(2+) greatly influences Cladophora growth. The photosynthesis of Cladophora decreased under Zn(2+) and Cu(2+) stress. Cu(2+) and Zn(2+) treatment affected the content of total soluble sugar in Cladophora and has small increases in its protein content. Zn(2+) induced the intracellular calcium release, and copper induced the intracellular calcium increases in Cladophora. Exposure to Cu(2+) and Zn(2+) induces MDA in Cladophora. The stress concent of Cu(2+) was strictly correlated with the total soluble sugar content, Chla+Chlb, and MDA in Cladophora, and the stress concent of Zn(2+) was strictly correlated with the relative growth rate (RGR) and MDA of Cladophora.

  1. Zone leveling and solution growth of complex compound semiconductors in space

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.

    1986-01-01

    A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.

  2. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  3. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  4. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  5. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    PubMed

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael

    2016-11-01

    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ 65 Cu and δ 66 Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ 65 Cu and δ 66 Zn values in snow and rime, extracted by diluted HNO 3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ 65 Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ 65 Cu value of pollution sources (-1.17‰). The variability in δ 65 Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ 66 Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ 66 Zn value of pollution sources (-0.23‰). The variability in δ 66 Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  7. First Measurement of the Radionuclide Purity of the Therapeutic Isotope 67Cu Produced by 68Zn(n,x) Reaction Using natC(d,n) Neutrons

    NASA Astrophysics Data System (ADS)

    Sato, Nozomi; Tsukada, Kazuaki; Watanabe, Satoshi; Ishioka, Noriko S.; Kawabata, Masako; Saeki, Hideya; Nagai, Yasuki; Kin, Tadahiro; Minato, Futoshi; Iwamoto, Nobuyuki; Iwamoto, Osamu

    2014-07-01

    We have for the first time studied the radionuclide purity of the therapeutic isotope 67Cu produced by the 68Zn(n,x)67Cu reaction. The neutrons were obtained by the natC(d,n) reaction using 40 MeV deuterons. We measured the γ-ray spectra of the reaction products produced by bombarding an enriched 68ZnO sample with the neutrons with a high-purity Ge detector. We found that the relative production yields of the impurity radionuclides 64Cu, 65Zn, and 69mZn to 67Cu are extremely low. The result indicates that the 68Zn(n,x)67Cu reaction is the most promising among those proposed routes until now for producing high-quality 67Cu, and could solve a longstanding problem of establishing an appropriate production method for 67Cu.

  8. Visible light-driven photocatalytic H{sub 2}-generation activity of CuS/ZnS composite particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Liang; Chen, Hua; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn

    2015-04-15

    Highlights: • Preparation of CuS/ZnS composite photocatalyst by cation-exchange reaction. • Visible light photocatalytic activity for H{sub 2} evolution without cocatalyst. • The H{sub 2}-evolution rate from water splitting depends on the CuS content. • The highest rate of H{sub 2} evolution is obtained with CuS (0.5 mol%)/ZnS composite. - Abstract: CuS/ZnS composite particles with diameter of 200–400 nm were successfully prepared by a simple cation-exchange reaction using ZnS spheres as a precursor. CuS nanoparticles with a few nanometers in diameter were observed on the surface of composite particles. The synthesized CuS/ZnS composite particles showed photocatalytic property effective for H{submore » 2} evolution from an aqueous Na{sub 2}S and Na{sub 2}SO{sub 3} solution under visible light irradiation without any cocatalysts. The rate of H{sub 2} generation was found to be strongly dependent on the CuS content. The highest rate of H{sub 2} evolution reached 695.7 μmol h{sup −1} g{sup −1}, which was almost 7 times as high as that of the mechanical mixture of CuS and ZnS. The enhancement in the photocatalytic activity of CuS/ZnS composite particles is supposed to be due to the direct interfacial charge transfer of the CuS/ZnS heterojunction.« less

  9. Synthesis and photoelectrochemical properties of a novel CuO/ZnO nanorod photocathode for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Shaislamov, Ulugbek; Lee, Heon-Ju

    2016-10-01

    Here, we present a facile synthesis method and photoelectrochemical characterizations of a p-type CuO-nanorod array photoelectrode with ZnO nanorod branches. Vertically-aligned CuO nanorods were synthesized by using direct oxidation of metallic Cu nanorods grown on a Cu substrate by using a facile template-assisted electrodeposition method. The formed CuONR/ZnONB hierarchically-structured photoelectrode exhibited remarkable photoelectrodechemical performance and outstanding stability compared to the CuO NR photoelectrode without ZnO NR branches. Morphological, optical and electrochemical characterizations were carried out in order to examine the effects of ZnO nanorod branches on the stability and the overall electrochemical performance of the electrode.

  10. Dilute electrodeposition of TiO2 and ZnO thin film memristors on Cu substrate

    NASA Astrophysics Data System (ADS)

    Fauzi, F. B.; Ani, M. H.; Herman, S. H.; Mohamed, M. A.

    2018-03-01

    Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO2 memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti4+, Zn2+ and O2‑ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors demonstrate comparable performances to previous studies using other methods.

  11. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    NASA Astrophysics Data System (ADS)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat ( Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly ( p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  12. Slow-muon study of quaternary solar-cell materials: Single layers and p -n junctions

    NASA Astrophysics Data System (ADS)

    Alberto, H. V.; Vilão, R. C.; Vieira, R. B. L.; Gil, J. M.; Weidinger, A.; Sousa, M. G.; Teixeira, J. P.; da Cunha, A. F.; Leitão, J. P.; Salomé, P. M. P.; Fernandes, P. A.; Törndahl, T.; Prokscha, T.; Suter, A.; Salman, Z.

    2018-02-01

    Thin films and p -n junctions for solar cells based on the absorber materials Cu (In ,G a ) Se2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu+ state at the heterojunction interface as well as at the surface of the Cu (In ,G a ) Se2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.

  13. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  14. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,

  15. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining

    USGS Publications Warehouse

    Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.

  16. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  18. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions.

    PubMed

    Falandysz, J; Kunito, T; Kubota, R; Bielawski, L; Frankowska, A; Falandysz, Justyna J; Tanabe, S

    2008-12-01

    Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.

  19. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    NASA Astrophysics Data System (ADS)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  20. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica?

    PubMed

    Kroflič, Ana; Germ, Mateja; Golob, Aleksandra; Stibilj, Vekoslava

    2018-04-15

    The present study describes the influence of extensive agriculture on the concentrations of As, Cr, Cu, Cd, Se, Pb and Zn in sediments and in the aquatic plant Veronica anagallis-aquatica. The investigation, spanning 4 years, was conducted on three watercourses in Slovenia (Pšata, Lipsenjščica and Žerovniščica) flowing through agricultural areas. The different sampling sites were chosen on the basis of the presence of different activities in these regions: dairy farming, stock raising and extensive agriculture. The concentrations of the selected elements in sediments and V. anagallis-aquatica were below the literature background values. The distribution of the selected elements among different plant parts (roots, stems and leaves) were also investigated. The majority of the studied elements, with the exception of Zn and Cu, were accumulated mainly in root tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  2. Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; El-Sorogy, Abdelbaset

    2017-06-15

    In order to assess heavy metals pollution along the Al-Khobar coastline, 30 seawater samples and 15 sediment ones were collected for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb analysis by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The analysis indicated a southward decreasing pattern in most heavy metal concentrations and the average values of Zn, Fe, Mn, Cu, As and Cr were higher than the ones reported from some worldwide seas and gulfs. Most of the highest levels were recorded within the bays and were related with in situ under sediments especially that composed of clays and very fine sands, and in localities characterized with anthropogenic activities like landfilling, desalination plants, fishing boats, oil spills and solid rubbish. The results of the present study provide useful background for further marine investigation and management in the Arabian Gulf region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of trace element concentrations in tissue of common carp and implications for monitoring

    USGS Publications Warehouse

    Goldstein, R.M.; DeWeese, L.R.

    1999-01-01

    Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.

  4. Nuclear Data Sheets for A = 80

    NASA Astrophysics Data System (ADS)

    Singh, Balraj

    2005-06-01

    Nuclear spectroscopic information for known nuclides of mass number 80 (Cu,Zn,Ga,Ge,As,Se,Br,Kr,Rb,Sr,Y,Zr) with Z = 29 to 40 and N = 51 to 40 have been evaluated and presented together with adopted energies and Jπ of levels in these nuclei. No excited state data are yet available for 80Cu and 80Zn. In 80Sr, four superdeformed bands have been reported. The half-life of fully-ionized 80Y isomer at 228.5 keV has been measured as 6.8 s 5, as compared to 4.8 s 3 for the neutral atom. This evaluation supersedes previous full evaluations of A = 80 published by 1982Si20 and 1975Gr19, a midstream evaluation of A = 80 published in 'up-date mode' by 1992Si19, and an update of 80Y nuclide for ENSDF by J.K. Tuli in August 2003.

  5. Theory of copper impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.

    Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.

  6. The effect of Ti-B on stabilization of Cu-Zn-Al martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stipcich, M.; Romero, R.

    1998-10-05

    The application of shape memory effect in devices requires, in many cases, stable and reliable transformation temperatures. However, as a consequence of diffusional processes, in Cu-based shape memory alloys, reverse transformation temperature significantly rises after aging at temperatures above room temperature. This generally unwanted behavior is usually referred to as the stabilization of martensite. Numerous investigations have been carried out on this subject as reviewed by Ahlers and Chandrasekaran et al. Within the Cu-based alloys the Cu-Zn-Al are claimed to be more prone to stabilization than Cu-Al-Ni on aging. It has been proposed that in the Cu-Zn-Al the stabilization ismore » due to the interchange of Cu and Zn atoms assisted by vacancies, changing, consequently, the long range order inherited from the {beta} phase. In the present work, the authors investigate the stabilization behavior of polycrystalline samples of stress induced Cu-Zn-Al and Cu-Zn-Al-B martensite.« less

  7. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia.

    PubMed

    El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla

    2015-12-30

    In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health.

    PubMed

    Jarzyńska, Grażyna; Falandysz, Jerzy

    2011-07-01

    Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Stable Plasmonic Cu@Cu2 O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Lou, Yongbing; Zhang, Yake; Cheng, Lin; Chen, Jinxi; Zhao, Yixin

    2018-05-09

    The localized surface plasmon resonance (LSPR) effect has been widely utilized in photocatalysis, but most reported LSPR materials are based on noble metals of gold or silver with high chemical stability. Plasmonic copper nanoparticles that exhibit an LSPR absorbance at 600 nm are promising for many applications, such as photocatalysis. Unfortunately, plasmonic copper nanoparticles are affected by serious surface oxidation in air. Herein, a novel lollipop-shaped Cu@Cu 2 O/ZnO heterojunction nanostructure was designed, for the first time, to stabilize the plasmonic Cu core by decorating Cu@Cu 2 O core-shell structures with ZnO nanorods. This Cu@Cu 2 O/ZnO nanostructure exhibited significantly enhanced stability than that of regular Cu@Cu 2 O, which accounted for the remarkably enhanced photocatalytic H 2 evolution rate through water splitting, relative to pristine ZnO nanorods, over an extended wavelength range due to the plasmonic Cu core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of dietary trace mineral supplementation and a multi-element trace mineral injection on shipping response and growth performance of beef cattle.

    PubMed

    Genther, O N; Hansen, S L

    2014-06-01

    To examine the effect of trace mineral (TM) status and TM injection on growth performance and carcass characteristics in beef cattle, 40 steers were used in a growing and finishing study. Steers were stratified by weight (323 ± 14.8 kg) and assigned to 1 of 2 treatments for an 84-d depletion period: 1) a corn silage-based diet supplemented with Cu, Mn, Se, and Zn to meet or exceed NRC recommendations (CON), or 2) CON diet without supplemental Cu, Mn, Se, or Zn but supplemented with 300 mg Fe and 5 mg Mo/kg diet DM as dietary TM antagonists (DEF) to induce mild deficiencies. To mimic shipping stress, steers were shipped for 20 h on d 88 and were received back on d 89. On d 91 an equal number of steers from both dietary treatments were injected with sterilized saline (SAL) or Multimin 90 (MM; containing 15, 60, 10, and 5 mg/mL of Cu, Zn, Mn, and Se, respectively) at a dose of 1 mL/68 kg BW. Steers were fed a common finishing diet supplemented with 10 mg Cu, 20 mg Mn, 0.1 mg Se, and 30 mg Zn/kg diet DM for the 90-d repletion period. Steers were harvested 91 d postinjection and carcass data were collected. During the depletion period, diet did not affect BW, ADG, DMI, or G:F (P > 0.20). During the shipping period (defined as the time between 2-d consecutive weights on d 83 and 84 and d 90 and 91), DEF steers tended to lose more weight per day than CON steers (P = 0.06) and had lesser DMI (P = 0.03), suggesting that response to shipping stress may be modulated by TM status. During the repletion period, ADG of DEF + MM steers was greater (P = 0.03) compared with DEF + SAL and was not different (P = 0.92) among CON + MM and CON + SAL steers. There was no effect of diet or injection on HCW or dressing percentage (P > 0.20). Within the CON group, TM injection decreased yield grade (P = 0.03) but did not affect yield grade of DEF steers (P > 0.20). Steers given TM injection had a larger rib eye area (P = 0.04) regardless of previous diet. Interestingly, both diet and injection affected marbling scores (MS), where CON steers had greater MS than DEF steers (P = 0.01) and MM steers had greater MS than SAL steers (P = 0.04). These results indicate that adequate TM nutrition is essential for marbling development, during both the growing and finishing phases. Overall, an injectable mineral improved rib eye area and MS regardless of initial TM status and improved growth of mildly TM deficient steers.

  11. Synthesis of first row transition metal selenomaltol complexes.

    PubMed

    Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J

    2018-06-21

    We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.

  12. Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites

    PubMed Central

    Li, Mingtao; Meng, Guowen; Huang, Qing; Zhang, Shile

    2014-01-01

    We report a new mechanism for the enhancement of porous-ZnO surface photovoltage (SPV) response to polychlorinated biphenyls (PCBs, a notorious class of persistent organic pollutants as global environmental hazard) based on copper phthalocyanine (CuPc) chemisorptive bonding on porous-ZnO. A new ZnO-CuPc composite is formed on the porous-ZnO surface due to the interaction between the surface ZnO and CuPc, with its valence band (VB) energy level being higher than that of the pristine porous-ZnO. So that the efficiency of the photogenerated-electron transfer from the composite VB to the adjacent ZnO's surface states is drastically increased due to the reduced energy gap between the transition states. As a result, the sensitivity of the PCB-orientated SPV sensor is much improved by showing amplified variation of the SPV-signals perturbed by PCBs adsorbed on the ZnO-CuPc@porous-ZnO sensitive material. PMID:24594662

  13. A New Test of Copper and Zinc Abundances in Late-Type Stars Using Cu II and Zn II lines in the Near-Ultraviolet

    NASA Astrophysics Data System (ADS)

    Roederer, Ian

    2017-08-01

    The copper (Cu, Z = 29) and zinc (Zn, Z = 30) abundances found in late-type stars provide critical constraints on models that predict the yields of massive star supernovae, hypernovae, Type Ia supernovae, and AGB stars, which are essential ingredients in Galactic chemical evolution models. Furthermore, Zn is commonly used to compare the abundance of iron-group elements in the gas phase in high-redshift DLA systems with metallicities in Local Group stars. It is thus important that the observational Cu and Zn abundances in stars are correct. My proposed archive study will address this issue by using archive STIS spectra of 14 stars to provide the first systematic observational tests of non-LTE calculations of Cu and Zn line formation in late-type stars. The non-LTE calculations predict that all LTE [Cu/Fe] abundance ratios presently found in the literature are systematically lower than the true ratios found in stars. The non-LTE calculations for Zn predict that the LTE values in the literature may be systematically overestimated in low-metallicity stars. The LTE abundances of Cu and Zn are derived from Cu I and Zn I lines. The key advance enabled by the use of NUV spectra is the detection of several lines of Cu II and Zn II, which cannot be detected in the optical or infrared. Cu II and Zn II are largely immune to non-LTE effects in the atmospheres of late-type stars. The metallicities of the 14 stars with NUV spectra span -2.6 < [Fe/H] < -0.1, which covers the range of most Cu and Zn abundances reported in the literature. The proposed study will allow me to test the non-LTE calculations and calibrate the stellar abundances.

  14. Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons.

    PubMed Central

    Bueno, P; Varela, J; Gimeénez-Gallego, G; del Río, L A

    1995-01-01

    The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed. PMID:7630940

  15. Influence of Li Addition to Zn-Al Alloys on Cu Substrate During Spreading Test and After Aging Treatment

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstrus, Janusz; Cempura, Grzegorz; Berent, Katarzyna

    2016-12-01

    The spreading of Zn-Al eutectic-based alloys with 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% Li on Cu substrate has been studied using the sessile drop method in presence of QJ201 flux. Wetting tests were performed after 1 min, 3 min, 8 min, 15 min, 30 min, and 60 min of contact at temperatures of 475°C, 500°C, 525°C, and 550°C. Samples after spreading at 500°C for 1 min were subjected to aging for 1 day, 10 days, and 30 days at temperature of 120°C, 170°C, and 250°C. The spreadability of eutectic Zn-5.3Al alloy with different Li contents on Cu substrate was determined in accordance with ISO 9455-10:2013-03. Selected solidified solder-substrate couples were, after spreading and aging tests, cross-sectioned and subjected to scanning electron microscopy, energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD) analysis of the interfacial microstructure. An experiment was designed to demonstrate the effect of Li addition on the kinetics of the formation and growth of CuZn, Cu5Zn8, and CuZn4 intermetallic compound (IMC) phases, during spreading and aging. The IMC layers formed at the interface were identified using XRD and EDS analyses. Increasing addition of Li to Zn-Al alloy caused a reduction in the thickness of the IMC layer at the interface during spreading, and an increase during aging. The activation energy was calculated, being found to increase for the Cu5Zn8 phase but decrease for the CuZn and CuZn4 phases with increasing Li content in the Zn-Al-Li alloys. The highest value of 142 kJ mol-1 was obtained for Zn-Al with 1.0 Li during spreading and 69.2 kJ mol-1 for Zn-Al with 0.05 Li during aging. Aging at 250°C caused an increase in only the Cu5Zn8 layer, which has the lowest Gibbs energy in the Cu-Zn system. This result is connected to the high diffusion of Cu from the substrate to the solder.

  16. Chalcogen Polymers for Completely Solution-Processed Inorganic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Martin, Trevor R.

    Chalcopyrite materials such as CuInSxSe2-x (CISSe), the gallium alloy variant CuInxGa1-xSySe2-y (CIGSSe), and the earth-abundant kesterite material Cu2ZnSnS xSe4-x (CZTSSe) possess a range of properties that are ideally suited for thin-film photovoltaics (PV) applications. Although these materials are beginning to see some commercial success, they are manufactured using complicated and expensive techniques such as high temperature processing, vacuum deposition methods, and vapor-phase reactions. These production methods require an exorbitantly large capital investment to create new manufacturing facilities, which severely hampers the widespread and rapid deployment of these emerging solar energy technologies. This work has focused on developing novel chalcogen polymers to synthesize nanoparticles and produce thin-films for printed photovoltaics applications. This new method provides a pathway towards using chalcogen copolymers to produce these materials via a completely solution-processed, low-temperature fabrication procedure. This technique constitutes one of the first viable means to produce low-bandgap chalcogenides without additional vapor-phase or high-temperature reactions. Therefore, this process can potentially be implemented to rapidly and cheaply manufacture printed chalcopyrite and kesterite photovoltaics.

  17. Effect of the transit through the gut of earthworm (Eisenia fetida) on fractionation of Cu and Zn in pig manure.

    PubMed

    Li, Lingxiangyu; Wu, Jianyang; Tian, Guangming; Xu, Zhenlan

    2009-08-15

    To investigate the effect of the transit through the gut of earthworm (Eisenia fetida) on the fractionation of Cu and Zn in pig manure, earthworms were reared with pig manure in the greenhouse. Both the pig manure and the earthworm casts were subjected to a five-step sequential extraction of Cu and Zn. The content of Cu bound to organic matter in pig manure increased from 60% to 75% after transit through the gut of earthworm, whereas that of Zn decreased from 50% to 25%. It demonstrated that Cu had a strong affinity towards organic matter. The share of Cu and Zn in the exchangeable fraction was reduced by the transit through the gut of earthworm. Based on these changes, Cu was more bioavailable, whereas Zn was less bioavailable. The factors affecting metal fractionation, like pH, organic matter (OM) and total phosphorous (TP) contents, and total metal concentration, were also affected significantly by the transit through the gut of earthworm. Stepwise multiple regression analysis revealed that the fractionation of Cu in the earthworm casts was influenced by OM, TP and the amount of Cu in the earthworm casts. The total Zn concentration in the earthworm casts was the primary factor that explained most of the variation in Zn fractionation. The present study demonstrated that the digestive activity in the gut of E. fetida played an important role in the fraction redistribution of Cu and Zn in pig manure.

  18. Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil.

    PubMed

    He, Honghua; Dong, Zhigang; Peng, Qi; Wang, Xia; Fan, Chenbin; Zhang, Xingchang

    2017-07-15

    Coal fly ash (CFA) is a problematic solid waste all over the world. One distinct beneficial reuse of CFA is its utilization in land application as a soil amendment. A pot experiment was carried out to assess the feasibility of using CFA to improve plant growth and increase the supply of plant-essential elements and selenium (Se) of a loessial soil for agricultural purpose. Plants of alfalfa (Medicago sativa) were grown in a loessial soil amended with different rates (5%, 10%, 20% and 40%) of CFA for two years and subjected to four successive cuttings. Dry mass of shoots and roots, concentrations of plant-essential elements and Se in plants were measured. Shoot dry mass and root dry mass were always significantly increased by 5%, 10% and 20% CFA treatments, and by 40% CFA treatment in all harvests except the first one. The CFA had a higher supply of exchangeable phosphorus (P), magnesium (Mg), copper (Cu), zinc (Zn), molybdenum (Mo), and Se than the loessial soil. Shoot P, calcium (Ca), Mg, Mo, boron (B), and Se concentrations were generally markedly increased, but shoot potassium (K), Cu, and Zn concentrations were generally reduced. The CFA can be a promising source of some essential elements and Se for plants grown in the loessial soil, and an application rate of not higher than 5% should be safe for agricultural purpose without causing plant toxicity symptoms in the studied loessial soil and similar soils. Field trials will be carried out to confirm the results of the pot experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions.

    PubMed

    Córdoba, Patricia; Castro, Iria; Maroto-Valer, Mercedes; Querol, Xavier

    2015-06-01

    Experimental and geochemical modelling studies were carried out to identify mineral and solid phases containing major, minor, and trace elements and the mechanism of the retention of these elements in Flue Gas Desulphurisation (FGD)-gypsum samples from a coal-fired power plant under filtered water recirculation to the scrubber and forced oxidation conditions. The role of the pH and related environmental factors on the mobility of Li, Ni, Zn, As, Se, Mo, and U from FGD-gypsums for a comprehensive assessment of element leaching behaviour were also carried out. Results show that the extraction rate of the studied elements generally increases with decreasing the pH value of the FGD-gypsum leachates. The increase of the mobility of elements such as U, Se, and As in the FGD-gypsum entails the modification of their aqueous speciation in the leachates; UO2SO4, H2Se, and HAsO2 are the aqueous complexes with the highest activities under acidic conditions. The speciation of Zn, Li, and Ni is not affected in spite of pH changes; these elements occur as free cations and associated to SO4(2) in the FGD-gypsum leachates. The mobility of Cu and Mo decreases by decreasing the pH of the FGD-gypsum leachates, which might be associated to the precipitation of CuSe2 and MoSe2, respectively. Time-of-Flight mass spectrometry of the solid phase combined with geochemical modelling of the aqueous phase has proved useful in understanding the mobility and geochemical behaviour of elements and their partitioning into FGD-gypsum samples. Copyright © 2015. Published by Elsevier B.V.

  20. Reduced anti-ferromagnetism promoted by Zn 3d 10 substitution at CuO 2 planar sites of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductors

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Khan, Nawazish A.

    2009-11-01

    The role of charge carriers in ZnO 2/CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d 10 ( S=0) substitution at Cu 3d 9(S={1}/{2}) sites in the inner CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron-phonon interaction has an essential role in the mechanism of high- Tc superconductivity in these compounds.

  1. Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation

    DOE PAGES

    Wu, Wenting; Zhang, Qinggang; Wang, Ruiqin; ...

    2017-12-07

    Unsaturated metal species (UMS) confined in nanomaterials play important roles for electron transfer in a wide range of catalytic reactions. However, the limited fabrication methods of UMS restrict their wider catalytic applications. Here in this paper, we report on the synergy of unsaturated Zn and Cu dopants confined in carbon dots (ZnCu-CDs) to produce enhanced electron transfer and photooxidation processes in the doped CDs. The Zn/Cu species chelate with the carbon matrix mainly through Cu-O(N)-Zn-O(N)-Cu complexes. Within this structure, Cu 2+ acts as a mild oxidizer that facilely increases the unsaturated Zn content and also precisely tunes the unsaturated Znmore » valence state to Zn d+, where d is between 1 and 2, instead of Zn. With the help of UMS, electron-transfer pathways are produced, enhancing both the electron donating (7.0 times) and-accepting (5.3 times) abilities relative to conventional CDs. Because of these synergistic effects, the photocatalytic efficiency of CDs in photooxidation reactions is shown to improve more than 5-fold.« less

  2. Potential effect of CuInS2/ZnS core-shell quantum dots on P3HT/PEDOT:PSS heterostructure based solar cell

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, S. M.

    2018-07-01

    Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.

  3. Comparison of Cu2+ and Zn2+ thermalcatalyst in treating diazo dye

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Wong, Y. S.; Ong, S. A.; Lutpi, N. A.; Ho, L. N.

    2018-05-01

    This research demonstrates the comparison between copper (II) sulphate (CuSO4) and zinc oxide (ZnO) as thermalcatalysts in thermolysis process for the treatment of diazo reactive black 5 (RB 5) wastewater. CuSO4 was found to be the most effective thermalcatalyst in comparison to ZnO. The color removal efficiency of RB 5 catalysed by CuSO4 and ZnO were 91.55 % at pH 9.5 and 7.36 % at pH 2, respectively. From the UV-Vis wavelength scan, CuSO4 catalyst is able to cleave the molecular structure bonding more efficiently compared to ZnO. ZnO which only show a slight decay on the main chemical network strands: azo bond, naphthalene and benzene rings whereas CuSO4 catalyst is able to fragment azo bond and naphthalene more effectively. The degradation reactions of CuSO4 and ZnO as thermalcatalysts in thermolysis process were compared.

  4. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  5. Evidences for Cu and Zn Isotope Fractionation in Sediments and Particulate Suspended Matter of the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Petit, J.; Mattielli, N.; de Jong, J.; Chou, L.

    2004-05-01

    Recent developments in MC-ICP-MS technology allow high precision measurements of heavy stable isotopes, such as Cu and Zn isotopes, which have been shown to undergo biotic or abiotic fractionation (1). Application of Zn isotopes to the study of aquatic ecosystems has already shown some interesting perspectives in their potential use as biogeochemical tracers in deep ocean carbonates (2) or Fe-Mn nodules (3). However, until now no investigation of possible Cu and Zn isotopic fractionation has been carried out within estuaries that are important pathways for hydrological and geochemical cycling of metals. Cu and Zn isotope geochemistry has been studied in sandy to loamy surface sediments (top 20 cm) and in suspended particulate matter (SPM) along a transect in a strong tidal estuary, the Scheldt estuary situated in Belgium and the Netherlands (November 2002). Further to separation of Cu, Fe and Zn by one step ion-exchange chromatography, Cu and Zn isotopic ratios are measured with a "Nu-Plasma" MC-ICP-MS. Instrumental mass bias is corrected using reference materials (Zn JMC, Cu NIST SRM 976 and Ga JMC standard) by simultaneous standard-sample bracketing and external normalization (500 ppb Zn doping for Cu isotopic analyses in static mode and 250 ppb Ga doping for Zn isotopic analyses in dynamic mode), together with a Ni correction. These methods lead to long-term reproducibility (2σ at 95 % confidence level) of ± 0.07 per mil for δ 66Zn (n=100 over 7 analysis sessions) and ± 0.06 per mil for δ 65Cu (n=120 over 8 analysis sessions) for 500 ppb of reference material. Average beam intensities are 6 V/ppm. Precise and reproducible results are obtained for concentration as low as 100 ppb for Cu and Zn. Expected Cu and Zn enrichment in SPM (120 ppm and 1200 ppm respectively) and sediments (being 6 to 10 times lower than SPM) in the upper estuary and progressive decrease in metal content by mixing downstream of the maximum turbidity zone (MTZ, around 5 psu) are observed. Results show that variations in Cu and Zn isotopic composition are smaller in SPM (δ 66Zn varying from 0.35 to 0.17 and δ 65Cu from -0.13 to 0.18) than in sediments. Cu and Zn isotopic signatures of sediments show a clear trend of lighter isotopes removal from the MTZ seaward with δ 66Zn varying from 0.21 at 2 psu to 1.11 per mil at 33 psu (and δ 65Cu = -0.37 to 0.24). In contrast, Zn isotopic compositions in SPM are more homogeneous with average δ 66Zn of 0.24 ± 0.18 over all the transect. Cu isotopic composition in SPM are very constant downstream of the MTZ with average δ 65Cu =-0.06 ± 0.08 but become more scattered within MTZ (varying from -0.04 to 0.18). These preliminary results pinpoint important variations in Cu and Zn isotopic compositions within estuarine systems and contrasted isotopic signatures in Cu and Zn between SPM and sediments. Results suggest the important role of early diagenesis in the isotope geochemistry of heavy metals in estuarine environment. This study provides a stepping stone for further investigation of interacting processes involved in controlling the cycling of metals in the Scheldt estuary. (1) Zhu et al., Earth Planet. Sci. Lett. 200 (2002), 47-62 (2) Pichat et al., Earth Planet. Sci. Lett. 6598 (2003), 1-12 (3) Maréchal et al., Geochem. Geophys. Geosyt., 1 (2000), GC000029

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogush, Anna; Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk; Wood, Ian

    Highlights: • 66 elements, including “critical strategic elements” were determined in UK EfW APC residues. • Metal pollutants (Zn, Pb, As, Cd, Cu, Mo, Sb, Sn, Se, Ag and In) are enriched in APC residues. • Metal pollutants were widely associated with fine deposits of highly soluble CaCl{sub x}OH{sub 2−x}. • Specific metal (Zn, Pb, Cu)-bearing minerals were also detected in APC residues. - Abstract: Air pollution control (APC) residues from energy-from-waste (EfW) are alkaline (corrosive) and contain high concentrations of metals, such as zinc and lead, and soluble salts, such as chlorides and sulphates. The EPA 3050B-extractable concentrations ofmore » 66 elements, including critical elements of strategic importance for advanced electronics and energy technologies, were determined in eight APC residues from six UK EfW facilities. The concentrations of Ag (6–15 mg/kg) and In (1–13 mg/kg), as well as potential pollutants, especially Zn (0.26–0.73 wt.%), Pb (0.05–0.2 wt.%), As, Cd, Cu, Mo, Sb, Sn and Se were found to be enriched in all APC residues compared to average crustal abundances. Results from a combination of scanning electron microscopy with energy dispersive X-ray spectroscopy and also powder X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy give an exceptionally full understanding of the mineralogy of these residues, which is discussed in the context of other results in the literature. The present work has shown that the bulk of the crystalline phases present in the investigated APC residues include Ca-based phases, such as CaCl{sub x}OH{sub 2−x}, CaCO{sub 3}, Ca(OH){sub 2}, CaSO{sub 4}, and CaO, as well as soluble salts, such as NaCl and KCl. Poorly-crystalline aragonite was identified by FTIR. Sulphur appears to have complex redox speciation, presenting as both anhydrite and hannebachite in some UK EfW APC residues. Hazardous elements (Zn and Pb) were widely associated with soluble Ca- and Cl-bearing phases (e.g. CaCl{sub x}OH{sub 2−x} and sylvite), as well as unburnt organic matter and aluminosilicates. Specific metal-bearing minerals were also detected in some samples: e.g., Pb present as cerussite; Zn in gahnite, zincowoodwardite and copper nickel zinc oxide; Cu in tenorite, copper nickel zinc oxide and fedotovite. Aluminium foil pieces were present and abundantly covered by fine phases, particularly in any cracks, probably in the form of Friedel’s salt.« less

  7. Fe{sub 3}O{sub 4}/CuO/ZnO/Nano graphene platelets (Fe{sub 3}O{sub 4}/CuO/ZnO/NGP) composites prepared by sol-gel method with enhanced sonocatalytic activity for the removal of dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendry, Tju; Taufik, Ardiansyah; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id

    2016-04-19

    In this study, an attempt has been made to synthesize nanographene platelets coupled with Fe3O4/CuO/ZnO (Fe3O4/CuO/ZnO/NGP) with various ZnO loadings using a two step methods, sol-gel followed by hydrothermal method. Characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy and vibrating sample magnetometer. The sonocatalytic performance was evaluated by degradation of methylene blue under ultrasonic irradiation.The Fe3O4/CuO/ZnO/NGP showed superior sonocatalytic activity than the Fe3O4/CuO/ZnO materials. They also showed high stability and can be easily separated from the reaction system for recycling process.

  8. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less

  9. Modeling and Optimization of Sub-Wavelength Grating Nanostructures on Cu(In,Ga)Se2 Solar Cell

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Hsieh, Ming-Yang; Lai, Fang-I.; Liao, Yu-Kuang; Kao, Ming-Hsuan; Kuo, Hao-Chung

    2012-10-01

    In this study, an optical simulation of Cu(In,Ga)Se2 (CIGS) solar cells by the rigorous coupled-wave analysis (RCWA) method is carried out to investigate the effects of surface morphology on the light absorption and power conversion efficiencies. Various sub-wavelength grating (SWG) nanostructures of periodic ZnO:Al (AZO) on CIGS solar cells were discussed in detail. SWG nanostructures were used as efficient antireflection layers. From the simulation results, AZO structures with nipple arrays effectively suppress the Fresnel reflection compared with nanorod- and cone-shaped AZO structures. The optimized reflectance decreased from 8.44 to 3.02% and the efficiency increased from 14.92 to 16.11% accordingly. The remarkable enhancement in light harvesting is attributed to the gradient refractive index profile between the AZO nanostructures and air.

  10. Reflective coating for near-infrared immersion gratings

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Paul J.; Ikeda, Yuji; Kobayashi, Naoto; Mirkarimi, Paul B.; Alameda, Jennifer B.

    2012-09-01

    Achieving high reflectivity from an immersed grating facet can be challenging in the near infrared. The reflectivity of metallic coatings in common use, such as Al and Cr/Au, decrease with decreasing wavelength in the near IR. A layer of copper on ZnSe or ZnS should have a high, immersed reflectivity based on tabulated values of refractive index, but in fact performs poorly. We attribute this to a chemical reaction between the copper and the selenium or sulfur. A non-reactive intermediate layer can prevent this problem. Since reflectivity at an interface increases with increasing difference in refractive index, it is beneficial to choose an intermediate layer of low index. A further improvement is gained by adjusting the layer thickness so that reflections from the two interfaces of the intermediate layer add constructively. We sputtered 130 nm of SiO2 onto ZnSe and ZnS substrates followed by 200 nm of Cu. The copper was then coated with 5 nm of SiC as a protective capping layer. Immersed reflectivity measured shortly after coating exceeded 95% between 1500 and 1100 nm and exceeded 90% down to 850 nm. A repeat measurement after long term exposure to high humidity conditions showed no changes.

  11. In Situ Subcellular Imaging of Copper and Zinc in Contaminated Oysters Revealed by Nanoscale Secondary Ion Mass Spectrometry.

    PubMed

    Weng, Nanyan; Jiang, Haibo; Wang, Wen-Xiong

    2017-12-19

    Determining the in situ localization of trace elements at high lateral resolution levels in the biological system is very challenging, but critical for our understanding of metal sequestration and detoxification. Here, the cellular and subcellular distributions of Cu and Zn in contaminated oysters of Crassostrea hongkongensis were for the first time mapped using nanoscale secondary ion mass spectrometry (nanoSIMS). Three types of metal-containing cells were revealed in the gill and mantle of oysters, including Cu-specific hemocytes, Cu and Zn-containing granular hemocytes, and Cu and Zn-containing calcium cells. Obvious intercellular distribution of Cu was found in the gill tissue, indicating the potential role of hemolymph in the transportation of Cu in oysters. The distribution of Cu showed a strong colocalization with sulfur and nitrogen in Cu-specific hemocyte and intercellular hemolymph. In the Cu and Zn-containing granular hemocytes and calcium cells, the co-occurrence of Cu and Zn with phosphorus and calcium was also found. Different relationships of distributions between Cu/Zn and macronutrient elements (nitrogen, sulfur and phosphorus) implied the differential metal complexation in oysters. Interestingly, quantitative analysis of the ratios of 32 S - / 12 C 14 N - and 31 P - / 12 C 14 N - of metal-deposited sites suggested the dynamic process of transfer of Cu and Zn from the metabolized protein pool to a more thermodynamically stable and detoxified form.

  12. Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua

    2015-04-01

    Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.

  13. Solar Absorber Cu 2 ZnSnS 4 and its Parent Multilayers ZnS/SnS 2 /Cu 2 S Synthesized by Atomic Layer Deposition and Analyzed by X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Riha, Shannon C.; Zinovev, Alexander V.

    2015-06-01

    Presented here are results of x-ray photoelectron spectroscopy (XPS) on multilayers of metal-sulfide binaries ZnS, SnS2, and Cu2S grown by atomic layer deposition (ALD) on Si substrates, and of Cu2ZnSnS4 (CZTS) formed upon 450 °C annealing of the parent multilayer ZnS/SnS2/Cu2S. Survey and detailed spectral analysis of the multilayer ZnS/SnS2/Cu2S are presented step-wise, as each layer was sequentially added by ALD. The set of data is finalized with spectra of the resulting alloy CZTS. XPS analyses indicate significant mixing between SnS2 and Cu2S, which favors CZTS formation within the ALD approach.

  14. Chemical Synthesis of ZnS:Cu Nanosheets

    NASA Astrophysics Data System (ADS)

    Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    ZnS thin films are synthesized through chemical bath deposition (CBD) technique from aqueous solution of ZnSO4 and thiourea mixing in equal volume and equimolar ratio. A 1% CuSO4 solution is mixed with the ZnSO4 solution for doping before the final chemical reaction. SEM image shows the formation of mainly nanosheets, teeth and comb like structures. Absorption studies show red shift of enhanced band gap on Cu doping. Photoluminescence of ZnS:Cu reveals the enhancement of blue luminescence at 468 nm and low intensity green emission at 493 nm which is attributed to more Cu2+ lying in the interstices. XRD shows that the prepared ZnS nanophosphors possess cubic zinc blende structures.

  15. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    PubMed

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  16. High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Maurya, Sandeep Kumar; Liu, Ya; Xu, Xiaojie; Woods-Robinson, Rachel; Das, Chandan; Ager, Joel W., III; Balasubramaniam, K. R.

    2017-12-01

    p-type transparent conducting Cu alloyed ZnS thin films from Cu{x} Zn{1-x} S targets (x = 0.1 , 0.2, 0.3, 0.4, and 0.5) were deposited on glass substrates via radio frequency sputtering. x-ray diffraction and TEM-SAED analysis show that all the films have sphalerite ZnS as the majority crystalline phase. In addition, films with 30% and 40% Cu show the presence of increasing amounts of crystalline Cu2S phase. Conductivity values  ⩾400 S cm-1 were obtained for the films having 30% and 40% Cu, with the maximum conductivity of 752 S cm-1 obtained for the film with 40% Cu. Temperature dependent electrical transport measurements indicate metallic as well as degenerate hole conductivity in the deposited films. The reflection-corrected transmittance of this Cu alloyed ZnS (40% Cu) film was determined to be  ⩾75% at 550 nm. The transparent conductor figure of merit (ΦTC ) of the Cu alloyed ZnS (40% Cu), calculated with the average value of transmittance between 1.5 to 2.5 eV, was  ≈276 μS .

  17. Bioaccumulation of trace elements in Ruditapes philippinarum from China: public health risk assessment implications.

    PubMed

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-04-02

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1-38.0, 49.5-168.3, 42.0-68.0, 4.19-8.71, 4.76-14.32, 0.41-1.11, 0.94-4.74, 0.32-2.59, 0.03-0.23 and 0.46-11.95 mg·kg(-1) dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption.

  18. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.

  19. Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy

    NASA Astrophysics Data System (ADS)

    Lotfpour, M.; Emamy, M.; Dehghanian, C.; Tavighi, K.

    2017-05-01

    Effects of different concentrations of Cu on the structure, mechanical and corrosion properties of Mg-2%Zn alloy were studied by the use of x-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, standard tensile testing, polarization and electrochemical impedance spectroscopy (EIS) measurements. The average grain size of the alloy decreased from above 1000 μm to about 200 μm with 5 wt.% Cu addition in as-cast condition. Microstructural studies revealed that Mg-2Zn- xCu alloys matrix typically consists of primary α-Mg and MgZnCu and Mg(Zn,Cu)2 intermetallics which are mainly found at the grain boundaries. The results obtained from mechanical testing ascertained that Cu addition increased the hardness values significantly. Although the addition of 0.5 wt.% Cu improved the ultimate tensile strength and elongation values, more Cu addition (i.e., 5 wt.%) weakened the tensile properties of the alloy by introducing semi-continuous network of brittle intermetallic phases. Based on polarization test results, it can be concluded that Cu eliminates a protective film on Mg-2%Zn alloy surface. Among Mg-2%Zn- x%Cu alloys, the one containing 0.1 wt.% Cu exhibited the best anti-corrosion property. However, further Cu addition increased the volume fraction of intermetallics culminating in corrosion rate enhancement due to the galvanic couple effect. EIS and microstructural analysis also confirmed the polarization results.

  20. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  1. Effects of Zn²⁺ and Cu²⁺ on loach ovaries and ova development.

    PubMed

    Tang, Jian-Xun; Li, Jun-Rong; Liu, Zhong-Liang; Zhao, Hua; Tao, Xiao-Min; Cheng, Zhang-Shun

    2013-10-01

    This study compared the accumulation of Zn²⁺ and Cu²⁺ in the ovaries and ova of loaches under different concentrations of Zn²⁺ (1.00, 2.50 and 5.00 mg/L respectively) and Cu²⁺ (0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn²⁺ and Cu²⁺ accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions (P<0.05), and was obviously affected by the time and doses. However, the Cu²⁺ concentration was significantly higher than Zn²⁺ (P<0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn²⁺ and Cu²⁺ solutions. This study compared the accumulation of Zn 2+ and Cu 2+ in the ovaries and ova of loaches under different concentrations of Zn 2+ (1.00, 2.50 and 5.00 mg/L respectively) and Cu 2+ (0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn 2+ and Cu 2+ accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions ( P< 0.05), and was obviously affected by the time and doses. However, the Cu 2+ concentration was significantly higher than Zn 2+ ( P< 0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn 2+ and Cu 2+ solutions.

  2. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less

  3. In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein.

    PubMed

    Artells, Ester; Palacios, Oscar; Capdevila, Mercè; Atrian, Sílvia

    2014-03-01

    Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders caused by insoluble Cu-peptide aggregates, as it triggers a Zn-Cu swap that may counteract the deleterious presence of copper in neural tissues. The literature data on MT3 coordination come from studies either on apo-MT3 reconstitution or the reaction of Zn-MT3 with Cu(2+) , an ion that is hardly present inside cells. To ascertain the MT3 metal-binding features in a scenario closer to the reductive cell cytoplasm, a study of the recombinant Zn(2+) , Cd(2+) and Cu(+) complexes of MT3, βMT3, and αMT3, as well as the in vitro Zn(2+) -Cd(2+) and Zn(2+) -Cu(+) replacement processes, is presented here. We conclude that MT3 has a Cu-thionein character that is stronger than that of the MT1 and MT2 isoforms - also present in the mammalian brain - which is mainly contributed by its β domain. In contrast, the α domain retains a high capacity to bind Zn(2+) ions, and, consequently, the entire MT3 peptide shows a peculiar dual ability to handle both metal ions. The nature of the formed Cu(+) -MT3 complexes oscillates from heterometallic Cu6 Zn4 -MT3 to homometallic Cu10 -MT3 major species, in a narrow Cu concentration range. Therefore, the entire MT3 peptide shows a high capacity to bind Cu(+) , provided that this occurs in a nonoxidative milieux. This reflects a peculiar property of this MT isoform, which accurately senses different Cu contents in the environment in which it is synthesized. © 2014 FEBS.

  4. A full-spectrum photocatalyst with strong near-infrared photoactivity derived from synergy of nano-heterostructured Er3+-doped multi-phase oxides.

    PubMed

    Chen, Huabin; Liu, Wenxia; Hu, Bin; Qin, Zhuozhuo; Liu, Hong

    2017-12-07

    The development of full-spectrum photocatalysts active in the near-infrared (NIR) region has gained increasing attention in the photodegradation of organic pollutants. Herein, we designed a full-spectrum photocatalyst with strong NIR photoactivity based on the synergy of Er 3+ -doped ZnO-CuO-ZnAl 2 O 4 multi-phase oxides (Er 3+ -doped Zn/Cu/Al-MPO) via the formation of n-p-n double heterojunctions. The photocatalyst was prepared by synthesizing nanosheets of a Zn/Cu/Al/Er hydrotalcite-like compound (Zn/Cu/Al/Er-HLC) with a co-precipitation method followed by calcination of the nanosheets at 800 °C. The as-prepared Er 3+ -doped Zn/Cu/Al-MPO inherits the nanosheet morphology of Zn/Cu/Al/Er-HLC, and displays over-doubled photoactivity in the entire ultraviolet (UV), visible and NIR regions compared to undoped Zn/Cu/Al-MPO. The excellent photocatalytic activity of Er 3+ -doped Zn/Cu/Al-MPO, especially its strong NIR photoactivity, is ascribed to its Er 3+ -doped CuO-involved multi-crystalline phase heterostructure, i.e., n-p-n double heterojunctions, which does not only offer an enhanced NIR absorption but also promotes the separation of photogenerated charge carriers. Importantly, the synergy of all the parts of the n-p-n double heterojuctions plays an important role in interface band structure regulation for the enhancement of the photocatalytic properties of Er 3+ -doped Zn/Cu/Al-MPO. This work has demonstrated the feasibility of utilizing hydrotalcite-like precursors in the design of full-spectrum photocatalysts active in the NIR region.

  5. Zinc and copper behaviour at the soil-river interface: New insights by Zn and Cu isotopes in the organic-rich Rio Negro basin

    NASA Astrophysics Data System (ADS)

    Guinoiseau, Damien; Gélabert, Alexandre; Allard, Thierry; Louvat, Pascale; Moreira-Turcq, Patricia; Benedetti, Marc F.

    2017-09-01

    The complex behaviour of Zn and Cu at the soil-river interface was investigated in soil and riverine water samples from the Rio Negro basin, a secondary tributary of the Rio Amazonas, using their stable isotope compositions. This acidic and organic river drains two types of intensely weathered terrains: podzols in its upstream part, and lateritic soils downstream. Bulk soil particles, suspended particulate matter (SPM) as well as colloidal fractions were sampled across the whole basin during low and high water stages. In the basin, Zn and Cu are mostly exported from lateritic soils and transported by organic colloids where significant losses are observed in the downstream part of the river. The use of δ66Zn and δ65Cu measurements reveals distinct stories for these two metals in suspended sediments and colloids. In the colloids, the constant δ66Zncoll across the basin is induced by the same weak association mode between Zn and organic ligands, regardless of the origin of the water. By contrast, in SPM, the speciation of Zn and thus δ66ZnSPM differ according to the type of drained soils. Zn is associated with organic complexes in particles exported with water draining podzol whereas Zn2+ is incorporated in the structure of the remaining kaolinite clays in lateritic output. The stronger reactivity of Cu than Zn with organic ligands induces its complete complexation. Copper is controlled by refractory particulate organic matter (POM) and by reactive colloidal organic matter; the latter being enriched in 65Cu due to stronger binding interactions than in POM. While the Cu content remains constant in the upstream part of the Rio Negro, downstream, the decrease of SPM and colloidal Cu fluxes is associated with a constant δ65CuSPM and with an increase of δ65Cucoll at the Rio Negro outlet. Geochemical mass balance modelling, based on SPM, Cu and Zn fluxes in SPM and their associated isotopic signatures, confirms distinct host phases for Zn and Cu, and identifies the most probable places where losses of these two metals occur. In colloids, the observed Cu isotope fractionation (from 0.24 to 0.45‰) superimposed on the significant Cucoll loss is assumed to result from a new isotopic equilibrium in a low velocity and high productivity zone: Cu-rich colloids enriched in 63Cu aggregate and settle down, whereas the remaining heavy Cu is partially complexed on strong organic ligands secreted by phytoplankton, forming new Cu-colloids.

  6. Cu0-loaded SBA-15@ZnO with improved electrical properties and affinity towards hydrogen

    NASA Astrophysics Data System (ADS)

    Bouazizi, N.; Louhichi, S.; Ouargli, R.; Bargougui, R.; Vieillard, J.; Derf, F. Le; Azzouz, A.

    2017-05-01

    A core-shell material was prepared using SBA-15 crystallites as cores for the growth of a ZnO shell, followed by Cu0 dispersion. The resulting Cu/SBA-15@ZnO nanostructure displayed higher specific surface area (SSA) and higher number of smaller pores as compared to the starting materials. Dispersion of fine Cu0NPs induced a compaction of the host matrice and a marked decay of the hydrophilic character, explained in terms of the involvement of terminal hydroxyl groups in competitive sbnd HO:Cu interaction at the expense of H-bridges with water. Heating at 400-450 °C seems to trigger ZnO dehydroxylation with possible self-polycondensation and/or the formation of Si-O-Zn bridges. This is an additional explanation of the significant SSA increase and decrease in the average pore diameter. Both ZnO and Cu0NP incorporation induced shifts in the UV-vis absorption band towards higher wavelengths, indicating a decrease in the optical band gap energy and an improvement of the conductance properties. As compared to ZnO, Cu0NPs produced stronger improvement of the conductance, which was found to increase with higher frequencies. Cu/SBA-15@ZnO also displayed higher affinity towards hydrogen as compared to SBA-15@ZnO and SBA-15 at ambient conditions. These outstanding properties combined to an appreciable thermal stability are worth to be prone to deeper investigations, because they can open promising prospects for Cu/SBA-15@ZnO as sensor, electrode material, electrocatalyst and/or hydrogen capture matrice.

  7. [The relevance of the trace elements zinc and iron in the milk fever disease of cattle].

    PubMed

    Heilig, M; Bäuml, D; Fürll, M

    2014-01-01

    The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p ≤ 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p ≤ 0.05). In group e), Zn concentrations were significantly lower than in group c) (p ≤ 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p ≤ 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b-d) as well as with Zn, Cu and Se (groups b and c) (p ≤ 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p ≤ 0.05). AP activity in groups b) and e) was lower than in the CG (p ≤ 0.05). These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the prevention and advanced therapy of MF.

  8. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  9. Neutropenia restores virulence to an attenuated Cu,Zn superoxide dismutase-deficient Haemophilus ducreyi strain in the swine model of chancroid.

    PubMed

    San Mateo, L R; Toffer, K L; Orndorff, P E; Kawula, T H

    1999-10-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu, Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host.

  10. Neutropenia Restores Virulence to an Attenuated Cu,Zn Superoxide Dismutase-Deficient Haemophilus ducreyi Strain in the Swine Model of Chancroid

    PubMed Central

    San Mateo, Lani R.; Toffer, Kristen L.; Orndorff, Paul E.; Kawula, Thomas H.

    1999-01-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu,Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host. PMID:10496915

  11. Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ).

    PubMed

    Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U

    2012-07-01

    Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.

  12. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange.

    PubMed

    Arabi, Mozhgan; Baizaee, Seyyed Mahdy; Bahador, Alireza; Otaqsara, Seyed Mohammad Taheri

    2018-05-01

    Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one-pot and room-temperature pulsed UV-laser assisted method. UV-laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (I Zn ) to zinc vacancy level (V Zn ) and electronic transition from conduction band to the oxygen vacancy level (V O ), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)-related emission appeared. PL intensity of Cu-related emission increased with the increase in concentration of Cu 2+ , so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu-doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T 2 ) inside the ZnO energy band gap. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Comparison of effect of vitamin E-coated dialyzer and oral vitamin E on hemodialysis-induced Cu/Zn-superoxide dismutase.

    PubMed

    Akiyama, Shinichiro; Inagaki, Masahiro; Tsuji, Mayumi; Gotoh, Hiromichi; Gotoh, Tomomi; Washio, Kazunori; Gotoh, Yoshikazu; Oguchi, Katsuji

    2005-01-01

    We reported earlier that production of Cu/Zn-superoxide dismutase (SOD) increases markedly in hemodialysis patients but not in non-dialyzed chronic renal failure (CRF) patients. In this study, we compared the antioxidant effects of oral vitamin E supplementation (VE-PO) and vitamin E coating of a dialyzer (VE-BMD) by measuring increased Cu/Zn-SOD in hemodialysis patients. 31 hemodialysis patients were divided into two groups: 16 hemodialysis patients underwent usual dialysis with vitamin E supplementation 600 mg/day while 15 others were dialyzed using vitamin E-coated membrane for 6 months. Total plasma SOD activity was determined by NBT method, plasma Cu/Zn-SOD contents by ELISA and Cu/Zn-SOD mRNA in leukocytes by RT-PCR. VE-PO and VE-BMD showed almost comparable effects on Cu/Zn-SOD contents and its mRNA levels in hemodialysis patients. VE-PO resulted in a progressive decrease of Cu/Zn-SOD content (p < 0.001). A comparable progressive decrease was observed also in VE-BMD (p < 0.0001). Both VE-PO and VE-BMD resulted in a progressive decrease of Cu/Zn-SOD mRNA (p < 0.01), which reached the level of non-dialyzed CRF patients. Copyright (c) 2005 S. Karger AG, Basel.

  14. Nanosized CuO and ZnO catalyst supported on titanium chip for conversion of carbon dioxide to methyl alcohol.

    PubMed

    Seo, Hyeong-Seok; Park, Chul-Min; Kim, Ki-Joong; Jeong, Woon-Jo; Chung, Min-Chul; Jung, Sang-Chul; Kim, Sang-Chai; Ahn, Ho-Geun

    2013-08-01

    In order to reutilize spent metallic titanium chips (TC) as catalyst support or photocatalytic materials, the surface of the TC was modified by thermal treatment under air atmosphere. TC-supported nanosized CuO and ZnO catalysts were prepared by impregnation (IMP) and co-precipitation (CP) method, respectively. The catalytic activity for CO2 hydrogenation to CH3OH was investigated using a flow-typed reactor under various reaction pressures. The crystals of CuO and ZnO was well formed on TC. CO2 conversion, CH3OH selectivity, and CH3OH yield were obtained as a function of time on stream over CuO-ZnO/TC catalysts. Conversion of CO2 to CH3OH over CuO-ZnO/TC catalyst by CP method and CuO/ZnO/TC catalyst by IMP method were ca. 16% and ca. 12%, respectively. Conversion of CO2 over CuO-ZnO/TC catalyst by CP method was increased with increasing reaction temperature in the range of 15-30 atm. Maximum selectivity and yield to CH3OH over CuO-ZnO/TC at 250 degrees C were ca. 90% at 20 atm and ca. 18.2% at 30 atm, respectively.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efthimiopoulos, I.; Tsurkan, V.; Loidl, A.

    We have conducted high-pressure measurements on the CuCr2O4 and CuCr2Se4 spinels to unravel the structural systematics of these materials under compression. Our studies have revealed diverse structural behavior in these two compounds. In particular, CuCr2O4 retains its ambient-pressure I41/amd structure up to 50 GPa. Close inspection of the lattice and interatomic parameters reveals a compressibility change near 23 GPa, which is accompanied by an expansion of the apical Cr–O bond distances. We speculate that an outer Cr3+ 3d orbital reorientation might be at play in this system, manifesting as the change in compressibility at that pressure point. On the othermore » hand, CuCr2Se4 undergoes a structural transformation from the starting Fd3¯m phase toward a monoclinic structure initiated at ~8 GPa and completed at ~20 GPa. This high-pressure behavior resembles that of ZnCr2Se4, and it appears that, unlike similar chalcogenide Cr spinels, steric effects take a leading role in this pressure-induced Fd3¯m → monoclinic transition. Close comparison of our results with the reported literature yields significant insights behind the pressure-induced structural systematics of this important family of materials, thus both allowing for the careful manipulation of the structural/physical properties of these systems by strain and promoting our understanding of similar pressure-induced effects in relevant systems.« less

  16. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning

    PubMed Central

    Zhou, Chunyang; Xu, Lin; Song, Jian; Xing, Ruiqing; Xu, Sai; Liu, Dali; Song, Hongwei

    2014-01-01

    Three-dimensional (3D) porous ZnO–CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO–CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (~200 nm), whose outer surface was attached with small CuO nanoparticles (NPs). Moreover, a good synergetic effect between CuO and ZnO was confirmed. The nonenzymatic biosensing properties of as prepared 3D porous electrodes based on fluorine doped tin oxide (FTO) were studied and the results indicated that the sensing properties of 3D porous ZnO–CuO HNCs electrodes were significantly improved and depended strongly on the thickness of the HNCs. At an applied potential of + 0.7 V, the optimum ZnO–CuO HNCs electrode presented a high sensitivity of 3066.4 μAmM−1cm−2, the linear range up to 1.6 mM, and low practical detection limit of 0.21 μM. It also showed outstanding long term stability, good reproducibility, excellent selectivity and accurate measurement in real serum sample. The formation of special hierarchical heterojunction and the well-constructed 3D structure were the main reasons for the enhanced nonenzymatic biosensing behavior. PMID:25488502

  17. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    PubMed Central

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  18. Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization

    NASA Astrophysics Data System (ADS)

    Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yu, Hui; Yang, Ying; Dong, Xiang-ting

    2018-02-01

    For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3-CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value.

  19. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors.

    PubMed

    Ding, Ke; Jing, Lihong; Liu, Chunyan; Hou, Yi; Gao, Mingyuan

    2014-02-01

    Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core-shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mn-doping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    DOE PAGES

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; ...

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu + accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotopemore » labeling demonstrated that sequestered Cu + became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less

  1. IR-Spectroscopic Study on the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a ZnO Overlayer

    DOE PAGES

    Schumann, Julia; Kröhnert, Jutta; Frei, Elias; ...

    2017-08-28

    Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less

  2. IR-Spectroscopic Study on the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a ZnO Overlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Julia; Kröhnert, Jutta; Frei, Elias

    Carbon monoxide was applied as probe molecule to compare the surface of a ZnO-containing (Cu/ZnO:Al) and a ZnO-free (Cu/MgO) methanol synthesis catalyst (copper content 70 atomic %) after reduction in hydrogen at 523 K by DRIFT spectroscopy. Nano-structured, mainly metallic copper was detected on the surface of the Cu/MgO catalyst. In contrast, the high energy of the main peak in the spectrum of CO adsorbed on reduced Cu/ZnO:Al (2125 cm -1) proves that metallic copper is largely absent on the surface of this catalyst. The band is assigned to Zn δ+–CO. The presence of not completely reduced Cu δ+–CO speciesmore » cannot be excluded. The results are interpreted in terms of a partial coverage of the copper nano-particles in the Cu/ZnO:Al catalyst by a thin layer of metastable, defective zinc oxide. Minor contributions in the spectrum at 2090 and 2112 cm -1 due to nano-structured Cu 0–CO and CO adsorbed on highly defective Cu 0, respectively, indicate that the coverage of metallic copper is not complete.« less

  3. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet

    2017-01-01

    The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.

  4. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    NASA Astrophysics Data System (ADS)

    Darma, Yudi; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun; Rusydi, Andrivo

    2014-02-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.

  5. Hints for Metal-Preference Protein Sequence Determinants: Different Metal Binding Features of the Five Tetrahymena thermophila Metallothioneins

    PubMed Central

    Espart, Anna; Marín, Maribel; Gil-Moreno, Selene; Palacios, Òscar; Amaro, Francisco; Martín-González, Ana; Gutiérrez, Juan C.; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination). PMID:25798065

  6. Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2016-01-01

    In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenting; Zhang, Qinggang; Wang, Ruiqin

    Unsaturated metal species (UMS) confined in nanomaterials play important roles for electron transfer in a wide range of catalytic reactions. However, the limited fabrication methods of UMS restrict their wider catalytic applications. Here in this paper, we report on the synergy of unsaturated Zn and Cu dopants confined in carbon dots (ZnCu-CDs) to produce enhanced electron transfer and photooxidation processes in the doped CDs. The Zn/Cu species chelate with the carbon matrix mainly through Cu-O(N)-Zn-O(N)-Cu complexes. Within this structure, Cu 2+ acts as a mild oxidizer that facilely increases the unsaturated Zn content and also precisely tunes the unsaturated Znmore » valence state to Zn d+, where d is between 1 and 2, instead of Zn. With the help of UMS, electron-transfer pathways are produced, enhancing both the electron donating (7.0 times) and-accepting (5.3 times) abilities relative to conventional CDs. Because of these synergistic effects, the photocatalytic efficiency of CDs in photooxidation reactions is shown to improve more than 5-fold.« less

  8. Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

    PubMed

    Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian; Helveg, Stig; Chorkendorff, Ib; Sehested, Jens

    2017-09-01

    Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO 2 ) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized. Copyright © 2017, American Association for the Advancement of Science.

  9. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  10. Towards Stable CuZnAl Slurry Catalysts for the Synthesis of Ethanol from Syngas

    NASA Astrophysics Data System (ADS)

    Dong, Weibing; Gao, Zhihua; Zhang, Qian; Huang, Wei

    2018-07-01

    A stable CuZnAl slurry catalyst for the synthesis of ethanol from syngas has been developed by adjusting the heat treatment conditions of the complete liquid-phase method. The activity evaluation results showed that the CuZnAl catalyst, when heat-treated under a high pressure and temperature, was a stable catalyst for the synthesis of ethanol. The selectivity of ethanol using the CuZnAl slurry catalyst, which was heat-treated at 553 K under 4.0 MPa, increased continuously with time and was stable at approximately 26.00% after 144 h. The characterization results indicated that the CuZnAl slurry catalyst heat-treated under high pressure conditions could facilitate the formation of a more perfect structure with a larger specific surface area. The prepared catalyst contained a balance of strong and weak acid sites, an appropriate form of Cu2O and a high Cu/Zn atomic ratio at the catalyst surface, providing its stability in ethanol synthesis from syngas.

  11. Room temperature ferromagnetism in Cu doped ZnO

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  12. Effect of Gold Nanoparticles Addition to CuO–ZnO/A₂O₃ Catalyst in Conversion of Carbon Dioxide to Methanol.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2017-04-01

    Hydrogenation of carbon dioxide (CO₂) into methanol (CH₃OH) was carried out in the CuO–ZnO based supported gold catalyst prepared by the co-precipitation method. When gold nanoparticles were added to the CuO–ZnO/Al2O₃ catalysts (CuO–ZnO/Au/Al₂O₃), the CO₂ conversion and CH₃OH yield were increased (two times higher than that of CuO–ZnO/Al₂O₃ catalyst) with increasing reaction pressure, but selectivity of CH3OH was decreased. The main reason of this result could suggest the importance gold-oxides interface in CH₃OH formation through hydrogenation of CO₂. Maximum selectivity and yield to CH₃OH over CuO–ZnO/Au/Al₂O₃ were obtained at 250°C and under 15–20 bars.

  13. Effect of Cu-Dopant on the Structural, Magnetic and Electrical Properties of ZnO

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Sebayang, P.; Ginting, M.; Siregar, S. M. K.; Nasruddin, M. N.

    2017-05-01

    Zn1- x Cu x O (x = 0, 2, 3, and 4 at.%) was synthesized by using solid-state reaction technique. The ZnO and CuO powders were mixed and then milled by using high-speed shaker mill. The influence of Cu dopants on the structure, magnetic, and electrical properties was investigated by using XRD, VSM, and I-V and C-V measurements. The XRD analysis showed that the Zn1- x Cu x O had hexagonal wurtzite polycrystalline. The diffraction intensity decreased and the peak position shifted directly to a higher 2θ angle with increasing the dopant concentration. Furthermore, the lattice parameters decreased when the ZnO was doped with x = 0.04, which indicated that the crystal structure changed. The increase of Cu dopants was believed to affect the magnetic and electrical properties of ZnO.

  14. Mineral phases and metals in baghouse dust from secondary ...

    EPA Pesticide Factsheets

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 µgL-1 As; >1000 µgL-1 Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). The objective of this study was to investigate BHD from SAP facilities in the U.S. by determining the mineral phases and the metal (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se and Zn) content of the sample

  15. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  16. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asad, A. H.; Smith, S. V.; Chan, S.

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cumore » (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.« less

  17. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  18. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.

    PubMed

    Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming

    2011-01-01

    Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO

    PubMed Central

    Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2016-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics. PMID:27500923

  20. Identification of the copper-zinc superoxide dismutase activity in Mycoplasma hyopneumoniae.

    PubMed

    Chen, J R; Weng, C N; Ho, T Y; Cheng, I C; Lai, S S

    2000-05-11

    Copper-zinc superoxide dismutase (Cu/ZnSOD), a key enzyme in defense against toxic oxygen-free radicals, is widespread in eukaryotes and several species of gram-negative bacteria. The presence of this enzyme in Mycoplasma hyopneumoniae (M. hyopneumoniae), the primary pathogen of mycoplasmal pneumonia in pigs, was examined since the polyclonal antibody against bovine Cu/ZnSOD was dominantly cross-reactive with the M. hyopneumoniae Cu/ZnSOD from whole cellular proteins. In situ activity staining on SDS-PAGE showed that the molecular mass of M. hyopneumoniae Cu/ZnSOD in reducing form was approximately 17kDa. The presence of Cu and Zn ions at the active site of the enzyme was confirmed on the basis of inhibition by KCN and by H(2)O(2). The activity of M. hyopneumoniae Cu/ZnSOD on both SDS- and native-polyacrylamide gels was completely inhibited by 2mM KCN and the gels showed no iron-containing SOD (FeSOD) or manganese-containing SOD (MnSOD) in the crude extracts. The activity of M. hyopneumoniae Cu/ZnSOD in crude extract was 70units/mg protein and was 55% inhibited by 5mM KCN and 56% inactivated by 40mM H(2)O(2). This enzyme was growth-stage dependent and evidenced markedly higher production during the early log phase. Different expression levels of Cu/ZnSOD activity in field isolates were also detected. Taken together, the presence of Cu/ZnSOD in M. hyopneumoniae was identified for the first time.

  1. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found formore » a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.« less

  2. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  3. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    NASA Astrophysics Data System (ADS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  4. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  5. Effect of fulvic and humic acids on copper and zinc homeostasis in rats.

    PubMed

    Hullár, István; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Szabó, József

    2018-03-01

    The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA), the two main compounds of humic substances (HSs), on copper (Cu) and zinc (Zn) homeostasis. Seventy-two male Wistar rats were randomly divided into nine experimental groups. The control diet (AIN-93G formula) and the diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% FA or HA were fed for 26 days. Cu and Zn concentrations of the large intestinal content (LIC), liver, kidney, femur and hair were determined. FA and HA did not influence significantly the Cu or Zn contents of the experimental diets, the rats' feed intake, weight gain and the feed to gain ratio. Both FA and HA decreased the Cu concentrations of the LIC significantly and in a dose-related manner; however the absorption-stimulating effect of HA was more pronounced. FA increased the Cu content of the liver, but neither FA nor HA had a dose-dependent effect on it. FA or HA supplementations had no significant effect on the Cu concentration of the kidney. At the concentrations used, dietary FA or HA supplementations are not promising growth promoters. FA influences the Cu homeostasis unlike HA, because FA not only stimulates Cu absorption, but the extra quantity of absorbed Cu is retained in the organism. The stimulatory effect of HA on Zn absorption may not be manifested in Cu and Zn homeostasis, because of the tight connection of these microelements to FA and HA, which prevents the transmission of Zn from the ZnHA complex to the organs. As regards the effect of FA and HA on Cu and Zn homeostasis, both FA and HA stimulated the absorption of these microelements, but only FA increased the retention of Cu (in the liver) and Zn (in the kidney).

  6. Enzymatic antioxidant system of endotheliocytes.

    PubMed

    Sharapov, M G; Goncharov, R G; Gordeeva, A E; Novoselov, V I; Antonova, O A; Tikhaze, A K; Lankin, V Z

    2016-11-01

    It is shown that endothelial cells from human umbilical vein have a reduced activity and gene expression of the "classic" antioxidant enzymes (Cu,Zn-superoxide dismutase, catalase, and Se-containing glutathione peroxidase). At the same time, a high expression level of peroxiredoxin genes was identified in the same endothelial cells, which obviously indicates the predominant involvement of these enzymes in protecting the endothelium from the damaging effect of free radical peroxidation.

  7. Microstructure and mechanical characteristics of gradient structured Cu and Cu alloys processed by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Hu, XZ; Cheng, LP; Chen, HL; Yin, Z.; Zhang, Z.; Shu, BP; Gong, YL; Zhu, XK

    2017-05-01

    Cu-Al-Zn alloys with different stacking fault energy (SFE) were processed by surface mechanical attrition treatment (SMAT) at cryogenic temperature (CT), mechanical properties of gradient structured Cu-Al-Zn alloys were investigated in this study. Al and Zn content in alloys, which result in the decrease of SFE, can contribute to the increase in strength. Cu-4.5wt%Al-14.3wt%Zn alloy with the lower SFE shows that the strength increased, the ductility did not decrease significantly with increasing processing time, and the strength can be improved by a thicker gradient structure (GS) layer. The better combination of strength and ductility was achieved in Cu-4.5wt%Al-14.3wt%Zn alloy with lower SFE.

  8. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    PubMed

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.

  9. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments.

  10. Macrominerals and Trace Element Requirements for Beef Cattle.

    PubMed

    Costa e Silva, Luiz Fernando; Valadares Filho, Sebastião de Campos; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals.

  11. Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM).

    PubMed

    Vrhovnik, Petra; Dolenec, Matej; Serafimovski, Todor; Tasev, Goran; Arrebola, Juan P

    2016-07-15

    The main purpose of the present study is to assess human dietary exposure to essential and non-essential trace elements via consumption of selected homegrown foodstuffs. Twelve essential and non-essential trace elements (Cd, Co, Cu, Cr, Hg, Mo, Ni, Pb, Sb, Se, Zn and As) were detected in various homegrown foodstuffs. Detailed questionnaires were also applied among a sample of the local population to collect information on sociodemographic characteristics. The results of the present study clearly indicate that the majority of the trace elements are at highly elevated levels in the studied foodstuffs, in comparison to international recommendations. The maximum measured levels of ETE and NETE are as follows [μgkg(-1)]: Cd 873, Co 1370, Cu 21700, Cr 59633, Hg 26, Mo 6460, Ni14.5, Pb 11100, Sb 181, Se 0.30, Zn 102 and As 693. Additionally, age, body mass index and gender were significantly associated with levels of dietary exposure. Further research is warranted on the potential health implication of this exposure. The study merges the accumulation of ETE and NETE in home-grown foodstuffs and reflects considerably high health risks for inhabitants. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Macrominerals and Trace Element Requirements for Beef Cattle

    PubMed Central

    Costa e Silva, Luiz Fernando; de Campos Valadares Filho, Sebastião; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals. PMID:26657049

  13. X-ray microprobe synchroton radiation X-ray fluorescence application on human teeth of renal insufficiency patients

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Marques, J. P.; Casaca, C.; Carvalho, M. L.

    2004-10-01

    This work reports on the measurements of elemental profiles in teeth collected from patients with renal insufficiency. Elemental concentrations of Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb Sr and Pb in different parts of teeth from patients with renal insufficiency are discussed and correlated with the corresponding values for healthy citizens. Both situations, patients with and without dialysis treatment were studied. The purpose of this work is to point out the influence of renal insufficiency together with long dialysis treatment, on teeth elemental content. An X-ray fluorescence set-up with microprobe capabilities, installed at the LURE synchrotron (France) was used for elemental determination. The resolution of the synchrotron microprobe was 100 μm and the energy of the incident photons was 19 keV. Teeth of citizens with renal insufficiency and those submitted since several years to dialysis treatment show a similar concentration with teeth of healthy subjects in what concerns the elemental distribution for Mn, Fe, Cu, Zn and Sr. However, higher levels of Pb were found in pulp region of diseased citizens when compared to values of healthy people. Very low concentrations of Ti, Co, Ni, Se, Br and Rb were found in all the analysed teeth. No difference was found in patients with and without dialysis treatment.

  14. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake

    USGS Publications Warehouse

    Thapalia, Anita; Borrok, David M.; Van Metre, Peter C.; Musgrove, MaryLynn; Landa, Edward R.

    2010-01-01

    In this work, we use stable Zn and Cu isotopes to identify the sources and timing of the deposition of these metals in a sediment core from Lake Ballinger near Seattle, Washington, USA. The base of the Lake Ballinger core predates settlement in the region, while the upper sections record the effects of atmospheric emissions from a nearby smelter and rapid urbanization of the watershed. δ66Zn and δ65Cu varied by 0.50‰ and 0.29‰, respectively, over the 500 year core record. Isotopic changes were correlated with the presmelter period (∼1450 to 1900 with δ66Zn = +0.39‰ ± 0.09‰ and δ65Cu = +0.77‰ ± 0.06‰), period of smelter operation (1900 to 1985 with δ66Zn = +0.14 ± 0.06‰ and δ65Cu = +0.94 ± 0.10‰), and postsmelting/stable urban land use period (post 1985 with δ66Zn = 0.00 ± 0.10‰ and δ65Cu = +0.82‰ ± 0.12‰). Rapid early urbanization during the post World War II era increased metal loading to the lake but did not significantly alter the δ66Zn and δ65Cu, suggesting that increased metal loads during this time were derived mainly from mobilization of historically contaminated soils. Urban sources of Cu and Zn were dominant since the smelter closed in the 1980s, and the δ66Zn measured in tire samples suggests tire wear is a likely source of Zn.

  15. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  16. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; ...

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  17. Controlling superstructural ordering in the clathrate-I Ba 8 M 16 P 30 (M = Cu, Zn) through the formation of metal–metal bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolyniuk, J.; Whitfield, P. S.; Lee, K.

    2017-01-01

    Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16-xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in themore » additional substitution of Zn for P in Ba8M16+yP30-y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pm[3 with combining macron]n). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.« less

  18. Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil.

    PubMed

    Costa, Luiza Dy Fonseca; Wallner-Kersanach, Mônica

    2013-08-01

    The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT-Cu concentrations was only significant (p < 0.05) at one shipyard area, while DGT-Zn was significant (p < 0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11-0.45 μg L(-1) for DGT-Cu, 0.89-9.96 μg L(-1) for DGT-Zn, 0.65-3.69 μg g(-1) for LPF-Cu, and 1.35-10.87 μg g(-1) for LPF-Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT-Zn and LPF-Zn was found suggesting that the DGT-Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.

  19. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  20. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization

    NASA Astrophysics Data System (ADS)

    Yang, Y. C.; Pan, F.; Zeng, F.; Liu, M.

    2009-12-01

    ZnO/Cu/ZnO trilayer films sandwiched between Cu and Pt electrodes were prepared for nonvolatile resistive memory applications. These structures show resistance switching under electrical bias both before and after a rapid thermal annealing (RTA) treatment, while it is found that the resistive switching effects in the two cases exhibit distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrates remarkable device parameter improvements including lower threshold voltages, lower write current, and higher Roff/Ron ratio. A high-voltage forming process is avoided in the annealed device as well. Furthermore, the RTA treatment has triggered a switching mechanism transition from a carrier trapping/detrapping type to an electrochemical-redox-reaction-controlled conductive filament formation/rupture process, as indicated by different features in current-voltage characteristics. Both scanning electron microscopy observations and Auger electron spectroscopy depth profiles reveal that the Cu charge trapping layer in ZnO/Cu/ZnO disperses uniformly into the storage medium after RTA, while x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrate that the Cu atoms have lost electrons to become Cu2+ ions after dispersion. The above experimental facts indicate that the altered status of Cu in the ZnO/Cu/ZnO trilayer films during RTA treatment should be responsible for the switching mechanism transition. This study is envisioned to open the door for understanding the interrelation between different mechanisms that currently exist in the field of resistive memories.

Top