NASA Astrophysics Data System (ADS)
Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza
2018-03-01
In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.
NASA Astrophysics Data System (ADS)
Tsay, Chien-Yie; Chen, Ching-Lien
2017-06-01
In this study, a p-type wide-bandgap oxide semiconductor CuGaO2 thin film was grown on quartz substrate by sol-gel method. The authors report the influence of annealing temperature on the phase transformation, structural features, and electrical properties of sol-gel derived Cu-Ga-O thin films. At relatively low annealing temperatures (≤900 °C), the films are a mixture of CuGa2O4, CuGaO2, and CuO phases. At relatively high annealing temperatures (≥925 °C), the majority phase in the films is delafossite CuGaO2. All as-prepared Cu-Ga-O thin films exhibited p-type conductivity, as confirmed by Hall measurements. The mean electrical resistivity of the Cu-Ga-O films decreased from 3.54×104 Ω-cm to 1.35×102 Ω-cm and then increased slightly to 3.51×102 Ω-cm when the annealing temperature was increased from 850 °C to 950 °C. We found that annealing the Cu-based oxide thin films at 925 °C produced nearly phase-pure CuGaO2 thin films with good densification. Such thin films exhibited the best electrical properties: a mean electrical resistivity of 1.35×102 Ω-cm, and a mean hole concentration of 1.60×1016 cm-3. In addition, we also fabricated and characterized MSM-type CuGaO2 UV photodetectors on quartz substrates.
NASA Astrophysics Data System (ADS)
Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela
2018-03-01
We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.
NASA Astrophysics Data System (ADS)
Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.
2012-02-01
The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-05-01
Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.
NASA Astrophysics Data System (ADS)
Yazdanparast, Sanaz
2016-12-01
Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.
NASA Astrophysics Data System (ADS)
Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda
2013-07-01
Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.
Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction
NASA Astrophysics Data System (ADS)
Bu, Ian Y. Y.
2013-08-01
Amorphous p-type CuAlO2 thin films were grown onto n-type crystalline ZnO NWs forming a heterojunction through the combination of sol-gel process and hydrothermal growth method. The effects of temperature on structure and optoelectronic properties of CuAlO2 thin films were investigated through various measurement techniques. It was found that the derived CuAlO2 is Al-rich with thin film. UV-Vis measurements showed that the deposited CuAlO2 films are semi-transparent with maximum transmittance ∼82% at 500 nm. Electrical characterization and integration into pn junction confirms that the amorphous CuAlO2 is p-type and exhibited photovoltaic behavior.
NASA Astrophysics Data System (ADS)
Murali, Dhanya S.; Aryasomayajula, Subrahmanyam
2018-03-01
Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu2 1+Cu2 2+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3-CuO and Cu2O by thermal annealing. The temperature-dependent (300-200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.
Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
Lim, Yee-Fun; Chua, Chin Sheng; Lee, Coryl Jing Jun; Chi, Dongzhi
2014-12-21
Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol-gel spin-coating process. Sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control. Pure-phase Cu2O and CuO films were obtained by thermal annealing at 500 °C in nitrogen and ambient air, respectively. The films were successfully incorporated as photocathodes in a photoelectrochemical (PEC) cell, achieving photocurrents of -0.28 mA cm(-2) and -0.35 mA cm(-2) (for Cu2O and CuO, respectively) at 0.05 V vs. a reversible hydrogen electrode (RHE). The Cu2O photocurrent was enhanced to -0.47 mA cm(-2) upon incorporation of a thin layer of a NiOx co-catalyst. Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting.
Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage
NASA Astrophysics Data System (ADS)
Zhu, Changqiong
Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from basic lactate solution with a large lactate/Cu2+ molar ratio, are sodium-free. This finding stands in contrast to the observation that films grown in basic solution contain a significant amount of sodium impurity at their top surfaces. Therefore, it is concluded that the sodium impurities present in films grown from basic lactate solutions are detrimental to overall photovoltaic device performance by introducing interface traps and recombination centers for charge carriers, which suggests that removing these impurities may be a promising strategy for improving Cu2O based solar cells. It has been found that impurities at the surface of electrodeposited p-Cu2O films can be efficiently removed through the use of concentrated aqueous ammonia solution as a wet etching agent. The performance of Cu 2O homojunction photovoltaic devices incorporating etched p-Cu 2O as the bottom layer is higher compared to devices with as-deposited p-Cu2O layers due to an improvement of the homojunction interface quality. Reducing the density of defect states that act as carrier recombination centers is found to lead to larger open circuit voltages. Zinc-doped cuprous oxide (Zn:Cu2O) thin films have also been prepared via single step electrodeposition from an aqueous solution containing sodium perchlorate. The Zn/Cu molar ratio in the Cu2O films can be tuned by adjusting the magnitude of the applied potential and the sodium perchlorate concentration. Electrical characterization reveals that zinc dopants increase the Fermi level in Zn:Cu2O films, enabling a three-fold improvement in the power conversion efficiency of a fully electrodeposited Cu2O homojunction photovoltaic device. Complementary to the development of Cu2O based photovoltaic devices, the use of solution deposited cupric oxide (CuO) thin films for capacitive energy storage has also been investigated. A seed layer-assisted chemical bath deposition (SCBD) method has been developed to create high quality CuO thin films on transparent conductive electrode (ITO)/glass substrates. A CuO seed layer is formed by the electrodeposition of Cu2O on ITO electrode for 10 s, followed by a brief (15 min) heating step to convert the Cu 2O to CuO. The seed layer is found to be essential for the growth of micrometer-thick, adherent CuO thin films on ITO-coated glass, as no films were observed to form on substrates without a seed layer. The addition of sodium lactate to the SCBD solution can be used to tune the morphology and relative crystallinity of the CuO films. A highly crystalline CuO film has been deposited from a solution without sodium lactate, while a largely amorphous CuO film was realized using lactate/Cu2+ molar ratio equal to 1.0. The CuO film with greater amorphous character exhibited a significantly larger specific capacitance as a redox active electrode compared to the crystalline film (2700 mF/g vs. 96 mF/g).
Influences of annealing temperature on sprayed CuFeO2 thin films
NASA Astrophysics Data System (ADS)
Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.
2018-06-01
Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.
Coppa, N.V.
1993-08-24
A method is described of producing superconducting microcircuits comprising the steps of: depositing a thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x](O < x < 1) onto a substrate; depositing a thin film of a dopant onto said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x]; depositing a photoresist onto said thin film of a dopant; shining light through a mask containing a pattern for a desired circuit configuration and onto said photoresist; developing said photoresist to remove portions of said photoresist shined by the light and to selectively expose said dopant film; etching said selectively exposed dopant film from said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x] to form a pattern of dopant; and heating said substrate at a temperature and for a period of time sufficient to diffuse and react said pattern of dopant with said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x].
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2015-02-01
In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.
NASA Astrophysics Data System (ADS)
Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.
2010-10-01
Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.
NASA Astrophysics Data System (ADS)
Shijeesh, M. R.; Jayaraj, M. K.
2018-04-01
Cuprous (Cu2O) and cupric (CuO) oxide thin films have been deposited by radio frequency magnetron sputtering with two different oxygen partial pressures. The as-deposited copper oxide films were subjected to post-annealing at 300 °C for 30 min to improve the microstructural, morphological, and optical properties of thin films. Optical absorption studies revealed the existence of a large number of subgap states inside CuO films than Cu2O films. Cu2O and CuO thin film transistors (TFTs) were fabricated in an inverted staggered structure by using a post-annealed channel layer. The field effect mobility values of Cu2O and CuO TFTs were 5.20 × 10-4 cm2 V-1 s-1 and 2.33 × 10-4 cm2 V-1 s-1, respectively. The poor values of subthreshold swing, threshold voltage, and field effect mobility of the TFTs were due to the charge trap density at the copper oxide/dielectric interface as well as defect induced trap states originated from the oxygen vacancies inside the bulk copper oxide. In order to study the distribution of the trap states in the Cu2O and CuO active layer, the temperature dependent transfer characteristics of transistors in the temperature range between 310 K and 340 K were studied. The observed subgap states were found to be decreasing exponentially inside the bandgap, with CuO TFT showing higher subgap states than Cu2O TFT. The high-density hole trap states in the CuO channel are one of the plausible reasons for the lower mobility in CuO TFT than in Cu2O TFT. The origin of these subgap states was attributed to the impurities or oxygen vacancies present in the CuO channel layer.
Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng
2015-01-07
We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals.
Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-01
In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films
NASA Astrophysics Data System (ADS)
Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.
2018-03-01
It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
Structural and optical properties of ITO and Cu doped ITO thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal
2018-04-01
(In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.
The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route
NASA Astrophysics Data System (ADS)
Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei
2012-06-01
An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.
Thin films of the Bi2Sr2Ca2Cu3O(x) superconductor
NASA Technical Reports Server (NTRS)
Mei, YU; Luo, H. L.; Hu, Roger
1990-01-01
Using RF sputtering technique, thin films of near single phase Bi2Sr2Ca2Cu3O(x) were successfully prepared on SrTiO3(100), MgO(100), and LaAlO3(012) substrates. Zero resistance of these films occurred in the range of 90-105 K.
Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon
NASA Technical Reports Server (NTRS)
Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.
1991-01-01
SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2016-05-01
Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com; Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad; Ahmed, Naser M., E-mail: naser@usm.my
The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution formore » 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.« less
Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates
NASA Astrophysics Data System (ADS)
Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.
1994-09-01
Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.
Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method
NASA Astrophysics Data System (ADS)
AlHammad, M. S.
2017-05-01
We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.
NASA Astrophysics Data System (ADS)
Truman, James Kelly
1992-01-01
The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.
Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl2ṡ2H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.
Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-23
In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.
2012-06-01
Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.
Composite CuFe1 - xSnxO2/p-type silicon photodiodes
NASA Astrophysics Data System (ADS)
Al-Sehemi, Abdullah G.; Mensah-Darkwa, K.; Al-Ghamdi, Ahmed A.; Soylu, M.; Gupta, R. K.; Yakuphanoglu, F.
2017-06-01
CuFe1 - xSnxO2 composite thin film/p-type silicon diodes were prepared on substrate by sol-gel method (x = 0.00, 0.01, 0.03, 0.05, 0.07). The structure of CuFe1 - xSnxO2 composite thin films was studied using XRD analysis and films exhibited amorphous behavior. The elemental compositions and surface morphology of the films were characterized using SEM and EDX. EDX results confirmed the presence of the compositional elements. The optical band gap of CuFe1 - xSnxO2 composite thin films was determined using the optic spectra. The optical band gaps of the CuFe1 - xSnxO2 composite thin films were calculated using optical data and were found to be 3.75, 3.78, 3.80, 3.85 and 3.83 eV for x = 0.00, 0.01, 0.03, 0.05 and 0.07, respectively. The photoresponse and electrical properties of the Al/CuFe1 - xSnxO2/p-Si/Al diode were studied. The barrier height and ideality factor were determined to be averagely 0.67 eV and 2.6, respectively. The electrical and photoresponse characteristics of the diodes have been investigated under dark and solar light illuminations, respectively. The interface states were used to explain the results obtained in present study. CuFe1 - xSnxO2 photodiodes exhibited a high photoresponsivity to be used in optoelectronic applications.
Pulsed Laser Deposition Growth of Delafossite (CuFeO2) thin films and multilayers
NASA Astrophysics Data System (ADS)
Joshi, Toyanath; Ferrari, Piero; Borisov, Pavel; Cabrera, Alejandro; Lederman, David
2014-03-01
Owing to its narrow band gap (<2 eV) and p-type conductivity delafossite CuFeO2 is attractive for applications in the field of solar energy conversion. Obtaining pure phase CuFeO2 thin films, however, is relatively difficult. It is necessary to maintain the lowest possible Cu valency (+1) in order to avoid forming the comparably stable spinel compound CuFe2O4. We present a systematic study of the pulsed laser deposition (PLD) growth conditions for epitaxial (00.1) oriented CuFeO2 thin films on Al2O3 (00.1) substrates. The secondary impurity phase, CuFe2O4, was removed completely by optimizing the growth conditions. RHEED, XRD and TEM showed that the pure phase delafossite films are highly epitaxial to the substrate. The chemical purity was verified by Raman and XPS. The indirect bandgap of 1.15 eV was measured using infrared reflectivity, and is in agreement with the CuFeO2 bulk value. Finally, we discuss the growth and structural characterization of delafossite multilayers, CuFeO2/CuGaO2. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract # 2013-MA-2382) at WVU.
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.
1990-01-01
The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.
NASA Astrophysics Data System (ADS)
Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.
1988-03-01
High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.
NASA Astrophysics Data System (ADS)
Samanta, Kousik
Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound Magnetic Polaron (BMP) model. The Resistivity of ZCO sample (˜ 103 O-cm) dropped by 5 orders of magnitude (0.02 O-cm) in Co, Al co-doped samples and the carrier concentrations increases 4 orders of magnitude (˜ 1019/cm3). The Cu2+ doped ZnO thin films showed the ferromagnetic property at 300K. The p-d orbital mixing of high spin Cu2+ (d9) state with the nearest neighbor oxygen p-orbital can explain the origin of RTFM in Zn 1-xCuxO thin films. The optical transmission spectroscopy and the photoluminescence spectroscopy analysis were used to understand the electronic band structure, near band edge (NBE) transition, and the excitonic behavior in ZnO and Zn1-xTMxO thin films. We have found the reduction of NBE transition at 300K due to the substitution of Co and Cu in ZnO host lattice. This narrowing of the optical band gap (NBE) is due to the sp-d exchange interaction between the d electrons of transition metal ions and the band electrons of ZnO; the strength of this interaction strongly depends on the number of d electrons. The s-d and p-d exchanges give rise to negative and positive corrections to the conduction and valance band edges respectively, leading to the NBE narrowing. We have observed the characteristic inter atomic d-d transitions in Co doped samples; thus confirming the substitution of Co2+ in the tetrahedral site in ZnO. The low temperature (77K) PL spectrum showed the basic excitonic characteristics of pure ZnO in Zn1-xTMxO thin films. The X-ray photoelectron spectroscopy (XPS) showed that the Co and Cu are normally in 2+ oxidation state, but in the case of higher Cu concentrations (>3%), the mixed state of Cu2+ and Cu1+ were detected.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. T.; Zang, D. Y.; Che, X. S.; Feng, L. P.; Bai, X. X.
2013-12-01
We have successfully prepared Cu-Al-O thin films on silicon (100) and quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited Cu-Al-O film is amorphous in nature and post-annealing treatment in argon ambience results in crystallization of the films and the formation of CuAlO2. The annealing temperature plays an important role in the surface morphology, phase constitution and preferred growth orientation of CuAlO2 phase, thus affecting the properties of the film. The film annealed at 900 °C is mainly composed of CuAlO2 phase and shows smooth surface morphology with well-defined grain boundaries, thus exhibiting the optimum optical-electrical properties with electrical resistivity being 79.7 Ω·cm at room temperature and optical transmittance being 80% in visible region. The direct optical band gaps of the films are found in the range of 3.3-3.8 eV depending on the annealing temperature.
Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke
2018-05-01
Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.
Thin film seeds for melt processing textured superconductors for practical applications
Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei
1999-01-01
A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.
Thin film seeds for melt processing textured superconductors for practical applications
Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.
1999-02-09
A method of fabricating bulk superconducting material such as RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate is disclosed. The powder oxides of RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 {angstrom} and 2000 {angstrom}. A construction prepared by the method is also disclosed.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Technical Reports Server (NTRS)
Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.
1991-01-01
The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.
NASA Astrophysics Data System (ADS)
Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.
1993-09-01
A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.
NASA Astrophysics Data System (ADS)
Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.
2016-04-01
Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.
Cu2O-based solar cells using oxide semiconductors
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2016-01-01
We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0.025)2O3 thin film with a thickness of approximately 60 nm. In addition, a Voc of 0.96 V and an η of 5.4% were obtained in a MgF2/AZO/n-AGMZO/p-Cu2O:Na heterojunction solar cell.
Lo Nigro, Raffaella; Malandrino, Graziella; Toro, Roberta G; Losurdo, Maria; Bruno, Giovanni; Fragalà, Ignazio L
2005-10-12
CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.
A comparison study of Co and Cu doped MgO diluted magnetic thin films
NASA Astrophysics Data System (ADS)
Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.
2017-02-01
Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.
Studies on interface between In2O3 and CuInTe2 thin films
NASA Astrophysics Data System (ADS)
Ananthan, M. R.; Malar, P.; Osipowicz, Thomas; Kasiviswanathan, S.
2017-10-01
Interface between dc sputtered In2O3 and stepwise flash evaporated CuInTe2 films were studied by probing Si/In2O3/CuInTe2 and Si/CuInTe2/In2O3 structures with the help of glancing angle X-ray diffraction, Rutherford backscattering spectrometry and micro-Raman spectroscopy. The results showed that in Si/In2O3/CuInTe2 structure, a ∼20 nm thick interface consisting of In, Cu and O had formed between In2O3 and CuInTe2 and was attributed to the diffusion of Cu from CuInTe2 into In2O3 film. On the other hand, in Si/CuInTe2/In2O3 structure, homogeneity of the underlying CuInTe2 film was found lost completely. An estimate of the masses of the constituent elements showed that the damage was caused by loss of Te from CuInTe2 film during the growth of In2O3 film on Si/CuInTe2.
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc
2015-01-01
The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.
Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.
2015-12-01
In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.
NASA Astrophysics Data System (ADS)
Jundale, D. M.; Pawar, S. G.; Patil, S. L.; Chougule, M. A.; Godse, P. R.; Patil, V. B.
2011-10-01
The nanocrystalline CuO thin films were prepared on glass substrates by the sol-gel method. The structural, morphological, electrical and optical properties of CuO thin films, submitted to an annealing treatment in the 400-700 °C ranges are studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe Technique and UV-visible spectroscopic. XRD measurements show that all the films are crystallized in the monoclinic phase and present a random orientation. Four prominent peaks, corresponding to the (110) phase (2θ≈32.70°), (002) phase (2θ≈35.70°), (111) phase (2θ≈38.76°) and (202) phase (2θ≈49.06°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the microstructure, electrical and optical properties. The optical band gap energy decreases with increasing annealing temperature. These mean that the optical quality of CuO films is improved by annealing.
Electrochemical and physical properties of electroplated CuO thin films.
Dhanasekaran, V; Mahalingam, T
2013-01-01
Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.
NASA Astrophysics Data System (ADS)
Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang
2014-07-01
CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.
High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions
Xie, Ting; Hasan, Md Rezaul; Qiu, Botong; Arinze, Ebuka S.; Nguyen, Nhan V.; Motayed, Abhishek; Thon, Susanna M.; Debnath, Ratan
2017-01-01
We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated. PMID:28729741
Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film
NASA Astrophysics Data System (ADS)
Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk
1997-02-01
YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.
In situ oxidation studies on /001/ copper-nickel alloy thin films
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1977-01-01
High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.
Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida
NASA Astrophysics Data System (ADS)
Angelov, O.; Stoyanova, D.; Ivanova, I.
2016-10-01
Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.
The chemisorption and reactions of formic acid on Cu films on ZnO (000 overline1)-O
NASA Astrophysics Data System (ADS)
Ludviksson, A.; Zhang, R.; Campbell, Charles T.; Griffiths, K.
1994-06-01
The adsorption and reactions of formic acid (HCOOD : HCOOH = 3:1) on the oxygen-terminated ZnO(0001¯)-O surface and on thin Cu films deposited on the ZnO(0001¯)-O surface have been studied with temperature programmed desorption (TPD) and XPS. Small amounts of formic acid dissociate at defect sites on clean ZnO(0001¯)-O to yield surface formate (HCOO). The acid D(H) from this dissociation does not reappear in TPD, and is lost to the ZnO bulk, as confirmed by nuclear reaction analysis. The surface HCOO decomposes to yield nearly simultaneous CO 2 (37%), CO (63%) and H 2 TPD peaks at 560 K. Substantial amounts of D (˜ 20%) are incorporated in this hydrogen TPD peak resulting from formate decomposition at ZnO defects, indicating that bulk D is readily accessible. Submonolayer and multilayer Cu films that are deposited at 130 K and partially cover the ZnO surface as 2D and 3D islands adsorb formic acid and decompose it into formate and hydrogen much like the Cu(110) surface. The surface formate from the Cu film decomposes at 470-500 K to give primarily CO 2 and H 2, also much like Cu(110), although atom-thin Cu islands also give ˜ 40% CO. Annealed Cu films give formate decomposition peaks at 25-50 K lower in temperature, attributed to thickening and ordering of the Cu islands to form Cu(111)-like sites. The acid D(H) atom from the formic acid is partially lost by hydrogen spillover from the Cu islands into the ZnO substrate, especially for thin Cu films. This effect partially desorbs and is enhanced upon preannealing the Cu layers, due to increased H diffusion rates across the annealed Cu islands, and/or the decrease in island size. Bulk D(H) is slowly removed as D 2, HD and H 2 above 400 K in diffusion-limited desorption, catalyzed by Cu.
Sinnarasa, Inthuga; Thimont, Yohann; Presmanes, Lionel; Barnabé, Antoine; Tailhades, Philippe
2017-01-01
P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS²) was 6 µW·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed. PMID:28654011
Microwave response of high transition temperature superconducting thin films
NASA Technical Reports Server (NTRS)
Miranda, Felix Antonio
1991-01-01
We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.
Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode
NASA Astrophysics Data System (ADS)
Mageshwari, K.; Han, Sanghoo; Park, Jinsub
2016-05-01
In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.
Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A
2006-07-01
A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.
Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang
2016-12-21
To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.
CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition
NASA Astrophysics Data System (ADS)
Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.
2018-06-01
CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.
Electrodeposited CuGa(Se,Te)2 thin-film prepared from sulfate bath
NASA Astrophysics Data System (ADS)
Oda, Yusuke; Minemoto, Takashi; Takakura, Hideyuki; Hamakawa, Yoshihiro
2006-09-01
CuGa(Se,Te)2 (CGST) thin films were prepared on a soda-lime glass substrate sputter coated with molybdenum by electrodeposition. The aqueous solution which contained CuSO4-5H2O, Ga2(SO4)3-19.3H2O, H2SeO3, H6TeO6, Li2SO4 and gelatin was adjusted to pH 2.6 with dilute H2SO4 and NaOH. It has been observed that (i) a crack-less and smooth CGST film with a composition close to the stoichiometric ratio was deposited at -600 mV (vs. Ag/AgCl) when Te was hardly included in the film and (ii) cracks and products on the surface increased with increasing Te content in the film. Annealing at 600 °C for 10 min improved the crystallinity of the as-deposited films.
Xie, Yian; Liu, Yufeng; Wang, Yaoming; Zhu, Xiaolong; Li, Aimin; Zhang, Lei; Qin, Mingsheng; Lü, Xujie; Huang, Fuqiang
2014-04-28
Low-cost and high-yield preparation of CuInSe2 films is the bottleneck for promising CuInSe2-based thin film solar cells. Here, we developed a simple, safe and cost-effective method using thioacetic acid to fabricate the absorber films of CuIn(S,Se)2 (CISSe). Dissolution of Cu2O and In(OH)3 in thioacetic acid was attributed to the strong coordination ability of S. The adhesive precursor solution can be prepared without any heating, centrifugation and inert gas protection, superior to the previously reported methods. The precursor CISSe layer was easily deposited in air by spin coating to ensure low cost. Uniform and compact CISSe thin films with well-crystallized and pure-phased CISSe grains were obtained after one step annealing. The as-prepared CISSe thin films were successfully applied to solar cells and a energy conversion efficiency of 6.75% was achieved. This facile preparation provides a low-cost and easy method to fabricate Cu-based thin film solar cells.
Heteroepitaxial Cu2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; Goyal, Amit
2015-01-01
Heteroepitaxial, single-crystal-like Cu2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu2O films on low cost, flexible, textured metallic substrates. Cu2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu2O phase without any trace of CuO phase is only formed in a limited deposition window of P(O2) - temperature. The (00l) single-oriented, highly textured, Cu2O films deposited under optimum P(O2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40–60 cm2 V−1 s−1 and carrier concentration over 1016 cm−3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu2O solar cell based on epitaxial Cu2O film prepared on the textured metal substrate. PMID:26541499
Critical current density of TlBa 2Ca 2Cu 3O 9 thin films on MgO (100) in magnetic fields
NASA Astrophysics Data System (ADS)
Piehler, A.; Ströbel, J. P.; Reschauer, N.; Löw, R.; Schönberger, R.; Renk, K. F.; Kraus, M.; Daniel, J.; Saemann-Ischenko, G.
1994-04-01
We report on the critical current density of TlBa 2Ca 2Cu 3O 9 thin films on (100) MgO substrates in magnetic fields. Single- phase and highly c-axis oriented thin films were prepared by laser ablation in combination with thermal evaporation of Tl 2O 3. Scanning electron microscope investigations indicated a flat plate-like microstructure and DC magnetization measurements showed the onset of superconductivity at ∼ 115 K. The critical current density jc was determined from magnetization cycles. Typical values of jc were 9 × 10 5 A/cm 2 at 6 K and 2.5 × 10 5 A/cm 2 at 77 K. In a magnetic field to 1 T applied parallel to the c-axis the critical current densities were 3 × 10 5 A/cm 2 at 6 K and 3 × 10 3 A/cm 2 at 77 K. The decrease of jc at higher magnetic fields is discussed and attributed to the microstructure of the TlBa 2Ca 2Cu 3O 9 thin films.
Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film
NASA Astrophysics Data System (ADS)
Sarkar, Suman; Kundu, Sarathi
2018-04-01
Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.
Heteroepitaxial Cu 2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; ...
2015-11-06
Heteroepitaxial, single-crystal-like Cu 2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu 2O films on low cost, flexible, textured metallic substrates. Cu 2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu 2O phase without any trace of CuO phase is only formed in a limited deposition window of P(Omore » 2) - temperature. The (00l) single-oriented, highly textured, Cu 2O films deposited under optimum P(O 2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40-60 cm 2 V -1 s -1 and carrier concentration over 10 16 cm -3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu 2O solar cell based on epitaxial Cu 2O film prepared on the textured metal substrate.« less
High-performing visible-blind photodetectors based on SnO{sub 2}/CuO nanoheterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Ting, E-mail: ting.xie@nist.gov; Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742; Hasan, Md Rezaul
2015-12-14
We report on the significant performance enhancement of SnO{sub 2} thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO{sub 2} p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO{sub 2}-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ∼592 for the CuO/SnO{sub 2}more » PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO{sub 2} heterostructured thin films are also investigated.« less
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Correa, John M.; Becerra, Raúl A.; Ramírez, Asdrubal A.; Gordillo, Gerardo
2016-11-01
Solar cells based on kesterite-type Cu2ZnSnS4 (CZTS) thin films were fabricated using a chemical route to prepare the CZTS films, consisting in sequential deposition of Cu2SnS3 (CTS) and ZnS thin films followed by annealing at 550 °C in nitrogen atmosphere. The CTS compound was prepared in a one-step process using a novel chemical procedure consisting of simultaneous precipitation of Cu2S and SnS2 performed by diffusion membranes assisted CBD (chemical bath deposition) technique. Diffusion membranes were used to optimize the kinetic growth through a moderate control of release of metal ions into the work solution. As the conditions for the formation in one step of the Cu2SnS3 compound have not yet been reported in literature, special emphasis was put on finding the parameters that allow growing the Cu2SnS3 thin films by simultaneous precipitation of Cu2S and SnS2. For that, we propose a methodology that includes numerical solution of the equilibrium equations that were established through a study of the chemical equilibrium of the system SnCl2, Na3C6H5O7·2H2O, CuCl2 and Na2S2O3·5H2O. The formation of thin films of CTS and CZTS free of secondary phases grown with a stoichiometry close to that corresponding to the Cu2SnS3 and Cu2ZnSnS4 phases, was verified through measurements of X-ray diffraction (XRD) and Raman spectroscopy. Solar cell with an efficiency of 4.2%, short circuit current of 16.2 mA/cm2 and open-circuit voltage of 0.49 V was obtained.
NASA Astrophysics Data System (ADS)
Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.
1988-02-01
Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).
Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects
NASA Technical Reports Server (NTRS)
Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.
1988-01-01
Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.
Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming
2018-01-01
A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.
Shinde, S K; Fulari, V J; Kim, D-Y; Maile, N C; Koli, R R; Dhaygude, H D; Ghodake, G S
2017-08-01
In this research article, we report hybrid nanomaterials of copper hydroxide/copper oxide (Cu(OH) 2 /CuO). A thin films were prepared by using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method. As-synthesized and hybrid Cu(OH) 2 /CuO with two different surfactants polyvinyl alcohol (PVA) and triton-X 100 (TRX-100) was prepared having distinct morphological, structural, and supercapacitor properties. The surface of the thin film samples were examined by scanning electron microscopy (SEM). A nanoflower-like morphology of the Cu(OH) 2 /CuO nanostructures arranged vertically was evidenced on the stainless steel substrate. The surface was well covered by nanoflake-like morphology and formed a uniform Cu(OH) 2 /CuO nanostructures after treating with surfactants. X-ray diffraction patterns were used to confirm the hybrid phase of Cu(OH) 2 /CuO materials. The electrochemical properties of the pristine Cu(OH) 2 /CuO, PVA:Cu(OH) 2 /CuO, TRX-100:Cu(OH) 2 /CuO films were observed by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy technique. The electrochemical examination reveals that the Cu(OH) 2 /CuO electrode has excellent specific capacitance, 292, 533, and 443Fg -1 with pristine, PVA, and TRX-100, respectively in 1M Na 2 SO 4 electrolyte solution. The cyclic voltammograms (CV) of Cu(OH) 2 /CuO electrode shows positive role of the PVA and TRX-100 to enhance supercapacitor performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate
NASA Astrophysics Data System (ADS)
Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.
1988-07-01
High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.
Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique
NASA Astrophysics Data System (ADS)
Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei
2017-11-01
In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-01-01
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-02-05
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.
Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films
NASA Astrophysics Data System (ADS)
Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.
Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
High Tc superconducting IR detectors from Y-Ba-Cu-O thin films
NASA Technical Reports Server (NTRS)
Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.
1990-01-01
A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
2011-01-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-12-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films.
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-02-04
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
NASA Astrophysics Data System (ADS)
Piehler, A.; Löw, R.; Betz, J.; Schönberger, R.; Renk, K. F.
1993-11-01
TlBa2Ca2Cu3O9±δ high Tc thin films were prepared on MgO <100> surfaces by a combination of laser ablation from a stoichiometric Ba2Ca2Cu3Ox target and the thermal evaporation of thallium oxide. X-ray diffraction measurements showed that the films consisted of predominantly c axis oriented TlBa2Ca2Cu3O9±δ, and scanning electron microscopy revealed that the surfaces had a flat, platelike morphology. The ac inductive measurements indicated that the onset of superconductivity occurred at 117 K with a transition width (10%-90%) of ˜3 K. Zero resistivity was reached at 120 K. The critical current density was ˜3×104 A/cm2 at 110 K.
Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Gauquelin, Nicolas; Zhang, Hao; Zhu, Guozhen; Wei, John Y. T.; Botton, Gianluigi A.
2018-05-01
We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-δ (YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity.
NASA Technical Reports Server (NTRS)
Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.
1990-01-01
In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed.
NASA Technical Reports Server (NTRS)
Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.
1991-01-01
In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.
Sequentially evaporated thin film YBa2Cu3O(7-x) superconducting microwave ring resonator
NASA Technical Reports Server (NTRS)
Rohrer, Norman J.; To, Hing Y.; Valco, George J.; Bhasin, Kul B.; Chorey, Chris; Warner, Joseph D.
1990-01-01
There is great interest in the application of thin film high temperature superconductors in high frequency electronic circuits. A ring resonator provides a good test vehicle for assessing the microwave losses in the superconductor and for comparing films made by different techniques. Ring resonators made of YBa2Cu3O(7-x) have been investigated on LaAlO3 substrates. The superconducting thin films were deposited by sequential electron beam evaporation of Cu, Y, and BaF2 with a post anneal. Patterning of the superconducting film was done using negative photolithography. A ring resonator was also fabricated from a thin gold film as a control. Both resonators had a gold ground plane on the backside of the substrate. The ring resonators' reflection coefficients were measured as a function of frequency from 33 to 37 GHz at temperatures ranging from 20 K to 68 K. The resonator exhibited two resonances which were at 34.5 and 35.7 GHz at 68 K. The resonant frequencies increased with decreasing temperature. The magnitude of the reflection coefficients was in the calculation of the unloaded Q-values. The performance of the evaporated and gold resonator are compared with the performance of a laser ablated YBa2Cu3O(7-x) resonator. The causes of the double resonance are discussed.
Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.
Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M
1999-08-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.
NASA Astrophysics Data System (ADS)
Xian, Cheng-Ji; Park, Jong-Hyun; Ahn, Kyung-Chan; Yoon, Soon-Gil; Lee, Jeong-Won; Kim, Woon-Chun; Lim, Sung-Taek; Sohn, Seung-Hyun; Moon, Jin-Seok; Jung, Hyung-Mi; Lee, Seung-Eun; Lee, In-Hyung; Chung, Yul-Kyo; Jeon, Min-Ku; Woo, Seong-Ihl
2007-01-01
200-nm-thick BMN films were deposited on Pt /TiO2/SiO2/Si and Cu /Ti/SiO2/Si substrates at various temperatures by pulsed laser deposition. The dielectric constant and capacitance density of the films deposited on Pt and Cu electrodes show similar tendency with increasing deposition temperature. On the other hand, dielectric loss of the films deposited on Cu electrode varies from 0.7% to 1.3%, while dielectric loss of films on Pt constantly shows 0.2% even though the deposition temperature increases. The low value of breakdown strength in BMN films on Pt compared to films deposited on Cu electrode was attributed to the increase of surface roughness by the formation of secondary phases at interface between BMN films and Pt electrodes.
Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.
1991-01-01
Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie
A transparent p-type thin film CuGaO{sub 2} was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10{sup −2} Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. Themore » details of the results will be discussed in the conference.« less
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1992-01-01
The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habermeier, H.U.; Jisrawi, N.; Jaeger-Waldau, G.
Recent reports on high transient transverse voltages at room temperature in YBa{sub 2}Cu{sub 3}O{sub 7} and Pr{sub x}Y{sub 1{minus}x}Ba{sub 2}Cu{sub 3}O{sub 7} thin films grown on SrTiO{sub 3} single crystal substrates, with a tilt angle between the [001] cubic axis and the substrate surface plane, have been interpreted by thermoelectric fields transverse to a laser-induced temperature gradient which are caused by the non-zero off diagonal elements of the Seebeck tensor. The authors have studied this effect in epitaxially grown Pr-doped, as well as undoped YBa{sub 2}Cu{sub 3}O{sub 7}, thin films and observed for a 2 mm long YBa{sub 2}Cu{sub 3}O{submore » 7} strip exposed to a UV photon fluence of 100 mJ/cm{sup 2} signals as large as 30 V. The unexpected high values for the signals and their doping dependence are discussed within the frame of a model based on a thermopile arrangement, the growth induced defect structure and the doping induced modifications of the material properties.« less
NASA Astrophysics Data System (ADS)
Das, Sayantan; Alford, T. L.
2013-06-01
Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures
NASA Astrophysics Data System (ADS)
Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.
1992-09-01
Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.
YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer
NASA Technical Reports Server (NTRS)
Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.
1993-01-01
Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.
NASA Astrophysics Data System (ADS)
Laughlin, Brian James
Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150°C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and 100 mum2 analysis areas, respectively. The deposition and crystallization of BST layers on these ultra-smooth foils is demonstrated. The fully processed dielectric layers exhibited field tunability >5:1, and could withstand fields >750 kV cm-1. High field loss tangents below 0.007 were observed, making these materials excellent candidates for microwave devices. Finally, a process of lamination and contact lithography was used to demonstrate patterning of micron-scale features suitable for microwave circuit element designs.
NASA Astrophysics Data System (ADS)
Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.
2005-11-01
By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.
Comparison of the agglomeration behavior of thin metallic films on SiO2
NASA Astrophysics Data System (ADS)
Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.
2005-07-01
The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.
One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing
NASA Astrophysics Data System (ADS)
Tang, Aiyue; Li, Zhilin; Wang, Feng; Dou, Meiling; Pan, Youya; Guan, Jingyu
2017-04-01
Cu2ZnSnS4 (CZTS) is a quaternary kesterite compound with suitable band gap for thin film solar cells. In most electrodeposition-anneal routes, sulfurization is inevitable because the as-deposited film is lack of S. In this work, a novel green electrolyte was designed for synthesizing CZTS thin films with high S content. In the one-step electrodeposition, K4P2O7 and C7H6O6S were added to form complex with metallic ions in the electrolyte, which could attribute to co-deposition. The as-deposited film obtained high S content satisfying stoichiometry. After a sulfurization free annealing, the continuous and uniform CZTS thin film was obtained, which had pure kesterite structure and a suitable band gap of 1.53 eV. Electrodeposition mechanism investigation revealed that the K4P2O7 prevented the excessive deposition of Cu2+ and Sn2+. The C7H6O6S promoted the reduction of Zn2+. So the additives narrowed the co-deposition potentials of the metallic elements through a synergetic effect. They also promoted the reduction of S2O32- to ensure the co-deposition of the four elements and the stoichiometry. The sulfurization free annealing process can promote the commercialization of CZTS films and the successful design principle of environmental friendly electrolytes could be applied in other electrodeposition systems.
Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers
NASA Astrophysics Data System (ADS)
Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.
Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.
NASA Astrophysics Data System (ADS)
Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Strössner, F.; Evans, D. A.; Clark, G. F.
2006-04-01
The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO2/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the α form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO2/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.
Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics.
Riha, Shannon C; Koegel, Alexandra A; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F
2017-02-08
Copper antimony sulfide (CuSbS 2 ) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>10 4 cm -1 ), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm -1 , as well as a hole concentration of 10 15 cm -3 . Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2 /CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.
Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition
NASA Astrophysics Data System (ADS)
Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao
2006-09-01
Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.
NASA Astrophysics Data System (ADS)
Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha
2017-10-01
We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.
Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.
2018-06-01
YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.
NASA Astrophysics Data System (ADS)
Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.
2018-03-01
Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.
Dilute electrodeposition of TiO2 and ZnO thin film memristors on Cu substrate
NASA Astrophysics Data System (ADS)
Fauzi, F. B.; Ani, M. H.; Herman, S. H.; Mohamed, M. A.
2018-03-01
Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO2 memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti4+, Zn2+ and O2‑ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors demonstrate comparable performances to previous studies using other methods.
Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions
NASA Astrophysics Data System (ADS)
Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang
2014-04-01
CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.
Spray pyrolysis synthesized Cu(In,Al)(S,Se)2 thin films solar cells
NASA Astrophysics Data System (ADS)
Aamir Hassan, Muhammad; Mujahid, Mohammad; Woei, Leow Shin; Wong, Lydia Helena
2018-03-01
Cu(In,Al)(S,Se)2 thin films are prepared by the Spray pyrolysis of aqueous precursor solutions of copper, indium, aluminium and sulphur sources. The bandgap of the films was engineered by aluminium (Al) doping in CISSe films deposited on molybdenum (Mo) coated glass substrate. The as-sprayed thin films were selenized at 500 °C for 10 min. Cadmium sulphide (CdS) buffer layer was deposited by chemical bath deposition process. Solar cell devices were fabricated with configuration of glass/Mo/CIASSe/CdS/i-ZnO/AZO. The solar cell device containing thin film of Cu(In,Al)(S,Se)2 with our optimized composition shows j-V characteristics of Voc = 0.47 V, jsc = 21.19 mA cm-2, FF = 52.88% and power conversion efficiency of 5.27%, under AM 1.5, 100 mW cm-2 illumination.
Tuning the formation of p-type defects by peroxidation of CuAlO2 films
NASA Astrophysics Data System (ADS)
Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei
2013-07-01
p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brize, Virginie; STMicroelectronics, 16 rue P and M Curie, 37001 Tours; Autret-Lambert, Cecile, E-mail: cecile.autret-lambert@univ-tours.fr
2011-10-15
CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulkmore » CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).« less
NASA Astrophysics Data System (ADS)
Senty, Tess; Joshi, Toyanath; Trappen, Robbyn; Zhou, Jinling; Chen, Song; Ferrari, Piero; Borisov, Pavel; Song, Xueyan; Holcomb, Mikel; Bristow, Alan; Cabrera, Alejandro; Lederman, David
2015-03-01
Growth of pure phase delafossite CuFeO2 thin films on Al2O3 (00.1) substrates by pulsed laser deposition was systematically investigated as function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO2 films demonstrated a phase transition at TC = 15K, which agrees with the first antiferromagnetic transition at 14K in the bulk CuFeO2. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract #2013-MA-2382) at WVU. Work at PUC was supported by FONDECyT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghonge, S.G.; Goo, E.; Ramesh, R.
1994-12-31
TEM and X-ray diffraction studies of PZT, PLZT, lead titanate and bismuth titanate ferroelectric thin films and YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}(YBCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}(BSCCO) and La{sub 0.5}Sr{sub 0.5}CoO{sub 3}(LSCO) electrically conductive oxide thin films, that are sequentially deposited by pulsed laser ablation, show that these films may be deposited epitaxially onto LaAlO{sub 3}(LAO) or Si substrates. The conductive oxides are promising candidates for use is electrodes in place of metal electrodes in integrated ferroelectric device applications. The oxide electrodes are more chemically compatible with the ferroelectric films. High resolution electron microscopy his been used to investigate the interfacemore » between the ferroelectric and metal oxide thin films and no reaction was detected. Epitaxial growth is possible due to the similar crystal structures and the small lattice mismatch. The lattice mismatch that is present causes the domains in the ferroelectric films to be preferentially oriented and in the case of lead titanate, the film is single domain. These films may also have potential applications in integrated optical devices.« less
A quick method for AlCu interconnect electromigration performance predicting and monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Yi, Leeward; Tao, Kai; Ma, Yue; Chang, Pingyi; Mao, Duli; Wu, Jin; Zou, S. C.
2006-05-01
The film properties and microstructures of (bottom)Si/SiO2/Ti(top) and (bottom)Si/SiO2/Ti/TiN/AlCu(top) stacks deposited by different processes were characterized. The resistivities of thin Ti films and the reflectivities of AlCu alloy films were found to correlate with the microstructure as well as the mean time to failure (MTTF) in the electromigration (EM) test. A quick-turn monitor for AlCu interconnect reliability in the semiconductor manufacturing industry was established.
Epitaxial cuprate superconductor/ferroelectric heterostructures.
Ramesh, R; Inam, A; Chan, W K; Wilkens, B; Myers, K; Remschnig, K; Hart, D L; Tarascon, J M
1991-05-17
Thin-film heterostructures of Bi(4)Ti(3)O(12)Bi(2)Sr(2)CuO(6+x), have been grown on single crystals of SrTiO(3), LaAlO(3), and MgAl(2)O(4) by pulsed laser deposition. X-ray diffraction studies show the presence of c-axis orientation only; Rutherford backscattering experiments show the composition to be close to the nominal stoichiometry. The films are ferroelectric and exhibit a symmetric hysteresis loop. The remanent polarization was 1.0 microcoulomb per square centimeter, and the coercive field was 2.0 x 10(5) volts per centimeter. Similar results were obtained with YBa(2)Cu(3)O(7-x) and Bi(2)Sr(2)CaCu(2)O(8+x), and single-crystal Bi(2)Sr(2)CuO(6+x)as the bottom electrodes. These films look promising for use as novel, lattice-matched, epitaxial ferroelectric film/electrode heterostructures in nonvolatile memory applications.
Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM
NASA Astrophysics Data System (ADS)
Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan
2011-04-01
The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.
Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films
NASA Astrophysics Data System (ADS)
Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.
1991-02-01
We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.
Strategies to improve the electrochemical performance of electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Ming-Che
Lithium-ion batteries are widely used in consumer market because of their lightweight and rechargeable property. However, for the application as power sources of hybrid electric vehicles (HEVs), which need excellent cycling performance, high energy density, high power density, capacity, and low cost, new materials still need to be developed to meet the demands. In this dissertation work, three different strategies were developed to improve the properties of the electrode of lithium batteries. First, the voltage profile and lithium diffusion battier of LiM1/2Mn 3/2O4 (M=Ti, V, Cr, Fe, Co, Ni and Cu) were predicted by first principles theory. The computation results suggest that doping with Co or Cu can potentially lower Li diffusion barrier compared with Ni doping. Our experimental research has focused on LiNixCuyMn 2-x-yO4 (0
Growth, patterning, and weak-link fabrication of superconducting YBa2Cu3O(7-x) thin films
NASA Astrophysics Data System (ADS)
Hilton, G. C.; Harris, E. B.; van Harlingen, D. J.
1988-09-01
Thin films of the high-temperature superconducting ceramic oxides have been grown, and techniques for fabricating weak-link structures have been investigated. Films of YBa2Cu3O(7-x) grown on SrTiO3 by a combination of dc magnetron sputtering and thermal evaporation from the three sources have been patterned into microbridges with widths down to 2 microns. Evidence is found that the bridges behave as arrays of Josephson-coupled superconducting islands. Further weak-link behavior is induced by in situ modification of the coupling by ion milling through the bridge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
Surface chirality of CuO thin films.
Widmer, Roland; Haug, Franz-Josef; Ruffieux, Pascal; Gröning, Oliver; Bielmann, Michael; Gröning, Pierangelo; Fasel, Roman
2006-11-01
We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric. A detailed analysis of the experimental data using single scattering cluster calculations reveals that the films grown with l(+)-TA exhibit a CuO(1) orientation, whereas growth in the presence of d(-)-TA results in a CuO(11) surface orientation. A simple bulk-truncated model structure with two terminating oxygen layers reproduces the experimental XPD data. Deposition with alternating enantiomers of tartaric acid leads to CuO films of alternating chirality. Enantiospecifity of the chiral CuO surfaces is demonstrated by further deposition of CuO from a solution containing racemic tartaric acid. The pre-deposited homochiral films exhibit selectivity toward the same enantiomeric deposition pathway.
NASA Astrophysics Data System (ADS)
Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji
1998-07-01
Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.
Low-temperature atomic layer deposition of CuSbS 2 for thin-film photovoltaics
Riha, Shannon C.; Koegel, Alexandra A.; Emery, Jonathan D.; ...
2017-01-24
Copper antimony sulfide (CuSbS 2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>10 4 cm –1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS 2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS 2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10 4 cm –1, as wellmore » as a hole concentration of 10 15 cm –3. Finally, the ALD-grown CuSbS 2 films were paired with ALD-grown TiO 2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS 2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS 2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS 2 thin films in environmentally benign photovoltaics.« less
NASA Astrophysics Data System (ADS)
Galdi, A.; Orgiani, P.; Sacco, C.; Gobaut, B.; Torelli, P.; Aruta, C.; Brookes, N. B.; Minola, M.; Harter, J. W.; Shen, K. M.; Schlom, D. G.; Maritato, L.
2018-03-01
The superconducting properties of Sr1-xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1-xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
NASA Astrophysics Data System (ADS)
Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui
2018-05-01
Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.
NASA Astrophysics Data System (ADS)
Reade, R. P.; Mao, X. L.; Russo, R. E.
1991-08-01
The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.
Physical Characterization of Cu-Ni-P Thin Films aiming at Cu/Cu-Ni-P Thermocouples
NASA Astrophysics Data System (ADS)
Tomachevski, F.; Sparvoli, M.; dos Santos Filho, S. G.
2015-03-01
Cu-Ni-P thin films have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this work, (100) silicon surfaces were pre-activated in a diluted hydrofluoric acid solution containing PdCl2. Following, Cu-Ni-P thin films were chemically deposited using an alkaline chemical bath containing 15 g/l NiSO4.6H2O; 0.2 g/l CuSO4.5H2O; 15 g/l Na2HPO2.H2O and 60 g/l Na3C6H5O7.2H2O at temperature of 80 °C where NH4OH was added until pH was 8.0. It was noteworthy that the stoichiometric percentages of Ni and Cu vary substantially for immersion times in the range of 1 to 3 min and they become almost stable at 50% and 35%, respectively, when the immersion time is higher than 3 min. In addition, the percentage of P remains almost constant around 1718 % for all the immersion times studied. On the other hand, the sheet resistance also varies substantially for immersion times in the range of 1 to 3 min. Based on the surface morphology, smaller grains with size in the range of 0.02 to 0.1 μm are initially grown on the silicon surface and exposed regions of silicon without deposits are also observed for immersion times in the range of 1 to 3min. Therefore, the discontinuities and non uniformities of the films are promoting, respectively, the observed behaviours of sheet resistance and stoichiometry.
Magnetoresistivity of thin YBa2Cu3O7-δ films on sapphire substrate
NASA Astrophysics Data System (ADS)
Probst, Petra; Il'in, Konstantin; Engel, Andreas; Semenov, Alexei; Hübers, Heinz-Wilhelm; Hänisch, Jens; Holzapfel, Bernhardt; Siegel, Michael
2012-09-01
Magnetoresistivity of YBa2Cu3O7-δ films with thicknesses between 7 and 100 nm deposited on CeO2 and PrBa2Cu3O7-δ buffer layers on sapphire substrate has been measured to analyze the temperature dependence of the second critical magnetic field Bc2. To define Bc2, the mean-field transition temperature Tc was evaluated by fitting the resistive transition in zero magnetic field with the fluctuation conductivity theory of Aslamazov and Larkin. At T → Tc the Bc2(T) dependence shows a crossover from downturn to upturn curvature with the increase in film thickness.
NASA Astrophysics Data System (ADS)
Michael, Peter C.; Johansson, L.-G.; Bengtsson, L.; Claeson, T.; Ivanov, Z. G.; Olsson, E.; Berastegui, P.; Stepantsov, E.
1994-12-01
Epitaxial thin films of Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconductor have been grown on single crystal (100) lanthanum aluminate (LaAlO 3) substrates by a two stage process: laser ablation of a BaCaCuO (0212) sintered target and post-deposition anneal ex-situ in a thallium environment. The films are c-axis oriented with in-plane epitaxy as determined by x-ray diffraction (XRD θ-2θ and φ-scans). Superconducting transition temperatures as high as 105.5K have been obtained both from four-probe resistance and a.c. magnetic susceptibility measurements. Film morphology and chemical composition have been assessed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). Sensitivity of the precursor film to environmental exposure has proven to be a determining factor in the reproducibility of film growth characteristics. The effect of oxygen partial pressure and substrate temperature used in the precursor film synthesis, as well as the thallium annealing temperature and duration, on the growth of Tl-2212 thin films is reported.
Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz
2016-01-29
A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1990-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation, and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1991-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching, and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation; and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
NASA Astrophysics Data System (ADS)
Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan
2017-10-01
Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.
Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.
Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui
2014-09-10
Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.
Preparation and characterization of Cu2SnS3 thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Patel, Biren; Narasimman, R.; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
Cu2SnS3 thin films were electrodeposited on F:SnO2/Glass substrates at room temperature by using aqueous solution. Copper and tin were first electrodeposited from single bath and post annealed in the presence of sulphur atmosphere to obtain the Cu2SnS3 phase. The Cu2SnS3 phase with preferred orientation along the (112) crystal direction grows to greater extent by the post annealing of the film. Raman analysis confirms the monoclinic crystal structure of Cu2SnS3 with principle mode of vibration as A1 (symmetric breathing mode) corresponding to the band at 291 cm-1. It also reveals the benign coexistence of orthorhombic Cu3SnS4 and Cu2SnS7 phases. Optical properties of the film show direct band gap of 1.25 eV with a high absorption coefficient of the order of 104 cm-1 in the visible region. Photo activity of the electrodeposited film was established in two electrode photoelectro-chemical cell, where an open circuit voltage of 91.6 mV and a short circuit current density of 10.6 µA/cm2 were recorded. Fabrication of Cu2SnS3 thin film heterojunction solar cell is underway.
The Chemical Vapor Deposition of Thin Metal Oxide Films
NASA Astrophysics Data System (ADS)
Laurie, Angus Buchanan
1990-01-01
Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).
Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates
NASA Technical Reports Server (NTRS)
Valco, G. J.; Rohrer, N. J.; Warner, J. D.; Bhasin, K. B.
1989-01-01
The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates.
NASA Astrophysics Data System (ADS)
Masudy-Panah, Saeid; Radhakrishnan, K.; Ru, Tan Hui; Yi, Ren; Wong, Ten It; Dalapati, Goutam Kumar
2016-09-01
Aluminum-doped cupric oxide (CuO:Al) was prepared via an out-diffusion process of Al from an Al-coated substrate into the deposited CuO thin film upon thermal treatment. The effect of the annealing temperature on the structural and optical properties of CuO:Al was investigated in detail. The influence of Al incorporation on the photovoltaic properties was then investigated by preparing a p-CuO:Al/n-Si heterojunction solar cell. A significant improvement in the performance of the solar cell was achieved by controlling the out-diffusion of Al. A novel in situ method to co-dope CuO with Al and titanium (Ti) has been proposed to demonstrate CuO-based solar cells with the front surface field (FSF) design. The FSF design was created by depositing a CuO:Al layer followed by a Ti-doped CuO (CuO:Ti) layer. This is the first successful experimental demonstration of the codoping of a CuO thin film and CuO thin film solar cells with the FSF design. The open circuit voltage (V oc), short circuit current density (J sc) and fill factor (FF) of the fabricated solar cells were significantly higher for the FSF device compared to devices without FSF. The FF of this device improved by 68% through the FSF design and a record efficiency ɳ of 2% was achieved. The improvement of the solar cell properties is mainly attributed to the reduction of surface recombination, which influences the charge carrier collection.
Buffer layers for high-Tc thin films on sapphire
NASA Technical Reports Server (NTRS)
Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.
1992-01-01
Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.
NASA Astrophysics Data System (ADS)
Yang, Chang; Kneiß, Max; Schein, Friedrich-Leonhard; Lorenz, Michael; Grundmann, Marius
2016-02-01
CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm2 V-1 s-1 in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices. Herein, room-temperature heteroepitaxial growth of CuI on various substrates with well-defined in-plane epitaxial relations is realized by reactive sputtering technique. In such heteroepitaxial growth the formation of rotation domains is observed and hereby systematically investigated in accordance with existing theoretical study of domain-epitaxy. The controllable epitaxy of CuI thin films allows for the combination of p-type CuI with suitable n-type semiconductors with the purpose to fabricate epitaxial thin film heterojunctions. Such heterostructures have superior properties to structures without or with weakly ordered in-plane orientation. The obtained epitaxial thin film heterojunction of p-CuI(111)/n-ZnO(00.1) exhibits a high rectification up to 2 × 109 (±2 V), a 100-fold improvement compared to diodes with disordered interfaces. Also a low saturation current density down to 5 × 10-9 Acm-2 is formed. These results prove the great potential of epitaxial CuI as a promising p-type optoelectronic material.
NASA Technical Reports Server (NTRS)
Chrzanowski, J.; Meng-Burany, S.; Xing, W. B.; Curzon, A. E.; Heinrich, B.; Irwin, J. C.; Cragg, R. A.; Zhou, H.; Habib, F.; Angus, V.
1995-01-01
Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found.
Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wei, Hongling; Chen, Zhengwei; Wu, Zhenping; Cui, Wei; Huang, Yuanqi; Tang, Weihua
2017-11-01
Ga2O3 with a wide bandgap of ˜ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It's also demonstrated that the CuGa2O4 film has a bandgap of ˜ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.
NASA Astrophysics Data System (ADS)
Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain
2017-10-01
Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.
High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolewski, R.; Gierlowski, P.; Kula, W.
1991-03-01
This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.
Zhang; Deltour; Zhao
2000-10-16
The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.
Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz
2015-03-30
We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less
NASA Astrophysics Data System (ADS)
Warner, J. D.; Meola, J. E.; Jenkins, K. A.; Bhasin, K. B.
1990-04-01
The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition.
NASA Astrophysics Data System (ADS)
Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.
2018-07-01
Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.
The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates
NASA Astrophysics Data System (ADS)
Gao, J.; Tang, W. H.; Yau, C. Y.
2001-11-01
Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.
1992-01-01
A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Analysis of localized surface plasmon resonances in gold nanoparticles surrounded by copper oxides
NASA Astrophysics Data System (ADS)
Stamatelatos, A.; Sousanis, A.; Chronis, A. G.; Sigalas, M. M.; Grammatikopoulos, S.; Poulopoulos, P.
2018-02-01
Au-doped Cu thin films are produced by co-deposition of Au and Cu via radiofrequency magnetron sputtering in a vacuum chamber with a base pressure of 1 × 10-7 mbar. After post annealing in a furnace with air, one may obtain either Au-Cu2O or Au-CuO nanocomposite thin films. The presence of Au does not have any considerable influence on the position of the optical band gap of the oxides. Only the Au-CuO system shows well-formed localized surface plasmonic resonances with Gaussian shape. We study systematically the plasmonic behavior of the nanocomposites as a function of the gold concentration, annealing time, and film thickness. The intensity of the resonances, their position, and width are intensely affected by all these parameters. The experimental results are compared with respect to rigorous theoretical calculations. The similarities and differences between experiment and theory are discussed.
Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz
2016-01-01
A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885
NASA Astrophysics Data System (ADS)
Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro
2007-06-01
To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, J.; Meng-Burany, S.; Xing, W.B.
1994-12-31
Two series of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub z} thin films deposited on (001) LaAlO{sub 3} single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O{sub 2}) and substrate temperature of the deposition process T{sub h}, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j{sub c} and T{sub c} exhibited T{sub c}{ge}91 K and j{sub c}{ge}4 x 10{sup 6} A/cm{sup 2}, at 77 K. Close correlations between the structural quality ofmore » the film, the growth parameters (p(O{sub 2}), T{sub h}) and j{sub c} and T{sub c} have been found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn
2015-08-24
Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. Themore » Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.« less
NASA Astrophysics Data System (ADS)
Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.
2016-10-01
Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first-principles calculations compare well, thus suggesting that such calculations have the potential to be used in screening various metal oxide heterojunction before performing the experiments thereby saving precious chemicals, time and energy. Keywords: Photoelectrochemical, Water splitting, heterojunction, Cu2O, BaTiO3 References: [1] Surbhi Choudhary, et al. Nanostructured bilayered thin films in photoelectrochemical water splitting - A review: International Journal of Hydrogen Energy, (2012). [2] Dipika Sharma, Anuradha Verma, V.R. Satsangi, Rohit shrivastav, Sahab Dass Nanostructured SrTiO3 thin films sensitized by Cu2O for Photoelectrochemical Hydrogen Generation. International journal of Hydrogen Energy;42:,4230-4241, 2014.
NASA Astrophysics Data System (ADS)
Arya, Sandeep; Sharma, Asha; Singh, Bikram; Riyas, Mohammad; Bandhoria, Pankaj; Aatif, Mohammad; Gupta, Vinay
2018-05-01
Copper (Cu) doped p-CdS nanoparticles have been synthesized via sol-gel method. The as-synthesized nanoparticles were successfully characterized and implemented for fabrication of Glass/ITO/n-ZnO/p-CdS/Al thin film photodiode. The fabricated device is tested for small (-1 V to +1 V) bias voltage. Results verified that the junction leakage current within the dark is very small. During reverse bias condition, the maximum amount of photocurrent is obtained under illumination of 100 μW/cm2. Electrical characterizations confirmed that the external quantum efficiency (EQE), gain and responsivity of n-ZnO/p-CdS photodiode show improved photo response than conventional p-type materials for such a small bias voltage. It is therefore revealed that the Cu-doped CdS nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.
NASA Astrophysics Data System (ADS)
Akgul, Funda Aksoy; Akgul, Guvenc
2017-02-01
Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.
Substrates suitable for deposition of superconducting thin films
Feenstra, Roeland; Boatner, Lynn A.
1993-01-01
A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.
Superconducting thin films on potassium tantalate substrates
Feenstra, Roeland; Boatner, Lynn A.
1992-01-01
A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.
Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Asmat Uceda, Martin Antonio
This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.
NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
NASA Astrophysics Data System (ADS)
Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.
2017-10-01
The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Xie, Tian; Wang, Xinzhi; Liu, Xinke; Ao, Jin-Ping
2018-04-01
In present study, copper oxide films were prepared at different sputtering powers (10-100 W) using magnetron reactive sputtering. The crystalline structure, surface morphologies, composition, and optical band gap of the as-grown films are dependent on sputtering power. As the sputtering power decreasing from 100 to 10 W, the composition of films changed from CuO to quasi Cu2O domination. Moreover, when the sputtering power is 10 W, a relative high hole carrier density and high-surface-quality quasi Cu2O thin film can be achieved. AlGaN/GaN HFETs were fabricated with the optimized p-type quasi Cu2O film as gate electrode, the threshold voltage of the device shows a 0.55 V positive shift, meanwhile, a lower gate leakage current, a higher ON/OFF drain current ratio of ∼108, a higher electron mobility (1465 cm2/Vs), and a lower subthreshold slope of 74 mV/dec are also achieved, compared with the typical Ni/Au-gated HFETs. Therefore, Cu2O have a great potential to develop high performance p-type gate AlGaN/GaN HFETs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Akira; Yamaguchi, Tetsuji; Iguchi, Ienari
1999-12-01
The Bitter decoration technique is one of the most powerful techniques to study the vortex structure of superconductor. The authors report the observation of vortex structure in a high {Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (YBCO) thin film by Bitter decoration method. The image of vortex structure was monitored by SEM, AFM and high resolution optical microscope. For magnetic field about 4--6mT, a vortex structure is seen. The vortex image varied with changing magnetic field. As compared with the vortex image of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal, the observed image appeared to be more randomly distributed.
NASA Astrophysics Data System (ADS)
Toifur, M.; Yuningsih, Y.; Khusnani, A.
2018-03-01
In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.
Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications
NASA Astrophysics Data System (ADS)
Kim, Taeyun
Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)
Laser ablated YBa2Cu3O(7-x) high temperature superconductor coplanar waveguide resonator
NASA Technical Reports Server (NTRS)
Valco, G. J.; Blemker, A. R.; Bhasin, K. B.
1992-01-01
Several 8.8-GHz coplanar waveguide resonators are fabricated and tested that are made from laser ablated YBa2Cu3O(7-x) thin films on LaAlO3 substrates. A quality factor of 1250 at 77 K was measured. A correlation between the microwave performance of the resonators and the critical temperature and morphology of the films was observed.
Synthesis and photosensor study of as-grown CuZnO thin film by facile chemical bath deposition
NASA Astrophysics Data System (ADS)
Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal
2018-05-01
We have successfully deposited CuZnO thin film on a glass substrate by facile chemical bath deposition method at 85 °C for 1 hr. Structural, topographical, Optical and Electrical properties of the prepared Thin Films were investigated by XRD, Raman spectrum, AFM, UV-Visible Spectrophotometer and I-V Measurement System respectively. The X-ray diffraction (XRD) pattern confirmed the formation of the CuZnO composition when compared with standard JCPDS card (JCPDF # 75-0576 & # 36-1451). The Raman analysis shows a major peak at 458 cm-1 with E2 (High) vibrational mode. AFM images revealed uniform deposition over an entire glass substrate with 66.2 nm average roughness of the film. From the optical absorption spectrum, clear band edge around ˜407 nm was observed which results in a wide energy band gap of ˜3.04 eV. The electrical properties were measured at room temperature in the voltage range ±5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜99.9 % for 260 W.
Annealing Effects on the Formation of Copper Oxide Thin Films
NASA Astrophysics Data System (ADS)
Marzuki, Marina; Zamzuri Mohamad Zain, Mohd; Zarul Hisham, Nurazhra; Zainon, Nooraizedfiza; Harun, Azmi; Nani Ahmad, Rozie
2018-03-01
This study approached the simple method of developing CuO thin films by thermal oxidation on pure Cu sheets. The effects of annealing temperature on the formation of CuO layers have been investigated. The oxide layers have been fabricated by annealing of Cu sheets for 5 hours at different temperatures of 980 ~ 1010 °C. The morphologies and optical properties of annealed Cu sheets were studied by using SEM and UV-Vis spectrophotometer respectively. It is revealed that the annealing temperature influence the grain growth and the grain size increases as the temperature increase. The highest grain size was observed on sample annealed at 1000 °C with average area per grain size of 0.023 mm2. Theoretically, larger grain size provides less barriers for electron mobility and increase the efficiency of solar devices. The optical absorption spectra of the oxide films was also measured. Interference pattern was noted at wavelength about 900 nm corresponding to the formation of CuO film. The interference noise observed could be due to the coarse surface and the presence of powdery oxide deposits that causes the scattering loses from the surface. CuO film obtained by this method may be further studied and exploited as low cost photovoltaic device.
Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor
NASA Astrophysics Data System (ADS)
Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.
2008-05-01
High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.
Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films
NASA Astrophysics Data System (ADS)
Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.
1988-11-01
It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.
NASA Technical Reports Server (NTRS)
Wosik, J.; Robin, T.; Davis, M.; Wolfe, J. C.; Forster, K.; Deshmukh, S.; Bensaoula, A.; Sega, R.; Economou, D.; Ignatiev, A.
1990-01-01
Measurements of millimeter-wave surface resistance versus temperature have been performed for YBa2Cu3O(x) thin films on 100 line-type SrTiO(3) substrates using a TE(011) cylindrical copper cavity at 80 GHz. The 0.6-micron thick films were grown at several deposition temperatures in the range 690 C to 810 C by means of a pulsed excimer laser ablation technique. A surface resistance minimum (60 milliohm at 77 K) near 770 C is shown to correlate with a minimum in c-axis lattice parameter (11.72 A). The highest value of Tc also occurs near this temperature. The surface resistance of films deposited at 790 C on 110 line-type LaAlO3 subtrates is lower, reaching 8 milliohm at 98 GHz and 80 K, demonstrating the influence of substate material on film quality.
Singh, Mandeep; Singh, V N; Mehta, B R
2008-08-01
Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.
NASA Astrophysics Data System (ADS)
Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee
2017-08-01
Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.
1991-01-01
A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.
1990-01-01
A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies.
NASA Astrophysics Data System (ADS)
Abe, Seishi; Watanabe, Masato
2017-07-01
A simple technique that uses radio-frequency sputtering with a functional element on a hematite (α-Fe2O3) target is presented for the production of maghemite (γ-Fe2O3) thin films. These films are prepared on water-cooled glass substrates in an Ar atmosphere. Investigations are done with Ti, Si, Al, Cu, Mo, and Zn, with γ-Fe2O3 being obtained only in the presence of Cu, indicating that phase transition occurs only for this metal. Mössbauer spectra and magnetization analysis reveal that the quality of the obtained γ-Fe2O3 films is higher than that of the film produced using Mg, which was reported in our previous work. High-angle annular dark-field scanning tunneling electron microscopy and electron energy-loss spectroscopy reveal that the added Cu remains in a metallic state (without oxidization), forming a Cu/γ-Fe2O3 phase-mixture in the as-deposited film. The Cu/γ-Fe2O3 composite film exhibits negative magnetoresistance (MR), with a MR ratio of approximately 0.6% at room temperature in an applied field of 10 kOe, and a negative Faraday rotation of -5708 deg cm-1 at 830 nm.
Thin HTSC films produced by a polymer metal precursor technique
NASA Astrophysics Data System (ADS)
Lampe, L. v.; Zygalsky, F.; Hinrichsen, G.
In precursors the metal ions are combined with acid groups of polymethacrylic acid (PMAA), polyacrylic acid (PAA) or novolac. Compared to thermal degradation temperature of pure polymers those of precursors are low. Precursors films were patterned by UV lithography. Diffractometric investigations showed that the c-axis oriented epitaxial films of YBa 2Cu 3O x and Bi 2Sr 2CaCu 2O x originated from amorphous metal oxide films, which were received after thermal degradation of the precursor. Transition temperatures and current densities were determined by electric resistivity measurements.
NASA Astrophysics Data System (ADS)
Lin, Meng-Yu; Wang, Cheng-Hung; Pao, Chun-Wei; Lin, Shih-Yen
2015-09-01
Graphitic carbon films prepared by using molecular beam epitaxy (MBE) on metal templates with different thicknesses deposited on SiO2/Si substrates are investigated in this paper. With thick Cu templates, only graphitic carbon flakes are obtained near the Cu grain boundaries at low growth temperatures on metal/SiO2 interfaces. By replacing the Cu templates with thin Ni templates, complete graphitic carbon films with superior crystalline quality is obtained at 600 °C on SiO2/Si substrates after removing the Ni templates. The enhanced attachment of the graphitic carbon film to the SiO2/Si substrates with reduced Ni thickness makes the approach a promising approach for transferring-free graphene preparation at low temperature by using MBE.
NASA Technical Reports Server (NTRS)
Raina, K. K.; Narayanan, S.; Pandey, R. K.
1992-01-01
Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19O(x) and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the LPE experiments. The temperature regime of 850 to 830 C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100 percent reflectivity in infrared regions at liquid nitrogen temperature.
NASA Technical Reports Server (NTRS)
Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.
1988-01-01
Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.
Mazur, M; Kalisz, M; Wojcieszak, D; Grobelny, M; Mazur, P; Kaczmarek, D; Domaradzki, J
2015-02-01
In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. Copyright © 2014. Published by Elsevier B.V.
Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing
2018-03-27
In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.
Lu, Kuankuan; Li, Yuzhi; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing
2018-01-01
In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al2O3) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al2O3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al2O3 PVL exhibited remarkable mobility of 33.5–220.1 cm2/Vs when channel length varies from 60 to 560 μm. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously. PMID:29584710
Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-05-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.
Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Sisk, R. C.
1992-01-01
This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.
NASA Astrophysics Data System (ADS)
Shih, C. H.; Tseng, B. H.
Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.
Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material
NASA Astrophysics Data System (ADS)
Nandur, Abhishek; White, Bruce
2014-03-01
CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.
1991-01-01
Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.
A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film.
Lin, Zhaoyang; Hollar, Courtney; Kang, Joon Sang; Yin, Anxiang; Wang, Yiliu; Shiu, Hui-Ying; Huang, Yu; Hu, Yongjie; Zhang, Yanliang; Duan, Xiangfeng
2017-06-01
A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu 2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu 2 Se thin film exhibits a power factor of 0.62 mW/(m K 2 ) at 684 K on rigid Al 2 O 3 substrate and 0.46 mW/(m K 2 ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu 2 Se thin films (<0.1 mW/(m K 2 )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K 2 )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Zong-Qun; Wang, Ai; Guo, Chun-Yan; Tai, Yan-Fang; Qiu, Ling-Guang
2013-10-14
This paper presents a novel strategy to prepare Cu3(BTC)2@SiO2 core-shell nanoparticles in the size range of 200-400 nm using a new one-pot strategy under ultrasonic irradiation at room temperature. In this approach, the silica shell thickness could be finely tuned in the size range of 12-60 nm for various reaction times. Nanocomposite thin films were fabricated on the glass substrates by Sol-Gel spin coating using the products for 1.5 h, 2 h and 2.5 h, respectively, and heat treated using an infrared lamp heating system in air. The photocatalytic degradation of phenol in aqueous solution using Cu2(BTC)3@SiO2 thin films was investigated under visible light irradiation at pH 4. After a 45 min reaction with phenol, the degradation rate was up to 93.1%. Moreover, the thin film photocatalysts could be reused 5 times without appreciable loss of photocatalytic activity for degradation of phenol. The present work clearly shows that the films as photocatalysts showed higher photocatalytic performance.
Encapsulation of the heteroepitaxial growth of wide band gap γ-CuCl on silicon substrates
NASA Astrophysics Data System (ADS)
Lucas, F. O.; O'Reilly, L.; Natarajan, G.; McNally, P. J.; Daniels, S.; Taylor, D. M.; William, S.; Cameron, D. C.; Bradley, A. L.; Miltra, A.
2006-01-01
γ-CuCl semiconductor material has been identified as a candidate material for the fabrication of blue-UV optoelectronic devices on Si substrates due to its outstanding electronic, lattice and optical properties. However, CuCl thin films oxidise completely into oxyhalides of Cu II within a few days of exposure to air. Conventional encapsulation of thin γ-CuCl by sealed glass at a deposition/curing temperature greater than 250 °C cannot be used because CuCl interacts chemically with Si substrates when heated above that temperature. In this study we have investigated the behaviour of three candidate dielectric materials for use as protective layers for the heteroepitaxial growth of γ-CuCl on Si substrates: SiO 2 deposited by plasma-enhanced chemical vapour deposition (PECVD), organic polysilsesquioxane-based spin on glass material (PSSQ) and cyclo olefin copolymer (COC) thermoplastic-based material. The optical properties (UV/Vis and IR) of the capped luminescent CuCl films were studied as a function of time, up to 28 days and compared with bare uncapped films. The results clearly show the efficiency of the protective layers. Both COC and the PSSQ layer prevented CuCl film from oxidising while SiO 2 delayed the effect of oxidation. The dielectric constant of the three protective layers was evaluated at 1 MHz to be 2.3, 3.6 and 6.9 for C0C, SiO 2 and PSSQ, respectively.
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.
1989-01-01
Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.
Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.
Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun
2012-10-24
The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.
The crystalline structure of copper phthalocyanine films on ZnO(1100).
Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P
2012-09-05
The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.
1991-01-01
Thin films of YBa2Cu3O(7-x) (YBCO) were temperature cycled to simulate conditions of a low earth orbit satellite. In one series of tests, epitaxial and polycrystalline YBCO films were cycled between temperatures of +/- 80 C in vacuum and in nitrogen for hundreds of cycles. The room temperature resistance of an epitaxial YBCO film increased by about 10 percent, but the superconducting transition temperature was unchanged. The largest changes were for a polycrystalline YBCO film on oxidized silicon with a zirconia buffer layer, for which the transition temperature decreased by 3 K. An extended test was carried out for epitaxial films. After 3200 cycles (corresponding to about 230 days in space), transition temperatures and critical current densities remained unchanged.
High-temperature superconducting nano-meanders made by ion irradiation
NASA Astrophysics Data System (ADS)
Amari, P.; Feuillet-Palma, C.; Jouan, A.; Couëdo, F.; Bourlet, N.; Géron, E.; Malnou, M.; Méchin, L.; Sharafiev, A.; Lesueur, J.; Bergeal, N.
2018-01-01
In this article, we report on the fabrication of very long {{YBa}}2{{Cu}}3{{{O}}}7 nanowires in a meander shape patterned in a {{CeO}}2-capped thin film by high-energy oxygen ion irradiation. DC and RF characterizations outline the good superconducting properties of the nanowires whose geometry approaches the one used in single photon detectors. Their inductance, which mainly sets the maximum speed of these devices, has been measured on a wide range of temperature by mean of a resonant method. The extracted values are in agreement with the ones calculated from the geometry of the meanders and from the known London penetration depth in {{YBa}}2{{Cu}}3{{{O}}}7 thin films.
NASA Astrophysics Data System (ADS)
Xiong, Fei; Zhang, Hui; Yang, Sheng'an; Li, Dongqi; Zhang, Zheng; Chen, Qingming
2015-08-01
Large laser-induced thermoelectric voltages (LITVs) are measured in the electron-doped Nd2- x Ce x CuO4 thin films grown on the vicinal-cut SrTiO3 substrates by pulsed laser deposition. The dependence of LITV signals upon the doping carrier density is investigated by changing the Ce content of the films. The optimum Ce dopant corresponding to the largest voltage is found and is attributed to the two-dimensional transport behaviors of the localized electrons. The shorter laser irradiation always induces the larger voltage signals in samples with richer Ce content, suggesting the optimum dopant level is sensitive to the wavelength of excitation source. Thus, the behaviors of LITV signals are resulted from both effects of the anisotropic thermoelectric transport and the optical properties of the thin films. The doping dependence related with an anisotropic charge transport may come from the change in carrier density and the modification in energy band configuration.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-03-01
Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.
Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis
NASA Astrophysics Data System (ADS)
Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.
2018-03-01
This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
2015-12-21
Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less
CVD growth of large-grain graphene on Cu(111) thin films
NASA Astrophysics Data System (ADS)
Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.
2013-03-01
Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dijkkamp, D.; Venkatesan, T.; Wu, X.D.
We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less
NASA Astrophysics Data System (ADS)
Liu, Wei; Fan, Yu; Li, Xiaodong; Lin, Shuping; Liu, Yang; Shi, Sihan; Wang, He; Zhou, Zhiqiang; Zhang, Yi; Sun, Yun
2018-03-01
Cu(In,Ga)Se2 thin film solar cells are of great interest for research and industrial applications with their high conversion efficiencies, long-term stability and significant lifetimes. Such a solar cell of a p-n junction consists of p-type Cu(In,Ga)Se2 films as a light absorber and n-type CdS as a buffer layer, which often emerges with intrinsic ZnO. Aimed at eco-friendly fabrication protocols, a large number of strategies have been investigated to fabricate a Cd-free n-type buffer layer such as Zn(O,S) in Cu(In,Ga)Se2 solar cells. Also, if the Zn(O,S) films are prepared by coevaporation or sputtering, it will offer high compatibility with the preferred mass production. Here, we propose and optimize a dry method for Zn(O,S) deposition in a radio frequency sputtering. In particular, the strategy for the twin-layer configurations of Zn(O,S) films not only greatly improve their electrical conductance and suppress charge carrier recombination, but also avoid degradation of the Zn(O,S)/Cu(In,Ga)Se2 interfaces. Indeed, the high quality of such twin Zn(O,S) layers have been reflected in the similar conversion efficiencies of the complete solar cells as well as the large short-circuit current density, which exceeds the CdS reference device. In addition, Zn(O,S) twin layers have reduced the production time and materials by replacing the CdS/i-ZnO layers, which removes two fabrication steps in the multilayered thin film solar cells. Furthermore, the device physics for such improvements have been fully unveiled with both experimental current-voltage and capacitance-voltage spectroscopies and device simulations via wxAMPS program. Finally, the proposed twin-layer Zn(O,S)/Cu(In,Ga)Se2 interfaces account for the broadening of the depletion region of photogenerated charge carriers, which greatly suppress the carrier recombination at the space charge region, and eventually lead to the more efficient collection of charge carriers at both electrodes.
NASA Astrophysics Data System (ADS)
Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.
2010-02-01
We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].
Lo Nigro, Raffaella; Toro, Roberta G; Malandrino, Graziella; Fragalà, Ignazio L; Losurdo, Maria; Giangregorio, Michelaria M; Bruno, Giovanni; Raineri, Vito; Fiorenza, Patrick
2006-09-07
A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.
Taleatu, B A; Arbab, E A A; Omotoso, E; Mola, G T
2014-10-01
Cu2 O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X-ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2 O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells
NASA Astrophysics Data System (ADS)
Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu
2016-02-01
Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.
SEM and AFM studies of dip-coated CuO nanofilms.
Dhanasekaran, V; Mahalingam, T; Ganesan, V
2013-01-01
Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Prellier, W.; Mercey, B.; Allen, J. L.; Tebano, A.; Hamet, J. F.; Hervieu, M.; Raveau, B.
1998-01-01
The microstructural study of superconductor thin films with general formula: (CaCuO_2)_m(Ba_2CuO_2CO_3)_n, grown from a single target, has shown that these films exhibited numerous intergrowth phases. Such films can not be used for precise physical studies. To obtain a regular stacking along a growth direction perpendicular to the substrate a multi-target system has to be used. The preliminary results of this study are presented herein. L'étude microstructurale des films minces supraconducteurs de formule générale : (CaCuO_2)_m(Ba_2CuO_2CO_3)_n, déposés à partir d'une seule cible, a montré qu'ils sont formés de nombreuses intercroissances. Ceci les rend pratiquement inutilisables pour des caractérisations physiques fines. Dans cet article sont présentées les étapes de la mise en oeuvre du système multicible nécessaire à la croissance d'un empilement régulier.
Jiang, Xishun; Zhang, Miao; Shi, Shiwei; He, Gang; Song, Xueping; Sun, Zhaoqi
2014-01-01
Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.
Electro deposition of cuprous oxide for thin film solar cell applications
NASA Astrophysics Data System (ADS)
Shahrestani, Seyed Mohammad
p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.
Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.
Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T
2018-05-29
Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.
Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong
2015-10-14
Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.
Compositional ratio effect on the surface characteristics of CuZn thin films
NASA Astrophysics Data System (ADS)
Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol
2018-05-01
CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.
Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films
NASA Astrophysics Data System (ADS)
Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert
2016-03-01
We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b
Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N
2016-04-13
Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.
Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor
NASA Astrophysics Data System (ADS)
Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah
2017-10-01
In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.
Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kula, W.; Sobolewski, R.; Gorecka, J.
1991-09-15
Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb dopingmore » considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.« less
Fabrication of DC inorganic electroluminescent thin-film devices with novel n-p-n type structure
NASA Astrophysics Data System (ADS)
Ishimura, Takuyoshi; Matsumoto, Hironaga
2014-04-01
Inorganic electroluminescent (iEL) thin films are used in light-emitting devices and are functional under alternating current conditions only. Stable luminescent light has yet to be obtained under direct current conditions. We postulated that thin-film iEL light emission occurs when an injected electron occupies the excited state of a luminescent center and then recombines radiatively. From this perspective, we fabricated a novel stacked n-p-n type thin-film iEL device composed of indium tin oxide (ITO)-ZnO-CuAlO2-ZnS-ZnS:TbF3-Al thin films and obtained stable luminescence using a low-voltage DC power supply. The overall luminescent color of the device depended on only the dopant in the luminescent layer, not the band gap or thin-film material.
NASA Technical Reports Server (NTRS)
Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John
1992-01-01
High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan; Xing, Yaya; Ma, Guanxiong
2015-07-15
The (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} (x = 0.06, 0.08, 0.15, and 0.20) films prepared by RF-magnetron sputtering were investigated by the combination of x-ray absorption spectroscopy (XAS) at Fe, Cu, and O K-edge. Although the Fe and O K-edge XAS spectra show that the Fe atoms substitute for the In sites of In{sub 2}O{sub 3} lattice for all the films, the Cu K-edge XAS spectra reveal that the codoped Cu atoms are separated to form the Cu metal clusters. After being annealed in air, the Fe atoms are still substitutionally incorporated into the In{sub 2}O{sub 3} lattice, while the Cumore » atoms form the CuO secondary phases. With the increase of Fe concentration, the bond length R{sub Fe-O} shortens and the Debye–Waller factor σ{sup 2}{sub Fe-O} increases in the first coordination shell of Fe, which are attributed to the relaxation of oxygen environment around the substitutional Fe ions. The forming of Cu relating secondary phases in the films is due to high ionization energy of Cu atoms, leading that the Cu atoms are energetically much harder to be oxidized to substitute for the In sites of In{sub 2}O{sub 3} lattice than Fe atoms. These results provide new experimental guidance in the preparation of the codoped In{sub 2}O{sub 3} based dilute magnetic oxides.« less
NASA Astrophysics Data System (ADS)
Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.
2018-03-01
Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.
Shyamal, Sanjib; Hajra, Paramita; Mandal, Harahari; Singh, Jitendra Kumar; Satpati, Ashis Kumar; Pande, Surojit; Bhattacharya, Chinmoy
2015-08-26
In this study, we demonstrate development of p-Cu2O thin films through cathodic electrodeposition technique at constant current of 0.1 mA/cm(2) on Cu, Al, and indium tin oxide (ITO) substrates from basic CuSO4 solution containing Triton X-100 as the surfactant at 30-35 °C. The optical and morphological characterizations of the semiconductors have been carried out using UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The band gap energy of ∼2.1 eV is recorded, whereas SEM reveals that the surface morphology is covered with Cu2O semiconductors. XRD analyses confirm that with change in substrate, the size of Cu2O "cubic" crystallites decreases from ITO to Al to Cu substrates. Photoelectrochemical characterizations under dark and illuminated conditions have been carried out through linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopic analysis. The photoelectrochemical reduction of water (H2O → H2) in pH 4.9 aqueous solutions over the different substrates vary in the order of Cu > Al > ITO. The highest current of 4.6 mA/cm(2) has been recorded over the Cu substrate even at a low illumination of 35 mW/cm(2), which is significantly higher than the values (2.4 mA/cm(2) on Au coated FTO or 4.07 mA/cm(2) on Cu foil substrate at an illumination of 100 mW/cm(2)) reported in literature.
NASA Astrophysics Data System (ADS)
Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.
2016-08-01
In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.
Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu
2017-01-18
Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.
Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film
NASA Astrophysics Data System (ADS)
Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François
2011-10-01
CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
Epitaxial effects in thin films of high-Tc cuprates with the K2NiF4 structure
NASA Astrophysics Data System (ADS)
Naito, Michio; Sato, Hisashi; Tsukada, Akio; Yamamoto, Hideki
2018-03-01
La2-xSrxCuO4 (LSCO) and La2-xBaxCuO4 (LBCO) have been recognized as the archetype materials of "hole-doped" high-Tc superconductors. Their crystal structures are relatively simple with a small number of constituent cation elements. In addition, the doping level can be varied by the chemical substitution over a wide range enough to obtain the full spectrum of doping-dependent electronic and magnetic properties. These attractive features have dedicated many researchers to thin-film growth of LSCO and LBCO. The critical temperature (Tc) of LSCO and LBCO is sensitive to strain as manifested by a positive pressure coefficient of Tc in bulk samples. In general, films are strained if they are grown on lattice-mismatched substrates (epitaxial strain). Early attempts (before 1997) at the growth of LSCO and LBCO films resulted in depressed Tc below 30 K as they were grown on a commonly used SrTiO3 substrate (in-plane lattice parameter asub = 3.905 Å): the in-plane lattice parameters of LSCO and LBCO are ≤3.80 Å, and hence tensile epitaxial strain is introduced. The situation was changed by the use of LaSrAlO4 substrates with a slightly shorter in-plane lattice constant (asub = 3.756 Å). On LaSrAlO4 substrates, the Tc reaches 45 K in La1.85Sr0.15CuO4, 47 K in La1.85Ba0.15CuO4, and 56 K in ozone-oxidized La2CuO4+δ films, substantially higher than the Tc's of the bulk compounds. The Tc increase in La1.85Sr0.15CuO4 films on LaSrAlO4 and decrease on SrTiO3 are semi-quantitatively in accord with the phenomenological estimations based on the anisotropic strain coefficients of Tc (dTc/dεi). In this review article, we describe the growth and properties of films of cuprates having the K2NiF4 structure, mainly focusing on the increase/decrease of Tc by epitaxial strain and quasi-stable phase formation by epitaxial stabilization. We further extract the structural and/or physical parameters controlling Tc toward microscopic understanding of the variation of Tc by epitaxial strain.
1981-06-01
implantation prevents the formation of CuO (which is thermally unstable), in favor of CuAlO2 which is a more stable oxide. This process may produce...coatings for Lambda Physik’s exclmer lasers. In-housp damage threshold tests are performed using either of two Nd:YAC lasers. One laser produces a
Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer
NASA Astrophysics Data System (ADS)
Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming
2018-03-01
Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.
Tozawa, Masanori; Ohkoshi, Shin-ichi; Kojima, Norimichi; Hashimoto, Kazuhito
2003-05-21
Magnetic thin films composed of hexacyanochromate-based magnets, MII1.5[CrIII(CN)6].ZH2O (M = Co, Ni, Cu), were prepared on a transparent Nafion membrane by an ion-exchange process and their Faraday spectra were observed in the visible region.
Nanostructured hybrid ZnO thin films for energy conversion
2011-01-01
We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled. PMID:21711909
Structural and optical studies on antimony and zinc doped CuInS2 thin films
NASA Astrophysics Data System (ADS)
Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.
2009-11-01
The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.
NASA Astrophysics Data System (ADS)
Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan
2018-04-01
In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.
Multi-functional properties of CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.
2012-09-01
In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.
Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Meng; Nakayama, Miki; Liu, Ping
The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less
Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports
Xue, Meng; Nakayama, Miki; Liu, Ping; ...
2017-09-13
The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less
Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian
2017-03-01
Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO 2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO 2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu 3 (BTC) 2 , BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO 2 -based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.
Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells
Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.
2016-01-01
The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398
Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.
2016-01-01
Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics. PMID:27500923
NASA Astrophysics Data System (ADS)
Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.
2018-02-01
Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.
NASA Astrophysics Data System (ADS)
Fiorenza, P.; Lo Nigro, R.; Sciuto, A.; Delugas, P.; Raineri, V.; Toro, R. G.; Catalano, M. R.; Malandrino, G.
2009-03-01
The physical properties of CaCu3Ti4O12 (CCTO) thin films grown by metal organic chemical vapor deposition on LaAlO3 substrates have been investigated. The structural, compositional, and optical characteristics have been evaluated, and all the collected data demonstrated that in the obtained (001) epitaxial CCTO thin films, a low defect density is present. The electrical behavior of the deposited thin films has been studied from both micro- and nanoscopic points of view and compared with the properties reported in the literature. The electrical measurements on large area capacitors indicated that in the investigated work frequency range (102-106 Hz), the CCTO films possess dielectric constants close to the theoretically predicted "intrinsic" value and almost independent of the frequency. The nanoscopic dielectric investigation demonstrated that the deposited CCTO films possess n-type semiconducting nature and that a colossal extrinsic behavior can be locally achieved.
Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux
NASA Technical Reports Server (NTRS)
Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.
1991-01-01
YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.
A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering
NASA Astrophysics Data System (ADS)
Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia
2017-12-01
In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.
Spray pyrolyzed Cu2SnS3 thin films for photovoltaic application
NASA Astrophysics Data System (ADS)
Patel, Biren; Waldiya, Manmohansingh; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
We report the fabrication of Cu2SnS3 (CTS) thin films by a non-vacuum and low cost spray pyrolysis technique. Annealing of the as-deposited film in the sulphur atmosphere produces highly stoichiometric, granular and crystalline CTS phase. The CTS thin films shows direct optical band gap of 1.58 eV with high absorption coefficient of 105 cm-1. Hall measurement shows the carrier concentration of the order of 1021 cm-3 and a favourable resistivity of 10-3 Ω cm. A solar cell architecture of Glass/FTO/CTS/CdS/Al:ZnO/Al was fabricated and its current-voltage characteristic shows an open circuit voltage, short circuit current density and fill-factor of 12.6 mV, 20.2 µA/cm2 and 26% respectively. A further improvement in the solar cell parameters is underway.
Fabrication of eco-friendly PNP transistor using RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.
2018-05-01
An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.
Depth profile composition studies of thin film CdS:Cu2S solar cells using XPS and AES
NASA Astrophysics Data System (ADS)
Bhide, V. G.; Salkalachen, S.; Rastogi, A. C.; Rao, C. N. R.; Hegde, M. S.
1981-09-01
Studies of the surface composition and depth profiles of thin film CdS:Cu2S solar cells based on the techniques of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) are reported. Specimens were fabricated by the thermal deposition of polycrystalline CdS films onto silver-backed electrodes predeposited on window glass substrates, followed by texturization in hot HCl and chemical plating in a hot CuCl(I) bath for a few seconds to achieve the topotaxial growth of CuS films. The XPS and AES studies indicate the junction to be fairly diffused in the as-prepared cell, with heat treatment in air at 210 C sharpening the junction, improving the stoichiometry of the Cu2S layer and thus improving cell performance. The top copper sulfide layer is found to contain impurities such as Cd, Cl, O and C, which may be removed by mild Ar(+) ion beam etching. The presence of copper deep in the junction is invariably detected, apparently in the grain boundary region in the form of CuS or Cu(2+) trapped in the lattice. It is also noted that the nominal valence state of copper changes abruptly from Cu(+) to Cu(2+) across the junction.
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-01-01
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications. PMID:27703253
NASA Astrophysics Data System (ADS)
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-10-01
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.
Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y B; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan
2016-10-05
Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO 3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu 3 Ti 4 O 12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.
Cho, Ahra; Han, Chan Su; Kang, Meenjoo; Choi, Wooseok; Lee, Jihwan; Jeon, Jaecheol; Yu, Sujae; Jung, Ye Seul; Cho, Yong Soo
2018-05-09
Colossal dielectric constant CaCu 3 Ti 4 O 12 has been recognized as one of the rare materials having intrinsic interfacial polarization and thus unusual dielectric characteristics, in which the electrical state of the grain boundary is critical. Here, the direct correlation between the grain boundary potential and relative permittivity is proposed for the CaCu 3 Ti 4 O 12 thin films doped with Zn, Ga, Mn, and Ag as characterized by Kelvin probe force microscopy. The dopants are intended to provide the examples of variable grain boundary potentials that are driven by chemical states including Cu + , Ti 3+ , and oxygen vacancy. Grain boundary potential is nearly linearly proportional to the dielectric constant. This effect is attributed to the increased charge accumulation near the grain boundary, depending on the choice of the dopant. As an example, 1 mol % Ag-doped CaCu 3 Ti 4 O 12 thin films demonstrate the best relative permittivity as associated with a higher grain boundary potential of 120.3 mV compared with 82.6 mV for the reference film. The chemical states across grain boundaries were further verified by using spherical aberration-corrected scanning transmission electron microscopy with the simultaneous electron energy loss spectroscopy.
Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si
Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo
2015-01-01
Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099
Fabrication of CIGS Films by Electrodeposition Method for Photovoltaic Cells
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Yoon, Hyukjoo; Ji, Changwook; Lee, Dongyun; Lee, Jae-Ho; Yun, Jae-Ho; Kim, Yangdo
2012-12-01
Cu(InGa)Se2 (CIGS) thin films were fabricated by electrochemical deposition in a single bath containing Cu, In, Ga, and Se ions. The electrolyte was prepared by dissolving CuCl2, InCl3, GaCl3, H2SeO3, and LiCl in deionized water. The potentiostatic deposition process was achieved by applying a voltage ranging from -0.5 V to -0.8 V versus Ag/AgCl. The effects of different chemical bath concentrations on the film composition and morphology were investigated. Stoichiometric CIGS film composition could be achieved by controlling the chemical compositions of the bath and the voltage. Gelatin was added to the solution to improve the surface and microstructures of the CIGS film. The as-deposited films were annealed at 500°C in Ar atmosphere for crystallization. The structural, morphological, and compositional properties of the CIGS thin films before and after annealing were examined by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. This study showed that the composition of the CIGS films is dependent on the bath concentration, whereas the applied potential had relatively less effect on the CIGS film composition. In addition, the use of gelatin helped in the fabrication of crack-free CIGS thin films with greatly improved surface morphology.
Cu(In,Ga)S2, Thin-Film Solar Cells Prepared by H2S Sulfurization of CuGa-In Precursor
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Kulkarni, Shashank R.; Chavan, Sanjay S.; Ghongadi, Shantinath R.
2005-01-01
Thin-film CuInS2 solar cell is the leading candidate for space power because of bandgap near the optimum value for AM0 solar radiation outside the earth's atmosphere, excellent radiation hardness, and freedom from intrinsic degradation mechanisms unlike a-Si:H cells. Ultra-lightweight thin-film solar cells deposited on flexible polyimide plastic substrates such as Kapton(trademark), Upilex(trademark), and Apical(trademark) have a potential for achieving specific power of 1000 W/kg, while the state-of-art specific power of the present day solar cells is 66 W/kg. This paper describes the preparation of Cu-rich CuIn(sub 1-x)Ga(sub x)S(sub 2) (CIGS2) thin films and solar cells by a process of sulfurization of CuGa-In precursor similar to that being used for preparation of large-compact-grain CuIn(sub 1-x)Ga(sub x)Se2 thin films and efficient solar cells at FSEC PV Materials Lab.
Ion beam deposition of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-01-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria-stabilized zirconia substrates by ion beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 80.5 K without post-deposition anneals. Both the deposition rate and the c lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c dimensions and low Tc's. Higher power sputtering produced a continuous decrease in the c lattice parameter and an increase in critical temperatures.
The demise of superfluid density in overdoped La 2-xSr xCuO 4 films grown by molecular beam epitaxy
Bozovic, I.; He, X.; Wu, J.; ...
2016-09-30
Here, we synthesize La 2–xSr xCuO 4 thin films using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). The films are high-quality—singe crystal, atomically smooth, and very homogeneous. The critical temperature (T c) shows a very little (<1 K) variation within a film of 10×10 mm 2 area. The large statistics (over 2000 films) is crucial to discern intrinsic properties. We measured the absolute value of the magnetic penetration depth λ with the accuracy better than 1 % and mapped densely the entire overdoped side of the La 2–xSr xCuO 4 phase diagram. A new scaling law is established accurately for themore » dependence of T c on the superfluid density. The scaling we observe is incompatible with the standard Bardeen-Cooper-Schrieffer picture and points to local pairing.« less
Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations
Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.
2006-01-01
A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.
Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution
NASA Astrophysics Data System (ADS)
Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.
2017-10-01
The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.
Chemical nature of the barrier in Pb/YBa2Cu3O(7-x) tunneling structures
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Bajuk, L.
1991-01-01
Several reports of reproducible tunneling measurements on YBa2Cu3O(7-x) thin films or single crystals with a Pb counterelectrode have recently appeared. The nature of the tunnel barrier, formed by air exposure, in these structures has been unknown. In the present work, the chemical nature of the tunnel barrier is studied with X-ray photoelectron spectroscopy (XPS). Laser-ablated films grown on LaAlO3 which have been chemically etched and heated in air are found to form nonsuperconducting surface Ba species, evident in an increase of the high binding energy Ba 3d and O 1s signals. A deposited Pb film about 10 A thick is found to be oxidized, and Cu(+2) is partially reduced to Cu(+1). The tunneling barrier thus appears to consist of species resulting from a combination of the air exposure and a reaction between the superconductor and the deposited Pb counterelectrode.
Liquid-Phase Processing of Barium Titanate Thin Films
NASA Astrophysics Data System (ADS)
Harris, David Thomas
Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements . Our system exhibits flux-film-substrate interactions that can lead to dramatic changes to the microstructure. This effect is especially pronounced onc -sapphire, with Al diffusion from the substrate leading to formation of an epitaxial BaAl2O4 second phase at the substrate-film interface. The formation of this second phase in the presence of a liquid phase seeds {111} twins that drive abnormal grain growth. The orientation of the sapphire substrate determines the BaAl2O 4 morphology, enabling control the abnormal grain growth behavior. CuO additions leads to significant grain growth at 900 °C, with average grain size approaching 500 nm. The orthorhombic-tetragonal phase transition is clearly observable in temperature dependent measurements and both linear and nonlinear dielectric properties are improved. All films containing CuO are susceptible to aging. A number of other systems were investigated for efficacy at temperatures below 900 °C. Pulsed laser deposition was used to study flux + BaTiO 3 targets, layered flux films, and in situ liquids. RF-magnetron sputtering using a dual-gun approach was used to explore integration on flexible foils with Ba1-xSrxTiO3. Many of these systems were based on the BaO-B2O3 system, which has proven effective in thin films, multilayer ceramic capacitors, and bulk ceramics. Modifiers allow tailoring of the microstructure at 900 °C, however no compositions were found, and no reports exist in the open literature, that provide significant grain growth or densification below 900 °C. Liquid phase fluxes offer a promising path forward for low temperature processing of barium titanate, with the ultimate goal of integration with metalized silicon substrates. This work demonstrates significant improvements to dielectric properties and the necessity of understanding interactions in the film-flux-substrate system.
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
HTS Fabry-Perot resonators for the far infrared
NASA Astrophysics Data System (ADS)
Keller, Philipp; Prenninger, Martin; Pechen, Evgeny V.; Renk, Karl F.
1996-06-01
We report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR we use two parallel MgO plates covered with YBa2Cu3O7-delta thin films on adjacent sides. We have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. We have also shown that thin films of gold are not adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.
Growth and characterization of single phase Cu{sub 2}O by thermal oxidation of thin copper films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis, E-mail: subhagan@yahoo.com
2016-04-13
We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can bemore » achieved for oxidation temperatures between 250°C to 320°C. Cu{sub 2}O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, D.; Nair, Saritha K.; He, Mi
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
Springer, D.; Nair, Saritha K.; He, Mi; ...
2016-02-12
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
NASA Astrophysics Data System (ADS)
Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.
1994-09-01
The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
NASA Astrophysics Data System (ADS)
Das, M. R.; Mukherjee, A.; Mitra, P.
2017-05-01
Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.
Magnetic flux relaxation in YBa2Cu3O(7-x) thin film: Thermal or athermal
NASA Technical Reports Server (NTRS)
Vitta, Satish; Stan, M. A.; Warner, Joseph D.; Alterovitz, Samuel A.
1992-01-01
The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H parallel c was studied in the range of 4.2-40 k and 0.2-1.0 T. Both the normalized flux relaxation rate (S) and the net flux pinning energy (U) increase continuously from 1.3 x 10 exp -2 to 3.0 x 10 exp -2 and from 70-240 meV respectively, as the temperature (T) increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.
NASA Astrophysics Data System (ADS)
Chavda, Arvind; Patel, Biren; Mukhopadhyay, Priyanka Marathey Indrajit; Ray, Abhijit
2018-05-01
Cu2ZnSnS4 (CZTS) is one of the most promising light absorber materials for photovoltaic and photo-electrochemical applications. We synthesized CZTS thin films on a F:SnO2 and soda lime glass substrates by very simple, cost effective and highly scalable spray pyrolysis technique. The films were post treated by rapid thermal processing route of sulfurization to enhance the stoichiometry and crystallinity of the film. The structural, morphological, optical and electrical properties of RTP sulfurized films were studied. The X-ray diffraction (XRD) pattern revealed the formation of tetragonal CZTS phase, which confirmed by Raman analysis with a major peak at 336 cm-1 without the presence of the principle vibration mode of any other secondary phases, such as Cu2SnS3, CuxS(x=1.8,2) etc. The sulfurized film exhibited increased crystallinity and better stoichiometry. The optical and electrical data reveal the direct optical band gap, bulk carrier concentration and resistivity of 1.5 eV, 2.28×1018 cm-3 and 1.21 Ω/cm2, respectively. Finally the photoactivity of CZTS thin films was tested by forming photoelectrochemical cell in 0.1M Na2S2O3 electrolyte (pH=7.72), showing a cathodic photocurrent of nearly 20 µA/cm2 at 0V RHE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogle, K. A., E-mail: kashinath.bogle@gmail.com; Narwade, R. D.; Mahabole, M. P.
2016-05-06
We are reporting photosensitivity property of BiFeO{sub 3} thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO{sub 3}/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.
Earth abundant thin film technology for next generation photovoltaic modules
NASA Astrophysics Data System (ADS)
Alapatt, Githin Francis
With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to create a complete MJMT structure to improve the terrestrial commercial PV efficiency.
Role of the copper-oxygen defect in cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Corwine, Caroline R.
Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.
CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David
2002-01-01
CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal mask. PV parameters of a CIGS2 solar cell on 127 micrometers thick SS flexible foil measured under AM 0 conditions at NASA GRC were: V(sub oc) = 802.9 mV, J(sub sc) = 25.07 mA per square centimeters, FF = 60.06%, and efficiency 0 = 8.84%. For this cell, AM 1.5 PV parameters measured at NREL were: V(sub oc) = 788 mV, J(sub sc) = 19.78 mA per square centimeter, FF = 59.44%, efficiency 0 = 9.26%. Quantum efficiency curve showed a sharp QE cutoff equivalent to CIGS2 bandgap of approximately 1.50 eV, fairly close to the optimum value for efficient AM0 PV conversion in the space.
NASA Astrophysics Data System (ADS)
Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.
2017-07-01
An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.
Analyte chemisorption and sensing on n- and p-channel copper phthalocyanine thin-film transistors.
Yang, Richard D; Park, Jeongwon; Colesniuc, Corneliu N; Schuller, Ivan K; Royer, James E; Trogler, William C; Kummel, Andrew C
2009-04-28
Chemical sensing properties of phthalocyanine thin-film transistors have been investigated using nearly identical n- and p-channel devices. P-type copper phthalocyanine (CuPc) has been modified with fluorine groups to convert the charge carriers from holes to electrons. The sensor responses to the tight binding analyte dimethyl methylphosphonate (DMMP) and weak binding analyte methanol (MeOH) were compared in air and N(2). The results suggest that the sensor response involves counterdoping of pre-adsorbed oxygen (O(2)). A linear dependence of chemical response to DMMP concentration was observed in both n- and p- type devices. For DMMP, there is a factor of 2.5 difference in the chemical sensitivity between n- and p-channel CuPc thin-film transistors, even though it has similar binding strength to n- and p-type CuPc molecules as indicated by the desorption times. The effect is attributed to the difference in the analyte perturbation of electron and hole trap energies in n- and p-type materials.
Temperature-assisted morphological transition in CuPc thin films
NASA Astrophysics Data System (ADS)
Bae, Yu Jeong; Pham, Thi Kim Hang; Kim, Tae Hee
2016-05-01
Ex-situ and in-situ morphological analyses were performed for Cu-phthalocyanine (CuPc) organic semiconductor films by using atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED). The focus was the effects of post-annealing on the structural characteristics of CuPc films grown on MgO(001) layers by using an ultra-high-vacuum thermal evaporator. Sphere-to-nanofibril and 2-D to 3-D morphological transitions were observed with increasing CuPc thickness beyond 3 nm. The surface morphology and the crystallinity were drastically improved after an additional cooling of the post-annealed CuPc films thinner than 3 nm. Our results highlight that molecular orientation and structural ordering can be effectively controlled by using different temperature treatments and a proper combination of material, film thickness, and substrate.
Rydosz, Artur; Szkudlarek, Aleksandra
2015-01-01
Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204
NASA Astrophysics Data System (ADS)
Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki
2012-08-01
A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.
NASA Astrophysics Data System (ADS)
Yuan, Huan; Du, Xiaosong; Xu, Ming
2016-05-01
Cobalt/copper-codoped ZnO nanoparticles, synthesized with different Co concentrations by a sol-gel method using ethanol as solvent, were studied via XPS. Hexagonal wurtzite structure was found in all samples, with no evidence of any secondary phase. The average crystallite size of the samples was around 20-30 nm, altered significantly with increasing Co concentration. Copper ions and Cobalt ions are indeed substituted into the ZnO lattice at the Zn2+ site, as shown by XRD and XPS. Further studies showed dramatic changes of Cu valence from +2 to +1 as the Co concentration level exceeds 1%, accompanied by a blue-shift of the optical bandgap from 3.01 to 3.13 eV. Ferromagnetism of the Co-doped Zn0.95Cu0.05O thin films was observed and found to be tunable - a phenomenon associated with the valence state of the Cu ions and the existence of some defects like oxygen vacancies in the films.
Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2012-08-01
This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.
Low energy electron beam processing of YBCO thin films
NASA Astrophysics Data System (ADS)
Chromik, Š.; Camerlingo, C.; Sojková, M.; Štrbík, V.; Talacko, M.; Malka, I.; Bar, I.; Bareli, G.; Jung, G.
2017-02-01
Effects of low energy 30 keV electron irradiation of superconducting YBa2Cu3O7-δ thin films have been investigated by means of transport and micro-Raman spectroscopy measurements. The critical temperature and the critical current of 200 nm thick films initially increase with increasing fluency of the electron irradiation, reach the maximum at fluency 3 - 4 × 1020 electrons/cm2, and then decrease with further fluency increase. In much thinner films (75 nm), the critical temperature increases while the critical current decreases after low energy electron irradiation with fluencies below 1020 electrons/cm2. The Raman investigations suggest that critical temperature increase in irradiated films is due to healing of broken Cusbnd O chains that results in increased carrier's concentration in superconducting CuO2 planes. Changes in the critical current are controlled by changes in the density of oxygen vacancies acting as effective pinning centers for flux vortices. The effects of low energy electron irradiation of YBCO turned out to result from a subtle balance of many processes involving oxygen removal, both by thermal activation and kick-off processes, and ordering of chains environment by incident electrons.
[Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen
2009-03-01
Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.
NASA Astrophysics Data System (ADS)
Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.
2003-09-01
Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.
NASA Astrophysics Data System (ADS)
Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.
2016-11-01
Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.
Processing And Patterning Of Thin Film Superconductors Formed By Metallo-Organic Deposition
NASA Astrophysics Data System (ADS)
Micheli, Adolph L.; Mantese, Joseph V.; Hamdi, Aboud H.
1990-04-01
Thin film superconductors of Y-Ba-Cu and Yb-Ba-Cu were formed by the pyrolysis of neodecanoate solutions of Y, Yb, Ba and Cu which had been deposited onto <100> SrTiO3 substrates [1]. Rapid thermal annealing, in oxygen, of the as-deposited films produced high T films having superconducting onset temperatures above 90 K and zero resistance at 8g K. Scanning Electron Microscopy (SEM) revealed enhancements in grain growth, compared to furnace annealed films, by a factor of 4. X-ray diffraction analysis showed preferred epitaxial grain growth with the c-axis of the films oriented both perpendicular and parallel to the substrate surface. Separate Rutherford Backscattering Spectrometry (RBS) channeling experiments confirmed the formation of preferred epitaxial grain growth. Film composition was determined by RBS and Inductively Coupled Plasma Emission Spectrometry (ICPES). Selective patterning was accomplished by focused beam exposure of the metal neodecanoate films [2-4]. The exposure rendered the neodecanoate film locally insoluble in xylene, thus permitting selective area patterning prior to pyrolysis. Electron, ion and laser beams were used to pattern films on <100> SrTiO3. The finest lines, approximately 5 #m in width and 26 nm thick, were patterned using electron beams whose lines had superconducting onsets above 90 K and zero resistance at 69 K after rapid thermal annealing. Both ion beam and laser patterning had similar superconducting onsets and zero resistance. Neodecanoates of Y, Yb, Ba, and Cu were formed, as previously described [5], by reacting the metal acetates of these materials with either ammonium neodecanoate or tetramethyl ammonium neodecanoate. The carboxylates formed from these reactions were then dissolved in a solution of xylene and pyridine. The individual chemical constituents were combined to produce solutions, Ln:Ba:Cu, in the ratio 1:2:4. Here, Ln is a rare-earth element. Details of the preparation of the metal carboxylates may be found elsewhere [6]. Thin films of Y-Ba-Cu and Yb-Ba-Cu were deposited onto <100> SrTiO by flooding the substrates with the appropriate neodecanoate solutions, then spin drying them at 2000 rpm for 30 s. The substrates were heated rapidly to 500?°C for 5 min in an air oven to pyrolize the metallo organics to their oxides. This process produces thin films about 200 nm thick. The spin coating process was repeated 3-6 times if thicker films were desired. X-ray diffraction analysis of films pyrolized at 500?°C shoed the presence of only microcrystallites. Room temperature resistivities of lx10 0-cm were measured for these films. No superconducting behavior was observed. After the 500?°C pyrolysis the films were further processed by RTA in flowing oxygen. The substrates were placed upon oxidized silicon wafers, rapidly heated to 850?°C for 60 s using infrared radiation produced by a bank of quartz lamps then allowed to cool to room temperature. A second rapid annealing was then performed at 920?°C for 30 s in oxygen. Thin film superconductors formed in the manner described above were very uniform in structure and thickness across the surface of the film. The grains are approximately 1 #m wide and 2 #m long, a factor of 4 larger than the grains found in furnace annealed films formed by MOD [5].
Ehiasarian, A; Pulgarin, Cesar; Kiwi, John
2012-11-01
The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray-brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu(2)O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R (q) and R (a) were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.
Growth and patterning of laser ablated superconducting YBa2Cu3O7 films on LaAlO3 substrates
NASA Technical Reports Server (NTRS)
Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.
1989-01-01
A high quality superconducting film on a substrate with a low dielectric constant is desired for passive microwave circuit applications. In addition, it is essential that the patterning process does not effect the superconducting properties of the thin films to achieve the highest circuit operating temperatures. YBa2Cu3O7 superconducting films were grown on lanthanum aluminate substrates using laser ablation with resulting maximum transition temperature (T sub c) of 90 K. The films were grown on a LaAlO3 which was at 775 C and in 170 mtorr of oxygen and slowly cooled to room temperature in 1 atm of oxygen. These films were then processed using photolithography and a negative photoresist with an etch solution of bromine and ethanol. Results are presented on the effect of the processing on T(sub c) of the film and the microwave properties of the patterned films.
Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method
NASA Astrophysics Data System (ADS)
He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei
The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.
NASA Astrophysics Data System (ADS)
Adeoye Victor, Babalola
2017-12-01
This study involves the preparation of ZnO thin films by spray pyrolysis and to investigate the effect of concentration of the film and irradiation on ZnO thin film deposited by spray pyrolysis method deposited at 350 ± 5 °C. The precursor for zinc oxide was produced from zinc acetate (Zn(CH3COO))2. The samples were annealed at 500 °C for 6 h and irradiated using 137Cs 90.998 mCi radiation. They were then characterised using ultra violet-visible spectrophotometry, X-ray Diffractometry (XRD) with Cu-Kα radiation to determine the structure of the film, Four-point probe for electrical properties and Rutherford Backscattering Spectrometry (RBS) were used for the composition of the film. XRD diffraction peaks observed for 0.05 M ZnO were (1 0 0), (0 0 2), (1 0 1) and (1 1 0) planes for the annealed and irradiated annealed ZnO films with no preferential orientation. The as-deposited films have low peaks belonging to (1 0 0), (0 0 2), (1 0 1), (1 1 0) plane and other peaks such as (1 1 2), (2 0 0) and (2 0 1). The results are explained with regard to the irradiation damage introduced to the samples. The as-deposited, annealed and irradiated-annealed films are highly transparent in the visible range of the electromagnetic spectrum with an average percent transmittance values of 85% and present a sharp ultraviolet cut-off at approximately 380 nm for the ZnO thin film.
Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng
2004-07-01
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Yuwita, Pelangi Eka; Olenka, Desyana; Nasikhudin
2014-09-01
The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO2. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl1-xMxO2 delafossite compounds doped with Cr3+ and Fe3+ from the raw material of Cu(NO3)2˙3H2O, Al(NO3)3˙9H2O, Fe(NO3)3˙9H2O and Cr(NO3)3˙9H2O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl1-xMxO2/Ni delafossite films were successfully fabricated. The CuAl1-xFexO2 compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al3+ with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr3+ doped of CuAl1-xCrxO2 films with smaller effects.
Effect of O2 partial pressure on post annealed Ba2YCu3O(7-delta) thin films
NASA Astrophysics Data System (ADS)
Phillps, J. M.; Siegal, M. P.; Hou, S. Y.; Tiefel, T. H.; Marshall, J. H.
1992-04-01
Epitaxial films of Ba2YCu3O(7-delta) (BYCO) as thin as 250 A and with J(sub c)'s approaching those of the best in situ grown films can be formed by co-evaporating BaF2, Y, and Cu followed by a two-stage anneal. High quality films of these thicknesses become possible if low oxygen partial pressure (p(O2) = 4.3 Torr) is used during the high temperature portion of the anneal (T(sub a)). The BYCO melt line is the upper limit for T(sub a). The use of low p(O2) shifts the window for stable BYCO film growth to lower temperature, which allows the formation of smooth films with greater microstructural disorder than is found in films grown in p(O2) = 740 Torr at higher T(sub a). The best films annealed in p(O2) = 4.3 Torr have J(sub c) values a factor of four higher than do comparable films annealed in p(O2) = 740 Torr. The relationship between the T(sub a) required to grow films with the strongest pinning force and p(O2) is log (p(O2)) proportional to T(sub a) exp(1 exp a) independent of growth method (in situ or ex situ) over a range of five orders of magnitude of p(O2).
Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells
NASA Astrophysics Data System (ADS)
Xin, Peipei
Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options - CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.
2012-01-01
Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer. PMID:23181826
Bae, Yu Jeong; Lee, Nyun Jong; Kim, Tae Hee; Cho, Hyunduck; Lee, Changhee; Fleet, Luke; Hirohata, Atsufumi
2012-11-26
Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer.
NASA Astrophysics Data System (ADS)
Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang
2011-10-01
We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.
NASA Astrophysics Data System (ADS)
Yuan, Wen-Xiang; Hark, S. K.; Xu, H. Y.; Mei, W. N.
2012-01-01
Using the radio frequency magnetron sputtering, CaCu 3Ti 4O 12 (CCTO) thin films were deposited on platinized silicon substrates. The influence of annealing temperature on structures and morphologies of the thin films was investigated. The high annealing temperature increased the crystallinity of the films. Temperature dependence of the dielectric constant revealed an amazing different characteristic of the dielectric relaxation at ˜10 MHz, whose characteristic frequency abnormally increased with the decrease of the measuring temperature unlike the relaxations due to extrinsic origins. Meanwhile, the dielectric constant at high frequencies was close to the value derived from the first principle calculation. All these gave the evidences to ascribe this relaxation to the intrinsic mechanism.
NASA Astrophysics Data System (ADS)
Dong, Yibo; Xie, Yiyang; Xu, Chen; Li, Xuejian; Deng, Jun; Fan, Xing; Pan, Guanzhong; Wang, Qiuhua; Xiong, Fangzhu; Fu, Yafei; Sun, Jie
2018-02-01
A method of producing large area continuous graphene directly on SiO2 by chemical vapor deposition is systematically developed. Cu thin film catalysts are sputtered onto the SiO2 and pre-patterned. During graphene deposition, high temperature induces evaporation and balling of the Cu, and the graphene "lands onto" SiO2. Due to the high heating and growth rate, continuous graphene is largely completed before the Cu evaporation and balling. 60 nm is identified as the optimal thickness of the Cu for a successful graphene growth and μm-large feature size in the graphene. An all-carbon device is demonstrated based on this technique.
NASA Astrophysics Data System (ADS)
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-02-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
Characterization of crystallographic properties of thin films using X-ray diffraction
NASA Astrophysics Data System (ADS)
Zoo, Yeongseok
2007-12-01
Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.
Process for forming epitaxial perovskite thin film layers using halide precursors
Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.
2001-01-01
A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.
Ultrafast IR detector response in high Tc superconducting thin films
NASA Technical Reports Server (NTRS)
Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.
1991-01-01
The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.
Highly oriented Bi-based thin films with zero resistance at 106 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kula, W.; Sobolewski, R.; Gorecka, J.
1991-03-01
This paper reports on fabrication and characterization of nearly single-phase superconducting Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} thin films. The films were dc magnetron sputtered from heavily Pb-doped (Pb/Bi molar ratios up to 1.25), sintered targets on unheated MgO, SrTiO{sub 3}, CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals. For the films grown on the (100) oriented MgO substrate, less than 1 hour of annealing in air at 870{degrees} C was sufficient to obtain more than 90% of the 110-K-phase material, with highly c-axis oriented crystalline structure and zero resistivity at 106 K. The films fabricated on the other substrates alsomore » exhibited a narrow superconducting transition and were fully superconducting above 100 K, but they consisted of a mixed-phase material with a large percentage of the 80 K phase.« less
Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Mallikarjunan, A.; Rymaszewski, E. J.; Lu, T.-M.
2006-04-01
The use of high-dielectric-constant (high-κ) materials for embedded capacitors is becoming increasingly important. Tantalum oxide (Ta2O5) is a prominent candidate as a high-κ material for embedded capacitor use. Metal drift in Ta2O5 (κ˜25) was investigated by bias temperature stress and triangular voltage sweep testing techniques on metal/Ta2O5/SiO2/Si structures. At a temperature of 300°C and 0.75MV/cm bias conditions, Al, Ta, and Ti do not diffuse in Ta2O5, but Cu clearly showed a drift. The Cu drift is attributed to the lack of a stable Cu oxide which can limit Cu ion generation and penetration.
Photoexcited Carrier Dynamics of Cu 2S Thin Films
Riha, Shannon C.; Schaller, Richard D.; Gosztola, David J.; ...
2014-11-11
Copper sulfide is a simple binary material with promising attributes for low-cost thin film photovoltaics. However, stable Cu 2S-based device efficiencies approaching 10% free from cadmium have yet to be realized. In this paper, transient absorption spectroscopy is used to investigate the dynamics of the photoexcited state of isolated Cu 2S thin films prepared by atomic layer deposition or vapor-based cation exchange of ZnS. While a number of variables including film thickness, carrier concentration, surface oxidation, and grain boundary passivation were examined, grain structure alone was found to correlate with longer lifetimes. A map of excited state dynamics is deducedmore » from the spectral evolution from 300 fs to 300 μs. Finally, revealing the effects of grain morphology on the photophysical properties of Cu 2S is a crucial step toward reaching high efficiencies in operationally stable Cu 2S thin film photovoltaics.« less
Ellipsometric study of oxide films formed on LDEF metal samples
NASA Technical Reports Server (NTRS)
Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.
1992-01-01
The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.
Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian
2013-01-01
Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu(2)O/SnO(2) p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu(2)O and SnO(2) selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H(2)S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing.
Strain-relaxation and critical thickness of epitaxial La 1.85Sr 0.15CuO 4 films
Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; ...
2015-12-08
We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La 1.85Sr 0.15CuO 4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La 1.85Sr 0.15CuO 4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.
Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices
NASA Technical Reports Server (NTRS)
Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.
1998-01-01
Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.
NASA Astrophysics Data System (ADS)
Chakraborti, D.; Trichy, G.; Narayan, J.; Prater, J. T.; Kumar, D.
2007-12-01
The effect of Al doping on the magnetic properties of Zn(Cu)O based dilute magnetic semiconducting thin films has been systematically investigated. Epitaxial thin films have been deposited onto sapphire c-plane single crystals using pulsed laser deposition technique. X-ray diffraction and high resolution transmission electron microscopy studies show that the Zn(Cu,Al)O films are epitaxially grown onto (0001) sapphire substrates with a 30°/90° rotation in the basal plane. The large lattice misfit of the order of 16% is accommodated by matching integral multiples of lattice and substrate planes. In these large mismatch systems, the resulting films are fully relaxed following deposition of the first complete monolayer of ZnO (consistent with a critical thickness that is less than one monolayer). Magnetic hysteresis measurements indicate that the pure Zn(Cu)O thin films are ferromagnetic at room temperature. Doping with up to 5% Al (n type) does not significantly affect the ferromagnetism even though it results in an increase in carrier densities of more than 3 orders of magnitude, rising from 1×1017 to 1.5×1020 cm-3. However, for Al additions above 5%, a drop in net magnetization is observed. Annealing the films in an oxygen atmosphere at 600 °C also resulted in a dramatic drop in magnetic moment of the samples. These results strongly suggest that carrier induced exchange is not directly responsible for the magnetic properties of these materials. Rather, a defect mediated exchange mechanism needs to be invoked for this system.
Switzer, Jay A.; Hill, James C.; Mahenderkar, Naveen K.; ...
2016-05-27
Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu 2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured bymore » low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiO x layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu 2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu 2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu 2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less
Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans
2015-01-01
The glass-like vortex distribution in pulsed laser deposited YBa2Cu3O7 − x thin films is observed by scanning superconducting quantum interference device microscopy and analysed for ordering after cooling in magnetic fields significantly smaller than the Earth's field. Autocorrelation calculations on this distribution show a weak short-range positional order, while Delaunay triangulation shows a near-complete lack of orientational order. The distribution of these vortices is finally characterised as an isotropic vortex glass. Abnormally closely spaced groups of vortices, which are statistically unlikely to occur, are observed above a threshold magnetic field. The origin of these groups is discussed, but will require further investigation. PMID:25728772
He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan
2017-12-06
Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.
Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan
2016-01-01
In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.
Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.
2014-06-14
The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, andmore » Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.« less
Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong
2013-07-01
Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.
Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed
2016-08-10
Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.
NASA Astrophysics Data System (ADS)
Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.
2018-06-01
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.
Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications
NASA Technical Reports Server (NTRS)
Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.
2002-01-01
Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.
Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Jiang, Yuhong; Meng, Lei; Deng, Rui; Zhang, Ligong; Zhang, Zhenzhong; Zhao, Haifeng; Liu, Lei
2017-04-12
Shallow acceptor states in Mg-doped CuAlO 2 and their effect on structural, electrical, and optical properties are investigated by combining first-principles calculations and experiments. First-principles calculations demonstrate that Mg substituting at the Al site in CuAlO 2 plays the role of shallow acceptor and has a low formation energy, suggesting that Mg doping can increase hole concentration and improve the conductivity of CuAlO 2 . Hall effect measurements indicate that the hole concentration of the Mg-doped CuAlO 2 thin film is 2 orders of magnitude higher than that of undoped CuAlO 2 . The best room temperature conductivity of 8.0 × 10 -2 S/cm is obtained. A band gap widening is observed in the optical absorption spectra of Mg-doped CuAlO 2 , which is well supported by the results from first-principles electronic structure calculations.
NASA Technical Reports Server (NTRS)
Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.
1995-01-01
Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.
Narrow-band far-infrared interference filters with high-T c, superconducting reflectors
NASA Astrophysics Data System (ADS)
Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.
1994-10-01
We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.
2016-04-01
project attempted to grow La5Ca9Cu24O41 (LCCO) films on important substrates with the high- thermal -conductivity direction parallel or perpendicular...to the surface of the substrate, counting success as demonstration of b-axis or c-axis oriented LCCO films along with measurement of bulk thermal ...deposition, LCCO, La5Ca9Cu24O41, thermal conductivity, epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 24
Investigation of thin film solar cells based on Cu2S and ternary compounds such as CuInS2
NASA Technical Reports Server (NTRS)
Loferski, J. J.
1975-01-01
Production and characterization in thin film form of Cu2S and related Cu compounds such as CuInS2 for photovoltaic cells are examined. The low cost process technology being reported, namely the sulfurization method, is capable of producing films on various substrates. Cathodoluminescence is being used as a diagnostic tool to identify Cu(x)S and CuInS2 compounds. Also, single crystals of CuInS2 are being prepared and it is contemplated that p-n junctions will be made in such crystals.
Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films
NASA Astrophysics Data System (ADS)
Trajanovic, Zoran
1997-12-01
Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiner, M.; Gigl, T.; Hugenschmidt, C.
2015-03-16
Single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature T{sub c} between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies tomore » the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.« less
ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping
Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.
2007-02-20
A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.
Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari
2014-10-27
Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal
NASA Technical Reports Server (NTRS)
Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.
1991-01-01
The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.
Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da
2016-01-01
Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647
Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments
NASA Astrophysics Data System (ADS)
Joo, Young-Chang
1998-10-01
The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
Structure and transport in organic semiconductor thin films
NASA Astrophysics Data System (ADS)
Vos, Sandra Elizabeth Fritz
Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.
Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates
NASA Technical Reports Server (NTRS)
To, H. Y.; Valco, G. J.; Bhasin, K. B.
1993-01-01
YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)
1994-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)
1995-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
NASA Astrophysics Data System (ADS)
Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan
2017-11-01
The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.
NASA Astrophysics Data System (ADS)
Suja, Mohammad Zahir Uddin
Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum efficiency up to 6 times is demonstrated. Threshold current for lasing is decreased by as much as 30% while the output power is increased up to 350% at an injection current of 40 mA. A numerical simulation study reveals that hole carriers are generated in the ZnO MSM devices from impact ionization processes for subsequent plasmon-exciton coupled lasing. Our results suggest that plasmon-enhanced ZnO MSM random lasers can become a competitive candidate of efficient ultraviolet light sources. Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. In this thesis, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM) random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29 33 A/cm2 are achieved. Numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L
2016-12-21
Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.
NASA Astrophysics Data System (ADS)
Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi
2018-02-01
We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.
Chalcogenide thin films deposited by rfMS technique using a single quaternary target
NASA Astrophysics Data System (ADS)
Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.
2017-12-01
Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.
Vaporization of a mixed precursors in chemical vapor deposition for YBCO films
NASA Technical Reports Server (NTRS)
Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises
1995-01-01
Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.
Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae
2013-11-13
A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.
Metal sulfide thin films by chemical spray pyrolysis
NASA Astrophysics Data System (ADS)
Krunks, Malle; Mellikov, Enn
2001-04-01
CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.
NASA Astrophysics Data System (ADS)
Vuchic, Boris Vukan
1995-01-01
Most high angle grain boundaries in high-T _{c} superconductors exhibit weak link behavior. The Josephson-like properties of these grain boundaries can be used for many device applications such as superconducting quantum interference devices (SQUIDs). The structure-property relationship of different types of 45 ^circ (001) YBa_2 Cu_3O_{7-x} thin film grain boundary junctions are examined to study their weak link nature. A technique, termed sputter-induced epitaxy, is developed to form 45^circ (001) tilt grain boundaries in YBa_2Cu _3O_{7-x} thin films on (100) MgO substrates. A low voltage ion bombardment pre-growth substrate treatment is used to modify the epitaxial orientation relationship between the thin film and the substrate in selected regions. By modifying the orientation of the thin film, grain boundary junctions can be placed in any configuration on the substrate. A variety of pre-growth sputtering conditions in conjunction with atomic force microscopy and Rutherford backscatter spectrometry are used to determine the role of the ions in modifying the substrate surface. Sputter-induced epitaxy is extended to a multilayer MgO/LaAlO_3 substrate, allowing integration of the sputter -induced epitaxy junctions into multilayer structures. The low temperature transport properties of the sputter-induced epitaxy junctions and a set of bi-epitaxial grain boundaries are studied. Individual grain boundaries are isolated and characterized for resistance vs. temperature, current vs. voltage as a function of temperature and magnetic field behavior. Resistive and superconducting grain boundaries are compared. Microstructural analysis is performed using scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy (HREM). Marked differences are observed in the microstructure of resistive and superconducting grain boundaries. HREM studies suggest the importance of the local atomic scale structure of the grain boundary in transport properties. A phenomenological grain boundary model is proposed to describe the structure -property relationship of the boundaries.
Raman study of transition-metal oxides with perovskite-like structure
NASA Astrophysics Data System (ADS)
Kolev, Nikolay Iliev
Perovskite-like oxides exhibit a rich variety of properties of fundamental scientific interest and potential application value. The motivation for this work is to contribute to our knowledge of perovskite-like systems and strongly correlated systems in general. The polarized Raman spectra of single crystal and thin film CaCu3Ti4O12, single crystal and thin film CaRuO3, microcrystals of La0.5Ca 0.5MnO3, and ceramic and thin film CaMnO3 have been investigated. In close comparison to results from lattice dynamics calculations most of the Raman lines in the CaCu3Ti4O12, CaRuO3, La0.5Ca0.5MnO3 and CaMnO 3 spectra, have been assigned to definite phonon modes. The validity of the model for twin orientation in the Pnma structure for CaRuO3 and La0.5Ca0.5MnO3 is confirmed. The analysis of the CaMnO3 spectra contributed to the development of a model, based on four basic distortions of the (distorted) perovskite structure. The temperature behavior of the CaCu3Ti4O 12 spectra shows that there is no evidence for structural phase transition in the temperature range 20--600 K, so such a transition cannot be responsible for the sharp drop in the dielectric constant below 100 K. The Raman spectra indirectly support the mechanism of formation of barrier layer capacitances in CaCu3Ti4O12.The observation of additional Raman mode of nominal Ag symmetry is discussed in terms of coexistence of domains of different atomic arrangement, or alternatively of non-stoichiometry (Cu deficiency). In the case of the thin film, the tetragonal distortions could be responsible for the greater separation of the additional Ag line. No anomalies in the temperature behavior of the Raman lines of CaRuO3 is observed, which is an indirect evidence for its lack of long-range magnetic ordering at low temperatures (depending on whether this ordering would be observable by Raman spectroscopy through spin-phonon coupling). In La0.5Ca0.5MnO 3 the appearance of several Raman lines below TN is analyzed in terms of ordering and freezing of the Jahn-Teller distortions in a superstructure. Polarized Raman spectra confirmed their usefulness in studying thin films and their properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Z.F.; Wang, C.A.; Wang, J.H.
1994-12-31
Epitaxial (Tl,Bi)Sr{sub 1.6}Ba{sub 0.4}Ca{sub 2}Cu{sub 3}O{sub x} (Tl,Bi)-1223 thin films on (100) single crystal LaAlO{sub 3} substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field-cooled magnetization, and transport critical current density (J{sub c}) were measured. The zero-resistance temperature was 105-111 K. J{sub c} at 77 K and zero field was > 2 x 10{sup 6} A/cm{sup 2}. The films exhibited good flux pinning properties.
NASA Astrophysics Data System (ADS)
Horsley, Kimberly Anne
Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining a wide surface band gap, as seen in Cu-poor films. A novel absorber was prepared Cu-rich with a final In-Se treatment to produce a Cu-poor surface, and compared directly to Cu-poor and Cu-rich produced samples. Despite reduced Cu at the surface, the novel absorber was found to have a surface band gap similar to that of traditional, Cu-poor grown absorbers. Furthermore, estimation of the near-surface bulk band gap suggests a narrowing of the band gap away from the surface, similar to highly efficient, Cu-poor grown absorbers. Long-term degradation is another concern facing solar cells, as heat and moistures stress can result in reduced efficiencies over time. The interface of the back contact material and absorber layer in (Au/Cu)/CdTe/CdS thin-film structures from the University of Toledo were investigated after a variety of accelerated stress treatments with the aim of further understanding the chemical and/or electronic degradation of this interface. Sulfur migration to the back contact was observed, along with the formation of Au-S and Cu-S bonds. A correlation between heat stress under illumination and the formation of Cu-Cl bonds was also found. Nanocomposite materials hold promise as a next-generation photovoltaic material and for use in LED devices, due in part to the unique ability to tune the absorption edge of the film by adjusting the semiconductor particle size, and the prospective for long-range charge-carrier (exciton) transport through the wide band gap matrix material. Thin films of CdTe were sputter deposited onto ZnO substrates at the University of Arizona and studied before and after a short, high temperature annealing to further understand the effects of annealing on the CdTe/ZnO interface. A clumping of the CdTe layer and the formation of Cd- and Te-oxides was observed using surface microscopy and photoelectron spectroscopy techniques. These findings help to evaluate post-deposition annealing as a treatment to adjust the final crystallinity and optoelectronic properties of these films. Through publication and/or discussion with collaborators, each project presented in this dissertation contributed to the understanding of the chemical and electronic properties of the material surface, near-surface bulk, and/or interfaces formed. The information gained on these unique chalcogenide materials will assist in designing more efficient and successful optoelectronic devices for the next generation of solar cells and LEDs.
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells
Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; ...
2016-09-20
In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn 1-xMg xO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Gamore » dopants were added, the electron concentrations were on the order of 10 17 cm -3 or 10 20 cm -3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu 2ZnSnS 4 (CZTS), Cu(In, Ga)Se 2 (CIGS) and other solar cell absorbers.« less
Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities
NASA Astrophysics Data System (ADS)
Luo, Jie; Lin, Yow-Jon
2016-03-01
The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.
NASA Astrophysics Data System (ADS)
Jose, Edwin; Kumar, M. C. Santhosh
2016-09-01
We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.
2013-01-01
GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137
Poole-Frenkel effect in sputter-deposited CuAlO2+x nanocrystals
NASA Astrophysics Data System (ADS)
Narayan Banerjee, Arghya; Joo, Sang Woo
2013-04-01
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 1018 cm-3. Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K-1. This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.
Banerjee, Arghya Narayan; Joo, Sang Woo
2013-04-26
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M
2018-06-15
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac) 2 thin film to atmospheric plasma for 5min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac) 2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5min, but, when the exposure time reaches 10min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35nm to ~1nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac) 2 thin films were studied using spectrophotometric method. The exposure of cu(acac) 2 thin films to plasma produced the indirect energy gap decrease from 3.20eV to 2.67eV for 10min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hung, L. S.; Zheng, L. R.
1992-05-01
Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.
Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells.
Chen, You-Jyun; Li, Ming-Hsien; Huang, Jung-Chun-Andrew; Chen, Peter
2018-05-16
Cu/Cu 2 O films grown by ion beam sputtering were used as p-type modified layers to improve the efficiency and stability of perovskite solar cells (PSCs) with an n-i-p heterojunction structure. The ratio of Cu to Cu 2 O in the films can be tuned by the oxygen flow ratio (O 2 /(O 2 + Ar)) during the sputtering of copper. Auger electron spectroscopy was performed to determine the elemental composition and chemical state of Cu in the films. Ultraviolet photoelectron spectroscopy and photoluminescence spectroscopy revealed that the valence band maximum of the p-type Cu/Cu 2 O matches well with the perovskite. The Cu/Cu 2 O film not only acts as a p-type modified layer but also plays the role of an electron blocking buffer layer. By introducing the p-type Cu/Cu 2 O films between the low-mobility hole transport material, spiro-OMeTAD, and the Ag electrode in the PSCs, the device durability and power conversion efficiency (PCE) were effectively improved as compared to the reference devices without the Cu/Cu 2 O interlayer. The enhanced PCE is mainly attributed to the high hole mobility of the p-type Cu/Cu 2 O film. Additionally, the Cu/Cu 2 O film serves as a protective layer against the penetration of humidity and Ag into the perovskite active layer.
Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells
NASA Astrophysics Data System (ADS)
Edley, Michael
Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination. With these techniques, the extension of the depletion layer from CdSe into ZnO was determined to be vital to suppression of interfacial recombination. However, depletion of the ZnO also restricted the effective diffusion core for electrons and slowed their transport. Thus, materials and geometries should be chosen to allow for a depletion layer that suppresses interfacial recombination without impeding electron transport to the point that it is detrimental to cell performance. Thin film solar cells are another promising technology that can reduce costs by relaxing material processing requirements. CuInxGa (1-x)Se (CIGS) is a well studied thin film solar cell material that has achieved good efficiencies of 22.6%. However, use of rare elements raise concerns over the use of CIGS for global power production. CuSbS2 shares chemistry with CuInSe2 and also presents desirable properties for thin film absorbers such as optimal band gap (1.5 eV), high absorption coefficient, and Earth-abundant and non-toxic elements. Despite the promise of CuSbS2, direct characterization of the material for solar cell application is scarce in the literature. CuSbS2 nanoplates were synthesized by a colloidal hot-injection method at 220 °C in oleylamine. The CuSbS2 platelets synthesized for 30 minutes had dimensions of 300 nm by 400 nm with a thickness of 50 nm and were capped with the insulating oleylamine synthesis ligand. The oleylamine synthesis ligand provides control over nanocrystal growth but is detrimental to intercrystal charge transport that is necessary for optoelectronic device applications. Solid-state and solution phase ligand exchange of oleylamine with S2- were used to fabricate mesoporous films of CuSbS2 nanoplates for application in solar cells. Exchange of the synthesis ligand with S2- resulted in a two order of magnitude increase in 4-point probe conductivity. Photoexcited carrier lifetimes of 1.4 ns were measured by time-resolved terahertz spectroscopy, indicating potential for CuSbS2 as a solar cell absorber material.
Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M
2018-05-21
In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5 mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.
CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths
NASA Astrophysics Data System (ADS)
Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.
1990-03-01
We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.
Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.
Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K
2016-04-07
The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.
CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1- x N Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh
2017-03-01
Cu2ZnSnSe4 (CZTSe) films for solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target, followed by two-step post-selenization at 500-600°C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. The p-type CZTSe and the n-type In x Ga1- x N films were characterized. The properties of CZTSe changed with the selenization temperature and the In x Ga1- x N with its indium content. With the CdS-free modeling for a solar cell structure, the In0.15Ga0.85N/In0.3Ga0.7N/CZTSe solar cell device had an improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. Current density of ˜48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1% are reported. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves that sputtered III-nitride films have their merits.
Preparation, patterning, and properties of thin YBa2Cu3O(7-delta) films
NASA Astrophysics Data System (ADS)
de Vries, J. W. C.; Dam, B.; Heijman, M. G. J.; Stollman, G. M.; Gijs, M. A. M.
1988-05-01
High T(c) superconducting thin films were prepared on (100) SrTiO3 substrates by dc triode sputtering and subsequent annealing. In these films Hall-bar structures having a width down to 5 microns were patterned using a reactive ion-etching technique. Superconductivity above 77 K was observed. When compared with the original film there is only a small reduction in T(c). The critical current density determined by electrical measurements is substantially reduced. On the other hand, the critical current density in the bulk of the grains as measured by the torque on a film is not reduced by the patterning process. It is suggested that superconductor-normal metal-superconductor junctions between the grains account for this difference.
NASA Astrophysics Data System (ADS)
Murugesan, M.; Obara, H.; Yamasaki, H.; Kosaka, S.
2006-12-01
High temperature superconductor (HTS) thin films have been systematically investigated for their corrosion resistance against moisture by studying the role of external factors such as temperature (T), relative humidity (RH), and the type of substrates in the corrosion. In general, (i) the corrosion is progressed monotonously with increasing T as well as RH, (ii) a threshold level of water vapor is needed to cause degradation, and (iii) between T and RH, the influence of T is more dominant. HTS films on SrTiO3 and CeO2 buffered sapphire (cbs) substrates showed better corrosion stability and a low rate of degradation in the critical current density as compared to that of the film grown on MgO substrate. Between DyBa2Cu3Oz (DBCO) and YBa2Cu3Oz, the former is reproducibly found to have many fold higher corrosion resistance against moisture. This observed enhancement in the corrosion resistance in DBCO could be explained by the improved microstructure in the films and the better lattice matching with the substrate. Thus, the dual advantage of DBCO/cbs films, i.e., the enhanced corrosion stability of DBCO and the appropriate dielectric properties of sapphire, can be readily exploited for the use of DBCO/cbs films in the microwave and power devices.
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
NASA Astrophysics Data System (ADS)
Wang, J.; Zhu, J.; He, Y. X.
2014-01-01
The influence of two different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)Se2 (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga)3Se5 or Cu(In,Ga)2Se3.5 at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.
NASA Astrophysics Data System (ADS)
Li, Bin; Niu, Wenchao; Cheng, Yongwei; Gu, Junjie; Ning, Ping; Guan, Qingqing
2018-05-01
Cu2O/TiO2 nanopowders were prepared and used as thin film electrode raw materials for CO2 photoelectroreduction. Characterization results from XRD, TEM, UV-Vis and BET show that Cu2O/TiO2 composites have regular morphology, narrow band gap, excellent textural properties, and exhibits marked response of visible light. The photoelectrocatalytic results show that CO2 can be reduced to formaldehyde (i.e., intermediate) and finally methanol (i.e., end product). In addition, the CO2 photoelectroreduction pathway and the mechanism of photoelectrocatalysis are discussed. In summary, the work reports a potential method of CO2 reduction by visible-light photocatalysis without an external bias.
High performance batch production of LREBa 2Cu 3O y using novel thin film Nd-123 seed
NASA Astrophysics Data System (ADS)
Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Tomita, M.
2011-11-01
A batch production for fabrication of LREBa2Cu3Oy (LRE: Sm, Gd, NEG) "LRE-123" pellets are developed in air and Ar-1% O2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 °C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa2Cu3Oy material can be made by using a novel thin film Nd-123 seeds.
NASA Astrophysics Data System (ADS)
Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.
2018-04-01
Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.
Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment
NASA Technical Reports Server (NTRS)
Levy, Moises; Sarma, Bimal K.
1994-01-01
Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.
Steichen, Marc; Thomassey, Matthieu; Siebentritt, Susanne; Dale, Phillip J
2011-03-14
The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.
Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films
NASA Astrophysics Data System (ADS)
Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.
2016-08-01
Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Deng, Guochu; Xanthopoulos, Nicolas; Muralt, Paul
2008-04-01
Epitaxial CaCu3Ti4O12 thin films grown by pulsed laser deposition were studied in the as-deposited and oxygen annealed state. The first one exhibited the usual transition from dielectric to colossal dielectric behavior upon increasing the temperature to above 100K. This transition disappeared after annealing at 900°C in air. The two states significantly differ in their x-ray photoelectron spectra. The state of colossal dielectric constant corresponds to a bulk material with considerable amounts of Cu + and Ti3+, combined with Cu species enrichment at the surface. The annealed state exhibited a nearly stoichiometric composition with no Cu+ and Ti3+. The previously observed p-type conduction in the as-deposited state is thus related to oxygen vacancies compensated by the point defects of Cu+ and Ti3+.
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...
2018-01-08
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-01-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
Non-Porod scattering and non-integer scaling of resistance in rough films
NASA Astrophysics Data System (ADS)
Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay
2017-04-01
In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-01-01
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)2 in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%. PMID:28773056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Enzhou; Qi, Lulu; Bian, Juanjuan
Graphical abstract: Photoreduction of CO{sub 2} to CH{sub 3}OH over plasmonic Cu/TiO{sub 2} film. - Highlights: • Cu nanoparticles modified TiO{sub 2} nano-flower film was prepared by a facile strategy. • Cu nanoparticles can enhance the light absorption and the Raman scattering of TiO{sub 2}. • Cu nanoparticles can effectively restrain the recombination of the charge carriers. • A synergistic mechanism is proposed for photocatalytic reduction of CO{sub 2} on Cu/TiO{sub 2} film. - Abstract: Cu nanoparticles (NPs) deposited TiO{sub 2} nano-flower films were fabricated using a combination of a hydrothermal method and a microwave-assisted reduction process. The investigations indicatedmore » that Cu NPs and TiO{sub 2} film both exhibit visible light harvesting properties based on localized surface plasmon resonance (LSPR) of Cu NPs and unique nanostructures of TiO{sub 2} film. Fluorescence quenching was observed because the recombination of charge carriers was effectively suppressed by Cu NPs deposition. The experimental results indicate that Cu/TiO{sub 2} films exhibit better activity for the photocatalytic reduction of CO{sub 2} due to the charge transfer property and LSPR effect of Cu NPs. The CH{sub 3}OH production rate reached 1.8 μmol cm{sup −2} h{sup −1} (energy efficiency was 0.8%) over 0.5 Cu/TiO{sub 2} film under UV and visible light irradiation, which was 6.0 times higher than that observed over pure TiO{sub 2} film. In addition, a tentative photocatalytic mechanism is proposed to understand the experimental results over the Cu modified TiO{sub 2} nano-flower films.« less
Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian
2013-01-01
Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu2O/SnO2 p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu2O and SnO2 selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H2S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing. PMID:23409241
NASA Astrophysics Data System (ADS)
Ando, Shizutoshi; Iwashita, Taisuke
2017-06-01
Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.
2017-10-01
This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.
Search for New Superconductors for Energy and Power Applications
2014-10-21
superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0
Scientific Understanding of Non-Chromated Corrosion Inhibitors Function
2013-01-01
deposited Al - Cu thin films (left) and aged Al - Cu thin films (right). 348 Figure 7.8. Pit morphologies developed...under neat epoxy resins applied to “as- deposited ” (left) and aged Al - Cu thin films (right) at different exposure times. 349 Figure 7.9. SEM and EDS...results of “As- deposited ” Al - Cu thin film. 351 Figure 7.10. SEM and EDS results of aged Al - Cu thin films. 352 Figure 7.11. Pit
Vapour phase techniques for deposition of CZTS thin films: A review
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Kumar, Sandeep; Singh, Sukhpal
2018-05-01
With the surge of thin film photovoltaic technologies in recent years, for cost reduction and increased production there is a need for earth abundant and non-toxic raw materials. Existing thin film solar cells comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe contain elements that are rare in earth's crust and in case of CdTe toxic. Cu2ZnSnS4 (CZTS), having Kesterite structure, a direct band gap of 1.4 - 1.5 eV and an absorption coefficient of 104 cm-1 makes a promising candidate for absorber layer in thin film solar cells. So far many physical and chemical techniques have been employed for deposition of CZTS thin films. This review focuses on various vapour phase techniques used for fabrication of films, recent advances in these techniques and their future outlook.
NASA Astrophysics Data System (ADS)
Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.
2016-10-01
Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.
Molazemhosseini, Alireza; Liu, Chung Chiun
2018-01-01
A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated. PMID:29316652
Photo-thermal processing of semiconductor fibers and thin films
NASA Astrophysics Data System (ADS)
Gupta, Nishant
Furnace processing and rapid thermal processing (RTP) have been an integral part of several processing steps in semiconductor manufacturing. The performance of RTP techniques can be improved many times by exploiting quantum photo-effects of UV and vacuum ultraviolet (VUV) photons in thermal processing and this technique is known as rapid photo-thermal processing (RPP). As compared to furnace processing and RTP, RPP provides higher diffusion coefficient, lower stress and lower microscopic defects. In this work, a custom designed automated photo assisted processing system was built from individual parts and an incoherent light source. This photo-assisted processing system is used to anneal silica clad silicon fibers and deposit thin-films. To the best of our knowledge, incoherent light source based rapid photo-thermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination, Raman spectroscopy and electrical measurements showed a considerable enhancement of structural and crystalline properties of RPP treated silicon fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers. To explore further applications of RPP, thin-films of Calcium Copper Titanate (CaCu3Ti4O12) or CCTO and Copper (I) Oxide (Cu2O) were also deposited using photo-assisted metal-organic chemical vapor deposition (MOCVD) on Si/SiO2 and n-Si substrate respectively. CCTO is one of the most researched giant dielectric constant materials in recent years. The given photo-assisted MOCVD approach provided polycrystalline CCTO growth on a SiO2 surface with grain sizes as large as 410 nm. Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and is a potential candidate for multi-junction solar cells. X-ray diffraction study revealed a preferred orientation, as (200) oriented crystals of Cu2O are grown on both substrates. Also, electrical characterization of Cu2O/n-Si devices showed the lowest saturation current density of 1.5x10-12 A/cm 2 at zero bias. As a result, photo-assisted thermal processing has the potential of making the process more effective with enhanced device performance.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.
1990-01-01
The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.
NASA Technical Reports Server (NTRS)
Raikar, Genesh N.; Gregory, John C.; Christl, Ligia C.; Peters, Palmer N.
1992-01-01
The University of Alabama in Huntsville (UAH) experiment A-0114 was designed primarily to study degradation of material surfaces due to low earth orbital (LEO) atmospheric oxygen. The experiment contained 128 one inch circular samples: metals, polymers, carbons, and semiconductors. Among metal samples, copper has shown some interesting new results. Two types of copper samples, a film sputter coated on fused silica and a bulk piece of OFHC copper, were characterized employing a variety of techniques such as X-ray and Auger electron spectroscopies, X-ray diffraction, and high resolution profilometry. Cu 2p core level spectra were used to characterize the presence of Cu2O and CuO in addition to Cu Auger LMM lines. These results are supported by our recent X-ray diffraction studies which clearly establish the presence of Cu oxides which we were unable to prove in our earlier work. Profilometry showed an increase in thickness of the film sample where exposed to 106.7 +/- 0.5 nm from an initial thickness of 74.2 +/- 1.1 nm. Further studies with SEM and ellipsometry are underway.
NASA Astrophysics Data System (ADS)
Petuenju, Eric Nguwuo
The present thesis study is part of the work of The Laboratory of New Materials for Energy and Electrochemistry systems (LaNoMat) that search new techniques to elaborate new materials for photovoltaic solar applications. This aims contribute to the development of the exploitation of solar energy into electrical energy by the maximum of the population throughout the world. This work deals with the determination of CuInS2 thin film deposition parameters by ultrasonic spray pyrolysis method for applications in the technology of three dimensional (3D) solar cells. The structure of the band gap of CuInS2 (a semiconductor material with a direct bandgap of 1.55 eV) makes it an excellent candidate for the role of the absorber in thin film technology for solar photovoltaic applications. 3D solar photovoltaic technology requires the production of a p-n junction with n and p-type semiconductors to make networks. The production and growth of such networks depends on the creation of thin films which have the characteristics of an ultrathin nanocomposite or extremely thin absorber (typically a few tens of nanometers) or which act as a quantum dot. To allow the emergence of 3D photovoltaic technology, it is important to develop methods for the growth of thin layers of materials such as CuInS 2, which are potentially interesting for this purpose. But the development of methods for thin film deposition, for the reasons of competition and accessibility, must be considered as an important factor in the context of the development of three-dimensional photovoltaic solar cells at low cost (production costs: of the order of 0,5 a 0,3$US/Watt-peak) (Beard et al., 2014). To do this it is necessary to use materials manufacturing technology readily available and inexpensive, and allowing to have materials on large surface, such as pyrolysis which allows to reduce costs by a factor of 100 compared to the crystallogenesis. Pyrolysis is defined as a process for decomposing one or more compounds by heat to obtain the formation of a new compound. The main objective of this thesis focuses on the use of ultrasonic spray pyrolysis technique to grow CuInS2 thin films and characterize them by different techniques. This choice is linked to the fact that the CuInS2 is a direct gap semiconductor material, which can act as absorber in solar photovoltaic technology. However, the growth of thin films of this material is subject to a problem of creation of interpenetrating networks of different types of semiconductors (n and p-type), which implies a suitable choice of deposition technique. It should be noted that the interest in existing methods, the ALCVD (Atomic Layer Vapor Deposition) and ILGAR (Ion Layer Gas Reaction) developed in paragraphs 2.4.1 and 2.4.2, is confronted with time limits of these methods. Indeed these two methods, owing to the principle of sequential production process, take place very slowly; and we showed that the thickness of the obtained thin film is proportional to the deposition time. In this work, spray pyrolysis is carried out in two different ways, namely ultrasonic and pneumatic spraying. Of these two methods, we showed that the transducer based ultrasonic spray pyrolysis is the method that can be used to grow thin films of CuInS2 a good homogeneity of the crystallites size (of the order of 110 A) and the morphology of the layers. Ultrasonic spraying was done with a piezoelectric system using a transducer. This system consists of a cylindrical container made of Teflon 5 cm diameter and 15 cm long in which is introduced the solution containing the precursor. The container is mounted on an ultrasonic transducer, component of the piezoelectric system TDK nebulizer unit NB-80E-01, which transforms the solution in aerosol. The aerosol is transported through a teflon tube by a carrier gas, the nitrogen, into a floating motion to the substrate. The substrate is placed on a heating plate whose temperature is controlled by a control monitor. The supply in solution of the container is done with the aid of an electric pump. The nature of the samples obtained is dependent of the supporting electrolyte for the deposition of the precursors. We showed that the use of precursors in an aqueous solution leads to the production of thin layers of indium sulfide In 2S3 clusters while the use of the precursors in alcoholic solution leads to the production of thin layers of CuInS2. The precursors ratio for deposition of CuInS2 is Cu: In: S = 1: 1: 4. The thickness of thin films of In2S3 is of the order of 812 nm. These layers are composed of microaggregates with size ranging from 3 to 20 microns. The particle size in the thin films of In2S 3 is of about 220 A. The thickness of the thin film of CuInS 2 is of the order of 600 nm. Spectrophotometry has identified that all obtained CuInS2 thin films have an average band gap value of 1.40 eV. This indicates the presence of intermediate states, such as copper vacancies in the material band gap. The absorption spectra also allowed us to distinguish peaks that can be attributed to the contribution of sub-bands corresponding to the indium-sulfur bond and the sulfur 3s-band. The samples were characterized by X-ray Diffraction to identify crystalline structure while their surface morphology as well as their semi-quantitative chemical composition were determined using the energy-dispersive x-ray spectroscopy. The ensuing results show that the thin films obtained are homogeneous, transparent and polycrystalline with the crystallites size of the order of 110 A. The thin films obtained by this method do not require annealing to improve their crystallinity. The growth of thin films depends on the substrate humidification period. For a wetting time of about 3 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.81: 3.18. The obtained samples are indexed as CIS1. For a wetting time of about 7 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.23: 2.07. The obtained samples are indexed as CIS2. Contrary to layers CIS1, the layers CIS2 also contain chlorine. The obtained thin films are p-type and, under illumination of 100 mW/cm 2 by a xenon lamp, an increase of the density of charge carriers of about 62% is obtained, but this value does not account the recombination phenomena. In the case of the pneumatic spraying method, the spraying principle is based on the application of Venturi effect, which allows to spray the solution of precursors using a carrier gas. This method is called gas blasting spray pyrolysis. The gas used here is nitrogen. The sprayer is an airbrush - Iwata hp-eclipse bcs - which aspires the solution through a tube connected to the bottle containing the precursor solution, and sprays it through a nozzle according to the principle of the Venturi effect. The precursors ratio is Cu:In:S=1:1:4. The obtained thin films are CuInS2. They are heterogeneous, dense, opaque, and polycrystalline with a crystallites size of the order of 550 A. The stoichiometry of the obtained layers is of order of 1:1.45:2.28. The thin films obtained by this method require annealing (heating of the samples in an oven for one hour at a temperature of 300 ° C) to improve their crystallinity. The thickness of the obtained thin film of CuInS2 is of the order of 1190 nm. The comparative analysis of the samples obtained by the two types of spray pyrolysis is then performed. It shows that ultrasonic aerosol spray would provide CuInS2 thin films for solar applications both in the roles of nanocomposite ultra-thin absorber and extremely thin absorber as in that of quantum dot absorber. In conclusion, transducer based ultrasonic spray pyrolysis is therefore a method that would allow the deposition of CuInS2 on TiO 2 and contribute to resolve a major limitation in three-dimensional photovoltaic solar cells technology, namely the realization of interpenetrating networks of n-type and p-type semiconductors, on a large scale and without time constraint.
Method of forming superconducting Tl-Ba-Ca-Cu-O films
Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming
1993-01-01
A method of forming a superconducting Tl-Ba-Ca-Cu-O film is disclosed, which comprises depositing a Ba-Ca-Cu-O film on a substrate by MOCVD, annealing the deposited film and heat-treating the annealed film in a closed circular vessel with TlBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x and cooling to form said superconducting film of TlO.sub.m Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2, wherein m=1,2 and n=1,2,3.
Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Deng, Guochu; He, Zhangbin; Muralt, Paul
2009-04-01
The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
NASA Astrophysics Data System (ADS)
Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.
2018-04-01
The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.
de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...
2016-08-01
CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less
NASA Astrophysics Data System (ADS)
Constantinian, K. Y.; Ovsyannikov, G. A.; Kislinskii, Yu. V.; Petrzhik, A. M.; Shadrin, A. V.
2017-10-01
Spin-polarized current in thin-film tunnel mesa-structures formed by epitaxial cuprate superconducting (YBa2Cu3O7-δ) and manganite (LaMnO3) films and an upper superconducting Au-Nb bilayer is studied experimentally. Intrinsic narrow-band generation in the microwave range is reported. Its frequency is tuned by the bias voltage and an external magnetic field.
Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells
NASA Astrophysics Data System (ADS)
Johnson, Forrest
Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.
El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R
2013-07-05
The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.
On twin density and resistivity of nanometric Cu thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmak, Katayun; Liu, Xuan; Darbal, Amith
2016-08-14
Crystal orientation mapping in the transmission electron microscope was used to quantify the twin boundary length fraction per unit area for five Ta{sub 38}Si{sub 14}N{sub 48}/SiO{sub 2} encapsulated Cu films with thicknesses in the range of 26–111 nm. The length fraction was found to be higher for a given twin-excluded grain size for these films compared with previously investigated SiO{sub 2} and Ta/SiO{sub 2} encapsulated films. The quantification of the twin length fraction per unit area allowed the contribution of the twin boundaries to the size effect resistivity to be assessed. It is shown that the increased resistivity of the Ta{submore » 38}Si{sub 14}N{sub 48} encapsulated Cu films compared with the SiO{sub 2} and Ta/SiO{sub 2} encapsulated films is not a result of increased surface scattering, but it is a result of the increase in the density of twin boundaries. With twin boundaries included in the determination of grain size as a mean-intercept length, the resistivity data are well described by 2-parameter Matthiessen's rule summation of the Fuchs-Sondheimer and Mayadas Shatzkes models, with p and R parameters that are within experimental error equal to those in prior reports and are p = 0.48(+0.33/−0.31) and R = 0.27 ± 0.03.« less
Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten
2010-12-20
In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.
Research progress in photolectric materials of CuFeS2
NASA Astrophysics Data System (ADS)
Jing, Mingxing; Li, Jing; Liu, Kegao
2018-03-01
CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.
NASA Astrophysics Data System (ADS)
Korir, Peter C.; Dejene, Francis B.
2018-04-01
In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.
Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications
Firat, Y. E.; Yildirim, H.; Erturk, K.
2017-01-01
Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping
2017-02-01
The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).
Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers.
Kinsey, Alex H; Slusarski, Kyle; Sosa, Steven; Weihs, Timothy P
2017-07-05
The use of thin-foil, self-propagating thermite reactions to bond components successfully depends on the ability to suppress gas generation and avoid pore formation during the exothermic production of brazes. To study the mechanisms of vapor production in diluted thermites, thin film multilayer Al-Cu-Cu 2 O-Cu foils are produced via magnetron sputtering, where the Cu layer thickness is systematically increased from 0 to 100 nm in 25 nm increments. The excess Cu layers act as diffusion barriers, limiting the transport of oxygen from the oxide to the Al fuel, as determined by slow heating differential scanning calorimetry experiments. Furthermore, by adding excess Cu to the system, the temperature of the self-propagating thermite reactions drops below the boiling point of Cu, eliminating the metal vapor production. It is determined that Cu vapor production can be eliminated by increasing the Cu interlayer thickness above 50 nm. However, the porous nature of the final products suggests that only metal vapor production is suppressed via dilution. Gas generation via oxygen release is still capable of producing a porous reaction product.
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsuko; Koike, Junichi
2008-01-01
Mechanical processes of the nanoscratch test are investigated using a finite element analysis of Cu/Ta/SiO2/Si multilayer films. The calculated stress distribution at the moment of delamination suggests that delamination occurs in a small region of approximately 100 nm. The driving force for delamination is the stress concentration due to strain-incompatibility at the Cu/Ta interface resulting from the large plastic deformation in Cu. The degree of stress concentration is found to depend on internal variables, such as plastic deformation, residual stress, and the elastic modulus, and on the magnitude of lateral force.
High-Tc superconductor coplanar waveguide filter
NASA Technical Reports Server (NTRS)
Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.
1991-01-01
Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.
The photosensitivity of carbon quantum dots/CuAlO2 films composites.
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-31
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
The photosensitivity of carbon quantum dots/CuAlO2 films composites
NASA Astrophysics Data System (ADS)
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-07-01
Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.
NASA Astrophysics Data System (ADS)
Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun
2015-11-01
In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.
NASA Astrophysics Data System (ADS)
Cotón, N.; Mercey, B.; Mosqueira, J.; Ramallo, M. V.; Vidal, F.
2013-07-01
A series of superconducting La2-xSrxCuO4 thin films, with 0.09 ≲ x ≲ 0.22, is grown over (100)SrTiO3 substrates by means of a novel pulsed laser deposition method devised to increase the homogeneity and control of doping. We employ two separate parent oxide targets that receive ablation shots at arbitrary computer-controlled relative rates, instead of the conventional procedure that uses a single target whose doping determines the one of the film. We characterize the films both through conventional techniques (XRD, SEM, AFM and EDX) and by measuring their superconducting transition with a high-sensitivity SQUID magnetometer. The latter allows one to determine not only their average critical temperatures {\\bar {T}}_{{c}}(x) but also their dispersions due to inhomogeneities, ΔTc(x). For {\\bar {T}}_{{c}}(x) we obtain the conventional parabolic law centered at x = 0.16, plus a Gaussian depression near x = 1/8 with a {\\bar {T}}_{{c}}-height of about 5 K and x-width about 0.03. For ΔTc(x) we obtain, for all the dopings, values among the lowest reported up to now for La2-xSrxCuO4. The ΔTc(x) dependence can be explained in terms of the unavoidable randomness of the positioning of the Sr ions (the so-called intrinsic chemical inhomogeneity) and a separate residual Tc-inhomogeneity contribution of the order of 0.5 K, this last associated with the samples’ structural inhomogeneities and films’ substrate.
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-01-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-19
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
NASA Astrophysics Data System (ADS)
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay
2010-02-01
Ultraviolet photoconductivity relaxation in ZnO thin films deposited by rf magnetron sputtering are investigated. Effect of oxygen partial pressure in the reactive gas mixture and film thickness on the photoconductivity transients is studied. A different photodetector configuration comprising ZnO thin film with an ultrathin overlayer of metals like Cu, Al, Sn, Au, Cr, and Te was designed and tested. Photoresponse signal were found to be stronger (four to seven times) in these configurations than the pure ZnO thin films. Sn(30 nm)/ZnO sample exhibits highest responsivity of ˜8.57 kV/W whereas Te(20 nm)/ZnO structure presents highest sensitivity of ˜31.3×103 compared to unloaded ZnO thin film. Enhancement in the photoresponse of ZnO thin films is attributed to the change in surface conductivity due to induced charge carriers at the interface because of the difference in work function and oxygen affinity values of metal overlayer with the underlying semiconducting layer. Charge carrier transfer from the metal layer to ZnO creates a surplus of electrons at the interface; a fraction of which are captured by the defect centers (traps) at the surface whereas the remaining one represents free carriers in the conduction band and are responsible for the enhanced photoconductivity.
Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application
NASA Astrophysics Data System (ADS)
Tiwari, Kunal J.; Vinod, Vijay; Subrahmanyam, A.; Malar, P.
2017-10-01
Bulk copper antimony selenide was synthesized using mechanical alloying from the elemental precursors. Phase formation in milled powders was studied using x-ray diffraction (XRD) and Raman spectroscopy studies. The synthesized bulk source after cold compaction was used as source material for thin film deposition by e-beam evaporation. Thin film deposition was carried out at various e-beam current values (Ib ∼30, 40 and 50 mA) and at a substrate temperature of 200 °C. Near stoichiometric CuSbSe2 thin films were obtained for Ib values closer to 50 mA and post annealing at a temperature of 380 °C for 1 h. Thin films deposited using above conditions were found to exhibit an absorption coefficient (α) values of >105 cm-1 and a band gap value ∼1.18 eV that is closer to the reported band gap for CuSbSe2 compound.
Growth and Magnetotransport Properties of Dirac Semimetal Candidate Cu3PdN
NASA Astrophysics Data System (ADS)
Quintela, C. X.; Campbell, N.; Harris, D. T.; Shao, D. F.; Xie, L.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.
Since the discovery of three-dimensional Dirac semimetals (DSM) Cd3As2 and Na3Bi, many efforts have been made to identify new DSM materials. Recently, nitride antiperovskite Cu3PdN has been proposed by two different groups as a new DSM candidate. However, until now, the experimental realization of bulk Cu3PdN and the study of its electronic properties has been hindered due to the difficulty of synthesizing bulk single crystals of this material. Here, we report the first growth and magnetotransport characterization of epitaxial Cu3PdN thin films on (001) SrTiO3 substrates. Magnetotransport measurements reveal p-type metallic conduction with very low temperature coefficient of the resistance and small non-linear magnetoresistance at low temperatures. The successful growth of Cu3PdN thin films opens the path to investigating the unknown electronic properties of this material, and provides a template for further research on other antiperovskite DSM candidates such as Cu3ZnN.
Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue
2018-07-01
Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.
Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.
2017-01-01
In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377
Advances in thin-film solar cells for lightweight space photovoltaic power
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.
1989-01-01
The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.
NASA Astrophysics Data System (ADS)
Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.
2017-07-01
The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.
Effect of spin-orbit coupling on excitonic levels in layered chalcogenide-fluorides
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy; Kykyneshi, Robert; Kinney, Joseph; McIntyre, David H.; Schneider, Guenter; Tate, Janet
2008-03-01
BaCuChF (Ch=S,Se,Te) comprise a family of wide-bandgap p-type semiconductors. Due to their high transparency and conductivity, they have potential applications as components of transparent thin-film transistors, solar cells and light-emitting devices. Thin films of BaCuChF have been deposited on MgO by pulsed laser deposition (PLD). Solid solutions BaCuS1-xSexTeF and BaCuSe1-xTex have been prepared by PLD of alternating thin BaCuChF layers. All films were deposited at elevated substrate temperatures. They are preferentially c-axis oriented, conductive and transparent in the visible part of the spectrum. Double excitonic peaks have been observed in the absorption spectrum of these films in the temperature range from 80 to 300K. The separation between the peaks in the doublet increases with the increase of atomic mass of the chalcogen. It also increases with the increase of the heavy chalcogen component x in the solid solutions. This separation most likely is caused by the effect of spin-orbit coupling in the chalcogen atoms on excitonic levels in BaCuChF.
Comparative studies of '1212' superconductors
NASA Astrophysics Data System (ADS)
Gapud, Albert Agcaoili
Several properties of highly isomorphic species of HgBa2CaCu 2O6+delta (Hg-1212) and TlBa2CaCu2O 7-delta (Tl-1212) were compared. The samples used were high-quality, c-oriented thin films with epitaxial growth. In particular, the Hg-1212 films were made from either Tl-2212 or Tl-1212 films using a novel method in which the Tl cations were surgically replaced by Hg cations, during which the 1212 structure was retained. Properties studied were: the irreversibility line, critical current density, the magnetic phase diagram, the normal-state Hall effect, and the mixed-state Hall effect. There are several indications that the most significant difference between the 1212 species is mostly in their superconducting charge carrier density. However, the subtle differences in their electronic band structure may have also been discerned.
Effect of the Cu/Ba ratio for the YBCO deposition onto IBAD template by the MOCVD method
NASA Astrophysics Data System (ADS)
Choi, J. K.; Kim, H. J.; Jun, B. H.; Kim, C. J.
2005-10-01
YBa2Cu3O7-x (YBCO) thin films were fabricated by the metal organic chemical vapor deposition (MOCVD) using a single liquid source. The copper/barium (Cu/Ba) ratio was varied from 1.26 to 1.38 to optimize the deposition condition. The IBAD template (CeO2/YSZ/stainless steel) was used as a substrate. The growth features of the YBCO films were not significantly influenced by the Cu/Ba ratio, while the superconducting transition temperature (Tc) and critical current (Ic) depended on the Cu/Ba ratio. When Cu/Ba ratio was between 1.26 and 1.29, Tc was as low as 80 K, while as Cu/Ba ratio increased to 1.38, it increased to above 85 K. The highest Tc (89.0 K) and Ic (46.3 A/cm-width) were achieved at the Cu/Ba ratio of 1.38 (Y:Ba:Cu = 1:2.1:2.9). It indicates that the optimum Cu/Ba ratio which differs from stoichiometric balance exists for the formation of the superconducting phase with a high Tc and Ic in MOCVD method.
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD
NASA Technical Reports Server (NTRS)
Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.
NASA Technical Reports Server (NTRS)
Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.
1998-01-01
Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.
Mesure de la conductivité complexe et de la résistance de surface de films supraconducteurs YBaCuO
NASA Astrophysics Data System (ADS)
Mehri, F.; Lepercq, P.; Carru, J. C.; Playez, E.; Thivet, C.; Perrin, A.; Chambonnet, D.
1994-11-01
We describe in this paper 2 non destructive measurement methods in microwaves (18-26 GHz) well-suited to the characterization of conducting and superconducting thin films. From the experimental values we show that it is possible to infer, without any hypothesis, the following parameters : σ^*, R_s, X_s and λ between 20 K and 300 K. Some examples are given with metallic and superconducting samples from various origins. At 22 GHz and below 75 K, YBaCuO films deposited on MgO have a surface resistance inferior to bulk copper one. Dans cet article nous décrivons 2 méthodes de mesure non destructives adaptées à la caractérisation en microondes (18-26 GHz) de films minces conducteurs et supraconducteurs. A partir des valeurs expérimentales nous montrons qu'il est possible d'en déduire les grandeurs caractéristiques à savoir σ^*, R_s, X_s et λ entre 20 K et 300 K. Nous donnons des exemples de caractérisation de films métalliques et supraconducteurs provenant de différentes origines. A 22 GHz, en dessous de 75 K, les films YBaCuO déposés sur MgO ont une résistance de surface inférieure à celle du cuivre massif.
NASA Astrophysics Data System (ADS)
Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad
2014-08-01
We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.
Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.
Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun
2014-03-28
In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.
NASA Astrophysics Data System (ADS)
Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.
2007-02-01
A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.
Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O
NASA Astrophysics Data System (ADS)
Brandt, Iuri S.; Tumelero, Milton A.; Martins, Cesar A.; Plá Cid, Cristiani C.; Faccio, Ricardo; Pasa, André A.
2018-04-01
Doping leading to low electrical resistivity in electrodeposited thin films of Cu2O is a straightforward requirement for the construction of efficient electronic and energy devices. Here, Bi (7 at. %) doped Cu2O layers were deposited electrochemically onto Si(100) single-crystal substrates from aqueous solutions containing bismuth nitrate and cupric sulfate. X-ray photoelectron spectroscopy shows that Bi ions in a Cu2O lattice have an oxidation valence of 3+ and glancing angle X-ray diffraction measurements indicated no presence of secondary phases. The reduction in the electrical resistivity from undoped to Bi-doped Cu2O is of 4 and 2 orders of magnitude for electrical measurements at 230 and 300 K, respectively. From variations in the lattice parameter and the refractive index, the electrical resistivity decrease is addressed to an increase in the density of Cu vacancies. Density functional theory (DFT) calculations supported the experimental findings. The DFT results showed that in a 6% Bi doped Cu2O cell, the formation of Cu vacancies is more favorable than in an undoped Cu2O one. Moreover, from DFT data was observed that there is an increase (decrease) of the Cu2O band gap (activation energy) for 6% Bi doping, which is consistent with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarantini, C.; Jaroszynski, J.; Kametani, F.
2011-01-01
The anisotropic irreversibility fieldBIrr of twoYBa2Cu3O7 x thin films dopedwith additional rare earth (RE)= (Gd, Y) and Zr and containing strong correlated pins (splayed BaZrO3 nanorods and RE2O3 anoprecipitates) has been measured over a very broad range up to 45 T at temperatures 56 K < T < Tc. We found that the experimental angular dependence of BIrr ( ) does not follow the mass anisotropy scaling BIrr ( ) = BIrr (0)(cos2 + 2 sin2 ) 1/2, where = (mc/mab)1/2 = 5 6 for the RE-doped Ba2Cu3O7 x (REBCO) crystals, mab and mc are the effective masses along themore » ab plane and the c-axis, respectively, and is the angle between B and the c-axis. For B parallel to the ab planes and to the c-axis correlated pinning strongly enhances BIrr , while at intermediate angles, BIrr ( ) follows the scaling behavior BIrr ( ) (cos2 + 2 RP sin2 ) 1/2 with the effective anisotropy factor RP 3 significantly smaller than the ass anisotropy would suggest. In spite of the strong effects of c-axis BaZrO3 nanorods, we found even greater enhancements of BIrr for fields along the ab planes than for fields parallel to the c-axis, as well as different temperature dependences of the correlated pinning contributions to BIrr for B//ab and B//c. Our results show that the dense and strong pins, which can now be incorporated into REBCO thin films in a controlled way, exert major and diverse effects on the measured vortex pinning anisotropy and the irreversibility field over wide ranges of B and T . In particular, we show that the relative contribution of correlated pinning to BIrr for B//c increases as the temperature increases due to the suppression of thermal fluctuations of vortices by splayed distribution of BaZrO3 nanorods.« less
Long-laser-pulse method of producing thin films
Balooch, Mehdi; Olander, Donald K.; Russo, Richard E.
1991-01-01
A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.
NASA Astrophysics Data System (ADS)
Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.
2018-03-01
Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
NASA Astrophysics Data System (ADS)
Pedarnig, Johannes D.
2010-10-01
New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.
Construction and performance of a high-temperature-superconductor composite bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J. C.; Moseley, S. H.; Lakew, B.; Ono, R. H.; Mcdonald, D. G.
1989-01-01
A high-Tc superconducting bolometer has been constructed using a YBa2Cu3O(x) thin-film meander line 20 microns wide and 76,000 microns long, deposited on a SrTiO3 substrate. Radiation is absorbed by a thin film of Bi with well-characterized absorption properties deposited on a Si substrate in contact with the SrTiO3. At 1.8 Hz the measured bolometer response to a 500-K blackbody is 5.2 V/W (820 V/W extrapolated to dc). The impact of apparent nonohmic behavior at the transition is discussed, as are ways of reducing the observed 1/f noise. The response time is 32 s and is dominated by the heat capacity of the SrTiO3 substrate.
Hu, Zhe; Wang, Xi; Dong, Haitai; Li, Shangyi; Li, Xukai; Li, Laisheng
2017-10-15
TiO 2 -Cu 2 O photocatalyst composite film with a heterostructure was synthesized on a copper substrate for 2,2',4,4'-tetrabromodiphenyl ether (BDE47) reduction. First, Cu 2 O film was synthesized by the electrochemical deposition method, and then TiO 2 was coated on the surface of the Cu 2 O film. The morphology, surface chemical composition and optical characteristics of TiO 2 -Cu 2 O film were characterized. The degradation efficiency of BDE47 and hydrogen production by TiO 2 -Cu 2 O films was higher than those by pure TiO 2 or Cu 2 O films. The highest BDE47 degradation efficiency of 90% and hydrogen production of 12.7mmolL liq -1 after 150min were achieved by 67%TiO 2 -Cu 2 O films. The influencing factors were investigated in terms of film component, solvent condition, and initial pH. A kinetics study demonstrated that BDE47 degradation followed a pseudo-first-order model. Photocatalytic apparent reaction rate constant of BDE47 by TiO 2 -Cu 2 O films was 0.0070min -1 , which was 3.3 times of that by directly photolysis process. During photocatalytic debrmination process, the photogenerated holes were reserved in the valance band of Cu 2 O to oxidize methanol. Meanwhile, the partial photogenerated electrons transferred to the conduction band of TiO 2 and directly eliminated the ortho-Br of BDE47 and yielded BDE28 and BDE15. The other partial photogenerated electrons reduced protons (H + ) to form atomic hydrogen (H°), which could substitute the para-Br of BDE47 and generated BDE17 and produce hydrogen. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid-solution Zn(O,S) thin films: Potential alternative buffer layer for Cu2ZnSnS4 solar cells
NASA Astrophysics Data System (ADS)
Jani, Margi; Raval, Dhyey; Chavda, Arvind; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
This report investigates the alternative buffer material as Zn(O,S) for chalcogenide Cu2ZnSnS4 (CZTS) solar cell application. Using the band gap tailoring (band bowing) properties of Zn(O,S) system, performance of CZTS solar cell is explore in the present study. Reducing the band offsets with the hetero-junction partners plays a deterministic role in the performance of the device using Zn(O,S) as buffer layer. The experimental performance of the device with the CZTS/Zn(O,S) film developed by Spray pyrolysis method and analyze using J-V characterization in dark and illuminated configuration. Device with the best achievable performance shows Voc of 150 mV and Jsc of 0.47 mA/cm2 has been presented with the possibility of application in the energy harvesting.
Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong
2014-01-01
We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104
Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices
NASA Astrophysics Data System (ADS)
Hung, Chen-Jen
This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.
Park, Gi Soon; Chu, Van Ben; Kim, Byoung Woo; Kim, Dong-Wook; Oh, Hyung-Suk; Hwang, Yun Jeong; Min, Byoung Koun
2018-03-28
An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se) 2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a CIGS thin film suitable for interface engineering, we designed a novel "3-step chalcogenization process" for Cu 2- x Se-derived grain growth and a double band gap grading structure. Considering S-rich surface of the CIGS thin film, an alternative ternary (Cd,Zn)S buffer layer is adopted to build favorable "spike" type conduction band alignment instead of "cliff" type. Suppression of interface recombination is elucidated by comparing recombination activation energies using a dark J- V- T analysis.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
CIGS thin film solar cell prepared by reactive co-sputtering
NASA Astrophysics Data System (ADS)
Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man
2013-09-01
The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.
Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.
1995-07-25
A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang
2015-03-23
The interface electronic structures of copper phthalocyanine (CuPc) have been studied using ultraviolet photoemission spectroscopy as different monolayers of C{sub 60} were inserted between CuPc and a SiO{sub 2} or highly ordered pyrolytic graphite (HOPG) substrate. The results show that CuPc has standing up configuration with one monolayer of C{sub 60} insertion on SiO{sub 2} while lying down on HOPG, indicating that the insertion layer propagates the CuPc-substrate interaction. Meanwhile, CuPc on more than one monolayers of C{sub 60} on different substrates show that the substrate orientation effect quickly vanished. Our study elucidates intriguing molecular interactions that manipulate molecular orientationmore » and donor-acceptor energy level alignment.« less
The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.
2003-01-01
Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.
Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Lee, J.; Safari, A.; Pfeffer, R. L.
1992-10-01
Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Tonooka, Kazuhiko; Yoshida, Yoshiyuki; Furuse, Mitsuho; Takashima, Hiroshi
2018-06-01
With the eventual aim of forming joints between superconducting wires of YBa2Cu3O7-δ (YBCO), thin films of Nb were grown at room-temperature on SrTiO3 (STO) (0 0 1), a single-crystal substrate that shows good lattice matching with YBCO. The crystallinity, surface morphology, and superconducting properties of the Nb thin films were investigated and compared with those of similar films grown on a silica glass substrate. The Nb thin films grew with an (hh0) orientation on both substrates. The crystallinity of the Nb thin films on the STO substrate was higher than that on the silica glass substrate. X-ray diffraction measurements and observation of the surface morphology by atomic-force microscopy indicated that Nb grew in the plane along the [1 0 0] and [0 1 0] directions of the STO substrate. This growth mode relaxes strain between Nb and STO, and is believed to lead to the high crystallinity observed. As a result, the Nb thin films on the STO substrates showed lower electric resistivity and a higher superconducting transition temperature than did those on the silica glass substrates. The results of this study should be useful in relation to the production of superconducting joints.
NASA Astrophysics Data System (ADS)
Xu, Jing; Liu, Xueqiang; Wang, Hailong; Hou, Wenlong; Zhao, Lele; Zhang, Haiquan
2017-01-01
Organic thin-film transistors (OTFTs) with high crystallization copper phthalocyanine (CuPc) active layers were fabricated. The performance of CuPc OTFTs was studied without and with treatment by Solvent Vapor Annealing on CuPc film. The values of the threshold voltage without and with solvent-vapor annealing are -17 V and -10.5 V respectively. The field-effect mobility values in saturation region of CuPc thin-film transistors without and with Solvent Vapor Annealing are 0.00027 cm2/V s and 0.0025 cm2/V s respectively. Meanwhile, the high crystallization of the CuPc film with a larger grain size and less grain boundaries can be observed by investigating the morphology of the CuPc active layer through scanning electron microscopy and X-ray diffraction. The experimental results showed the decreased of the resistance of the conducting channel, that led to a performance improvement of the OTFTs.
Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films
NASA Astrophysics Data System (ADS)
Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang
2017-12-01
Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.
NASA Astrophysics Data System (ADS)
Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi
2017-09-01
The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal
2011-01-15
We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less
Ge, Jie; Roland, Paul J.; Koirala, Prakash; ...
2017-01-19
Earth-abundant copper-barium-thiostannate Cu 2BaSnS 4 (CBTS)-based thin films have recently been reported to exhibit the optoelectronic and defect properties suitable as absorbers for photoelectrochemical (PEC) water splitting and the top cell of tandem photovoltaic solar cells. However, the photocurrents of CBTS-based PEC devices are still much lower than the theoretical value, partially due to ineffective charge collection at CBTS/water interface and instability of CBTS in electrolytes. Here, we report on overcoming these issues by employing overlayer engineering. We find that CdS/ZnO/TiO 2 overlayers can significant-ly improve the PEC performance, achieving saturated cathodic photocurrents up to 7.8 mA cm -2 atmore » the potential of -0.10 V versus reversible hydrogen electrode (RHE) in a neutral electrolyte solution, which is much higher than the best bare CBTS film attaining a photocurrent of 4.8 mA cm -2 at the potential of -0.2 V versus RHE. Finally, our results suggest a viable approach for improving the performance of CBTS-based PEC cells.« less
Basic Operating Mode | Materials Science | NREL
indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron
Nonthermal response of YBa2Cu3O7-δ thin films to picosecond THz pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Semenov, A.; Ries, M.; Hoehl, A.; Rieger, P.; Scheuring, A.; Judin, V.; Wünsch, S.; Il'in, K.; Smale, N.; Mathis, Y.-L.; Müller, R.; Ulm, G.; Wüstefeld, G.; Hübers, H.-W.; Hänisch, J.; Holzapfel, B.; Siegel, M.; Müller, A.-S.
2012-05-01
The photoresponse of YBa2Cu3O7-δ thin film microbridges with thicknesses between 15 and 50 nm was studied in the optical and terahertz frequency range. The voltage transients in response to short radiation pulses were recorded in real time with a resolution of a few tens of picoseconds. The bridges were excited by either femtosecond pulses at a wavelength of 0.8 μm or broadband (0.1-1.5 THz) picosecond pulses of coherent synchrotron radiation. The transients in response to optical radiation are qualitatively well explained in the framework of the two-temperature model with a fast component in the picosecond range and a bolometric nanosecond component whose decay time depends on the film thickness. The transients in the THz regime showed no bolometric component and had amplitudes up to three orders of magnitude larger than the two-temperature model predicts. Additionally THz field-dependent transients in the absence of DC bias were observed. We attribute the response in the THz regime to a rearrangement of vortices caused by high-frequency currents.
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-04-22
Carbon quantum dots (C QDs)/p-type CuAlO2/n-type ZnO photoelectric bilayer film composites were prepared by a simple route, through which ZnO films were sputtered on crystal quartz substrates and CuAlO2 films were prepared by sol-gel on ZnO films and then these bilayer films were composited with C QDs on their surface. The characterization results indicated that C QDs were well combined with the surface of the CuAlO2 films. The photovoltage and photocurrent of these bilayer film composites were investigated under illumination and darkness switching, which demonstrated to be significantly enhanced compared with those of the CuAlO2/ZnO bilayer films. Through analysis, this enhancement of the photoconductivity was mainly attributed to C QDs with unique up-converted photoluminescence behavior.
Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free
NASA Astrophysics Data System (ADS)
Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian
2016-05-01
Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
In-situ diagnostics for metalorganic chemical vapor deposition of yttrium barium copper oxide
NASA Astrophysics Data System (ADS)
Tripathi, Ashok Burton
A new stagnation flow MOCVD research reactor is described that is designed to serve as a testbed to develop tools for "intelligent" thin film deposition, such as in-situ sensors and diagnostics, control algorithms, and thin film growth models. The reactor is designed in particular for the deposition of epitaxial YBa2Cu3O 7-delta on MgO, although with minor modifications it would be suitable for deposition of any metal-oxide thin films. The reactor is specifically designed to permit closed-loop thermal and stoichiometric control of the film growth process. Closed-loop control of precursor flow rates is accomplished by using ultraviolet absorption spectroscopy on each precursor line. Also integrated into the design is a Fourier Transform Infrared (FTIR) spectroscopy system which collects real-time, in-situ infrared polarized reflectance spectra of the film as it grows. Numerical simulation was used extensively to optimize the fluid dynamics and heat transfer to provide uniform fluxes to the substrate. As a result, thickness uniformity across the substrate is typically within 3% from the center to the edge of the substrate. Experimental studies of thin films grown in the Y/Ba/Cu/O system have been carried out. The films have been characterized by Rutherford Backscattering Spectrometry and X-ray Diffraction. Results indicate c-axis oriented grains with pure 1:2:3 phase YBCO, good spatial uniformity, and a low degree of c-axis wobble. Experimental growth data is used in a gas phase and surface chemistry model to calculate sticking coefficients for yttrium oxide, barium oxide, and copper oxide on YBCO. In-situ FTIR and Coherent Gradient Sensing (CGS) analysis of growing films has been performed, yielding accurate substrate temperature, film thickness monitoring, and full-field, real-time curvature maps of the films. In addition, we have implemented CGS to obtain full-field in-situ images of local curvature during oxygenation and deoxygenation of YBCO films. An analysis of the oxygen diffusion is performed, and diffusivity constants are presented for a variety of temperature and film conditions.
Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2018-04-01
In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.
Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN
NASA Astrophysics Data System (ADS)
Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.
2017-09-01
The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.
NASA Astrophysics Data System (ADS)
Svitsiankou, I. E.; Pavlovskii, V. N.; Lutsenko, E. V.; Yablonskii, G. P.; Mudryi, A. V.; Borodavchenko, O. M.; Zhivulko, V. D.; Yakushev, M. V.; Martin, R.
2018-05-01
Stimulated emission, optical properties, and structural characteristics of non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films deposited on soda lime glass substrates using co-evaporation of elements in a multistage process were investigated. X-ray diffraction analysis, scanning electron microscopy, X-ray spectral analysis with energy dispersion, low-temperature photoluminescence, optical transmittance and reflectance were used to study the films. Stimulated emission at low temperatures of 20 K was found in non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films upon excitation by laser pulses of nanosecond duration with a threshold power density of 20 kW/cm2. It was shown that the appearance and parameters of the stimulated emission depend strongly on the concentration of ion-induced defects in Cu(In,Ga)Se2 thin films.
Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying
2007-09-01
TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to supply H202. It is expected to be easily recycled, which may reduce second pollution and the cost of wastewater treatment. Moreover, this TiO/Cu2O composite film with FeSO4 and EDTA provides a new way to take advantage of TiO2 under visible light.
NASA Astrophysics Data System (ADS)
Keller, D.; Gervais, A.; Chambonnet, D.; Belouet, C.; Audry, C.
1995-02-01
In the field of superconducting devices devoted to microwave applications, the crystalline texture of high quality thin films based on YBa{2}Cu{3}O{7 - δ} is of primary importance. This study presents the formation of this texture on MgO substrates with the nucleation and growth steps up to a film thickness of 300 nm as observed by means of AFM, HRTEM and XRD. The influence of deposition temperature on the growth mode is shown and a nucleation/growth model is discussed. The minimum roughness of c_{bot 0}{(^1)} textured films, 300 nm thick and 20 × 20 mm2 in size is as slow as 2 nm. Dans le cadre de la réalisation de composants supraconducteurs de haute qualité à base du composé YBa{2}Cu{3}O{7 - δ} destinés aux applications en hyperfréquences, le contrôle de la texture cristalline des films est de première importance. La formation de celle-ci sur substrat MgO est étudiée depuis la nucléation jusqu'à une épaisseur de 300 nm au moyen de la microscopie à force atomique, de la microscopie électronique en transmission à haute résolution et de la diffraction des rayons X. L'influence de la température de dépôt sur le mode de croissance est abordée et un modèle de nucléation/croissance est discuté. La rugosité minimale des films d'épaisseur 300 nm et de dimensions 20 × 20 mm2 de texture c_{bot 0}{(^1)} est voisine de 2 nm.
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.
1998-01-01
We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
NASA Astrophysics Data System (ADS)
Koren, Gad
2018-07-01
We report properties of a topological insulator–ferromagnet–superconductor trilayers comprised of thin films of 20 nm thick {Bi}}2{Se}}3 on 10 nm SrRuO3 on 30 nm {YBa}}2{Cu}}3{{{O}}}x. As deposited trilayers are underdoped and have a superconductive transition with {{T}}{{c}} onset at 75 K, zero resistance at 65 K, {{T}}Cueri} at 150 K and {{T}}* of about 200 K. Further reannealing under vacuum yields the 60 K phase of {YBa}}2{Cu}}3{{{O}}}x which still has zero resistance below about 40 K. Only when 10 × 100 microbridges were patterned in the trilayer, some of the bridges showed resistive behavior all the way down to low temperatures. Magnetoresistance versus temperature of the superconductive ones showed the typical peak due to flux flow against pinning below {{T}}{{c}}, while the resistive ones showed only the broad leading edge of such a peak. All this indicates clearly weak-link superconductivity in the resistive bridges between superconductive {YBa}}2{Cu}}3{{{O}}}x grains via the topological and ferromagnetic cap layers. Comparing our results to those of a reference trilayer (RTL) with the topological {Bi}}2{Se}}3 layer substituted by a non-superconducting highly overdoped {La}}1.65{Sr}}0.35{CuO}}4, indicates that the superconductive proximity effect as well as ferromagnetism in the topological trilayer are actually strongly suppressed compared to the non-topological RTL. This strong suppression could originate in lattice and Fermi levels mismatch as well as in short coherence length and unfavorable effects of strong spin–orbit coupling in {Bi}}2{Se}}3 on the d-wave pairing of {YBa}}2{Cu}}3{{{O}}}x. Proximity induced edge currents in the SRO/YBCO layer could lead to Majorana bound states, a possible signature of which is observed in the present study as zero bias conductance peaks.
Investigation the electroplating behavior of self formed CuMn barrier.
Wu, Chia-Yang; Lee, Wen-Hsi; Chang, Shih-Chieh; Wang, Ying-Lang
2013-08-01
The electrical and material properties of Copper (Cu) mixed with [0-10 atomic% manganese (Mn)] and pure Cu films deposited on silicon oxide (SiO2)/silicon (Si) are explored. Cu electroplating on self formed CuMn barrier was investigated with different Mn content. The electrochemical deposition of the Cu thin film onto the electrode using CuMn barrier was investigated. Scanning electron microscopic (SEM) micrographs of copper electroplating on CuMn films were examined, and the copper nucleation behaviors changed with the Mn content. Since the electrochemical impedance spectroscopy (EIS) is widely recognized as a powerful tool for the investigation of electrochemical behaviors, the tool was also used to verify the phenomena during plating. It was found that the charge-trasfer impedance decrease with the rise in the Mn content below 5%, but increase with the rise in the Mn content higher than 5%. The result was corresponded to the surface energy, the surface morphology, the corrosion and the oxidation of the substrate.
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
Microstructure control of Al-Cu films for improved electromigration resistance
Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.
1994-04-05
A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.
NASA Astrophysics Data System (ADS)
Lee, Homin; Kwak, Byeong Sub; Park, No-Kuk; Baek, Jeom-In; Ryu, Ho-Jung; Kang, Misook
2017-01-01
A new check-patterned CuSx-TiO2 film was designed to improve the photoreduction of CO2 to CH4. The check-patterned CuSx-TiO2 film with a 3D-network microstructure was fabricated by a facile squeeze method. The as-synthesized TiO2 and CuSx powders, as well as the patterned film, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, cyclic voltammetry (CV), and photoluminescence (PL) spectroscopy, as well as photocurrent density and CO2 temperature-programmed desorption (TPD) measurements. Compared to pure CuSx and TiO2, the check-patterned CuSx-TiO2 film exhibited significantly increased adsorption of CO2 on its networked microstructure, attributed to the enlarged interfaces between the microparticles. The check-patterned CuSx-TiO2 film exhibited superior photocatalytic behavior, with 53.2 μmolgcat-1 L-1 of CH4 produced after 8 h of reaction, whereas 18.1 and 7.3 μmolgcat-1 L-1 of CH4 were produced from pure TiO2 and CuSx films under the same reaction conditions, respectively. A model for enhanced photoactivity over the check-patterned CuSx - TiO2 film was proposed. Results indicated that the check-patterned CuS-TiO2 material is quite promising as a photocatalyst for the reduction of CO2 to CH4.
Properties of large area ErBa2Cu3O(7-x) thin films deposited by ionized cluster beams
NASA Technical Reports Server (NTRS)
Levenson, L. L.; Stan, Mark A.; Bhasin, Kul B.
1991-01-01
ErBa2Cu3O(7-x) films have been produced by simultaneous deposition of Er, Ba, and Cu from three ionized cluster beam (ICB) sources at acceleration voltages of 0.3 to 0.5 kV. Combining ozone oxidation with ICB deposition at 650 C eliminated any need of post annealing processing. The substrates were rotated at 10 rotations per minute during the deposition which took place at a rate of about 3 to 4 nm. Films with areas up to 70 mm in diameter have been made by ICB deposition. These films, 100 nm thick, were deposited on SrTiO3 (100) substrates at 650 C in a mixture of six percent O3 in O2 at a total pressure of 4 x 10(exp -4) Torr. They had T(sub c) ranging from 84.3 K to 86.8 K over a 70 mm diameter and J(sub c) above 10(exp 6) A/sq cm at 77 K. X ray diffraction measurements of the three samples showed preferential c-axis orientation normal to the substrate surface. Scanning electron micrographs (SEM) of the three samples also show some texture dependence on sample position. For the three samples, there is a correlation between SEM texture, full width at half-maximum of rocking curves and J(sub c) versus temperature curves.
NASA Astrophysics Data System (ADS)
Oueslati, H.; Rabeh, M. Ben; Kanzari, M.
2018-02-01
In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.
NASA Astrophysics Data System (ADS)
Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Wu, Judy Z.
2018-07-01
A study of 3 vol% Y2O3 + 2-6 vol% BaHfO3 double-doped YBa2Cu3O7-x (BHO DD) epitaxial thin films was carried out to explore the morphology adaption of c-axis aligned one-dimensional BHO artificial pinning centers (1D APCs) to secondary Y2O3 nanoparticles (3D APCs). BHO 1D APCs have been predicted to have the least rigidity in an elastic strain energy model in APC/YBa2Cu3O7-x nanocomposite films. Consequently, they could be best ‘tuned’ away from the c-axis alignment by local strains generated by the Y2O3 3D APCs. This provides an opportunity to generate mixed-morphology APCs, especially at high BHO concentrations. Motivated by this, we have carried out a systematic study of the transport critical current density J c(H, T, θ) on the BHO DD samples in magnetic fields (H) up to 90 kOe at different H orientations from H//c-axis (θ = 0), to θ = 45°, and to H//ab-plane (θ = 90°). Enhanced pinning at all three orientations was observed as illustrated in the comparable low alpha (α) values in the range of 0.13-0.25 at 65 K, which is consistent with the mixed 1D (in c-axis) + 2D (in ab-plane) + 3D APCs observed in transmission electron microscopy (TEM). Upon increasing BHO concentration from 2 to 4 vol%, a monotonic increase of the accommodation field H* at θ = 0°, 45° and 90° was observed, indicative of the APC concentration increase of the mixed morphologies. At 6 vol% BHO, the H* continues the increase to 85 kOe at H//c-axis (θ = 0), and >90 kOe H//ab-plane (θ = 90°), while it decreases from 80 to 85 kOe at 2-4 vol% to 60 kOe at 6 vol% at θ = 45°, which is consistent with the TEM observation of the connection of 3D APCs, appeared at lower BHO concentration into 2D ones in ab-plane at the higher BHO concentrations. These results shed light on the quantitative adaptation of APCs of mixed morphologies with increasing BHO doping in the BHO DD thin films and are important for controlling the APC pinning landscape towards minimal angular dependence.
Structure and photoelectrochemistry of silver-copper-indium-diselenide ((AgCu)InSe2) thin film
NASA Astrophysics Data System (ADS)
Zhang, Lin Rui; Li, Tong; Wang, Hao; Pang, Wei; Chen, Yi Chuan; Song, Xue Mei; Zhang, Yong Zhe; Yan, Hui
2018-02-01
In this work, silver (Ag) precursors with different thicknesses were sputtered on the surfaces of CuIn alloys, and (AgCu)InSe2 (ACIS) films were formed after selenization at 550 °C under nitrogen condition using a rapid thermal process furnace. The structure and electrical properties of the ACIS films were investigated. The result showed that the distribution of Ag+ ion was more uniform with increasing the thickness of Ag precursor, and the surface of the thin-film became more homogeneous and denser. When Ag/Cu ratio ≥0.249, the small grain particles disappeared. The band gap can be rationally controlled by adjusting Ag content. When (Ag + Cu)/In ratio ≥ 1.15, the surface of the ACIS thin-film mainly exhibited n-type semiconductor. Through the photoelectrochemistry measurement, it was observed that the incorporation of Ag+ ions could improve photocurrent by adjusting the band gap. With the Ag precursor thickness increased, the dark current decreased at the more negative potential.
Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability
NASA Astrophysics Data System (ADS)
Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa
Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.
NASA Astrophysics Data System (ADS)
Khoo, Pei Loon; Kikkawa, Yuuki; Shinagawa, Tsutomu; Izaki, Masanobu
2017-07-01
Cuprous oxide (Cu2O), a terrestrial abundant, low cost, nontoxic, intrinsically p-type oxide semiconductor with bandgap energy of about 2eV, has recently received increasing attention as a light absorbing layer in solar cells. However, the performances of electrochemically constructed Cu2O solar devices are poor compared to the theoretical power conversion efficiency. This research was conducted focusing on the EQE performance, which is closely related to the short circuit current of a solar device. ZnO/Cu2O-PV-devices were constructed electrochemically with 3-electrode cell on Ga:ZnO/SLG substrates; ZnO layers were deposited from an aqueous solution of 8 mmolL-1 zinc nitrate hexahydrate at 63°C, 0.01 Coulomb cm-2, and -0.8V, while Cu2O layers were deposited from aqueous solution containing 0.4 molL-1 copper (II) acetate monohydrate (pH12.5), at 40°C, 1.5 Coulomb cm-2, and -0.4V. Devices were then annealed under different temperatures of 150°C, 200°C, 250°C, and 300°C for 60 minutes with a Rapid Thermal Anneal furnace (RTA). The EQE of the devices were measured with a spectral sensitivity device and compared to the non-annealed device. Further studies were made such as morphology observation of the films by FE-SEM and measurements of X-ray diffraction patterns. Annealed samples showed improved maximum EQE at 150-200°C of annealing, indicating that EQE above 90% can be achieved, proving the validity of EQE improvement via low temperature annealing method for thin film Cu2O photovoltaic devices.
Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors
NASA Astrophysics Data System (ADS)
Hollingsworth, Jennifer Ann
1999-11-01
The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.
Effect of annealing temperature on the PEC performance of electrodeposited copper oxides
NASA Astrophysics Data System (ADS)
Marathey, Priyanka; Pati, Ranjan; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
In this work, we have deposited Cu2O film on fluorine doped tin oxide (FTO) substrate by electrodeposition. Pure CuO phase has been obtained by annealing the electrodeposited Cu2O film at optimized temperature (500°C) for two hours in air. Copper(I) oxide films showed good photo response with a current density of 0.54mA/cm2 at 0 V vs RHE. It is evident from UV-Visible spectroscopic analysis that the bandgap of Cu(I) and Cu(II) oxides differs from each other resulting in significant change in photo current for these two phases, observed in the PEC study. However CuO film showed better stability as compared to Cu2O film.
NASA Astrophysics Data System (ADS)
Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal
2018-05-01
The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, R., E-mail: rparra@fi.mdp.edu.a; Savu, R.; Ramajo, L.A.
2010-06-15
A new sol-gel synthesis procedure of stable calcium copper titanate (CaCu{sub 3}Ti{sub 4}O{sub 12}-CCTO) precursor sols for the fabrication of porous films was developed. The composition of the sol was selected in order to avoid the precipitation of undesired phases; ethanol was used as solvent, acetic acid as modifier and poly(ethyleneglycol) as a linker agent. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The main phase present in the samples, as detected by X-ray diffraction and Raman spectroscopy, was CaCu{sub 3}Ti{sub 4}O{sub 12}. Scanning electron microscopy analysis showed that mesoporous structures, with thicknesses betweenmore » 200 and 400 nm, were developed as a result of the processing conditions. The films were tested regarding their sensibility towards oxygen and nitrogen at atmospheric pressure using working temperatures from 200 to 290 {sup o}C. The samples exhibited n-type conductivity, high sensitivity and short response times. These characteristics indicate that CCTO mesoporous structures obtained by sol-gel are suitable for application in gas sensing. - Graphical abstract: A sol-gel synthesis procedure toward stable CaCu{sub 3}Ti{sub 4}O{sub 12}-precursor sols avoiding the precipitation of undesired compounds is proposed. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The thickness varied between 200 and 400 nm depending on sol composition. The films, tested as gas sensors for O{sub 2}, showed n-type conductivity, good sensitivity and short response times.« less
Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Erbe, Manuela; Martinez, Gerardo T.; Van Aert, Sandra; Holzapfel, Bernhard; Van Tendeloo, Gustaaf
2015-11-01
Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7-δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm-2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (˜1.5 nm) and the determination of 0.25 nm dislocation cores.