Sample records for cubic fcc structures

  1. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  3. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  4. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qian; Kacher, Josh; Gammer, Christoph

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  5. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    ERIC Educational Resources Information Center

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  6. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  7. The fcc - bcc structural transition: I. A band theoretical study for Li, K, Rb, Ca, Sr, and the transition metals Ti and V

    NASA Astrophysics Data System (ADS)

    Sliwko, V. L.; Mohn, P.; Schwarz, K.; Blaha, P.

    1996-02-01

    Employing a high-precision band structure method (FP LAPW - full potential linearized augmented plane wave) we calculate the total energy variation along the tetragonal distortion path connecting the body centred cubic (bcc) and the face centred cubic (fcc) structures. The total energy along this Bain transformation is calculated, varying c/a and volume, providing a first-principles energy surface which has two minima as a function of c/a. These are shallow and occur for the sp metals at the two cubic structures, while Ti (V) has a minimum at fcc (bcc) but a saddle point (i.e. a minimum in volume and a maximum with respect to c/a) at the other cubic structure. These features can be analysed in terms of an interplay between the Madelung contribution and the band energies. Our total energy results allow us to calculate the elastic constants 0953-8984/8/7/006/img1 and 0953-8984/8/7/006/img2 and to study the influence of pressure on the phase stability. These energy surfaces will be used in part II of this paper to investigate finite-temperature effects by mapping them to a Landau - Ginzburg expansion.

  8. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  9. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  10. Three-dimensional periodic dielectric structures having photonic Dirac points

    DOEpatents

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  11. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  12. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  13. Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing

    2018-06-01

    Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.

  14. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE PAGES

    Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...

    2016-04-01

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  15. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Wang, Morris; Liu, Yue

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  16. Electronic properties of carbon in the fcc phase.

    NASA Astrophysics Data System (ADS)

    Cab, Cesar; Canto, Gabriel

    2005-03-01

    The observation of a new carbon phase in nanoparticles obtained from Mexican crude oil having the face-centered-cubic structure (fcc) has been reported. However, more recently has been suggested that hydrogen is present in the samples forming CH with the zincblende structure. The structural and electronic properties of C(fcc) and CH(zincblende) are unknown. In the present work we have studied the electronic structure of C(fcc) and CH(zincblende) by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the band structure, the local density of states (LDOS), and orbital population. We find that in contrast to graphite and diamond, both fcc carbon and CH with the zincblende structure exhibit metallic behavior. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt-M'exico) under Grants No. 43830-F, No. 44831-F, and No. 43828-Y.

  17. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  18. Design of new face-centered cubic high entropy alloys by thermodynamic calculation

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jung, Seungmun; Jo, Yong Hee; Lee, Sunghak; Lee, Byeong-Joo

    2017-09-01

    A new face-centered cubic (fcc) high entropy alloy system with non-equiatomic compositions has been designed by utilizing a CALculation of PHAse Diagram (CALPHAD) - type thermodynamic calculation technique. The new alloy system is based on the representative fcc high entropy alloy, the Cantor alloy which is an equiatomic Co- Cr-Fe-Mn-Ni five-component alloy, but fully or partly replace the cobalt by vanadium and is of non-equiatomic compositions. Alloy compositions expected to have an fcc single-phase structure between 700 °C and melting temperatures are proposed. All the proposed alloys are experimentally confirmed to have the fcc single-phase during materials processes (> 800 °C), through an X-ray diffraction analysis. It is shown that there are more chances to find fcc single-phase high entropy alloys if paying attention to non-equiatomic composition regions and that the CALPHAD thermodynamic calculation can be an efficient tool for it. An alloy design technique based on thermodynamic calculation is demonstrated and the applicability and limitation of the approach as a design tool for high entropy alloys is discussed.

  19. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  20. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  1. Absence of metastable states in strained monoatomic cubic crystals.

    NASA Astrophysics Data System (ADS)

    Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo

    2005-03-01

    The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  2. Nucleation of fcc Ta when heating thin films

    DOE PAGES

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adidharma, Hertanto, E-mail: adidharm@uwyo.edu; Tan, Sugata P.

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T{sup ∗} ≤ 1.20) and high densities (0.96 ≤ ρ{sup ∗} ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe themore » properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.« less

  4. Crystal grain growth at the α -uranium phase transformation in praseodymium

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.

    2005-01-01

    Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.

  5. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    NASA Astrophysics Data System (ADS)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems. On the other hand, cI16 is a mechanically stable structure that can spontaneously emerge from a bcc starting point but it is thermodynamically metastable relative to fcc or hcp.

  6. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1985-01-01

    From intermolecular force studies, it is now known that the overall non-additive contribution to the lattice enegy is positive so that analysis based on only pairwise additivity suggests a shallower intermolecular potential than the true value. Two body contributions alone are also known to be categorically unable to even qualitatively describe some configurations of molecular clusters in the gas phase or the general relaxation and reconstruction of fcc crystal surfaces. In addition, the many-body contribution was shown to play a key role in the stability of certain crystal structures. In these recent analyses, a relatively simple potential energy function (PEF), comprising only a two-body Mie-type potential plus a three-body Axilrod-Teller-type potential, was found to be extremely effective. This same parametric PEF is applied to describe the bulk stability and surface energy for the diamond cubic structure. To test the stability condition, the FCC, BCC, diamond cubic, graphite and beta-tin structures were considered.

  7. Antiswarming: Structure and dynamics of repulsive chemically active particles

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2017-12-01

    Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a "chemical" coupling parameter Γc that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic one component plasma (OCP) system. When confined to a constant-volume domain, body-centered cubic (bcc) crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-centered cubic (fcc) crystals may also be stable. The "melting point" of the "liquid-to-crystal transition" occurs at Γc≈140 for both bcc and fcc lattices.

  8. Polytypism in the ground state structure of the Lennard-Jonesium.

    PubMed

    Pártay, Lívia B; Ortner, Christoph; Bartók, Albert P; Pickard, Chris J; Csányi, Gábor

    2017-07-26

    We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.

  9. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30

    NASA Astrophysics Data System (ADS)

    Adidharma, Hertanto; Tan, Sugata P.

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  10. Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    King, D. M.; Middleburgh, S. C.; Edwards, L.; Lumpkin, G. R.; Cortie, M.

    2015-06-01

    High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order-disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.

  11. Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagherazzi, G.; Canton, P.; Benedetti, A.

    Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}

  12. Group-III elements under high pressure.

    NASA Astrophysics Data System (ADS)

    Simak, S. I.; Haussermann, U.; Ahuja, R.; Johansson, B.

    2000-03-01

    At ambient conditions the Group-III elements Ga and In attain unusual open ground-state crystal structures. Recent experiments have discovered that Ga under high pressure transforms into the face-centered (fcc) cubic close-packed structure, while such a transition for In has so far not been observed. We offer a simple explanation for such different behavior based on results from first principles calculations. We predict a so far undiscovered transition of In to the fcc structure at extreme pressures and show that the structure determining mechanism originates from the degree of s-p mixing of the valence orbitals. A unified bonding picture for the Group-III elements is discussed.

  13. Effects of temperature on serrated flows of Al 0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES

    Chen, Shuying; Xie, Xie; Chen, Bilin; ...

    2015-08-14

    Compression behavior of the Al 0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 x 10 –5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. As a result, by comparing the stress–strain curves at different temperatures, two opposite directions ofmore » serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  14. Ion-beam-induced magnetic transformation of CO-stabilized fcc Fe films on Cu(100)

    NASA Astrophysics Data System (ADS)

    Shah Zaman, Sameena; Oßmer, Hinnerk; Jonner, Jakub; Novotný, Zbyněk; Buchsbaum, Andreas; Schmid, Michael; Varga, Peter

    2010-12-01

    We have grown 22-ML-thick Fe films on a Cu(100) single crystal. The films were stabilized in the face-centered-cubic (fcc) γ phase by adsorption of carbon monoxide during growth, preventing the transformation to the body-centered-cubic (bcc) α phase. A structural transformation of these films from fcc to bcc can be induced by Ar+ ion irradiation. Scanning-tunneling microscopy images show the nucleation of bcc crystallites, which grow with increasing Ar+ ion dose and eventually result in complete transformation of the film to bcc. Surface magneto-optic Kerr effect measurements confirm the transformation of the Fe film from paramagnetic (fcc) to ferromagnetic (bcc) with an in-plane easy axis. The transformation can also be observed by low-energy electron diffraction. We find only very few nucleation sites of the bcc phase and argue that nucleation of the bcc phase happens under special circumstances during resolidification of the molten iron in the thermal spike after ion impact. Intermixing with the Cu substrate impedes the transformation. We also demonstrate the transformation of films coated with Au to protect them from oxidation at ambient conditions.

  15. Getting off the Bain path: Are there any metastable states of cubic elements?

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Boyer, Larry L.

    2003-03-01

    Body-centered and face-centered cubic crystals can be considered as special cases of a body-centered tetragonal crystal with c/a = 1 and 2, respectively. First-principles calculations along this Bain path show that elements with an fcc (bcc) ground state are elastically unstable with respect to a tetragonal distortion in the bcc (fcc) phase. Starting with a normally fcc element and calculating E(c/a) for c/a < 1 we find a local minimum near c/a = 2/3, while for a bcc element we find a local minimum at some c/a > 2. It is tempting to conclude that these bct minima, which are required by continuity, are metastable, but calculations by several authors show that, at least for Al, Cu, and Pd, the bct structures are unstable with respect to an orthorhombic distortion. We use a simple "magic strain" construction(L. L. Boyer, Acta Cryst. A) 45, FC29 (1989).(M. J. Mehl and L. L. Boyer, Phys. Rev. B) 43, 9498 (1991). to study the stability of these bct states, and present examples which suggest that no fcc or bcc element has a metastable bct state.

  16. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    NASA Astrophysics Data System (ADS)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  17. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure.

    PubMed

    Yang, Xiao; Li, Huijian; Ahuja, Rajeev; Kang, Taewon; Luo, Wei

    2017-06-14

    We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH 2 in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H 2 . But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH 2 can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H 2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H 2 at high pressure. The electronic structural study on fcc type Pd x Rh 1-x H 2 indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.

  18. Photonic band gap templating using optical interference lithography

    NASA Astrophysics Data System (ADS)

    Chan, Timothy Y. M.; Toader, Ovidiu; John, Sajeev

    2005-04-01

    We describe the properties of three families of inversion-symmetric, large photonic band-gap (PBG) template architectures defined by iso-intensity surfaces in four beam laser interference patterns. These templates can be fabricated by optical interference (holographic) lithography in a suitable polymer photo-resist. PBG materials can be synthesized from these templates using two stages of infiltration and inversion, first with silica and second with silicon. By considering point and space group symmetries to produce laser interference patterns with the smallest possible irreducible Brillouin zones, we obtain laser beam intensities, directions, and polarizations which generate a diamond-like (fcc) crystal, a novel body-centered cubic (bcc) architecture, and a simple-cubic (sc) structure. We obtain laser beam parameters that maximize the intensity contrasts of the interference patterns. This optimizes the robustness of the holographic lithography to inhomogeneity in the polymer photo-resist. When the optimized iso-intensity surface defines a silicon to air boundary (dielectric contrast of 11.9 to 1), the fcc, bcc, and sc crystals have PBG to center frequency ratios of 25%, 21%, and 11%, respectively. A full PBG forms for the diamond-like crystal when the refractive index contrast exceeds 1.97 to 1. We illustrate a noninversion symmetric PBG architecture that interpolates between a simple fcc structure and a diamond network structure. This crystal exhibits two distinct and complete photonic band gaps. We also describe a generalized class of tetragonal photonic crystals that interpolate between and extrapolate beyond the diamond-like crystal and the optimized bcc crystal. We demonstrate the extent to which the resulting PBG materials are robust against perturbations to the laser beam amplitudes and polarizations, and template inhomogeneity. The body centered cubic structure exhibits the maximum robustness overall.

  19. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    NASA Astrophysics Data System (ADS)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  20. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  1. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space-filling tessellations, which suggests a weaker form of the recently disproved Kelvin conjecture. Moreover, whereas the size of the isoperimetric quotient fluctuations go to zero linearly with noise in the SC and BCC case, the decrease is quadratic in the FCC case. Correspondingly, anomalous scaling relations with exponents larger than 3/2 are observed between the area and the volumes of the cells for all cases considered, and, except for the FCC structure, also for infinitesimal noise. In the Poisson-Voronoi limit, the exponent is ˜1.67. The anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. The FCC structure, in spite of being topologically unstable, results to be the most stable against noise when the shape—as measured by the isoperimetric quotient—of the cells is considered. These scaling relations apply only for a finite range and should be taken as descriptive of the bulk statistical properties of the cells. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

  2. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  3. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  4. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    NASA Astrophysics Data System (ADS)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  5. The diagram of phase-field crystal structures: an influence of model parameters in a two-mode approximation

    NASA Astrophysics Data System (ADS)

    Ankudinov, V.; Galenko, P. K.

    2017-04-01

    Effect of phase-field crystal model (PFC-model) parameters on the structure diagram is analyzed. The PFC-model is taken in a two-mode approximation and the construction of structure diagram follows from the free energy minimization and Maxwell thermodynamic rule. The diagram of structure’s coexistence for three dimensional crystal structures [Body-Centered-Cubic (BCC), Face-Centered-Cubic (FCC) and homogeneous structures] are constructed. An influence of the model parameters, including the stability parameters, are discussed. A question about the structure diagram construction using the two-mode PFC-model with the application to real materials is established.

  6. The effect of relativity on stability of Copernicium phases, their electronic structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Legut, Dominik

    2018-05-01

    The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.

  7. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; Wu, Yuan; Lou, Hongbo

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  9. Polymorphism in a high-entropy alloy

    DOE PAGES

    Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...

    2017-06-01

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  10. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  11. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  12. Review of high pressure phases of calcium by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Suzuki, N.; Tsuchiya, J.; Tsuchiya, T.

    2010-03-01

    We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P43212 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm(00) [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P43212 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4/mcm(00) (134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm(00) above 495 GPa.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travesset, Alex

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists withmore » the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.« less

  14. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    NASA Astrophysics Data System (ADS)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  15. Nb-H system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Besedin, Stanislav; Irodova, Alla; Liu, Hanyu; Gao, Guoying; Eremets, Mikhail; Wang, Xin; Ma, Yanming

    2017-03-01

    We studied the Nb-H system over extended pressure and temperature ranges to establish the highest level of hydrogen abundance we could achieve from the resulting alloy. We probed the Nb-H system with laser heating and x-ray diffraction complemented by numerical density functional theory-based simulations. New quenched double hexagonal close-packed (hcp) Nb H2.5 appears under 46 GPa, and above 56 GPa cubic Nb H3 is formed as theoretically predicted. Nb atoms are arranged in close-packed lattices which are martensitically transformed in the sequence: face-centered cubic (fcc) → hcp → double hcp (dhcp) → distorted body-centered cubic (bcc) as pressure increases. The appearance of fcc Nb H2.5 -3 and dhcp Nb H2.5 cannot be understood in terms of enthalpic stability, but can be rationalized when finite temperatures are taken into account. The structural and compressional behavior of Nb Hx >2 is similar to that of NbH. Nevertheless, a direct H-H interaction emerges with hydrogen concentration increases, which manifests itself via a reduction in the lattice expansion induced by hydrogen dissolution.

  16. Nucleation of the diamond phase in aluminium-solid solutions

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.

    1993-01-01

    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  17. FCC-HCP coexistence in dense thermo-responsive microgel crystals

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.

    2017-06-01

    Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ < 0.74 and sub-diffusive at short times in PNIPAM crystals with ϕ > 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.

  18. Polymorphism control of superconductivity and magnetism in Cs(3)C(60) close to the Mott transition.

    PubMed

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Jeglic, Peter; Arcon, Denis; Potocnik, Anton; Baker, Peter J; Ohishi, Yasuo; McDonald, Martin T; Tzirakis, Manolis D; McLennan, Alec; Darling, George R; Takata, Masaki; Rosseinsky, Matthew J; Prassides, Kosmas

    2010-07-08

    The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition, which is governed by the role of electron correlations characteristic of high-temperature superconducting materials other than fullerides.

  19. Exotic behavior and crystal structures of calcium under pressure

    PubMed Central

    Oganov, Artem R.; Ma, Yanming; Xu, Ying; Errea, Ion; Bergara, Aitor; Lyakhov, Andriy O.

    2010-01-01

    Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc → bcc → simple cubic → Ca-IV → Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The β-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33–71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching approximately 20 K at 120 GPa, in good agreement with experiment. PMID:20382865

  20. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Rechnitzer, A.

    2011-04-01

    In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

  1. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    PubMed

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring overmore » a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.« less

  3. The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions

    NASA Astrophysics Data System (ADS)

    Martorell, Benjamí; Brodholt, John; Wood, Ian G.; Vočadlo, Lidunka

    2015-07-01

    The agreement between shear wave velocities for the Earth's inner core observed from seismology with those derived from mineral physics is considerably worse than for any other region of the Earth. Furthermore, there is still debate as to the phase of iron present in the inner core, particularly when alloying with nickel and light elements is taken into account. To investigate the extent to which the mismatch between seismology and mineral physics is a function of either crystal structure and/or the amount of nickel present, we have used ab initio molecular dynamics simulations to calculate the elastic constants and seismic velocities (Vp and Vs) of face centred cubic (fcc) iron at Earth's inner core pressures (360 GPa) and at temperatures up to ˜7000 K. We find that Vp for fcc iron (fcc-Fe) is very similar to that for hexagonal close packed (hcp) iron at all temperatures. In contrast, Vs for fcc-Fe is significantly higher than in hcp-Fe, with the difference increasing with increasing temperature; the difference between Vs for the core (from seismology) and Vs for fcc-Fe exceeds 40 per cent. These results are consistent with previous work at lower temperatures. We have also investigated the effect of 6.5 and 13 atm% Ni in fcc-Fe. We find that Ni only slightly reduces Vp and Vs (e.g. by 2 per cent in Vs for 13 atm% Ni at 5500 K), and cannot account for the difference between the velocities observed in the core and those of pure fcc-Fe. We also tried to examine pre-melting behaviour in fcc-Fe, as reported in hcp-Fe by extending the study to very high temperatures (at which superheating may occur). However, we find that fcc-Fe spontaneously transforms to other hcp-like structures before melting; two hcp-like structures were found, both of hexagonal symmetry, which may most easily be regarded as being derived from an hcp crystal with stacking faults. That the structure did not transform to a true hcp phase is likely as a consequence of the limited size of the simulation box (108 atoms). At 360 GPa, in pure fcc-Fe, we find that the transition from fcc to the hcp-like structure occurs at 7000 K, whereas in the Ni bearing system, the transition occurs at higher temperature (7250 K). This reinforces previous work showing that fcc-Fe might transform to hcp-Fe just before melting, and that Ni tends to stabilize the fcc structure with respect to hcp.

  4. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches

    NASA Astrophysics Data System (ADS)

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  5. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-05

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  6. Effect of titanium on the structural and optical property of NiO nano powders

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya

    2018-05-01

    Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.

  7. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  8. Freezing of soft spheres: A critical test for weighted-density-functional theories

    NASA Astrophysics Data System (ADS)

    Laird, Brian B.; Kroll, D. M.

    1990-10-01

    We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.

  9. Ru nanoframes with an fcc structure and enhanced catalytic properties

    DOE PAGES

    Ye, Haihang; Wang, Qingxiao; Catalano, Massimo; ...

    2016-03-21

    Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd–Ru core–frame octahedra could be easily converted to Ru octahedral nanoframes of ~2 nm inmore » thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. Furthermore, the fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH 4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.« less

  10. Influence of hydrogen on the stability of iron phases under pressure

    NASA Astrophysics Data System (ADS)

    Skorodumova, N. V.; Ahuja, R.; Johansson, B.

    2004-04-01

    The influence of hydrogen presence on the stability of iron phases (bcc, hcp, dhcp, fcc, simple cubic) in a wide pressure interval at 0 K has been studied by the first-principles projector augmented-wave (PAW) method. Hydrogen is shown to occupy different interstitial lattice positions depending on the type of structure and pressure. An introduction of hydrogen impurities (˜6 at. %) leads to a stabilization of the close-packed iron structures, shifting the calculated pressure of the bcc-hcp transition from ˜9 GPa for pure iron to 7 GPa for Fe (6 at. % H). This tendency is further enhanced in the iron hydride structures. The iron hydrides in the close-packed structures (hcp, dhcp, fcc) are essentially degenerate in energy and found to be most stable in the whole pressure range.

  11. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation

    PubMed Central

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-01-01

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures. PMID:25998415

  12. Three Dimensional Optical Metamaterials via Direct Laser Writing

    DTIC Science & Technology

    2013-03-01

    can be derived from a face-centered-cubic (fcc) unit cell with a basis of two rods. b. Silver- coated woodpile structures with a period of 600 nm...described earlier. 4 It has been produced by the addition of zirconium propoxide (ZPO, 70% in propanol) to methacryloxypropyl trimethoxysilane (MAPTMS...structures, he materials investigation, synthesis and metallization protocols employed have been described in detail previously in 4-5. The silver- coated

  13. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  14. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  15. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOEpatents

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  16. Microstructural Formations and Phase Transformation Pathways in Hot Isostatically Pressed Tantalum Carbides

    DTIC Science & Technology

    2012-01-01

    and wear-resistant brake liners. The phase diagram for the tantalum–carbon system [5] is shown in Fig. 1a with corresponding crystal structures shown... structure ), with carbon atoms occupying the octahe- dral interstitial sites in a tantalum face-centered cubic (fcc) lattice [2,7]. The carbon-deficient...carbon sublattice. The allotropic phase trans- formation temperature between a-Ta2C (CdI2 antitype structure ) and b (L’3 structure ) is 2300 K [1,7]. In

  17. Energy-landscape paving for prediction of face-centered-cubic hydrophobic-hydrophilic lattice model proteins

    NASA Astrophysics Data System (ADS)

    Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie

    2013-11-01

    Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.

  18. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    PubMed

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  19. Bonding properties of FCC-like Au 44 (SR) 28 clusters from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Chevrier, Daniel M.; Zeng, Chenjie

    Thiolate-protected gold clusters with precisely controlled atomic composition have recently emerged as promising candidates for a variety of applications because of their unique optical, electronic, and catalytic properties. The recent discovery of the Au44(SR)28 total structure is considered as an interesting finding in terms of the face-centered cubic (FCC)-like core structure in small gold-thiolate clusters. Herein, the unique bonding properties of Au44(SR)28 is analyzed using temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge and compared with other FCC-like clusters such as Au36(SR)24 and Au28(SR)20. A negative thermal expansion was detected for the Au–Au bonds of the metal coremore » (the first Au–Au shell) and was interpreted based on the unique Au core structure consisting of the Au4 units. EXAFS fitting results from Au28(SR)20, Au36(SR)24, and Au44(SR)28 show a size-dependent negative thermal expansion behavior in the first Au–Au shell, further highlighting the importance of the Au4 units in determining the Au core bonding properties and shedding light on the growth mechanism of these FCC-like Au clusters.« less

  20. Large-area photonic crystals

    NASA Astrophysics Data System (ADS)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  1. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-01

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  2. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  3. Quantum and isotope effects in lithium metal

    NASA Astrophysics Data System (ADS)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  4. Mechanism of slip and twinning

    NASA Technical Reports Server (NTRS)

    Rastani, Mansur

    1992-01-01

    The objectives are to: (1) demonstrate the mechanisms of deformation in body centered cubic (BCC), face centered cubic (FCC), and hexagonal close-packed (HCP)-structure metals and alloys and in some ceramics as well; (2) examine the deformed microstructures (slip lines and twin boundaries) in different grains of metallic and ceramic specimens; and (3) study visually the deformed macrostructure (slip and twin bands) of metals and alloys. Some of the topics covered include: deformation behavior of materials, mechanisms of plastic deformation, slip bands, twin bands, ductile failure, intergranular fracture, shear failure, slip planes, crystal deformation, and dislocations in ceramics.

  5. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.

    PubMed

    Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin

    2006-01-26

    We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.

  6. Pattern formation in three-dimensional reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  7. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  8. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure

    PubMed Central

    Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald; Ashcroft, N. W.; Hemley, Russell J.

    2017-01-01

    A systematic structure search in the La–H and Y–H systems under pressure reveals some hydrogen-rich structures with intriguing electronic properties. For example, LaH10 is found to adopt a sodalite-like face-centered cubic (fcc) structure, stable above 200 GPa, and LaH8 a C2/m space group structure. Phonon calculations indicate both are dynamically stable; electron phonon calculations coupled to Bardeen–Cooper–Schrieffer (BCS) arguments indicate they might be high-Tc superconductors. In particular, the superconducting transition temperature Tc calculated for LaH10 is 274–286 K at 210 GPa. Similar calculations for the Y–H system predict stability of the sodalite-like fcc YH10 and a Tc above room temperature, reaching 305–326 K at 250 GPa. The study suggests that dense hydrides consisting of these and related hydrogen polyhedral networks may represent new classes of potential very high-temperature superconductors. PMID:28630301

  9. Structural phase transition of gold under uniaxial, tensile, and triaxial stresses: An ab initio study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2007-07-01

    The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.

  10. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    NASA Astrophysics Data System (ADS)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  11. The relative energy of fcc and hcp foams

    NASA Astrophysics Data System (ADS)

    Whyte, D.; Weaire, D.; Drenckhan, W.; Hutzler, S.

    2015-06-01

    The energies of face-centred cubic (fcc) and hexagonal close-packed (hcp) monodisperse foams, associated with their total surface area, are equal in the wet and dry limits, in the usual model. We prove that for all intermediate values of liquid fraction, hcp has lower energy. Energy considerations are thus not sufficient to explain the observed preference for crystallization into fcc over hcp in experiments using monodisperse bubbles.

  12. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  13. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis

    2017-12-01

    A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  15. BDA: A novel method for identifying defects in body-centered cubic crystals.

    PubMed

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  16. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  17. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  18. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-03-05

    We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  19. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  20. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE PAGES

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.; ...

    2017-08-10

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  1. Influences of the third and fourth nearest neighbouring interactions on the surface anisotropy of face-centred-cubic metals

    NASA Astrophysics Data System (ADS)

    Luo, Yongkun; Qin, Rongshan

    2014-06-01

    The structure and the anisotropic properties of the surfaces of face-centred-cubic (FCC) metals have been studied using the broken-bond model while considering the third and fourth nearest neighbouring (3rd and 4th NN) interactions. The pair potential expressions are obtained using the Rose-Vinet universal potential equation. The model is suitable for calculation of the property of a surface with arbitrary crystallographic orientations and can provide absolute unrelaxed surface energy values using three input parameters, namely the lattice constant, bulk modulus and cohesive energy. These parameters are available for the majority of FCC metals. The numerical results for 7 FCC metals have been obtained and compared with these obtained from ab initio calculations and experimental measurements. Good agreement is observed between the two. Taking into account up to the 4th NN interactions, the overall surface energy anisotropy for FCC metals was found to be between 12% to 16%, and the ratio between the surface energies at (100) and (111) planes was found to be 1.05. These values are less than those reported by conventional calculations but more similar to experimental measurements. It is found that the strength of 3rd and 4th NN interactions differs from one element to another, the Ni and Cu interactions being the most significant while the Au, Pt and Pb interactions are the least significant. This suggests that the polar diagrams of the surface energy of Ni and Cu are different from those of Au, Pt and Pb by showing cusps of the unconventional {110} and high-index {210}, {311} and possibly {135} poles. This provides explanations to the recent experimental observations of the {110}, {210}, {311} and {135} facets in equilibrated Ni and Cu crystallines.

  2. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  3. Effect of pressure on the tetragonal distortion in TiH2: a first-principles study

    NASA Astrophysics Data System (ADS)

    de Coss, R.; Quijano, R.; Singh, D. J.

    2009-03-01

    The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.

  4. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  5. Pair distribution function analysis applied to decahedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakotte, H.; Silkwood, C.; Page, K.; Wang, H.-W.; Olds, D.; Kiefer, B.; Manna, S.; Karpov, D.; Fohtung, E.; Fullerton, E. E.

    2017-11-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally derived atomistic models of the gold nanoparticles, with surprising results and a perspective on remaining challenges. Our findings provide evidence for the suitability of PDF analysis in the characterization of other nanosized particles that may have commercial applications.

  6. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    DOE PAGES

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...

    2017-05-25

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  7. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  8. Synthesis and Stability of Lanthanum Superhydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.

    Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1more » Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.« less

  9. The frustrated fcc antiferromagnet Ba 2 YOsO 6: Structural characterization, magnetic properties and neutron scattering studies

    DOE PAGES

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; ...

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba 2 YOsO 6. The Fmmore » $$\\bar{3}$$m space group is found both at 290 K and 3.5 K with cell constants a 0=8.3541(4) Å and 8.3435(4) Å, respectively. Os 5+ (5d 3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below T N~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μ B on Os 5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μ B or the value appropriate to 4d 3 Ru 5+ in isostructural Ba 2 YRuO 6 of 2.2(1) μ B, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d 3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru 5+,4d 3 cubic double perovskite Ba 2YRuO 6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.« less

  10. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE PAGES

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.; ...

    2017-10-27

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  11. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  12. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojie; Wang, Cai -Zhuang

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  13. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang

    2017-04-03

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  14. Effects of Au content on the structure and magnetic properties of L1{sub 0}-FePt nanoparticles synthesized by the sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013; Jiang, Yuhong

    2014-07-01

    (FePt){sub 100−x}Au{sub x} (x=0, 5, 10, and 20) nanoparticles were synthesized by the sol–gel method, and effects of Au content on the structural and magnetic properties of samples were investigated. Au doping reduced the phase transition temperature from face-centered cubic (FCC) to face-centered tetragonal (FCT) structure. In addition, additive Au promotes the chemical ordering of L1{sub 0} FePt NPs and increases the grain size of L1{sub 0} FePt NPs. When Au content increased from 0 to 10 at%, the coercivity (H{sub c}) increased due to the increase in degree of ordering S and grain size of L1{sub 0} FePt NPs.more » By increasing the Au content to 20 at%, H{sub c} decreased. - Graphical abstract: (FePt){sub 100}Au{sub 0} NPs are the coexistence of FCT and FCC phases. However, no hints of FCC phase were found for the (FePt){sub 100−x}Au{sub x} NPs (x=5, 10 and 20), which indicates that addition of gold greatly promotes the FCC to FCT phase transition. - Highlights: • (FePt){sub 100−x}Au{sub x} (x=0, 5, 10 and 20) nanoparticles (NPs) were synthesized. • Au addition promotes the chemical ordering of L1{sub 0} FePt NPs. • Au addition reduces ordering temperature of L1{sub 0} FePt NPs from FCC to FCT phase. • (FePt){sub 90}Au{sub 10} NPs show a high coercivity of 9585 Oe at room temperature.« less

  15. Formation of met-cars and face-centered cubic structures. Thermodynamically or kinetically controlled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Guo, B.C.; Deng, H.T.

    1994-05-18

    On the basis of a series of experimental studies from our laboratory, it is well established that metallocarbohedrenes, or Met-Cars for short, are a stable class of cluster materials. To account for their exceptional stability, we initially proposed a pentagonal dodecahedron structure. This cage-like structure is consistent with all the experimental findings. In general, there are two possible structures that can be developed in these metal-carbon systems, i.e., Met-Cars and cubes. Since only one structural pattern is generally observed for one particular cluster system, it has been suggested that their thermodynamical stabilities might be responsible for the selective formation ofmore » specific structures, e.g., Met-Cars or fcc structures. Herein, we present new experimental results on the system of Nb[sub m]C[sub n] under various conditions. It is shown that the experimental conditions are extremely critical for the formation of either Met-Cars or cubic structures, as predicted by Reddy and Khanma. Moreover, the new data show that the cubic structures do not develop on top of Met-Cars, but rather, they grow independently. The experiments were performed by using both time-of-flight and quadrupole mass spectrometer techniques coupled with a laser vaporization source. 23 refs., 1 fig.« less

  16. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  17. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen.

    PubMed

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-23

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe 2 O 4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H 2 ) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe 2 O 4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (M s ) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (H c ) decreased monotonously firstly and then basically stayed unchanged. The largest M s (~145.7 emu·g -1 ) and the moderate H c (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  18. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  19. Bond-Energy and Surface-Energy Calculations in Metals

    ERIC Educational Resources Information Center

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  20. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji

    A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less

  2. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  3. Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.; Kioussis, Nicholas; Herbranson, M.

    2000-02-01

    We have used the Naval Research Laboratory (NRL) tight-binding (TB) method to calculate the generalized stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb. The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We compared our results with full potential linear-muffin-tin orbital and embedded atom method (EAM) calculations, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault energy.

  4. Structural ordering at solid-liquid interfaces in Al-Sm system: A molecular-dynamics study

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; ...

    2016-07-12

    The structural ordering at solid-liquid interfaces far from equilibrium is studied with molecular dynamics simulations for the Al-Sm system. Using the van-Hove self-correlation function as the criterion to identify attachment/detachment events that occur at the interface, we are able to determine the time-dependent interface position, and characterize the detailed interfacial structure ordering surrounding the attached atoms. For the interface between an undercooled Al90Sm10 liquid and a metastable cubic structure, the solid induces the crystalline order of the cubic phase in the liquid layers, promoting the continuous growth of the crystal phase. When the same liquid is put in contact withmore » f.c.c. Al, Sm from the liquid can still attach to the solid interface despite its insolubility in the Al lattice. Non-f.c.c. order is revealed surrounding the attached Sm atoms. Lastly, we show that the local structure ordering at interface is highly correlated to solid packing and liquid ordering.« less

  5. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NASA Astrophysics Data System (ADS)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  6. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  7. Modulated structure and molecular dissociation of solid chlorine at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Peifang; Gao, Guoying; Ma, Yanming

    2012-08-01

    Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.

  8. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales

    NASA Astrophysics Data System (ADS)

    Cui, Yi-Nan; Liu, Zhan-Li; Zhuang, Zhuo

    2013-04-01

    The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.

  9. Structural building principles of complex face-centered cubic intermetallics.

    PubMed

    Dshemuchadse, Julia; Jung, Daniel Y; Steurer, Walter

    2011-08-01

    Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

  10. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  11. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  12. 3-D phononic crystals with ultra-wide band gaps.

    PubMed

    Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit

    2017-02-24

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  13. Magnetic ordering in Ce-La and Nd-La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.S.; Legvold, S.; Gschneidner, K.A. Jr.

    1978-03-01

    Heat capacity, magnetic susceptibility, and electrical resistivity measurements have been made on a wide ranging set of Ce-La and Nd-La alloys. In the case of Ce it is found that less than 5 at. % of La will prevent the ..beta.. (dhcp) to ..cap alpha.. (collapsed fcc) transition at T9 or approx. =50 K. In the case of Nd-La only the dhcp allotrope is formed. Two magnetic ordering temperatures have been found for many of the samples. These are believed to be caused by antiferromagnetic ordering on the two different atomic sites in the dhcp structure, cubic and hexagonal. Inmore » both sets of alloys the two ordering temperatures coalesce into one for La concentrations > or approx. =30%. Additional magnetic features in Ce-La alloys are explained by the formation of the fcc phase.« less

  14. Synthesis of fcc Mg-Ti-H alloys by high energy ball milling: Structure and electrochemical hydrogen storage properties

    NASA Astrophysics Data System (ADS)

    Rousselot, Steeve; Guay, Daniel; Roué, Lionel

    Mg-Ti-H alloys were synthesized by high energy ball milling from equimolar mixtures of MgH 2 + TiH 2, MgH 2 + Ti and Mg + TiH 2 in the presence of 10 wt.% Pd. X-ray diffraction analyses combined with Rietveld refinement revealed that after 60 h of milling, all as-milled Mg-Ti-H alloys are made of two face-centered-cubic (fcc) phases, with lattice parameters ∼4.47 and ∼4.25 Å, in different proportions depending on the composition of the initial mixture. The Mg-Ti-H alloys displayed a similar electrochemical behavior, i.e. their hydrogen discharge capacity was highest during the first cycle and then decreased rapidly with cycling. The maximum discharge capacities of the 60 h-milled MgH 2 + TiH 2, MgH 2 + Ti and Mg + TiH 2 materials were 300, 443 and 454 mAh g -1, respectively. No apparent correlation could be established between the maximum discharge capacity of the Mg-Ti-H materials and the two fcc phase proportion.

  15. Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.

    2015-06-01

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

  16. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  17. The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France).

    PubMed

    da Rocha, Alice; Sivry, Yann; Gelabert, Alexandre; Beji, Zyed; Benedetti, Marc F; Menguy, Nicolas; Brayner, Roberta

    2015-05-01

    This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.

  18. In situ ultra-small-angle X-ray scattering study under uniaxial stretching of colloidal crystals prepared by silica nanoparticles bearing hydrogen-bonding polymer grafts

    DOE PAGES

    Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji; ...

    2016-04-19

    A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less

  19. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  20. Reassessment of Atomic Mobilities in fcc Cu-Ag-Sn System Aiming at Establishment of an Atomic Mobility Database in Sn-Ag-Cu-In-Sb-Bi-Pb Solder Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong

    2017-04-01

    To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.

  1. Magnetic ordering in Ce--La and Nd--La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.S.; Legvold, S.; Gschneidner, K.A. Jr.

    1977-01-01

    Heat capacity, magnetic susceptibility, and electrical resistivity measurements have been made on a wide ranging set of Ce--La and Nd--La alloys. In the case of Ce it is found that less than 5 at. percent of La will prevent the ..beta..(dhcp) to ..cap alpha.. (collapsed fcc) transition at T approximately less than 50K. In the case of Nd--La only the dhcp allotrope is formed. Two magnetic ordering temperatures have been found for many of the samples. These are believed to be caused by antiferromagnetic ordering on the two different atomic sites in the dhcp structure, cubic and hexagonal. In bothmore » sets of alloys the two ordering temperatures coalesce into one for La concentrations approximately greater than 30 percent. Additional magnetic features in Ce--La alloys are explained by the formation of the fcc phase.« less

  2. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  3. Airborne asbestos in Colorado public schools.

    PubMed

    Chadwick, D A; Buchan, R M; Beaulieu, H J

    1985-02-01

    Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.

  4. High pressure/temperature equation of state of gold silver alloys

    NASA Astrophysics Data System (ADS)

    Jenei, Zsolt; Lipp, Magnus J.; Klepeis, Jae-Hyun P.; Cynn, Hyunchae; Evans, William J.; Park, Changyong

    2012-02-01

    Gold-silver alloys crystallize in face centered cubic structures, like their constituent pure elements [McKeehan -- Phys.Rev. 20, 424 (1922)]. The cell parameter of the alloys does not scale linearly with the ratio of Ag/Au. In this work we investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.

  5. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Misra, A.; Hirth, J. P.

    2011-02-01

    Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.

  6. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  7. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  8. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  9. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  10. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  11. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  12. Equations of state of anhydrous AlF{sub 3} and AlI{sub 3}: Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  13. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2015-06-04

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  14. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, Peter; Zhang, Fan; Zhang, Chuan

    2016-07-30

    To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less

  15. Possible metastable rhombohedral states of the bcc transition metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael; Finkenstadt, Daniel

    2007-03-01

    The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a = 1, a maximum at c/a = √2, and an elastically unstable local minimum at c/a > √2. A rhombohedral strain is an alternative method of connecting the bcc and fcc structures. The primitive lattice keeps R3m symmetry, with the angle α changing from 109.4^o (bcc), to 90^o (simple cubic), to 60^o (fcc). We studied this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both a full-potential LAPW and PAW VASP. Except for Ta, the energy E(α) has a local maximum at α=60^o, with local minima near 55^o and 70^o, the later having lower energy. We studied the elastic stability of the 70^o minimum structure. Only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4 GPa, while the other three elements are unstable. We discuss the possibility that Tungsten is actually metastable in this structure. We also consider the possible epitaxial growth of this structure. M. J. Mehl, A. Aguayo, L. L. Boyer, and R. De Coss, Phys. Rev. B 70, 014105 (2004).

  16. Synthesis and structural study of Ti-rich Mg-Ti hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji

    2014-02-26

    Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less

  17. On the determination of the glass forming ability of AlxZr1-x alloys using molecular dynamics, Monte Carlo simulations, and classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice

    2012-10-01

    In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.

  18. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  19. High pressure/temperature equation of state of gold-silver alloys

    NASA Astrophysics Data System (ADS)

    Evans, W. J.; Jenei, Zs.; Sinogeikin, S. V.; Yang, W.; Shebanova, O.

    2010-03-01

    It has been reported previously (McKeehan Phys.Rev. 20 p424) that gold-silver alloys crystallize in face centered cubic structures, like their constituant pure elements and the cell parameter of the alloy has a linear relationship with the ratios of Ag/Au in the alloy. We investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.

  20. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.

    PubMed

    Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor

    2018-01-27

    Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.

  1. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)<110>111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  2. Nearly metastable rhombohedral phases of bcc metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Finkenstadt, Daniel

    2008-02-01

    The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a=1 , a maximum at c/a=2 , and an elastically unstable local minimum at c/a>2 . An alternative path connecting the bcc and fcc structures is the rhombohedral lattice. The primitive lattice has R3¯m symmetry, with the angle α changing from 109.4° (bcc), to 90° (simple cubic), to 60 ° (fcc). We study this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both all-electron linearized augmented plane wave and projector augmented wave VASP codes. Except for Ta, the energy E(α) has a local maximum at α=60° , with local minima near 55° and 70° , the latter having lower energy, suggesting the possibility of a metastable rhombohedral state for these materials. We first examine the elastic stability of the 70° minimum structure, and determine that only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4GPa . We then consider the possibility that tungsten is actually metastable in this structure by looking at its vibrational and third-order elastic stability.

  3. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu D.; Petukhov, A. V.; Byelov, D.; Chernyshov, D.; Okorokov, A. I.; Bouwman, W. G.; Grigoriev, S. V.

    2010-10-01

    Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a0 = 650 ± 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length Ltran is 2.4 ± 0.1 μm, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length Llong is 3.4 ± 0.2 μm, and the structure mosaic is of order of 10°.

  4. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Li, Wei-Zhen; Liu, Jin-Xun; Gu, Jun; Zhou, Wu; Yao, Si-Yu; Si, Rui; Guo, Yu; Su, Hai-Yan; Yan, Chun-Hua; Li, Wei-Xue; Zhang, Ya-Wen; Ma, Ding

    2017-02-15

    Ruthenium is a promising low-temperature catalyst for Fischer-Tropsch synthesis (FTS). However, its scarcity and modest specific activity limit its widespread industrialization. We demonstrate here a strategy for tuning the crystal phase of catalysts to expose denser and active sites for a higher mass-specific activity. Density functional theory calculations show that upon CO dissociation there are a number of open facets with modest barrier available on the face-centered cubic (fcc) Ru but only a few step edges with a lower barrier on conventional hexagonal-closest packed (hcp) Ru. Guided by theoretical calculations, water-dispersible fcc Ru catalysts containing abundant open facets were synthesized and showed an unprecedented mass-specific activity in the aqueous-phase FTS, 37.8 mol CO ·mol Ru -1 ·h -1 at 433 K. The mass-specific activity of the fcc Ru catalysts with an average size of 6.8 nm is about three times larger than the previous best hcp catalyst with a smaller size of 1.9 nm and a higher specific surface area. The origin of the higher mass-specific activity of the fcc Ru catalysts is identified experimentally from the 2 orders of magnitude higher density of the active sites, despite its slightly higher apparent barrier. Experimental results are in excellent agreement with prediction of theory. The great influence of the crystal phases on site distribution and their intrinsic activities revealed here provides a rationale design of catalysts for higher mass-specific activity without decrease of the particle size.

  5. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  6. High-temperature fcc phase of Pr:  Negative thermal expansion and intermediate valence state

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. Yu.; Dmitriev, V. P.; Bandilet, O. I.; Weber, H.-P.

    2003-08-01

    A high-temperature angle-dispersive synchrotron radiation diffraction study has revealed the double hexagonal-close-packed-to-face-centered-cubic (dhcp-to-fcc) transformation in the Pr metal occurring martensitically between 575 and 1035 K. The high-temperature fcc phase shows a negative thermal expansion in the range 600 800 K, attributed to the 4f-electron delocalization. A phenomenological theory is developed, which explains consistently the observed effect in terms of the mean valence variation of the metal as a function of temperature; it also predicts the existence of an isostructural phase transition and of a critical end point of a gas-liquid type in compressed Pr. The analysis of published data on P-T variation of conductivity of Pr supports this prediction.

  7. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations.

    PubMed

    Deng, Jiushuai; Li, Shimei; Zhou, Yuanyuan; Liang, Luyang; Zhao, Biao; Zhang, Xi; Zhang, Rui

    2018-01-01

    Core-shell flower-like composites were successfully prepared by a simple polyol method. These composites were formed by coating dual-phased (face-centered cubic [fcc] and hexagonal close-packed [hcp]) Co with amorphous CoO nanosheets. The microwave absorption properties of the flower-like Co@CoO paraffin composites with various Co@CoO amounts were then investigated. Results showed that the paraffin-based composite containing 70wt% flower-like Co@CoO displayed excellent microwave absorption properties (R E =24.74dB·GHz/mm). The minimum reflection loss of -30.4dB was obtained at 16.1GHz with a small thickness of 1.5mm, and 1.5mm bandwidth reached 4.6GHz (13.4-18GHz) below -10dB (90% microwave absorption). The excellent microwave absorption properties of flower-like Co@CoO are attributed to the synergetic effect between magnetic loss and dielectric loss, and the magnetic loss makes a main contribution to absorption. The core-shell flower-like structures with dual Co phases also contributed to microwave absorption. The amorphous CoO nanosheets were able to generate multiple reflections and exhibit scattering. In addition, the novel absorption mechanism that enhanced interfacial polarization was proposed. This enhancement resulted from the presence of interfaces between the hcp and fcc phases and between the core-shell Co@CoO composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts

    NASA Astrophysics Data System (ADS)

    Sun, Ligang; He, Xiaoqiao; Lu, Jian

    2018-02-01

    The recent studies on nanotwinned (NT) and hierarchical nanotwinned (HNT) face-centered cubic (FCC) metals are presented in this review. The HNT structures have been supposed as a kind of novel structure to bring about higher strength/ductility than NT counterparts in crystalline materials. We primarily focus on the recent developments of the experimental, atomistic and theoretical studies on the NT and HNT structures in the metallic materials. Some advanced bottom-up and top-down techniques for the fabrication of NT and HNT structures are introduced. The deformation induced HNT structures are available by virtue of severe plastic deformation (SPD) based techniques while the synthesis of growth HNT structures is so far almost unavailable. In addition, some representative molecular dynamics (MD) studies on the NT and HNT FCC metals unveil that the nanoscale effects such as twin spacing, grain size and plastic anisotropy greatly alter the performance of NT and HNT metals. The HNT structures may initiate unique phenomena in comparison with the NT ones. Furthermore, based on the phenomena and mechanisms revealed by experimental and MD simulation observations, a series of theoretical models have been proposed. They are effective to describe the mechanical behaviors of NT and HNT metals within the applicable scope. So far the development of manufacturing technologies of HNT structures, as well as the studies on the effects of HNT structures on the properties of metals are still in its infancy. Further exploration is required to promote the design of advanced materials.

  9. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    NASA Astrophysics Data System (ADS)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  10. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  11. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less

  12. L1 0 Fe -Pd Synthetic Antiferromagnet through an fcc Ru Spacer Utilized for Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Zhang, De-Lin; Sun, Congli; Lv, Yang; Schliep, Karl B.; Zhao, Zhengyang; Chen, Jun-Yang; Voyles, Paul M.; Wang, Jian-Ping

    2018-04-01

    Magnetic materials that possess large bulk perpendicular magnetic anisotropy (PMA) are essential for the development of magnetic tunnel junctions (MTJs) used in future spintronic memory and logic devices. The addition of an antiferromagnetic layer to these MTJs was recently predicted to facilitate ultrafast magnetization switching. Here, we report a demonstration of a bulk perpendicular synthetic antiferromagnetic (PSAFM) structure comprised of a (001) textured Fe -Pd /Ru /Fe -Pd trilayer with a face-centered-cubic (fcc) phase Ru spacer. The L1 0 Fe -Pd PSAFM structure shows a large bulk PMA (Ku˜10.2 Merg /cm3 ) and strong antiferromagnetic coupling (-JIEC˜2.60 erg /cm2 ). Full perpendicular magnetic tunnel junctions (PMTJs) with a L1 0 Fe -Pd PSAFM layer are then fabricated. Tunneling magnetoresistance ratios of up to approximately 25% (approximately 60%) are observed at room temperature (5 K) after postannealing at 350 °C . Exhibiting high thermal stabilities and large Ku , the bulk PMTJs with an L1 0 Fe -Pd PSAFM layer could pave a way for next-generation ultrahigh-density and ultralow-energy spintronic applications.

  13. Efficient LBM visual simulation on face-centered cubic lattices.

    PubMed

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru

    The interaction of two charged point macroparticles located in Wigner–Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson–Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown tomore » be nevertheless the Debye one and purely repulsive for likely charged macroparticles.« less

  15. Anti-iridescent colloidal photonic nanostructure from thermal gradients and polymeric brush effects

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeol; Kim, Hyoungsoo; Kim, Shin-Hyun; Stone, Howard

    2017-11-01

    Colloidal nanostructures induced by self-assembly are important in reflective displays, plasmonic or photonic sensors, and color pigments. During the evaporation of droplets of colloidal suspension, due to the non-uniform evaporation rate along the droplet interface, a radially outward flow is created and it carries colloidal particles to the pinned contact line of the droplet. We document that the packing at the contact line is a face-center-cubic (fcc) colloidal nanostructure in a ring shape. The fcc structure of the colloidal nanoparticles exhibits angle-dependent color. In particular, we introduce a novel method to suppress the familiar coffee-ring effect and modify colloidal nanostructures to exhibit angle-independent optical properties. A suspension of polyethylene oxide (PEO)-coated silica nanoparticles dispersed in ethanol-water mixture is prepared. The droplet containing the nanoparticles dries on a heated substrate, which creates a thermal gradient along the interface of the droplet. This thermal gradient induces thermal-Marangoni stresses that suppress the coffee-ring effects. PEO adsorbed on the surface of silica nanoparticles produces an additional interaction between colloidal nanoparticles, which makes the final structure disordered. The disordered photonic nanostructures in our experiments exhibit angle-independent structural color. This technique can be applied to printing or optical filtering systems.

  16. PHASEGO: A toolkit for automatic calculation and plot of phase diagram

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li

    2015-06-01

    The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

  17. Simulation for F.C.C. deformation texture by modified pencil glide theory[Face Centered Cubic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masui, H.

    1999-11-26

    Inspired by the pencil glide theory for b.c.c. metal, modified pencil glide theory for f.c.c. metal was proposed, dividing the 12 glide systems of f.c.c. metal into three groups individually composed of eight {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} glide systems around the principal axes X[100], Y[010] and Z[001]. These assumptions yielded two mathematical solutions {Omega}(3) and {Omega}(1). In {Omega}(3), from the three groups with four complete conjugated glide systems composed of, respectively, two glide systems of common {l{underscore}angle}110{r{underscore}angle} direction, only one group with the maximum plastic work may operate if the requirements are satisfied, otherwise glide systems in {Omega}(1) where one of the fourmore » conjugated glide systems is zero are activated. The model considering the 12 glide systems of f.c.c. as a whole explained many experimentally stable orientations in axisymmetric and rolling deformation. The differences between the two pencil glide theories for b.c.c. and f.c.c. are also discussed with data.« less

  18. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  19. Fabrication of a Stable New Polymorph Gold Nanowire with Sixfold Rotational Symmetry.

    PubMed

    Lee, Seonhee; Bae, Changdeuck; Lee, Jubok; Lee, Subin; Oh, Sang Ho; Kim, Jeongyong; Park, Gyeong-Su; Jung, Hyun Suk; Shin, Hyunjung

    2018-04-01

    Gold is known as the most noblest metal with only face-centered cubic (fcc) structure in ambient conditions. Here, stable hexagonal non-close-packed (ncp) gold nanowires (NWs), having a diameter of about 50 nm and aspect ratios of well over 400, are reported. Au NWs are grown in the confined system of nanotubular TiO 2 arrays via photoelectrochemical reduction of HAuCl 4 precursors. Some of the resulting Au NWs are proved to have sixfold rotational symmetry, observed by transmission electron microscopy tilting experiments. This new polymorph is identified as a hexagonal ncp-structure with lattice parameters of a = 2.884 Å and c = 7.150 Å, showing quite a large interplanar spacing (c/a ≈ 2.48). That is, Au atoms are close-packed along the ab plane, but each plane is not closely stacked along the c axis like in graphite. The structure is usually expected to be unstable, but the present ncp-2H gold is stable under ambient conditions and intense electron beam irradiation, and shows thermal stability up to 400 °C. Moreover, the resulting physical properties as a result of the corresponding change in electronic structures are investigated by comparing the optical properties of fcc and ncp-2H Au NWs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models

    PubMed Central

    Maher, Brian; Albrecht, Andreas A.; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-01

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. PMID:24970205

  1. A firefly-inspired method for protein structure prediction in lattice models.

    PubMed

    Maher, Brian; Albrecht, Andreas A; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-07

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa-Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.

  2. Electrodeposited Ni-Co films from electrolytes with different Co contents

    NASA Astrophysics Data System (ADS)

    Karpuz, Ali; Kockar, Hakan; Alper, Mursel; Karaagac, Oznur; Haciismailoglu, Murside

    2012-02-01

    The properties of electrodeposited Ni-Co films produced from electrolyte consisted of nickel sulfamate, cobalt sulfate and boric acid were investigated as a function of Co content in the films. The compositional analysis performed by an energy dispersive X-ray spectroscopy demonstrated that the Co content of the films increases as the cobalt sulfate concentration in the electrolyte increases. The anomalous codeposition behavior was observed for all concentrations. The crystal structure was analyzed using an X-ray diffraction technique. The face centered cubic (fcc) structure was observed in the films containing from 0 at.% Co to 58 at.% Co. For the higher atomic Co contents (64 at.% and 80 at.%), a mixed phase of dominantly fcc and hexagonal closed packed (hcp) structure was observed although the (10.0) and (10.1) hcp peaks had minor intensities in the patterns. Surface micrographs obtained from a scanning electron microscope revealed that the film surface has a rougher appearance as the Co content increases. Magnetic measurements showed that the saturation magnetization gradually increased with increasing Co content of the films. The coercivity, Hc can be controlled by the structural parameters such as average grain size and crystal structure. The results also indicated that the optimum film composition was 28-40 at.% Co since the lower Hc and higher magnetoresistance (MR) values with very smooth or slightly granular surfaces were achieved at this Co content. It is revealed that Co content has an important effect on structural, magnetic and MR properties of the Ni-Co films.

  3. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  4. The self-organization of grid cells in 3D

    PubMed Central

    Stella, Federico; Treves, Alessandro

    2015-01-01

    Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. DOI: http://dx.doi.org/10.7554/eLife.05913.001 PMID:25821989

  5. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  6. THERMODYNAMICS OF THE ACTINIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated frommore » spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)« less

  7. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  8. Magnetic topology of Co-based inverse opal-like structures

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  9. Crystallization of sheared hard spheres at 64.5% volume fraction

    NASA Astrophysics Data System (ADS)

    Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.

    2017-11-01

    A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.

  10. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Wang, M.P.; Chen, C., E-mail: chench011-33@163.com

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compressionmore » axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.« less

  11. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong

    2015-04-01

    The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.

  12. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    PubMed Central

    Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei

    2017-01-01

    This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244

  13. Metastability and structural polymorphism in noble metals: the role of composition and metal atom coordination in mono- and bimetallic nanoclusters.

    PubMed

    Sanchez, Sergio I; Small, Matthew W; Bozin, Emil S; Wen, Jian-Guo; Zuo, Jian-Min; Nuzzo, Ralph G

    2013-02-26

    This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH₄ at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM). It was found for monometallic samples that the third row, face-centered-cubic (fcc), transition metal [(3M)-Ir, Pt, and Au] particles exhibited more coherently ordered geometries than their second row, fcc, transition metal [(2M)-Rh, Pd, and Ag] analogues. The former exhibit growth habits favoring crystalline phases with specific facet structures while the latter samples are dominated by more disordered atomic arrangements that include complex systems of facets and twinning. Atomic pair distribution function (PDF) measurements further confirmed these observations, establishing that the 3M clusters exhibit longer ranged ordering than their 2M counterparts. The assembly of intracolumn bimetallic nanoparticles (Au-Ag, Pt-Pd, and Ir-Rh) using the same experimental conditions showed a strong tendency for the 3M atoms to template long-ranged, crystalline growth of 2M metal atoms extending up to over 8 nm beyond the 3M core.

  14. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  15. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  16. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  17. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com; Talwatkar, S. S.; Tamgadge, Y. S.

    2016-05-06

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  18. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glassmore » substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.« less

  19. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    NASA Astrophysics Data System (ADS)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-05-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  20. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  1. Preparation and characterization of gold nanodumbbells

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Chen, Wen-Ray; Meen, Teen-Hang; Yang, Cheng-Fu

    2006-11-01

    Well-dispersed gold nanodumbbells (GNDs) in an aqueous phase have been successfully fabricated by an electrochemical method using a micelle template formed by two surfactants with the addition of acetone solvent during electrolysis, the primary surfactant being cetyltrimethylammonium bromide (CTABr) and the cosurfactant being tetradecyltrimethylammonium bromide (TTABr). The role of acetone solvent is found to change the gold nanoparticles' shape from a rod to a dumbbell. The shape of the GNDs is fatter at the two ends and thinner in the middle section. The GNDs have been determined to be pure gold with a single-crystalline face-centred cubic (FCC) structure from selected area electron diffraction (SAED) patterns. Morphology features of GNDs in cross-section have also been investigated by dark field (DF) transmission electron microscopy (TEM) images. These GNDs exhibit octagonal structure in cross-section and an aspect ratio of around 3.

  2. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.

    PubMed

    Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo

    2013-01-16

    The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.

  3. Effect of interstitial and substitution alloying elements on the intrinsic stacking fault energy of nanocrystalline fcc-iron by atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh

    2017-11-01

    The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.

  4. High-Pressure Geophysical Properties of Fcc Phase FeHX

    NASA Astrophysics Data System (ADS)

    Thompson, E. C.; Davis, A. H.; Bi, W.; Zhao, J.; Alp, E. E.; Zhang, D.; Greenberg, E.; Prakapenka, V. B.; Campbell, A. J.

    2018-01-01

    Face centered cubic (fcc) FeHX was synthesized at pressures of 18-68 GPa and temperatures exceeding 1,500 K. Thermally quenched samples were evaluated using synchrotron X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS) to determine sample composition and sound velocities to 82 GPa. To aid in the interpretation of nonideal (X ≠ 1) stoichiometries, two equations of state for fcc FeHX were developed, combining an empirical equation of state for iron with two distinct synthetic compression curves for interstitial hydrogen. Matching the density deficit of the Earth's core using these equations of state requires 0.8-1.1 wt % hydrogen at the core-mantle boundary and 0.2-0.3 wt % hydrogen at the interface of the inner and outer cores. Furthermore, a comparison of Preliminary Reference Earth Model (PREM) to a Birch's law extrapolation of our experimental results suggests that an iron alloy containing ˜0.8-1.3 wt % hydrogen could reproduce both the density and compressional velocity (VP) of the Earth's outer core.

  5. Structural evolution in the crystallization of rapid cooling silver melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z.A., E-mail: ze.tian@gmail.com; Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052; Dong, K.J.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperaturemore » range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.« less

  6. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  7. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  8. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE PAGES

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; ...

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  9. Electrical resistivity of La

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legvold, S.; Burgardt, P.; Beaudry, B.J.

    1977-09-15

    The electrical resistivity of high-purity double hexagonal-close-packed (dhcp) ..cap alpha..-La from 5 to 300 K is reported. Measurements were made on small-grained samples prepared by heat treatment of cold-worked lanthanum. Measurements were also made on samples cut in different directions from an ingot slowly cooled from the molten state. The room-temperature results were all within 2% of the mean value. Chemically pure ..beta..-La (fcc) cannot be retained at room temperature, hence, measurements were made on an fcc sample of La containing 0.2-at. % Gd and approx. 0.8-at. % total interstitial nonmetallic impurities. The cubic form has almost the same typemore » of temperature dependence as the dhcp form, but has a 10% lower magnitude.« less

  10. A projection operator method for the analysis of magnetic neutron form factors

    NASA Astrophysics Data System (ADS)

    Kaprzyk, S.; Van Laar, B.; Maniawski, F.

    1981-03-01

    A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.

  11. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  12. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE PAGES

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...

    2017-05-10

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  13. Evaluation of take-home exposure and risk associated with the handling of clothing contaminated with chrysotile asbestos.

    PubMed

    Sahmel, J; Barlow, C A; Simmons, B; Gaffney, S H; Avens, H J; Madl, A K; Henshaw, J; Lee, R J; Van Orden, D; Sanchez, M; Zock, M; Paustenbach, D J

    2014-08-01

    The potential for para-occupational (or take-home) exposures from contaminated clothing has been recognized for the past 60 years. To better characterize the take-home asbestos exposure pathway, a study was performed to measure the relationship between airborne chrysotile concentrations in the workplace, the contamination of work clothing, and take-home exposures and risks. The study included air sampling during two activities: (1) contamination of work clothing by airborne chrysotile (i.e., loading the clothing), and (2) handling and shaking out of the clothes. The clothes were contaminated at three different target airborne chrysotile concentrations (0-0.1 fibers per cubic centimeter [f/cc], 1-2 f/cc, and 2-4 f/cc; two events each for 31-43 minutes; six events total). Arithmetic mean concentrations for the three target loading levels were 0.01 f/cc, 1.65 f/cc, and 2.84 f/cc (National Institute of Occupational Health and Safety [NIOSH] 7402). Following the loading events, six matched 30-minute clothes-handling and shake-out events were conducted, each including 15 minutes of active handling (15-minute means; 0.014-0.097 f/cc) and 15 additional minutes of no handling (30-minute means; 0.006-0.063 f/cc). Percentages of personal clothes-handling TWAs relative to clothes-loading TWAs were calculated for event pairs to characterize exposure potential during daily versus weekly clothes-handling activity. Airborne concentrations for the clothes handler were 0.2-1.4% (eight-hour TWA or daily ratio) and 0.03-0.27% (40-hour TWA or weekly ratio) of loading TWAs. Cumulative chrysotile doses for clothes handling at airborne concentrations tested were estimated to be consistent with lifetime cumulative chrysotile doses associated with ambient air exposure (range for take-home or ambient doses: 0.00044-0.105 f/cc year). © 2014 Society for Risk Analysis.

  14. Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Guo; Sun, Jiangping; Zhang, Libin; Gan, Zhiyin

    2018-06-01

    The temperature effects on the growth of Cu thin film on Si (0 0 1) in the context of magnetron sputtering deposition were systematically studied using molecular dynamics (MD) method. To improve the comparability of simulation results at varying temperatures, the initial status data of incident Cu atoms used in all simulations were read from an identical file via LAMMPS-Python interface. In particular, crystalline microstructure, interface mixing and internal stress of Cu thin film deposited at different temperatures were investigated in detail. With raising the substrate temperature, the interspecies mixed volume and the proportion of face-centered cubic (fcc) structure in the deposited film both increased, while the internal compressive stress decreased. It was found that the fcc structure in the deposited Cu thin films was 〈1 1 1〉 oriented, which was reasonably explained by surface energy minimization and the selectivity of bombardment energy to the crystalline planes. The quantified analysis of interface mixing revealed that the diffusion of Cu atoms dominated the interface mixing, and the injection of incident Cu atoms resulted in the densification of phase near the film-substrate interface. More important, the distribution of atomic stress indicated that the compressive stress was mainly originated from the film-substrate interface, which might be attributed to the densification of interfacial phase at the initial stage of film deposition.

  15. Elastic constants of random solid solutions by SQS and CPA approaches: the case of fcc Ti-Al.

    PubMed

    Tian, Li-Yun; Hu, Qing-Miao; Yang, Rui; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-08-12

    Special quasi-random structure (SQS) and coherent potential approximation (CPA) are techniques widely employed in the first-principles calculations of random alloys. Here we scrutinize these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. We compare the elastic parameters obtained from SQS and CPA calculations, taking the random face-centered cubic (fcc) Ti(1-x)Al(x) (0 ≤ x ≤ 1) alloy as an example of systems with components showing different electronic structures and bonding characteristics. For the CPA and SQS calculations, we employ the Exact Muffin-Tin Orbitals (EMTO) method and the pseudopotential method as implemented in the Vienna Ab initio Simulation Package (VASP), respectively. We show that the predicted trends of the VASP-SQS and EMTO-CPA parameters against composition are in good agreement with each other. The energy associated with the LLD increases with x up to x = 0.625 ~ 0.750 and drops drastically thereafter. The influence of the LLD on the lattice constants and C12 elastic constant is negligible. C11 and C44 decrease after atomic relaxation for alloys with large LLD, however, the trends of C11 and C44 are not significantly affected. In general, the uncertainties in the elastic parameters associated with the symmetry lowering turn out to be superior to the differences between the two techniques including the effect of LLD.

  16. Effects of lattice morphology upon reaction dynamics in matrix-isolated systems

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1992-11-01

    The dynamics of the cis-d2-ethylene+F2 addition reaction and the subsequent reaction dynamics of the products isolated in vapor-deposited Ar matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix-isolated cis-d2-ethylene+F2 system is generated using a combination of Monte Carlo, damped trajectory, and volume contraction methods. Transport effects of the bulk are simulated using the velocity reset procedure developed by Riley et al. [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface is the same as that employed in our previous investigations of the matrix-isolated, decomposition dynamics of 1,2-difluoroethane-d4 and the bimolecular cis-d2-ethylene+F2 system in face-centered-cubic (fcc) matrices [J. Chem. Phys. 93, 3160 (1990); 95, 8901 (1991)]. It is found that matrices generated by these methods are amorphous with numerous vacancies and other imperfections. On the average, there are approximately three vacancies about each lattice atom compared to the fcc crystal. The calculated lattice density is about 82% that for a bulk fcc Ar solid. Computed radial distribution functions resemble those expected for a liquid which exhibits some short-range order. The imperfections of the lattice remain even after substantial annealing at 50 K. The calculated energy relaxation rate to the lattice phonon modes in these amorphous matrices is about a factor of 4 less than that for a close-packed fcc lattice. The 1,2-difluoroethane product is formed primarily via an αβ-addition process, as is the case for fcc matrices. However, the prominence of this pathway is greatly reduced. The major process leading to a fluoroethylene elimination product in amorphous matrices involves an atomic addition mechanism. Such a reaction path accounts for 94% of the elimination reactions. The probability of internal rotation about the C■C double bond in the fluoroethylene product is increased fivefold over that for fcc lattices. The calculated stabilization/elimination product ratio, the cis/trans ratios of fluoroethylene products, and the HF/DF elimination ratio are all found to be in fair to good accord with the reported experimental data. It is concluded that accurate simulation of matrix-isolation experiments requires a matrix model that properly represents the lattice structure present in the experiments.

  17. Thermal vibrations and polymorphic β → γ transition in cerium

    NASA Astrophysics Data System (ADS)

    Agafonov, S. S.; Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A.; Shushunov, M. N.

    2010-10-01

    Method of neutron diffraction was used to determine the temperature dependence of the Debye-Waller factor and the related thermal atomic displacements for two polymorphic modifications of cerium, namely, for β-Ce with a double hexagonal closed-packed (dhcp) structure and for γ-Ce with a face-centered cubic (fcc) structure. It has been shown that the phase transition does not lead to substantial changes in the root-mean-square thermal atomic displacements and that the Debye temperatures of the two modifications are close: 131 K for β-Ce and 127 K for γ-Ce. However, the relative (with respect to the lattice parameters) displacements along the axes change considerably. The transition from the anisotropic hexagonal to the isotropic cubic modification leads, because of a redistribution of thermal atomic displacements along the crystallographic axes, to a decrease in the maximum values of these quantities and to a weakening of their temperature dependence. It has also been shown that a change in the thermal atomic vibrations and in the vibrational contribution to the entropy of the polymorphic transformations is connected with the sign of the volume effect of the transformation (stronger upon a positive effect and weaker, upon a negative one). The reasons for this behavior are discussed.

  18. Pb(core)/ZnO(shell) nanowires obtained by microwave-assisted method

    PubMed Central

    2011-01-01

    In this study, Pb-filled ZnO nanowires [Pb(core)/ZnO(shell)] were synthesized by a simple and novel one-step vapor transport and condensation method by microwave-assisted decomposition of zinc ferrite. The synthesis was performed using a conventional oven at 1000 W and 5 min of treatment. After synthesis, a spongy white cotton-like material was obtained in the condensation zone of the reaction system. HRTEM analysis revealed that product consists of a Pb-(core) with (fcc) cubic structure that preferentially grows in the [111] direction and a hexagonal wurtzite ZnO-(Shell) that grows in the [001] direction. Nanowire length was more than 5 μm and a statistical analysis determined that the shell and core diameters were 21.00 ± 3.00 and 4.00 ± 1.00 nm, respectively. Experimental, structural details, and synthesis mechanism are discussed in this study. PMID:21985637

  19. Jamming in Disordered and Ordered States: From RLP to FCC

    NASA Astrophysics Data System (ADS)

    Silbert, Leonardo

    2011-03-01

    The concept of jamming was originally introduced in the context of zero-temperature, frictionless sphere packings through which the jamming transition was identified with the more familiar idea of random close packing. More recently, the jamming behaviour for particles with friction has led to a practical definition of the less well-defined random loose packed limit. However, there are a number of subtleties associated with jamming that extend these concepts further. Here we implement a range of protocols to generate jammed packings both with and without friction, and find that the jamming transition actually consists of a finite region in packing fraction depending on the protocol used to create the jammed state. Furthermore, we examine how it is possible to tune the structural properties of jammed packings from the disordered regime through to the ordered face centred cubic lattice, and the subsequent changes in the jamming properties as the structure is manipulated. Supported by NSF CBET-0828359.

  20. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    PubMed

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A thermally activated dislocation-based constitutive flow model of nanostructured FCC metals involving microstructural evolution

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Wu, K.; Liu, G.; Sun, J.

    2017-03-01

    Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT-Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT-Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT-Ni foils as well as reported NT-Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.

  2. 77 FR 36177 - National Environmental Policy Act Compliance for Proposed Tower Registrations; Effects of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...: Application for Antenna Structure Registration, FCC Form 854. Form Number: FCC Form 854. Respondents... Commission's rules. Needs and Uses: The purpose of FCC Form 854 is to register antenna structures (radio... make changes to existing registered antenna structures or pending applications for registration; and to...

  3. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  4. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  5. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.

    2016-05-23

    In this work, we report a hydrothermally synthesized Dy doped BaF{sub 2} (BaF{sub 2}:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF{sub 2}:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The {sup 60}Co γ- ray irradiated BaF{sub 2}:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF{sub 2}:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicablemore » as a gamma dosimeter.« less

  6. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  7. Synthesis and characterization of monodispersed silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  8. Synthesis and characterization of gold nanodogbones by the seeded mediated growth method

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Meen, Teen-Hang; Yang, Cheng-Fu

    2007-10-01

    Novel gold nanodogbones (GDBs) are successfully fabricated using a simple seeded mediated growth (SMG) method. The shapes of GDBs depend on the amount of added vitamin C solvent. The amount of vitamin C solvent was varied from 10 to 40 µl to investigate the influence of vitamin C solvent on the GDBs. It is found that the aspect ratios (R) of GDBs were in the range from 2.34 to 1.46, and the UV-vis absorption measurement revealed a pronounced blueshift on the longitudinal surface plasmon resonance (SPR) band from 713 to 676 nm. The GDBs were determined by x-ray diffraction (XRD) to be single-crystalline with a face-centered cubic (fcc) structure. The lattice constant calculated from this selected-area electron diffraction (SAED) pattern is 4.068 Å.

  9. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  10. Crystal Phase and Architecture Engineering of Lotus-Thalamus-Shaped Pt-Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution.

    PubMed

    Zhang, Zhicheng; Liu, Guigao; Cui, Xiaoya; Chen, Bo; Zhu, Yihan; Gong, Yue; Saleem, Faisal; Xi, Shibo; Du, Yonghua; Borgna, Armando; Lai, Zhuangchai; Zhang, Qinghua; Li, Bing; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua

    2018-06-07

    The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well-crystalline lotus-thalamus-shaped Pt-Ni anisotropic superstructures (ASs) via a facile one-pot solvothermal method is reported. The Pt-Ni ASs with Pt-rich surface are composed of one Ni-rich "core" with face-centered cubic (fcc) phase, Ni-rich "arms" with hexagonal close-packed phase protruding from the core, and facet-selectively grown Pt-rich "lotus seeds" with fcc phase on the end surfaces of the "arms." Impressively, these unique Pt-Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm -2 , and the turnover frequency reaches 18.63 H 2 s -1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.

    PubMed

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L

    2013-11-29

    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  12. Harmonic and Anharmonic Free Energies in Superlattices of Soft Particle Systems

    NASA Astrophysics Data System (ADS)

    Travesset, Alex; Calero, Carles; Knorowski, Chris

    Many problems in self and directed assembly rely on the rigorous calculation of free energies. In systems of nanoparticles with capping ligands, for example, superlattices are found in closely competing structures, such as hcp/fcc, cubic/hexagonal diamond or those isomorphic between MgCu2 and MgZn2. With this motivation, we investigate a general method to calculate free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of the method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to very high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place con- strains on its magnitude and allows approximate but fast and accurate estimates. We apply it to Lennard Jones sytems where we demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior and binary systems that model nanoparticle superlattices with hydrocarbon capping ligand. The research was performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under Contract Number DE-AC02-07CH11358.

  13. Thermodynamic and transport properties of YbNi 4Cd

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  14. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  15. Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites

    NASA Astrophysics Data System (ADS)

    Romhányi, Judit; Balents, Leon; Jackeli, George

    2017-05-01

    We formulate and study a spin-orbital model for a family of cubic double perovskites with d1 ions occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis reveal a rich variety of phases emerging from the interplay of Hund's rule and spin-orbit coupling. The phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical origin of the unusual amorphous valence bond state experimentally suggested for Ba2B Mo O6 (B =Y , Lu) and predicts possible ordered patterns in Ba2B Os O6 (B =Na , Li) compounds.

  16. Quantum Critical Behavior in a Concentrated Ternary Solid Solution

    PubMed Central

    Sales, Brian C.; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm; Samolyuk, German D.; May, Andrew F.; McGuire, Michael A.

    2016-01-01

    The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess –TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region. The limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system. PMID:27188715

  17. Quantum critical behavior in a concentrated ternary solid solution

    DOE PAGES

    Sales, Brian C.; Bei, Hongbin; Stocks, George Malcolm; ...

    2016-05-18

    The face centered cubic (fcc) alloy NiCoCr x with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess –TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantummore » critical region. Lastly, the limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.« less

  18. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Rui; Levard, Clément; Marinakos, Stella M.

    2012-04-02

    The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure asmore » a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.« less

  19. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  20. Mobile satellite regulation in the United States

    NASA Technical Reports Server (NTRS)

    Levin, Lon C.; Sonnenfeldt, Walter H.

    1990-01-01

    During the last decade, the U.S. FCC has developed the regulatory structure for the provision of mobile services via satellite. In May 1989, the FCC awarded American Mobile Satellite Corporation (AMSC) a license to provide the full range of domestic mobile satellite services in the U.S. At that time, the FCC reaffirmed the U.S. mobile satellite industry structure and spectrum allocations that had been adopted previously. Also in May 1989, the FCC authorized the Communications Satellite Corporation (COMSAT), the U.S. Signatory to Inmarsat, to provide international aeronautical satellite service via the Inmarsat system. Earlier in 1989, the FCC permitted the use of Ku-band satellites to provide messaging and tracking services. In the mid-1980's, the FCC established the Radiodetermination Satellite Service and awarded licenses. Among the mobile satellite matters currently facing the FCC are whether additional spectrum should be allocated for domestic 'generic' mobile satellite services, the regulatory structure for the provision of mobile satellite service on an interim basis before AMSC launches its dedicated satellites, and whether to authorize a low earth orbit satellite system to provide mobile data service.

  1. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  2. A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids

    NASA Astrophysics Data System (ADS)

    Abdul-Hafidh, Esam H.; Aïssa, Brahim

    2016-08-01

    We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.

  3. Role of distortion in the hcp vs fcc competition in rare-gas solids

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2011-05-01

    As a prototype of an initial or intermediate structure between hcp and fcc lattices we consider a distorted bcc crystal. We calculate the temperature and pressure dependences of the lattice parameters for the heavier rare gas solids Ar, Kr, Xe in a quasiharmonic approximation with Aziz potentials, and confirm earlier predictions that the hcp structure predominates over fcc in the bulk within wide ranges of P and T. The situation is different for confined clusters with up to 105 atoms, where, owing to the specific surface energetics and terminations, structures with five-fold symmetry made up of fcc fragments are dominant. As a next step we consider the free relaxation of differently distorted bcc clusters, and show that two types (monoclinic and orthorhombic) of initial distortion are a driving force for the final hcp vs fcc configurations. Possible energy relationships between the initial and final structures are obtained and analyzed.

  4. Effect of Hydrogen Exposure on Mechanical and Tribological Behavior of CrxN Coatings Deposited at Different Pressures on IN718

    PubMed Central

    Obrosov, Aleksei; Sutygina, Alina N.; Volinsky, Alex A.; Manakhov, Anton; Weiß, Sabine; Kashkarov, Egor B.

    2017-01-01

    In the current study, the properties of the CrxN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrxN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr2N and fcc-CrN structure to approximately stoichiometric Cr2N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistance due to the presence of cubic phase with higher packing density in comparison to the hexagonal structure. After hydrogenation, no changes in phase composition were observed; however, a small amount of hydrogen is accumulated in the coatings. An increase of coating hardness and elastic modulus was observed after hydrogen exposure. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient up to 20%–30%. The best value of 0.25 was reached for hydrogen exposed CrxN coating deposited at 300 mPa. PMID:28772923

  5. Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface.

    PubMed

    Chatterjee, Dipanwita; Shetty, Shwetha; Müller-Caspary, Knut; Grieb, Tim; Krause, Florian F; Schowalter, Marco; Rosenauer, Andreas; Ravishankar, Narayanan

    2018-03-14

    Ultrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid-liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.

  6. Effect of pressure on the superconducting {ital T}{sub {ital c}} of lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissen, V.G.; Ponyatovskii, E.G.; Nefedova, M.V.

    1996-04-01

    The effect of pressure on the superconducting transition temperature {ital T}{sub {ital c}} of La was studied up to 50 GPa. {ital T}{sub {ital c}}({ital P}) shows a rather complicated variation with a discontinuous increase in {ital T}{sub {ital c}} at about 2.2 GPa due to the first-order phase transition from dhcp to fcc structure. At about 5.4 GPa a sharp peak is observed due to the soft-mode phase transition from fcc to the distorted fcc structure and two broad maxima are found within the stability region of the distorted fcc structure around 12 and 39 GPa. Some differences betweenmore » these and previous low-pressure data for metastable fcc La are noticed. The results are discussed in connection with pressure-induced structural phase transitions found in earlier x-ray-diffraction experiments and band-structure calculations giving evidences for van Hove singularities in the density of states. {copyright} {ital 1996 The American Physical Society.}« less

  7. Controlled nanocrystallinity in Gd nanobowls leads to magnetization of 226 emu/g

    NASA Astrophysics Data System (ADS)

    Ertas, Y. N.; Bouchard, L.-S.

    2017-03-01

    Gadolinium (Gd) metal is of great interest in applications such as contrast-enhanced MRI and magnetic cooling. However, it is generally difficult to produce oxide-free and highly magnetic Gd nanoparticles due to the aggressively reactive nature of Gd with oxygen. Herein, we utilized a nanofabrication route and optimization of experimental conditions to produce highly magnetic air-stable oxide-free Gd nanoparticles. The nanobowls displayed the highest saturation magnetization to date for Gd, reaching 226.4 emu/g at 2 K. The crystalline composition of Gd is found to affect the observed magnetization values: the higher magnetization is observed for nanoparticles that have a lower content of the paramagnetic face-centered cubic (fcc) phase and a greater content of the ferromagnetic hexagonal close-packed (hcp) phase. The relative fcc content was found to depend on the deposition rate of the Gd metal during the nanofabrication process, thereby correlating with altered magnetization.

  8. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    NASA Astrophysics Data System (ADS)

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-01

    We propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particle types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. Our results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.

  9. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.

    PubMed

    Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong

    2016-08-23

    The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.

  10. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    DOE PAGES

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-02

    Here, we propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particlemore » types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. These results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.« less

  11. Highly anisotropic exchange interactions of j eff = 1 2 iridium moments on the fcc lattice in La 2 B IrO 6   ( B = Mg , Zn )

    DOE PAGES

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; ...

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $$_2$$ZnIrO$$_6$$ and La$$_2$$MgIrO$$_6$$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  12. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1-H alloy

    NASA Astrophysics Data System (ADS)

    Shibazaki, Yuki; Terasaki, Hidenori; Ohtani, Eiji; Tateyama, Ryuji; Nishida, Keisuke; Funakoshi, Ken-ichi; Higo, Yuji

    2014-03-01

    Planetary cores are considered to consist of an iron-nickel (Fe-Ni) alloy and light elements and hydrogen is one of plausible light elements in the core. Here we have performed in situ X-ray diffraction experiments on an Fe0.9Ni0.1-H system up to 15.1 GPa and 1673 K, and investigated the effect of Ni on phase relations of FeHx under high pressure and high temperature. The experimental system in the present work was oversaturated with hydrogen. We found a face-center-cubic (fcc) phase (with hydrogen concentration up to x∼1) and a body-center-cubic (bcc) phase (x < 0.1) as stable phases. The partial melting was observed below 6 GPa. We could not observe a double-hexagonal-close-packed (dhcp) phase because of limitations in pressure and temperature conditions. The stability field of each phase of Fe0.9Ni0.1Hx was almost same as that of FeHx. The solidus of Fe0.9Ni0.1Hx was 500-700 K lower than the melting curve of Fe and its liquidus was 400-600 K lower than that of Fe in the pressure range of this study. Both the solidus and liquidus of Fe0.9Ni0.1Hx were depressed at around 3.5 GPa, as was the solidus of FeHx. The hydrogen contents in fcc-Fe0.9Ni0.1Hx just below solidus were slightly lower than those of fcc-FeHx, which suggests that nickel is likely to prevent dissolution of hydrogen into iron. Due to the lower hydrogen solubilities in Fe0.9Ni0.1 compared to Fe, the solidus of Fe0.9Ni0.1Hx is about 100-150 K higher than that of FeHx.

  13. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    NASA Astrophysics Data System (ADS)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  14. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    NASA Astrophysics Data System (ADS)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  15. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  16. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  17. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract

    NASA Astrophysics Data System (ADS)

    Guo, Mingxia; Li, Wei; Yang, Feng; Liu, Huihong

    2015-05-01

    The present work reports the green synthesis of gold nanoparticles (AuNPs) by water extract of Eucommia ulmoides (E. ulmoides) bark. The effects of various parameters such as the concentration of reactants, pH of the reaction mixture, temperature and the time of incubation were explored to the controlled formation of gold nanoparticles. The characterization through high resolution-transmission electron microscopic (HRTEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) infer that the as-synthesized AuNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from zeta potential and dynamic light scattering (DLS) suggest the good stability and narrow size distribution of the AuNPs. This method for synthesis of AuNPs is simple, economic, nontoxic and efficient. The as-synthesized AuNPs show excellent catalytic activity for the catalytic reducing decoloration of model compounds of azo-dye: reactive yellow 179 and Congo red.

  18. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  19. The application of an atomistic J-integral to a ductile crack.

    PubMed

    Zimmerman, Jonathan A; Jones, Reese E

    2013-04-17

    In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.

  20. Z3 topological order in the face-centered-cubic quantum plaquette model

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep

    2018-04-01

    We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order, which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3 statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of topological phases, some of which are novel fracton phases.

  1. Coexistence of a metastable double hcp phase in bcc-fcc structure transition of Te under high pressure

    NASA Astrophysics Data System (ADS)

    Akahama, Yuichi; Okawa, Naoki; Sugimoto, Toshiyuki; Fujihisa, Hiroshi; Hirao, Naoshisa; Ohishi, Yasuo

    2018-02-01

    The structural phase transitions of tellurium (Te) are investigated at pressures of up to 330 GPa at 298 K using an X-ray powder diffraction technique. In the experiments, it was found that the high-pressure bcc phase (Te-V) transitioned to the fcc phase (Te-VI) at 99 GPa, although a double hcp phase (dhcp) coexisted with the fcc phase. As the pressure was increased and decreased, the dhcp phase vanished at 255 and 100 GPa, respectively. These results suggest that the dhcp phase is metastable at 298 K and the structure of the highest-pressure phase of Te is fcc. The present results provide important information regarding the high-pressure behavior of group-16 elements.

  2. Photonic crystals: Theory and device applications

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui

    In this thesis, first-principle frequency-domain and time-domain methods are developed and applied to investigate various properties and device applications of photonic crystals. In Chapter 2, I discuss the two numerical methods used to investigate the properties of photonic crystals. The first solves Maxwell's equations in the frequency domain, while the second solves the equations in the time domain. The frequency-domain method yields the frequency, polarization, symmetry, and field distribution of every eigenmode of the system; the time-domain method allows one to determine the temporal behavior of the modes. In Chapter 3, a new class of three-dimensional photonic crystal structures is introduced that is amenable for fabrication at submicron-length scales. The structures give rise to a 3D photonic bandgap. They consist of a layered structure in which a series of cylindrical air holes are etched at normal incidence. The calculation demonstrates the existence of a gap as large as 14% of the mid-gap frequency using Si, SiO2, and air; and 23% using Si and air. In Chapter 4, the bandstructure and transmission properties of three-dimensional metallodielectric photonic crystals are presented. The metallodielectric crystals are modeled as perfect electrical conducting objects embedded in dielectric media. We investigate the face-centered-cubic (fcc) lattice, and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excellent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal spheres. The gaps appear between the second and third bands, and their sizes can be larger than 60% when the radius of the spheres exceeds 21% of the cubic unit cell size. In Chapter 5, I investigate the properties of resonant modes which arise from the introduction of local defects in two-dimensional (2D) and 3D photonic crystals. The properties of these modes can be controlled by changing the nature and the size of the defects. The symmetry associated with these modes translates into an orbital angular momentum for each photon. In Chapter 6, a new type of high-Q microcavity is introduced that consists of a channel waveguide and a one-dimensional photonic crystal. A band gap for the guided modes is opened and a sharp resonant state is created by adding a defect in the periodic system. Strong field confinement of the defect can be achieved with a modal volume less than half of a cubic wavelength. The coupling efficiency to this mode from a channel waveguide exceeds 80%. In Chapter 7, a tunable single-mode waveguide microcavity is proposed that is well suited for frequency modulations and switching. The cavity mode has a volume of less than one cubic half-wavelength, and the resonant frequency is tuned by refractive-index modulation. Picosecond on-off switching times are achievable when two of these cavities are placed in series. In Chapter 8, I show that a thin slab of two-dimensional photonic crystal can alter drastically the radiation pattern of spontaneous emission. By eliminating all guided modes at the transition frequencies, spontaneous emission can be coupled entirely to free space modes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)

  3. Assessment of airborne asbestos exposure during the servicing and handling of automobile asbestos-containing gaskets.

    PubMed

    Blake, Charles L; Dotson, G Scott; Harbison, Raymond D

    2006-07-01

    Five test sessions were conducted to assess asbestos exposure during the removal or installation of asbestos-containing gaskets on vehicles. All testing took place within an operative automotive repair facility involving passenger cars and a pickup truck ranging in vintage from late 1960s through 1970s. A professional mechanic performed all shop work including engine disassembly and reassembly, gasket manipulation and parts cleaning. Bulk sample analysis of removed gaskets through polarized light microscopy (PLM) revealed asbestos fiber concentrations ranging between 0 and 75%. Personal and area air samples were collected and analyzed using National Institute of Occupational Safety Health (NIOSH) methods 7400 [phase contrast microscopy (PCM)] and 7402 [transmission electron microscopy (TEM)]. Among all air samples collected, approximately 21% (n = 11) contained chrysotile fibers. The mean PCM and phase contrast microscopy equivalent (PCME) 8-h time weighted average (TWA) concentrations for these samples were 0.0031 fibers/cubic centimeters (f/cc) and 0.0017 f/cc, respectively. Based on these findings, automobile mechanics who worked with asbestos-containing gaskets may have been exposed to concentrations of airborne asbestos concentrations approximately 100 times lower than the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cc.

  4. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    PubMed

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in <222> direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction <022>.This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  5. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul

    2016-04-19

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less

  6. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  7. Volumetric Interpretation of Protein Adsorption: Interfacial Packing of Protein Adsorbed to Hydrophobic Surfaces from Surface-Saturating Solution Concentrations

    PubMed Central

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L.; Vogler, Erwin A.

    2010-01-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square-or-hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square-or-hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. PMID:21035180

  8. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    PubMed

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Multiscale structural changes of atomic order in severely deformed industrial aluminum

    NASA Astrophysics Data System (ADS)

    Samoilenko, Z. A.; Ivakhnenko, N. N.; Pushenko, E. I.; Pashinskaya, E. G.; Varyukhin, V. N.

    2016-02-01

    The regularities of multiscale structural changes in the atomic order of the aluminum alloy AD-1 after a severe cold plastic deformation by conventional rolling in smooth rolls or in rolls with relief recesses favorable for shear deformation have been investigated. It has been found that there are four types of structural fractions that differ in scale and perfection of atomic order: crystallographic planes with a long-range order; nanoscale fragments of the planes ( D = 100-300 Å) with an incipient long-range order; smaller groups of atoms ( D = 20-30 Å) of amorphized structure; and the least ordered structural fraction of intercluster medium, keeping only a short-range atomic order (2-3 interatomic distances, 10 Å). The presence of diffuse halo bands in the region of intense Debye lines indicates phase transitions of the order → disorder type with the formation of one to three groups of amorphous clusters with the dominance, in the nanometer scale, of the atomic order characteristic of the family of planes (111), (220), and (311) of crystalline aluminum. We have found a dynamic phase transition with the changing crystallographic order of aluminum, with the matrix structure of a face-centered cubic (FCC) lattice, in the form of nanosized local groups of atoms, that is, the deformation clusters of aluminum with a simple cubic K6 lattice. In the case of conventional rolling, the development of large clusters 50-500 Å in size is observed; however, in the use of rolls with relief recesses, the difference in the sizes of the clusters is one half as much: 50-250 Å. Based on the analysis of the integrated intensity of incoherent X-ray scattering by the samples, we have elucidated the nature of the lowest measured density for the sample subjected to conventional rolling, which consists in the volume concentration of disorderly arranged atoms, the highest of the compared structures, which indicates the formation therein of the greatest amount of fluctuation "voids."

  10. Grain Boundary Character Distributions In Isostructural Materials

    NASA Astrophysics Data System (ADS)

    Ratanaphan, Sutatch

    Anisotropic grain boundary character distributions (GBCDs), which influence macroscopic materials properties, are thought to be controlled by the grain boundary energy anisotropy. Structurally, grain boundary could be viewed as two free surfaces joined together. Grain boundary energy could be simply defined by the total excess energy for creating two free surfaces minus the energy gained when new bonds are formed between these surfaces. This implies that different crystal structure should have different GBEDs and GBCDs. It was recently discovered that grain boundary energy distributions (GBED) in isostructural materials, a class of materials that share the same crystal structure, are directly related to one another. This suggests that GBCDs in isostructural materials might also be related in a similar way. To test this hypothesis, electron backscatter diffraction (EBSD) was used to map grain orientations in Ag, Au, Cu, Fe, and Mo. The GBCDs were determined from the stereological interpretation of EBSD maps containing on the order of 100,000 grains. It was found that the GBCDs of face-centered cubic (FCC) metals are statistically correlated, while the GBCDs of body-centered cubic (BCC) Fe and Mo are not correlated to the GBCD of FCC metals. The degree of the correlations among the FCC metals is weaker if there are significant differences in grain shape or texture. For example, Ag has the weakest correlation to the other FCC materials and also has quantitatively different grain shapes and texture. The relationship between the populations and energies of grain boundaries was also studied. By comparing the GBCDs of Al, Au, Cu, and Ni to the energies of 388 grain boundaries previously calculated by the Embedded Atom Method (EAM), we observed a moderately inverse correlation between the relative areas of grain boundaries and their energies. Interestingly, there are strong inverse correlations between the energies and populations of the most common grain boundaries (Sigma3, Sigma9, and Sigma27). Because the enhancement of twin related boundaries due to the prevalence Sigma3 boundaries results in a decrease in the grain boundary populations for the other boundary types, this inverse correlation is influenced by the crystallographic constraints at triple junctions. In other words, having an anisotropic misorientation distribution with strong maxima for certain boundaries biases the inverse correlation between grain boundary population and energy for other boundaries and causes different slopes at each misorientation. Interestingly, the inverse correlation at each misorientation is consistent with the Boltzmann distribution. Based on our results, it is possible to predict the GBCDs and GBEDs in isostructural polycrystalline materials by using a single GBCD and GBED. This principle is demonstrated by predicting the GBCD and GBED of Actinium (Ac). To investigate the GBED in the isostructural BCC metals, the energies of 408 grain boundaries in Fe and Mo were computed using atomistic simulations based on the embedded-atom method (EAM) potential. We found that the calculated boundary energies in Fe and Mo were strongly correlated and scaled with the ratio of the cohesive energy divided by the square of the lattice constant (Ecoh/a02). We would expect that the GBCD of Fe and Mo might be correlated in a similar manner to that of FCC metals. To test this hypothesis, we compared the GBCDs of Fe and Mo. We found that the GBCDs of Fe and Mo are moderately and strongly correlated when all boundary types and only Sigma3 boundaries were considered, respectively. In this thesis, the results demonstrated that the GBCDs of isostructural materials are correlated with one another and the magnitudes of correlation coefficients varied. Reduced correlations were observed when there were differences in the microstructure and crystallographic texture. The inverse relationship between grain boundary population and energy is more strongly correlated at each misorientation than over the entire five macroscopic parameters of grain boundary, especially when there is significant misorientation texture. This relationship leads to GBCDs of isostructural materials that are also more strongly correlated at each misorientation than over the entire grain boundary space.

  11. Antiferromagnetism and phase diagram in ammoniated alkali fulleride salts

    PubMed

    Takenobu; Muro; Iwasa; Mitani

    2000-07-10

    Intercalation of neutral ammonia molecules into trivalent face-centered-cubic (fcc) fulleride superconductors induces a dramatic change in electronic states. Monoammoniated alkali fulleride salts (NH3)K3-xRbxC60, forming an isostructural orthorhombic series, undergo an antiferromagnetic transition, which was found by the electron spin resonance experiment. The Neel temperature first increases with the interfullerene spacing and then decreases for (NH3)Rb3C60, forming a maximum at 76 K. This feature is explained by the generalized phase diagram of Mott-Hubbard transition with an antiferromagnetic ground state.

  12. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  13. Electrodeposition of Nanocrystalline Ni–Fe Alloy Coatings Based on 1-Butyl-3-Methylimidazolium-Hydrogen Sulfate Ionic Liquid.

    PubMed

    He, Xinkuai; Zhang, Chuang; Zhu, Qingyun; Lu, Haozi; Cai, Youxing; Wu, Luye

    2017-02-01

    The electrodeposition of nanocrystalline Ni–Fe alloy coatings and associated nucleation/growth processes are investigated on the glassy carbon (GC) electrode in 1-butyl-3-methylimidazolium-hydrogen sulfate ([BMIM]HSO4) ionic liquid (IL). Cyclic voltammetric data suggest that the co-electrodeposition of Ni–Fe alloys is quasi-reversible. Moreover, chronoamperometry results indicate that the electrodeposition proceeds via a simultaneous nucleation and three-dimensional growth mechanism. In addition, the effects of electrodeposition potential and electrolyte temperature on the coating thickness and Fe content are also studied. The microstructure and composition of the Ni–Fe alloy coatings on Cu substrate are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS). SEM observations show that these electrodeposits present a dense and compact structure, EDS analysis indicates that the coatings are composed of Ni and Fe, XRD pattern shows the coatings are crystalline with a face-centred cubic (fcc) structure. Tafel plots reveal that the Ni–Fe alloy prepared from [BMIM]HSO4 IL presents better corrosion resistance than that of pure Ni.

  14. Synthesis of Crooked Gold Nanocrystals by Electrochemical Technique

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Chen, Ming-Da; Meen, Teen-Hang

    2005-07-01

    In this article, we demonstrate the synthesis of crooked gold nanocrystals (CGNCs) by an electrochemical technique using micelle templates formed by two surfactants with different amounts of isopropanol solvent, the primary surfactant being hexadecyltrimethylammonium bromide (C16TABr) and the cosurfactant being tetradodecylammonium bromide (TC12ABr). To investigate the influence of isopropanol solvent on the CGNCs, the amount of isopropanol was varied in the range from 50 to 300 μL. It was found that the aspect ratios (γ) of CGNCs were in the range from 1.06 to 1.46, and the UV--vis optical absorption measurement revealed a pronounced redshift of the surface plasmon band from 532 to 560 nm. The CGNCs were composed of many large gold grains with small gold nuclei, and it was determined that several grains are present within each of the CGNCs using a dark-field transmission electron microscopy (TEM) image. It is suggested that the CGNCs have a polycrystalline structure. The CGNCs have been determined to be pure gold with a face-centered cubic (fcc) structure by electron diffraction (ED) analysis.

  15. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  16. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  17. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy.

    PubMed

    Okamoto, Norihiko L; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M T; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P

    2016-10-24

    High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33-43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of -0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5-4.5 nm near the screw orientation to ~5-8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m 2 . Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20-50 at.%, and atomic size misfit of ~4%.

  18. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy

    PubMed Central

    Okamoto, Norihiko L.; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M. T.; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-01-01

    High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33–43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of –0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5–4.5 nm near the screw orientation to ~5–8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m2. Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20–50 at.%, and atomic size misfit of ~4%. PMID:27775026

  19. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    NASA Astrophysics Data System (ADS)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  20. 76 FR 31332 - Information Collection Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... INFORMATION: OMB Control No.: 3060-0139. Title: Application for Antenna Structure Registration. Form No.: FCC... complete FCC Form 854; 1 hour to place registration number at base of antenna structure. Frequency of... in cases where there is a reasonable possibility that an antenna structure may cause a hazard to air...

  1. Symmetry-guaranteed nodal-line semimetals in an fcc lattice

    NASA Astrophysics Data System (ADS)

    Kawakami, Takuto; Hu, Xiao

    2017-12-01

    We demonstrate theoretically that nodal-line semimetals (NLSs) can be realized in an fcc lattice with orbitals belonging to the same irreducible representation, such as {px,py,pz} or {dx y,dy z,dz x} orbitals on every lattice site. The three orbitals are divided into two subgroups in terms of the parity with respect to the mirror reflections on high-symmetry planes of the fcc lattice, which, with rotation symmetry, endows symmetry-guaranteed NL passing through W points in the Brillouin zone. Depending on the parameters, there also appears an accidental NL around the Γ point. We notice that the symmetry-guaranteed NL addressed in the present work can be found in band structures of elemental solids taking the fcc structure, such as Cu, Ag, Au, In, Ga, etc., as well as opal, which is an fcc photonic crystal of SiO2 spheres. Furthermore, we clarify that the fcc lattice of Si spheres exhibits a NL in a frequency band where no other photonic band exists, which provides a unique platform to realize topological NLSs under intensive search, and can be explored for achieving slow light.

  2. Electronic structure and properties of lanthanum

    NASA Astrophysics Data System (ADS)

    Nixon, Lane; Papaconstantopoulos, Dimitrios

    2008-03-01

    The total energy and electronic structure of lanthanum have been calculated in the bcc, fcc, hcp and dhcp structures for pressures up to 50 GPa. The full potential linearized-augmented-planewave method was used with both the local-density and general-gradient approximations. The correct phase ordering has been found, with lattice parameters and bulk moduli in good agreement with experimental data. The GGA method shows excellent agreement overall while the LDA results show larger discrepancies. The calculated strain energies for the fcc and bcc structures demonstrate the respective stable and unstable configurations at ambient conditions. The calculated superconductivity properties under pressure for the fcc structure are also found to agree well with measurements. Both LDA and GGA, with minor differences, reproduce well the experimental results for Tc.

  3. Thermodynamic properties of model CdTe/CdSe mixtures

    DOE PAGES

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; ...

    2015-02-20

    We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation frommore » ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.« less

  4. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  5. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  6. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  7. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  8. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  9. Computational study of dislocation based mechanisms in FCC materials

    NASA Astrophysics Data System (ADS)

    Yellakara, Ranga Nikhil

    Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle size has contributed to the strength of these alloys. This work has been successful of capturing complex dislocation mechanisms that involves interactions with particles during the deformation of particle hardened FCC alloys. Finally, the DD model has been extended into studying the cyclic behavior of FCC metallic alloys. This study showed that the strength as well as the cyclic hardening increases due to grain refinement and increase in particle volume fraction. It also showed that the cyclic deformation of ultra-fine grained (UFG) material have undergone cyclic softening at all plastic strain amplitudes. The results provided very useful quantitative information for developing future fatigue models.

  10. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.

    PubMed

    Vogt, E T C; Weckhuysen, B M

    2015-10-21

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.

  11. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis

    PubMed Central

    2015-01-01

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875

  12. 75 FR 39945 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... FEDERAL COMMUNICATIONS COMMISSION [CG Docket No. 10-51; FCC 10-88] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this... Practices of the Video Relay Service Program, Declaratory Ruling, document FCC 10-88, adopted May 24, 2010...

  13. Sputtering characteristics, crystal structures, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0 0 0 1) and glass substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2012-12-01

    Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.

  14. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  15. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  16. Ammoniated alkali fullerides (ND(3))(x)NaA(2)C(60): ammonia specific effects and superconductivity.

    PubMed

    Margadonna, Serena; Aslanis, Efstathios; Prassides, Kosmas

    2002-08-28

    The crystal structure of the superconducting (ND(3))(x)()NaA(2)C(60) (0.7 < or = x < or = 1, A= K, Rb) fullerides (T(c)= 6-15 K) has been studied by synchrotron X-ray and neutron powder diffraction. It is face-centered cubic (fcc) to low temperatures with Na(+)-ND(3) pairs residing in the octahedral interstices. These are disordered over the corners of two "interpenetrating" cubes with the Na(+) ions and the N atoms displaced by approximately 2.0 A and approximately 0.5 A from the center of the site and statically disordered over the corners of the inner and outer cube, respectively. Close contacts between the D atoms of the ND(3) molecules and electron rich 6:6 C-C bonds of neighboring C(60) units provide the signature of weak N-D.pi hydrogen-bonding interactions, which control the intermolecular packing in the crystal and may determine the unusual superconducting properties.

  17. Luminescence and antibacterial studies of silver nanoparticles using the esterases-containing latex of E. Tirucalli plant via green route

    NASA Astrophysics Data System (ADS)

    Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.

    2016-04-01

    Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.

  18. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  19. Diverse assembly behavior in colloidal Platonic polyhedral sphere clusters

    NASA Astrophysics Data System (ADS)

    Marson, Ryan; Teich, Erin; Dshemuchadse, Julia; Glotzer, Sharon; Larson, Ronald

    We simulate the self-assembly of colloidal ``polyhedral sphere clusters (PSCs)'', which consist of equal-sized spheres placed at the vertices of a polyhedron such that they just touch along each edge. These colloidal building blocks have recently been experimentally fabricated; here we predict crystal structures that would appear in the phase diagram of resulting particle assemblies. We use Brownian dynamics (BD) simulations of rigid body clusters performed in the open-source GPU-based HOOMD-Blue particle simulation package to show the assembly behavior of the 5 Platonic PSCs. The simulations contain as many as 4096 individual polyhedra, across over 30 different densities per cluster geometry, with some ordered phases possessing unit cells with 20 or more particles. We observe the formation of not only traditional cubic structures such as BCC and FCC, but also more complex phases having structure symmetries with Pearson symbols - hP7, cP20, cI2, mP6, and hR3. The observations reported here will serve as a guide for future colloidal assembly experiments using an expanded library of PSCs, consisting of other regular and irregular polyhedra, allowing researchers to target specific arrangements of ``halo'' and ``core'' particles for technologically relevant applications including photonics and structural color.

  20. 77 FR 18106 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-54] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule... adopted by the FCC to prevent fraud, waste, and abuse in the Video Relay Service (VRS) industry. DATES...

  1. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    PubMed

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  2. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes

    PubMed Central

    Tian, Y. Z.; Zhao, L. J.; Chen, S.; Shibata, A.; Zhang, Z. F.; Tsuji, N.

    2015-01-01

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE. PMID:26582568

  3. Effects of germanium and nitrogen incorporation on crystallization of N-doped Ge2+xSb2Te5 (x = 0,1) thin films for phase-change memory

    NASA Astrophysics Data System (ADS)

    Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling

    2013-01-01

    The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.

  4. Stacking-fault strengthening of biomedical Co-Cr-Mo alloy via multipass thermomechanical processing.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Sato, Shigeo; Chiba, Akihiko

    2017-09-07

    The strengthening of metallic biomaterials, such as Co-Cr-Mo and titanium alloys, is of crucial importance to the improvement of the durability of orthopedic implants. In the present study, we successfully developed a face-centered cubic (fcc) Co-Cr-Mo alloy with an extremely high yield strength (1400 MPa) and good ductility (12%) by multipass hot-rolling, which is suitable for industrial production, and examined the relevant strengthening mechanisms. Using an X-ray diffraction line-profile analysis, we revealed that a substantial increase in the number of stacking faults (SFs) in the fcc γ-matrix occurred at a greater height reduction (r), while physical modeling demonstrated that the contribution of the accumulated SFs (i.e., the reduction in SF spacing) with an increase in r successfully explains the entire strengthening behavior of the hot-rolled alloy. The present study sheds light on the importance of the SF strengthening mechanism, and will help to guide the design and manufacturing strategy for the high-strength Co-Cr-Mo alloys used in highly durable medical devices.

  5. Medical Student Self-Efficacy with Family-Centered Care during Bedside Rounds

    PubMed Central

    Young, Henry N.; Schumacher, Jayna B.; Moreno, Megan A.; Brown, Roger L.; Sigrest, Ted D.; McIntosh, Gwen K.; Schumacher, Daniel J.; Kelly, Michelle M.; Cox, Elizabeth D.

    2012-01-01

    Purpose Factors that support self-efficacy must be understood in order to foster family-centered care (FCC) during rounds. Based on social cognitive theory, this study examined (1) how 3 supportive experiences (observing role models, having mastery experiences, and receiving feedback) influence self-efficacy with FCC during rounds and (2) whether the influence of these supportive experiences was mediated by self-efficacy with 3 key FCC tasks (relationship building, exchanging information, and decision making). Method Researchers surveyed 184 students during pediatric clerkship rotations during the 2008–2011 academic years. Surveys assessed supportive experiences and students’ self-efficacy with FCC during rounds and with key FCC tasks. Measurement models were constructed via exploratory and confirmatory factor analyses. Composite indicator structural equation (CISE) models evaluated whether supportive experiences influenced self-efficacy with FCC during rounds and whether self-efficacy with key FCC tasks mediated any such influences. Results Researchers obtained surveys from 172 eligible students who were 76% (130) White and 53% (91) female. Observing role models and having mastery experiences supported self-efficacy with FCC during rounds (each p<0.01), while receiving feedback did not. Self-efficacy with two specific FCC tasks, relationship building and decision making (each p < 0.05), mediated the effects of these two supportive experiences on self-efficacy with FCC during rounds. Conclusions Observing role models and having mastery experiences foster students’ self-efficacy with FCC during rounds, operating through self-efficacy with key FCC tasks. Results suggest the importance of helping students gain self-efficacy in key FCC tasks before the rounds experience and helping educators implement supportive experiences during rounds. PMID:22534602

  6. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  7. Atomic mean-square displacement of a solid: A Green's-function approach

    NASA Astrophysics Data System (ADS)

    Shukla, R. C.; Hübschle, Hermann

    1989-07-01

    We have presented a Green's-function method of calculating the atomic mean-square displacement (MSD) of a solid. The method effectively sums a class of all anharmonic contributions to the MSD. From the point of view of perturbation theory (PT) our expression for MSD includes the lowest-order (λ2) PT contributions (cubic and quartic) with correct numerical coefficients. The numerical results obtained by this method in the high-temperature limit for a fcc nearest-neighbor Lennard-Jones-solid model are in excellent agreement with the Monte Carlo (MC) method for the same model over the entire temperature range of the solid. Highly accurate results for the order-λ2 PT contributions to MSD are obtained by eliminating the uncertainty in the convergence of the cubic contributions in the earlier work of Heiser, Shukla, and Cowly and they are now in much better agreement with the MC results but still inferior to the Green's-function method at the highest temperature.

  8. Molecular Dynamics Simulations of Cubic Phases in Pluronics Systems and Their Role in Templating Nanoparticles

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua; Travesset, Alex; Lorenz, Chris

    2007-03-01

    We discuss molecular dynamics simulations aimed at predicting phase diagrams in Pluronic systems. Crystalline phases with cubic symmetries are particularly challenging to simulate. A general method that is able to obtain these phases is presented. As an example, we show our results for a system of ABA triblock polymers where each hydrophilic A block contains 10 beads and the hydrophobic block B contains 7 beads. These values match the ratio of PEO to PPO in Pluronic F127. Numerous simulation runs are carried out with differing initial conditions, which consistently produce textbook bcc and fcc lattices of micelles along with two other distorted bcc lattices. We find that the formation of a lattice is sensitive to the system's preparation and depends mainly on the kinetic temperature and equilibration time. Examination of the distorted lattices shows that they are related to the finite size of the simulation box. We conclude with some discussion on using these crystals as a template for nanoparticles or biomineralization.

  9. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  10. Structural characterization of sputter-deposited SS304+x aluminum (x = 0, 4, 7 and 10 wt.%) coatings and mechanically milled titanium, zirconium and hafnium powders

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao

    Study of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation---304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and nanocrystalline Ti, Zr and Hf powders processed by mechanical milling (MM). The objective of the study was to understand the crystallographic and microstructural aspects of these materials. Four SS304+Al coatings with a nominal Al percentages of 0, 4, 7 and 10 wt.% in the coatings were deposited on an SS304 substrate by PEMS using SS304 and Al targets. The as-deposited coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and three-dimensional atom probe microscopy (3DAP). Surface morphology and chemical analysis were studied by SEM. Phase identification was carried out by XRD and TEM. The microstructural features of all the coatings, as observed in the TEM, consisted of columnar grains with the columnar grain width (a measure of grain size) increasing with an increase in the Al content. The coatings had grains with average grain sizes of about 100, 290, 320 and 980 nm, respectively for 0, 4, 7 and 10 wt.% Al. The observed grain structures and increase in grain size were related to substrate temperature during deposition. XRD results indicated that the Al-free coating consisted of the non-equilibrium ferrite and sigma phases. In the 4Al, 7Al and 10Al coatings, equilibrium ferrite and B2 phases were observed but no sigma phase was found. In 10Al coating, we were able to demonstrate experimentally using 3DAP studies that NiAl phase formation is preferred over the FeAl phase at nano scale. During mechanical milling of the hexagonal close packed (HCP) metals Hf, Ti and Zr powders, unknown nanocrystalline phases with face centered cubic (FCC) structure were found. The FCC phases could be either allotropes of the respective metals or impurity stabilized phases. However, upon MM under high purity conditions, it was revealed that the FCC phases were impurity stabilized. The decrease in crystallite size down to nanometer levels, an increase in atomic volume, lattice strain, and possible contamination were the factors responsible for the transformation.

  11. Tensile and shear loading of four fcc high-entropy alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Schönecker, Stephan; Li, Wei; Varga, Lajos K.; Irving, Douglas L.; Vitos, Levente

    2018-03-01

    Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc) high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. We benchmark the computational accuracy against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [11 2 ¯] (111 ) shear deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear loading, relaxation reduces the ISS by ˜50 % for all considered HEAs. We demonstrate that the dimensionless tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found in the case of the empirical criterion.

  12. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  13. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  14. Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties.

    PubMed

    Vega, Lorena; Ruvireta, Judit; Viñes, Francesc; Illas, Francesc

    2018-01-09

    The present work surveys the performance of various widely used density functional theory exchange-correlation (xc) functionals in describing observable surface properties of a total of 27 transition metals with face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. A total of 81 low Miller index surfaces were considered employing slab models. Exemplary xc functionals within the three first rungs of Jacob's ladder were considered, including the Vosko-Wilk-Nusair xc functional within the local density approximation, the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria functional as a meta-GGA functional. Hybrids were excluded in the survey because they are known to fail in properly describing metallic systems. In addition, two variants of PBE were considered, PBE adapted for solids (PBEsol) and revised PBE (RPBE), aimed at improving adsorption energies. Interlayer atomic distances, surface energies, and surface work functions were chosen as the scrutinized properties. A comparison with available experimental data, including single-crystal and polycrystalline values, shows that no xc functional is best at describing all of the surface properties. However, in statistical mean terms the PBEsol xc functional is advised, while PBE is recommended when considering both bulk and surface properties. On the basis of the present results, a discussion of adapting GGA functionals to the treatment of metallic surfaces in an alternative way to meta-GGA or hybrids is provided.

  15. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  16. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  17. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  18. Microscale simulations of shock interaction with large assembly of particles for developing point-particle models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.

    2017-01-01

    Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  19. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  20. Thermally stable solids based on endohedrally doped ZnS clusters.

    PubMed

    Matxain, Jon M; Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2009-01-01

    The existence of inorganic, hollow, fullerene-like ZnS clusters has been theoretically predicted and then recently confirmed experimentally. These clusters were observed to trap alkali metals and halogens because the ionization energies (IE) of alkali metals are very similar to the electron affinities (EA) of halogens. This opens the possibility of forming molecular solids composed of these fullerene building blocks because the energy released due to the difference between the IE and EA would be very small. Herein we have focused on assembling bare Zn(12)S(12) and endohedral X@Zn(12)S(12)-Y@Zn(12)S(12) dimers (X = Na, K; Y = Cl, Br) by considering the square-faces-square orientation of every two adjacent clusters, which leads to a fcc cubic crystal structure in the solid. The structures were fully optimized in all cases, and their thermal stability was confirmed by ab initio thermal molecular dynamics calculations. The optimum lattice parameter of the solids was found to be around 13.8 A, which corresponds to distances of about 2.5 A between monomers, which is typical of covalent Zn-S bonds. The resulting solids are nanoporous materials similar to B(12)N(12). Due to their nanoporous structure, these zeolite-shaped solids could be used in heterogeneous catalysis and as storage materials and molecular sieves.

  1. Analyzing multistep homogeneous nucleation in vapor-to-solid transitions using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Diemand, Jürg; Tanaka, Hidekazu; Angélil, Raymond

    2017-08-01

    In this paper, we present multistep homogeneous nucleations in vapor-to-solid transitions as revealed by molecular dynamics simulations on Lennard-Jones molecules, where liquidlike clusters are created and crystallized. During a long, direct N V E (constant volume, energy, and number of molecules) involving the integration of (1.9 -15 )× 106 molecules in up to 200 million steps (=4.3 μ s ), crystallization in many large, supercooled nanoclusters is observed once the liquid clusters grow to a certain size (˜800 molecules for the case of T ≃0.5 ɛ /k ). In the simulations, we discovered an interesting process associated with crystallization: the solid clusters lost 2-5 % of their mass during crystallization at low temperatures below their melting temperatures. Although the crystallized clusters were heated by latent heat, they were stabilized by cooling due to evaporation. The clusters crystallized quickly and completely except at surface layers. However, they did not have stable crystal structures, rather they had metastable structures such as icosahedral, decahedral, face-centered-cubic-rich (fcc-rich), and hexagonal-close-packed-rich (hcp-rich). Several kinds of cluster structures coexisted in the same size range of ˜1000 -5000 molecules. Our results imply that multistep nucleation is a common first stage of condensation from vapor to solid.

  2. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure

    NASA Astrophysics Data System (ADS)

    Smirnov, N. A.

    2017-03-01

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: fcc\\to hcp\\to bcc . The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  3. Structural Changes in PEO-PPO-PEO Gels Induced by Methylparaben and Dexamethasone Observed Using Time-Resolved SAXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, Norman A.K.; Juggernauth, K Anne; Batzli, Kiersten M

    2011-11-17

    Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) triblock copolymers (commercially available as Pluronic surfactants) micellize and structurally arrange into cubic quasicrystalline lattices as their temperature is raised. This structural evolution is seen macroscopically as a gelation, and the presence of these ordered phases can be controlled through both polymer concentration and temperature. The presence of added solutes within the dispersions can also affect the onset and kinetics of structure formation. Here we investigate the structures formed in Pluronic F127 solutions ranging from 20 to 30% with two pharmaceutical additives [methylparaben (MP) and dexamethasone (DX)] using small-angle X-ray scattering (SAXS). We observe bothmore » the progressive evolution and breakdown of these structures as the temperature is increased from 0 to 80 °C. Additionally, we conducted time-resolved SAXS measurements to elucidate the kinetics of the structural evolution. On the basis of the evolution of scattering peaks as the samples were being heated, we suggest that added MP changes the nucleation behavior of fcc phases within the sample from a heterogeneous process to a more homogeneous distribution of nucleated species. MP and DX also stabilize the micelle lattices, allowing them to persevere at higher temperatures. We observed the unusual result that the presence of DX caused the primary peaks of the structure factor to be suppressed, while preserving the higher order peaks. The primary peaks reappeared at the highest temperatures tested.« less

  4. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  5. Molecular dynamics (MD) studies on phase transformation and deformation behaviors in FCC metals and alloys

    NASA Astrophysics Data System (ADS)

    Qi, Yue

    This thesis focused on the phase transformation and deformation behaviors in face center cubic (FCC) metals and alloys. These studies used the new quantum modified Sutton-Chen (QMSC) many-body potentials for Cu, Ni, Ag, and Au and for their alloys through simple combination rules. Various systems and processes are simulated by standard equilibrium molecular dynamics (MD), quasi-static equilibrium MD and non-equilibrium MD (NEMD), cooperated with different periodic boundary conditions. The main topics include: (1) Melting, glass formation, and crystallization processes in bulk alloys. In our simulation CuNi and pure Cu always form an FCC crystal, while Cu4Ag6 always forms glass (with Tg decreasing as the quench rate increases) due to the large atomic size difference. (2) Size effects in melting and crystallization in Ni nano clusters. There is a transition from cluster or molecular regime (where the icosahedral is the stable structure) below ˜500 atoms to a mesoscale regime (with well-defined bulk and surface properties and surface melting processes, which leads to Tm,N = Tm,B - alpha N-1/3) above ˜750 atoms. (3) The deformation behavior of metallic nanowires of pure Ni, NiCu and NiAu alloys, under high rates of uniaxial tensile strain, ranging from 5*108/s to 5*1010/s. We find that deformation proceeds through twinning and coherent slipping at low strain rate and amorphization at high strain rate. This research provides a new method, fast straining, to induce amorphization except fast cooling and disordering. (4) The calculation of the ½ <110> screw dislocation in nickel (Ni). We calculated the core energy of screw dislocation after dissociation is 0.5 eV/b, the annihilation process of opposite signed dislocations depends dramatically on the configurations of dissociation planes and the cross-slip energy barrier is 0.1eV/b. (5) Friction anisotropy on clean Ni(100)/(100) interface. We found that static friction coefficient on flat and incommensurate interface is close to zero (as analytical theory predicted), however, the calculation show the same anisotropic behavior as experiments on rough surface, thus explained the difference between theory and experiments.

  6. Effect of Co2+ concentration on the crystal structure of electrodeposited Co nanowires

    NASA Astrophysics Data System (ADS)

    Mukhtar, Aiman; Mehmood, Tahir; Khan, Babar Shahzad; Tan, Ming

    2016-05-01

    The structure of Co nanowires deposited at the same potential depends on Co2+ concentration in solution. When depositing at -1.6 V, the formed Co nanowire are hcp phase in 0.356 M solution, a mixture of hcp and fcc phases in 0.53 M solution, almost fcc phase in 0.71 M solution and pure fcc phase in 1.06 M solution. The transient curves show two interesting observations. First, the imax increases with increasing concentration of Co2+ ions while the tm decreases with increasing concentration. Second, the imax and tm observed in depositing Co nanowires at -1.6 V in the 0.71 M solution are close to those in depositing Co nanowires at -3.0 V in the 0.356 M solution. A higher imax and shorter tm can represent a larger Ns (saturation nucleus density). Therefore we believe that the deposition at -1.6 V in higher concentrations such as 0.71 and 1.067 M can lead to a larger Ns, indicating the formation of smaller critical nuclei. The structure of Co can be determined by the critical nucleus size and smaller critical nuclei favor the formation of fcc Co. Therefore the fcc Co nanowires were observed when depositing in the high concentration solution such as 0.71 and 1.067 M.

  7. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Moriarty, J.A.; Wills, J.M.

    1996-06-01

    {ital Ab} {ital initio} electronic-structure calculations, based on density-functional theory and a full-potential linear-muffin-tin-orbital method, have been used to predict crystal-structure phase stabilities, elastic constants, and Brillouin-zone-boundary phonons for iron under compression. Total energies for five crystal structures, bcc, fcc, bct, hcp, and dhcp, have been calculated over a wide volume range. In agreement with experiment and previous theoretical calculations, a magnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at high pressure, with a predicted bcc {r_arrow} hcp phase transition at about 10 GPa. Also in agreement with very recent diamond-anvil-cellmore » experiments, a metastable dhcp phase is found at high pressure, which remains magnetic and consequently accessible at high temperature up to about 50 GPa. In addition, the bcc structure becomes mechanically unstable at pressures above 2 Mbar (200 GPa) and a metastable, but still magnetic, bct phase ({ital c}/{ital a} {approx_equal} 0.875) develops. For high-pressure nonmagnetic iron, fcc and hcp elastic constants and fcc phonon frequencies have been calculated to above 4 Mbar. These quantities rise smoothly with pressure, but an increasing tendency towards elastic anisotropy as a function of compression is observed, and this has important implications for the solid inner-core of the earth. The fcc elastic-constant and phonon data have also been used in combination with generalized pseudopotential theory to develop many-body interatomic potentials, from which high-temperature thermodynamic properties and melting can be obtained. In this paper, these potentials have been used to calculate full fcc and hcp phonon spectra and corresponding Debye temperatures as a function of compression. {copyright} {ital 1996 The American Physical Society.}« less

  8. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  9. MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.

    PubMed

    Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo

    2017-11-16

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

  10. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster

    PubMed Central

    Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, German; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M.; Lopez-Lozano, Xochitl; Barnes, Christopher O.; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L.; Gonen, Tamir; Jose-Yacaman, Miguel; Calero, Guillermo

    2018-01-01

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault. PMID:29072840

  11. Deformation-induced structural transition in body-centred cubic molybdenum

    PubMed Central

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  12. fcc-bcc phase transition in plasma crystals using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.

    2018-04-01

    Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.

  13. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    NASA Astrophysics Data System (ADS)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  14. The Rényi entanglement entropy of a general quantum dimer model at the RK point: a highly efficient algorithm.

    PubMed

    Pei, Jiquan; Han, Steve; Liao, Haijun; Li, Tao

    2014-01-22

    A highly efficient and simple-to-implement Monte Carlo algorithm is proposed for the evaluation of the Rényi entanglement entropy (REE) of the quantum dimer model (QDM) at the Rokhsar-Kivelson (RK) point. It makes possible the evaluation of REE at the RK point to the thermodynamic limit for a general QDM. We apply the algorithm to a QDM defined on the triangular and the square lattice in two dimensions and the simple and the face centered cubic (fcc) lattice in three dimensions. We find the REE on all these lattices follows perfect linear scaling in the thermodynamic limit, apart from an even-odd oscillation in the case of the square lattice. We also evaluate the topological entanglement entropy (TEE) with both a subtraction and an extrapolation procedure. We find the QDMs on both the triangular and the fcc lattice exhibit robust Z2 topological order. The expected TEE of ln2 is clearly demonstrated in both cases. Our large scale simulation also proves the recently proposed extrapolation procedure in cylindrical geometry to be a highly reliable way to extract the TEE of a topologically ordered system.

  15. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  16. Facet-Dependent Deposition of Highly Strained Alloyed Shells on Intermetallic Nanoparticles for Enhanced Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.

    Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less

  17. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  18. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  19. Kyllinga brevifolia mediated greener silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-12-01

    Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.

  20. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Park, Han Jin

    2013-03-01

    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  1. Facet-Dependent Deposition of Highly Strained Alloyed Shells on Intermetallic Nanoparticles for Enhanced Electrocatalysis

    DOE PAGES

    Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.; ...

    2017-08-25

    Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less

  2. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  3. Influence of deposition temperature on WTiN coatings tribological performance

    NASA Astrophysics Data System (ADS)

    Londoño-Menjura, R. F.; Ospina, R.; Escobar, D.; Quintero, J. H.; Olaya, J. J.; Mello, A.; Restrepo-Parra, E.

    2018-01-01

    WTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm-31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate.

  4. Effect of Poloxamer on Zingiber Officinale Extracted Green Synthesis and Antibacterial Studies of Silver Nanoparticles.

    PubMed

    Chitra, K; Manikandan, A; Antony, S Arul

    2016-01-01

    The Zingiber officinale (Z. officinale) plant is one of the well-known medicinal plants. Poloxamer finds excellent clinical and therapeutic uses for curing of various ailments. The poloxamer 188 polymer and the plant extract of Z. officinale have been used to prepare the silver nanoparticles (AgNPs) by a green synthesis route. The Z. officinale plant extract has been used as a reducing agent, while the poloxamer 188 has been used as a stabilizing agent. The formation of face-centered cubic (fcc) structure AgNPs was confirmed by X-ray diffraction pattern. The effect of addition of poloxamer on the controlling the shape, size and morphologies of the AgNPs has been investigated by transmission electron microscopy (TEM) and dynamic light scattering techniques. The elemental composition of AgNPs was confirmed by energy dispersive X-ray (EDX) analysis. The anti-bacterial activity of AgNPs has been investigated using three human pathogens Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus. The poloxamer 188 protected AgNPs inhibit the bacterial growth more effectively than the pure Z. officinale extract and the Z. officinale extract AgNPs.

  5. Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys

    DOE PAGES

    Zhuravlev, I. A.; Barabash, S. V.; An, J. M.; ...

    2017-10-01

    Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less

  6. Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, I. A.; Barabash, S. V.; An, J. M.

    Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less

  7. Influence of Under-layer Morphology on Structural and Magnetic Properties of Sputtered Co81Pd19 Films

    NASA Astrophysics Data System (ADS)

    Ponchaiya, Pairin; Rattanasakulthong, Watcharee

    2017-09-01

    Sputtered Co81Pd19 films with thickness of about 60 nm were deposited on various under-layers (Co, Ni, Cr and Al) and on glass substrate. Structural, morphological and magnetic properties of Co81Pd19 films were investigated. All of prepared Co81Pd19 film showed CoPd-FCC phase in (111) direction on CoO-FCC (111), NiO-FCC (200), Cr-BCC (200) and (201) and AlO-FCC (200) phases of Co, Ni, Cr and Al under-layer, respectively. AFM images revealed that the film on Cr under-layers and glass substrate exhibited the maximum roughness with the highest grain size and the minimum roughness with the continuous grain size, respectively. Both parallel and perpendicular maximum coercive field were found in the film on glass under-layer and the film on Co-under-layer film showed the highest saturation magnetization from both in-plane and out-of-plane measurements. These results confirmed that the structural and magnetic properties of sputtered Co81Pd19 films were affected by under-layer surface roughness and morphology by the virtue of particle size and distribution on the under-layer film surface.

  8. High-pressure phase transitions in rare earth metal thulium to 195 GPa.

    PubMed

    Montgomery, Jeffrey M; Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2011-04-20

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/V₀ = 0.38 at room temperature. The rare earth crystal structure sequence, hcp →Sm-type→ dhcp →fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR-24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of -1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  9. High-pressure phase transitions in rare earth metal thulium to 195 GPa

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey M.; Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2011-04-01

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/Vo = 0.38 at room temperature. The rare earth crystal structure sequence, {hcp}\\to {Sm {-}type} \\to {dhcp} \\to {fcc} \\to distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR- 24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  10. Dual structural transition in small nanoparticles of Cu-Au alloy

    NASA Astrophysics Data System (ADS)

    Gafner, Yuri; Gafner, Svetlana; Redel, Larisa; Zamulin, Ivan

    2018-02-01

    Cu-Au alloy nanoparticles are known to be widely used in the catalysis of various chemical reactions as it was experimentally defined that in many cases the partial substitution of copper with gold increases catalytic activity. However, providing the reaction capacity of alloy nanoparticles the surface electronic structure strongly depends on their atomic ordering. Therefore, to theoretically determine catalytic properties, one needs to use a most real structural model complying with Cu-Au nanoparticles under various external influences. So, thermal stability limits were studied for the initial L12 phase in Cu3Au nanoalloy clusters up to 8.0 nm and Cu-Au clusters up to 3.0 nm at various degrees of Au atom concentration, with molecular dynamics method using a modified tight-binding TB-SMA potential. Dual structural transition L12 → FCC and further FCC → Ih is shown to be possible under the thermal factor in Cu3Au and Cu-Au clusters with the diameter up to 3.0 nm. The temperature of the structural transition FCC → Ih is established to decrease for small particles of Cu-Au alloy under the increase of Au atom concentration. For clusters with this structural transition, the melting point is found to be a linear increasing function of concentration, and for clusters without FCC → Ih structural transition, the melting point is a linear decreasing function of Au content. Thus, the article shows that doping Cu nanoclusters with Au atoms allows to control the forming structure as well as the melting point.

  11. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  12. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.

    PubMed

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-28

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  13. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  14. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  15. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-01

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  16. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  17. 47 CFR 69.112 - Direct-trunked transport.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be measured as airline kilometers between customer-designated points. (2) For telephone companies not... distance-sensitive. Distance shall be measured as airline kilometers between customer-designated points. (c... Structure and Pricing, CC Docket No. 91-213, FCC 92-442, 7 FCC Rcd 7002 (1992), are not required to provide...

  18. Theory of freezing in simple systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Bagchi, B.

    The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and eachmore » other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.« less

  19. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  20. The stability of the epitaxially introduced metastable metallic structures of thin layers and multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeville, M.C.

    Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less

  1. Elasticity and wave velocity in fcc iron (austenite) at elevated temperatures - Experimental verification of ab-initio calculations.

    PubMed

    Hutchinson, Bevis; Malmström, Mikael; Lönnqvist, Johan; Bate, Pete; Ehteshami, Hossein; Korzhavyi, Pavel A

    2018-07-01

    High temperature crystal elasticity constants for face centred cubic austenite are important for interpreting the ultrasonic properties of iron and steels but cannot be determined by normal single crystal methods. Values of these constants have recently been calculated using an ab-initio approach and the present work was carried out to test their applicability using laser-ultrasonic measurements. Steel samples having a known texture were examined at temperatures between 800 °C and 1100 °C to measure the velocity of longitudinal P-waves which were found to be in good agreement with modelled values. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Synchrotron x-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, J. J.; Almer, J. D.; Vogel, S. C.

    The metallic glass-forming alloy VIT-105 (Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5}) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fcc 'big cube' phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented.

  3. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less symmetric structures and phonons. The results of these calculations are compared with either experiments or calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core structure and glide of ½ <111 > screw dislocations that control the plastic flow in single crystals of bcc metals was explored. The results fully agree with available DFT based studies and with experimental observations of the slip geometry of bcc iron at low temperatures.

  4. Toward a mineral physics reference model for the Moon's core.

    PubMed

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  5. Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product.

    PubMed

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek

    2015-11-20

    In this current study, we report on the reduction of noble metal silver into silver nanoparticles using defatted cashew nut shell (CNS) starch as both the reducing and capping agents. Furthermore, it was compared with commercially available silver nanopowder for the first time. Color changes, ultraviolet-visible spectra (433.76nm), X-ray diffraction peaks (2θ=37.8, 46.3, 66.2, and 77.92) revealed the face-centered cubic (fcc) geometry of silver nanoparticles, scanning electron microscopy-energy dispersive spectroscopy confirmed the presence of elemental silver nanoparticles and the defatted CNS starch silver nanoparticle structures was in accordance to commercial silver nanopowder. The size of both the nanoparticles was found to be similar in the range of 10-50nm as analyzed using high resolution-transmission electron micrographs. The FT-IR spectroscopy revealed the shifting of NH and OH of defatted CNS starch, starch based silver nanoparticle and commercial silver nanopowder has parallel functional groups. The use of environmentally benign and renewable materials like defatted CNS starch offers an alternative to large scale synthesis of silver nanoparticle and includes numerous benefits like eco-friendly and compatibility for pharmaceutical and biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    NASA Astrophysics Data System (ADS)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  7. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe{sub 1.5}[Cr(CN){sub 6}]·mH{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Pramod, E-mail: prabhatt@barc.gov.in; Meena, S. S.; Mukadam, M. D.

    2016-05-23

    Molecular magnets, based on Prussian blue analogues, Fe{sub 1.5}[Cr(CN){sub 6}]·mH{sub 2}O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (T{sub C}) of ~17more » K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (Cr{sup III}–C≡N–Fe{sup II}) to low spin (LS) Fe{sup II} ions (Cr{sup III}–N≡C–Fe{sup II}). Moreover, the T{sub C} and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.« less

  8. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    NASA Astrophysics Data System (ADS)

    Zubair, Aiman; Ahmad, Zahoor; Mahmood, Azhar; Cheong, Weng-Chon; Ali, Irshad; Khan, Muhammad Azhar; Chughtai, Adeel Hussain; Ashiq, Muhammad Naeem

    Europium (Eu) doped spinel cobalt ferrites having composition CoEuxFe2-xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC) spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms) of 65 emu/g and coercivity (Hc) of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944-966 Oe) and magnetization was decreased (65-46 emu/g) with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions.

  9. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K

    NASA Astrophysics Data System (ADS)

    Dorogokupets, P. I.; Dymshits, A. M.; Litasov, K. D.; Sokolova, T. S.

    2017-03-01

    The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K, and fcc-hcp-liquid at 106.5 GPa and 3787 K. At conditions near the fcc-hcp-liquid triple point, the Clapeyron slope of the fcc-liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp-liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp-liquid curve overlaps the metastable fcc-liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc-hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

  10. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K.

    PubMed

    Dorogokupets, P I; Dymshits, A M; Litasov, K D; Sokolova, T S

    2017-03-06

    The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K, and fcc-hcp-liquid at 106.5 GPa and 3787 K. At conditions near the fcc-hcp-liquid triple point, the Clapeyron slope of the fcc-liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp-liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp-liquid curve overlaps the metastable fcc-liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc-hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

  11. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  12. The Effective Conductivity of Random Suspensions of Spherical Particles

    NASA Astrophysics Data System (ADS)

    Bonnecaze, R. T.; Brady, J. F.

    1991-03-01

    The effective conductivity of an infinite, random, mono-disperse, hard-sphere suspension is reported for particle to matrix conductivity ratios of ∞ , 10 and 0.01 for sphere volume fractions, c, up to 0.6. The conductivities are computed with a method previously described by the authors, which includes both far- and near-field interactions, and the particle configurations are generated via a Monte Carlo method. The results are consistent with the previous theoretical work of D. J. Jeffrey to O(c2) and the bounds computed by S. Torquato and F. Lado. It is also found that the Clausius-Mosotti equation is reasonably accurate for conductivity ratios of 10 or less all the way up to 60% (by volume). The calculated conductivities compare very well with those of experiments. In addition, percolation-like numerical experiments are performed on periodically replicated cubic lattices of N nearly touching spheres with an infinite particle to matrix conductivity ratio where the conductivity is computed as spheres are removed one by one from the lattice. Under suitable normalization of the conductivity and volume fraction, it is found that the initial volume fraction must be extremely close to maximum packing in order to observe a percolation transition, indicating that the near-field effects must be very large relative to far-field effects. These percolation transitions occur at the accepted values for simple (SC), bodycentred (BCC) and face-centred (FCC) cubic lattices. Also, the vulnerability of the lattices computed here are exactly those of previous investigators. Due to limited data above the percolation threshold, we could not correlate the conductivity with a power law near the threshold; however, it can be correlated with a power law for large normalized volume fractions. In this case the exponents are found to be 1.70, 1.75 and 1.79 for SC, BCC and FCC lattices respectively.

  13. The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fanling; Qiu, Jingwen; Baker, Ian

    In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  14. The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21

    DOE PAGES

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; ...

    2015-08-20

    In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  15. Molecular dynamics study of melting and fcc-bcc transitions in Xe.

    PubMed

    Belonoshko, A B; Ahuja, R; Johansson, B

    2001-10-15

    We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.

  16. Austenite-martensite transformation in electrodeposited Fe70Pd30 NWs: a step towards making bio-nano-actuators tested on in vivo systems

    NASA Astrophysics Data System (ADS)

    Zuzek Rozman, K.; Pecko, D.; Trafela, S.; Samardzija, Z.; Spreitzer, M.; Jaglicic, Z.; Nadrah, P.; Zorko, M.; Bele, M.; Tisler, T.; Pintar, A.; Sturm, S.; Kostevsek, N.

    2018-03-01

    Fe69±3Pd31±3 nanowires (NWs) with lengths of a few microns and diameters of 200 nm were synthesized via template-assisted pulsed electrodeposition into alumina-based templates. The as-deposited Fe69±3Pd31±3 NWs exhibited α-Fe (bcc-solid solution of Fe, Pd) nanocrystalline structure as seen from the x-ray diffraction (XRD), that got confirmed by transmission electron microscopy (TEM) with some larger grains up 50 nm observed. Annealing of the as-deposited Fe69±3Pd31±3 NWs at 1173 K/45 min was followed by quenching in ice water and resulted in a transformation to the fcc crystal structure (XRD) with grain sizes up to 200 nm (TEM). To induce the austenite-to-martensite, i.e., fcc-to-fct phase transformation the fcc Fe69±3Pd31±3 NWs were cooled to 73 K. The XRD showed the disappearance of the (200) fcc reflection (at room temperature) and the appearance of the (200) fct reflection (at 73 K), confirming the fcc-to-fct transformation took place. The magnetic measurements revealed that the fcc Fe69±3Pd31±3 NWs measured at low temperatures (50 K) had a larger coercivity than at room temperature, which suggests the fct phase was present in the undercooled state, exhibiting a larger magnetocrystalline anisotropy than the fcc phase present at room temperature. As part of our interest in magnetic-shape-memory actuators, the as-deposited Fe69±3Pd31±3 NWs were tested for toxicity on zebrafish. In vivo tests showed no acute lethal or sub-lethal effects, which implies that the Fe69±3Pd31±3 NWs have the potential to be used as nano-actuators in biomedical applications.

  17. Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Gorozhankin, D. F.; Napolskii, K. S.; Petukhov, A. V.; Sapoletova, N. A.; Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Byelov, D. V.; Bouwman, W. G.; Kvashnina, K. O.; Chernyshov, D. Yu.; Bosak, A. A.; Grigoriev, S. V.

    2009-10-01

    The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of artificial opals can be satisfactorily described in the Wilson probability model with the prevalence of layers in the fcc environment. The diffraction patterns observed for a natural opal confirm the presence of sufficiently long unequally occupied fcc domains.

  18. Au36(SPh)24 nanomolecules: X-ray crystal structure, optical spectroscopy, electrochemistry, and theoretical analysis.

    PubMed

    Nimmala, Praneeth Reddy; Knoppe, Stefan; Jupally, Vijay Reddy; Delcamp, Jared H; Aikens, Christine M; Dass, Amala

    2014-12-11

    The physicochemical properties of gold:thiolate nanomolecules depend on their crystal structure and the capping ligands. The effects of protecting ligands on the crystal structure of the nanomolecules are of high interest in this area of research. Here we report the crystal structure of an all aromatic thiophenolate-capped Au36(SPh)24 nanomolecule, which has a face-centered cubic (fcc) core similar to other nanomolecules such as Au36(SPh-tBu)24 and Au36(SC5H9)24 with the same number of gold atoms and ligands. The results support the idea that a stable core remains intact even when the capping ligand is varied. We also correct our earlier assignment of "Au36(SPh)23" which was determined based on MALDI mass spectrometry which is more prone to fragmentation than ESI mass spectrometry. We show that ESI mass spectrometry gives the correct assignment of Au36(SPh)24, supporting the X-ray crystal structure. The electronic structure of the title compound was computed at different levels of theory (PBE, LDA, and LB94) using the coordinates extracted from the single crystal X-ray diffraction data. The optical and electrochemical properties were determined from experimental data using UV-vis spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Au36(SPh)24 shows a broad electrochemical gap near 2 V, a desirable optical gap of ∼1.75 eV for dye-sensitized solar cell applications, as well as appropriately positioned electrochemical potentials for many electrocatalytic reactions.

  19. Investigation of Thermal Hardening of the FCC Material Containing Strengthening Particles with an L12 Superstructure

    NASA Astrophysics Data System (ADS)

    Daneyko, O. I.; Kulaeva, N. A.; Kovalevskaya, C. A.; Kolupaeva, S. N.

    2015-07-01

    A mathematical model of plastic deformation of dispersion-hardened materials with an fcc matrix containing strengthening particles with an L12 superstructure having a coherent relationship with the matrix is presented. The model is based on the balance equations of deformation defects of different types with taking into account their transformation during plastic deformation. The influence of scale characteristics of the hardening phase, temperature, and deformation rate on the evolution of the dislocation subsystem and strain hardening of an alloy with an fcc matrix hardened by particles with an L12 super structure is studied. A temperature anomaly of mechanical properties is found for the materials with different fcc matrices (Al,Cu, Ni). It is shown that the temperature anomaly is more pronounced for the material with larger volume fraction of the hardening phase.

  20. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

    PubMed Central

    Fu, Ming; Xiong, Wei

    2018-01-01

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872

  1. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Hongbo; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPamore » and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the increase of fracture toughness. • Tribological properties were influenced by lubricant wear debris.« less

  2. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary.

    PubMed

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis

    2014-03-03

    The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.

  3. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  4. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  5. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver.

    PubMed

    Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan

    2014-03-19

    The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.

  6. Phase relations of iron and iron nickel alloys up to 300 GPa: Implications for composition and structure of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Kuwayama, Yasuhiro; Hirose, Kei; Sata, Nagayoshi; Ohishi, Yasuo

    2008-09-01

    We have investigated the phase relations of iron and iron-nickel alloys with 18 to 50 wt.% Ni up to over 300 GPa using a laser-heated diamond-anvil cell. The synchrotron X-ray diffraction measurements show the wide stability of hcp-iron up to 301 GPa and 2000 K and 319 GPa and 300 K without phase transition to dhcp, orthorhombic, or bcc phases. On the other hand, the incorporation of nickel has a remarkable effect on expanding the stability field of fcc phase. The geometry of the temperature-composition phase diagram of iron-nickel alloys suggests that the hcp-fcc-liquid triple point is located at 10 to 20 wt.% Ni at the pressure of the inner core boundary. The fcc phase could crystallize depending on the nickel and silicon contents in the Earth's core, both of which are fcc stabilizer.

  7. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    NASA Astrophysics Data System (ADS)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  8. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    NASA Technical Reports Server (NTRS)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  9. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  10. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  11. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities.

    PubMed

    Ajitha, B; Reddy, Y Ashok Kumar; Reddy, P Sreedhara

    2015-05-01

    Silver nanoparticles (AgNPs) were prepared through green route with the aid of Momordica charantia leaf extract as both reductant and stabilizer. X-ray diffraction pattern (XRD) and selected area electron diffraction (SAED) fringes revealed the structure of AgNPs as face centered cubic (fcc). Morphological studies elucidate the nearly spherical AgNPs formation with particle size in nanoscale. Biosynthesized AgNPs were found to be photoluminescent and UV-Vis absorption spectra showed one surface plasmon resonance peak (SPR) at 424nm attesting the spherical nanoparticles formation. XPS study provides the surface chemical nature and oxidation state of the synthesized nanoparticles. FTIR spectra ascertain the reduction and capping nature of phytoconstituents of leaf extract in AgNPs synthesis. Further, these AgNPs showed effective antimicrobial activity against tested pathogens and thus applicable as potent antimicrobial agent. In addition, the synthesized AgNPs were observed to have an excellent catalytic activity on the reduction of methylene blue by M. charantia which was confirmed by the decrement in maximum absorbance values of methylene blue with respect to time and is ascribed to electron relay effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys

    NASA Astrophysics Data System (ADS)

    Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.

    2013-10-01

    Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.

  13. 1073 K (800 °C) Isothermal Section of the Co-Al-V System

    NASA Astrophysics Data System (ADS)

    Liao, Guangjing; Yin, Fucheng; Liu, Ye; Zhao, Manxiu

    2017-08-01

    The isothermal section of the Co-Al-V ternary system at 1073 K (800 °C) has been determined by means of X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Thirteen three-phase regions have been confirmed experimentally. A new ternary compound named `T' phase (Al2CoV) is found in this study which possesses a face-centered cubic (fcc) structure with a lattice parameter of 11.7224 Å. The T phase can be in equilibrium with Al3V, Al8V5, α-V, Al5Co2, and AlCo. The maximum solubility of Al in Co3V, σ-CoV, and CoV3 is 5.6, 6.3, and 4 at. pct, respectively. The maximum solubility of Co in Al3V, Al8V5, and α-V is 1.1, 2.5, and 24.9 at. pct, respectively. The maximum solubility of V in Al9Co2, Al13Co4, Al3Co, Al5Co2, AlCo, and α-Co is 0.3, 0.2, 0.1, 2.1, 35.0, and 16.4 at. pct, respectively.

  14. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The resultmore » has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.« less

  15. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    PubMed

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nickel nanofibers synthesized by the electrospinning method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Yi; Zhang, Xuebin, E-mail: zzhhxxbb@126.com; Zhu, Yajun

    2013-07-15

    Highlights: ► The nickel nanofibers have been obtained by electrospinning method. ► The nickel nanofibers had rough surface which was consisted of mass nanoparticles. ► The average diameter of nickel nanofibers is about 135 nm and high degree of crystallization. ► The Hc, Ms, and Mr were estimated to be 185 Oe, 51.9 and 16.9 emu/g respectively. - Abstract: In this paper, nickel nanofibers were prepared by electrospinning polyvinyl alcohol/nickel nitrate precursor solution followed by high temperature calcination in air and deoxidation in hydrogen atmosphere. The thermal stability of the as-electrospun PVA/Ni(NO{sub 3}){sub 2} composite nanofibers were characterized by TG–DSC.more » The morphologies and structures of the as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electronmicroscope (FE-SEM) and field-emission transmission electron microscopy (FE-TEM). The hysteresis loops (M–H loops) were measured by Physical Property Measurement System (PPMS). The results indicate that: the PVA and the nickel nitrate were almost completely decomposed at 460 °C and the products were pure nickel nanofibers with face-centered cubic (fcc) structure. Furthermore, the as-prepared nickel nanofibers had a continuous structure with rough surface and high degree of crystallization. The average diameter of nickel nanofibers was about 135 nm. The nanofibers showed a stronger coercivity of 185 Oe than value of bulk nickel.« less

  17. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure.

    PubMed

    Smirnov, N A

    2017-03-15

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: [Formula: see text]. The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  18. 76 FR 54422 - Programmatic Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... assessment (PEA) of the Antenna Structure Registration (ASR) program. The purpose of the PEA is to evaluate... must register those structures with the FCC. The antenna structure owner must obtain painting and...

  19. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications

    PubMed Central

    Ramachandran, K.; Raj kumar, T.; Babu, K. Justice; Gnana kumar, G.

    2016-01-01

    The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM−1 cm−2, low detection limit of 1.2 μM, a wide linear range from 5 μM–10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability. PMID:27833123

  20. Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Li, Zhuguo; Nie, Pulin; Wu, Yixiong

    2013-11-01

    The microstructure of the laser clad Inconel 718 alloy coating was observed by scanning electron microscope (SEM). The chemical composition of precipitation phases was investigated by energy dispersive spectrometer (EDS) and solid phase microextraction (SPME). The crystal structure and lattice constants of precipitation are determined by transmission electron microscope (TEM). Vickers hardness of the coatings and the nanohardness of the interstitial phases were measured. The insular carbide (MC) and the tetragonal nitride (MN) with face-centered cubic (FCC) structure are rich in Ti and Nb but depleted in Ni, Fe and Cr due to the interdiffusion and redistribution of alloying elements between MC and MN and supersaturated matrix. MC and MN were precipitated in the forms of (Nb0.12Ti0.88)C1.5 and (Nb0.88Ti0.12)N1.5, and the Gibbs free energies of formation can be expressed as Δ G [ (Nb0.12Ti0.88)C1.5 ] 0 = - 122.654 - 3.1332 T (kJ /mol) and Δ G [ (Nb0.88Ti0.12)N1.5 ] 0 = - 157.814 - 3.0251 T (kJ /mol). The nanohardness and Young's modulus of the MC and MN were much higher than the matrix, and the plastic deformation energy of interstitial phases was lower than the matrix. The precipitation of MC and MN is beneficial to the mechanical properties of coating.

  1. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiko, M.; Nose, K.; Suenaga, R.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed thatmore » the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.« less

  2. Toward a mineral physics reference model for the Moon’s core

    PubMed Central

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C.; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-01-01

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth’s core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon’s inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon’s core. PMID:25775531

  3. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications

    NASA Astrophysics Data System (ADS)

    Ramachandran, K.; Raj Kumar, T.; Babu, K. Justice; Gnana Kumar, G.

    2016-11-01

    The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM-1 cm-2, low detection limit of 1.2 μM, a wide linear range from 5 μM-10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability.

  4. Symmetry and Structure of Cubic Semiconductor Surfaces.

    PubMed

    Jenkins, Stephen J

    2017-11-07

    A systematic stereographic approach to the description of surface symmetry and structure, applied previously to face-centered cubic, body-centered cubic, and hexagonal close-packed metals, is here extended to the surfaces of diamond-structure and zinc-blende-structure semiconductors. A variety of symmetry-structure combinations are categorized and the chiral properties of certain cases emphasized. A general condition for nonpolarity in the surfaces of zincblende materials is also noted.

  5. The role of grain boundaries in hydrogen diffusion in metals at 25 C

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    The effect of grain size on hydrogen diffusion at 25 C was examined for 4340 steel (body-centered cubic) and for Inconel 718 (face-centered cubic). It was found that the effect of grain size is important for body-centered cubic structures, but plays a much less important role in face centered cubic structures. Accurate measurements of hydrogen desorption coefficients during hydrogen desorption show that these are not greatly different for both types of structures.

  6. 78 FR 44119 - Information Collections Being Submitted for Review and Approval to the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...: 3060-0874. Title: FCC Form 2000 A through H, FCC Form RDA, FCC Form 475-B, FCC Form 1088 A through H...: FCC Form 2000 A through H, FCC Form RDA, FCC Form 475- B, FCC Form 1088 A through H, and FCC Form 501...

  7. Neutron diffraction investigation of γ manganese hydride

    NASA Astrophysics Data System (ADS)

    Fedotov, V. K.; Antonov, V. E.; Kolesnikov, A. I.; Beskrovnyi, A. I.; Grosse, G.; Wagner, F. E.

    1998-08-01

    A profile analysis of the neutron diffraction spectrum of the fcc high pressure hydride λ-MnH 0.41 measured under ambient conditions showed that hydrogen is randomly distributed over the octahedral interstices of the fcc metal lattice and that the hydride is an antiferromagnet with the same collinear spin structure as pure λ-Mn, but with a smaller magnetic moment of about 1.9 Bohr magnetons per Mn atom.

  8. Analysis of fcc metals fracture behaviour: Fracture behaviour of fcc metals: brittle/ductile behaviour criteria : with ab-initio, embedded atom and pseudopotential parameterization for Au, Ir and Al. analysis for Au, Ir and Al.

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.

    1998-03-01

    Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).

  9. Electrostatic swelling of bicontinuous cubic lipid phases.

    PubMed

    Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J

    2015-04-28

    Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.

  10. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales.

    PubMed

    Barriga, H M G; Tyler, A I I; McCarthy, N L C; Parsons, E S; Ces, O; Law, R V; Seddon, J M; Brooks, N J

    2015-01-21

    Bicontinuous cubic structures offer enormous potential in applications ranging from protein crystallisation to drug delivery systems and have been observed in cellular membrane structures. One of the current bottlenecks in understanding and exploiting these structures is that cubic scaffolds produced in vitro are considerably smaller in size than those observed in biological systems, differing by almost an order of magnitude in some cases. We have addressed this technological bottleneck and developed a methodology capable of manufacturing highly swollen bicontinuous cubic membranes with length scales approaching those seen in vivo. Crucially, these cubic systems do not require the presence of proteins. We have generated highly swollen Im3m symmetry bicontinuous cubic phases with lattice parameters of up to 480 Å, composed of ternary mixtures of monoolein, cholesterol and negatively charged lipid (DOPS or DOPG) and we have been able to tune their lattice parameters. The swollen cubic phases are highly sensitive to both temperature and pressure; these structural changes are likely to be controlled by a fine balance between lipid headgroup repulsions and lateral pressure in the hydrocarbon chain region.

  11. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  12. Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.

    1996-01-01

    We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.

  13. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  14. The antifriction behaviours of ?

    NASA Astrophysics Data System (ADS)

    Yan, Feng-yuan; Xue, Qun-ji

    1997-03-01

    In this paper, the antifriction behaviours of 0022-3727/30/5/010/img2 (3:1) molecules and their crystal powder were evaluated by different methods. It was found that the 0022-3727/30/5/010/img2 crystal powder possessed hexagonal close packed (hcp) crystal structure with a = 10.1 Å and c = 16.55 Å, and a transformation of crystal structure from hcp to face centred cubic (fcc) occurred easily during friction (burnishing). It was confirmed that two kinds of process, breakage of 0022-3727/30/5/010/img2 powder coagulated by nanoscale single crystals and rearrangement of the molecules along the friction direction, had occurred under the friction force. The extreme pressure (EP) performance of 0022-3727/30/5/010/img2 as an additive in paraffin liquid was investigated on an SRV oscillating wear machine. It was found that the extreme pressure load (EP value) of paraffin liquid was increased by dispersion of 0022-3727/30/5/010/img2 powder, accompanied by a slight improvement in the antifriction behaviour. it was confirmed that the improvement in EP value and antifriction behaviour of oil was dependent on the crystal structure of 0022-3727/30/5/010/img2 powder, but independent of the spherical molecular structure of 0022-3727/30/5/010/img8 or 0022-3727/30/5/010/img9. The burnishing experimental results also proved that the antifriction behaviour was determined by the crystal structure and had no relation to the molecular structure. It was also found that fullerenes possessed some physical properties similar to those of graphite. Since the formation of compact fullerenes with high shear strength during friction can be effectively prevented by some other lubricants, it is suggested that fullerenes should be mixed with other lubricants for tribological application.

  15. First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Nagam, Venkateswarlu; Bobbu, Pushpalatha; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2015-10-01

    The present study reports the simple and eco-friendly approach for biosynthesis of silver nanoparticles (AgNPs) using aqueous callus extract as reducing agent for the first time. The formation of AgNPs was initially confirmed by characteristic surface plasmon resonance (SPR) peak 453 nm by UV-Visible spectroscopy. FTIR spectrum shows different functional groups which probably involved in the synthesis and stabilization of AgNPs. TEM analysis determined the well-dispersed AgNPs with roughly spherical shape and size ranging 5-40 nm. XRD patterns revealed the crystalline nature of AgNPs with face-centered cubic (fcc) lattice. The synthesized AgNPs were found to have strong inhibitory activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa.

  16. Model forecasting of phase composition of electrolytic alloys Co-Ni-Mn (part 1)

    NASA Astrophysics Data System (ADS)

    Schmidt, V. V.; Zhikhareva, I. G.

    2018-03-01

    With the help of four criteria for phase formation, a model forecasting of the phase composition of electrolytic alloy Co-Ni-Mn was carried out; the expected phases were calculated. The boundaries of the chemical content of the metal-solvent (Co) in these phases are determined, depending on the ratio of metal ions in the electrolyte of deposition. Model forecasting of the phase composition of Co-Ni-Mn alloys makes it possible to predict the type and number of Co phases (hexagonal close-packed - HCP-α-Co, face-centered cubic - FCC-β-Co) depending on the mole fraction of the solvent metal (Co). In the first approximation, the forecast allows one to determine the phase and chemical composition of the coating, which corresponds to the specified operational properties.

  17. Synthesis of Bimetallic Platinum Nanoparticles for Biosensors

    PubMed Central

    Leteba, Gerard M.; Lang, Candace I.

    2013-01-01

    The use of magnetic nanomaterials in biosensing applications is growing as a consequence of their remarkable properties; but controlling the composition and shape of metallic nanoalloys is problematic when more than one precursor is required for wet chemistry synthesis. We have developed a successful simultaneous reduction method for preparation of near-spherical platinum-based nanoalloys containing magnetic solutes. We avoided particular difficulties in preparing platinum nanoalloys containing Ni, Co and Fe by the identification of appropriate synthesis temperatures and chemistry. We used transmission electron microscopy (TEM) to show that our particles have a narrow size distribution, uniform size and morphology, and good crystallinity in the as-synthesized condition. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirms the coexistence of Pt with the magnetic solute in a face-centered cubic (FCC) solid solution. PMID:23941910

  18. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Microstructures and Mechanical Properties of Cu and Cu-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong

    Strength and ductility are two crucial mechanical properties of structural materials, which, unfortunately, are often mutually exclusive based on the conventional design of microstructures and their deformation physics. This is also true in most nanostructured (NS) metals and alloys although they exhibit record-high strength. However, the disappointingly inadequate ductility becomes the major roadblock to their practical utilities due to the threat of catastrophic failure in load-bearing applications. Therefore, simultaneous improvement of strength and ductility or a well-defined trade-off between these two properties, i.e. increasing either of them without significant loss of the other, in NS materials has garnered extensive efforts from the research community. A few strategies have been explored to handle this long-standing challenge with promise. In this dissertation work, two of those strategies, deformation twins and laminate/gradient structures are specified with particular interests in NS Cu and Cu-Zn alloys. The author believes the observation and the revealed underlying mechanism are fundamental and therefore shed lights on their universal application to other metallic material systems. Deformation twins have been frequently observed in ultra-fined grained (UFG) and NS face-centered cubic (FCC) metals and alloys, which is closely related to the better strengthening and strain hardening in mechanical performance. Previous findings even show that there exist an optimum grain size range within nano scale, where the deformation twins are of most frequency, i.e. most stable in pure FCC metals. However, such grain-size dependent twinning phenomenon is still unclear in FCC alloys. We report, for the first time in systematic experiments, the observed optimum grain sizes for deformation twins in NS Cu-Zn alloys slightly increase with increasing Zn content. Our results indicate that alloying changes the relationship between the stacking-fault and twin-fault energy and therefore affects the optimum grain size for deformation twinning. Another interesting finding in contrast to the conventional thoughts is the macroscopic strain status of the deformation twins. These two issues are of both scientific and practical importance in microstructure design and fabrication in NS alloys. Laminate/gradient is another recently developed strategy, which may hold the promise to improve mechanical properties of metallic materials. We produced a laminate structure with a NS Cu-10Zn layer sandwiched between two coarse-grained (CG) Cu layers, where the collective tensile ductility and strain hardening are observed higher than prediction by the rule-of-mixture. The primary results from this sandwich also inspired the next idea of multi-layered NS Cu-10Zn and CG Cu, which is anticipated to have superior strength and ductility since it has more heterogeneous interfaces. Simultaneous improvement of strength and ductility in samples with decreasing interface spacing is found in these laminates. More importantly, it's also observed that each interface generates extra geometrically necessary dislocations in the vicinity of itself with a most affected zone spanning a few micrometers. This is not affected by the interface spacing and implies an optimum laminate design for best back stress hardening capacity and ductility. Our results shed lights into the architectural design and fundamental deformation studies of materials with laminate/gradient structures.

  20. 78 FR 29369 - Information Collections Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Control Number: 3060-0874. Title: FCC Form 2000 A through H, FCC Form RDA, FCC Form 475-B, FCC Form 1088 A... Form 2000 A through H, FCC Form RDA, FCC Form 475- B, FCC Form 1088 A through H, and FCC Form 501. Type...

  1. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F. X.; Zhao, Shijun; Jin, Ke

    2017-01-04

    A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less

  2. Floating stacking faults on the (111) surface of FCC metals: a finite-temperature first-principles study

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola

    2003-03-01

    The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.

  3. 75 FR 13540 - Notice of Public Information Collections Being Submitted to the Office of Management and Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... INFORMATION: OMB Control Number: 3060-0874. Title: FCC Form 2000 A through F, FCC Form 475-B, FCC Form 1088 A...): FCC Form 2000 A through F, FCC Form 475-B, FCC Form 1088 A through H, and FCC Form 501. Type of Review... indecent programming. The FCC Form 475-B will remain unchanged. The FCC Form 1088 Consumer Complaint Form...

  4. 78 FR 18591 - Information Collection Being Submitted for Review and Approval to the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Number: 3060-0874. Title: FCC Form 2000 A through G, FCC Form 475-B, FCC Form 1088 A through H, and FCC... through G, FCC Form 475-B, FCC Form 1088 A through H, and FCC Form 501. Type of Review: Extension of a..., and/or indecent programming. The FCC Form 475-B will remain unchanged. The FCC Form 1088 Consumer...

  5. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-02

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  6. Epitaxial growth of ordered and disordered granular sphere packings

    NASA Astrophysics Data System (ADS)

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  7. Epitaxial growth of ordered and disordered granular sphere packings.

    PubMed

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  8. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  9. Engineering and characterizing nanoscale multilayered structures for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua

    Magnetic tunnel junction (MTJ) has generated considerable attention due to its potential applications in improved magnetic sensors, read heads in HDDs and nonvolatile RAM. The materials issues play a crucial role in the performance of MTJs. In the work described in this thesis, we have engineered some interesting nanoscale multilayered structures mainly via thermodynamics considerations for MTJs. The insulator is usually an ultra-thin (<2nm) oxide, formed by oxidizing a pre-deposited metal, such as Al etc. We have developed novel fabrication approaches for obtaining clean and smooth interfaces between the insulator and the ferromagnets. These approaches include selectively oxidizing the pre-deposited tunnel barrier precursor metal, amorphizing the tunnel barrier precursor metal by alloying it with other elements, and in-situ annealing the bottom ferromagnetic layer. About 72% tunneling magnetoresistance (TMR) has been achieved at room temperature with AlOx and CoFe based MTJs. We have made a systemic study of the TMR vs. the Co1-xFe x electrode composition for AlOx based MTJs. A significant variation of TMR with Fe concentration has been observed. It is well known that the crystal structure of Co1-xFex changes from fcc to bcc with increasing Fe concentration. The concomitant composition change cast doubts on the role played by the crystal structure of the Co1-x Fex electrode on the TMR. By introducing different strains to an epitaxial Co1-xFex layer, we were able to fix its composition but alter its crystalline structure from fcc to bcc and found that the bcc structure resulted in much higher TMR values than found for the fcc structure. This is one of the few direct experimental confirmatory results showing the role of the FM electronic structure on the MTJ properties. Using Ag as a template, different 3d ferromagnets have been epitaxially grown on the Si substrate with hcp, fcc and bcc crystalline structures, respectively. By combining the selective oxidation method with the epitaxial growth technique, we have successfully created a single-crystal-like layer on top of an amorphous layer, which may have broad applications in thin film devices including MTJs.

  10. Thermoelectric properties of p-type cubic and rhombohedral GeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei

    Here, we investigate the electronic and thermoelectric properties of GeTe in both cubic and rhombohedral phases. We find that cubic GeTe has an electronic structure with a narrow band gap that is unfavorable at high temperature, where the cubic phase is normally stable. However, cubic GeTe has electronic features that may lead to p-type performance superior to the normal rhombohedral phase at lower temperature. This is explained in part by the combination of light and heavy band character that is very effective in obtaining high thermopower and conductivity. In addition, the valence band edge carrier pockets in cubic GeTe possessmore » the largest anisotropy among cubic IV-VI analogs. These effects are stronger than the effect of band convergence in the rhombohedral structure. The results suggest further study of stabilized cubic GeTe as a thermoelectric.« less

  11. Thermoelectric properties of p-type cubic and rhombohedral GeTe

    DOE PAGES

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...

    2018-05-21

    Here, we investigate the electronic and thermoelectric properties of GeTe in both cubic and rhombohedral phases. We find that cubic GeTe has an electronic structure with a narrow band gap that is unfavorable at high temperature, where the cubic phase is normally stable. However, cubic GeTe has electronic features that may lead to p-type performance superior to the normal rhombohedral phase at lower temperature. This is explained in part by the combination of light and heavy band character that is very effective in obtaining high thermopower and conductivity. In addition, the valence band edge carrier pockets in cubic GeTe possessmore » the largest anisotropy among cubic IV-VI analogs. These effects are stronger than the effect of band convergence in the rhombohedral structure. The results suggest further study of stabilized cubic GeTe as a thermoelectric.« less

  12. 78 FR 5177 - Information Collection Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...-0874. Title: FCC Form 2000 A through G, FCC Form 475-B, FCC Form 1088 A through H, and FCC Form 501... 475-B, FCC Form 1088 A through H, and FCC Form 501. Type of Review: Extension of a currently approved.../or indecent programming. The FCC Form 475-B will remain unchanged. The FCC Form 1088 Consumer...

  13. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron

    NASA Astrophysics Data System (ADS)

    Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min

    2018-06-01

    With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.

  14. First-principles study of high-pressure structural phase transitions of magnesium

    NASA Astrophysics Data System (ADS)

    Liu, Qiuxiang; Fan, Changzeng; Zhang, Ruijun

    2009-06-01

    The structural phase transitions for the hcp, bcc, dhcp, and fcc of magnesium at hydrostatic pressures larger than about 200 GPa at zero temperature are studied by first-principles total energy calculations. The plane-wave basis pseudopotential method has been adopted, in which the generalized gradient approximation implanted in the CASTEP code is employed. By comparing the enthalpy differences of the hcp structure with other three structures under different pressures, it can be seen that when the pressure becomes higher than about 65, 130, and 190 GPa, the bcc, dhcp, and fcc structures become more stable relative to the hcp structure, respectively. Due to the lowest enthalpy value of the bcc structure above 65 GPa, it can be deduced that magnesium may transform to the bcc structure from the ground state hcp structure around 65 GPa, but no further phase transitions occur without additionally applying high temperature. In addition, the equation of state of magnesium is calculated, indicating that bcc structure is the softest phase.

  15. pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy.

    PubMed

    Yue, Ludan; Wang, Jinlong; Dai, Zhichao; Hu, Zunfu; Chen, Xue; Qi, Yafei; Zheng, Xiuwen; Yu, Dexin

    2017-02-15

    Multifunctional nanotheranostic agents have been highly commended due to the application to image-guided cancer therapy. Herein, based on the chemically disordered face centered cubic (fcc) FePt nanoparticles (NPs) and graphene oxide (GO), we develop a pH-responsive FePt-based multifunctional theranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging and in situ cancer inhibition. The fcc-FePt will release highly active Fe ions due to the low pH in tumor cells, which would catalyze H 2 O 2 decomposition into reactive oxygen species (ROS) within the cells and further induce cancer cell apoptosis. Conjugated with folic acid (FA), the iron platinum-dimercaptosuccinnic acid/PEGylated graphene oxide-folic acid (FePt-DMSA/GO-PEG-FA) composite nanoassemblies (FePt/GO CNs) could effectively target and show significant toxicity to FA receptor-positive tumor cells, but no obvious toxicity to FA receptor-negative normal cells, which was evaluated by WST-1 assay. The FePt-based multifunctional nanoparticles allow real-time monitoring of Fe release by T 2 -weighted MRI, and the selective contrast enhancement in CT could be estimated in vivo after injection. The results showed that FePt-based NPs displayed excellent biocompatibility and favorable MRI/CT imaging ability in vivo and in vitro. Meanwhile, the decomposition of FePt will dramatically decrease the T 2 -weighted MRI signal and increase the ROS signal, which enables real-time and in situ visualized monitoring of Fe release in tumor cells. In addition, the self-sacrificial decomposition of fcc-FePt will be propitious to the self-clearance of the as-prepared FePt-based nanocomposite in vivo. Therefore, the FePt/GO CNs could serve as a potential multifunctional theranostic nanoplatform of MRI/CT imaging guided cancer diagnosis and therapy in the clinic.

  16. Face-Centred Cubic Iron: Ab Initio Calculations of Sound Velocities in the Lunar Core

    NASA Astrophysics Data System (ADS)

    Wood, M. C.; Wood, I. G.; Vočadlo, L.

    2017-12-01

    Studies, such as the reanalysis of the Apollo lunar seismograms [1], have shown that the Moon has undergone differentiation and possesses a small core. The composition of the lunar core is not well constrained, and many compositional models have been suggested including combinations of iron, nickel, and light elements such as sulphur and carbon [e.g. 1, 2, 3, 4], and other more exotic compositions [5]. Additional constraints are crucial to our understanding of the Moon, including its formation, the dynamics of its interior, and a lunar dynamo. We use ab initio molecular dynamics simulations to calculate elastic constants of face-centred cubic (fcc) iron and iron alloys and hence sound velocities at lunar core conditions, at 5-6 GPa and 1,300-1,900 K [3]. The results from these simulations will then be compared with the data from the Apollo seismograms and experimental data to help form a description of the lunar interior. [1] Weber et al. (2011) Science 331, 309-312. [2] Dasgupta et al. (2009) Geochim. Cosmochim. Acta 73, 6678-6692. [3] Antonangeli et al. (2015) Proc. Natl. Acad. Sci. U.S.A. 112, 3916-3919. [4] Righter et al. (2017) Earth Planet. Sci. Lett. 463, 323-332. [5] Wieczorek & Zuber (2002) Lunar Planet. Sci. 33, abstract 1384.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe 2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe 2 has been identified as a cubic Fdmore » $$ \\overline{3}\\ $$m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111] cubic direction. Here we studied the crystal structure of SmFe 2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe 2 is found to adopt a centrosymmetric trigonal R$$ \\overline{3}\\ $$m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111] cubic to [110] cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe 2 could be useful to understand the magnetostriction and related physical properties of other RM 2-type pseudo-cubic Laves-phase intermetallic compounds.« less

  18. SAWdoubler: A program for counting self-avoiding walks

    NASA Astrophysics Data System (ADS)

    Schram, Raoul D.; Barkema, Gerard T.; Bisseling, Rob H.

    2013-03-01

    This article presents SAWdoubler, a package for counting the total number ZN of self-avoiding walks (SAWs) on a regular lattice by the length-doubling method, of which the basic concept has been published previously by us. We discuss an algorithm for the creation of all SAWs of length N, efficient storage of these SAWs in a tree data structure, and an algorithm for the computation of correction terms to the count Z2N for SAWs of double length, removing all combinations of two intersecting single-length SAWs. We present an efficient numbering of the lattice sites that enables exploitation of symmetry and leads to a smaller tree data structure; this numbering is by increasing Euclidean distance from the origin of the lattice. Furthermore, we show how the computation can be parallelised by distributing the iterations of the main loop of the algorithm over the cores of a multicore architecture. Experimental results on the 3D cubic lattice demonstrate that Z28 can be computed on a dual-core PC in only 1 h and 40 min, with a speedup of 1.56 compared to the single-core computation and with a gain by using symmetry of a factor of 26. We present results for memory use and show how the computation is made to fit in 4 GB RAM. It is easy to extend the SAWdoubler software to other lattices; it is publicly available under the GNU LGPL license. Catalogue identifier: AEOB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public Licence No. of lines in distributed program, including test data, etc.: 2101 No. of bytes in distributed program, including test data, etc.: 19816 Distribution format: tar.gz Programming language: C. Computer: Any computer with a UNIX-like operating system and a C compiler. For large problems, use is made of specific 128-bit integer arithmetic provided by the gcc compiler. Operating system: Any UNIX-like system; developed under Linux and Mac OS 10. Has the code been vectorised or parallelised?: Yes. A parallel version of the code is available in the “Extras” directory of the distribution file. RAM: Problem dependent (2 GB for counting SAWs of length 28 on the 3D cubic lattice) Classification: 16.11. Nature of problem: Computing the number of self-avoiding walks of a given length on a given lattice. Solution method: Length-doubling. Restrictions: The length of the walk must be even. Lattice is 3D simple cubic. Additional comments: The lattice can be replaced by other lattices, such as BCC, FCC, or a 2D square lattice. Running time: Problem dependent (2.5 h using one processor core for length 28 on the 3D cubic lattice).

  19. Superhard BC(3) in cubic diamond structure.

    PubMed

    Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming

    2015-01-09

    We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.

  20. Hybrid-exchange density-functional theory study of the electronic structure of MnV2O4 : Exotic orbital ordering in the cubic structure

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    2015-05-01

    The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .

  1. Structure of tetragonal martensite in the In95.42Cd4.58 cast alloy

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Kazantsev, V. A.

    2017-11-01

    The structure of martensite in the In95.42Cd4.58 alloy has been studied by metallography, X-ray diffraction, dilatometry, and transmission electron microscopy. It has been shown that a massive structure built of colonies of tetragonal lamellar plates divided by a twin boundary {101}FCT is formed in the alloy under cooling below the martensite FCC → FCT transition temperature. The alloy recrystallizes after a cycle of FCT → FCC → FCT transitions with a decrease in the grain size by several times compared with the initial structure such fashion that the size of massifs and individual martensite lamella in the massif correlates with the change in the size of the alloy grain. Using thermal cycling, it has been revealed that the alloy tends to stabilize the high-temperature phase.

  2. Basic criteria for formation of growth twins in high stacking fault energy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K. Y.; Zhang, X.; Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843

    Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity ofmore » these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.« less

  3. Effect of tungsten on the phase-change properties of Ge8Sb2Te11 thin films for the phase-change device

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2017-07-01

    In this study, the electrical, optical, and structural properties of tungsten (W)-doped Ge8Sb2Te11 thin films were investigated. Previously, GeSbTe alloys were doped with various materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and W-doped Ge8Sb2Te11 films with a thickness of 200 nm were fabricated by using an RF magnetron reactive co-sputtering system at room temperature on Si ( p-type, 100) and glass substrate. The fabricated thin films were annealed in a furnace in the 0 - 400 ° C temperature range. The optical properties were analyzed using a UV-Vis-IR spectrophotometer, and by using Beer's Law equation, the optical-energy band gap ( E op ), slope B 1/2, and slope 1/ F were calculated. For the crystalline materials, an increase in the slope B 1/2 and 1/ F was observed, exhibiting a good effect on the thermal stability in the amorphous state after the phase change. The structural properties were analyzed by X-ray diffraction, and the result showed that the W-doped Ge8Sb2Te11 had a face-centered-cubic (fcc) crystalline structure increased crystallization temperature ( T c ). An increase in the T c increased the thermal stability in the amorphous state. The electrical properties were analyzed using a 4-point probe, exhibiting an increase in the sheet resistance ( R s ) in the amorphous and the crystalline states indicating a reduced programming current in the memory device.

  4. Unified structure theory of icosahedral quasicrystals: Evidence from neutron powder diffraction patterns that AlCrFeMnSi, AlCuLiMg, and TiNiFeSi icosahedral quasicrystals are twins of cubic crystals containing about 820 or 1012 atoms in a primitive unit cube

    PubMed Central

    Pauling, Linus

    1988-01-01

    A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990

  5. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    PubMed

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    PubMed Central

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.

    2017-01-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226

  7. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface

    NASA Astrophysics Data System (ADS)

    Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.

    2017-02-01

    Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.

  8. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Egg extract of apple snail for eco-friendly synthesis of silver nanoparticles and their antibacterial activity.

    PubMed

    Janthima, Ratima; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-03-01

    Green synthesis of silver nanoparticles (AgNPs) provides the alternative method with cost effectiveness and the eco-friendly process by using natural biomolecules as reducing and stabilizing agents. Alternative to the most studies of plant extracts, this work demonstrated a use of egg extract of apple snail (Pomacea canaliculata) for an eco-friendly production of AgNPs. The extract contained at least six proteins with the molecular weight in a range of 24-65 kDa that exhibited the reducing activity. The dispersive AgNPs were produced in the reaction containing only the extract and silver nitrate, as determined by the characteristic surface plasmon resonance peak of silver at 412 nm. The synthesized AgNPs were spherical with the average diameter of 9.0 ± 5.9 nm. The X-ray diffraction pattern and selected area electron diffraction (SAED) analyses confirmed the face-cubic centre (fcc) unit cell structure of AgNPs. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Results of this work clearly showed the potential use of the egg extract of apple snail for a green synthesis of small size AgNPs exhibiting the antibacterial activity.

  10. Parental Perceptions of Family Centered Care in Medical Homes of Children with Neurodevelopmental Disabilities.

    PubMed

    Zajicek-Farber, Michaela L; Lotrecchiano, Gaetano R; Long, Toby M; Farber, Jon Matthew

    2015-08-01

    Life course theory sets the framework for strong inclusion of family centered care (FCC) in quality medical homes of children with neurodevelopmental disabilities (CNDD). The purpose of this study was to explore the perceptions of families with their experiences of FCC in medical homes for CNDD. Using a structured questionnaire, the Family-Centered Care Self-Assessment Tool developed by Family Voices, this study surveyed 122 parents of CNDD in a large urban area during 2010-2012. Data collected information on FCC in the provision of primary health care services for CNDD and focused on family-provider partnerships, care setting practices and policies, and community services. Frequency analysis classified participants' responses as strengths in the "most of the time" range, and weaknesses in the "never" range. Only 31 % of parents were satisfied with the primary health care their CNDD received. Based on an accepted definition of medical home services, 16 % of parents reported their CNDD had most aspects of a medical home, 64 % had some, and 20 % had none. Strengths in FCC were primarily evident in the family-provider partnership and care settings when focused on meeting the medical care needs of the child. Weaknesses in FCC were noted in meeting the needs of families, coordination, follow-up, and support with community resources. Improvements in key pediatric health care strategies for CNDD are recommended. CNDD and their families have multifaceted needs that require strong partnerships among parents, providers, and communities. Quality medical homes must include FCC and valued partnerships with diverse families and community-based providers.

  11. 76 FR 57989 - Privacy Act System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... one new, consolidated system of records, FCC/PSHSB-1, ``FCC Emergency and Continuity Contacts System (ECCS).'' FCC/PSHSB-1, ``FCC Emergency and Continuity Contacts System (ECCS)'' will incorporate the..., FCC/EB-4, ``Crisis Management Contacts,'' and FCC/OMD-11, ``Continuity of Operations Plan (COOP...

  12. Characterization of iron ferromagnetism by the local atomic volume: from three-dimensional structures to isolated atoms.

    PubMed

    Zhang, Lei; Sob, M; Wu, Zhe; Zhang, Ying; Lu, Guang-Hong

    2014-02-26

    We present a comprehensive study of the relationship between the ferromagnetism and the structural properties of Fe systems from three-dimensional ones to isolated atoms based on the spin-density functional theory. We have found a relation between the magnetic moment and the volume of the Voronoi polyhedron, determining, in most cases, the value of the total magnetic moment as a function of this volume with an average accuracy of ±0.28 μ(B) and of the 3d magnetic moment with an average accuracy of ±0.07 μ(B) when the atomic volume is larger than 22 ų. It is demonstrated that this approach is applicable for many three-dimensional systems, including high-symmetry structures of perfect body-centered cubic (bcc), face-centered cubic (fcc), hexagonal close-packed (hcp), double hexagonal close-packed (dhcp), and simple cubic (sc) crystals, as well as for lower-symmetry ones, for example atoms near a grain boundary (GB) or a surface, around a vacancy or in a linear chain (for low-dimensional cases, we provide a generalized definition of the Voronoi polyhedron). Also, we extend the validity of the Stoner model to low-dimensional structures, such as atomic chains, free-standing monolayers and surfaces, determining the Stoner parameter for these systems. The ratio of the 3d-exchange splitting to the magnetic moment, corresponding to the Stoner parameter, is found to be I(3d) = (0.998 ± 0.006) eV /μ(B) for magnetic moments up to 3.0 μ(B). Further, the 3d exchange splitting changes nearly linearly in the region of higher magnetic moments (3.0-4.0 μ(B)) and the corresponding Stoner exchange parameter equals I(h)(3d) = (0.272 ± 0.006) eV /μ(B). The existence of these two regions reflects the fact that, with increasing Voronoi volume, the 3d bands separate first and, consequently, the 3d magnetic moment increases. When the Voronoi volume is sufficiently large (≥22 ų), the separation of the 3d bands is complete and the magnetic moment reaches a value of 3.0 μ(B). Then, when the volume further increases, the 4s bands start to separate, increasing thus the 4s magnetic moment. Surprisingly, in the region of higher magnetic moments (≥3.0 μ(B)), there is also a linear relationship between the 4s exchange splitting and the total magnetic moment with a slope of I(h)(4s) = (1.053 ± 0.016) eV /μ(B), which is nearly identical to I(3d) for magnetic moments up to 3.0 μB. These linear relations can be considered as an extension of the Stoner model for low-dimensional systems.

  13. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conn, Charlotte E.; Darmanin, Connie; Sagnella, Sharon M.

    The dopamine D2 long (D2L) receptor and bacteriorhodopsin (bR), which are integral membraneproteins, have been incorporated within bicontinuous cubic mesophases formed by the lipids anandamide and H-farnesoyl monoethanolamide, which have been specifically investigated by us for use as in mesocrystallization media. We show that the incorporated membraneprotein affects the structure of the cubic phases with the particular effect observed dependent on the geometry of the underlying cubic phase. The results are complementary to those obtained in Part 1 of this series, where we demonstrated that the structural effects observed depend on the structure of the membraneprotein. Importantly protein concentrations commonlymore » used for crystallization can destroy the cubic phase matrix, particularly where there is a large discrepancy between the hydrophilic and the hydrophobic spans of the membraneprotein, and the hydrophilic and hydrophobic domain sizes of the cubic phase.« less

  15. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method.

    PubMed

    Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2014-10-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ~0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  17. STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).

    PubMed

    Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen

    2009-05-05

    Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.

  18. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Koda, K.; Kaji, J.; Aramaki, H.; Eguchi, K.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We electroplated Fe-Co-Ni films in ammonium-chloride-based plating baths, and investigated the effect of the Co content on the magnetic properties and the structural ones of the as-plated films. The coercivity increased abruptly when the Co content become more than 60 at.%. As the rough surfaces were observed in the high Co content region, we considered that degradation of the surface is a factor of the abrupt increase in the coercivity. From the XRD analysis, we found that another factor of the abrupt increase is fcc-bcc phase transformation, and concluded that we need to keep the fcc structure to obtain Fe-Co-Ni films with low coercivity.

  19. Superhard BC 3 in cubic diamond structure

    DOE PAGES

    Zhang, Miao; Liu, Hanyu; Li, Quan; ...

    2015-01-06

    We solve the crystal structure of recently synthesized cubic BC 3 using an unbiased swarm structure search, which identifies a highly symmetric BC 3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC 3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC 3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish themore » first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less

  20. Structured fluids as microreactors for flavor formation by the Maillard reaction.

    PubMed

    Vauthey, S; Milo, C; Frossard, P; Garti, N; Leser, M E; Watzke, H J

    2000-10-01

    Thermal reactions of cysteine/furfural and cysteine/ribose mixtures were studied in model systems to gain more insight into the influence of structured fluids such as L(2) microemulsions and cubic phases on the generation of aroma compounds. Formation of 2-furfurylthiol from cysteine/furfural was particularly efficient in L(2) microemulsions and cubic phases compared to aqueous systems. The reaction led to the formation of two new sulfur compounds, which were identified as 2-(2-furyl)thiazolidine and, tentatively, N-(2-mercaptovinyl)-2-(2-furyl)thiazolidine. Similarly, generation of 2-furfurylthiol and 2-methyl-3-furanthiol from cysteine/ribose mixtures was strongly enhanced in structured fluids. The cubic phase was shown to be even more efficient in flavor generation than the L(2) microemulsion. It was denoted "cubic catalyst" or "cubic selective microreactor". The obtained results are interpreted in terms of a surface and curvature control of the reactions defined by the structural properties of the formed surfactant associates.

  1. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  2. Long-range empirical potential model: extension to hexagonal close-packed metals.

    PubMed

    Dai, Y; Li, J H; Liu, B X

    2009-09-23

    An n-body potential is developed and satisfactorily applied to hcp metals, Co, Hf, Mg, Re, Ti, and Zr, in the form of long-range empirical potential. The potential can well reproduce the lattice constants, c/a ratios, cohesive energies, and the bulk modulus for their stable structures (hcp) and metastable structures (bcc or fcc). Meanwhile, the potential can correctly predict the order of structural stability and distinguish the energy differences between their stable hcp structure and other structures. The energies and forces derived by the potential can smoothly go to zero at cutoff radius, thus completely avoiding the unphysical behaviors in the simulations. The developed potential is applied to study the vacancy, surface fault, stacking fault and self-interstitial atom in the hcp metals. The calculated formation energies of vacancy and divacancy and activation energies of self-diffusion by vacancies are in good agreement with the values in experiments and in other works. The calculated surface energies and stacking fault energies are also consistent with the experimental data and those obtained in other theoretical works. The calculated formation energies generally agree with the results in other works, although the stable configurations of self-interstitial atoms predicted in this work somewhat contrast with those predicted by other methods. The proposed potential is shown to be relevant for describing the interaction of bcc, fcc and hcp metal systems, bringing great convenience for researchers in constructing potentials for metal systems constituted by any combination of bcc, fcc and hcp metals.

  3. Weak lensing probe of cubic Galileon model

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.

    2018-06-01

    The cubic Galileon model containing the lowest non-trivial order action of the full Galileon action can produce the stable late-time cosmic acceleration. This model can have a significant role in the growth of structures. The signatures of the cubic Galileon model in the structure formation can be probed by the weak lensing statistics. Weak lensing convergence statistics is one of the strongest probes to the structure formation and hence it can probe the dark energy or modified theories of gravity models. In this work, we investigate the detectability of the cubic Galileon model from the ΛCDM model or from the canonical quintessence model through the convergence power spectrum and bi-spectrum.

  4. 47 CFR 74.30 - Antenna structure, marking and lighting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna structure, marking and lighting. 74.30... Applicable to All Services in Part 74 § 74.30 Antenna structure, marking and lighting. The provisions of part 17 of the FCC rules (Construction, Marking, and Lighting of Antenna Structures) require certain...

  5. 47 CFR 74.30 - Antenna structure, marking and lighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna structure, marking and lighting. 74.30... Applicable to All Services in Part 74 § 74.30 Antenna structure, marking and lighting. The provisions of part 17 of the FCC rules (Construction, Marking, and Lighting of Antenna Structures) require certain...

  6. 47 CFR 74.30 - Antenna structure, marking and lighting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna structure, marking and lighting. 74.30... Applicable to All Services in Part 74 § 74.30 Antenna structure, marking and lighting. The provisions of part 17 of the FCC rules (Construction, Marking, and Lighting of Antenna Structures) require certain...

  7. 47 CFR 74.30 - Antenna structure, marking and lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna structure, marking and lighting. 74.30... Applicable to All Services in Part 74 § 74.30 Antenna structure, marking and lighting. The provisions of part 17 of the FCC rules (Construction, Marking, and Lighting of Antenna Structures) require certain...

  8. 47 CFR 74.30 - Antenna structure, marking and lighting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna structure, marking and lighting. 74.30... Applicable to All Services in Part 74 § 74.30 Antenna structure, marking and lighting. The provisions of part 17 of the FCC rules (Construction, Marking, and Lighting of Antenna Structures) require certain...

  9. 76 FR 59269 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... applicant's organizational structure, including the names of its executives, officers, partners, and board... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-54] Structure and... with the Commission's Structure and Practices of the Video Relay Service Program, Report and Order...

  10. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  11. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Report and Order, General Docket 80-603, FCC 82-285, adopted June 23, 1982. 90 FCC 2d 676; 47 FR 31555, July 21, 1982. (b) See Memorandum Opinion and Order, FCC 82-427, adopted September 23, 1982. 91 FCC 2d. (c) See Memorandum Opinion and Order, FCC 82-498, adopted November 4, 1982. 91 FCC 2d. [48 FR 9012...

  12. 47 CFR 73.4280 - Character evaluation of broadcast applicants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Docket 78-108, FCC 85-648, adopted December 10, 1985. 102 FCC 2d 1179; 51 FR 3049, January 23, 1986. (b) See Policy Statement and Order, FCC 90-195, adopted May 10, 1990. 5 FCC Rcd 3252, 55 FR 23082, June 6, 1990. (c) See Memorandum Opinion and Order, FCC 91-146, adopted May 1, 1991. 6 FCC Rcd 3448, 56 FR...

  13. Existence of Fe{sup 4+} ions in Co{sub 2.25}Fe{sub 0.75}O{sub 4} spinel ferrite confirmed from SXRD and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Manas Ranjan, E-mail: manasranjan056@gmail.com; Bhowmik, R. N.; Sinha, A. K.

    2015-06-24

    The Co{sub 2.25}Fe{sub 0.75}O{sub 4} ferrite composition has been prepared by chemical co-precipitation route. The as-prepared sample after annealing at 900°C in air formed single phase cubic spinel structure. Synchrotron X-ray diffraction and X-ray absorption near edge structure (XANES) measurements were used to study charge states of the cations in octahedral and tetrahedral sites of the cubic spinel structure. Raman spectra indicated normal cubic spinel structure. XANES data suggested the existence of Fe{sup 4+} ions in the spinel structure.

  14. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  15. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  16. Proton NMR studies of the electronic structure of ZrH/sub x/

    NASA Technical Reports Server (NTRS)

    Attalla, A.; Bowman, R. C., Jr.; Craft, B. D.; Venturini, E. L.; Rhim, W. K.

    1982-01-01

    The proton spin lattice relaxation times and Knight shifts were measured in f.c.c. (delta-phase) and f.c.t. (epsilon-phase) ZrH/sub x/ for 1.5 or = to x or = to 2.0. Both parameters indicate that N(E/sub F/) is very dependent upon hydrogen content with a maximum occurring at ZrH1 83. This behavior is ascribed to modifications in N(E/sub F/) through a fcc/fct distortion in ZrH/sub x/ associated with a Jahn-Teller effect.

  17. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A. D.; Pham, Q.; Fortin, E. V.

    Here, three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipientmore » transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.« less

  19. Metal Dusting: Catastrophic Corrosion by Carbon

    NASA Astrophysics Data System (ADS)

    Young, David J.; Zhang, Jianqiang

    2012-12-01

    Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400-700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

  20. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  1. 47 CFR 1.1152 - Schedule of annual regulatory fees and filing locations for wireless radio services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) (47 CFR, Part 90) (a) New, Renew/Mod (FCC 601 & 159) $40.00 FCC, P.O. Box 979097, St. Louis, MO 63197-9000. (b) New, Renew/Mod (Electronic Filing) (FCC 601 & 159) 40.00 FCC, P.O. Box 979097, St. Louis, MO 63197-9000. (c) Renewal Only (FCC 601 & 159) 40.00 FCC, P.O. Box 979097, St. Louis, MO 63197-9000. (d...

  2. Status and availability of FCC hardware

    NASA Technical Reports Server (NTRS)

    Romriell, G. K.

    1973-01-01

    The source availability of FCC and/or FCC connectors was surveyed. The results for the following areas are presented: (1) cost of FCC versus standard round cable, (2) qualification status, (3) size of wire available in FCC, (4) availability of hermetic connectors for FCC, (5) conversion from flat cable to round cable and visa versa, (6) availability of shielded flat cable for RF usage, (7) termination techniques, and (8) repair techniques.

  3. Order - disorder transitions in granular sphere packings

    NASA Astrophysics Data System (ADS)

    Panaitescu, Andreea M.

    Granular materials are ubiquitous in many industrial and natural processes, yet their complex behaviors characterized by unusual static and dynamic properties are still poorly understood. In this dissertation we investigate both the geometrical structure and the dynamical properties (the response to shear deformations, disorder-order transition and crystallization) of packings of mono-sized spheres as a function of the packing volume fraction. Different average packing fractions were obtained by submitting a dense granular material to periodic shear deformations and by epitaxy. Using advanced imaging techniques including the refractive index matched imaging (RIM) and X-ray computed tomography (CT) enables us to determine the three dimensional particles position inside the packing. From positions we obtain the Voronoi tessellation corresponding to the particles in the bulk and calculate the radial distribution and the bond-order metric. These two parameters are widely used to quantify the structure of the spherical particle systems. A granular packing undergoing periodic shear deformations is observed to slowly evolve towards crystallization and the packing fraction is correspondingly observed to increase smoothly from loose packing fraction, 0.59, well above the random close packing fraction, 0.637. Tracking the particles over several shear cycles allows us to obtain the probability distributions of particle displacements and the mean-square displacements and to compute the components of the diffusion tensor. We find that in a shear flow, the initial self-diffusion of the particles is anisotropic with diffusion greater in the flow direction compared with the velocity gradient direction which in turn is greater than in the vorticity direction. We further find that the granular matter under cyclic shear shows reversible as well as irreversible or plastic response for small enough strain amplitude. The appearance and the propagation of the crystalline order were studied using the orientational order metric. By following the evolution of the nucleating crystallites, we identified critical nuclei, determined their size and symmetry, and measured the average surface free energy. The structure of the nuclei was found to be random hexagonal close-packed, their average shape was non-spherical and they were oriented preferentially along the shear axis. When the packing volume fraction approaches a value close to the random close packing, crystallites with face centered cubic (fcc) order are observed with increasing probability, and ordered domains grow rapidly. A polycrystalline phase with domains of fcc and hcp order is obtained after hundreds of thousands of shear cycles. Depositing spheres on a substrate under the influence of gravity gives rise to a wide range of volume fractions and packing structures by simply controlling the nature of the substrate, the deposition rate and the energy of the particles. We analyzed the structures formed and investigate the development of the disordered phases as a function of the deposition rate. Furthermore, by comparing these structures with packings obtained by cyclic shear we showed that the structure of a granular packing depends strongly on the protocol used.

  4. 47 CFR 25.113 - Station licenses and launch authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Construction of such stations may commence prior to grant of a license at the applicant's own risk. Applicants... FCC Antenna Structure Registration Number(s) for the affected structure(s). If no such number has been... for the antenna structure in question. (f) Construction permits are not required for U.S.-licensed...

  5. 47 CFR 25.113 - Station licenses and launch authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Construction of such stations may commence prior to grant of a license at the applicant's own risk. Applicants... FCC Antenna Structure Registration Number(s) for the affected structure(s). If no such number has been... for the antenna structure in question. (f) Construction permits are not required for U.S.-licensed...

  6. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  7. Two-Layer 16 Tesla Cosθ Dipole Design for the FCC

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, G.

    2018-02-13

    The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible withmore » conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  8. Two-Layer 16 T Cos θ Dipole Design for the FCC

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, Giorgio

    2018-02-22

    Here, the Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb 3Sn magnet fabrication experience. This experience includes robust Nb 3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 teslamore » are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb 3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  9. Two-Layer 16 T Cos θ Dipole Design for the FCC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, Giorgio

    Here, the Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb 3Sn magnet fabrication experience. This experience includes robust Nb 3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 teslamore » are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb 3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  10. Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75)

    NASA Astrophysics Data System (ADS)

    Mikhaylushkin, A. S.; Skorodumova, N. V.; Ahuja, R.; Johansson, B.

    2006-05-01

    The structural and magnetic properties of the FeHx (x=0.25; 0.50; 0.75) compounds have been studied using the projector augmented wave (PAW) method within the generalized gradient approximation (GGA). We compare the hcp, dhcp and fcc structures and find that for the considered concentrations of hydrogen the hcp structure is most stable in a wide pressure range. The magnetic behavior of iron is crucially influenced by hydrogen. In particular, the local moment on a Fe atom depends on the number of hydrogen atoms in the atom surroundings. Iron atoms, which are crystallographically equivalent in their original structures (hcp, fcc) but have different number of hydrogen neighbors, are shown to have different local magnetic moments. This finding suggests that the experimental observations of two magnetic moments in iron hydride can be explained by nonstoichiometry of the hydride and might not be a direct evidence for the presence of the dhcp phase.

  11. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  12. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study.

    PubMed

    Li, Wei-Bing; Li, Kang; Fan, Kang-Qi; Zhang, Da-Xing; Wang, Wei-Dong

    2018-04-24

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  13. 47 CFR 95.117 - Where to contact the FCC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.117 Where to contact the FCC. Additional GMRS information...) FCC World Wide Web homepage: http://www.fcc.gov/wtb/prs. (c) In writing, to the FCC, Attention: GMRS...

  14. 77 FR 1066 - Information Collection Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... provide a pending File Number for an Antenna Structure Registration (ASR). Previously ULS would only...: Application for Antenna Structure Registration. Form Number: FCC Form 854. Type of Review: Revision of a... will be archived after being keyed or scanned into the Antenna Structure Registration (ASR) database...

  15. 76 FR 22701 - Notice of Public Information Collection(s) Being Reviewed by the Federal Communications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ...: 3060-0795. Title: Associated WTB and/or PSHSB Call Signs and Antenna Structure Registration Numbers... Public Safety and Homeland Security Bureau call signs and antenna structure registration numbers. The... or antenna structure registration that is not associated with a FCC Registration Number (FRN). The...

  16. 75 FR 39859 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 10-88] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Interim rule... a summary of the Commission's Structure and Practices of the Video Relay Service Program, Order...

  17. 76 FR 47476 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-118] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Interim rule... summary of the Commission's Structure and Practices of the Video Relay Service Program, Order (Order...

  18. 47 CFR 73.3617 - Information available on the Internet.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....fcc.gov/mb/; the Audio Division's address is http://www.fcc.gov/mmb/audio; the Video Division's address is http://www.fcc.gov/mb/video; the Policy Division's address is http://www.fcc.gov/mb/policy; the Engineering Division's address is http://www.fcc.gov/mb/engineering; and the Industry Analysis Division's...

  19. 47 CFR 73.3617 - Information available on the Internet.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....fcc.gov/mb/; the Audio Division's address is http://www.fcc.gov/mmb/audio; the Video Division's address is http://www.fcc.gov/mb/video; the Policy Division's address is http://www.fcc.gov/mb/policy; the Engineering Division's address is http://www.fcc.gov/mb/engineering; and the Industry Analysis Division's...

  20. 47 CFR 73.3617 - Information available on the Internet.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....fcc.gov/mb/; the Audio Division's address is http://www.fcc.gov/mmb/audio; the Video Division's address is http://www.fcc.gov/mb/video; the Policy Division's address is http://www.fcc.gov/mb/policy; the Engineering Division's address is http://www.fcc.gov/mb/engineering; and the Industry Analysis Division's...

Top