Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111).
Bohannan, Eric W; Kothari, Hiten M; Nicic, Igor M; Switzer, Jay A
2004-01-21
Epitaxial films of monoclinic CuO have been electrodeposited on single-crystal Cu(111) from solutions containing either (S,S)- or (R,R)-tartrate. X-ray pole figure analysis reveals that the CuO film grown from (S,S)-tartrate exhibits a (1) out-of-plane orientation while the film grown from (R,R)-tartrate has a (11) orientation. Even though CuO does not crystallize within a chiral space group, the orientations obtained exhibit a surface chirality similar to that obtained from high index fcc metal surfaces. The films were shown to be enantioselective toward the catalytic oxidation of tartrate molecules by cyclic voltammetry. The technique should prove to be applicable to the electrodeposition of chiral surfaces of other low-symmetry materials on achiral substrates and should prove to be of use to those interested in the synthesis, separation, and detection of chiral molecules.
Graphene Growth on Low Carbon Solubility Metals
NASA Astrophysics Data System (ADS)
Wofford, Joseph Monroe
Advances in synthesis are imperative if graphene is to fulfill its scientific and technological potential. Single crystal graphene of is currently available only in the small flakes generated by mechanical exfoliation. Layers of larger size may be grown either by the thermal decomposition of SiC or by chemical vapor deposition on metals. However, as they are currently implemented, these methods yield graphene films of inferior quality. Thus the requirement for wafer-scale, high-quality graphene films remains unmet. This dissertation addresses this issue by examining graphene growth on metal surfaces. Through a survey of the fundamental underlying processes, it provides guidance for improving the quality of the resulting graphene films. Graphene was grown on Cu(100), Cu(111), and Au(111) by physical vapor deposition of elemental C. The nucleation and growth behaviors of graphene were evaluated by low-energy electron microscopy. Graphene tends to nucleate heterogeneously at surface imperfections although it also does so homogeneously on Cu(111) and Au(111). Graphene growing on Cu(100) is governed by the attachment kinetics of C at the propagating crystal front. The resulting angularly dependent growth rate sculpts individual crystals into elongated lobes. In contrast, graphene growth on both Cu(111) and Au(111) is surface diffusion limited. This yields ramified, dendritic graphene islands. Graphene films grown on Cu(100) contain significant rotational disorder. This disorder is partially attributable to the symmetry mismatch between film and substrate. The common symmetry between graphene and Cu(111) contributes to a significant reduction in disorder in films grown on this surface. Most graphene domains occupy a ˜6º arc of orientations. On Au(111) the vast majority of graphene domains are locked into alignment with the substrate surface. The extraordinary extent of their orientational homogeneity is such that the resulting graphene film is a quasi-single crystal. The findings presented illustrate how metal species and crystal symmetry influence the structural properties of monolayer graphene. The selection of an optimal substrate for graphene growth can significantly reduce crystalline disorder in the resulting film.
Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.
2017-01-01
In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yanhong, E-mail: tianyh@hit.edu.cn; Zhang, Rui; Hang, Chunjin
2014-02-15
The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, themore » percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation mechanism of hollowed Cu{sub 6}Sn{sub 5} was elaborated based on Bravais law. • The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified.« less
Shock Hugoniot of single crystal copper
NASA Astrophysics Data System (ADS)
Chau, R.; Stölken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N. C.
2010-01-01
The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], and [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from molecular dynamics calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.
Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu
Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning
2015-01-01
Direct Cu-to-Cu bonding was achieved at temperatures of 150–250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10–60 min at 10−3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement. PMID:25962757
Canted antiferromagnetism in phase-pure CuMnSb
NASA Astrophysics Data System (ADS)
Regnat, A.; Bauer, A.; Senyshyn, A.; Meven, M.; Hradil, K.; Jorba, P.; Nemkovski, K.; Pedersen, B.; Georgii, R.; Gottlieb-Schönmeyer, S.; Pfleiderer, C.
2018-05-01
We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at TN=55 K and a second anomaly at a temperature T*≈34 K. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of (3.9 ±0.1 ) μB/f .u . , consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below TN, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along <111 > (magnetic space group R [I ]3 c ). Surprisingly, below T*, the moments tilt away from <111 > by a finite angle δ ≈11∘ , forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group C [B ]c . Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.
Origin of the mosaicity in graphene grown on Cu(111)
NASA Astrophysics Data System (ADS)
Nie, Shu; Wofford, Joseph M.; Bartelt, Norman C.; Dubon, Oscar D.; McCarty, Kevin F.
2011-10-01
We use low-energy electron microscopy to investigate how graphene grows on Cu(111). Graphene islands first nucleate at substrate defects such as step bunches and impurities. A considerable fraction of these islands can be rotationally misaligned with the substrate, generating grain boundaries upon interisland impingement. New rotational boundaries are also generated as graphene grows across substrate step bunches. Thus, rougher substrates lead to higher degrees of mosaicity than do flatter substrates. Increasing the growth temperature improves crystallographic alignment. We demonstrate that graphene growth on Cu(111) is surface diffusion limited by comparing simulations of the time evolution of island shapes with experiments. Islands are dendritic with distinct lobes, but unlike the polycrystalline, four-lobed islands observed on (100)-textured Cu foils, each island can be a single crystal. Thus, epitaxial graphene on smooth, clean Cu(111) has fewer structural defects than it does on Cu(100).
Initial stages of benzotriazole adsorption on the Cu(111) surface
NASA Astrophysics Data System (ADS)
Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.
2013-05-01
Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c
Switzer, Jay A.; Hill, James C.; Mahenderkar, Naveen K.; ...
2016-05-27
Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu 2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured bymore » low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiO x layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu 2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu 2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu 2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less
Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W
2003-07-01
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles
James, Trevor E.; Hemmingson, Stephanie L.; Campbell, Charles T.
2015-08-14
It is known that many catalysts consist of late transition metal nanoparticles dispersed across oxide supports. The chemical potential of the metal atoms in these particles correlate with their catalytic activity and long-term thermal stability. This chemical potential versus particle size across the full size range between the single isolated atom and bulklike limits is reported here for the first time for any metal on any oxide. The chemical potential of Cu atoms on CeO 2(111) surfaces, determined by single crystal adsorption calorimetry of gaseous Cu atoms onto slightly reduced CeO 2(111) at 100 and 300 K is shown tomore » decrease dramatically with increasing Cu cluster size. The Cu chemical potential is ~110 kJ/mol higher for isolated Cu adatoms on stoichometric terrace sites than for Cu in nanoparticles exceeding 2.5 nm diameter, where it reaches the bulk Cu(solid) limit. In Cu dimers, Cu’s chemical potential is ~57 kJ/mol lower at step edges than on stoichiometric terrace sites. Since Cu avoids oxygen vacancies, these monomer and dimer results are not strongly influenced by the 2.5% oxygen vacancies present on this CeO 2 surface and are thus considered representative of stoichiometric CeO 2(111) surfaces.« less
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
Surface Structure Spread Single Crystals (S4C): Preparation and characterization
NASA Astrophysics Data System (ADS)
de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.
2013-02-01
A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.
Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)
NASA Astrophysics Data System (ADS)
Jacobberger, Robert; Arnold, Michael
2013-03-01
Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio <0.1. The understanding gained here provides a framework to rationally tailor the graphene crystal morphology and orientation.
Feasibility Studies of Parametric X-rays Use in a Medical Environment
NASA Astrophysics Data System (ADS)
Sones, Bryndol; Danon, Yaron; Blain, Ezekiel
2009-03-01
Parametric X-rays (PXR) are produced from the interaction of relativistic electrons with the periodic structure of crystal materials. Smooth X-ray energy tunability is achieved by rotating the crystal with respects to the electron beam direction. Experiments at the Rensselaer Polytechnic Institute 60-MeV LINAC produce quasi-monochromatic X-rays (6-35 keV) from various target crystals to include highly oriented pyrolytic graphite (HOPG), LiF, Si, Ge, Cu, and W using electron beam currents up to 6 uA. These experiments demonstrate the first PXR images and some of the merits of thin metallic crystals. Recent experiments with a 100-μm thick Cu crystal improve the Cu PXR (with energy ˜12 keV) to Cu fluorescence ratio by a factor of 20 compared to a 1 mm-thick Cu crystal. This study uses Monte Carlo techniques to investigate (1) PXR dose compared to emissions from simulated Mo, Rh, and W anodes for mammography applications and (2) electron scattering effects when considering LiF111, Si111, and Cu111 PXR production using electron beams with energies of 20-30 MeV. Advantages in using monochromatic PXR compared to X-rays from Mo and Rh anodes in mammography applications result in a dose per incident photon reduction by a factor of 2. Using 20 MeV electrons, the thinner Cu111 crystal for 15 keV PXR production results in an electron scattering angle of 30.7+/-0.2 mrad offering the best potential for PXR from lower energy electrons.
NASA Astrophysics Data System (ADS)
Zhong, Y.; Zhao, N.; Liu, C. Y.; Dong, W.; Qiao, Y. Y.; Wang, Y. P.; Ma, H. T.
2017-11-01
As the diameter of solder interconnects in three-dimensional integrated circuits (3D ICs) downsizes to several microns, how to achieve a uniform microstructure with thousands of interconnects on stacking chips becomes a critical issue in 3D IC manufacturing. We report a promising way for fabricating fully intermetallic interconnects with a regular grain morphology and a strong texture feature by soldering single crystal (111) Cu/Sn/polycrystalline Cu interconnects under the temperature gradient. Continuous epitaxial growth of η-Cu6Sn5 at cold end liquid-Sn/(111)Cu interfaces has been demonstrated. The resultant η-Cu6Sn5 grains show faceted prism textures with an intersecting angle of 60° and highly preferred orientation with their ⟨ 11 2 ¯ 0 ⟩ directions nearly paralleling to the direction of the temperature gradient. These desirable textures are maintained even after soldering for 120 min. The results pave the way for controlling the morphology and orientation of interfacial intermetallics in 3D packaging technologies.
Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces.
Deng, Bing; Wu, Juanxia; Zhang, Shishu; Qi, Yue; Zheng, Liming; Yang, Hao; Tang, Jilin; Tong, Lianming; Zhang, Jin; Liu, Zhongfan; Peng, Hailin
2018-05-01
Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
Stacchiola, Darío J
2015-07-21
Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.
NASA Astrophysics Data System (ADS)
Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang
2018-04-01
Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.
Electron Scattering at Surfaces of Epitaxial Metal Layers
NASA Astrophysics Data System (ADS)
Chawla, Jasmeet Singh
In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.
Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Živković, I.; Pajić, D.; Ivek, T.; Berger, H.
2012-06-01
We report a detailed single-crystal investigation of a magnetoelectric ferrimagnet Cu2OSeO3 using dc magnetization and ac susceptibility along the three principal directions [100], [110], and [111]. We have observed that in small magnetic fields two magnetic transitions occur, one at Tc=57 K and the second one at TN=58 K. At Tc the nonlinear susceptibility reveals the emergence of the ferromagnetic component and below Tc the magnetization measurements show the splitting between field-cooled and zero-field-cooled regimes. Above 1000 Oe the magnetization saturates and the system is in a single domain state. The temperature dependence of the saturation below Tc can be well described by μ(T)=μ(0)[1-(T/Tc)2]β, with μ(0)=0.56μB/Cu, corresponding to the 3-up-1-down configuration. The dielectric constant measured on a thin single crystal shows a systematic deviation below the transition, indicating an intrinsic magnetoelectric effect.
Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.
Palafox-Hernandez, J Pablo; Laird, Brian B
2016-12-07
In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K-a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface, relative to Cu(111), whose surface is more similar to the nucleating phase due to the presence of the prefreezing layer.
Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)
NASA Astrophysics Data System (ADS)
Tyagi, Parul; Mowll, Tyler; Robinson, Zachary; Ventrice, Carl
2013-03-01
Copper foil is one of the most common substrates for growing large area graphene films. The main reason for this is that Cu has a very low carbon solubility, which results in the self-termination of a single layer of graphene when grown using hydrocarbon precursors at low pressure. Our previous results on Cu(111) substrates has found that temperatures of at least 900 °C are needed to form single domain epitaxial films. By using a CuNi alloy, the catalytic activity of the substrate is expected to increase, which will allow the catalytic decomposition of the hydrocarbon precursor at lower temperatures. In this study, the growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was attempted. The growths were done in an ultra-high vacuum system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the deposition of carbon atoms on the surface at temperatures too low for the carbon to crystallize into graphene. This research was supported by the NSF (DMR-1006411).
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, P.; Engler, O.; Luecke, K.
1995-10-01
Microstructural and textural evolution during rolling were investigated in (112)[11{bar 1}] single crystals of Al, Cu, and homogeneous supersaturated Al1.8wt%Cu. After a rolling degree of 30% the initial C-orientation (112)[11{bar 1}] of all three materials has rotated towards the so called D-orientation (4411)[1111{bar 8}]. While in the non-shear banding Al the D-orientation remains stable up to high rolling degrees, in the shear banding materials Cu and Al-Cu it rotates back to the initial C-orientation simultaneously with the formation of shear bands. This orientation change is explained by a rigid body rotation due to the special geometry of a deformation withmore » unidirectional shear bands. With the onset of shear band formation also strong orientation scatterings about the transverse direction appear in the pole figures. These scatterings are located inside the shear bands as well as their vicinity. They are due to the strong shear deformation and the resulting reaction stresses occurring in the shear bands and in their vicinity, respectively.« less
Liu, Bin; Ning, Lichao; Zhang, Congjie; Zheng, Hairong; Liu, Shengzhong Frank; Yang, Heqing
2018-06-21
It is rather challenging to develop photocatalysts based on narrow-band-gap semiconductors for water splitting under solar irradiation. Herein, we synthesized the Cu 2 O/Cu 2 Se multilayer heterostructure nanowires exposing {111} crystal facets by a hydrothermal reaction of Se with Cu and KBH 4 in ethanol amine aqueous solution and subsequent annealing in air. The photocatalytic H 2 production activity of Cu 2 O/Cu 2 Se multilayer heterostructure nanowires is dramatically improved, with an increase on the texture coefficient of Cu 2 O(111) and Cu 2 Se(111) planes, and thus the exposed {111} facets may be the active surfaces for photocatalytic H 2 production. On the basis of the polar structure of Cu 2 O {111} and Cu 2 Se {111} surfaces, we presented a model of charge separation between the Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces. An internal electric field is created between Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces, because of spontaneous polarization. As a result, this internal electric field drives the photocreated charge separation. The oxidation and reduction reactions selectively occur at the negative O-Cu 2 O(1̅ 1̅ 1̅) and the positive Cu-Cu 2 Se(111) surfaces. The polar surface-engineering may be a general strategy for enhancing the photocatalytic H 2 -production activity of semiconductor photocatalysts. The charge separation mechanism not only can deepen the understanding of photocatalytic H 2 production mechanism but also provides a novel insight into the design of advanced photocatalysts, other photoelectric devices, and solar cells.
NASA Astrophysics Data System (ADS)
Sun, Wei; Shi, Ruina; Wang, Xuhui; Liu, Shusen; Han, Xiaoxia; Zhao, Chaofan; Li, Zhong; Ren, Jun
2017-12-01
The mechanism for dimethyl carbonate (DMC) synthesis by oxidation carbonylation of methanol on a single-atom Cu1/graphene catalyst was investigated by density-functional theory calculations. Carbon vacancies in graphene can significantly enhance the interaction between Cu atoms and graphene supports, and provide an increased transfer of electrons from Cu atoms to the graphene sheet. Compared with Cu-doped divacancy graphene (Cu/DG), Cu-doped monovacancy graphene (Cu/MG) provides a stronger interaction between adsorbents and the catalyst surface. Among the reaction processes over Cu1/graphene catalysts, CO insertion into methoxide was more favorable than dimethoxide. The rate-limiting step on the Cu/DG surface is the carbomethoxide reaction with methoxide, which is exothermic by 164.6 kJ mol-1 and has an activation barrier of 190.9 kJ mol-1 energy. Compared with that on the Cu crystal surface, Cu4 and Cu3Rh clusters, and the Cu2O(111) surface, the rate-determining step for DMC formation on Cu/MG, which is CO insertion into methoxide, needs to overcome the lowest barrier of 73.5 kJ mol-1 and is exothermic by 44.6 kJ mol-1. Therefore, Cu/MG was beneficial to the formation of DMC as a single-atom catalyst.
CVD growth of large-grain graphene on Cu(111) thin films
NASA Astrophysics Data System (ADS)
Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.
2013-03-01
Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhenming; Guo Zhenqi; Li Jianguo
2004-12-15
A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chang; Lu, Yi-Hung; Su, Tai-Lung; Lin, Wen-Chin; Fu, Tsu-Yi
2018-07-01
Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.
Growth and microtopographic study of CuInSe{sub 2} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.
2016-05-23
The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.
Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting
2015-06-28
Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.
Kumagai, Takashi; Ladenthin, Janina N; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats
2018-03-14
Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ∼23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence of trans and cis configurations in the STM images is explained either by the rapid tautomerization rate or the similar character of the molecular frontier orbitals of the trans and cis configurations.
NASA Astrophysics Data System (ADS)
Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats
2018-03-01
Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence of trans and cis configurations in the STM images is explained either by the rapid tautomerization rate or the similar character of the molecular frontier orbitals of the trans and cis configurations.
Magneto-optic superlattice thin films: Fabrication, structural and magnetic characterization
NASA Technical Reports Server (NTRS)
Falco, C. M.; Engel, B. N.; Vanleeuwen, R. A.; Yu, J.
1993-01-01
During this quarter studies were extended to determine the electronic contribution to the perpendicular interface anisotropy in Co-based multilayers. Using in situ Kerr effect measurements, the influences of different transition metals (TM = Ag, Au, Cu, and Pd) on the magnetic properties of single-crystal Co films grown on Pd (111) and Au (111) surfaces are investigated. Last quarter the discovery of a large peak in the perpendicular anisotropy when approximately one monolayer of Cu or Ag is deposited on the Co surface was reported. We now have added a computer-controlled stepper-motor drive to our MBE sample transfer mechanism. The motor allows us to move the sample at a constant velocity from behind a shutter during deposition. The film, therefore, is deposited as a wedge with a linear variation of thickness across the substrate. In this way, a continuous range of coverage on a single sample is studied. The stepper motor also provides the necessary control for precisely positioning the sample in the laser beam for Kerr effect measurements at the different coverages.
Electromigration-induced Plasticity and Texture in Cu Interconnects
NASA Astrophysics Data System (ADS)
Budiman, A. S.; Hau-Riege, C. S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.
2007-10-01
Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study[1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10°). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y. F.; Larson, B. C.; Lee, J. H.
Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less
NASA Technical Reports Server (NTRS)
Lambrecht, Walter R. L.
1992-01-01
The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.
Complex catalytic behaviors of CuTiO x mixed-oxide during CO oxidation
Kim, Hyun You; Liu, Ping
2015-09-21
Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiO x monolayer film supported on Cu(111), CuTiO x/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiO x is able to stabilize and isolate a single Cu + site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu +more » site. Upon the formation of step-edges, the synergy among Cu δ+ sites, TiO x matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O 2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu δ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less
Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.
1998-07-07
A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.
Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar
1998-01-01
A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun You; Liu, Ping
Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiO x monolayer film supported on Cu(111), CuTiO x/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiO x is able to stabilize and isolate a single Cu + site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu +more » site. Upon the formation of step-edges, the synergy among Cu δ+ sites, TiO x matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O 2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu δ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less
Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, T.; Nogami, J.
2014-02-17
The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography.
NASA Astrophysics Data System (ADS)
Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.
2018-06-01
Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.
Growth and characterization of CaCu3Ti4O12 single crystals
NASA Astrophysics Data System (ADS)
Kim, Hui Eun; Yang, Sang-don; Lee, Jung-Woo; Park, Hyun Min; Yoo, Sang-Im
2014-12-01
The CaCu3Ti4O12 (CCTO) single crystals could be grown from the melt with the nominal composition of Ca:Cu:Ti=1:59:20 in a platinum (Pt) crucible using a self-flux method. The flux-grown CCTO single crystals have well-developed {100} habit planes, and their compositions are close to the ratio of Ca:Cu:Ti=1:3:4. Interestingly, flux-grown CCTO single crystals exhibited two different back reflection Laue patterns; one exhibited only [100] cubic Laue patterns, and the other showed not only [100] cubic Laue patterns but also the satellite spots related to the twin boundary, implying that twin-free CCTO single crystals can be grown by the self-flux method. Both the dielectric constants and losses of twinned CCTO single crystal are significantly higher than those of untwined CCTO crystal at relatively low frequency regime (<10 kHz), suggesting that the dielectric property is sensitive to the twin boundary.
Size Dependence of S-bonding on (111) Facets of Cu Nanoclusters
Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.; ...
2016-04-21
We demonstrate a strong damped oscillatory size dependence of the adsorption energy for sulfur on the (111) facets of tetrahedral Cu nanoclusters up to sizes of ~300 atoms. This behavior reflects quantum size effects. Consistent results are obtained from density functional theory analyses utilizing either atomic orbital or plane-wave bases and using the same Perdew–Burke–Ernzerhof functional. Behavior is interpreted via molecular orbitals (MO), density of states (DOS), and crystal orbital Hamilton population (COHP) analyses.
Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.
Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S
2014-12-14
Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated.
Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy.
Jensen, Kim D; Tymoczko, Jakub; Rossmeisl, Jan; Bandarenka, Aliaksandr S; Chorkendorff, Ib; Escudero-Escribano, María; Stephens, Ifan E L
2018-03-05
The relationship between the binding of the reaction intermediates and oxygen reduction activity in alkaline media was experimentally explored. By introducing Cu into the 2nd surface layer of a Pt(111) single crystal, the surface reactivity was tuned. In both 0.1 m NaOH and 0.1 m KOH, the optimal catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits a maximum activity of 101±8 mA cm -2 at 0.9 V vs. a reversible hydrogen electrode (RHE). This activity constitutes a circa 60-fold increase over Pt(111) in 0.1 m HClO 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization
NASA Astrophysics Data System (ADS)
Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi
2018-04-01
The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.
Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8-δ by partial melting
NASA Astrophysics Data System (ADS)
Yamaki, Kazuhiro; Bamba, Yoshihiro; Irie, Akinobu
2018-03-01
In this study, fine uniform RuSr2GdCu2O8-δ (RuGd-1212) single crystals have been successfully prepared by partial melting. Synthesis temperature could be lowered to a value not exceeding the decomposition temperature of RuGd-1212 using the Sr-Gd-Cu-O flux. The crystals grown by alumina boats are cubic, which coincides with the result of a previous study of RuGd-1212 single crystals using platinum crucibles. The single crystals were up to 15 × 15 × 15 µm3 in size and their lattice constants were consistent with those of polycrystalline samples reported previously. Although the present size of single crystals is not sufficient for measurements, the partial melting technique will be beneficial for future progress of research using RuGd-1212 single crystals. Appropriate nominal composition, sintering atmosphere, and temperature are essential factors for growing RuGd-1212 single crystals.
Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation.
Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z
2015-03-14
Density functional theory together with ab initio atomistic thermodynamics has been utilized to study the structures and stabilities of the low index CuCl surfaces. It is shown that the Cl-terminated structures are more stable than the Cu-terminated configurations, and that the defective CuCl(110)-Cu structure is more stable than the stoichiometric CuCl(110) surface. The equilibrium shape of a cuprous chloride nanostructure terminated by low-index CuCl surfaces has also been predicted using a Wulff construction. It was found that the (110) facets dominate at low chlorine concentration. As the chlorine concentration is increased, however, the contributions of the (100) and (111) facets to the Wulff construction also increase giving the crystal a semi-prism shape. At high chlorine concentration, and close to the rich limit, the (111) facets were found to be the only contributors to the Wulff construction, resulting in prismatic nanocrystals.
Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1988-12-01
High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.
Single crystals of the 96 K superconductor (Hg,Cu)Ba2CuO4+δ: Growth, structure and magnetism
NASA Astrophysics Data System (ADS)
Pelloquin, D.; Hardy, V.; Maignan, A.; Raveau, B.
1997-02-01
Single crystals of the 1201 (n = 1) (Hg,Cu)Ba2CuO4+δ mercury based cuprate have been grown by using a simple process without dry box. The as-synthesized crystals exhibit constant Tc(onset) of 96 K with sharp superconducting transitions. The electron microscopy coupled with EDX analyses evidence a ``1201''-type structure while a mercury deficiency is observed balanced by an excess of copper. The structural refinements based on single-crystal X-ray diffraction data confirm the electron deficiency on the Hg site (0,0,0) and show a splitting of the latter along the c axis correlated to the partial substitution of Cu for Hg. This structural study leads to the following formula Hg0.84Cu0.16Ba2CuO4.19. The magnetic study of a large crystal (1.1 × 0.38 × 0.065 mm3) shows that the (Hg,Cu)-1201 crystals exhibit an irreversibility line higher than that of the 1201 Hg0.8Bi0.2Ba2CuO4+δ crystal (Tc = 75 K). From the reversible magnetization, a λab(0) = 2470 Å value can be extrapolated. Using a 3D-2D decoupling formula, we obtain γ = 29 for the electronic anisotropy of this phase.
Photoluminescence of vapor and solution grown ZnTe single crystals
NASA Astrophysics Data System (ADS)
Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.
1994-04-01
ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.
Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer
NASA Astrophysics Data System (ADS)
Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming
2018-03-01
Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.
NASA Technical Reports Server (NTRS)
Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.
1995-01-01
Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.
Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method
NASA Astrophysics Data System (ADS)
Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.
2014-09-01
Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.
Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO2/Si: An Azimuthal RHEED Approach.
Lu, Zonghuan; Sun, Xin; Xiang, Yu; Washington, Morris A; Wang, Gwo-Ching; Lu, Toh-Ming
2017-07-12
The symmetry of graphene is usually determined by a low-energy electron diffraction (LEED) method when the graphene is on the conductive substrates, but LEED cannot handle graphene transferred to SiO 2 /Si substrates due to the charging effect. While transmission electron microscopy can generate electron diffraction on post-transferred graphene, this method is too localized. Herein, we employed an azimuthal reflection high-energy electron diffraction (RHEED) method to construct the reciprocal space mapping and determine the symmetry of wafer-size graphene both pre- and post-transfer. In this work, single-crystalline Cu(111) films were prepared on sapphire(0001) and spinel(111) substrates with sputtering. Then the graphene was epitaxially grown on single-crystalline Cu(111) films with a low pressure chemical vapor deposition. The reciprocal space mapping using azimuthal RHEED confirmed that the graphene grown on Cu(111) films was single-crystalline, no matter the form of the monolayer or multilayer structure. While the Cu(111) film grown on sapphire(0001) may occasionally consist of 60° in-plane rotational twinning, the reciprocal space mapping revealed that the in-plane orientation of graphene grown atop was not affected. The proposed method for checking the crystalline integrity of the post-transferred graphene sheets is an important step in the realization of the graphene as a platform to fabricate electronic and optoelectronic devices.
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei
1997-01-01
A method of fabricating bulk superconducting material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta. comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta. in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa.sub.2 Cu.sub.3 O.sub.7-.delta. while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta.. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa.sub.2 Cu.sub.3 O.sub.7-.delta. of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R.sub.2 BaCuO.sub.5.
Slow Crack Growth of Germanium
NASA Technical Reports Server (NTRS)
Salem, Jon
2016-01-01
The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.
Ductile-to-Brittle transition in <111> hadfield steel single crystals
NASA Astrophysics Data System (ADS)
Astafurova, E. G.; Chumlyakov, Yu. I.
2010-10-01
The deformation mechanism and the character of fracture of <111> austenitic Hadfield steel single crystals are studied during tension in the temperature range 77-673 K by scanning and transmission electron microscopy. It is found that a change in the fracture mechanism from ductile to brittle fracture according to the fractography criterion takes place at a higher temperature than that determined from a change in the elongation to failure of the single crystals. The ductile-to-brittle transition in the Hadfield steel single crystals is shown to be related to a high level of deforming stresses induced by solid-solution hardening and to mechanical twinning.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.
2018-06-01
In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111}<112> orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001}<110> orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123}<111> slip systems were preferentially activated in these single crystals during deformation as well as {112}<111> slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction (<10 pct) of recrystallized Goss-oriented grains. The weak Goss component remained in the shear bands of the 50 pct rolled Goss-oriented single crystal, and it appeared to be associated with coalescence of subgrains inside shear band structures during primary recrystallization. Rolling of the (001)[110] single crystal led to the formation of a tilted (001)[100] component close to the <120> orientation, associated with {123}<111> slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.
NASA Technical Reports Server (NTRS)
D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.
1988-01-01
Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.
Coordination polyhedron and chemical vapor deposition of Cu(hfacac)2(t-BuNH2).
Woo, Kyoungja; Paek, Hojeong; Lee, Wan In
2003-10-06
A new pentacoordinate Cu(II) complex, Cu(hfacac)(2)(t-BuNH(2)) [hfacac = CF(3)C(O)CHC(O)CF(3)(-), t-BuNH(2) = tert-butylamine], has been synthesized and structurally characterized. Interestingly, the structure of a single crystal occurred as square pyramidal with one O atom at the apical position and one N and three O atoms at the basal positions, showing a serious degree of distortion. This contrasts with the square-pyramidal structure of Cu(hfacac)(2)L (L = H(2)O and pyrazine), which has the L ligand at the axial position. In the Cu(hfacac)(2)(t-BuNH(2)) complex, the t-BuNH(2) ligand is placed at an equatorial position with a lowered angle by 19.9(2) degrees from the basal plane. This distortion seems to reduce sigma influence and steric hindrance and so stabilizes the square-pyramidal geometry. This precursor has a lower melting point and superior stability to air, moisture, and heat than the Cu(hfacac)(2)(xH(2)O) precursor. The deposition rate of copper oxide film on a Pt layer above 450 degrees C was nearly constant with increasing temperature, indicating a mass transport limited reaction. Therefore it would be a useful metal organic chemical vapor deposition precursor for the fabrication of copper oxide film or superconducting materials. Crystal data for Cu(hfacac)(2)(t-BuNH(2)): 293(2) K, a = 9.6699(4) A, b = 18.0831(10) A, c = 12.8864(11) A, beta = 111.839(5) degrees, monoclinic, space group P2(1)/c, Z = 4.
Synthesis and coordination chemistry of 1,1,1-tris-(pyrid-2-yl)ethane.
Santoro, Amedeo; Sambiagio, Carlo; McGowan, Patrick C; Halcrow, Malcolm A
2015-01-21
A new synthesis of 1,1,1-tris(pyrid-2-yl)ethane (L), and a survey of its coordination chemistry, are reported. The complexes [ML2](n+) (M(n+) = Fe(2+), Co(2+), Co(3+), Cu(2+) and Ag(+)), [PdCl2L] and [CuI(L)] have all been crystallographically characterised. Noteworthy results include an unusual square planar silver(i) complex [Ag(L)2]X (X(-) = NO3(-) and SbF6(-)); the oxidative fixation of aerobic CO2 by [CuI(L)] to yield [Cu2I(L)2(μ-CO3)]2[CuI3] and [Cu(CO3)(L)]; and, water/carbonato tape and water/iodo layer hydrogen bonding networks in hydrate crystals of two of the copper(ii) complexes. Cyclic voltammetric data on [Fe(L)2](2+) and [Co(L)2](2+/3+) imply that the peripheral methyl substituent has a weak influence on the ligand field exerted by L onto a coordinated metal ion.
NASA Astrophysics Data System (ADS)
Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.
2018-05-01
Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.
Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.
1997-03-18
A method of fabricating bulk superconducting material is disclosed including RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R{sub 2}BaCuO{sub 5}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Z.F.; Wang, C.A.; Wang, J.H.
1994-12-31
Epitaxial (Tl,Bi)Sr{sub 1.6}Ba{sub 0.4}Ca{sub 2}Cu{sub 3}O{sub x} (Tl,Bi)-1223 thin films on (100) single crystal LaAlO{sub 3} substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field-cooled magnetization, and transport critical current density (J{sub c}) were measured. The zero-resistance temperature was 105-111 K. J{sub c} at 77 K and zero field was > 2 x 10{sup 6} A/cm{sup 2}. The films exhibited good flux pinning properties.
NASA Astrophysics Data System (ADS)
Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu
1990-12-01
ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.
Scanning electron microscope study of polytetrafluoroethylene sliding on aluminum single crystals
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1973-01-01
Friction experiments were conducted in air with polytetrafluoroethylene (PTFE) sliding on aluminum single crystals. Mechanical scoring of the crystals with (110) and (100) orientations was observed with a single pass of the PTFE slider. No scoring was observed on the (111). The degree of scoring of the crystals is related to the hardness, with the hardest surface (111) showing no damage and the softest surface (110) showing the most severe scoring. Scoring is caused by work-hardened pieces of aluminum which, as a consequence of the adhesion between PTFE and aluminum, were pulled out of the bulk and became embedded in the PTFE polymer.
Anisotropy of Single-Crystal Silicon in Nanometric Cutting.
Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun
2017-12-01
The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.
NASA Astrophysics Data System (ADS)
Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.
2018-05-01
In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.
A Library of the Nanoscale Self-Assembly of Amino Acids on Metal Surfaces
NASA Astrophysics Data System (ADS)
Iski, Erin; Yitamben, Esmeralda; Guisinger, Nathan
2012-02-01
The investigation of the hierarchical self-assembly of amino acids on surfaces represents a unique test-bed for the origin of enantio-favoritism in biology and the transmission of chirality from single molecules to complete surface layers. These chiral systems, in particular the assembly of isoleucine and alanine on Cu(111), represent a direct link to the understanding of certain biological processes, specifically the preference for some amino acids to form alpha helices vs. beta-pleated sheets in the secondary structure of proteins. Low temperature, ultra-high vacuum, scanning tunneling microscopy (LT UHV-STM) is used to study the hierarchical self-assembly of different amino acids on a Cu(111) single crystal in an effort to build a library of their two-dimensional structure with molecular-scale resolution for enhanced protein and peptide studies. Both enantiopure and racemic structures are studied in order to elucidate how chirality can affect the self-assembly of the amino acids. In some cases, density functional theory (DFT) models can be used to confirm the experimental structure. The advent of such a library with fully resolved, two-dimensional structures at different molecular coverages would address some of the complex questions surrounding the preferential formation of alpha helices vs. beta-pleated sheets in proteins and lead to a better understanding of the key role played by these amino acids in protein sequencing.
Morphology design of porous coordination polymer crystals by coordination modulation.
Umemura, Ayako; Diring, Stéphane; Furukawa, Shuhei; Uehara, Hiromitsu; Tsuruoka, Takaaki; Kitagawa, Susumu
2011-10-05
The design of crystal morphology, or exposed crystal facets, has enabled the development (e.g., catalytic activities, material attributes, and oriented film formation) of porous coordination polymers (PCPs) without changing material compositions. However, because crystal growth mechanisms are not fully understood, control of crystal morphology still remains challenging. Herein, we report the morphology design of [Cu(3)(btc)(2)](n) (btc = benzene-1,3,5-tricarboxylate) by the coordination modulation method (modulator = n-dodecanoic acid or lauric acid). A morphological transition (octahedron-cuboctahedron-cube) in the [Cu(3)(btc)(2)](n) crystal was observed with an increase in concentration of the modulator. By suitably defining a coarse-grained standard unit of [Cu(3)(btc)(2)](n) as its cuboctahedron main pore and determining its attachment energy on crystal surfaces, Monte Carlo coarse-grain modeling revealed the population and orientation of carboxylates and elucidated an important role of the modulator in determining the <100>- and <111>-growth throughout the crystal growth process. This comprehension, in fact, successfully led to designed crystal morphologies with oriented growth on bare substrates. Because selective crystal orientations on the bare substrates were governed by crystal morphology, this contribution also casts a new light on the unexplored issue of the significance of morphology design of PCPs.
Crystal growth and electrical properties of CuFeO 2 single crystals
NASA Astrophysics Data System (ADS)
Dordor, P.; Chaminade, J. P.; Wichainchai, A.; Marquestaut, E.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P.; Ammar, A.
1988-07-01
Delafossite-type CuFeO 2 single crystals have been prepared by a flux method: crystals obtained in a Cu crucible with LiBO 2 as flux are n-type whereas those prepared in a Pt crucible with a Cu 2O flux are p-type. Electrical measurements have revealed that n-type crystals exhibit weak anisotropic conductivities with large activation energies and small mobilities (r.t. values perpendicular and parallel to the c-axis: μ⊥ = 5 × 10 -5 and μ‖ = 10 -7 cm -2 V -1 sec -1). p-type crystals, less anisotropic, are characterized by low activation energies and higher mobilities ( μ⊥ = 34 and μ‖ = 8.9 cm 2 V -1 sec -1). A two -conduction-band model is proposed to account for the difference observed between the energy gap value deduced from photoelectrochemical measurements and the activation energy of the electrical conductivity in the intrinsic domain.
NASA Astrophysics Data System (ADS)
Bertinotti, A.; Viallet, V.; Colson, D.; Marucco, J.-F.; Hammann, J.; Forget, A.; Le Bras, G.
1996-02-01
Single crystals of HgBa2CuO4+δ of submillimetric sizes were grown with the same one step, low pressure, gold amalgamation technique used to obtain single crystals of HgBa2Ca2Cu3O8+δ. Remarkable superconducting properties are displayed by the samples which are optimally doped as grown. The sharpness of the transition profiles of the magnetic susceptibility, its anisotropy dependence and the volume fraction exhibiting the Meissner effect exceed the values obtained with the best crystal samples of Hg-1223. X-rays show that no substitutional defects have been found in the mercury plane, in particular no mixed occupancy of copper at the mercury site. The interstitial oxygen content at (1/2, 1/2, 0) δ = 0.066+/-0.008 is about one third that observed in optimally doped Hg-1223, resulting in an identical doping level per CuO2 plane in both compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center
Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less
1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Darolia, Ram
2003-01-01
The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.
NASA Astrophysics Data System (ADS)
Islamuddin Shah, Syed; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S.
2012-02-01
We have applied a modified Self-Learning Kinetic Monte Carlo (SLKMC) method [1] to examine the self-diffusion of small Ag and Ni islands, containing up to 10 atom, on the (111) surface of the respective metal. The pattern recognition scheme in this new SLKMC method allows occupancy of the fcc, hcp and top sites on the fcc(111) surface and employs them to identify the local neighborhood around a central atom. Molecular static calculations with semi empirical interatomic potential and reliable techniques for saddle point search revealed several new diffusion mechanisms that contribute to the diffusion of small islands. For comparison we have also evaluated the diffusion characteristics of Cu clusters on Cu(111) and compared results with previous findings [2]. Our results show a linear increase in effective energy barriers scaling almost as 0.043, 0.051 and 0.064 eV/atom for the Cu/Cu(111), Ag/Ag(111), and Ni/Ni(111) systems, respectively. For all three systems, diffusion of small islands proceeds mainly through concerted motion, although several multiple and single atom processes also contribute. [1] Oleg Trushin et al. Phys. Rev. B 72, 115401 (2005) [2] Altaf Karim et al. Phys. Rev. B 73, 165411 (2006)
Doping effects on the relaxation of frustration and magnetic properties of YMn0.9Cu0.1O3
NASA Astrophysics Data System (ADS)
Xiao, L. X.; Xia, Z. C.; Wang, X.; Ni, Y.; Yu, W.; Shi, L. R.; Jin, Z.; Xiao, G. L.
2017-12-01
The crystal structure and magnetic properties of hexagonal YMn0.9Cu0.1O3 single crystal are systematically investigated. The refinement results of XRD show the lattice constant decreases, which is unusually due to the doped Cu2+ ion has a larger ionic radius than the Mn3+ ions. The XPS results show that the coexistence of Mn2+, Mn3+ and Mn4+ ions in YMn0.9Cu0.1O3 single crystal. Magnetization measurements show that Cu doped YMn0.9Cu0.1O3 and parent YMnO3 have almost the same antiferromagnetic transition temperature TN, which indicates the AFM interaction is robust in the geometry frustrated system. Because doping directly destroy some of the Mn3+ ions nets, the relaxation of frustration of Mn in-plane 2D triangular geometry network leads to the significantly decrease of Mn3+ ions AFM interaction. In addition, the coexistence and competition between the ferromagnetic and antiferromagnetic interactions among the Mn2+, Mn3+ and Mn4+ ions lead to a complicated and irreversible magnetization behavior in YMn0.9Cu0.1O3 single crystal.
NASA Astrophysics Data System (ADS)
Mohan, A.; Singh, S.; Partzsch, S.; Zwiebler, M.; Geck, J.; Wurmehl, S.; Büchner, B.; Hess, C.
2016-08-01
Large single crystals of La8Cu7O19 have been grown using the travelling-solvent floating zone method. A rather high oxygen pressure of 9 bar in the growth chamber and a slow growth speed of 0.5 mm/h were among the most important parameters in stabilizing the growth of this incongruently melting compound. Interestingly, a novel growth scenario has been witnessed. The crystal structure of the grown La8Cu7O19 crystal has been analyzed using single crystal diffractometry to extract important structural parameters of this compound. We find that La8Cu7O19 crystallizes in a monoclinic structure with space group C 2 / c and has the lattice parameters a ≈ 13.83 Å, b ≈ 3.75 Å, c ≈ 34.59 Å, and β ≈ 99.33 °, in good agreement with the data obtained on polycrystalline samples in the literature. The magnetization shows a highly anisotropic behavior, and an anomaly at T ≈103 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnar, I. V., E-mail: chemzav@bsuir.by; Zhafar, M. A.; Kasyuk, Yu. V.
FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and (FeIn{sub 2}S{sub 4}){sub x} · (CuIn{sub 5}S{sub 8}){sub 1–x} alloy single crystals are grown by planar crystallization. It is shown that both of the initial FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and alloys on their basis crystallize with the formation of the cubic spinel structure. It is established that the unit-cell parameter a linearly varies with the composition parameter x. By means of nuclear gamma resonance spectroscopy in the transmission mode of measurements, the local states of iron ions in the alloys are studied. For the single crystals grownmore » in the study, thermal expansion is explored using the dilatometry technique, the thermal-expansion coefficients are determined, and the Debye temperature and rms (root-mean-square) dynamic displacements are calculated.« less
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.
1988-12-01
Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.
Growth of CuSO4 · 5H2O single crystals and study of some of their properties
NASA Astrophysics Data System (ADS)
Manomenova, V. L.; Stepnova, M. N.; Grebenev, V. V.; Rudneva, E. B.; Voloshin, A. E.
2013-05-01
Large single crystals of copper sulfate pentahydrate CuSO4 · 5H2O of optical quality have been grown; they can be applied as broadband UV optical filters. Their transmission spectra are measured. The crystal thermal stability is investigated and the onset temperature of dehydration is determined to be 46°C.
Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.
1989-02-01
Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.
NASA Astrophysics Data System (ADS)
Lin, Kai-Peng; Fang, Te-Hua; Lin, Ying-Jhin
2018-02-01
In this study, we investigate the mechanical properties of single-crystal copper (Cu) nanopillars. Critical deformation variations of Cu-nanopillared structures are estimated using in situ transmission electron microscopy compression tests and molecular dynamics simulations. The Young’s moduli of Cu nanopillars with diameters of 2-6 nm were 90.20-124.47 GPa. The contact stiffnesses of the Cu nanopillars with diameters of 400 and 500 nm were 1.33 and 3.86 N m-1, respectively; the Poisson’s ratios for these nanopillars were 0.32 and 0.33. The yield strength of the nanopillars varied from 0.25 GPa at 500 nm to 0.42 GPa at 400 nm; the yield strength of single-crystal Cu nanopillars decreased with increasing diameter. The values of the indented hardness of the Cu block were 0.27 and 1.06 GPa, respectively. Through experimental work and molecular dynamics simulations, we demonstrate that Cu nanopillars exhibit internal stress transmission during compression. When compression reaches the maximum strain, it can be observed that Cu slips. Our results are useful for understanding the mechanical properties, contact, and local deformation of Cu nanopillars.
Crystal growth of the quasi-one dimensional spin-magnet LiCuVO 4
NASA Astrophysics Data System (ADS)
Prokofiev, A. V.; Wichert, D.; Assmus, W.
2000-12-01
The phase relationships in the Li-Cu-V-O and Li-Cu-V-O-Cl systems were investigated and the phase diagrams determined. Based on these diagrams single crystals of the low-dimensional spin compound LiCuVO 4 with maximal dimensions up to 12×3×3 mm 3 were grown from a solution of LiCuVO 4 in a LiVO 3 or a LiVO 3-LiCl melt. The stoichiometry of the grown crystals is discussed.
Peak effect in untwinned YBa 2Cu 3O 7-δ single crystals
NASA Astrophysics Data System (ADS)
D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.
1994-12-01
We report on the observation of a weak effect of the critical current density in untwinned YBa 2Cu 3O 7-δ single crystals of different purity, using a low frequency torsion pendulum. We construct the peak effect line and the irreversibility line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina
2016-01-06
We present a novel and simple method for the preparation of a well-defined CeO 2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO 2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO 2(100) (100% Ce 4+) to c-Ce 2O 3(100) (100% Ce 3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discoverymore » of the highly stable CeO x(100) phase on a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less
Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals
Anand, V. K.; Johnston, D. C.
2015-05-07
Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less
Comparative study of the interfaces of graphene and hexagonal boron nitride with silver
NASA Astrophysics Data System (ADS)
Garnica, Manuela; Schwarz, Martin; Ducke, Jacob; He, Yuanqin; Bischoff, Felix; Barth, Johannes V.; Auwärter, Willi; Stradi, Daniele
2016-10-01
Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h -BN) and graphene sheets on silver. The resulting layers have been examined by high-resolution scanning tunneling microscopy. A comparison of the interfacial electronic band structure upon growth of the distinct two-dimensional (2D) layers has been performed by scanning tunneling spectroscopy and complementary first-principle calculations. We demonstrate that the adsorption of the 2D layers has an effect on the binding energy of the Shockley state and the surface potential by lowering the local work function. These effects are larger in the case of graphene where the surface state of Ag(111) is depopulated due to charge transfer to the graphene. Furthermore, we show that the electronic properties of the h -BN/silver system can be tuned by employing different thicknesses of silver ranging from a few monolayers on Cu(111) to the single crystal Ag substrate.
Structural Design Parameters for Germanium
NASA Technical Reports Server (NTRS)
Salem, Jon; Rogers, Richard; Baker, Eric
2017-01-01
The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.
Growth and properties of transparent conducting CuAlO2 single crystals by a flux self-removal method
NASA Astrophysics Data System (ADS)
Yoon, J. S.; Nam, Y. S.; Baek, K. S.; Park, C. W.; Ju, H. L.; Chang, S. K.
2013-03-01
We investigated the growth and properties of CuAlO2 single crystals grown by a flux self-removal method. In this method, the flux crept up the wall of an alumina crucible completely during the slow cooling process, leaving flux-free CuAlO2 crystals on the bottom of the crucible. The resulting CuAlO2 crystals had typical dimensions of 0.5-5 mm in the ab-plane and 10-300 μm along the c-axis. The crystals had a hexagonal structure with a=b=2.857(1) Å and c=16.939(2) Å. Their resistivity was anisotropic with a c-axis resistivity (ρc) about ˜17 times higher than the ab-plane resistivity (ρab). However, both ρab and ρc showed thermally activated behavior with the same activation energy of ˜0.6 eV. The CuAlO2 crystals had direct and indirect bandgaps of 3.40 eV and 2.22 eV, respectively.
Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal
NASA Astrophysics Data System (ADS)
Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.
2018-02-01
Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.
Characterization of zinc selenide single crystals
NASA Technical Reports Server (NTRS)
Gerhardt, Rosario A.
1996-01-01
ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
NASA Astrophysics Data System (ADS)
Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; D'Anna, G.; Benoit, W.
1997-08-01
Using a multiterminal contact configuration, we investigate the local variations of the resistivity drop near the vortex lattice first order phase transition in a very homogeneous Bi2Sr2CaCu2O8+δ (BSCCO) single crystal.
Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature
NASA Technical Reports Server (NTRS)
Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques
2016-01-01
CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.
NASA Astrophysics Data System (ADS)
Vincent, M.; Xolin, P.; Gevrey, A.-M.; Thiebaud, F.; Engels-Deutsch, M.; Ben Zineb, T.
2017-04-01
This paper presents an experimental and numerical study showing that single crystal shape memory alloy (SMA) Cu-based endodontic instruments can lead to equivalent mechanical performances compared to NiTi-based instruments besides their interesting biological properties. Following a previous finite element analysis (FEA) of single crystal CuAlBe endodontic instruments (Vincent et al 2015 J. Mater. Eng. Perform. 24 4128-39), prototypes with the determined geometrical parameters were machined and experimentally characterized in continuous rotation during a penetration/removal (P/R) protocol in artificial canals. The obtained mechanical responses were compared to responses of NiTi endodontic files in the same conditions. In addition, FEA was conducted and compared with the experimental results to validate the adopted modeling and to evaluate the local quantities inside the instrument as the stress state and the distribution of volume fraction of martensite. The obtained results highlight that single crystal CuAlBe SMA prototypes show equivalent mechanical responses to its NiTi homologous prototypes in the same P/R experimental conditions.
Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals
NASA Astrophysics Data System (ADS)
Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.
1993-12-01
We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.
Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao
2015-01-01
A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.
1997-08-01
The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.
Melt and metallic solution crystal growth of CuInSe 2
NASA Astrophysics Data System (ADS)
Baldus, A.; Benz, K. W.
1993-05-01
In this paper the fabrication of CuInSe 2 chalcopyrite single crystals by the vertical Bridgman technique using non-stoichiometric In 2Se 3-rich congruent composition and a novel ampoule design is describe. Furthermore the growth of CuInSe 2 crystals by the travelling heater method (THM) using an In solvent was investigated. The elemental composition of as-grown CuInSe 2 semiconducting compounds and their electrical properties are discussed and correlated with predictions made by an intrinsic chemistry model.
Gaudin; Petricek; Boucher; Taulelle; Evain
2000-12-01
The crystal structure of the third polymorph of the Cu(7)PSe(6) argyrodite compound, alpha-Cu(7)PSe(6), heptacopper phosphorus hexaselenide, is determined by means of single-crystal diffraction from twinned crystals and X-ray powder diffraction, with the help of extensive NMR measurements. In the low-temperature form, i.e. below the last phase transition, alpha-Cu(7)PSe(6) crystallizes in orthorhombic symmetry, space group Pna2(1), with a = 14.3179 (4), b = 7.1112 (2), c = 10.1023 (3) A, V = 1028.590 (9) A(3) (deduced from powder data, T = 173 K) and Z = 4. Taking into account a twinning by reticular merohedry, the refinement of the alpha-Cu(7)PSe(6) structure leads to the residual factors R = 0.0466 and wR = 0.0486 for 127 parameters and 3714 observed, independent reflections (single-crystal data, T = 173 K). A full localization of the Cu(+)d(10) element is reached with one twofold-, one threefold- and five fourfold-coordinated Cu atoms. The observation of two phase transitions for Cu(7)PSe(6), to be compared with only one for Ag(7)PSe(6), is attributed to the d(10) element stability in a low coordination environment, copper being less prone to lower coordination sites than silver, especially at low temperature.
NASA Astrophysics Data System (ADS)
Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.
2018-07-01
In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.
NASA Astrophysics Data System (ADS)
Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.
2013-10-01
Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.
NASA Astrophysics Data System (ADS)
Okabayashi, Norio; Gustafsson, Alexander; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J.
2016-04-01
Achieving a high intensity in inelastic scanning tunneling spectroscopy (IETS) is important for precise measurements. The intensity of the IETS signal can vary by up to a factor of 3 for various tips without an apparent reason accessible by scanning tunneling microscopy (STM) alone. Here, we show that combining STM and IETS with atomic force microscopy enables carbon monoxide front-atom identification, revealing that high IETS intensities for CO/Cu(111) are obtained for single-atom tips, while the intensity drops sharply for multiatom tips. Adsorption of the CO molecule on a Cu adatom [CO/Cu/Cu(111)] such that the molecule is elevated over the substrate strongly diminishes the tip dependence of IETS intensity, showing that an elevated position channels most of the tunneling current through the CO molecule even for multiatom tips, while a large fraction of the tunneling current bypasses the CO molecule in the case of CO/Cu(111).
NASA Astrophysics Data System (ADS)
Sarkar, Jit
2018-06-01
Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.
New structure type in the mixed-valent compound YbCu4Ga8.
Subbarao, Udumula; Gutmann, Matthias J; Peter, Sebastian C
2013-02-18
The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.
Effects of neutron and electron irradiation on superconducting HgBa 2CuO 4+ δ single crystals
NASA Astrophysics Data System (ADS)
Zehetmayer, M.; Eisterer, M.; Kazakov, S. M.; Karpinski, J.; Wisniewski, A.; Puzniak, R.; Daignere, A.; Weber, H. W.
2004-08-01
We report on measurements of the magnetic moment in superconducting HgBa 2CuO 4+ δ single crystals by SQUID magnetometry. Neutron and electron irradiation are employed to modify the defect structure. Both types of radiation affect the irreversible properties, but characteristic qualitative differences occur, which will be discussed.
Large single crystal quaternary alloys of IB-IIIA-Se/sub 2/ and methods of synthesizing the same
Ciszek, T.F.
1986-07-15
New alloys of Cu/sub x/Ag/sub (1-x)/InSe/sub 2/ (where x ranges between 0 and 1 and preferably has a value of about 0.75) and CuIn/sub y/Ga/sub (1-y)/Se/sub 2/ (where y ranges between 0 and 1 and preferably has a value of about 0.90) in the form of single crystals with enhanced structure perfection, which crystals are substantially free of fissures, are disclosed. Processes are disclosed for preparing the new alloys of Cu/sub x/Ag/sub (1-x)/InSe/sub 2/. The process includes placing stoichiometric quantities of a Cu, Ag, In, and Se reaction mixture or stoichiometric quantities of a Cu, In, Ga, and Se reaction mixture in a refractory crucible in such a manner that the reaction mixture is surrounded by B/sub 2/O/sub 3/, placing the thus loaded crucible in a chamber under a high pressure atmosphere of inert gas to confine the volatile Se to the crucible, and heating the reaction mixture to its melting point. The melt can then be cooled slowly to form, by direct solidification, a single crystal with enhanced structure perfection, which crystal is substantially free of fissures.
Large single crystal quaternary alloys of IB-IIIA-SE.sub.2 and methods of synthesizing the same
Ciszek, Theodore F.
1988-01-01
New alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2 (where x ranges between 0 and 1 and preferably has a value of about 0.75) and CuIn.sub.y Ga.sub.(1-y) Se.sub.2 (where y ranges between 0 and 1 and preferably has a value of about 0.90) in the form of single crystals with enhanced structure perfection, which crystals are substantially free of fissures are disclosed. Processes are disclosed for preparing the new alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2. The process includes placing stoichiometric quantities of a Cu, Ag, In, and Se reaction mixture or stoichiometric quantities of a Cu, In, Ga, and Se reaction mixture in a refractory crucible in such a manner that the reaction mixture is surrounded by B.sub.2 O.sub.3, placing the thus loaded crucible in a chamber under a high pressure atmosphere of inert gas to confine the volatile Se to the crucible, and heating the reaction mixture to its melting point. The melt can then be cooled slowly to form, by direct solidification, a single crystal with enhanced structure perfection, which crystal is substantially free of fissures.
Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10
NASA Astrophysics Data System (ADS)
Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.
1989-06-01
We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...
2018-02-05
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver
NASA Astrophysics Data System (ADS)
Gutzler, Rico; Cardenas, Luis; Lipton-Duffin, Josh; El Garah, Mohamed; Dinca, Laurentiu E.; Szakacs, Csaba E.; Fu, Chaoying; Gallagher, Mark; Vondráček, Martin; Rybachuk, Maksym; Perepichka, Dmitrii F.; Rosei, Federico
2014-02-01
We report the synthesis of extended two-dimensional organic networks on Cu(111), Ag(111), Cu(110), and Ag(110) from thiophene-based molecules. A combination of scanning tunnelling microscopy and X-ray photoemission spectroscopy yields insight into the reaction pathways from single molecules towards the formation of two-dimensional organometallic and polymeric structures via Ullmann reaction dehalogenation and C-C coupling. The thermal stability of the molecular networks is probed by annealing at elevated temperatures of up to 500 °C. On Cu(111) only organometallic structures are formed, while on Ag(111) both organometallic and covalent polymeric networks were found to coexist. The ratio between organometallic and covalent bonds could be controlled by means of the annealing temperature. The thiophene moieties start degrading at 200 °C on the copper surface, whereas on silver the degradation process becomes significant only at 400 °C. Our work reveals how the interplay of a specific surface type and temperature steers the formation of organometallic and polymeric networks and describes how these factors influence the structural integrity of two-dimensional organic networks.We report the synthesis of extended two-dimensional organic networks on Cu(111), Ag(111), Cu(110), and Ag(110) from thiophene-based molecules. A combination of scanning tunnelling microscopy and X-ray photoemission spectroscopy yields insight into the reaction pathways from single molecules towards the formation of two-dimensional organometallic and polymeric structures via Ullmann reaction dehalogenation and C-C coupling. The thermal stability of the molecular networks is probed by annealing at elevated temperatures of up to 500 °C. On Cu(111) only organometallic structures are formed, while on Ag(111) both organometallic and covalent polymeric networks were found to coexist. The ratio between organometallic and covalent bonds could be controlled by means of the annealing temperature. The thiophene moieties start degrading at 200 °C on the copper surface, whereas on silver the degradation process becomes significant only at 400 °C. Our work reveals how the interplay of a specific surface type and temperature steers the formation of organometallic and polymeric networks and describes how these factors influence the structural integrity of two-dimensional organic networks. Electronic supplementary information (ESI) available: Additional STM data and DFT results. See DOI: 10.1039/c3nr05710k
Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.
Su, Dawei; Dou, Shixue; Wang, Guoxiu
2014-08-29
Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.
Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry
Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; ...
2014-10-07
The structure of a nanospheric polyhydrido copper cluster, [Cu 20(H) 11{S 2P(O iPr) 2} 9], was determined by single-crystal neutron diffraction. Cu 20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu 2H 5} 3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ 3-hydrides in pyramidal geometry, two μ 4-hydrides in tetrahedral cavity, and three μ 4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal ofmore » the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less
Diffusion of CO2 in Large Crystals of Cu-BTC MOF.
Tovar, Trenton M; Zhao, Junjie; Nunn, William T; Barton, Heather F; Peterson, Gregory W; Parsons, Gregory N; LeVan, M Douglas
2016-09-14
Carbon dioxide adsorption in metal-organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize millimeter-scale Cu-BTC single crystals using concentrated reactants and an acetic acid modulator. Microscopic images, X-ray diffraction patterns, Brunauer-Emmett-Teller surface areas, and thermogravimetric analysis results all confirm the high quality of these Cu-BTC single crystals. The large crystal size aids in the accurate measurement of micropore diffusion coefficients. Concentration-swing frequency response performed at varying gas-phase concentrations gives diffusion coefficients that show very little dependence on the loading up to pressures of 0.1 bar. The measured micropore diffusion coefficient for CO2 in Cu-BTC is 1.7 × 10(-9) m(2)/s.
NASA Astrophysics Data System (ADS)
PrabhuKantan, A.; Velavan, K.; Venkatesan, R.; Sambasiva Rao, P.
2003-05-01
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II)-doped magnesium potassium phosphate hexahydrate have been carried out at room temperature. The temperature dependence of g and A values has been obtained for the polycrystalline sample and the ground state is unambiguously identified. These results indicate the existence of a dynamic Jahn-Teller distortion for Cu(II) ion. The g and A tensor direction cosines are evaluated and compared with Mg-O directions, which confirms that Cu(II) enters substitutionally in the lattice.
EPR spectra of Cu(2+) in KH(2)PO(4) single crystals.
Biyik, Recep; Tapramaz, Recep
2008-01-01
Cu(2+) doped single crystals of KH(2)PO(4) were investigated using EPR technique at room temperature. The spectra of the complex contains large number of overlapping lines. Five sites are resolved and four of them are compatible with the tetragonal symmetry, and the fifth one belongs to an interstitial site. The results are discussed and compared with previous studies. Detailed investigation of the EPR spectra indicate that Cu(2+) substitute with K(+) ions. The principal values of the g and hyperfine tensors and the ground state wave function of Cu(2+) ions are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Gihun, E-mail: G.Ryu@fkf.mpg.de; Son, Kwanghyo
A defect-free high quality single crystal of spin dimer TlCuCl{sub 3} compound is firstly synthesized at the optimal growth temperature using the vertical Bridgman method. In this study, we clearly found that the cupric chloride is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C. The Cl{sup −}- related gas phase at the high temperature region also always gives rise to a pinhole-like surface defect at the surface of crystal. Therefore, we clearly verified an exotic anisotropic magnetic behavior (anisotropic ratio of M{sub b}/M{sub (201)} at 2 K, 7 T=10) using the defect-free TlCuCl{sub 3} crystals in thismore » three-dimensional spin dimer TlCuCl{sub 3} compound, relatively stronger magnetic ordering in the H//b than that of H//(201) direction at above the transition magnetic field. - Graphical abstract: A single crystal of spin dimer TlCuCl{sub 3} compound with a defect free is successfully synthesized on the basis of TG/DTA result. We newly found that this cupric chloride compound is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C and Cl{sup −} related gas phases also give rise to the defects like a pinhole on the surface of TlCuCl{sub 3} crystal. Using the crystals with a surface defect free, we also clearly verified the crystal structure of spin dimer TlCuCl{sub 3} compound.« less
Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.
2007-07-01
The authors present dielectric measurements of the colossal dielectric constant material CaCu3Ti4O12 extending up to 1.3GHz also covering so far only rarely investigated single-crystalline samples. Special emphasis is put on the second relaxation reported in several works on polycrystals, which the authors detect also in single crystals. For polycrystalline samples, the authors provide a recipe to achieve values of the dielectric constant as high as in single crystals.
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Xiong, Ke; Wan, Weiming; Chen, Jingguang G.
2016-02-23
Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111)more » through an η 2(C,O) configuration which led to the HDO of furfural on Ni/Cu(111). Lastly, the ability to dissociate H 2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).« less
NASA Astrophysics Data System (ADS)
Xiong, Ke; Wan, Weiming; Chen, Jingguang G.
2016-10-01
Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).
NASA Astrophysics Data System (ADS)
Zhang, R.; Makarenko, B.; Bahrim, B.; Rabalais, J. W.
2010-07-01
Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.
Temperature effects on the atomic structure and kinetics in single crystal electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gründer, Yvonne; Markovic, Nenad M.; Thompson, Paul
2015-01-01
The influence of temperature on the atomic structure at the electrochemical interface has been studied using in-situ surface x-ray scattering (SXS) during the formation of metal monolayers on a Au(111) electrode. For the surface reconstruction of Au(111), higher temperatures increase the mobility of surface atoms in the unreconstructed phase which then determines the surface ordering during the formation of the reconstruction. For the underpotential deposition (UPD) systems, the surface diffusion of the depositing metal adatoms is significantly reduced at low temperatures which results in the frustration of ordered structures in the case of Cu UPD, occurring on a Br-modified surface,more » and in the formation of a disordered Ag monolayer during Ag UPD. The results indicate that temperature changes affect the mass transport and diffusion of metal adatoms on the electrode surface. This demonstrates the importance of including temperature as a variable in studying surface structure and reactions at the electrochemical interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin
2016-03-25
Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less
Morphology of growth of Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Wolf, Th.; Berger, H.; Benoit, W.
1996-12-01
A good correlation of twins on the basal surface of flux-grown Bi2Sr2CaCu2Ox (BSCCO) single crystals with surface. growth steps is observed, the b-axis being perpendicular to the steps and, thus, parallel to the growth direction. It is found that mono-twin BSCCO single crystals produced by the travelling solvent floating zone method also grow preferentially along b, i.e. nearly perpendicularly to the boule axis, contrary to the common belief. This new understanding of the morphology of growth explains the nature of major defects in these crystals, which considerably change their measured superconducting properties, in a different way.
Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, P.; Kassavetis, S.; Tsoutsou, D.
Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheela, K. Juliet; Subramanian, P., E-mail: psubramaniangri@gmail.com; Krishnan, S. Radha
2016-05-23
EPR study of Cu{sup 2+} doped NLO active Lithium Sulphate monohydrate (Li{sub 2}SO{sub 4.}H{sub 2}O) single crystals were grown successfully by slow evaporation method at room temperature. The principal values of g and A tensors indicate existence of orthorhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of g and A tensors, the locations of Cu{sup 2+} in the lattice have been identified as interstitial site. Optical absorption confirms the rhombic symmetry and ground state wave function of the Cu{sup 2+} ion in a lattice as d{sub x2-y2}.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren
2017-10-01
Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.
Theoretical study of magnetic layers of nickel on copper; dead or alive?
NASA Astrophysics Data System (ADS)
Ernst, A.; Lueders, M.; Temmerman, W. M.; Szotek, Z.; van der Laan, G.
2000-07-01
We studied the persistence of magnetism in ultrathin nickel films on copper. Layer-dependent magnetic moments in Ni films on the (001), (110) and (111) surfaces of Cu have been calculated using the Korringa-Kohn-Rostoker Green's function method. The results show that, at temperature T = 0, a single nickel monolayer is ferromagnetic on Cu(001) and Cu(110) but magnetically `dead' on the more closely packed Cu(111) surface. Films of two and more layers of Ni are always ferromagnetic, with the magnetic moment enhanced in the surface layer but strongly reduced in the interface layer. Due to the short screening length, both the effect of the interface and that of the surface are confined to only a few atomic layers.
Choubrac, L; Lafond, A; Guillot-Deudon, C; Moëlo, Y; Jobic, S
2012-03-19
Here we present for the very first time a single-crystal investigation of the Cu-poor Zn-rich derivative of Cu(2)ZnSnS(4). Nowadays, this composition is considered as the one that delivers the best photovoltaic performances in the specific domain of Cu(2)ZnSnS(4)-based thin-film solar cells. The existence of this nonstoichiometric phase is definitely demonstrated here in an explicit and unequivocal manner on the basis of powder and single-crystal X-ray diffraction analyses coupled with electron microprobe analyses. Crystals are tetragonal, space group I ̅4, Z = 2, with a = 5.43440(15) Å and c = 10.8382(6) Å for Cu(2)ZnSnS(4) and a = 5.43006(5) Å and c = 10.8222(2) Å for Cu(1.71)Zn(1.18)Sn(0.99)S(4). © 2012 American Chemical Society
Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing
Shang, Yang
2015-01-01
Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909
Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.
Shang, Yang; Guo, Lin
2015-10-01
Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.
Crystal growth of argyrodite-type phases Cu 8-xGeS 6-xI x and Cu 8-xGeSe 6-xI x (0⩽ x⩽0.8)
NASA Astrophysics Data System (ADS)
Tomm, Yvonne; Schorr, Susan; Fiechter, Sebastian
2008-04-01
The growth of single crystalline argyrodites of type Cu 8-xGeX 6-xY x ( X=S, Se; Y=I) is reported. These materials undergo solid-solid phase transitions at temperatures ranging from 30 to 90 °C. In the high temperature phase, Cu 8GeS 6 crystallizes in the cubic space group F4¯3m. In the low temperature phase, the compound is present in the orthorhombic space group Pmn2 1. Cu 8GeSe 6 appears exclusively in the hexagonal space groups P6 3mc or P6 3cm, respectively. Single crystals of these argyrodites were obtained by chemical vapor transport in a temperature gradient Δ T=980-950 and Δ T=700-620 °C for sulfides and selenides, respectively. As a result of the growth process, the high temperature phase remains stable even at ambient temperature by incorporation of the transport agent iodine during the growth process. As determined by energy dispersive X-ray analysis (EDAX), the composition of the sulfide crystals grown ranges from Cu 8GeS 6 to Cu 7.16GeS 5.16I 0.84. The selenide crystallizes as Cu 7.69GeSe 5.69I 0.31. In contrast, the solid state reaction of the elements Cu, Ge and X produces a material in the low temperature modification with an ideal composition of Cu 8GeX 6.
Investigation of thin film solar cells based on Cu2S and ternary compounds such as CuInS2
NASA Technical Reports Server (NTRS)
Loferski, J. J.
1975-01-01
Production and characterization in thin film form of Cu2S and related Cu compounds such as CuInS2 for photovoltaic cells are examined. The low cost process technology being reported, namely the sulfurization method, is capable of producing films on various substrates. Cathodoluminescence is being used as a diagnostic tool to identify Cu(x)S and CuInS2 compounds. Also, single crystals of CuInS2 are being prepared and it is contemplated that p-n junctions will be made in such crystals.
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.
Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D
2017-05-23
The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barahona, P., E-mail: pbaraho@ucm.cl; Galdámez, A., E-mail: agaldamez@uchile.cl; López-Vergara, F.
CuTi{sub 2−x}M{sub x}S{sub 4} (M=Fe, Mn, Co; x=0.3, 0.5) and CuCr{sub 2−x}Ti{sub x}Se{sub 4} (x=0.3, 0.5, 0.7) chalcospinels were synthesized by conventional solid-state reactions. Their crystal structures were determined by single-crystal X-ray diffraction. All of the phases crystallized in cubic spinel-type structures (space group, Fd3{sup ¯}m). For all of the chalcospinel compounds, the edge-length distortion parameter (ELD) indicated that the most distorted polyhedron was Q[(Ti,M){sub 3}Cu], which displayed an ∼8% distortion from an ideal tetrahedron structure (Q=S or Se). The Mn-based thiospinel CuMn{sub 0.3}Ti{sub 1.7}S{sub 4} is paramagnetic, whereas the Fe-based thiospinels (CuTi{sub 2−x}Fe{sub x}S{sub 4}; x=0.3 and 0.7) aremore » strongly antiferromagnetic due to their spin-glass states. The magnetic susceptibility measurements indicated ferromagnetic behavior for the selenospinels (CuCr{sub 2−x}Ti{sub x}Se{sub 4}; x=0.3, 0.5 and 0.7). - Graphical abstract: View along [1 0 0] of CuCr{sub 2−x}Ti{sub x}Se{sub 4} crystal structure showing tetrahedral and octahedral units. To the right, experimental X-ray powder diffraction pattern of CuCr{sub 1.7}Ti{sub 0.3}Se{sub 4} (top) in compared (in a like-mirror representation) to a simulated X-ray pattern from single-crystal data (bottom). - Highlights: • Chalcogenides belong to the family of compounds spinel-type. • Resolved single crystals of the solid solutions have space group Fd-3m. • The distortion of the tetrahedral and octahedral volume were calculated. • These solid solutions shows a ferromagnetic or spin-glass behavior.« less
NASA Astrophysics Data System (ADS)
Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth
2017-01-01
A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.
Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces
NASA Astrophysics Data System (ADS)
Winkelmann, Aimo; Akin Ünal, A.; Tusche, Christian; Ellguth, Martin; Chiang, Cheng-Tien; Kirschner, Jürgen
2012-08-01
Using a specifically tailored experimental approach, we revisit the exemplary effect of photoemission from quasi-free electronic states in crystals. Applying a momentum microscope, we measure photoelectron momentum patterns emitted into the complete half-space above the sample after excitation from a linearly polarized laser light source. By the application of a fully three-dimensional (3D) geometrical model of direct optical transitions, we explain the characteristic intensity distributions that are formed by the photoelectrons in k-space under the combination of energy conservation and crystal momentum conservation in the 3D bulk as well as at the two-dimensional (2D) surface. For bismuth surface alloys on Cu(111), the energy-resolved photoelectron momentum patterns allow us to identify specific emission processes in which bulk excited electrons are subsequently diffracted by an atomic 2D surface grating. The polarization dependence of the observed intensity features in momentum space is explained based on the different relative orientations of characteristic reciprocal space directions with respect to the electric field vector of the incident light.
Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si
NASA Technical Reports Server (NTRS)
Manasevit, H. M.; Gergis, I. S.; Jones, A. B.
1982-01-01
Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.
Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries
Su, Dawei; Dou, Shixue; Wang, Guoxiu
2014-01-01
Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}. PMID:25169737
NASA Astrophysics Data System (ADS)
Nagaoka, Akira; Masuda, Taizo; Yasui, Shintaro; Taniyama, Tomoyasu; Nose, Yoshitaro
2018-05-01
We investigated the thermoelectric properties of high-quality p-type Cu2ZnSnS4 single crystals. This material showed two advantages: low thermal conductivity because of lattice scattering caused by the easily formed Cu/Zn disordered structure, and high conductivity because of high doping from changes to the composition. All samples showed a thermal conductivity of 3.0 W m‑1 K‑1 at 300 K, and the Cu-poor sample showed a conductivity of 7.5 S/cm at 300 K because of the high density of shallow-acceptor Cu vacancies. The figure of merit of the Cu-poor Cu2ZnSnS4 reached 0.2 at 400 K, which is 1.4–45 times higher than those of related compounds.
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2002-01-01
Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.
Intermediate phases in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals
NASA Astrophysics Data System (ADS)
Kamzina, L. S.
2017-09-01
Phase transformations in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals have been studied using dielectric and optical measurements before and after applying an electric field. It is shown that the subsequence of phase transitions rhombohedral ( R)—tetragonal ( T)—cubic ( C) phases is observed in nonpolarized samples of both orientations as temperature increases. In the [111]-oriented crystal, an additional intermediate monoclinic phase (it is possible, M a ) is induced after preliminary polarization at room temperature and the R- M a - T- C phase transitions are observed on heating. In the [001]-oriented crystal, after its polarization, the monoclinic phase forms instead of the rhombohedral phase even at room temperature and the M a - T- C transitions occur on heating. The results are discussed from the point of view of the existence polar nanoregions with different local symmetries in a glasslike matrix.
Monte Carlo Study of the Fish-like Patterns of Anthracenes on Cu(111)
NASA Astrophysics Data System (ADS)
Kim, Kwangmoo; Einstein, T. L.; Sun, Dezheng; Kim, Dae-Ho; Bartels, Ludwig
2011-03-01
Using Monte Carlo calculations of the two-dimensional triangular lattice with a 2-component 3-state Potts model, we demonstrate a mechanism for the spontaneous formation of fish-like patterns of anthracene (AC) molecules on Cu(111) by sputtering and annealing, then cooling to ~ 80 K. The two components are an AC on a hollow site and another on a bridge site of Cu(111). The liquid crystal model with two separate parts, positional and orientational, only explains a part of the fish-like pattern, not the whole regular pattern. Our model fixes the positional order of AC's into the triangular lattice and the orientational order into three angles as observed in the experiments. The variation of the coverages of AC's is reflected in the change of the ratio of two components in our model. We also try to understand the compression of AC's with the introduction of Gaussian dispersion of AC's about their triangular lattice sites. Supported primarily by NSF Grants CHE 07-50334 with a secondary support from NSF-MRSEC at the University of Maryland, DMR05-20471. Work at UCR supported primarily by NSF CHE 07-49949.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guiqin; Gao, Xiaoze; Li, Jinfu
2015-01-07
Molecular dynamics simulations based on an angular-dependent potential were performed to examine the structural properties of chemically heterogeneous interfaces between amorphous Cu{sub 50}Ta{sub 50} and crystalline Ta. Several phenomena, namely, layering, crystallization, intermixing, and composition segregation, were observed in the Cu{sub 50}Ta{sub 50} region adjacent to the Ta layers. These interfacial behaviors are found to depend on the orientation of the underlying Ta substrate: Layering induced by Ta(110) extends the farthest into Cu{sub 50}Ta{sub 50}, crystallization in the Cu{sub 50}Ta{sub 50} region is most significant for interface against Ta(100), while inter-diffusion is most pronounced for Ta(111). It turns out thatmore » the induced layering behavior is dominated by the interlayer distances of the underlying Ta layers, while the degree of inter-diffusion is governed by the openness of the Ta crystalline layers. In addition, composition segregations are observed in all interface models, corresponding to the immiscible nature of the Cu-Ta system. Furthermore, Voronoi polyhedra 〈0,5,2,6〉 and 〈0,4,4,6〉 are found to be abundant in the vicinity of the interfaces for all models, whose presence is believed to facilitate the structural transition between amorphous and body centered cubic.« less
NASA Astrophysics Data System (ADS)
Tong, Ruizhan; Ren, Xiaoyu; Li, Zuoxi; Liu, Bin; Hu, Huaiming; Xue, Ganglin; Fu, Feng; Wang, Jiwu
2010-09-01
A novel inorganic-organic hybrid compound based on mixed-valence Wells-Dawson arsenotungstate and mixed-ligand Cu(I) units, Cu 8I(imi) 4(bpy) 6(H 2O)[As 2VW 2VW 16VlO 62]·2H 2O ( 1) (bpy=4,4'-bipydine; imi=imidazole), has been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, luminescent spectrum and single crystal X-ray diffraction. Single-crystal X-ray diffraction revealed that four terminal and three bridging oxygen atoms of the Wells-Dawson cluster are coordinated to Cu(I) ions and form an unprecedented hepta-supporting polyoxometalate. The functionalized arsenotungstates are further connected by two kinds of tridentate linkers, Imi-Cu-(bpy)-Cu-(bpy)-Cu-(bpy)-Cu-Imi and Imi-Cu-(bpy)-Cu-(bpy)-Cu-H 2O, to construct a 3D framework with 4 6·6 4 topology. The hybrid material has an intense emission at about 397 nm.
NASA Astrophysics Data System (ADS)
Yurgens, A.; You, L. X.; Torstensson, M.; Winkler, D.
2007-09-01
We describe experiments which are only possible through an ultimate control of sample shape and dimensions down to nanometer scale whereby transport measurements can be done in various restricted geometries. We use photolithography patterning together with a flip-chip technique to isolate very thin (d ∼ 100 nm) pieces of Bi2Sr2CaCu2O8+δ (BSCCO) single crystals. Ar-ion milling allows us to further thin these crystals down to a few nanometers in a controlled way. With decreasing thickness below two to three unit cells, the superconducting transition temperature gradually decreases to zero and the in-plane resistivity increases to large values indicating the existence of a superconductor-insulator transition in these ultrathin single crystals. In a refined technique, a precise control of the etching depth from both sides of the crystal makes it possible to form stacks of intrinsic Josephson junctions (IJJs) inside the ultrathin single crystals. The stacks can be tailor-made to any microscopic height (0-9 nm < d), i.e. enclosing a specific number of IJJs (0-6). In certain geometries, by feeding current into the topmost Cu2O4-layer of a mesa on the surface of a BSCCO single crystal, we measured the critical value of this current by detecting a sharp upturn or break in the current-voltage characteristics. From this, we estimate the sheet critical current density of a single Cu2O4 plane to be ∼0.3-0.7 A/cm at 4.5 K, corresponding to a bulk current density of ∼2-5 MA/cm2. These values are among the largest ever reported for BSCCO single crystals, thin-films and tapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Piskunov, Yu. V.; Gerashchenko, A. P.
A comprehensive NMR study of the magnetic properties of single crystal LiCu{sub 2}O{sub 2} (LCO) and NaCu{sub 2}O{sub 2} (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for {sup 63,65}Cu, {sup 7}Li, and {sup 23}Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.
NASA Astrophysics Data System (ADS)
Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.
1990-09-01
We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0< x<0.2) from Cu 2O flux. Free separated crystals with maximum size of 5x8x0.15 nm 3 have been obtained. Magnetic AC susceptibility measurements show a sharp superconducting transition at temperatures up to 23 K. The temperature dependence of the lattice parameters has been measured by means of X-ray powder diffraction between 10 K ( a=3.9413(3) Å, c=12.0290(18) Å) and 290 K ( a=3.9482(3) Å, c=12.0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.
Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans
2014-12-01
The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.
Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A
2006-07-01
A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.
Grancha, Thais; Ferrando-Soria, Jesús; Zhou, Hong-Cai; Gascon, Jorge; Seoane, Beatriz; Pasán, Jorge; Fabelo, Oscar; Julve, Miguel; Pardo, Emilio
2015-05-26
A single crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal-organic framework (MOF) of formula Mg(II) 2 {Mg(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅45 H2 O (1; Me3 mpba(4-) =N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)). After complete replacement of the Mg(II) ions within the coordination network and those hosted in the channels by either Co(II) or Ni(II) ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 (II) {Co(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅56 H2 O (2) and Ni2 (II) {Ni(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅ 54 H2 O (3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav; Antipov, Sergey; Butler, James E.
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less
Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey
2016-09-01
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.
Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; ...
2016-08-10
Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less
Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy
NASA Technical Reports Server (NTRS)
Garg, A.; Noebe, R. D.; Darolia, R.
1996-01-01
Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.
An effect of couterion in STM imaging process of DNA on Cu(111)
NASA Astrophysics Data System (ADS)
Furukawa, Masashi; Nishimura, Makoto; Tanaka, Hiroyuki; Kawai, Tomoji
2002-03-01
In order to elucidate electrical conduction mechanism of DNA, which is still under debate over the last decade, we have performed local electronic structure measurement of single- and double-stranded DNA molecules adsorbed onto Cu(111) surfaces using scanning tunneling microscope (STM). Bias-voltage-dependent STM images (from -5 V to +5 V) have shown that the molecular corrugation height in STM increases gradually at positive bias voltage region (empty state). Despite the theoretical assumption in which their 1st-LUMO states are localized at π plane of DNA bases, one cannot conclude its origin as the existence of their LUMO states, based on the results of relevant control measurements, DNA base molecules/Cu(111) [1] and NaCl/Cu(111). In fact, we found almost identical bias dependencies in the latter case (NaCl/Cu(111)), indicating that the feature of π* states of DNA bases should be buried in an additional channel that opens up by the onset of its unoccupied overlayer state in the tunneling process [2]. This study implies a potential difficulty in direct comparison of the obtained data with those characterized by XAS, in which π* states is located at ca. -1 eV relative to the Fermi level [3]. [1]M. Furukawa et al., submitted to Surf. Sci. [2] J. Kliewer et al., Surf. Sci. 477 (2001) 250.; A. Carlsson et al., Phys. Rev. B. 56 (1997) 1593. [3] M. Furukawa et al., submitted to Phys. Rev. B.
Thermodynamic investigations on the growth of CuAlO2 delafossite crystals
NASA Astrophysics Data System (ADS)
Wolff, Nora; Klimm, Detlef; Siche, Dietmar
2018-02-01
Simultaneous differential thermal analysis (DTA) and thermogravimetric (TG) measurements with copper oxide/aluminum oxide mixtures were performed in atmospheres with varying oxygen partial pressures and with crucibles made of different materials. Only sapphire and platinum crucibles proved to be stable under conditions that are useful for the growth of CuAlO2 delafossite single crystals. Then the ternary phase diagram Al2O3-CuO-Cu and its isopleth section Cu2O-Al2O3 were redetermined. Millimeter sized crystals could be obtained from copper oxide melts with 1-2 mol% addition of aluminum oxide that are stable in platinum crucibles held in oxidizing atmosphere containing 15-21% oxygen.
Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles
NASA Astrophysics Data System (ADS)
Sai, Cong Doanh; Ngac, An Bang
2018-03-01
Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.
Influence of nano-size inclusions on spall fracture of copper single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razorenov, S. V.; Ivanchihina, G. E.; Kanel, G. I.
2007-12-12
Spall experiments have been carried out for copper in different structural states. The samples were copper single crystals, crystals of Cu+0.1% Si, copper crystals with silica particles of 180 nm average size, and polycrystalline copper. In experiments, the free surface velocity histories were recorded with the VISAR. The recovered samples were studied using optical microscopy and SEM. Solid solution Cu+0.1% Si demonstrates slower spall process than pure copper crystals. At longer pulse durations its spall strength is slightly less than that of pure crystals but approaches the latter with decreasing pulse duration. Fracture of copper with silica inclusions is completedmore » much faster. The spall strength of this material is close to that of Cu+0.1% Si crystals at longer pulse duration and approaches the strength of polycrystalline copper with decreasing the load duration. Fractography of the spall surfaces correlates with the free surface velocity histories. The main fracture surface of the Cu+0.1% Si grains consists of net of dimples {approx}4 {mu}m to 40 {mu}m mean diameter. The fracture surfaces of copper with silica inclusions is covered by a net of dimples of 1 {mu}m to 5 {mu}m size.« less
NASA Astrophysics Data System (ADS)
Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.
2013-03-01
In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.
Prasanyaa, T; Jayaramakrishnan, V; Haris, M
2013-03-01
In this paper, we report the successful growth of pure, Cu(2+) ions and Cd(2+) ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu(2+) and Cd(2+) ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd(2+) and Cu(2+) doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Benson, Yerima; de, Dilip
In this paper we report the first EPR observation and theoretical explanation of orthorhombic Jahn-Teller effect in Cu(II) doped single crystal of ferroelectric cadmium ammonium sulphate: Cu(II):Cd2(NH4)2 (SO4)3 . The isotropic EPR spectra of the 2D ion (in regular octahedral symmetry) at higher temperature becomes anisotropic at low temperature with clear manifestation of orthorhombic g and hyperfine tensors at 15 K. The static Jahn-Teller(JT) effect can only be explained theoretically by assuming the three JT potential wells energetically inequivalent, unlike the potential wells in most of the Cu(II) doped crystalline materials where JT effect manifests. The measured splitting of the JT potential wells in this ferroelectric crystal fall in the sub millimeter wave region pointing to possible application of the material.
Two-step transition towards the reversibility region in Bi2Sr2CaCu2O8-δ single crystals
NASA Astrophysics Data System (ADS)
Pastoriza, H.; de La Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1992-10-01
We have performed magnetization measurements on Bi2Sr2CaCu2O8-δ single crystals in the c^ crystallographic direction for fields from 2 Oe up to 700 Oe. The results strongly suggest that the reversible thermodynamic region is achieved after the vortex flux structure shows an abrupt transition at a temperature lower than that determined by the irreversibility line.
NASA Astrophysics Data System (ADS)
Nam, Y. S.; Yoon, J. S.; Ju, H. L.; Chang, S. K.; Baek, K. S.
2014-10-01
The temperature-dependent behavior of p-type transparent semiconducting oxide CuAlO2 single crystals prepared by using a flux self-removal method in alumina crucibles was investigated through transmittance and photoluminescence (PL) measurements at temperatures from 12 K to room temperature. The low-temperature (12 K) PL spectrum shows two weak, broad emission peaks, one at 3.52 eV and the other at 3.08 eV, which we assign to excitonic emission and to defectrelated emission originating from copper vacancies. The positions of the PL peaks as functions of temperature exhibit a normal behavior satisfying the standard Varshini law, and the Debye temperature is found to be θ D = 610 ± 80 K. The exciton-binding energy of the CuAlO2 single crystal is estimated to be 49 meV from the PL intensity change with temperature.
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
NASA Astrophysics Data System (ADS)
Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun
2018-03-01
A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).
Subbarao, Udumula; Peter, Sebastian C
2012-06-04
High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.
Adsorbate-driven morphological changes on Cu(111) nano-pits
Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; ...
2014-12-09
Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar + sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm -1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm -1 for CO adsorbedmore » on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less
Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4
NASA Astrophysics Data System (ADS)
Vijayalakshmi, V.; Dhanasekaran, P.
2018-05-01
In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-28
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-01
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Pinning-to-barrier crossover in YBa2Cu3O7-δ single crystals
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Holtzberg, F.; Benoit, W.
1996-03-01
The behaviour of magnetic flux in high purity untwinned YBa2Cu3O7-δ (YBCO) single crystals is visualised by means of the magneto-optical technique. It is observed that after zero field-cooling at high temperatures near T c , flux penetrates directly to the sample center over a flux free edge area, in contrast to the usual Bean-like flux penetration from the edges. This fact clearly shows that volume pinning becomes negligible compared with the edge barrier. The role of the recently rediscovered geometrical barrier in the crystal magnetisation is discussed.
Srinivasan, Bikshandarkoil R; Dhuri, Sunder N; Nadkarni, V S
2014-01-03
We argue that (trans)-4-chloro-4'-nitrostilbene is not a new organic nonlinear optical material as claimed by Dinakaran and Kalainathan [P.M. Dinakaran, S. Kalainathan, Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-Chloro 4-Nitrostilbene (CONS): a potential NLO material, Spectrochim. Acta A 111 (2013) 123-130], but instead a well-known compound whose synthesis, spectral data, single crystal structure and second harmonic generation (SHG) efficiency are well documented in the literature. The title paper is completely erroneous. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of a Single-Crystal Fifth-Generation Nickel Superalloy
NASA Astrophysics Data System (ADS)
Petrushin, N. V.; Elyutin, E. S.; Visik, E. M.; Golynets, S. A.
2017-11-01
The chemical and phase compositions of a rhenium-ruthenium-containing fifth-generation VZhM8 nickel superalloy, which is intended for single-crystal turbine blades of an aviation engine, are calculated using computer simulation. VZhM8 alloy <001>, <011>, and <111> single crystals are fabricated. The microstructure, the γ/γ' misfit, the segregation coefficients of alloying elements, the dissolution temperature of the γ' phase, and the solidus and liquidus temperatures of the VZhM8 alloy single crystals in the as-cast state and after heat treatment are studied. The temperature-time dependences of the static elastic modulus, the short-term mechanical properties, and the long-term strength of the alloy single crystals are determined
Strain localization in <111> single crystals of Hadfield steel under compressive load
NASA Astrophysics Data System (ADS)
Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.
2010-07-01
A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.
Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wei, Hongling; Chen, Zhengwei; Wu, Zhenping; Cui, Wei; Huang, Yuanqi; Tang, Weihua
2017-11-01
Ga2O3 with a wide bandgap of ˜ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It's also demonstrated that the CuGa2O4 film has a bandgap of ˜ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.
NASA Astrophysics Data System (ADS)
Sheela, K. Juliet; Subbulakshmi, N.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated on Cu2+ ion incorporated into the single crystals of potassium succinate-succinic acid (KSSA) at room temperature. Two magnetically in-equivalent Cu2+ sites in the lattice are identified, among them site I has been reported. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The co-ordination of the Cu2+ ion in this molecule is a distorted dodecahedron. From the calculated gxx, gyy, gzz and Axx, Ayy, Azz and their directional cosines values, location of site I impurity ion Cu2+ could be identified as a substituitional one. Also the ground state wave function of the impurity ion was found to be d2z.
Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal
NASA Astrophysics Data System (ADS)
Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng
2015-03-01
A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.
NASA Astrophysics Data System (ADS)
Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang
2017-07-01
Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of Csbnd H/Csbnd C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H2 dissociation and Csbnd H/Csbnd C bond broken processes, and a good catalyst should be the one with the modest catalytic activity in the activation of molecular H2. At the same time, the present work provides an extremely significant mechanism of acetylene trimerization to form benzene and carbon formation.
Senanayake, Sanjaya D.; Ramirez, Pedro J.; Waluyo, Iradwikanari; ...
2016-01-06
The role of the interface between a metal and oxide (CeO x–Cu and ZnO–Cu) is critical to the production of methanol through the hydrogenation of CO 2 (CO 2 + 3H 2 → CH 3OH + H 2O). The deposition of nanoparticles of CeO x or ZnO on Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts for methanol synthesis. The catalytic activity of these systems increases in the sequence: Cu(111) < ZnO/Cu(111) < CeO x/Cu(111). The apparent activation energy for the CO 2 → CH 3OH conversion decreases from 25 kcal/mol on Cu(111) to 16 kcal/mol on ZnO/Cu(111)more » and 13 kcal/mol on CeO x/Cu(111). The surface chemistry of the highly active CeO x–Cu(111) interface was investigated using ambient pressure X-ray photoemission spectroscopy (AP-XPS) and infrared reflection absorption spectroscopy (AP-IRRAS). Both techniques point to the formation of formates (HCOO –) and carboxylates (CO 2 δ–) during the reaction. Our results show an active state of the catalyst rich in Ce 3+ sites which stabilize a CO 2 δ– species that is an essential intermediate for the production of methanol. Furthermore, the inverse oxide/metal configuration favors strong metal–oxide interactions and makes possible reaction channels not seen in conventional metal/oxide catalysts.« less
NASA Astrophysics Data System (ADS)
Wong, Meng Fei; Heng, Xiangxin; Zeng, Kaiyang
2008-10-01
Domain structures of [001]T and [011]T-cut Pb(Zn1/3Nb2/3)O3-(6%-7%)PbTiO3 (PZN-PT) single crystals are studied using scanning electron acoustic microscope (SEAM) technique. The observation of the orientation of domain walls agree reasonably well with the trigonometric projection of rhombohedral and orthorhombic dipoles on the (001) and (011) surfaces, respectively. After mechanical loading with microindentation, domain switching is also observed to form a hyperbolic butterfly shape and extend preferentially along four diagonal directions, i.e., ⟨110⟩ on (001) surface and ⟨111¯⟩ on (011) surface. The critical shear stress to cause domain switching for PZN-PT crystal is estimated to be approximately 49 MPa for both {110} and {111¯} planes based on theoretical analysis. Generally, the SEAM technique has been successfully demonstrated to be a valid technique for observation of domain structures in single crystal PZN-PTs.
Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals
NASA Technical Reports Server (NTRS)
Mackay, R. A.
1981-01-01
The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.
NASA Astrophysics Data System (ADS)
Marinova, Delyana; Wildner, Manfred; Bancheva, Tsvetelina; Stoyanova, Radostina; Georgiev, Mitko; Stoilova, Donka G.
2018-03-01
Based on different experimental methods—crystallization processes in aqueous solutions, infrared spectroscopy, single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) and TG-DTA-DSC measurements—it has been established that copper ions are included in sodium cobalt sulfate up to about 18 mol%, thus forming limited solid solutions Na2Co1-x Cu x (SO4)2·4H2O (0 < x ≤ 0.18) with a blödite-type structure. In contrast, cobalt ions are not able to accept the coordination environment of the copper ions in the strongly distorted Cu(H2O)2O4 octahedra, thus resulting in the crystallization of Co-free kröhnkite. The solid solutions were characterized by vibrational and EPR spectroscopy. DSC measurements reveal that the copper concentration increase leads to increasing values of the enthalpy of dehydration (ΔH deh) and decreasing values of the enthalpy of formation (ΔH f). The crystal structures of synthetic kröhnkite, Na2Cu(SO4)2·2H2O, as well as of three Cu2+-bearing mixed crystals of Co-blödite, Na2Co1-x Cu x (SO4)2·4H2O with x (Cu) ranging from 0.03 to 0.15, have been investigated from single-crystal X-ray diffraction data. The new data for the structure of synthetic kröhnkite facilitated to clarify structural discrepancies found in the literature for natural kröhnkite samples, traced back to a mix-up of lattice parameters. The crystal structures of Co-dominant Na2Co1-x Cu x (SO4)2·4H2O solid solutions reveal a comparatively weak influence of the Jahn-Teller-affected Cu2+ guest cations up to the maximum content of x (Cu) = 0.15. The response of the MO2(H2O)4 octahedral shape by increased bond-length distortion with Cu content is clear cut (but limited), mainly concerning the M-OH2 bond lengths, whereas other structural units are hardly affected. However, the specific type of imposed distortion seems to play an important role impeding higher Cu/Co replacement ratios.
Two superconducting transitions in single-crystal La 2 - x Ba x CuO 4
Tee, X. Y.; Ito, T.; Ushiyama, T.; ...
2017-02-27
Here, we use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La 2-xBa xCuO 4. We also found a superconducting transition temperature T cs associated with the ab-plane surface region which is considerably higher than the bulk T c. This effect is pronounced in the region of charge carrier doping x with strong spin-charge stripe correlations, reaching T cs = 36 K or 1.64T c.
CO adsorption on the “29” Cu xO/Cu(111) surface: An integrated DFT, STM, and TPD study
Hensley, Alyssa J. R.; Therrien, Andrew J.; Zhang, Renqin; ...
2016-10-04
The elucidation of an accurate atomistic model of surface structures is crucial for the design and understanding of effective catalysts, a process requiring a close collaboration between experimental observations and theoretical models. Any developed surface theoretical model must agree with experimental results for the surface when both clean and adsorbate covered. Here, we present a detailed study of the adsorption of CO on the “29” Cu xO/ Cu(111) surface, which is important in the understanding of ubiquitous Cubased catalysis. This study uses scanning tunneling microscopy, temperatureprogrammed desorption, and density functional theory to analyze CO adsorption on the “29” Cu xO/Cu(111)more » surface. From the experimental scanning tunneling microscopy images, CO was found to form six different ordered structures on the “29” Cu xO/Cu(111) surface depending on the surface CO coverage. By modeling the adsorption of CO on our atomistic model of the “29” Cu xO/Cu(111) surface at different coverages, we were able to match the experimentally observed CO ordered structures to specific combinations of sites on the “29” Cu xO/Cu(111) surface. Lastly, the high degree of agreement seen here between experiment and theory for the adsorption of CO on the “29” Cu xO/Cu(111) surface at various CO coverages provides further support that our atomistic model of the “29” Cu xO/Cu(111) surface is experimentally accurate.« less
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
Modeling Nonlinear Elastic-plastic Behavior of RDX Single Crystals During Indentation
2012-01-01
single crystals has also been probed using shock experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a polymorphic phase...Patterson, J.; Dreger, Z.; Gupta, Y. Shock-wave Induced Phase Transition in RDX Single Crystals. J. Phys. Chem. B 2007, 111, 10897–10904. 17. Bedrov, D...and Volume Compression of β - HMX and RDX . In Proc. Int. Symp. High Dynamic Pressures; Commissariat a l’Energie Atomique: Paris, 1978; pp 3–8. 24
Micro pulling down growth of very thin shape memory alloys single crystals
NASA Astrophysics Data System (ADS)
López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.
Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.
Stegmaier, Saskia; Fässler, Thomas F
2011-12-14
The synthesis and crystal structure of the first ternary A-Cu-Sn intermetallic phases for the heavier alkali metals A = Na to Cs is reported. The title compounds A(12)Cu(12)Sn(21) show discrete 33-atom intermetalloid Cu-Sn clusters {Sn@Cu(12)@Sn(20)}, which are composed of {Sn(20)} pentagonal dodecahedra surrounding {Cu(12)} icosahedra with single Sn atoms at the center. Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21) were characterized by single-crystal XRD studies, and the successful synthesis of analogous A-Cu-Sn compounds with A = Rb and Cs is deduced from powder XRD data. The isotypic A(12)Cu(12)Sn(21) phases crystallize in the cubic space group Pn ̅3m (No. 224), with the Cu-Sn clusters adopting a face centered cubic arrangement. A formal charge of 12- can be assigned to the {Sn@Cu(12)@Sn(20)} cluster unit, and the interpretation of the title compounds as salt-like intermetallic phases featuring discrete anionic intermetalloid [Sn@Cu(12)@Sn(20)](12-) clusters separated by alkali metal cations is supported by electronic structure calculations. For both Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21), DFT band structure calculations (TB-LMTO-ASA) reveal a band gap. The discrete [Sn@Cu(12)@Sn(20)](12-) cluster is analyzed in consideration of the molecular orbitals obtained from hybrid DFT calculations (Gaussian 09) for the cluster anion. The [Sn@Cu(12)@Sn(20)](12-) cluster MOs can be classified with labels indicating the numbers of radial and angular nodes, in the style of spherical shell models of cluster bonding. © 2011 American Chemical Society
Imaging quasiperiodic electronic states in a synthetic Penrose tiling
NASA Astrophysics Data System (ADS)
Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.
2017-06-01
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling.
Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K
2017-06-22
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
TEM verification of the <111>-type 4-arm multi-junction in [001]-Mo single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiung, L
2005-03-14
To investigate and verify the formation of <111>-type 4-arm multi-junction by the dislocation reaction of 1/2[111] [b1] + 1/2[{bar 1}1{bar 1}] [b2] + 1/2[{bar 1}{bar 1}1] [b3] = 1/2[{bar 1}11] [b4], which has recently been discovered through computer simulations conducted by Vasily Bulatov and his colleagues.
Single crystal growth and characterization of pure and sodium-modified copper tartrate
NASA Astrophysics Data System (ADS)
Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.
2008-12-01
Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong
2018-02-21
The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.
Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111)
2015-01-01
Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu1+ to metallic copper (Cu0) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al3+ in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al3+ (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al–O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3–4 Å/cycle for TMA+O2 ALD (O2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces. PMID:26158796
Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).
Gharachorlou, Amir; Detwiler, Michael D; Gu, Xiang-Kui; Mayr, Lukas; Klötzer, Bernhard; Greeley, Jeffrey; Reifenberger, Ronald G; Delgass, W Nicholas; Ribeiro, Fabio H; Zemlyanov, Dmitry Y
2015-08-05
Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu(1+) to metallic copper (Cu(0)) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al(3+) in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al(3+) (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3-4 Å/cycle for TMA+O2 ALD (O2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces.
Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Meng; Nakayama, Miki; Liu, Ping
The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less
Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports
Xue, Meng; Nakayama, Miki; Liu, Ping; ...
2017-09-13
The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less
Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing
2014-09-24
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiqiang; Chen, Zhiguo, E-mail: zgchen@mail.csu.edu.cn; Hunan University of Humanities, Science and Technology, Loudi 417000
The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and thereforemore » provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.« less
Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.
2013-12-01
Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.
NASA Astrophysics Data System (ADS)
Vovk, R. V.; Vovk, N. R.; Goulatis, I. L.; Chroneos, A.
2013-10-01
In this paper, the influence of praseodymium doping on the conductivity across (transverse) the basal plane of high-temperature superconducting Y1-xPrxBa2Cu3O7-δ single crystals is investigated. It is determined that an increase of praseodymium doping leads to increased localization effects and the implementation of a metal-insulator transition Y1-xPrxBa2Cu3O7-δ, which always precedes the superconducting transition. The increase of the praseodymium concentration also leads to a significant displacement of the point of the metal-insulator transition to the low temperature region.
Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal
NASA Astrophysics Data System (ADS)
Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.
2018-03-01
We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.
NASA Technical Reports Server (NTRS)
Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.
1986-01-01
The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.
Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian
2014-01-01
The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460
The preparation of BP single crystals by high pressure flux method
NASA Technical Reports Server (NTRS)
Kumashiro, Y.; Misawa, S.; Gonda, S.
1984-01-01
Single crystals of BP, a III-V compound semiconductor, were obtained by the high pressure flux method. Cu3P and Ni12P5 powders were used as the flux, and mixed with BP powder. Two kinds of mixtures were prepared: (1) 1.8g (BP) + 35 G (Cu3P) and (2) 1.7 g (BP) + 25 g (Ni12P5). They were compressed into pellets, heated at 1300 C for 24 h in an induction furnace under a pressure of 1 MPa using Ar-P2 gas, and slowly cooled to room temperature. In case (1), BP single crystals grew along the (III) plane, and in case (2) they grew as an aggregate of crystallites. The cathodoluminescence spectra of the synthetic BP crystals showed peaks near 680 nm (1.82 eV) for case (1), and 500 nm (2.47 eV) for case (2). By using the high pressure flux method conventional sized crystals were obtained in a relatively short time.
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Žilić, Dijana; Pajić, Damir; Jurić, Marijana; Perić, Berislav; Zadro, Krešo; Rakvin, Boris; Planinić, Pavica
2008-10-01
Magnetic properties of single crystals of the heterometallic complex [Cu(bpy) 3] 2[Cr(C 2O 4) 3]NO 3·9H 2O (bpy = 2,2'-bipyridine) have been investigated. From the recorded EPR spectra, the spin-Hamiltonian parameters have been determined. The magnetization measurements have shown magnetic anisotropy at low temperatures, which has been analysed as a result of the zero-field splitting of the Cr III ion. By fitting the exactly derived magnetization expression to the measured magnetization data, the axial zero-field splitting parameter, D, has been calculated. Comparing to the EPR measurements, it has been confirmed that D can be determined from the measurements of the macroscopic magnetization on the single crystals.
Electronic structure of clean and Ag-covered single-crystalline Bi2Sr2CuO6
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-11-01
Photoemission studies of single-crystalline samples of Bi2Sr2CuO6 show clear resemblance to the corresponding data for single crystals of Bi2Sr2CaCu2O8. In particular, a sharp Fermi-level cutoff, giving evidence of metallic conductivity at room temperature, as well as single-component O 1s emission and Cu 2p satellites with a strength amounting to about 50% of that of the main Cu 2p line, are observed. An analysis of the relative core-level photoemission intensities shows that the preferential cleavage plane of single-crystalline Bi2Sr2CuO6 is between adjacent Bi-O layers. Deposition of Ag adatoms causes only weak reaction with the Bi and O ions of the Bi2Sr2CuO6 substrate, while the Cu states rapidly react with the Ag adatoms, as monitored by a continuous reduction of the Cu 2p satellite intensity as the Ag overlayer becomes thicker.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-12-01
Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.
Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor
NASA Astrophysics Data System (ADS)
Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1989-02-01
We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.
O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1991-02-01
High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.
Magnetic susceptibility in the normal phase of Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Lopes, Lutiene F.; Peña, J. Paola; Schaf, Jacob; Tumelero, Milton A.; Vieira, Valdemar N.; Pureur, Paulo
2018-05-01
We report on measurements of the c-axis component of the magnetic susceptibility in the normal phase of several single crystal samples of the Bi2Sr2CaCu2O8+δ cuprate superconductor. These crystal were submitted to appropriate heat treatments so that the density of hole carriers could be varied in an extended region of the superconducting dome. In general, the measured susceptibility shows significant temperature dependence, which was attributed to the pseudogap phenomenon. The results were interpreted with basis on a phenomenological model that allows the determination of the pseudogap characteristic temperature T* as a function of the carrier density.
NASA Astrophysics Data System (ADS)
Mitzi, David Brian
1990-01-01
A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.
NASA Astrophysics Data System (ADS)
Gągor, A.; Pietraszko, A.; Kaynts, D.
2005-11-01
In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.
NASA Astrophysics Data System (ADS)
Calatayud, M. Luisa; Castro, Isabel; Julve, Miguel; Sletten, Jorunn
2008-03-01
Four new complexes of copper(II) and/or copper(I) with 1,2-dtsq as a ligand have been synthesized and characterized by single crystal X-ray diffraction methods, [Cu II(terpy)(1,2-dtsq)] ( 1), [Cu II(dmen)(1,2-dtsq)] n ( 2), {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n·2nH 2O( 3) and {[Cu II(men) 2][Cu I (1,2-dtsq)] 2} n·nH 2O ( 4) (1,2-dtsq = 1,2-dithiosquarate, dianion of 3,4-dimercapto-1-cyclobutene-1,2-dione; dmen = N, N-dimethylethylenediamine; men = N-methylethylenediamine, terpy = 2,2':6,2″-terpyridine). Compound 1 consists of neutral [Cu II(terpy)(1,2-dtsq)] mononuclear units which are held together by O⋯H-C and van der Waals interactions. Compound 2 is built of neutral [Cu II(dmen)(1,2-dtsq)] entities which are connected through weak Cu-S (pairs) and Cu-O (single) interactions into a layer structure. The structures of 3 and 4 feature polynuclear [Cu(1,2-dtsq)]nn- chains, in which dtsq groups are linking copper(I) ions in the μ-1,1, μ-1,1,1 and μ-1,2 bridging modes. The dtsq groups in these chains connect to the copper(II) ions of the [Cu IIL 2] 2+ cations [L being the bidentate dmen ( 3) and men ( 4) ligands], but in different manners in the two structures. The connections in compound 3 are unsymmetrical, so that columns of {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n where the copper(II) ions bind to 1,2-dtsq oxygen atoms with relatively strong axial bonds may be identified. These columns are further connected to each other through weak axial Cu II⋯S interactions, creating a three-dimensional (3D) network with channels containing the solvent water. In compound 4, on the other hand, the two crystallographically independent cations each forms a symmetrical link between the anionic chains through, respectively, O-Cu II-O and S-Cu II-S axial bonds, again creating a 3D structure with channels running parallel to the chain axis. The reduction of copper(II) to copper(I) by 1,2-dtsq is precluded when the coordination sphere of the copper(II) ion is partially blocked with the tridentate terpy ligand whereas this process occurs when the blocking ligands are the bidentate dmen and men groups.
NASA Astrophysics Data System (ADS)
Jo, Insu; Park, Subeom; Kim, Dongjin; San Moon, Jin; Park, Won Bae; Kim, Tae Hyeong; Hyoun Kang, Jin; Lee, Wonbae; Kim, Youngsoo; Lee, Dong Nyung; Cho, Sung-Pyo; Choi, Hyunchul; Kang, Inbyeong; Park, Jong Hyun; Lee, Jeong Soo; Hong, Byung Hee
2018-04-01
It has been known that the crystalline orientation of Cu substrates plays a crucial role in chemical vapor deposition (CVD) synthesis of high-quality graphene. In particular, Cu (1 1 1) surface showing the minimum lattice mismatch with graphene is expected to provide an ideal catalytic reactivity that can minimize the formation of defects, which also induces larger single-crystalline domain sizes of graphene. Usually, the Cu (1 1 1) substrates can be epitaxially grown on single-crystalline inorganic substrates or can be recrystallized by annealing for more than 12 h, which limits the cost and time-effective synthesis of graphene. Here, we demonstrate a new method to optimize the crystalline orientations of vertically suspended Cu foils by tension control during graphene growth, resulting in large-area recrystallization into Cu (1 1 1) surface as the applied tension activates the grain boundary energy of Cu and promotes its abnormal grain growth to single crystals. In addition, we found a clue that the formation of graphene cooperatively assists the recrystallization into Cu (1 1 1) by minimizing the surface energy of Cu. The domain sizes and charge carrier mobility of graphene grown on the single-crystalline Cu (1 1 1) are 5 times and ~50% increased, respectively, in comparison with those of graphene from Cu (1 0 0), indicating that the less lattice mismatch and the lower interaction energy between Cu (1 1 1) and graphene allows the growth of larger single-crystalline graphene with higher charge carrier mobility. Thus, we believe that our finding provides a crucial idea to design a roll-to-roll (R2R) graphene synthesis system where the tension control is inevitably involved, which would be of great importance for the continuous production of high-quality graphene in the future.
NASA Astrophysics Data System (ADS)
Geng, Y. L.; Xu, D.; Wang, Y. L.; Du, W.; Liu, H. Y.; Zhang, G. H.; Wang, X. Q.; Sun, D. L.
2005-01-01
Sub-steps and defects of the {1 0 0} planes of Cu 2+-doped L-arginine phosphate monohydrate (LAP) crystals are observed by atomic force microscopy. Formation of sub-steps is not due to the stacking faults but a result of single LAP: Cu 2+ molecule acting as growth unit. Two-dimensional (2D) nuclei with the same height as sub-steps occur on the step-edges. Impurities of Cu 2+ ions cause steps bunch and macrosteps formation. Liquid inclusions in the form of long channels form when the macrosteps lose their stability. Numerous small 3D growth hillocks are found in the channels. The extra stress induced by the 3D islands can result in dislocations and steps mismatches.
Growth of copper-zinc and copper-magnesium particles by gas-evaporation technique
NASA Astrophysics Data System (ADS)
Ohno, T.
1984-12-01
Fine particles of Cu-Zn and Cu-Mg systems of diameter less than 500 nm were prepared by evaporating the constituent metals simultaneously from two evaporation sources in an atmosphere of argon of 10 to 30 Torr. The composition, crystal structure and habit of the alloy particles were investigated by electron microscopy. The composition of the alloy particles varied depending on the growth zone of metal smoke and almost all phases known in Cu-Zn or Cu-Mg system were found at the same time. The particles with single phase showed generally well-defined crystal habits characteristic of their crystal structures. For the particles with two phases, a fixed lattice relation between the two phases was generally recognized. The formation process of the alloy particles is discussed through these observations.
Burton, B. P.; Rawn, C. J.; Roth, R. S.; Hwang, N. M.
1993-01-01
New data are presented on the phase equilibria and crystal chemistry of the binary systems CaO-Bi2O3 and CaO-CuO and the ternary CaO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for several of the binary CaO-Bi2O3 phases, including corrected compositions for Ca4Bi6O13 and Ca2Bi2O5. The ternary system contains no new ternary phases which can be formed in air at ~700–900 °C. PMID:28053484
Effect of Annealing Processes on Cu-Zr Alloy Film for Copper Metallization
NASA Astrophysics Data System (ADS)
Wang, Ying; Li, Fu-yin; Tang, Bin-han
2017-12-01
The effect of two different annealing processes on the microstructure and barrier-forming ability of Cu-Zr alloy films has been investigated. Cu-Zr alloy films were deposited directly onto SiO2/Si substrates via direct current magnetron sputtering and subsequently annealed by the vacuum annealing process (VAP) or rapid annealing process under argon atmosphere at temperatures 350°C, 450°C, and 550°C. Then, the microstructure, interface characteristics, and electrical properties of the samples were measured. After annealing, the samples showed a preferential (111) crystal orientation, independent of the annealing process. After two annealing methods, Zr aggregated at the Cu-Zr/SiO2 interface and no serious interdiffusion occurred between Cu and Si. The leakage current measurements revealed that the samples annealed by VAP show a higher reliability. According to the results, the vacuum annealing has better barrier performance than the rapid annealing when used for the fabrication of Cu-based interconnects.
NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Takigawa, M.; Mitzi, D. B.
1994-08-01
The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
NASA Astrophysics Data System (ADS)
Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu
2017-12-01
The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
NASA Astrophysics Data System (ADS)
Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu
2018-03-01
The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.
Crystal Growth of the S =1/2 Antiferromagnet K2PbCu(NO2)6 Elpasolite
NASA Astrophysics Data System (ADS)
Dong, Lianyang; Besara, Tiglet; Siegrist, Theo
The elpasolite K2PbCu(NO2)6is known for its two structural transitions at 281 K and 273 K. Single crystals of K2PbCu(NO2)6 have been grown in aqueous solution, but the rapid nucleation rate and convective transport renders it difficult to obtain large high quality single crystals. We developed a gel method to grow K2PbCu(NO2)6 Elpasolite with sizes up to 5x5x5 mm3, suitable for neutron diffraction measurements. Susceptibility measurements clearly show that the Jahn-Teller distortions at 286K and 273K with associated orbital ordering produce a linear chain Heisenberg antiferromagnetic system. The intrachain interaction strength has been derived from a Bonner-Fisher analysis that yielded a value of 5.4K. This work was supported by the National Science Foundation, under award DMR-1534818. A portion of this work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
NASA Astrophysics Data System (ADS)
Vovk, Ruslan V.; Vovk, Nikolaj R.; Dobrovolskiy, Oleksandr V.
2014-05-01
The effect of jumpwise temperature variation and room-temperature storing on the basal-plane electrical resistivity of underdoped ReBaCuO (Re = Y, Ho) single crystals is investigated. Reducing the oxygen content has been revealed to lead to the phase segregation accompanied by both, labile component diffusion and structural relaxation in the sample volume. Room-temperature storing of single crystals with different oxygen hypostoichiometries leads to a substantial widening of the rectilinear segment in in conjunction with a narrowing of the temperature range of existence of the pseudogap state. It is established that the excess conductivity obeys an exponential law in a broad temperature range, while the pseudogap's temperature dependence is described satisfactory in the framework of the BCS-BEC crossover theory. Substituting yttrium with holmium essentially effects the charge distribution and the effective interaction in CuO planes, thereby stimulating disordering processes in the oxygen subsystem. This is accompanied by a notable shift of the temperature zones corresponding to transitions of the metal-insulator type and to the regime of manifestation of the pseudogap anomaly.
NASA Astrophysics Data System (ADS)
Liu, Shih-Hsien
Density-functional theory (DFT) and molecular dynamics (MD) were used to resolve the origins of shape-selective syntheses of {111}-faceted Au nanostructures mediated by polyvinylpyrrolidone (PVP) as well as {100}-faceted Cu nanostructures mediated by hex- adecylamine(HDA) seen in experiment. For the work in PVP on Au surfaces, the hexagonal reconstruction of Au(100) was considered. DFT results indicate that the Au(111) surface covered by the PVP segment, 2-pyrrolidone (2P), has a lower surface energy than the 2P- covered (5 x 1) Au(100)-hex surface, and that PVP may exhibit a binding affinity for Au(111) comparable to or greater than (5 x 1) Au(100)-hex. With MD, it is shown that the PVP-covered Au(111) surface has a lower surface energy than the PVP-covered (5 x 1) Au(100)-hex surface, and that the atactic PVP isosamer chains have a binding affinity for Au(111) comparable to (5 x 1) Au(100)-hex. Also, the (5 x 1) Au(100)-hex surface may have a higher flux of Au atoms than the Au(111) surface. Therefore, the Au(111) surface would be thermodynamically and kinetically favored in PVP-mediated syntheses, leading to {111}-faceted Au nanostructures. For the work in HDA on Cu surfaces, DFT results show that the HDA-covered Cu(100) surface has a slightly higher surface energy than the HDA- covered Cu(111) surface. However, HDA has a significant binding preference on Cu(100) over Cu(111). Therefore, the Cu(100) surface would be kinetically favored in HDA-mediated syn- theses, leading to {100}-faceted Cu nanostructures. Further, a metal-organic many-body (MOMB) force field for HDA-Cu interactions was developed based on the DFT work, and the force field was used to resolve the HDA binding patterns on Cu(100) at molecular level. With MD, it is found that decylamine (DA) may be used as an effective capping agent in the synthesis of {100}-faceted Cu nanostructures since DA as well as HDA are organized on Cu surfaces and have the same binding preference on Cu(100) over Cu(111). It is also found that the HDA structures on Cu surfaces remain intact in aqueous solution due to hydrophobicity of alkyl tails and long alkyl chains in the HDA molecules, which could prevent Cu oxidation during the synthesis.
Applications of Classical and Quantum Mechanical Channeling in Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Haakenaasen, Randi
1995-01-01
The first part of this work involves ion channeling measurements on the high temperature superconductor rm YBa_{2}Cu_{3}O _{7-delta}(YBCO). The experiments were motivated by several previous reports of anomalous behavior in the displacements of the Cu and O atoms in the vicinity of the critical temperature rm(T _{c}) in several high temperature superconductors. Our measurements were complimentary to previous experiments in that we used thin film YBCO (as opposed to bulk single crystals) and focused on a small region around rm T_{c}. We mapped out the channeling parameters chi _{min} and Psi_ {1/2} in a 30 K region around rm T_{c} in 1-2 K steps in thin film YBCO(001) on MgO. Neither of our measurements showed any discontinuities in chi _{min} or Psi_ {1/2} near the superconducting phase transition, and we therefore have no reason to expect anything but a smooth increase in atomic vibrations in this region. We conclude that any anomalous behavior in atomic displacements deduced from previous channeling experiments is not essential to superconductivity. In the second part of the work positrons were used to study quantum mechanical channeling effects. We clearly observed and quantitatively accounted for quantum interference effects, including Bragg diffraction, in the forward transmission of channeled MeV positrons through a single crystal. Experimental scans across the (100), (110), and (111) planes in Si showed excellent agreement with theoretical dynamical diffraction calculations, giving us confidence that we can accurately predict the spatial and momentum distributions of channeled positrons. New experiments are envisioned in which the channeling effect is combined with 2 quantum annihilation in flight measurements to determine valence electron and magnetic spin distributions in a crystal. Since the channeling effect focuses the positrons to the interstices of the crystal, the annihilation rate will reflect the valence electron density. Furthermore, the annihilation rate is sensitive to electron spin polarization, opening up the possibility of making measurements on magnetic materials. Detailed estimates for the count rates of such experiments are presented, indicating the feasibility of developing positron channeling into a new tool in solid state physics.
Strength and deformation of shocked diamond single crystals: Orientation dependence
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
NASA Astrophysics Data System (ADS)
Lang, J. M.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.
Nucleation and growth of order in Cu(3)Au (111) films
NASA Astrophysics Data System (ADS)
Bonham, Scott William
The present work epitaxial investigated two types of ordering phenomena using films of Cusb3Au, the order-disorder phase transition on the (111) crystal surface, and preferential selection of one of two possible stacking domains. Cusb3Au has long been a model system for studying order-disorder phase transition. Bulk material exhibits a discontinuous transition while the surfaces exhibit continuos transitions and the long-range order parameter S is proportional to (Tsb{c}-T)sp{beta}, where Tsb{c} is the critical temperature. The transition of the (111) surface is studied with qualitative reflection high-energy electron diffraction (RHEED), which is sensitive to only the first few atomic layers. This work significantly improves on an earlier study through both improved data collection and more comprehensive data analysis. The measured value of beta =0.50± 0.02 agrees with both the earlier measurements and with predictions of mean field theory. In addition, data on surface defects during the transition and on the kinetics of ordering are presented. During epitaxial growth of (111) face-centered cubic crystal films, such as disordered Cusb3Au, there are two possible ways that successive layers can be laid down, leading to two types of stacking domains. However, a small vicinal miscut (0.5sp° {-}1sp° ) of the crystal surface introduces step edges that change nucleation preferences of the domains, resulting in one being preferred over the other by ratios up to 700:1. Fifteen samples were measured and this preference has been found to depend systematically and strongly on the magnitude and direction of the sample miscut. A qualitative RHEED study confirms that a preference for one of the stacking senses is present after deposition of a few monlolayers of Cusb3Au. The observed behavior of the film can be explained by a model in which Cu and Au atoms minimize their number of Nb nearest neighbors when growing over the Nb step edges. This represents both a discovery of a new phenomena in epitaxial nucleation and a technique for the production of improved epitaxial films.
Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.
2010-09-01
We present a theoretical study of the lateral hopping of a single CO molecule on Cu(111) induced by femtosecond laser pulses by Mehlhorn [Phys. Rev. Lett. 104, 076101 (2010)]10.1103/PhysRevLett.104.076101. Our model assumes an intermode coupling between the CO frustrated translation (FT) and frustrated rotation (FR) modes with a weak and strong electronic friction coupling to hot electrons, respectively, and heat transfer between the FT mode and the substrate phonons. In this model the effective electronic friction coupling of the FT mode depends on the absorbed laser fluence F through the temperature of the FR mode. The calculated hopping yield as a function of F nicely reproduces the nonlinear increase observed above F=4.0J/m2 . It is found that the electronic heating via friction coupling nor the phonon coupling alone cannot explain the experimental result. Both heatings are cooperatively responsible for CO hopping on Cu(111). The electronic heat transfer dominates over the phononic one at high F , where the effective electronic friction coupling becomes larger than the phononic coupling.
STM/STS Study of the Sb (111) Surface
NASA Astrophysics Data System (ADS)
Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.
An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.
Singh, Anar; Schefer, Jurg; Sura, Ravi; ...
2016-03-24
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias
2016-03-28
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells
NASA Technical Reports Server (NTRS)
Fahrenbruch, A. L.; Bube, R. H.
1974-01-01
The dependence of the short-circuit current on photon energy, temperature, and the state of optical degradation (or enhancement) is determined in a study of the photovoltaic properties of Cu2S-CdS single-crystal heterojunctions. A coherent formulation is proposed for the relationship between enhancement and optical degradation and for their effects on the transport of a short-circuit photoexcited current and dark forward-bias current in a photovoltaic cell. Optical degradation in a Cu2S-CdS cell is shown to be identical to the optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal.
Zhuo, Fangping; Li, Qiang; Gao, Jinghan; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng
2017-05-31
(Pb,La)(Zr,Sn,Ti)O 3 (PLZST) single crystals with their chemical composition located at the tetragonal antiferroelectric region are grown via the flux method in a PbO-PbF 2 -B 2 O 3 mixture. Segregation of the Ti 4+ component in the as-grown crystals is observed due to the strong affinity between the oxygen anion and Ti 4+ ions. The critical electric field of the antiferroelectric to ferroelectric phase transition is determined to be about 0.5 kV mm -1 . The electric field induced ferroelectric phase transforms back into the antiferroelectric phase at a depolarization temperature of 125 °C. Anisotropy of the harvested energy density and electrocaloric behaviors are achieved for the [100], [110] and [111]-oriented PLZST crystals. Based on the thermodynamic theory approach, all the abovementioned behaviors originate from the anisotropic total entropy change. Enhanced electrocaloric strength (0.3 K mm kV -1 ) and the harvested energy density of 0.62 J cm -3 are obtained in the [111]-oriented PLZST crystals. Our results demonstrate the competence of PLZST single crystals for cooling devices and pyroelectric energy harvesting and provide new opportunities to improve energy harvesting density and electrocaloric properties via the anisotropic structural layout, which make the PLZST crystals attractive for solid state cooling devices and energy conversion technologies.
Epitaxial cuprate superconductor/ferroelectric heterostructures.
Ramesh, R; Inam, A; Chan, W K; Wilkens, B; Myers, K; Remschnig, K; Hart, D L; Tarascon, J M
1991-05-17
Thin-film heterostructures of Bi(4)Ti(3)O(12)Bi(2)Sr(2)CuO(6+x), have been grown on single crystals of SrTiO(3), LaAlO(3), and MgAl(2)O(4) by pulsed laser deposition. X-ray diffraction studies show the presence of c-axis orientation only; Rutherford backscattering experiments show the composition to be close to the nominal stoichiometry. The films are ferroelectric and exhibit a symmetric hysteresis loop. The remanent polarization was 1.0 microcoulomb per square centimeter, and the coercive field was 2.0 x 10(5) volts per centimeter. Similar results were obtained with YBa(2)Cu(3)O(7-x) and Bi(2)Sr(2)CaCu(2)O(8+x), and single-crystal Bi(2)Sr(2)CuO(6+x)as the bottom electrodes. These films look promising for use as novel, lattice-matched, epitaxial ferroelectric film/electrode heterostructures in nonvolatile memory applications.
Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip
DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...
2016-01-28
Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.
Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.
DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker
2016-03-01
Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.
Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip
DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker
2016-01-01
Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
Fingerprints of single nuclear spin energy levels using STM - ENDOR
NASA Astrophysics Data System (ADS)
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.
Fingerprints of single nuclear spin energy levels using STM - ENDOR.
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun
A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less
Pinning in the flux-line-cutting regime of Bi 2Sr 2Ca 1Cu 2O 8 single crystals at high field
NASA Astrophysics Data System (ADS)
D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.
1994-09-01
Using a low-frequency torsion pendulum we show that in a Bi 2Sr 2Ca 1Cu 2O 8 single crystal the irreversibility line Birr( T) is frequency dependent down to 10 -5 Hz in the high-field regime. The activation energy has a logarithmic field dependence, U0( B)= U∗ 1n( B∗/ B). A microscopic model for flux-line-cutting and pancake collision yields quantitative expressions for U0 and for Birr( T)= B∗ exp(- T/T∗), which reproduce the experimental data very well.
Lower critical field measurements in YBa2Cu3O(6+x) single crystals
NASA Technical Reports Server (NTRS)
Kaiser, D. L.; Swartzendruber, L. J.; Gayle, F. W.; Bennett, L. H.
1991-01-01
The temperature dependence of the lower critical field in YBa2Cu3O(6+x) single crystals was determined by magnetization measurements with the applied field parallel and perpendicular to the c-axis. Results are compared with data from the literature and fitted to Ginzberg-Landau equations by assuming a linear dependence of the parameter kappa on temperature. A value of 7 plus or minus 2 kOe was estimated for the thermodynamic critical field at T = O by comparison of calculated H (sub c2) values with experimental data from the literature.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Magnetic penetration depth and flux dynamics in single-crystal Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Harshman, D. R.; Kleiman, R. N.; Inui, M.; Espinosa, G. P.; Mitzi, D. B.; Kapitulnik, A.; Pfiz, T.; Williams, D. Ll.
1991-11-01
The muon-spin-relaxation technique has been used to study vortex dynamics in single-phase superconducting single crystals of Bi2Sr2CaCu2O8+δ (Tc~=90 K). The data indicate motional narrowing of the internal field distribution due to vortex motion (on a time scale comparable to the muon lifetime). A field-dependent lattice transition is also observed at Tx~30 K, as evidenced by the onset of an asymmetric line shape below Tx. Narrowing arising from disordering of the vortices along [001] is also discussed with reference to its effect on the measured penetration depth.
Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound
NASA Astrophysics Data System (ADS)
Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.
1996-02-01
A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.
Pfeifer, Andreas; Knigge, Ulrich; Binderup, Tina; Mortensen, Jann; Oturai, Peter; Loft, Annika; Berthelsen, Anne Kiil; Langer, Seppo W; Rasmussen, Palle; Elema, Dennis; von Benzon, Eric; Højgaard, Liselotte; Kjaer, Andreas
2015-06-01
Neuroendocrine tumors (NETs) can be visualized using radiolabeled somatostatin analogs. We have previously shown the clinical potential of (64)Cu-DOTATATE in a small first-in-human feasibility study. The aim of the present study was, in a larger prospective design, to compare on a head-to-head basis the performance of (64)Cu-DOTATATE and (111)In-diethylenetriaminepentaacetic acid (DTPA)-octreotide ((111)In-DTPA-OC) as a basis for implementing (64)Cu-DOTATATE as a routine. We prospectively enrolled 112 patients with pathologically confirmed NETs of gastroenteropancreatic or pulmonary origin. All patients underwent both PET/CT with (64)Cu-DOTATATE and SPECT/CT with (111)In-DTPA-OC within 60 d. PET scans were acquired 1 h after injection of 202 MBq (range, 183-232 MBq) of (64)Cu-DOTATATE after a diagnostic contrast-enhanced CT scan. Patients were followed for 42-60 mo for evaluation of discrepant imaging findings. The McNemar test was used to compare the diagnostic performance. Eighty-seven patients were congruently PET- and SPECT-positive. No SPECT-positive cases were PET-negative, whereas 10 false-negative SPECT cases were identified using PET. The diagnostic sensitivity and accuracy of (64)Cu-DOTATATE (97% for both) were significantly better than those of (111)In-DTPA-OC (87% and 88%, respectively, P = 0.017). In 84 patients (75%), (64)Cu-DOTATATE identified more lesions than (111)In-DTPA-OC and always at least as many. In total, twice as many lesions were detected with (64)Cu-DOTATATE than with (111)In-DTPA-OC. Moreover, in 40 of 112 cases (36%) lesions were detected by (64)Cu-DOTATATE in organs not identified as disease-involved by (111)In-DTPA-OC. With these results, we demonstrate that (64)Cu-DOTATATE is far superior to (111)In-DTPA-OC in diagnostic performance in NET patients. Therefore, we do not hesitate to recommend implementation of (64)Cu-DOTATATE as a replacement for (111)In-DTPA-OC. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu-Xiao; Zhao, Lin; Gu, Gen-Da
2016-06-01
Here, we report a reproducible approach in preparing high-quality overdoped Bi 2Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. High-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. Furthermore, we find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a T c ~63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the T c limit in the heavily overdoped region of Bi2212more » by the oxygen annealing process. Our results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, D. A., E-mail: zolotovden@crys.ras.ru; Buzmakov, A. V.; Elfimov, D. A.
2017-01-15
The spatial arrangement of single linear defects in a Si single crystal (input surface (111)) has been investigated by X-ray topo-tomography using laboratory X-ray sources. The experimental technique and the procedure of reconstructing a 3D image of dislocation half-loops near the Si crystal surface are described. The sizes of observed linear defects with a spatial resolution of about 10 μm are estimated.
Spin crossover in Fe(phen)2(NCS)2 complexes on metallic surfaces
NASA Astrophysics Data System (ADS)
Gruber, Manuel; Miyamachi, Toshio; Davesne, Vincent; Bowen, Martin; Boukari, Samy; Wulfhekel, Wulf; Alouani, Mebarek; Beaurepaire, Eric
2017-03-01
In this review, we give an overview on the spin crossover of Fe(phen)2(NCS)2 complexes adsorbed on Cu(100), Cu2N/Cu(100), Cu(111), Co/Cu(111), Co(100), Au(100), and Au(111) surfaces. Depending on the strength of the interaction of the molecules with the substrates, the spin crossover behavior can be drastically changed. Molecules in direct contact with non-magnetic metallic surfaces coexist in both the high- and low-spin states but cannot be switched between the two. Our analysis shows that this is due to a strong interaction with the substrate in the form of a chemisorption that dictates the spin state of the molecules through its adsorption geometry. Upon reducing the interaction to the surface either by adding a second molecular layer or inserting an insulating thin film of Cu2N, the spin crossover behavior is restored and molecules can be switched between the two states with the help of scanning tunneling microscopy. Especially on Cu2N, the two states of single molecules are stable at low temperature and thus allow the realization of a molecular memory. Similarly, the molecules decoupled from metallic substrates in the second or higher layers display thermally driven spin crossover as has been revealed by X-ray absorption spectroscopy. Finally, we discuss the situation when the complex is brought into contact with a ferromagnetic substrate. This leads to a strong exchange coupling between the Fe spin in the high-spin state and the magnetization of the substrate as deduced from spin-polarized scanning tunneling spectroscopy and ab initio calculation.
How to stabilize highly active Cu + cations in a mixed-oxide catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You
Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuO x) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu 2O-like phase coexists with TiCuO x and TiO x domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuO x film occurs. Stepwise oxidation of TiCuO x shows that the formation of the mixed-oxide is faster than thatmore » of pure Cu 2O. As the Ti coverage increases, Ti-rich islands (TiO x) form. The adsorption of CO has been used to probe the exposed surface sites on the TiO x–CuO x system, indicating the existence of a new Cu + adsorption site that is not present on Cu 2O/Cu(111). Adsorption of CO on Cu + sites of TiCuO x is thermally more stable than on Cu(111), Cu 2O/Cu(111) or TiO 2(110). The Cu + sites in TiCuO x domains are stable under both reducing and oxidizing conditions whereas the Cu 2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuO x films, which are not present on Cu(111), Cu 2O/Cu(111), or TiO 2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less
How to stabilize highly active Cu + cations in a mixed-oxide catalyst
Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; ...
2015-09-12
Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuO x) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu 2O-like phase coexists with TiCuO x and TiO x domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuO x film occurs. Stepwise oxidation of TiCuO x shows that the formation of the mixed-oxide is faster than thatmore » of pure Cu 2O. As the Ti coverage increases, Ti-rich islands (TiO x) form. The adsorption of CO has been used to probe the exposed surface sites on the TiO x–CuO x system, indicating the existence of a new Cu + adsorption site that is not present on Cu 2O/Cu(111). Adsorption of CO on Cu + sites of TiCuO x is thermally more stable than on Cu(111), Cu 2O/Cu(111) or TiO 2(110). The Cu + sites in TiCuO x domains are stable under both reducing and oxidizing conditions whereas the Cu 2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuO x films, which are not present on Cu(111), Cu 2O/Cu(111), or TiO 2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less
Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.
Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo
2016-06-01
Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.
NASA Astrophysics Data System (ADS)
Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan
2013-02-01
Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.
HOPPING CONDUCTIVITY AND MAGNETIC TRANSITIONS OF THE Cu2+ SPINS IN SINGLE-CRYSTAL La2CuO4+y
NASA Astrophysics Data System (ADS)
Thio, Tineke; Birgeneau, R. J.; Chen, C. Y.; Freer, B. S.; Gabbe, D. R.; Jenssen, H. P.; Kastner, M. A.; Picone, P. J.; Preyer, N. W.
Measurements are reported of the magnetoresistance (MR) for fields up to 23T in La2CuO4+y single crystals in which the Cu2+ spins order antiferromagnetically at TN˜240K, and in which the conductivity at low temperature is characterised by hopping between localised states. Using the MR, we map out the phase diagram of the spin flop transition, observed when the magnetic field is applied parallel to the zero-field staggered magnetisation, and that of the weak-ferromagnetic transition, observed with the field perpendicular to the CuO planes. In both transitions the antiferromagnetic propagation vector changes from the ěca direction at zero field to the ěcc direction at the highest fields. This rather subtle change of the Cu spin ordering is accompanied by a large increase in the interlayer hopping conductivity: up to a factor 2. We show that the magnetoconductance is proportional to the three-dimensional staggered moment with propagation vector in the orthorhombic ěcc direction. The origin of this unusual behaviour is an important unsolved problem.
Doping effects of Co and Cu on superconductivity and magnetism in Fe1+yTe0.6Se0.4 single crystals.
Zhang, Z T; Yang, Z R; Li, L; Ling, L S; Zhang, C J; Pi, L; Zhang, Y H
2013-01-23
We report on the investigation of Co and Cu substitution effects on superconductivity and magnetism in Fe(1+y)Te(0.6)Se(0.4) single crystals. The parent Fe(1.01)Te(0.59)Se(0.41) shows a nodeless bulk superconductivity as revealed in heat capacity measurement, which is gradually suppressed by either Co or Cu doping. It is found that the Co or Cu doping mainly serves as scatterers rather than charge carrier doping, which is in agreement with the DFT calculation (2010 Phys. Rev. Lett. 105 157004) reported by Wadati et al. In comparison with Cu doping, Co doping shows a stronger influence on magnetism while a less evident suppression effect on superconductivity. Upon substitution of Co for Fe, a Schottky heat capacity anomaly develops gradually at low temperatures, implying the existence of a paramagnetic moment in the Co-doped samples. In contrast, Cu doping may mainly serve as non-magnetic scatterers, where no Schottky anomaly is observed.
Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces
Moore, Samuel L.; Vohra, Yogesh K.
2015-01-01
Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less
NASA Astrophysics Data System (ADS)
Bishop, Douglas M.; McCandless, Brian; Gershon, Talia; Lloyd, Michael A.; Haight, Richard; Birkmire, Robert
2017-02-01
Recent literature reports have shown the ability to manipulate Cu-Zn cation ordering for Cu2ZnSnSe4 (CZTSe) via low temperature treatments. Theoretical arguments suggest that one of the major roadblocks to higher VOC—significant band tailing—could be improved with increased cation order; however, few direct measurements have been reported and significant device improvements have not yet been realized. This report investigates electrical properties, defects, and devices from quenched and slow-cooled single crystals of CZTSe. The extent of disorder was characterized by Raman spectroscopy as well as x-ray diffraction, where the change in Cu-Zn order can be detected by a changing c/a ratio. Quenched samples show higher acceptor concentrations, lower hole mobilities, and a lower-energy photoluminescence (PL) peak than crystals cooled at slower rates, consistent with a reduction in the bandgap. In addition, samples quenched at the highest temperatures showed lower PL yield consistent with higher quantities of deep defects. Devices fabricated using slow-cooled CZTSe single crystals showed improved efficiencies, most notably with increased VOC; however, low temperature intensity-dependent photoluminescence measurements continue to indicate the existence of potential fluctuations. We discuss the possibility that potential fluctuations in slow-cooled samples may be related to the inability to achieve a long range order of the Cu-Zn sub-lattice resulting in local regions of high and low levels of cation order, and consequent local variations in the bandgap. The presence of significant potential fluctuations, even after the slow-cooling step, suggests the difficulty in eliminating band-tailing in this system, and thus, additional approaches may be needed for significant reduction of the VOC deficit.
Effects of production conditions on the properties of Cu/sub 6/PS/sub 5/Hal crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan'ko, V.V.; Studenyak, I.P.; D'ordyai, V.S.
1988-06-01
Cu/sub 6/PS/sub 5/Hal single crystals belong to the class of compounds having the argyrodite structure; they have high disordered-vacancy concentrations, so they show high ionic conductivity even at room temperature. Various values have been quoted for the conductivities of Cu/sub 6/PS/sub 5/Hal, which may be due to differing growth conditions. The authors have examined the effects of those conditions on some electrophysical and optical parameters. The crystals were grown by chemical transport reaction. Differences in Cu/sub 6/PS/sub 5/Hal production conditions were found to affect the absorption edge and broaden the exciton-impurity absorption band, whose intensity alters, as well as increasingmore » the Rayleigh flank intensity in the Raman spectrum on account of increased copper concentrations.« less
Fritzsche, J; Denysenko, D; Grzywa, M; Volkmer, D
2017-11-07
The synthesis and crystal structure of the mixed-valent perfluorinated metal-organic framework (Me 2 NH 2 )[CFA-13] (Coordination Framework Augsburg University-13), (Me 2 NH 2 )[CuCu(tfpc) 4 ] (H 2 -tfpc = 3,5-bis(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) is described. The copper-containing MOF crystallizes in the monoclinic crystal system within the space group P2 1 /n (no. 14) and the unit cell parameters are as follows: a = 22.3887(19), b = 13.6888(8), c = 21.1804(13) Å, β = 90.495(3)°, V = 6491.0(8) Å 3 . (Me 2 NH 2 )[CFA-13] features a porous 3-D structure constructed from two types of secondary building units (SBUs). Besides novel trinuclear [Cu(pz) 4 ] - coordination units, the network also exhibits Cu(ii) paddle-wheel SBUs. (Me 2 NH 2 )[CFA-13] is fully characterized by single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence, gas sorption measurements and pulse chemisorption experiments. M[CFA-13] (M = K + , Cs + ) frameworks were prepared by postsynthetic exchange of interchannel dimethylammonium cations. Moreover, it was shown that CO molecules can be selectively bound at Cu(i) sites of [Cu(pz) 4 ] - units, whereas Cu(ii) paddle-wheel units bind selectively NH 3 molecules.
Electromigration in epitaxial Cu(001) lines
NASA Astrophysics Data System (ADS)
Ramanath, G.; Kim, H.; Goindi, H. S.; Frederick, M. J.; Shin, C.-S.; Goswami, R.; Petrov, I.; Greene, J. E.
2002-04-01
We report the electromigration (EM) response of single-domain epitaxial Cu(001) lines on layers of Ta, TaN, and TiN. Epitaxial Cu(001) lines on nitride layers exhibit nearly two orders of magnitude higher mean-time-to-failure (MTTF) values than those on Ta, indicating the strong influence of the underlayer. The activation energy of EM for Cu on the nitrides is ˜0.8-1.2 eV, and that of Cu on Ta is ˜0.2 eV, for 200-300 °C. Our results also indicate that the MTTF values correlate inversely to the crystal quality of the Cu layers measured by X-ray diffraction. The EM resistance of epitaxial Cu lines with different crystal quality on TaN were measured to separate the effects of interface chemistry and crystal quality. While higher quality epitaxial films reveal a higher EM resistance, the magnitude of the change is smaller than that obtained by changing the interface chemistry. Epitaxial lines exhibit more than 3-4 orders of magnitude higher MTTF than polycrystalline lines on the same underlayer. Based upon our results, we propose that the Cu/underlayer interface chemistry and presence of grain boundary diffusion play important roles in unpassivated Cu films.
NASA Astrophysics Data System (ADS)
Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed
2013-12-01
Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.
NASA Astrophysics Data System (ADS)
Fukaya, Keisuke; Srifa, Atthapon; Isikawa, Eri; Naruke, Haruo
2010-08-01
The self-assembly reaction of tungstate and copper(II) in the presence of aniline (ANI) and phosphoric acid led to the formation of an anilinium (ANIH +) salt of mono-substituted Keggin-type polyoxotungstophosphate (ANIH) 5[PCu(H 2O)W 11O 39](ANI)·8H 2O ( 1), while the reaction of heptamolybdate in the coexistence of copper(II), phosphoric acid and ANI yielded an ANIH + salt of Strandberg-type pentamolybdodiphosphate, (ANIH) 2[(PO 4) 2Mo 5O 15{Cu(ANI) 2(H 2O)} 2](ANI)·2H 2O ( 2). These compounds were characterized by elemental analysis, infrared spectroscopy and X-ray single-crystal analysis. The compound 1, crystallizing in trigonal, P3¯,a = 13.883(4), c = 10.187(3) Å, Z = 1, consists of copper mono-substituted Keggin-typed [PCu(H 2O)W 11O 39] 5- anion surrounded by six ANI molecules, of which five are protonated (ANIH +). The compound 2, crystallizing in triclinic, P1¯,a = 13.98(2), b = 14.73(1), c = 16.24(1) Å, α = 111.27(3), β = 97.42(3), γ = 99.54(4)°, Z = 2, consists of Strandberg-type pentamolybdodiphospate [(PO 4) 2Mo 5O 15] 6- anions interconnected by two Cu(ANI) 2(H 2O) linkers to form a 1D-chain structure. A potentiostatic electrolysis of 1 in aqueous solution gave rise to electropolymerization of the ANIH + cations (and ANI) and deposition with the [PCu(H 2O)W 11O 39] 5- anion on an ITO electrode, forming a nano-structured polyaniline/[PCu(H 2O)W 11O 39] 5- hybrid thin film.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz
2017-10-01
A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.
Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan
2004-09-20
A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, A.; Pietraszko, A.; Kaynts, D.
2005-11-15
In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less
Low temperature scanning tunneling microscopy of metallic and organic nanostructures
NASA Astrophysics Data System (ADS)
Fölsch, Stefan
2006-03-01
Low temperature scanning tunneling microscopy (LT-STM) is capable of both characterizing and manipulating atomic-scale structures at surfaces. It thus provides a powerful experimental tool to gain fundamental insight into how electronic properties evolve when controlling size, geometry, and composition of nanometric model systems at the level of single atoms and molecules. The experiments discussed in this talk employ a Cu(111) surface onto which perfect nanostructures are assembled from native adatoms and organic molecules. Using single Cu adatoms as building blocks, we obtain zero-, one-, and two-dimensional quantum objects (corresponding to the discrete adatom, monatomic adatom chains, and compact adatom assemblies) with intriguing electronic properties. Depending on the structure shape and the number of incorporated atoms we observe the formation of characteristic quantum levels which merge into the sp-derived Shockley surface state in the limit of extended 2D islands; this state exists on many surfaces, such as Cu(111). Our results reveal the natural linkage between this traditional surface property, the quantum confinement in compact adatom structures, and the quasi-atomic state associated with the single adatom. In a second step, we study the interaction of pentacene (C22H14) with Cu adatom chains serving as model quantum wires. We find that STM-based manipulation is capable of connecting single molecules to the chain ends in a defined way, and that the molecule-chain interaction shifts the chain-localized quantum states to higher binding energies. The present system provides an instructive model case to study single organic molecules interacting with metallic nanostructures. The microscopic nature of such composite structures is of importance for any future molecular-based device realization since it determines the contact conductance between the molecular unit and its metal ''contact pad''.
Synthesis and Physical Properties of the Oxofluoride Cu2(SeO3)F2.
Mitoudi-Vagourdi, Eleni; Papawassiliou, Wassilios; Müllner, Silvia; Jaworski, Aleksander; Pell, Andrew J; Lemmens, Peter; Kremer, Reinhard K; Johnsson, Mats
2018-04-16
Single crystals of the new compound Cu 2 (SeO 3 )F 2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu 2 (SeO 3 )F 2 is isostructural with the previously described compounds Co 2 TeO 3 F 2 and CoSeO 3 F 2 . The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO 3 F 3 ] octahedra, within which [SeO 3 ] trigonal pyramids are present in voids and are connected to [CuO 3 F 3 ] octahedra by corner sharing. The presence of a single local environment in both the 19 F and 77 Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of μ eff ∼ 2.2 μ B . Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.; ...
2017-12-01
Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.
Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less
Tuning high-harmonic generation by controlled deposition of ultrathin ionic layers on metal surfaces
NASA Astrophysics Data System (ADS)
Aguirre, Néstor F.; Martín, Fernando
2016-12-01
High-harmonic generation (HHG) from semiconductors and insulators has become a very active area of research due to its great potential for developing compact HHG devices. Here we show, that by growing monolayers (ML) of insulators on single-crystal metal surfaces, one can tune the harmonic spectrum by just varying the thickness of the ultrathin layer, rather than the laser properties. This is shown from numerical solutions of the time-dependent Schrödinger equation for Cu(111)/n -ML NaCl systems (n =1 -50 ) based on realistic potentials. Remarkably, the harmonic cutoff increases linearly with n and as much as an order of magnitude when going from n =1 to 30, while keeping the laser intensity low and the wavelength in the near-infrared range. The origin of this behavior is twofold: the initial localization of electrons in a Cu-surface state and the reduction of electronic "friction" when moving from the essentially discrete energy spectrum associated with a few-ML system to the continuous spectrum (bands) inherent in extended periodic systems. Our findings are valid for both few- and multicycle IR pulses and wavelengths ˜1 -2 μ m .
Chan, Conrad; Scollard, Deborah A; McLarty, Kristin; Smith, Serena; Reilly, Raymond M
2011-08-17
Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N'''-tetraacetic acid (DOTA). The purity of 111In- and 64Cu-DOTA-trastuzumab Fab was measured by SDS-PAGE and HPLC. HER2 binding affinity was determined in saturation radioligand binding assays using SKBR-3 cells (1.3 × 106 HER2/cell). MicroSPECT/CT and microPET/CT were performed in athymic mice bearing s.c. BT-20 and MDA-MB-231 xenografts with low (0.5 to 1.6 × 105 receptors/cell), MDA-MB-361 tumors with intermediate (5.1 × 105 receptors/cell) or SKOV-3 xenografts with high HER2 expression (1.2 × 106 receptors/cell) at 24 h p.i. of 70 MBq (10 μg) of 111In-DOTA-trastuzumab Fab or 22 MBq (10 μg) of 64Cu-DOTA-trastuzumab Fab or irrelevant 111In- or 64Cu-DOTA-rituximab Fab. Tumor and normal tissue uptake were quantified in biodistribution studies. 111In- and 64Cu-DOTA-trastuzumab were > 98% radiochemically pure and bound HER2 with high affinity (Kd = 20.4 ± 2.5 nM and 40.8 ± 3.5 nM, respectively). MDA-MB-361 and SKOV-3 tumors were most clearly imaged using 111In- and 64Cu-DOTA-trastuzumab Fab. Significantly higher tumor/blood (T/B) ratios were found for 111In-DOTA-trastuzumab Fab than 111In-DOTA-rituximab Fab for BT-20, MDA-MB-231 and MDA-MB-361 xenografts, and there was a direct association between T/B ratios and HER2 expression. In contrast, tumor uptake of 64Cu-DOTA-trastuzumab Fab was significantly higher than 64Cu-DOTA-rituximab Fab in MDA-MB-361 tumors but no direct association with HER2 expression was found. Both 111In- and 64Cu-DOTA-trastuzumab Fab imaged small (5 to 10 mm) or larger (10 to 15 mm) MDA-MB-361 tumors. Higher blood, liver, and spleen radioactivity were observed for 64Cu-DOTA-trastuzumab Fab than 111In-DOTA-trastuzumab Fab. We conclude that 111In-DOTA-trastuzumab Fab was more specific than 64Cu-DOTA-trastuzumab Fab for imaging HER2-positive tumors, especially those with low receptor density. This was due to higher levels of circulating radioactivity for 64Cu-DOTA-trastuzumab Fab which disrupted the relationship between HER2 density and T/B ratios. Use of alternative chelators that more stably bind 64Cu may improve the association between T/B ratios and HER2 density for 64Cu-labeled trastuzumab Fab.
2011-01-01
Background Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. Methods Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N'''-tetraacetic acid (DOTA). The purity of 111In- and 64Cu-DOTA-trastuzumab Fab was measured by SDS-PAGE and HPLC. HER2 binding affinity was determined in saturation radioligand binding assays using SKBR-3 cells (1.3 × 106 HER2/cell). MicroSPECT/CT and microPET/CT were performed in athymic mice bearing s.c. BT-20 and MDA-MB-231 xenografts with low (0.5 to 1.6 × 105 receptors/cell), MDA-MB-361 tumors with intermediate (5.1 × 105 receptors/cell) or SKOV-3 xenografts with high HER2 expression (1.2 × 106 receptors/cell) at 24 h p.i. of 70 MBq (10 μg) of 111In-DOTA-trastuzumab Fab or 22 MBq (10 μg) of 64Cu-DOTA-trastuzumab Fab or irrelevant 111In- or 64Cu-DOTA-rituximab Fab. Tumor and normal tissue uptake were quantified in biodistribution studies. Results 111In- and 64Cu-DOTA-trastuzumab were > 98% radiochemically pure and bound HER2 with high affinity (Kd = 20.4 ± 2.5 nM and 40.8 ± 3.5 nM, respectively). MDA-MB-361 and SKOV-3 tumors were most clearly imaged using 111In- and 64Cu-DOTA-trastuzumab Fab. Significantly higher tumor/blood (T/B) ratios were found for 111In-DOTA-trastuzumab Fab than 111In-DOTA-rituximab Fab for BT-20, MDA-MB-231 and MDA-MB-361 xenografts, and there was a direct association between T/B ratios and HER2 expression. In contrast, tumor uptake of 64Cu-DOTA-trastuzumab Fab was significantly higher than 64Cu-DOTA-rituximab Fab in MDA-MB-361 tumors but no direct association with HER2 expression was found. Both 111In- and 64Cu-DOTA-trastuzumab Fab imaged small (5 to 10 mm) or larger (10 to 15 mm) MDA-MB-361 tumors. Higher blood, liver, and spleen radioactivity were observed for 64Cu-DOTA-trastuzumab Fab than 111In-DOTA-trastuzumab Fab. Conclusions We conclude that 111In-DOTA-trastuzumab Fab was more specific than 64Cu-DOTA-trastuzumab Fab for imaging HER2-positive tumors, especially those with low receptor density. This was due to higher levels of circulating radioactivity for 64Cu-DOTA-trastuzumab Fab which disrupted the relationship between HER2 density and T/B ratios. Use of alternative chelators that more stably bind 64Cu may improve the association between T/B ratios and HER2 density for 64Cu-labeled trastuzumab Fab. PMID:22214307
Roth, R. S.; Rawn, C. J.; Burton, B. P.; Beech, F.
1990-01-01
New data are presented on the phase equilibria and crystal chemistry of the binary systems Sr0-Bi203 and SrO-CuO and the ternary system SrO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for all the binary SrO-Bi2O3 phases, including a new phase identified as Sr6Bi2O9. The ternary system contains at least four ternary phases which can be formed in air at ~900 °C. These are identified as Sr2Bi2CuO6, Sr8Bi4Cu5O19+x, Sr3Bi2Cu2O8 and a solid solution (the Raveau phase) which, for equilibrium conditions at ~900 °C, corresponds approximately to the formula Sr1.8−xBi2.2+xCu1±x/2Oz.(0.0⩽x⩽~0.15). Superconductivity in this phase apparently occurs only in compositions that correspond to negative values of x. Compositions that lie outside the equilibrium Raveau-phase field often form nearly homogeneous Raveau-phase products. Typically this occurs after relatively brief heat treatments, or in crystallization of a quenched melt. PMID:28179779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.
Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less
Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study
NASA Astrophysics Data System (ADS)
Acharya, Shree Ram; Shah, Syed Islamuddin; Rahman, Talat S.
2017-08-01
We elucidate the diffusion kinetics of a heteroepitaxial system consisting of two-dimensional small (1-8 atoms) Cu islands on the Ni(111) surface at (100-600) K using the Self-Learning Kinetic Monte Carlo (SLKMC-II) method. Study of the statics of the system shows that compact CuN (3≤N≤8) clusters made up of triangular units on fcc occupancy sites are the energetically most stable structures of those clusters. Interestingly, we find a correlation between the height of the activation energy barrier (Ea) and the location of the transition state (TS). The Ea of processes for Cu islands on the Ni(111) surface are in general smaller than those of their counterpart Ni islands on the same surface. We find this difference to correlate with the relative strength of the lateral interaction of the island atoms in the two systems. While our database consists of hundreds of possible processes, we identify and discuss the energetics of those that are the most dominant, or are rate-limiting, or most contributory to the diffusion of the islands. Since the Ea of single- and multi-atom processes that convert compact island shapes into non-compact ones are larger (with a significantly smaller Ea for their reverse processes) than that for the collective (concerted) motion of the island, the later dominate in the system kinetics - except for the cases of the dimer, pentamer and octamer. Short-jump involving one atom, long jump dimer-shearing, and long-jump corner shearing (via a single-atom) are, respectively, the dominating processes in the diffusion of the dimer, pentamer and octamer. Furthermore single-atom corner-rounding are the rate-limiting processes for the pentamer and octamer islands. Comparison of the energetics of selected processes and lateral interactions obtained from semi-empirical interatomic potentials with those from density functional theory show minor quantitative differences and overall qualitative agreement.
Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.
1990-04-01
A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.
Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C
2016-01-19
The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.
NASA Astrophysics Data System (ADS)
Gatteschi, Dante; Zanchini, Claudia; Kahn, Olivier; Pei, Yu
1989-08-01
Single-crystal EPR spectra of the heterobimetallic alternating double-chain compound MnCu(obp) (H 2O) 3·H 2O (obp=oxamido bis (N,N'-propionato)) were recorded in the 300-20 K range. Analysis of the spectra indicate a substantially dipolar-determined linewidth with enhancement of the secular term of the second moment due to spin diffusion effects. The anisotropic shifts in the resonance field observed in low-temperature spectra revealed that interchain interactions are relevant in determining the preferred spin orientations.
NASA Astrophysics Data System (ADS)
Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.; Kamchatnaya, S. N.; Dobrovolskiy, O. V.
2018-02-01
We reveal that the temperature dependence of the basal-plane normal-state electrical resistance of optimally doped YBa2Cu3O7-δ single crystals can be with great accuracy approximated within the framework of the model of s-d electron-phonon scattering. This requires taking into account the fluctuation conductivity whose contribution exponentially increases with decreasing temperature and decreases with an increase of oxygen deficiency. Room-temperature annealing improves the sample and, thus, increases the superconducting transition temperature. The temperature of the 2D-3D crossover decreases during annealing.
Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge
Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; ...
2015-06-27
An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO 2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.
High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolewski, R.; Gierlowski, P.; Kula, W.
1991-03-01
This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.
Electronic structure in high temperature superconducting oxides
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.
1991-08-01
We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.
NASA Astrophysics Data System (ADS)
Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao
2018-05-01
Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).
NASA Astrophysics Data System (ADS)
Yeon, Jeongho; Kim, Sang-Hwan; Green, Mark A.; Bhatti, Kanwal Preet; Leighton, C.; Shiv Halasyamani, P.
2012-12-01
Crystals and polycrystalline powders of two new oxide materials, Tl4CuTeO6 and Tl6CuTe2O10, have been synthesized by hydrothermal and solid-state methods. The materials were structurally characterized by single-crystal X-ray diffraction. Tl4CuTeO6 and Tl6CuTe2O10 exhibit one dimensional anionic slabs of [CuTeO6]4- and [CuTe2O10]6-, respectively. Common to both slabs is the occurrence of Cu2+O4 distorted squares and Te6+O6 octahedra. The slabs are separated by Tl+ cations. For Tl4CuTeO6, magnetic measurements indicate a maximum at ∼8 K in the temperature dependence of the susceptibility. Low temperature neutron diffraction data confirm no long-range magnetic ordering occurs and the susceptibility was adequately accounted for by fits to a Heisenberg alternating chain model. For Tl6CuTe2O10 on the other hand, magnetic measurements revealed paramagnetism with no evidence of long-range magnetic ordering. Infrared, UV-vis spectra, thermogravimetric, and differential thermal analyses are also reported. Crystal data: Tl4CuTeO6, Triclinic, space group P-1 (No. 2), a=5.8629(8) Å, b=8.7848(11) Å, c=9.2572(12) Å, α=66.0460(10), β=74.2010(10), γ=79.254(2), V=417.70(9) Å3, and Z=2; Tl6CuTe2O10, orthorhombic, space group Pnma (No. 62), a=10.8628(6) Å, b=11.4962(7) Å, c=10.7238(6) Å, V=1339.20(13) Å3, and Z=4.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.
Pauling, L
1988-06-01
Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.
Pauling, Linus
1988-01-01
Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929
New investigations of the guanine trichloro cuprate(II) complex crystal
NASA Astrophysics Data System (ADS)
Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir
2017-01-01
Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.
Hydrogen induced fracture characteristics of single crystal nickel-based superalloys
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Wilcox, Roy C.
1990-01-01
A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrozzo, P.; Tumino, F.; Facibeni, A.
We present a method for the preparation of bulk molybdenum tips for Scanning Tunneling Microscopy and Spectroscopy and we assess their potential in performing high resolution imaging and local spectroscopy by measurements on different single crystal surfaces in UHV, namely, Au(111), Si(111)-7 × 7, and titanium oxide 2D ordered nanostructures supported on Au(111). The fabrication method is versatile and can be extended to other metals, e.g., cobalt.
Single domain YBa2Cu3Oy thick films on metallic substrates
NASA Astrophysics Data System (ADS)
Reddy, E. S.; Noudem, J. G.; Goodilin, E. A.; Tarka, M.; Schmitz, G. J.
2003-03-01
The fabrication of single domain YBa2Cu3Oy (123) thick films (10-100 mum) on metallic substrates is reported. The process involves the formation of the 123 phase by a peritectic reaction between an air-brushed dense Y2BaCuO5 (211) layer on a Ag12Pd substrate and infiltrated liquid phases containing barium cuprates and copper oxides. Single domain growth is achieved by seeding the green films with a c-axis oriented NdBa2Cu3Oy crystal prior to processing. The maximum processing temperatures are lowered to 970 °C by modifying the characteristics of the liquid phases meant for infiltration by addition of Ag powder. The fabrication technique, processing conditions for single domain growth and the resulting microstructures are discussed.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Alavipour, Ehsan
2015-11-01
Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.
Growth of <111>-oriented Cu layer on thin TaWN films
NASA Astrophysics Data System (ADS)
Takeyama, Mayumi B.; Sato, Masaru
2017-07-01
In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.
Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia
2003-09-22
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.
Oxygen-Promoted Methane Activation on Copper
Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang; ...
2017-11-01
The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less
Oxygen-Promoted Methane Activation on Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang
The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less
Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan; ...
2017-08-21
The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan
The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less
NASA Astrophysics Data System (ADS)
Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.
2012-06-01
Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).
NASA Astrophysics Data System (ADS)
Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos
2018-05-01
Many macroscopic behaviors of the martensitic transformations are difficult to explain in the frame of the classical first-order phase transformations, without including the role of point and crystallographic defects (dislocations, stacking faults, interfaces, precipitates). A few major examples are outlined in the present study. First, the elementary reason for thermoelasticity and pseudoelasticity in single crystals of Cu-Zn-Al (β-18R transformation) arises from the interaction of a growing martensite plate with the existing dislocations in the material. Secondly, in Cu-Al-Ni, the twinned hexagonal (γ') martensite produces dislocations inhibiting this transformation and favoring the appearance of 18R in subsequent transformation cycles. Thirdly, single crystals of Cu-Al-Be visualize, via enhanced stress, a transformation primarily to 18R, a structural distortion of the 18R structure, and an additional transformation to another martensitic phase (i.e., 6R) with an increased strain. A dynamic behavior in Ni-Ti is also analyzed, where defects alter the pseudoelastic behavior after cycling.
NASA Astrophysics Data System (ADS)
Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.
2017-09-01
We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.
NASA Astrophysics Data System (ADS)
Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.
2005-10-01
Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima
2016-08-01
Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu, E-mail: wangyu1012@hit.edu.cn; Chen, Gang, E-mail: gchen@hit.edu.cn; Han, Li
2013-10-15
In this study, we investigated the synthesis of CuO microrods by simple calcination of copper-based coordination polymer particles (Cu-CPPs) at high temperature in air. The photocatalytic activity of the CuO microrods was tested by the decomposition of aqueous solution of RhB, which was completely decomposed by irradiation with light. To analyze the relationship of metal ions and ligands in the Cu-CPPs, the single crystal of [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) (terpyOH=4′-hydroxy-2,2′:6′,2″-terpyridine, BTC=1,3,5-benzene tricarboxylate) was first prepared and characterized by X-ray single crystal structural analysis. A variety of hydrogen bonds constructing the 3D complex structure in [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) were observed.more » - Graphical abstract: Demonstrating a general method to synthesize CuO microrods via simple calcination of Cu-CPPs and Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC)·2H{sub 2}O constructed by hydrogen bonding. Display Omitted - Highlights: • The formation of microrods CuO from thermal treatment of Cu-CPPs through an “escape-by-crafty-scheme” strategy has been studied. • Determination of Cu(II) coordination modes in Cu-CPPs from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC) 2H{sub 2}O. • Invested the behave of hydrogen bonding to construct the 3D complex structure. • Commendable photodegradation performance was observed.« less
Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl; Galdamez, A., E-mail: agaldamez@uchile.cl; Manriquez, V.
2013-02-15
A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4}more » were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.« less
NASA Astrophysics Data System (ADS)
Kamat, Vinayak; Kumara, Karthik; Naik, Krishna; Kotian, Avinash; Netalkar, Priya; Shivalingegowda, Naveen; Neratur, Krishnappagowda Lokanath; Revankar, Vidyanand
2017-12-01
In the present work, Cu(II) complexes of 2-(2-benzo[d]thiazol-2-yl)hydrazono)propan-1-ol (L1) and 3-(hydroxyimino)-2-butanone-2-(1H-benzo[d]thiazol-2-yl)hydrazone (L2) are synthesized and characterized by various spectro-analytical techniques. The structure of Cu(II) complex of L1 i.e., [CuL1Cl2], is unambiguously determined by single crystal X-ray diffraction method. While similar efforts were unsuccessful in the case of Cu(II) complex of L2 i.e., [CuL2Cl2]. Hence, to avail the structural facts, various cationic/anionic fragments or adducts formed during positive/negative mode electrospray ionization (ESI) of CuL1Cl2 and CuL2Cl2 have been identified with the help of their charge, monoisotopic masses and isotopic distributions. The similarity in the ESI behavior of two complexes has inferred their structural resemblance, which is further supported by DFT optimized structures, EPR spectral studies and analytical measurements. The EPR spectral behavior (g|| > g⊥ > 2.02) of the complexes are attributed to an axial symmetry with the dx2-y2 ground state having square pyramidal Cu(II) ion. CuL1Cl2 has crystallized in monoclinic crystal system in P21/c space group. The molecular complex has ring-metal (Cg-Me) interactions of the type Cg···>Cu, which contributes to the crystal packing. The Cl⋯H (30.6%) interactions have the major contribution among all intermolecular contacts and have played a vital role in the stabilization of the molecular structure, which is extended to 3D network through Csbnd H···Cg and Cg-Cg interactions.
Surface studies of anatase and rutile single crystals as model solar cell materials
NASA Astrophysics Data System (ADS)
Mallick, Asim K.
The adsorption of ionic and molecular species on anatase and rutile TiO[2] single crystals has been investigated using synchrotron radiation photoemission spectroscopy. For clean single crystal anatase (101) and (001), and rutile (110) surfaces, a resonant enhancement of the O 2p valence band photoemission intensity is observed as the photon energy is swept through the Ti 3p→3d and 3p→4s optical transition energy, which indicates strong hybridization between Ti and O ions. A small defect peak is observed around 1.1 eV binding energy (B.E.) with respect to the Fermi energy on both anatase (101) and (001) surfaces and at 0.9 eV B.E. on the rutile (110) surface following annealing to 650 °C in UHV. This indicates the surfaces are reduced giving rise to surface Ti[3+]. The adsorption of Cul on single crystal TiO[2] surfaces has been studied using resonant photoemission spectroscopy. The thickness of the Cul overlayer was estimated using core level photoemission via a simple two-layer model and through simulated Auger spectra using the Simulation of Electron Spectra for Surface Analysis (SESSA) database. Photoemission spectra taken at the Ti 3p→3d/4s and Cu 3p→3d/4s optical energies show evidence of strong resonances. In case of the Cu resonances, a particularly strong resonance of a satellite structure at 16 eV B.E. at a photon energy of 77 eV is observed. At the same photon energy an antiresonance is found for valence band features associated with the CuI overlayer indicating a strong ligand-hole screening effect. Band bending effects are observed at both CuI anatase and CuI rutile interfaces, consistent with the formation of a p - n junction. Water adsorption on the single crystal anatase TiO[2] (101) surface has been investigated using ultraviolet photoemission spectroscopy (UPS) at room temperature in order to understand the fundamental interaction of water with anatase surfaces. Following water adsorption the spectra contain features at 6.04 and 10.2 eV B.E. which are identified as hydroxyl (OH) species indicating water is adsorbed in a dissociative mode. The adsorption of L-phenylglycine on single ciystal anatase TiO[2] (101) and (001) surfaces has also been studied using synchrotron radiation UPS. Phenylglycine adsorption features are assigned by comparison with studies of gas-phase glycine, UPS spectra of glycine on rutile TiO[2] (110) and with the gas-phase benzene UPS spectrum.
Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface
Wandelt, Klaus
2011-01-01
Summary We present here the first results on the self-assembly of tubules of natural wax from lotus leaves on a single crystal Au(111) surface. A comparison of the tubule growth on Au(111) to that on HOPG is discussed. Although the tubule formation on both Au(111) and HOPG takes place on an intermediate wax film which should mask the substrate properties, the tubule orientations differ. In contrast to a vertical tubule orientation on HOPG, the tubules lie flat on Au(111). Taking into account the physical properties of HOPG and Au(111), we put forward a hypothesis which can explain the different tubule orientations on both substrates. PMID:21977438
Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soy, Esin; Guisinger, Nathan P.; Trenary, Michael
We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less
Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)
Soy, Esin; Guisinger, Nathan P.; Trenary, Michael
2017-07-05
We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less
Subbarao, Udumula; Roy, Soumyabrata; Sarma, Saurav Ch; Sarkar, Sumanta; Mishra, Vidyanshu; Khulbe, Yatish; Peter, Sebastian C
2016-10-17
Single crystals (SCs) of the compounds Eu 3 Ag 2 In 9 and EuCu 2 Ge 2 were synthesized through the reactions run in liquid indium. Eu 3 Ag 2 In 9 crystallizes in the La 3 Al 11 structure type [orthorhombic space group (SG) Immm] with the lattice parameters: a = 4.8370(1) Å, b = 10.6078(3) Å, and c = 13.9195(4) Å. EuCu 2 Ge 2 crystallizes in the tetragonal ThCr 2 Si 2 structure type (SG I4/mmm) with the lattice parameters: a = b = 4.2218(1) Å, and c = 10.3394(5) Å. The crystal structure of Eu 3 Ag 2 In 9 is comprised of edge-shared hexagonal rings consisting of indium. The one-dimensional chains of In 6 rings are shared through the edges, which are further interconnected with other six-membered rings forming a three-dimensional (3D) stable crystal structure along the bc plane. The crystal structure of EuCu 2 Ge 2 can be explained as the complex [CuGe] (2+δ)- polyanionic network embedded with Eu ions. These polyanionic networks present in the crystal structure of EuCu 2 Ge 2 are shared through the edges of the 011 plane containing Cu and Ge atoms, resulting in a 3D network. The structural relationship between Eu 3 T 2 In 9 and EuCu 2 Ge 2 has been discussed in detail, and we conclude that Eu 3 T 2 In 9 is the metal deficient variant of EuCu 2 Ge 2 . The magnetic susceptibilities of Eu 3 T 2 In 9 (T = Cu and Ag) and EuCu 2 Ge 2 were measured between 2 and 300 K. In all cases, magnetic susceptibility data followed Curie-Weiss law above 150 K. Magnetic moment values obtained from the measurements indicate the probable mixed/intermediate valent behavior of the europium atoms, which was further confirmed by X-ray absorption studies and bond distances around the Eu atoms. Electrical resistivity measurements suggest that Eu 3 T 2 In 9 and EuCu 2 Ge 2 are metallic in nature.
Lin, Wenwen; Stoumpos, Constantinos C; Kontsevoi, Oleg Y; Liu, Zhifu; He, Yihui; Das, Sanjib; Xu, Yadong; McCall, Kyle M; Wessels, Bruce W; Kanatzidis, Mercouri G
2018-02-07
Cu 2 I 2 Se 6 is a new wide-bandgap semiconductor with high stability and great potential toward hard radiation and photon detection. Cu 2 I 2 Se 6 crystallizes in the rhombohedral R3̅m space group with a density of d = 5.287 g·cm -3 and a wide bandgap E g of 1.95 eV. First-principles electronic band structure calculations at the density functional theory level indicate an indirect bandgap and a low electron effective mass m e * of 0.32. The congruently melting compound was grown in centimeter-size Cu 2 I 2 Se 6 single crystals using a vertical Bridgman method. A high electric resistivity of ∼10 12 Ω·cm is readily achieved, and detectors made of Cu 2 I 2 Se 6 single crystals demonstrate high photosensitivity to Ag Kα X-rays (22.4 keV) and show spectroscopic performance with energy resolutions under 241 Am α-particles (5.5 MeV) radiation. The electron mobility is measured by a time-of-flight technique to be ∼46 cm 2 ·V -1 ·s -1 . This value is comparable to that of one of the leading γ-ray detector materials, TlBr, and is a factor of 30 higher than mobility values obtained for amorphous Se for X-ray detection.
The complexity of non-Schmid behavior in the CuZnAl shape memory alloy
NASA Astrophysics Data System (ADS)
Alkan, S.; Ojha, A.; Sehitoglu, H.
2018-05-01
The paper addresses one of the most important yet overlooked phenomenon in shape memory research- the plastic slip response. We show that the slip response is highly crystal orientation dependent and we demonstrate the precise reasons behind such complex response. The fractional dislocations on <111> {112} or <111> {011} systems can be activated depending on the sample orientation and solutions are derived for the variations in disregistries and dislocation core spreadings. This leads to the calculation of critical resolved shear stress in close agreement with experimental trends. The results show considerable dependence of the flow behavior on the non-Schmid stress components and the proposed yield criterion captures the role of stress tensor components.
Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan
2014-04-07
Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.
Susner, Michael A.; Chyasnavichyus, Marius; Puretzky, Alexander A.; ...
2017-07-07
Single crystals of the van der Waals layered ferrielectric material CuInP 2S 6 spontaneously phase separate when synthesized with Cu deficiency. In this paper, we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInP 2S 6) and paraelectric (In 4/3P 2S 6) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient Cu 1–xIn 1+x/3P 2S 6 forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu + and In 3+ become mobile, while P 2S 6 4–more » anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInP 2S 6 phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Finally, intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susner, Michael A.; Chyasnavichyus, Marius; Puretzky, Alexander A.
Single crystals of the van der Waals layered ferrielectric material CuInP 2S 6 spontaneously phase separate when synthesized with Cu deficiency. In this paper, we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInP 2S 6) and paraelectric (In 4/3P 2S 6) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient Cu 1–xIn 1+x/3P 2S 6 forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu + and In 3+ become mobile, while P 2S 6 4–more » anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInP 2S 6 phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Finally, intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.« less
Thermodynamic evidence for the Bose glass transition in twinned YBa 2 Cu 3 O 7 - δ crystals
Pérez-Morelo, D. J.; Osquiguil, E.; Kolton, A. B.; ...
2015-07-21
We used a micromechanical torsional o scillator to measure the magnetic response of a twinned YBaBa2Cu3O7-δ single crystal disk near the Bose glass transition. We observe an anomaly in the temperature dependence of the magnetization consistent with the appearance of a magnetic shielding perpendicular to the correlated pinning of the twin boundaries. This effect is related to the thermodynamic transition from the vortex liquid phase to a Bose glass state.
Hoffmann, S K; Goslar, J; Lijewski, S
2011-08-31
Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.
NASA Astrophysics Data System (ADS)
Aruta, C.; Licci, F.; Zappettini, A.; Bolzoni, F.; Rastelli, F.; Ferro, P.; Besagni, T.
2005-10-01
Films of (C4H9NH3)2MCl4 (M=Cu and Sn) organic-inorganic hybrid perovskites have been deposited in-situ by a single-source thermal ablation technique on glassy, crystalline and polymeric substrates. Independently of the substrate, the films were well crystallized, c-axis oriented and with a narrow rocking curve of the (0010) reflection (full width at half maximum <1°). The (0 0 ℓ) reflections were consistent with those of the bulk orthorhombic phases and the “c” lattice parameters were 30.85±0.05 and 32.35±0.05 Å, for the Cu- and the Sn-compound, respectively. (C4H9NH3)2CuCl4 films had an optical absorption peak at 375 nm at room temperature. From the magnetic point of view they act as layered nanocomposites with a dominant ferromagnetic component localized in planes (2D magnetism). Tc was 7.3±0.1 K and a moderate easy-plane anisotropy was observed. The photoluminescence spectra of typical (C4H9NH3)2SnCl4 films at 12 K had a broad yellow band, which did not correspond to any significant peak in the absorption spectrum. The films were semiconducting down to 250 K or, in the case of the best samples, down to 200 K and became insulating at lower temperature. The resistivity of the best films was (5±1) 104 Ω cm at 300 K, and the energy gap was 1.11 eV.
Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy
NASA Astrophysics Data System (ADS)
Lu, Guangyuan; Wu, Tianru; Yuan, Qinghong; Wang, Huishan; Wang, Haomin; Ding, Feng; Xie, Xiaoming; Jiang, Mianheng
2015-01-01
Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu-Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.
Single crystalline thin films as a novel class of electrocatalysts
Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav
2013-01-01
The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal filmsmore » yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.« less
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.
1996-07-01
The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.
NASA Astrophysics Data System (ADS)
Pastoriza, H.; Arribere, A.; Goffman, M. F.; de la Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1994-02-01
AC susceptibility and dc magnetization measurements on Bi 2Sr 2CaCu 2O 8 (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned.
NASA Astrophysics Data System (ADS)
Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1991-01-01
We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.
NASA Astrophysics Data System (ADS)
Hsu, J. W. P.; Mitzi, D. B.; Kapitulnik, A.; Lee, Mark
1991-10-01
Measurements of the in-plane resistive transition of Bi2Sr2CaCu2O(8+delta) single crystals in perpendicular magnetic fields reveal that in oxygen-reduced samples a giant resistance maximum evolves with field. This is not seen in oxygenated samples with similar metallic normal resistivities. As the peak resistivity may exceed the normal resistivity, it cannot arise from ordinary vortex-motion dissipation. A model is proposed where the excess resistance results from nonrigid vortex motion coupling the out-of-plane dissipation to the in-plane resistance at temperatures where pinning effects are negligible.
Loss of interplane correlation in Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Arribére, A.; Pastoriza, H.; Goffman, M. F.; de La Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1993-09-01
By means of dc magnetization and the ac response of Bi2Sr2CaCu2O6 single crystals it is shown that at the dc irreversibility line the vortex system has no long-range order in the c direction. We find an energy dissipation peak at 7 Hz for interplane current that takes place at a temperature well below the irreversibility line. In this sense, the irreversibility line marks the temperature where quasi-two-dimensional vortices are depinned. The experimental data clearly show the different nature of two dissipation peaks in the susceptibility: one related to the interplane currents and the other associated with the intraplane ones.
NASA Astrophysics Data System (ADS)
Sambasiva Rao, P.; Rajendiran, T. M.; Venkatesan, R.; Madhu, N.; Chandrasekhar, A. V.; Reddy, B. J.; Reddy, Y. P.; Ravikumar, R. V. S. S. N.
2001-12-01
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are gxx=2.188, gyy=2.032, gzz=2.373, Axx=50 G, Ayy=65.0 G and Azz=80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...
2017-06-13
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Dang, Nhan C; Dreger, Zbigniew A; Gupta, Yogendra M; Hooks, Daniel E
2010-11-04
Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar.
Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems
NASA Astrophysics Data System (ADS)
Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon
2017-04-01
Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.
Hot seeding for the growth of c-axis-oriented Nd-Ba-Cu-O
NASA Astrophysics Data System (ADS)
Chauhan, H. S.; Murakami, M.
2000-06-01
The fabrication of large single-grain RE-Ba-Cu-O (RE denotes rare earth elements) is essential for bulk applications. In the present study, we report on a hot-seeding method for growing Nd-Ba-Cu-O with Nd123 seed crystals. We made an arrangement, in which the Nd123 seed crystal can be transported to the centre of the furnace with a rod through a hole in a rubber cork and insulating stopper. The seed was placed in a small dip made in the rod, which can be turned to drop the seed on the sample. The advantage of this method is that perturbation in the growth conditions such as temperature and oxygen partial pressure can be minimized. Using this method we could grow large single-domain c-axis-oriented samples with the surface area larger than 3 cm×3 cm.
Marcenat, C.; Demuer, A.; Beauvois, K.; Michon, B.; Grockowiak, A.; Liang, R.; Hardy, W.; Bonn, D. A.; Klein, T.
2015-01-01
The recent discovery of a charge order in underdoped YBa2Cu3Oy raised the question of the interplay between superconductivity and this competing phase. Understanding the normal state of high-temperature superconductors is now an essential step towards the description of the pairing mechanism in those materials and determining the upper critical field is therefore of fundamental importance. We present here a calorimetric determination of the field–temperature phase diagram in underdoped YBa2Cu3Oy single crystals. We show that the specific heat saturates in high magnetic fields. This saturation is consistent with a normal state without any significant superconducting contribution and a total Sommerfeld coefficient γN∼6.5±1.5 mJ mol−1 K−2 putting strong constraints on the theoretical models for the Fermi surface reconstruction. PMID:26294047
NASA Astrophysics Data System (ADS)
Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah
2017-08-01
Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.
NASA Astrophysics Data System (ADS)
Jundale, D. M.; Pawar, S. G.; Patil, S. L.; Chougule, M. A.; Godse, P. R.; Patil, V. B.
2011-10-01
The nanocrystalline CuO thin films were prepared on glass substrates by the sol-gel method. The structural, morphological, electrical and optical properties of CuO thin films, submitted to an annealing treatment in the 400-700 °C ranges are studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe Technique and UV-visible spectroscopic. XRD measurements show that all the films are crystallized in the monoclinic phase and present a random orientation. Four prominent peaks, corresponding to the (110) phase (2θ≈32.70°), (002) phase (2θ≈35.70°), (111) phase (2θ≈38.76°) and (202) phase (2θ≈49.06°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the microstructure, electrical and optical properties. The optical band gap energy decreases with increasing annealing temperature. These mean that the optical quality of CuO films is improved by annealing.
The microstructure, mechanical stress, texture, and electromigration behavior of Al-Pd alloys
NASA Astrophysics Data System (ADS)
Rodbell, K. P.; Knorr, D. B.; Mis, J. D.
1993-06-01
As the minimum feature size of interconnect lines decreases below 0.5 urn, the need to control the line microstructure becomes increasingly important. The alloy content, deposition process, fabrication method, and thermal history all determine the microstructure of an interconnect, which, in turn, affects its performance and reliability. The motivation for this work was to characterize the microstructure of various sputtered Al-Pd alloys (Al-0.3wt.%Pd, Al-2Cu-0.3Pd, and Al-0.3Nb-0.3Pd) vs sputtered Al-Cu control samples (Al-0.5Cu and Al-2Cu) and to assess the role of grain size, mechanical stress, and crystallographic texture on the electromigration behavior of submicrometer wide lines. The grain size, mechanical stress, and texture of blanket films were measured as a function of annealing. The as-deposited film stress was tensile and followed a similar stress history on heating for all of the films; on cooling, however, significant differences were observed between the Al-Pd and Al-Cu films in the shape of their stress-temperature-curves. A strong (111) crystallographic texture was typically found for Al-Cu films deposited on SiO2. A stronger (111) texture resulted when Al-Cu was deposited on 25 nm titanium. Al-0.3Pd films, however, exhibited either a weak (111) or (220) texture when deposited on SiO2, which reverted to a strong (111) texture when deposited on 25 nm titanium. The electromigration lifetimes of passivated, ≈0.7 μm wide lines at 250°C and 2.5 × 106 A/cm2 for both single and multi-level samples (separated with W studs) are reported. The electromigration behavior of Al-0.3Pd was found to be less dependent on film microstructure than on the annealing atmosphere used, i.e. forming gas (90% N2-10%H2) annealed Al-0.3Pd films were superior to all of the alloys investigated, while annealing in only N2 resulted in poor lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haussühl, Eiken, E-mail: haussuehl@kristall.uni-frankfurt.de; Schreuer, Jürgen; Wiehl, Leonore
2014-04-01
Large single crystals of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O with dimensions up to 40×40×30 mm{sup 3} were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic propertiesmore » with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine–CuCl{sub 2}–water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range. - Graphical abstract: Single crystal of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O. - Highlights: • Large single crystals (40 ×40 ×30 mm{sup 3}) of [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O were grown. • The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies. • Thermal expansion (95 K–305 K) and heat capacity (113 K–323 K) were determined. • The orthorhombic structure shows pseudo-tetragonal elastic anisotropy at ambient conditions. • The crystal structure is stable in the investigated range (1–1600 bar, 95–303 K)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kussainova, Ardak M.; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; Akselrud, Lev G.
2016-01-15
The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters formore » Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.« less
Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size
NASA Astrophysics Data System (ADS)
Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo
2018-02-01
Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.
Guo, Chen; Wei, Shuxian; Zhou, Sainan; Zhang, Tian; Wang, Zhaojie; Ng, Siu-Pang; Lu, Xiaoqing; Wu, Chi-Man Lawrence; Guo, Wenyue
2017-08-09
Surface modification by metal doping is an effective treatment technique for improving surface properties for CO 2 reduction. Herein, the effects of doped Pd, Ru, and Cu on the adsorption, activation, and reduction selectivity of CO 2 on CeO 2 (111) were investigated by periodic density functional theory. The doped metals distorted the configuration of a perfect CeO 2 (111) by weakening the adjacent Ce-O bond strength, and Pd doping was beneficial for generating a highly active O vacancy. The analyses of adsorption energy, charge density difference, and density of states confirmed that the doped metals were conducive for enhancing CO 2 adsorption, especially for Cu/CeO 2 (111). The initial reductive dissociation CO 2 → CO* + O* on metal-doped CeO 2 (111) followed the sequence of Cu- > perfect > Pd- > Ru-doped CeO 2 (111); the reductive hydrogenation CO 2 + H → COOH* followed the sequence of Cu- > perfect > Ru- > Pd-doped CeO 2 (111), in which the most competitive route on Cu/CeO 2 (111) was exothermic by 0.52 eV with an energy barrier of 0.16 eV; the reductive hydrogenation CO 2 + H → HCOO* followed the sequence of Ru- > perfect > Pd-doped CeO 2 (111). Energy barrier decomposition analyses were performed to identify the governing factors of bond activation and scission along the initial CO 2 reduction routes. Results of this study provided deep insights into the effect of surface modification on the initial reduction mechanisms of CO 2 on metal-doped CeO 2 (111) surfaces.
Optical characteristics of Tl0.995Cu0.005InS2 single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.
2013-04-01
Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.
NASA Astrophysics Data System (ADS)
Hadj Sadok, Ines Ben; Hajlaoui, Fadhel; Ayed, Hanen Ben; Ennaceur, Nasreddine; Nasri, Moncef; Audebrand, Nathalie; Bataille, Thierry; Zouari, Nabil
2018-09-01
The directed synthesis of non-centrosymmetric copper (II) bromo-complex has been achieved through the use of homochiral organic molecule. Reaction containing (S)-(-)-3-aminoquinuclidine, CuBr2, HBr and H2O were subjected to mild hydrothermal conditions, resulting in the growth of single crystals of [(S)sbnd C7H16N2][CuBr4]. The compound crystallizes in the non polar space group P212121(No. 19), which exhibits the enantiomorphic crystal class 222 (D2). In the crystal structure, the tetrabromocuprate(II) anion is connected to three organic cations through Nsbnd H…Br hydrogen bonds to form cation-anion-cation molecular units, which are held together by means of offset face-to-face interactions to give one-dimensional chains. DSC measurements indicated that the compound [(S)sbnd C7H16N2][CuBr4] underwent a reversible phase transition at 80 °C. [(S)sbnd C7H16N2][CuBr4] is more than 1.2 times as efficient as KDP in second harmonic generation; making it a potentially attractive material for non-linear optical applications. The synthesized product was also screened for in vitro antioxidant and antimicrobial activities, while showing favorable antioxidant activities against DPPH as well as the discoloration of β-carotene.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-04-19
Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.
Refractive indices of CaF2 single crystals under elastic shock loading
NASA Astrophysics Data System (ADS)
Li, Y.; Zhou, X. M.; Liu, C. L.; Luo, S. N.
2017-07-01
Refractive indices and Hugoniots of CaF2 single crystals are investigated by laser displacement interferometry under shock loading below 5 GPa. Birefringence is observed for the [110] loading. We obtain the Hugoniot equation of states for [100], [110] and [111], and refractive indices for these orientations with consideration of their polarization. The measured refractive indices are in reasonable agreement with predictions based on the piezo-optic theory, and are used to refine the elasto-optic coefficients.
Photonic crystal microprisms obtained by carving artificial opals
NASA Astrophysics Data System (ADS)
Fenollosa, R.; Ibisate, M.; Rubio, S.; López, C.; Meseguer, F.; Sánchez-Dehesa, J.
2003-01-01
A method for fabrication of photonic crystal prisms is demonstrated. The procedure is based on micromanipulation techniques, here applied to artificial opals. By means of a microgrinder an opal prism comprising a single crystal (several tens of microns in size) has been carved with three different faces: (111), (110), and (100). The faces were morphologically characterized by scanning electron microscopy and their optical reflectance spectra measured and compared with the theoretical band structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. F.; Chua, S. J.; Hu, G. X.
2007-10-15
X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate whilemore » a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)« less
Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals
NASA Astrophysics Data System (ADS)
Raadik, Taavi; Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M.; Ernits, K.; Bleuse, J.
2017-03-01
In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu2ZnSnS4 (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be ET (PO) =65±9 meV for partially ordered and ET (PD) =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers' recombination dynamics at low temperature.
Quality of Heusler single crystals examined by depth-dependent positron annihilation techniques
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Bauer, A.; Böni, P.; Ceeh, H.; Eijt, S. W. H.; Gigl, T.; Pfleiderer, C.; Piochacz, C.; Neubauer, A.; Reiner, M.; Schut, H.; Weber, J.
2015-06-01
Heusler compounds exhibit a wide range of different electronic ground states and are hence expected to be applicable as functional materials in novel electronic and spintronic devices. Since the growth of large and defect-free Heusler crystals is still challenging, single crystals of Fe2TiSn and Cu2MnAl were grown by the optical floating zone technique. Two positron annihilation techniques—angular correlation of annihilation radiation and Doppler broadening spectroscopy (DBS)—were applied in order to study both the electronic structure and lattice defects. Recently, we succeeded to observe clearly the anisotropy of the Fermi surface of Cu2MnAl, whereas the spectra of Fe2TiSn were disturbed by foreign phases. In order to estimate the defect concentration in different samples of Heusler compounds, the positron diffusion length was determined by DBS using a monoenergetic positron beam.
Gaudin; Boucher; Petricek; Taulelle; Evain
2000-06-01
The crystal structures of two of the three polymorphic forms of the Cu7PSe6 argyrodite compound are determined by means of single-crystal X-ray diffraction. In the high-temperature form, at 353 K, i.e. 33 K above the first phase transition, gamma-Cu7PSe6 crystallizes in cubic symmetry, space group F43m. The full-matrix least-squares refinement of the structure leads to the residual factors R = 0.0201 and wR = 0.0245 for 31 parameters and 300 observed independent reflections. In the intermediate form, at room temperature, beta-Cu7PSe6 crystallizes again in cubic symmetry, but with space group P2(1)3. Taking into account a merohedric twinning, the refinement of the beta-Cu7PSe6 structure leads to the residual factors R = 0.0297 and wR = 0.0317 for 70 parameters and 874 observed, independent reflections. The combination of a Gram-Charlier development of the Debye-Waller factor and a split model for copper cations reveals the possible diffusion paths of the d10 species in the gamma-Cu7PSe6 ionic conducting phase. The partial ordering of the Cu+ d10 element at the phase transition is found in concordance with the highest probability density sites of the high-temperature phase diffusion paths. A comparison between the two Cu7PSe6 and Ag7PSe6 analogues is carried out, stressing the different mobility of Cu+ and Ag+ and their relative stability in low-coordination chalcogenide environments.
Wang, Jian; Lebedev, Oleg I.; Lee, Kathleen; Dolyniuk, Juli-Anna; Klavins, Peter; Bux, Sabah
2017-01-01
A new type-I clathrate, Ba8Cu14Ge6P26, was synthesized by solid-state methods as a polycrystalline powder and grown as a cm-sized single crystal via the vertical Bridgman method. Single-crystal and powder X-ray diffraction show that Ba8Cu14Ge6P26 crystallizes in the cubic space group Pm3n (no. 223). Ba8Cu14Ge6P26 is the first representative of anionic clathrates whose framework is composed of three atom types of very different chemical natures: a transition metal, tetrel element, and pnicogen. Uniform distribution of the Cu, Ge, and P atoms over the framework sites and the absence of any superstructural or local ordering in Ba8Cu14Ge6P26 were confirmed by synchrotron X-ray diffraction, electron diffraction and high-angle annular dark field scanning transmission electron microscopy, and neutron and X-ray pair distribution function analyses. Characterization of the transport properties demonstrate that Ba8Cu14Ge6P26 is a p-type semiconductor with an intrinsically low thermal conductivity of 0.72 W m–1 K–1 at 812 K. The thermoelectric figure of merit, ZT, for a slice of the Bridgman-grown crystal of Ba8Cu14Ge6P26 approaches 0.63 at 812 K due to a high power factor of 5.62 μW cm–1 K–2. The thermoelectric efficiency of Ba8Cu14Ge6P26 is on par with the best optimized p-type Ge-based clathrates and outperforms the majority of clathrates in the 700–850 K temperature region, including all tetrel-free clathrates. Ba8Cu14Ge6P26 expands clathrate chemistry by bridging conventional tetrel-based and tetrel-free clathrates. Advanced transport properties, in combination with earth-abundant framework elements and congruent melting make Ba8Cu14Ge6P26 a strong candidate as a novel and efficient thermoelectric material. PMID:29568451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Fermi surface measurements in YBa2Cu3O(7-x) and La(1.874)Sr(126)CuO4
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P. A.; Solal, F.; Fluss, M. J.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.
1991-06-01
We report new, ultra high precision measurements of the electron-positron momentum spectra of YBa2Cu3O(7-x) and La(1.874)Sr(126)CuO4. The YBCO experiments were performed on twin free, single crystals and show discontinuities with the symmetry of the Fermi surface of the CuO chain bands. Conduction band and underlying features in LSCO share the same symmetry and can only be separated with the aid of LDA calculations.
Fermi surface measurements in YBa 2Cu 3O 7- x and La 1.874Sr .126CuO 4
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P. A.; Solal, F.; Fluss, M. J.; Haghight, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Kojima, H.; Kitazawa, K.
1991-12-01
We report new, ultra high precision measurements of the electron-positron momentum spectra of YBa 2Cu 3O 7- x and La 1.874Sr .126CuO 4. The YBCO experiments were performed on twin free, single crystals and show discontinuities with the symmetry of the Fermi surface of the CuO chain bands. Conduction band and underlying features in LSCO share the same symmetry and can only be separated with the aid of LDA calculations.
NASA Astrophysics Data System (ADS)
Zhao, Jianhong; Qiao, Zhenfang; Zhang, Yumin; Zou, Taoyu; Yu, Leiming; Luo, Li; Wang, Xiaoyan; Yang, Yiji; Wang, Hai; Tang, Libin
2016-09-01
The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl2) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<10 1 ¯ 0 >, R-plane<1 1 ¯ 02 >), Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26 ˜659 % ) with the increase for Cl2 within concentration range (0.08 ˜4.0 ppm ) . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.
The Relevant Role of Dislocations in the Martensitic Transformations in Cu-Al-Ni Single Crystals
NASA Astrophysics Data System (ADS)
Gastien, R.; Sade, M.; Lovey, F. C.
2018-03-01
The interaction between dislocations and martensitic transformations in Cu-Al-Ni alloys is shortly reviewed. Results from many researchers are critically analyzed towards a clear interpretation of the relevant role played by dislocations on the properties of shape memory alloys in Cu-based alloys. Both thermally and stress-induced transformations are considered and focus is paid on two types of transitions, the β→β' and the formation of a mixture of martensites: β→β' + γ'. After cycling in the range where both martensites are formed, the twinned γ' phase is inhibited and cycling evolves into the formation of only β'. A model which considers the difference in energy of each γ' twin variant due to the introduced dislocations quantitatively explains the inhibition of γ' in both thermally and stress-induced cycling. The type of dislocations which are mainly introduced, mixed with Burgers vector belonging to the basal plane of the β' martensite, enables also to explain the unmodified mechanical behavior during β→β' cycling. The reported behavior shows interesting advantages of Cu-Al-Ni single crystals if mechanical properties are comparatively considered with those in other Cu-based alloys.
NASA Astrophysics Data System (ADS)
Chandra, B. P.; Chandra, V. K.; Jha, Piyush
2015-04-01
Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.
Disorder in KHCO3 as studied by EPR and DTA in Cu2+ doped and gamma-irradiated single crystals
NASA Astrophysics Data System (ADS)
Koksal, F.; Karabulut, B.; Demir, D.; Icbudak, H.; Koseoglu, R.
2005-08-01
Kalicinite (KHCO3) single crystals were investigated by the electron paramagnetric resonance (EPR) technique in their Cu2+ doped and gamma- irradiated states. It is observed that the behavior of the spectrum is the same at ambient and low temperatures down to 113 K in consistence with the monoclinic symmetry of the crystal. However, when the temperature is increased to 313 K, only one site signals were observed at all orientations of the magnetic field for the Cu2+ doped samples as the site splitted signals overlap at this temperature. Furthermore, for the gamma-irradiated crystals, two sites were observed for the induced H(C)over dot O-3 and (C)over dot O-2(-) radicals at ambient temperature for an arbitrary orientation of the magnetic field. However, when the temperature is increased to 348 K, the signals due to the H(C)over dot O-3 radical overlap indicating only one site, but the signals due to (C)over dot O-2(-) the radical do not and continue to indicate the presence of the two sites. Therefore, we conclude that this one site transition at 313 K is due to the disordering of the proton vacancies, as the charge compensation of Cu2+ is fulfilled by K+ and proton holes. This indicates that the proton vacancies come to disorder at 313 K and the protons get disordered at 348 K. The differential thermal analysis results show two small endothermic peaks for the Cu2+ doped and gamma-irradiated samples at 313 and 348 K that were attributed to the disorder of the proton vacancies and protons, in consistency with the EPR results.
Fracture of single crystals of the nickel-base superalloy PWA 1480E in helium at 22 C
NASA Technical Reports Server (NTRS)
Chen, P. S.; Wilcox, R. C.
1991-01-01
The fracture behavior and deformation of He-charged (at 22 C) single crystals of PWA 1480E Ni-base superalloy were investigated using SEM and TEM techniques to observe the behavior of tensile fractures in notched single crystals with seven different crystal growth orientations: 100-line, 110-line, 111-line, 013-line, 112-line, 123-line, and 223-line. To identify the cleavage plane orientation, a stereoscopic technique, combined with the use of planar gamma-prime morphologies, was applied. It was found that gamma-prime particles were orderly and closely aligned with edges along the 100-line, 010-line, and 001-line-oriented directions of the gamma matrix. Different crystal growth orientations were found not to affect the morphology of gamma-prime particles. The accumulation of dislocations around gamma/gamma-prime interfaces formed strong barriers to subsequent dislocation movement and was the primary strengthening mechanism at room temperature.
NASA Technical Reports Server (NTRS)
Fahrenbruch, A. L.; Bube, R. H.
1974-01-01
The photovoltaic properties of single-crystal Cu2S-CdS heterojunctions have been investigated as a function of heat treatment by detailed measurements of the dependence of short-circuit current on photon energy, temperature, and the state of optical degradation or enhancement. A coherent picture is formulated for the relationship between enhancement and optical degradation, and their effect on the transport of short-circuit photoexcited current and dark, forward-bias current in the cell. Optical degradation in the Cu2S-CdS cell is shown to be closely identical to optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal, indicating that the CdS:Cu layer near the junction interface controls carrier transport in the cell. It is proposed that both the photoexcited short-circuit current and the dark, forward-bias current are controlled by a tunneling-recombination process through interface states.
The crystalline structure of copper phthalocyanine films on ZnO(1100).
Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P
2012-09-05
The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.
NASA Astrophysics Data System (ADS)
Spinolo, G.; Anselmi-Tamburini, U.; Arimondi, M.; Ghigna, P.; Flor, G.
1995-11-01
"BaCuO2" is the key intermediate in the synthesis of the Ba2YCu3O7-δ superconductor. Its very complex crystal structure is able to accommodate a large change in oxygen content. Oxygen non-stoichiometry of "BaCuO2" materials with 1:1 and 88:90 (Ba :Cu) molecularity has been investigated by polythermal X-ray powder diffraction coupled with isobaric-isothermal gravimetry determinations under different temperature and oxygen partial pressure conditions [300≤ T≤ 820 °C, 1 ≥ P(O2) ≥ 3 • 10-3 atm]. The 1:1 composition does not give well reproducible results, thus suggesting its polyphasic nature, at least in part of the investigated range. The results for the 88:90 ≅ 0.98 (Ba :Cu) composi tion are well reproducible and show that the material is single phase. Ba0.98CuO1.98 + δ is oxygen over-stoichiometric in the whole investigated [T, P(O2)] range, with a maximum value δ˜0.21. A Rietveld X-ray profile fitting is in agreement with previous single-crystal data. The trend of δ vs. P(O2) is consistent with the presence of oxygen interstitial defects on (possibly different) crystallographic sites.
Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal
Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...
2015-10-08
In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less
NASA Astrophysics Data System (ADS)
Yuan, Ai-Hua; Liu, Wen-Yan; Zhou, Hu.; Chen, Ying-Ying; Shen, Xiao-Ping
2009-02-01
A new cyanide-bridged heterobimetallic assembly based on octacyanotungstate(V) as building block, {[Cu II(L)] 3[W V(CN) 8] 2}·[Cu II(L)·2H 2O]·(ClO 4) 2·4H 2O 1 (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane), has been prepared and characterized. X-ray single-crystal analysis reveals that 1 displays a two-dimensional structure with corrugated sheets, in which the 12-membered rings are the basic building units. Magnetic studies reveal that 1 displays a ferromagnetic interaction between Cu II and W V through cyano bridges.
NASA Astrophysics Data System (ADS)
Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.
2007-02-01
A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.
A second metastable spin-ordered state on ferrimagnetic single crystal Cu2 OSeO 3
NASA Astrophysics Data System (ADS)
Chou, Chih Chieh; Huang, C. L.; Tseng, K. F.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-03-01
DC and AC susceptibilities were executed on ferrimagnetic single crystal Cu 2 OSe O3 under magnetic field (H) and hydrostatic pressure (P) circumstance. With increasing H , the ferrimagnetic transition at TC ~ 60 K tends to a higher temperature. Furthermore, the TC rises with a linear slope and magnetization is enhanced with increasing P . Features of the ladder shown in the M vs. H curve or the peak observed in the d M / d H vs. H curve are noted at HSF ~ 0.5 kOe, exhibiting a competing ordered state in magnetic fields below TC . Remarkably, another shoulder is observed at ~ 1 kOe in the d M / d H vs. H curve, revealing a metastable spin ordered state in Cu 2 OSe O3 . In addition, the novel state is retained and enhanced by applied pressure. However, at H up to 55 T, there is no more observable slop change in magnetization. These magnetic properties suggest a complex spin orientation in the spin-frustrated system Cu 2 OSe O3 .
Inomata, Yoshie; Yamaguchi, Takeshi; Tomita, Airi; Yamada, Dai; Howell, F Scott
2005-08-01
Copper(II) complexes with glycyl-DL-alpha-amino-n-butyric acid (H2gly-DL-but), glycyl-DL-valine (H2gly-DL-val), glycyl-DL-norleucine (H2gly-DL-norleu), glycyl-DL-threonine (H2gly-DL-thr), glycyl-DL-serine (H2gly-DL-ser), glycyl-DL-phenylalanine (H2gly-DL-phe), and glycyl-L-valine (H2gly-L-val), have been prepared and characterized by IR, powder diffuse reflection, CD and ORD spectra, and magnetic susceptibility measurements, and by single-crystal X-ray diffraction. The crystal structures of the copper complex with H2gly-DL-but, the copper complex with H2gly-DL-val, and [Cu(gly-L-val)]n.0.5nH2O have been determined by a single-crystal X-ray diffraction method. As for the structure of the copper complex with H2gly-DL-but, the configuration around the asymmetric carbon atom is similar to that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-DL-but is [Cu(gly-L-but)]n.nH2O. On the contrary, as for the structure of the copper complex with H2gly-DL-val, the configuration around the asymmetric carbon atom is different from that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-dl-val is [Cu(gly-D-val)]n.0.5nH2O. So during the crystallization of the copper(II) complexes with H2gly-DL-but and H2gly-DL-val, spontaneous resolution has been observed; the four complexes have separated as [Cu(gly-D-but)]n.nH2O, [Cu(gly-L-but)]n.nH2O, [Cu(gly-D-val)]n.0.5nH2O, and [Cu(gly-L-val)]n.0.5nH2O, respectively. [Cu(gly-L-but)]n.nH2O is orthorhombic with the space group P2(1)2(1)2(1). [Cu(gly-D-val)]n.0.5nH2O and [Cu(gly-L-val)]n.0.5nH2O are monoclinic with the space group C2. In these complexes, the copper atom is in a square-pyramidal geometry, ligated by a peptide nitrogen atom, an amino nitrogen atom, a carboxyl oxygen atom, and a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. So these complexes consist of a two-dimensional polymer chain bridged by a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. The axial oxygen atom is located above the basal plane and the side chain of an amino acid is located below it. These polymer chains consist of only one or the other type of optical isomers; no racemic dipeptides are found. Therefore, spontaneous resolution has been observed in the crystallization of copper(II) complexes with H2gly-DL-but and H2gly-DL-val. The crystal structure of [Cu(gly-D-val)]n.0.5nH2O agrees almost completely with that of [Cu(gly-L-val)]n.0.5nH2O, except for the configuration around the asymmetric carbon atom.
Organized one dimensional nanomaterials: From preparations to applications
NASA Astrophysics Data System (ADS)
Wen, Xiaogang
This thesis is mainly concerned with the development of organized one dimensional (1D) nanomaterials and their applications. We have synthesized Ag2S, Cu2S nanowires, Fe2O3 nanobelt and nanowire arrays and ZnO nanobelt arrays from corresponding metal substrate respectively via gas solid reaction methods under different growth conditions. The effect of various parameters including temperature, reaction time, composition of gas, surface pre-oxidation, size of source materials etc. on the growth of metal oxide/sulfide 1D nanostructure have been studied systemically. The size and morphology of these 1D nanomaterials could be rationally controlled by adjusting the growth conditions. A tip growth mechanism has been confirmed based our results. The properties including PL, Raman, field effect transistors, and field emission of these materials have been measured. Cu(OH)2 nanoribbons have been synthesized by a solution solid reaction method using Cu and Cu2S nanowires as precursors. Cu(OH) 2 nanoribbons can form well-aligned arrays on Cu substrate. Low temperature facilitate the formation of Cu(OH)2 nanoribbon arrays. Reaction conditions affect the morphology, crystal structure, even composition of the products much. CuO nanorod arrays of several nm in diameter could be synthesis in changed condition. Cu(OH)2 nanoribbon arrays are good sacrifice template for synthesizing other Cu-based 1D nanomaterials. It has been converted to CuO, Cu2O, Cu8S9, Cu etc. 1D nanostructure through different physical and chemical reaction process. Au/Cu2S core/sheath nanowires have been synthesized in solution phase via a simple template-induced redox deposition process, after removing the Cu2S template, Au nanotubes have been formed. The photoelectrochemistry (PEC) properties of it have been studied. Ag dendritic nanostructures have been prepared via solution reaction. We have revealed that the stem, branch, and sub-branch grow along <100>, <111> and <100> directions, respectively. Such a preferential growth pattern along <100> and <111> alternately lead to the formation of the Ag nanodendrites. In another development, we have synthesized unltrathin Zn nanowires (<5nm) by a vapor transport method. Small molecules are induced into the gas phase as capping reagents. In this process, the small molecules serve as capping reagents or templates to confine the lateral growth and facilitate the formation of ultrathin 1D nanostructures. (Abstract shortened by UMI.)
Sambasiva Rao, P; Rajendiran, T M; Venkatesan, R; Madhu, N; Chandrasekhar, A V; Reddy, B J; Reddy, Y P; Ravikumar, R V
2001-12-01
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are g(xx) = 2.188, g(yy) = 2.032, g(zz) = 2.373, Axx = 50 G, Ayy = 65.0 G and Azz = 80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamimura, A.; Hirata, K.; Mochiku, T.
1999-12-01
Distribution of vortices has been analyzed to study on the pinning effects of the vortices in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals, observed with a Bitter decoration technique. On the cleaved surfaces of the samples, vortices are pinned in the disordered configurations at lower magnetic fields, which change to a hexagonal lattice structure with increasing a magnetic field. Furthermore, a dense concentration of vortices has been observed in the voids and on the lower terrace of the steps. These distributions of the vortices are found to be very stable from the estimation of the pinning energy.
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
Burst, James M.; Farrell, Stuart B.; Albin, David S.; ...
2016-11-01
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burst, James M.; Farrell, Stuart B.; Albin, David S.
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
NASA Astrophysics Data System (ADS)
Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan
2012-08-01
EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.
NASA Astrophysics Data System (ADS)
Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun
2018-04-01
The kinetics of glass transition and crystallization of a novel Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass (BMG) with high mixing entropy have been studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The continuous DSC curves show five stages of crystallization at lower heating rates (≤ 20 K/min). The activation energies of glass transition were determined by Moynihan and Kissinger methods, while the activation energies of crystallization were calculated utilizing Kissinger, Ozawa, and Boswell models. The crystalline phases corresponding to each crystallization step have been found out. The kinetic fragility of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG has also been evaluated. Based on the isothermal DSC curves, the Avrami exponent, evaluated from the Johnson-Mehl-Avrami equation, has been analyzed in detail. The current study reveals that the crystallization behavior of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG exhibits characteristics of both the high entropy BMGs and traditional BMGs with a single principal element, leading to its high glass-forming ability.
Infrared study of OH(-) defects in KTiOPO4 crystals
NASA Astrophysics Data System (ADS)
Morris, P. A.; Crawford, M. K.; Jones, B.
1992-12-01
Variations in the concentrations and distributions of the OH(-) defects present in flux and hydrothermal KTiOPO4 (KTP) crystals, measured by infrared spectroscopy of single crystals, are attributed to differences in the growth environments and other nonhydrogenic defects present in the crystals. The concentrations of OH(-) have been estimated from the infrared data to be approximately 400 ppma (parts per million atomic) (3.0 x 10 exp 19/cu cm) in the flux crystals, 1100-1500 ppma (0.74-1.1 x 10 exp 20/cu cm) in the high-temperature hydrothermal and 600 ppma (4.3 x 10 exp 19/cu cm) in the low-temperature hydrothermal crystals. A 3566/cm peak and a 3575/cm band are observed in all crystals. The integrated intensity of the OH(-) absorption band at 3566/cm increases at the expense of the 3575/cm band at higher temperatures in the high-temperature hydrothermal crystals. Several OH(-) peaks (3490, 3455, 3428, 3420, and 3333/cm), which have strongly temperature-dependent linewidths, are present in the hydrothermally grown KTP crystals. The temperature dependencies of their peak frequencies and widths are consistent with the presence of mobile protons in the lattice. The protons located in the 3490 and 3428/cm sites are believed to contribute to the ionic conductivity of the high-conductivity high-temperature hydrothermal crystals.
Surface alloying in Sn/Au(111) at elevated temperature
NASA Astrophysics Data System (ADS)
Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy
2018-04-01
On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.
Domain and phase change contributions to response in high strain piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cross, L. Eric
2000-09-01
Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.
Nistor, Sergiu V; Stefan, Mariana; Goovaerts, Etienne; Ramaz, François; Briat, Bernard
2015-10-01
The sites of incorporation of Cu(2+) impurity ions in Bi12GeO20 single crystals co-doped with copper and vanadium have been investigated by electron paramagnetic resonance (EPR). While the X-band EPR spectra consist of a simple broad (ΔB ∼50 mT) line with anisotropic lineshape, the W-band EPR spectra exhibit well resolved, strongly anisotropic lines, due to transitions within the 3d(9)-(2)D ground manifold of the Cu(2+) ions. The most intense group of lines, attributed to the dominant Cu(2+)(I) center, displays a characteristic four components hyperfine structure for magnetic field orientations close to a 〈110〉 direction. The g and A tensor main axes are very close to one of the 12 possible sets of orthogonal 〈1-10〉, 〈00-1〉 and 〈110〉 crystal directions. Several less intense lines, with unresolved hyperfine structure and similar symmetry properties, mostly overlapped by the Cu(2+)(I) spectrum, were attributed to Cu(2+)(II) centers. The two paramagnetic centers are identified as substitutional Cu(2+) ions at Bi(3+) sites with low C1 symmetry, very likely resulting from different configurations of neighboring charge compensating defects. Copyright © 2015 Elsevier Inc. All rights reserved.
One-step model of photoemission from single-crystal surfaces
Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...
2017-02-28
In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less
NASA Astrophysics Data System (ADS)
Sun, Qiao-Zhen; Yin, Yi-Biao; Pan, Jun-Qiao; Chai, Li-Yuan; Su, Nan; Liu, Hui; Zhao, Yi-Lin; Liu, Xing-Tao
2016-02-01
Two novel heteronuclear coordination polymers, namely, [CuSr2(BTC)2]·10H2O (1) and [Cu2Sr(H4TMA)2]·4H2O (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, H4TMA = 2-hydroxytrimesic acid) were hydrothermally synthesized as pH-dependent products and characterized by elemental analysis (EA), infrared spectroscopy (IR) and single crystal X-ray diffraction. For compound 1, it displays a 3D structure with (2,5,6)-connected net topology. For 2, the H3BTC ligand is oxidized into H4TMA and compound 2 features a 2D layer structure, which is further linked by Cu⋯Cu and Cu⋯O supramolecular interactions into a 3D structure. The results show that the pH plays a crucial role in determining the structure of the compounds. In addition, thermalgravimetric analysis of compounds 1-2 and luminescence property of 1 are also investigated.
Lattice dynamics of A Sb2O6 (A =Cu , Co) with trirutile structure
NASA Astrophysics Data System (ADS)
Maimone, D. T.; Christian, A. B.; Neumeier, J. J.; Granado, E.
2018-03-01
Raman spectroscopy experiments on single crystals of CuSb2O6 and CoSb2O6 quasi-one-dimensional antiferromagnets with trirutile crystal structure were performed, with a focus on the first material. The observed Raman-active phonon modes and previously reported infrared-active modes were identified with the aid of ab initio lattice dynamics calculations. The structural transition between monoclinic β -CuSb2O6 and tetragonal α -CuSb2O6 phases at Ts=400 K is manifested in our spectra by a "repulsion" of two accidentally quasidegenerate symmetric modes below Ts, caused by a phonon mixing effect that is only operative in the monoclinic β -CuSb2O6 phase due to symmetry restrictions. Also, two specific phonons, associated with CuO6 octahedra rotation and with a Jahn-Teller elongation mode, soften and broaden appreciably as T →Ts . A crossover from a displacive to an order-disorder transition at Ts is inferred.
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
NASA Astrophysics Data System (ADS)
Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi
2015-03-01
We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potzuweit, Alexander; Schaffner, Anuschka; Jänsch, Heinz Julius, E-mail: heinz.jaensch@physik.uni-marburg.de
2014-09-01
Type E thermocouples show magnetic effects at liquid nitrogen temperature and below. This may cause trouble in experiments that are sensitive to magnetic stray fields like nuclear magnetic resonance, photoemission or high resolution electron energy loss spectroscopy. Here, a solution for the temperature measurement of a single crystal is presented. The authors weld a copper rod onto the back side of the single crystal, thereby relocating the sensitive sample from the thermocouple attachment position. They show that it is possible to measure the crystal temperature at the end of the rod while significantly reducing the ferromagnetic influence due to themore » increased distance.« less
Forces Generated by High Velocity Impact of Ice on a Rigid Structure
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.
2006-01-01
Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.
NASA Astrophysics Data System (ADS)
Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping
2014-07-01
Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.
Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang
2012-07-03
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.
Strength anomaly in B2 FeAl single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimi, K.; Hanada, S.; Yoo, M.H.
1994-12-31
Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). Themore » orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.« less
Epitaxial growth of thermally stable cobalt films on Au(111)
NASA Astrophysics Data System (ADS)
Haag, N.; Laux, M.; Stöckl, J.; Kollamana, J.; Seidel, J.; Großmann, N.; Fetzer, R.; Kelly, L. L.; Wei, Z.; Stadtmüller, B.; Cinchetti, M.; Aeschlimann, M.
2016-10-01
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.
Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions
NASA Astrophysics Data System (ADS)
Cardellach, M.; Verdaguer, A.; Fraxedas, J.
2011-12-01
The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.
Friction behavior of members of the platinum metals group with gold
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1975-01-01
The adhesion and friction behavior of the platinum metals group was examined with clean surfaces and surfaces selectively contaminated with oxygen, vinyl chloride (C2H3Cl), and methyl mercaptan (CH3SH). A pin or disk specimen configuration was used with the pin being a single crystal of gold of the (111) orientation and with the platinum metal disks also being single crystals of the (111) or (0001) orientation. Loads applied ranged from 1 to 10 g and a sliding velocity of 0.7 mm/min was employed. Results indicate adhesion and transfer of gold to all of the platinum metals. Despite this observation friction differences existed among the metals in the group. These differences are related to surface chemical activity. Adsorption of various friction reducing species was selective. With some adsorbates present strong adhesive forces between metals were still observed.
What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface
Du, J. L.; Fang, Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, P. P.; Bai, Q.
2016-01-01
Nb films are deposited on single crystal Al2O3 (110) and MgO(111) substrates by e-beam evaporation technique. Structure of Nb films and orientation relationships (ORs) of Nb/Al2O3 and Nb/MgO interface are studied and compared by the combination of experiments and simulations. The experiments show that the Nb films obtain strong (110) texture, and the Nb film on Al2O3(110) substrate shows a higher crystalline quality than that on MgO(111) substrate. First principle calculations show that both the lattice mismatch and the strength of interface bonding play major roles in determining the crystalline perfection of Nb films and ORs between Nb films and single crystal ceramic substrates. The fundamental mechanisms for forming the interfacial configuration in terms of the lattice mismatch and the strength of interface bonding are discussed. PMID:27698458
Microscopic Electronic and Mechanical Properties of Ultra-Thin Layered Materials
2016-07-25
Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that...the observed highly nonuniform strains. 4. Connecting dopant bond type with electronic structure in N-doped graphene (reference [4]) Robust methods
Face specificity and the role of metal adatoms in molecular reorientation at surfaces
NASA Astrophysics Data System (ADS)
Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V.
1998-07-01
Using reflection absorption infrared spectroscopy (RAIRS), the coverage-dependent reorientation of the benzoate species on the (110) and (111) faces of copper is compared and contrasted. Whereas on Cu(110) benzoate reorients from a flat-lying to an upright orientation with increasing coverage, on Cu(111), at all coverages, benzoate is aligned normal to the surface. The formation of periodic, flat-lying copper-benzoate structures has been attributed to the availability of metal adatoms, which differs dramatically between the (111) and (110) faces. We discuss the face specificity of molecular orientation by comparing calculated formation energies of adatom vacancies from ledges and kink sites on (100), (110) and (111) faces. Further support for this model is given by the evaporation of sodium, either by pre- or post-dosing, onto low-coverage benzoate/Cu(111), which induces benzoate to convert from a perpendicular to a parallel orientation. Likewise, coevaporation of Cu while dosing benzoic acid onto the Cu(111) surface also results in a majority of flat-lying benzoate species. Finally, for adsorption on the p(2×1)O/Cu(110) reconstruction, benzoate occurs only as the upright species, which is consistent with reducing the copper mobility and availability on the (110) face. We therefore suggest the possible role of metal adatoms as a new mechanism in controlling adsorbate orientation and therefore face specificity in surface reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.
Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate,more » which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; An, Wei; Stacchiola, Dario
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of Cu xO/Cu(111) (x≤2). The DFT calculations observe a pseudomorphic growth of K on Cu xO/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on themore » Cu xO rings. The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of Cu xO/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on Cu xO/Cu(111), but being able to accelerate the activation of CO 2. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.« less
Liu, S; Baugh, D; Motobayashi, K; Zhao, X; Levchenko, S V; Gawinkowski, S; Waluk, J; Grill, L; Persson, M; Kumagai, T
2018-05-07
Anharmonicity plays a crucial role in hydrogen transfer reactions in hydrogen-bonding systems, which leads to a peculiar spectral line shape of the hydrogen stretching mode as well as highly complex intra/intermolecular vibrational energy relaxation. Single-molecule study with a well-defined model is necessary to elucidate a fundamental mechanism. Recent low-temperature scanning tunnelling microscopy (STM) experiments revealed that the cis↔cis tautomerization in a single porphycene molecule on Cu(110) at 5 K can be induced by vibrational excitation via an inelastic electron tunnelling process and the N-H(D) stretching mode couples with the tautomerization coordinate [Kumagai et al. Phys. Rev. Lett. 2013, 111, 246101]. Here we discuss a pronounced anharmonicity of the N-H stretching mode observed in the STM action spectra and the conductance spectra. Density functional theory calculations find a strong intermode coupling of the N-H stretching with an in-plane bending mode within porphycene on Cu(110).
NASA Astrophysics Data System (ADS)
Sicot, M.; Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.
2014-11-01
We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.
Electronic structure of single crystalline Bi 2(Sr,Ca,La) 3Cu 2O 8
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-12-01
Angle-resolved photoemission experiments on single crystals of Bi 2(Sr,Ca,La) 3Cu 2O 8 are reported. The data show a dispersionless behaviour of the valence band states as a function of the perpendicular component of the wave vector (along the c-axis), while as a function of the parallel component (in the a-b plane) clear dispersion occurs. Furthermore, polarization-dependent excitations reveal information on the symmetry of the unoccupied states.
SAD phasing with in-house cu Ka radiation using barium as anomalous scatterer.
Dhanasekaran, V; Velmurugan, D
2011-12-01
Phasing of lysozyme crystals using co-crystallized barium ions was performed using single-wavelength anomalous diffraction (SAD) method using Cu Ka radiation with in-house source of data collection. As the ion binding sites vary with respect to the pH of the buffer during crystallization, the highly isomorphic forms of lysozyme crystals grown at acidic and alkaline pH were used for the study. Intrinsic sulphur anomalous signal was also utilized with anomalous signal from lower occupancy ions for phasing. The study showed that to solve the structure by SAD technique, 2.8-fold data redundancy was sufficient when barium was used as an anomalous marker in the in-house copper X-ray radiation source for data collection. Therefore, co-crystallization of proteins with barium containing salt can be a powerful tool for structure determination using lab source.
NASA Astrophysics Data System (ADS)
Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar
2015-11-01
The study reports on the synthesis, single-crystal X-ray structure, and infrared and polarized Raman spectra of a new metal phosphate. The chemical formula of the compound K2Cu(HPO4)2·6H2O resembled that of Tutton salts. The compound crystallized in the monoclinic system, space group P21/c, with a = 6.166(9), b = 12.118(19), c = 9.077(14) Å, β = 104.33(2), and Z = 2. The compound consisted of transition metal cations octahedrally coordinated by six water molecules, [Cu(H2O)6]2+, HPO4 pseudo-tetrahedra, and KO8 polyhedra. The KO8 polyhedra shared two edges with two HPO4 groups, two corners with the two other HPO4 groups, and two corners with Cu(H2O)6. The connection between [Cu(H2O)6]2+ octahedral and (HPO4)2- pseudo-tetrahedra was reinforced by hydrogen bonds formed between the water molecules and other oxygen atoms linked to the P atom. These structural results were corroborated by infrared and polarized Raman spectroscopy.
2014-11-01
incorporate the right Cauchy–Green strain tensor E, a function of the ( elas - tic) deformation gradient and its transpose. Such theories have been used...been compared for several anisotropic metallic single crystals (Al, Cu and Mg), with elas - tic constants of up to order four included. Differences
Liu, Guoshuai; Zhou, Yanan; Teng, Jie; Zhang, Jinna; You, Shijie
2018-06-01
The advanced oxidation process (AOP) based on SO 4 - radicals draws an increasing interest in water and wastewater treatment. Producing SO 4 - radicals from the activation of peroxymonosulfate (PMS) by transition metal ions or oxides may be problematic due to high operational cost and potential secondary pollution caused by metal leaching. To address this challenge, the present study reports the efficient production of SO 4 - radicals through visible-light-driven photocatalytic activation (VL-PCA) of PMS by using Cu 2 (OH)PO 4 single crystal for enhanced degradation of a typical recalcitrant organic pollutant, i.e., 2,4-dichlorophenol (2,4-DCP). It took only 7 min to achieve almost 100% removal of 2,4-DCP in the Cu 2 (OH)PO 4 /PMS system under visible-light irradiation and pH-neutral condition. The 2,4-DCP degradation was positively correlated to the amount of Cu 2 (OH)PO 4 and PMS. Both OH and SO 4 - radicals were responsible for enhanced degradation performance, indicated by radical scavenger experiments and electron spin resonance (ESR) measurements. The Cu 2 (OH)PO 4 single crystal exhibited good cyclic stability and negligible metal leaching. According to density functional theory (DFT) calculations, the visible-light-driven transformation of two copper states between trigonal bipyramidal sites and octahedral sites in the crystal structure of Cu 2 (OH)PO 4 facilitates the generation of OH and SO 4 - radicals from the activation of PMS and cleavage of O-O bonds. This study provides the proof-in-concept demonstration of activation of PMS driven by visible light, making the SO 4 - radicals-based AOPs much easier, more economical and more sustainable in engineering applications for water and wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electron tunneling and the energy gap in Bi2Sr2CaCu2Ox
NASA Astrophysics Data System (ADS)
Lee, Mark; Mitzi, D. B.; Kapitulnik, A.; Beasley, M. R.
1989-01-01
Results of electron tunneling on single crystals of the Bi2Sr2CaCu2Ox superconductor are reported. The junctions show a gap structure with Δ~=25 meV, whose temperature dependence exhibits a qualitatively Bardeen-Cooper-Schrieffer-like behavior with a gap-closing Tc~=81-85 K. Comparisons of these tunneling spectra to those obtained on YBa2Cu3O7-x are made. Evidence that 2Δ/kTc~7 for both Ba2Sr2CaCu2Ox and YBa2Cu3O7-x is also discussed.
Fabrication of nanometer single crystal metallic CoSi2 structures on Si
NASA Technical Reports Server (NTRS)
Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)
1991-01-01
Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.
[Preparation and Performance of Ultrafast γ-CuI Scintillation Conversion Screen].
Xia, Ming; Gu, Mu; Liu, Xiao-lin; Liu, Bo; Huang, Shi-ming; Ni, Chen
2015-04-01
Micro-columnar structured γ-CuI scintillation conversion screen with columnar diameter in the micrometer and thickness about 17 µm were prepared by thermal evaporation method on quartz substrates with different temperatures. X-ray excited luminescence spectra of the screens show two peaks located at 430 nm and near 700 nm, which correspond to the fast and slow emission components, respectively. The fast one dominated. The intensity of 430 nm peak decreased as the substrate temperature rose from 170 °C to 210 °C. At the same time the intensity of 700 nm band increased. The changes may be attributed to the iodine loss from screen caused by the substrate temperature. The phenomenon of iodine loss was observed by the Rutherford backscattering experiment. The crystal structure of the screens presents (111) preferred orientation, which is independent of the substrate temperature. As the temperature rose to 210 °C, two weak additional peaks of (220) and (420) γ-CuI crystal planes in X-ray diffraction patterns appeared due to the increase in kinetic energy of CuI molecules. The scanning electron microscopy images of the screens showed that the columnar structure was improved when the substrate temperature increased from 170 °C to 190 °C, but it would be degenerated when the temperature continued to rise to 210 °C because of the surface and bulk diffusion effects of the depositing molecules. Finally, the spatial resolution of the γ-CuI scintillation screens was measured by knife-edge method, and they are 4.5, 7.2 and 5.6lp · mm(-1) for the screens prepared at the substrates temperatures of 170, 190 and 210 °C, respectively. The result shows that micro-column structure could improve the spatial resolution of γ-CuI scintillation screen.
Kong, Tai; Meier, William R.; Lin, Qisheng; ...
2016-10-24
Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Tai; Meier, William R.; Lin, Qisheng
Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less
Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal.
Li, Mingtao; Fang, Yifei; Zhang, Jincang; Yi, Hemian; Zhou, Xingjiang; Lin, Chengtian
2018-02-02
We report a magnetotransport study of vortex-pinning in Cu<sub>0.10</sub>Bi<sub>2</sub>Se<sub>3</sub> single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both B∥ab and B∥c configurations. We have investigated the flux-flowing behavior under various magnetic field and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu<sub>0.10</sub>Bi<sub>2</sub>Se<sub>3</sub> can be served as one unique material for exploring exotic surface vortex states in topological superconductors. © 2018 IOP Publishing Ltd.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, P.; Aldinger, F.; Elschner, S.
1994-12-31
Considering the phase equilibrium diagram of the system Bi{sub 2}O{sub 3}-SrO-CaO-CuO, single phase {open_quotes}Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}{close_quotes} ceramics have been transformed by a simple annealing procedure into multi phase samples. The transformation results in the formation of second phases and in an increase of the intra grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centres are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals.
NASA Astrophysics Data System (ADS)
Safar, H.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1992-04-01
A SQUID voltmeter has been used to measure current-voltage curves in untwinned crystals of Bi2Sr2CaCu2O(8+delta) as a function of temperature and magnetic field. The data show a clear crossover from high-temperature Arrhenius behavior to a critical region associated with the low-temperature three-dimensional vortex-glass phase transition. The critical exponents v(z - 1) = 7 +/- 1 in this system are in accord with theoretical models and previous measurements in YBa2Cu3O7. The width of the critical region collapses below 2 T, reflecting the changing role of dimensionality with field.
Choi, Sang-Il; Herron, Jeffrey A.; Scaranto, Jessica; ...
2015-04-13
Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {100} facets have higher specific activities than those enclosed by {111} facets, in agreement with prior observations for Pd single-crystal substrates. If comparing nanocrystalsmore » predominantly enclosed by a specific type of facet, {100} or {111}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(211) sites, compared to the activity of both Pd(100) and Pd(111) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(211). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.« less
Long-range effect of ion irradiation on Cu surface segregation in a Cu sbnd Ni system
NASA Astrophysics Data System (ADS)
Zhang, Li; Tang, Guangze; Ma, Xinxin; Russell, F. Michael; Cao, Xingzhong; Wang, Baoyi; Zhang, Peng
2011-05-01
Ni films were deposited on one side of single crystal Cu substrate discs of 1.0 and 1.5 mm thickness. These discs were irradiated on the Cu side with argon ions. Evidence for enhanced Cu segregation at the Ni surface was found for both thicknesses. This effect decreased with increasing distance between the diffusion zone and the irradiated surface. Slow positron annihilation results indicate lower vacancy-like defects at the subsurface layer after Ar irradiation on the other surface of Cu disks. Such long-range effect is here interpreted on the basis of a particular type of mobile discrete breather called quodon.
Thermodynamic and transport properties of YbNi 4Cd
NASA Astrophysics Data System (ADS)
Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.
2018-05-01
The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.
New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickers, K.; Drube, W.; Schulte-Schrepping, H.
2007-02-02
A XAFS-experiment allowing for in-situ experiments has been set up at DORIS bending magnet beamline C. For that purpose, a new double-crystal, UHV-compatible monochromator with fast scanning capability was designed. This fixed-exit monochromator uses two crystal sets on a common central rotation axis driven by an ex-vacuo goniometer. Bragg angles range from 5 deg. to 55.5 deg. resulting in a total energy range 2.3 - 43.4 keV using Si(111)/(311) crystal sets. Crystal pairs can be remotely selected by translating the vacuum chamber. Energy encoding is performed using an optical encoder system. The standard XAFS sample environment is set-up in vacuomore » and can be adapted for special sample environments. For in-situ experiments, the beamline is equipped with twelve gas lines. An exhaust line allows toxic/reactive gases to be handled. As an initial performance test of the instrument, Ti, Cr, Fe and Cu XAFS and Ce K-shell QEXAFS measurements were performed.« less
NASA Astrophysics Data System (ADS)
Bag, Rabindranath; Karmakar, Koushik; Singh, Surjeet
2017-01-01
We present here crystal growth of dilutely Co-doped spin-ladder compounds Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) using the Travelling Solvent Floating Zone (TSFZ) technique associated with an image furnace. We carried out detailed microstructure and compositional analysis. The microstructure of the frozen-in FZ revealed two bands: a lower band consisting of well-aligned single-crystalline stripes of the phase Sr14(Cu, Co)24O41 embedded in the eutectic mixture of composition SrO 18% and (Cu, Co)O 82%; and an upper band consisting of a criss-crossed pattern of these stripes. These analyses were also employed to determine the distribution coefficient of the dopants in Sr14Cu24O41. The distribution coefficient turned out to be close to 1, different from Sr2CuO3 reported previously where Co tend to accumulate in the molten zone. Direct access to the composition of the frozen-in zone eliminated any previous ambiguities associated with the composition of the peritectic point of Sr14Cu24O41; and also the eutectic point in the binary SrO-CuO phase diagram. The lattice parameters show an anisotropic variation upon Co-doping with parameters a and b increasing, c decreasing; and with an overall decrease of the unit cell volume. Magnetic susceptibility measurements were carried out on the pristine and the Co-doped crystals along the principal crystallographic axes. The spin susceptibility of the x = 0.01 crystal exhibits a strong anisotropy, which is in stark contrast with the isotropic behaviour of the pristine crystal. This anisotropy seems to arise from the intradimer exchange interaction as inferred from the anisotropy of the dimer contribution to the susceptibility of the Co-doped crystal. The Curie-tail in the magnetic susceptibility of Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) crystals (field applied parallel to the ladder) was found to scale with Co-doping - the scaling is employed to confirm a homogeneous distribution of Co in a x = 0.1 crystal boule.
NASA Astrophysics Data System (ADS)
Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.
2013-09-01
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratlie, Kaitlin
Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10 -6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C 6H 11) and π-allyl Cmore » 6H 9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C 6H 9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C 6H 9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E 2u mode of free benzene, which leads to catalysis. Linear C 6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt(100). Based on spectroscopic signatures, mechanisms for catalytic isomerization and dehydrocyclization of n-hexane were identified. The structure sensitivity of benzene hydrogenation on shape controlled platinum nanoparticles was also studied. The nanoparticles showed similar selectivities to those found for Pt(111) and Pt(100) single-crystals. Additionally, the nanoparticles have lower activation energies than their single-crystal counterparts.« less
Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111).
Teeter, Jacob D; Costa, Paulo S; Mehdi Pour, Mohammad; Miller, Daniel P; Zurek, Eva; Enders, Axel; Sinitskii, Alexander
2017-07-25
Atomically precise chevron graphene nanoribbons (GNRs) have been synthesized on Cu(111) substrates by the surface-assisted coupling of 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C 42 Br 2 H 26 ) and thermal cyclodehydrogenation of the resulting polymer. The GNRs form on Cu(111) epitaxially along the 〈112〉 crystallographic directions, which was found to be in agreement with the computational results, and at lower temperatures than on Au(111). This work demonstrates that the substrate plays an important role in the on-surface synthesis of GNRs and can result in new assembly modes of GNR structures.
NASA Astrophysics Data System (ADS)
Zana, Iulica
In this dissertation the structural and magnetic characterization of high anisotropy Co-rich alloys for magnetic recording and MEMS applications has been carried out. The potential of Co78Sm22 as an ultra-high density recording medium was explored through comprehensive static and dynamic magnetic measurements. It was found out that hard magnetic properties (Hc = 4.5 kOe) can be achieved when CoSm is sputter-deposited on Cr80V 20 underlayer, comparable with those reported for state-of-the-art media at the end of 2002. Furthermore, the chemical stability and reliability of CoSm thin films was studied through combined accelerated aging and electrochemical methods. It was found out that CoSm thin films are more reactive than current recording media (CoPt), and a layer of Si3N4 of at least 6 nm provides satisfactory protection. Electrodeposition of Co80Pt20 onto highly textured Cu seed layer with either {100} or {111} orientation was studied. The influence of Cu texture and plating current density (cd) on the growth, morphology, microstructure, and magnetic properties of the CoPt films was investigated. Epitaxial CoPt thin films with uniform composition across the film thickness were deposited. The microstructure consists in fcc matrix and hcp matrix when plated on Cu(100) and Cu(111), respectively. CoPt hcp single phase films with c-axis normal to the substrate were grown on Cu(111) when plated at cd = 50 mA/cm2. As opposed to the films plated on Cu(100) which show a mostly in-plane magnetic anisotropy, the films plated on Cu(111) develop a well defined perpendicular magnetic anisotropy (PMA) due to the hcp phase with the c-axis normal to the substrate, which yields coercivities as high as 6.1 kOe. The origin of the high PMA was found to lie in the magnetocrystalline anisotropy. CoPt micromagnets have been successfully fabricated by the electrodeposition-through-mask method, which despite the small aspect ratio show a definite PMA. The PMA, together with the hard magnetic properties measured (Hc = 4.7 kOe) demonstrate a strong potential for the utilization of these materials in the MEMS area.
Senanayake, Sanjaya D; Stacchiola, Dario; Rodriguez, Jose A
2013-08-20
Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation states (Ce⁴⁺ and Ce³⁺). Cu(111), meanwhile, is a standard catalyst for reactions such as CO oxidation and the water-gas shift (WGS). This metal serves as an ideal replacement for other noble metals that are neither abundant nor cost effective. To prepare the inverse system we deposited nanoparticles (2-20 nm) of cerium oxide onto the Cu(111) surface. During this process, the Cu(111) surface grows an oxide layer that is characteristic of Cu₂O (Cu¹⁺). This oxide can influence the growth of ceria nanoparticles. Evidence suggests triangular-shaped CeO₂(111) grows on Cu₂O(111) surfaces while rectangular CeO₂(100) grows on Cu₄O₃(111) surfaces. We used the CeOx/Cu₂O/Cu(111) inverse system to study two catalytic processes: the WGS (CO + H₂O → CO₂ + H₂) and CO oxidation (2CO + O₂ → 2CO₂). We discovered that the addition of small amounts of ceria nanoparticles can activate the Cu(111) surface and achieve remarkable enhancement of catalytic activity in the investigated reactions. In the case of the WGS, the CeOx nanoparticle facilitated this process by acting at the interface with Cu to dissociate water. In the CO oxidation case, an enhancement in the dissociation of O₂ by the nanoparticles was a key factor. The strong interaction between CeOx nanoparticles and Cu(111) when preoxidized and reduced in CO resulted in a massive surface reconstruction of the copper substrate with the introduction of microterraces that covered 25-35% of the surface. This constitutes a new mechanism for surface reconstruction not observed before. These microterraces helped to facilitate a further enhancement of activity towards the WGS by opening an additional channel for the dissociation of water. In summary, inverse catalysts of CeOx/Cu(111) and CeO₂/Cu₂O/Cu(111) demonstrate the versatility of a model system to obtain insightful knowledge of catalytic processes. These systems will continue to offer a unique opportunity to probe key catalytic components and elucidate the relationship between structure and reactivity of novel materials and reactions in the future.
Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
Cao, Xinrui; Fu, Qiang; Luo, Yi
2014-05-14
The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.
Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films
NASA Astrophysics Data System (ADS)
Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.
1988-11-01
It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.
Tailoring Dirac Fermions in Molecular Graphene
NASA Astrophysics Data System (ADS)
Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.
2012-02-01
The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.
Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2001-01-01
A multi-domained bulk REBa.sub.2 Cu.sub.3 O.sub.x with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 Cu.sub.3 O.sub.x pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa.sub.2 Cu.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 Cu.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 Cu.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.
Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2002-01-01
A multi-domained bulk REBa.sub.2 CU.sub.3 O.sub.x with low-angle domain boundaries which resemble a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 CU.sub.3 O.sub.x pieces, textured substrates comprises of grains with low misorientation angles, or thick film REBa.sub.2 CU.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 CU.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 CU.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.
Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals
NASA Astrophysics Data System (ADS)
Tysoe, Wilfred T.
The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, H. Y.; Yang, W. C.; Lee, P. Y.
2016-08-22
GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of themore » observed device performance enhancements.« less
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces
NASA Astrophysics Data System (ADS)
Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team
Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO2 Technique
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-01-01
Co-plating of Cu-Ni coatings by supercritical CO2 (sc-CO2) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO2 process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO2 process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO2 process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO2 process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content. PMID:28772787
Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals
NASA Astrophysics Data System (ADS)
Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.
2014-05-01
The effect of thermal fatigue during tests of <001> and <111> single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the <111> single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the <001> and <111> samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character with a combination of crystallographic and ductile (dimple) fracture elements.
Shock-Induced phase transition of single crystal copper
NASA Astrophysics Data System (ADS)
Neogi, Anupam; Mitra, Nilanjan
2017-05-01
We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.
NASA Astrophysics Data System (ADS)
Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.
2012-08-01
A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.
Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek
2012-06-25
We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu2As2 compounds are much shorter than the nonbonding As–As distances in BaFe2As2. Thus, the electronic character of the Cu and the strength of the As–As interlayer bonding are both expected to drastically change between weakly Cu-substituted BaFe2As2 and pure BaCu2As2, perhaps via a first-order lattice instability such as a miscibility gap in the Ba(Fe1−xCux)2As2 system.« less
Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.
Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A
2016-12-07
We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.
Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors
NASA Astrophysics Data System (ADS)
Hollingsworth, Jennifer Ann
1999-11-01
The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.
NASA Astrophysics Data System (ADS)
Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou
In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.
Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C
2016-02-20
We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.
Magnetically induced ferroelectricity in Bi2CuO4
NASA Astrophysics Data System (ADS)
Zhao, L.; Guo, H.; Schmidt, W.; Nemkovski, K.; Mostovoy, M.; Komarek, A. C.
2017-08-01
The tetragonal copper oxide Bi2CuO4 has an unusual crystal structure with a three-dimensional network of well separated CuO4 plaquettes. The spin structure of Bi2CuO4 in the magnetically ordered state below TN˜43 K remains controversial. Here we present the results of detailed studies of specific heat, magnetic, and dielectric properties of Bi2CuO4 single crystals grown by the floating zone technique, combined with the polarized neutron scattering and high-resolution x-ray measurements. Down to 3.5 K our polarized neutron scattering measurements reveal ordered magnetic Cu moments which are aligned within the a b plane. Below the onset of the long range antiferromagnetic ordering we observe an electric polarization induced by an applied magnetic field, which indicates inversion symmetry breaking by the ordered state of Cu spins. For the magnetic field applied perpendicular to the tetragonal axis, the spin-induced ferroelectricity is explained in terms of the linear magnetoelectric effect that occurs in a metastable magnetic state. A relatively small electric polarization induced by the field parallel to the tetragonal axis may indicate a more complex magnetic ordering in Bi2CuO4 .
Liu, Bin; Zhang, Yang; Sage, J. Timothy; Soltis, S. Michael; Doukov, Tzanko; Chen, Ying; Stout, C. David; Fee, James A.
2012-01-01
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8 – 3.2 Å resolution, reveal a Fe-C distance of ~2.0 Å, a Cu-O distance of 2.4 Å and a Fe-C-O angle of ~126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3-CO and appearance of CuB-CO having a Cu-C distance of ~1.9 Å and an O-Fe distance of ~2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm−1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm−1. Analysis of the “light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm−1, 1977 cm−1, 1981 cm−1, and 1985 cm−1, previously assigned to the Fea3-CO complex, and a significantly broader CO stretching band centered at ~2050 cm−1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm−1 and one from traces of CO at 2133 cm−1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3-CO in cytochrome c oxidases leads to significant trapping of the CO on the CuB atom; Fea3 and CuB ligation, at the resolutions reported here, are otherwise unaltered. PMID:22226917
A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface
NASA Astrophysics Data System (ADS)
Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang
2017-04-01
To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junqi, E-mail: sfmlab@163.com; Sun, Long; Yan, Ying
2016-08-15
Highlights: • The Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell crystals maintained the same morphology with template. • The crystals exhibit enhanced photocatalytic activity than the pure Cu{sub 2}O crystals. • The photocatalytic activity of different R crystals is diverse from each other. • A possible formation mechanism has been proposed. - Abstract: Uniform and monodispersed Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals have been synthesized successfully at room temperature via a simple chemical etching reaction, using Cu{sub 2}O as sacrificial template. The structure and properties of the crystals were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM),more » X-ray photoelectron spectra (XPS). The photocatalytic activity of the Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals was evaluated by photocatalytic decolorization of MeO (methyl orange) aqueous solution at ambient temperature under visible-light irradiation. The results show that the as-prepared Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals revealed core-shell structure, which maintained the same morphology with corresponding template and were composed of cuboctahedron Cu{sub 7}S{sub 4} shell and active Cu{sub 2}O core. Due to the unique Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell structure, the crystals exhibit enhanced photocatalytic activity than that of the pure Cu{sub 2}O crystals, and the photocatalytic activity of different R crystals is diverse from each other. A possible formation mechanism has been proposed.« less
Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu
2013-01-01
Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449
Structure and magnetic properties of RE{sub 2}CuIn{sub 3} (RE=Ce, Pr, Nd, Sm and Gd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyvanchuk, Yuriy B.; Szytula, Andrzej; Zarzycki, Arkadiusz
2008-12-15
The ternary copper indides RE{sub 2}CuIn{sub 3}{identical_to}RECu{sub 0.5}In{sub 1.5} (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn{sub 2}-type structure, space group P6{sub 3}/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECu{sub x}In{sub 2-x}. Single crystal structure refinements were performed for five crystals: CeCu{sub 0.66}In{sub 1.34} (a=479.90(7) pm, c=768.12(15) pm), PrCu{sub 0.52}In{sub 1.48} (a=480.23(7) pm, c=759.23(15) pm), NdCu{sub 0.53}In{sub 1.47} (a=477.51(7) pm, c=756.37(15) pm), SmCu{sub 0.46}In{sub 1.54} (a=475.31(7) pm, c=744.77(15) pm), and GdCu{sub 0.33}In{sub 1.67}more » (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at T{sub N}=4.7 K for Pr{sub 2}CuIn{sub 3} and Nd{sub 2}CuIn{sub 3} and 15 K for Sm{sub 2}CuIn{sub 3}. Fitting of the susceptibility data of the samarium compound revealed an energy gap {delta}E=39.7(7) K between the ground and the first excited levels. - Graphical abstract: The CaIn{sub 2}-type structure of Sm{sub 2}CuIn{sub 3}.« less
NASA Astrophysics Data System (ADS)
Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni
2018-03-01
The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.
Tremelling, Grant W; Foxman, Bruce M; Landee, Christopher P; Turnbull, Mark M; Willett, Roger D
2009-12-21
A family of bis(2-amino-3,5-dihalopyridinium)tetrahalocuprate(II) compounds has been synthesized, including (3,5-diCAPH)2CuCl4 (1), (3,5-diCAPH)2CuBr4 (2), (3,5-diBAPH)2CuCl4 (3), and (3,5-diBAPH)2CuBr4 (4) [3,5-diCAPH = 2-amino-3,5-dichloropyridinium; 3,5-diBAPH = 2-amino-3,5-dibromopyridinium]. These complexes have been analyzed through single crystal X-ray diffraction and temperature dependent magnetic susceptibility. Compound 1 crystallizes in the P-1 space group and the tetrachlorocuprate ion is best described as possessing a distorted square planar geometry. Compounds 2-4 are structurally similar and crystallized in the P2(1)/n, P2(1)/c, and P2(1)/n space groups respectively. The tetrahalocuprate ions are best described as distorted tetrahedra. All four compounds show antiferromagnetic interactions and were fit to the uniform chain Heisenberg model with resulting 2J/kB values of -11.71(2) K, -2.21(1) K, -12.43 (2) K, and -1.36(1) K, respectively. The exchange values correlate well with the two-halide exchange pathway parameters. The unusual observation that the chloride complexes show stronger magnetic exchange than the bromide complexes provides strong support that the exchange can be strongly dependent upon the Cu-X...X angles and Cu-X...X-Cu torsion angles.
Synthesis and molecular structure of a spheroidal binary nanoscale copper sulfide cluster.
Bestgen, Sebastian; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter
2016-09-27
The reaction of copper(4-(tert-butyl)phenyl)methanethiolate [CuSCH 2 C 6 H 4 t Bu] with bis(trimethylsilyl)sulfide S(SiMe 3 ) 2 in the presence of triphenylphosphine PPh 3 afforded the binary 52 nuclear copper cluster [Cu 52 S 12 (SCH 2 C 6 H 4 t Bu) 28 (PPh 3 ) 8 ]. The molecular structure of this intensely red coloured nanoscale Cu 2 S mimic was established by single crystal X-ray diffraction.
NASA Astrophysics Data System (ADS)
Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla
2010-12-01
The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.
Probing the electronic and defect structure of perovskite superconductors
NASA Astrophysics Data System (ADS)
Fluss, M. J.; Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Kyle, J.; Nakanishi, H.; Chu, C. W.; Meng, R. L.; Hor, H. P.
1988-02-01
Positrons, either localized or delocalized, in the perovskite superconductors are sensitive to changes in electron density accompanying the normal-to-superconducting transition. We have been using this probe in our laboratory to study the nature of this new phenomena. Our work to date, which is briefly reviewed here, has consisted of a series of lifetime studies on La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O(sub 7-d) superconducting samples, the determination of the positron wave function in the perfect crystal, and a direct measurement of the electron momentum density in single crystal La2CuO4. Several important observations have resulted from this early work: the similar response of the positron annihilation lifetime to superconductivity in both La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O7, and a quantitative description of the electronic structure for La(sub 1.85)Sr(sub 0.15)CuO4 in terms of a linear combination of atomic orbital-molecular orbital (LCAO-MO) model.
Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng
2015-01-07
We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals.
Single-crystal and textured polycrystalline Nd2Fe14B flakes with a submicron or nanosize thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, BZ; Zheng, LY; Li, WF
2012-02-01
This paper reports on the fabrication, structure and magnetic property optimization of Nd2Fe14B single-crystal and [0 0 1] textured poly-nanocrystalline flakes prepared by surfactant-assisted high-energy ball milling (HEBM). Single-crystal Nd2Fe14B flakes first with micron and then with submicron thicknesses were formed via continuous basal cleavage along the (1 1 0) planes of the irregularly shaped single-crystal microparticles during the early stage of HEBM. With further milling, [0 0 1] textured polycrystalline submicron Nd2Fe14B flakes were formed. Finally, crystallographically anisotropic polycrystalline Nd2Fe14B nanoflakes were formed after milling for 5-6 h. Anisotropic magnetic behavior was found in all of the flake samples.more » Nd2Fe14B flakes prepared with either oleic acid (OA) or oleylamine (OY) as the surfactant exhibited similar morphology, structure and magnetic properties. Both the addition of some low-melting-point eutectic Nd70Cu30 alloy and an appropriate post-annealing can increase the coercivity of the Nd2Fe14B flakes. The coercivity of Nd2Fe14B nanoflakes with an addition of 16.7 wt.% Nd70Cu30 by milling for 5 h in heptane with 20 wt.% OY increased from 3.7 to 6.8 kOe after annealing at 450 degrees C for 0.5 h. The mechanism for formation and coercivity enhancement of Nd2Fe14B single-crystal and textured poly-nanocrystalline flakes with a submicron or nanosize thickness was discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Optical anisotropy of Bi2Sr2CaCu2O8
NASA Astrophysics Data System (ADS)
Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.
1990-04-01
The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.
NASA Astrophysics Data System (ADS)
Maurya, A.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Pani, M.; Costa, G. A.
2017-03-01
Single crystals of the new compound CeCu0.18Al0.24Si1.58 have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi2 (tetragonal α-ThSi2-type, Pearson symbol tI12, space group I41/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi2 is a well-known valence-fluctuating paramagnetic compound, the CeCu0.18Al0.24Si1.58 phase orders ferromagnetically at TC=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K2) show that CeCu0.18Al0.24Si1.58 is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of TC in CeCu0.18Al0.24Si1.58.
Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1990-03-01
Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.
Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.
Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros
2016-04-13
Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Surface analytical study of CuInSe[sub 2] treated in Cd-containing partial electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asher, S.E.; Ramanathan, K.; Wiesner, H.
1999-03-01
Junction formation in CuInSe[sub 2] (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH[sub 4]OH and CdSO[sub 4]. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. [copyright] [ital 1999 American Institute of Physics.]« less
Surface analytical study of CuInSe{sub 2} treated in Cd-containing partial electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asher, S.E.; Ramanathan, K.; Wiesner, H.
1999-03-01
Junction formation in CuInSe{sub 2} (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH{sub 4}OH and CdSO{sub 4}. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Technical Reports Server (NTRS)
Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.
1991-01-01
Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.
Atomistic simulation of shocks in single crystal and polycrystalline Ta
NASA Astrophysics Data System (ADS)
Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.
2011-06-01
Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.
NASA Astrophysics Data System (ADS)
Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.
2017-04-01
A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.
NMR studies of spin dynamics in cuprates
NASA Astrophysics Data System (ADS)
Takigawa, M.; Mitzi, D. B.
1994-04-01
We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.
Ohashi, Masato; Ishida, Naoyoshi; Ando, Kota; Hashimoto, Yu; Shigaki, Anna; Kikushima, Kotaro; Ogoshi, Sensuke
2018-05-16
The Cu(I)-catalyzed pentafluoroethylation of iodoarenes via the fluorocupration of tetrafluoroethylene (TFE) is disclosed. The active species, (phen)CuC₂F₅, was isolated and its molecular structure confirmed by a single-crystal X-ray diffraction analysis. The key to the successful suppression of the competing oligomerization of TFE is to refrain from stirring the reaction mixture. A mechanistic study clearly discarded the possibility that the catalytic reaction proceeds via a radical pathway. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng
2018-03-01
Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.
Decomposition mechanism of formic acid on Cu (111) surface: A theoretical study
NASA Astrophysics Data System (ADS)
Jiang, Zhao; Qin, Pei; Fang, Tao
2017-02-01
The study of formic acid decomposition on transition metal surfaces is important to obtain useful information for vapor phase catalysis involving HCOOH and for the development of direct formic acid fuel cells. In this study, periodic density functional theory calculations have been employed to investigate the dissociation pathways of HCOOH on Cu (111) surface. About adsorption, it is found that the adsorption of HCOO, COOH, HCO, CO, OH and H on Cu (111) are considered chemisorption, whereas HCOOH, CO2, H2O and H2 have the weak interaction with Cu (111) surface. Furthermore, the minimum energy pathways are analyzed for the decomposition of HCOOH to CO2 and CO through the scission of Hsbnd O, Csbnd H and Csbnd O bonds. It is found that HCOOH, HCOO and COOH prefer to dissociate in the related reactions rather than desorb. For the decomposition, it is indicated that HCO and COOH are the main dissociated intermediates of trans-HCOOH, CO2 is the main dissociated intermediates of bidentate-HCOO, and CO is the main dissociated product of cis-COOH. The co-adsorbed H atom is beneficial for the formation of CO2 from cis-COOH. Besides, it is found that the most favorable path for HCOOH decomposition on Cu (111) surface is HCOOH-HCO-CO (Path 5), where the step of CO formation from HCO dehydrogenation is considered to be the rate-determining step. The results also show that CO is preferentially formed as the dominant product of HCOOH on Cu (111) surface.
NASA Astrophysics Data System (ADS)
Ertl, Andreas; Giester, Gerald; Schüssler, Ulrich; Brätz, Helene; Okrusch, Martin; Tillmanns, Ekkehart; Bank, Hermann
2013-04-01
Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the < Y-O> distances and the (Li + Mn2+ + Cu + Fe2+) content (apfu) at this site with R 2 = 0.90. An excellent negative correlation exists between the < Y-O> distances and the Al2O3 content ( R 2 = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.
Intrinsic Josephson effects in the magnetic superconductor RuSr2GdCu2O8.
Nachtrab, T; Koelle, D; Kleiner, R; Bernhard, C; Lin, C T
2004-03-19
We have measured interlayer current transport in small-sized RuSr2GdCu2O8 single crystals. We find a clear intrinsic Josephson effect showing that the material acts as a natural superconductor-insulator-ferromagnet-insulator-superconductor superlattice. Thus far, we detected no unconventional behavior due to the magnetism of the RuO2 layers.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2018-04-01
Bulk, single grains of RE-Ba-Cu-O [(RE)BCO] high temperature superconductors have significant potential for a wide range of applications, including trapped field magnets, energy storage flywheels, superconducting mixers and magnetic separators. One of the main challenges in the production of these materials by the so-called top seeded melt growth technique is the reliable seeding of large, single grains, which are required for high field applications. A chemically aggressive liquid phase comprising of BaCuO2 and CuO is generated during the single grain growth process, which comes into direct contact with the seed crystal either instantaneously or via infiltration through a buffer pellet, if employed in the process. This can cause either partial or complete melting of the seed, leading subsequently to growth failure. Here, the underlying mechanisms of seed crystal melting and the role of seed porosity in the single grain growth process are investigated. We identify seed porosity as a key limitation in the reliable and successful fabrication of large grain (RE)BCO bulk superconductors for the first time, and propose the use of Mg-doped NdBCO generic seeds fabricated via the infiltration growth technique to reduce the effects of seed porosity on the melt growth process. Finally, we demonstrate that the use of such seeds leads to better resistance to melting during the single grain growth process, and therefore to a more reliable fabrication technique.
NASA Astrophysics Data System (ADS)
Adachi, Shintaro; Usui, Tomohiro; Kosugi, Kenta; Sasaki, Nae; Sato, Kentaro; Fujita, Masaki; Yamada, Kazuyoshi; Fujii, Takenori; Watanabe, Takao
In high superconducting transition temperature (high-Tc) cuprates, it is empirically known that Tc increases on increasing the number of CuO2 planes in a unit cell n from 1 to 3. Bi-family cuprates are ideal for investigating the microscopic mechanism involved. However, it is difficult to grow tri-layered Bi-2223, probably owing to its narrow crystallization field. Here, we report improved crystal growth of this compound using the TSFZ method under conditions slightly different from those in an earlier report [J. Cryst. Growth 223, 175 (2001)]. A Bi-rich feed-rod composition of Bi2.2Sr1.9Ca2Cu3Oy and a slightly oxygen-reduced atmosphere (mixed gas flow of O2 (10%) and Ar (90%)) were adopted for the crystal growth. In addition, to increase the supersaturation of the melts, we applied a large temperature gradient along the solid-liquid interface by shielding a high-angle light beam using Al foil around the quartz tube. In this way, we succeeded in preparing large (2 × 2 × 0 . 05 mm3) and high-quality (almost 100% pure) Bi-2223 single crystals. Hirosaki University Grant for Exploratory Research by Young Scientists and Newly-appointed Scientists.
Surface electronic structure of SmB6(111)
NASA Astrophysics Data System (ADS)
Ohtsubo, Yoshiyuki; Hagiwara, Kenta; Wang, Chengwei; Yukawa, Ryu; Horiba, Koji; Kumigashira, Hiroshi; Hirano, Wataru; Iga, Fumitoshi; Kimura, Shin-ichi
2018-05-01
Samarium hexaboride (SmB6) is the most extensively studied candidate of topological Kondo insulators. To clarify the topological origin of metallic surface states observed on the SmB6(001) surfaces, we studied the surface electronic structure of SmB6 on the other surface orientation, SmB6(111). Although the SmB6(111) surface cannot be obtained by cleaving, we successfully obtained the well-defined clean surface by high-temperature annealing of the mechanically polished single crystal of SmB6(111) in an ultra-high vacuum. The valence band spectra obtained by photoelectron spectroscopy with the bulk and surface-sensitive incident photon energies imply that the surface is covered with B6 cluster without Sm atoms.
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
Surface chirality of CuO thin films.
Widmer, Roland; Haug, Franz-Josef; Ruffieux, Pascal; Gröning, Oliver; Bielmann, Michael; Gröning, Pierangelo; Fasel, Roman
2006-11-01
We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric. A detailed analysis of the experimental data using single scattering cluster calculations reveals that the films grown with l(+)-TA exhibit a CuO(1) orientation, whereas growth in the presence of d(-)-TA results in a CuO(11) surface orientation. A simple bulk-truncated model structure with two terminating oxygen layers reproduces the experimental XPD data. Deposition with alternating enantiomers of tartaric acid leads to CuO films of alternating chirality. Enantiospecifity of the chiral CuO surfaces is demonstrated by further deposition of CuO from a solution containing racemic tartaric acid. The pre-deposited homochiral films exhibit selectivity toward the same enantiomeric deposition pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machura, B., E-mail: basia@ich.us.edu.pl; Switlicka, A.; Zwolinski, P.
2013-01-15
Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH){sub 4}Hg(SCN){sub 4}]{sub n} (1) [Cu(indH){sub 4}Hg(SCN){sub 4}]{sub n} (2) and [Cu(ampy){sub 2}Hg(SCN){sub 4}]{sub n} (3), have one-dimensional coordination structure. Two compounds [Cu(pzH){sub 2}Hg(SCN){sub 4}]{sub n} (4) and [Cu(abzimH)Hg(SCN){sub 4}]{sub n} (5) form two-dimensional nets, whereas the complexes [Cu(pyCN){sub 2}Hg(SCN){sub 4}]{sub n} (6) and [Cu(pyCH(OH)(OMe)){sub 2}Hg(SCN){sub 4}]{sub n} (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the threemore » dimensional net. In 2 the N-H Bullet Bullet Bullet S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H Bullet Bullet Bullet N and N-H Bullet Bullet Bullet S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the three dimensional net. - Graphical abstract: Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compound-synthesis,X-Ray studies and magnetic properties. Highlights: Black-Right-Pointing-Pointer Novel heterobimetallic Cu/Hg coordination polymers were synthesised. Black-Right-Pointing-Pointer The multidimensional structures have been proved by single X-ray analysIs. Black-Right-Pointing-Pointer A variation in the crystalline architectures was observed depending on auxiliary ligands. Black-Right-Pointing-Pointer Magnetic measurements indicate weak exchange interaction between Cu(II) in the crystal lattices below 10 K.« less
Grzywa, Maciej; Geßner, Christof; Denysenko, Dmytro; Bredenkötter, Björn; Gschwind, Fabienne; Fromm, Katharina M; Nitek, Wojciech; Klemm, Elias; Volkmer, Dirk
2013-05-21
The syntheses of H2-phbpz, [Cu2(phbpz)]·2DEF·MeOH (CFA-2) and [Ag2(phbpz)] (CFA-3) (H2-phbpz = 3,3',5,5'-tetraphenyl-1H,1'H-4,4'-bipyrazole) compounds and their crystal structures are described. The Cu(I) containing metal-organic framework CFA-2 crystallizes in the tetragonal crystal system, within space group I4(1)/a (no. 88) and the following unit cell parameters: a = 30.835(14), c = 29.306(7) Å, V = 27 865(19) Å(3). CFA-2 features a flexible 3-D three-connected two-fold interpenetrated porous structure constructed of triangular Cu(I) subunits. Upon exposure to different kinds of liquids (MeOH, EtOH, DMF, DEF) CFA-2 shows pronounced breathing effects. CFA-3 crystallizes in the monoclinic crystal system, within space group P2(1)/c (no. 14) and the following unit cell parameters: a = 16.3399(3), b = 32.7506(4), c = 16.2624(3) Å, β = 107.382(2)°, V = 8305.3(2) Å(3). In contrast to the former compound, CFA-3 features a layered 2-D three-connected structure constructed from triangular Ag(i) subunits. Both compounds are characterized by elemental and thermogravimetric analyses, single crystal structure analysis and X-ray powder diffraction, FTIR- and fluorescence spectroscopy. Preliminary results on oxygen activation in CFA-2 are presented and potential improvements in terms of framework robustness and catalytic efficiency are discussed.
Epitaxial BiFeO3 thin films fabricated by chemical solution deposition
NASA Astrophysics Data System (ADS)
Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.
2006-04-01
Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.
Crystallization of copper metaphosphate glass
NASA Technical Reports Server (NTRS)
Bae, Byeong-Soo; Weinberg, Michael C.
1993-01-01
The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua
2017-10-01
Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.