Science.gov

Sample records for cubic sic films

  1. Compensation in epitaxial cubic SiC films

    NASA Technical Reports Server (NTRS)

    Segall, B.; Alterovitz, S. A.; Haugland, E. J.; Matus, L. G.

    1986-01-01

    Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC.

  2. Growth and characterization of cubic SiC single-crystal films on Si

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, L. G.; Kuczmarski, Maria A.

    1987-01-01

    Morphological and electrical characterization results are presented for cubic SiC films grown by chemical vapor deposition on single-crystal Si substrates. The films, up to 40 microns thick, were characterized by optical microscopy, (SEM), (TEM), electron channeling, surface profilometry, and Hall measurements. A variety of morphological features observed on the SiC films are described. Electrical measurements showed a decrease in the electron mobility with increasing electron carrier concentration, similar to that observed in Si. Room-temperature electron mobilities up to 520 sq cm/V-s (at an electron carrier concentration of 5 x 10 to the 16th/cu cm) were measured. Finally, a number of parameters believed to be important in the growth process were investigated, and some discussion is given of their possible effects on the film characteristics.

  3. Growth and characterization of cubic SiC single-crystal films on Si

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, L. G.; Kuczmarski, Maria A.

    1987-01-01

    Morphological and electrical characterization results are presented for cubic SiC films grown by chemical vapor deposition on single-crystal Si substrates. The films, up to 40 microns thick, were characterized by optical microscopy, (SEM), (TEM), electron channeling, surface profilometry, and Hall measurements. A variety of morphological features observed on the SiC films are described. Electrical measurements showed a decrease in the electron mobility with increasing electron carrier concentration, similar to that observed in Si. Room-temperature electron mobilities up to 520 sq cm/V-s (at an electron carrier concentration of 5 x 10 to the 16th/cu cm) were measured. Finally, a number of parameters believed to be important in the growth process were investigated, and some discussion is given of their possible effects on the film characteristics.

  4. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    PubMed Central

    2011-01-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals. PMID:21762496

  5. Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Luchinin, Viktor V.; Goloudina, Svetlana I.; Pasyuta, Vyacheslav M.; Panov, Mikhail F.; Smirnov, Alexander N.; Kirilenko, Demid A.; Semenova, Tatyana F.; Sklizkova, Valentina P.; Gofman, Iosif V.; Svetlichnyi, Valentin M.; Kudryavtsev, Vladislav V.

    2017-06-01

    High-quality crystalline nano-thin SiC films on Si substrates were prepared by carbonization of polyimide (PI) Langmuir-Blodgett (LB) films. The obtained films were characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Raman spectroscopy, transmission electon microscopy (TEM), transmission electron diffraction (TED), and scanning electron microscopy (SEM). We demonstrated that the carbonization of a PI film on a Si substrate at 1000 °C leads to the formation of a carbon film and SiC nanocrystals on the Si substrate. It was found that five planes in the 3C-SiC(111) film are aligned with four Si(111) planes. As a result of repeated annealing of PI films containing 121 layers at 1200 °C crystalline SiC films were formed on the Si substrate. It was shown that the SiC films (35 nm) grown on Si(111) at 1200 °C have a mainly cubic 3C-SiC structure with small amount of hexagonal polytypes. Only 3C-SiC films (30 nm) were formed on the Si(100) substrate at the same temperature. It was shown that the SiC films (30-35 nm) can cover the voids with size up to 10 µm in the Si substrate. The current-voltage (I-V) characteristics of the n-Si/n-SiC heterostructure were obtained by conductive atomic force microscopy.

  6. Synchronistic preparation of fibre-like SiC and cubic-ZrO{sub 2}/SiC composite from zircon via carbothermal reduction process

    SciTech Connect

    Xu, Youguo; Liu, Yangai; Huang, Zhaohui; Fang, Minghao; Hu, Xiaozhi; Yin, Li; Huang, Juntong

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► Zircon carbothermal reduction was carried out in a tailor-made device at high-temperature air atmosphere. ► Fibre-like SiC and cubic-ZrO{sub 2}/SiC composite were obtained synchronically. ► Zirconium and silicon in zircon ore was initial separated. ► [SiO{sub 4}] was mutated to fibre-like SiC, while [ZrO{sub 8}] was transformed to cubic ZrO{sub 2}. ► The SiC were surprisingly enriched in the reducing atmosphere charred coal particles layers by gas–solid reaction. -- Abstract: Fibre-like SiC and cubic-ZrO{sub 2}/SiC composite were prepared respectively from zircon with yttrium oxide addition via carbothermal reduction process at 1600 °C for 4 h in an air atmosphere furnace, where the green samples were immerged in charred coal particles inside a high-temperature enclosed corundum crucible. The reaction products were characterized by XRD, XRF, XPS and SEM. The results indicate that ZrO{sub 2} in the products was mainly existed in the form of cubic phase. The reacted samples mainly contain cubic ZrO{sub 2}, β-SiC and trace amounts of zircon, with the SiC accounting for 14.8 wt%. Furthermore, a large quantity of fibre-like SiC was surprisingly found to concentrate in the charred coal particles layers around the samples. This study obtains fibre-like SiC and cubic-ZrO{sub 2}/SiC composite synchronically from zircon via carbothermal reduction process, which also bring a value-added high-performance application for natural zircon.

  7. Exceptionally Strong Phonon Scattering by B Substitution in Cubic SiC

    NASA Astrophysics Data System (ADS)

    Katre, Ankita; Carrete, Jesús; Dongre, Bonny; Madsen, Georg K. H.; Mingo, Natalio

    2017-08-01

    We use ab initio calculations to predict the thermal conductivity of cubic SiC with different types of defects. An excellent quantitative agreement with previous experimental measurements is found. The results unveil that BC substitution has a much stronger effect than any of the other defect types in 3 C -SiC , including vacancies. This finding contradicts the prediction of the classical mass-difference model of impurity scattering, according to which the effects of BC and NC would be similar and much smaller than that of the C vacancy. The strikingly different behavior of the BC defect arises from a unique pattern of resonant phonon scattering caused by the broken structural symmetry around the B impurity.

  8. Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates

    NASA Technical Reports Server (NTRS)

    Steckl, A. J.; Roth, M. D.; Powell, J. A.; Larkin, D. J.

    1993-01-01

    The surface of 3C SiC films grown on 6H SiC substrates has been studied by atomic probe microscopy in air. Atomic-scale images of the 3C SiC surface have been obtained by STM which confirm the 111 line type orientation of the cubic 3C layer grown on the 0001 plane type surface of the hexagonal 6H substrate. The nearest-neighbor atomic spacing for the 3C layer has been measured to be 3.29 +/- 0.2 A, which is within 7 percent of the bulk value. Shallow terraces in the 3C layer have been observed by STM to separate regions of very smooth growth in the vicinity of the 3C nucleation point from considerably rougher 3C surface regions. These terraces are oriented at right angles to the growth direction. Atomic force microscopy has been used to study etch pits present on the 6H substrate due to high temperature HCl cleaning prior to CVD growth of the 3C layer. The etch pits have hexagonal symmetry and vary in depth from 50 nm to 1 micron.

  9. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices

    NASA Technical Reports Server (NTRS)

    Nishino, S.; Powell, J. A.; Will, H. A.

    1983-01-01

    A reproducible process is described for growing a thick single-crystal layer of cubic SiC on a single-crystal Si wafer by chemical vapor deposition. A buffer layer, grown in situ, is used between the cubic SiC and the Si substrate to minimize the effect of lattice mismatch. Layers of up to 34 microns thick and several sq cm in area have been grown. Wafers are obtained by chemically removing the Si substrates from the grown layers. Excellent electron channeling patterns produced by these wafers indicate very good crystal quality. Preliminary electrical measurements have yielded electron mobilities up to 380 sq cm/Vs.

  10. Thermal expansion of the cubic (3C) polytype of SiC

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1986-01-01

    Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000 C by the X-ray-diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed by a second-order polynomial. It increases continuously from about 3.2 x 10 to the -6th/C at room temperature to 5.1 x 10 to the -6th/C at 1000 C, with an average value of 4.45 x 10 to the -6th/C between room temperature and 1000 C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.

  11. Thermal expansion of the cubic (3C) polytype of SiC

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1986-01-01

    Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000 C by the X-ray-diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed by a second-order polynomial. It increases continuously from about 3.2 x 10 to the -6th/C at room temperature to 5.1 x 10 to the -6th/C at 1000 C, with an average value of 4.45 x 10 to the -6th/C between room temperature and 1000 C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.

  12. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  13. Photonic crystal cavities in cubic (3C) polytype silicon carbide films.

    PubMed

    Radulaski, Marina; Babinec, Thomas M; Buckley, Sonia; Rundquist, Armand; Provine, J; Alassaad, Kassem; Ferro, Gabriel; Vučković, Jelena

    2013-12-30

    We present the design, fabrication, and characterization of high quality factor (Q ~10(3)) and small mode volume (V ~0.75 (λ/n)(3)) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 - 1.6 μm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

  14. A facile synthesis of cubic (Im3m) alumina films on glass with potential catalytic activity.

    PubMed

    Mitra, Anuradha; Jana, Debrina; De, Goutam

    2012-04-04

    Thermally stable phase pure mesoporous cubic (Im3m) alumina films were synthesized on glass substrates under ambient conditions. These cubic alumina films incorporated with Au NPs exhibited excellent catalytic property.

  15. Preparation of superhydrophobic nanodiamond and cubic boron nitride films

    NASA Astrophysics Data System (ADS)

    Zhou, Y. B.; Yang, Y.; Liu, W. M.; Ye, Q.; He, B.; Zou, Y. S.; Wang, P. F.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.

    2010-09-01

    Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150° and a sliding angle smaller than 10° were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

  16. Exciton-polariton state in nanocrystalline SiC films

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Lopin, A. V.

    2016-05-01

    We studied the features of optical absorption in the films of nanocrystalline SiC (nc-SiC) obtained on the sapphire substrates by the method of direct ion deposition. The optical absorption spectra of the films with a thickness less than ~500 nm contain a maximum which position and intensity depend on the structure and thickness of the nc-SiC films. The most intense peak at 2.36 eV is observed in the nc-SiC film with predominant 3C-SiC polytype structure and a thickness of 392 nm. Proposed is a resonance absorption model based on excitation of exciton polaritons in a microcavity. In the latter, under the conditions of resonance, there occurs strong interaction between photon modes of light with λph=521 nm and exciton of the 3С polytype with an excitation energy of 2.36 eV that results in the formation of polariton. A mismatch of the frequencies of photon modes of the cavity and exciton explains the dependence of the maximum of the optical absorption on the film thickness.

  17. Preparation and characterization of pulsed laser deposition (PLD) SiC films

    NASA Astrophysics Data System (ADS)

    Tang, Y. H.; Sham, T.-K.; Yang, D.; Xue, L.

    2006-03-01

    Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ˜5 J/cm 2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.

  18. Pt-Co Alloys-Loaded Cubic SiC Electrode with Improved Photoelectrocatalysis Property.

    PubMed

    Liu, Dan; Yang, Tao; Chen, Junhong; Chou, Kuo-Chih; Hou, Xinmei

    2017-08-16

    A novel composite photocatalyst was synthesized by loading 5 wt % of platinum cobalt alloy on 3C-SiC nanowires and powder (Pt-Co-SiC) respectively via a simple polyol reduction method. Pt-Co-SiC were comprehensively characterized by SEM, HRTEM, XRD, PL, and XPS. The results indicated that Pt-Co nanoparticles in the size of 2-5 nm were dispersed homogeneously in the SiC nanowires and powders. The photocurrent response of the Pt-Co-SiC increased remarkably with increasing Pt content and the best performance was observed with the sample of Pt₃Co-SiC. Especially, the Pt₃Co-SiC nanowires photoelectrode exhibited improved cathodic current density (0.14 mA·cm(-2)) under the simulated sunlight, which was about 10 times higher than the Pt₃Co-SiC powders. The H₂ production rate for the Pt₃Co-SiC nanowires is 30 times more than that of the pure SiC nanowires. The enhancement of the Pt-Co-SiC properties could be ascribed to the fact that more visible light was harvested and the photogenerated electron and the interfacial electron transfered more easily.

  19. Pt-Co Alloys-Loaded Cubic SiC Electrode with Improved Photoelectrocatalysis Property

    PubMed Central

    Liu, Dan; Yang, Tao; Chen, Junhong; Chou, Kuo-Chih; Hou, Xinmei

    2017-01-01

    A novel composite photocatalyst was synthesized by loading 5 wt % of platinum cobalt alloy on 3C-SiC nanowires and powder (Pt-Co-SiC) respectively via a simple polyol reduction method. Pt-Co-SiC were comprehensively characterized by SEM, HRTEM, XRD, PL, and XPS. The results indicated that Pt-Co nanoparticles in the size of 2–5 nm were dispersed homogeneously in the SiC nanowires and powders. The photocurrent response of the Pt-Co-SiC increased remarkably with increasing Pt content and the best performance was observed with the sample of Pt3Co-SiC. Especially, the Pt3Co-SiC nanowires photoelectrode exhibited improved cathodic current density (0.14 mA·cm−2) under the simulated sunlight, which was about 10 times higher than the Pt3Co-SiC powders. The H2 production rate for the Pt3Co-SiC nanowires is 30 times more than that of the pure SiC nanowires. The enhancement of the Pt-Co-SiC properties could be ascribed to the fact that more visible light was harvested and the photogenerated electron and the interfacial electron transfered more easily. PMID:28813031

  20. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  1. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    SciTech Connect

    Pawbake, Amit; Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok; Waman, Vaishali; Parmar, Jayesh; Bhattacharyya, Somnath; Ma, Yuan‐Ron; Devan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  2. Investigation of structure, magnetic, and transport properties of Mn-doped SiC films

    SciTech Connect

    Sun Xianke; Guo Ruisong; An Yukai; Liu Jiwen

    2013-07-15

    Mn-doped SiC films were fabricated by radio frequency magnetron sputtering technique. The structure, composition, and magnetic and transport properties of the films were investigated. The results show the films have the 3C-SiC crystal structure and the doped Mn atoms in the form of Mn{sup 2+} ions substitute for C sites in SiC lattice. All the films are ferromagnetic at 300 K, and the ferromagnetism in films arises from the doped Mn atoms and some extended defects. In addition, the saturation magnetization increases with the Mn-doped concentration increasing. The Mn doping does not change the semiconductor characteristics of the SiC films.

  3. Adducing crystalline features from Raman scattering studies of cubic SiC using different excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Wan, Lingyu; Xie, Deng; Qiu, Zhi Ren; Jiang, Xiaodong; Tin, Chin-Che; Feng, Zhe Chuan

    2017-03-01

    A series of cubic 3C–SiC/Si samples with different thicknesses grown by chemical vapor deposition (CVD) was studied by Raman spectroscopy using laser excitation with different wavelengths plus spectral line shape analysis via two theoretical methods. Through comparative UV and visible excitation Raman measurements and theoretical analysis, the TO intensity was mainly affected by laser penetration depth and crystalline quality. The difference spectra were utilized to remove the second-order Raman signal from Si substrate. Using theoretical Raman simulation on LO-phonon and plasmon-coupling (LOPC) mode, the top layer near to the surface has big difference in electrical and optical properties compared to the deeper layer.

  4. Effect of temperature on the structure and magnetic properties of Co doped SiC films

    NASA Astrophysics Data System (ADS)

    Sun, Xianke; Liu, Jiwen; Liu, Kuili; Wang, Shaohui; Zhao, Linlin; Qin, Wei; Wang, Gaoliang; Meng, Ming; Li, Jitao; Dong, Xue

    2017-07-01

    The Co-doped SiC films were developed by radio frequency-magnetron sputtering. After annealing at high temperatures, the amorphous structure of the films transformed into the structure of 3Csbnd SiC lattice and the secondary phase of the compounds CoSi. Some of the Co atoms began to occupy the C site of the SiC lattice in the form of Co2+ ions with the annealing temperature rising above 600 °C, and formed the compounds CoSi entirely at 1200 °C. When the annealing temperature was below 800 °C, the saturation magnetization of the films increased with the increased annealing temperature. However, as the annealing temperature rose above 1000 °C, the saturation magnetization of the films decreased obviously. The formation of the compounds CoSi in the films restrained the magnetism derived from the doped Co atoms and some extended defects.

  5. Preparation of films of a highly aligned lipid cubic phase.

    PubMed

    Squires, Adam M; Hallett, James E; Beddoes, Charlotte M; Plivelic, Tomás S; Seddon, Annela M

    2013-02-12

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (Q(II)(D)) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L(3) phase) in the presence of butanediol, we can obtain a film of the Q(II)(D) phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that found in the oriented bulk material that we have reported previously; therefore, we can now reproducibly form Q(II)(D) samples oriented with either the [110] or the [100] axis aligned in the flow direction depending on the method of preparation. The deposition of MO as a film, via a moving fluid-air interface that leaves a coating of MO in the L(3) phase on the capillary wall, leads to a sample in the [110] orientation. This contrasts with the bulk material that we have previously demonstrated to be oriented in the [100] direction, arising from flow producing an oriented bulk slug of material within the capillary tube. The bulk sample contains significant amounts of residual butanediol, which can be estimated from the lattice parameter of the Q(II)(D) phase obtained. The sample orientation and lattice parameters are determined from synchrotron small-angle X-ray scattering patterns and confirmed by simulations. This has potential applications in the production of template materials and the growth of protein crystals for crystallography as well as deepening our understanding of the mechanisms underlying the behavior of lyotropic liquid-crystal phases.

  6. Interfacial study of cubic boron nitride films deposited on diamond.

    PubMed

    Zhang, W J; Meng, X M; Chan, C Y; Chan, K M; Wu, Y; Bello, I; Lee, S T

    2005-08-25

    We have studied the nucleation and growth of cubic boron nitride (cBN) films deposited on silicon and diamond-coated silicon substrates using fluorine-assisted chemical vapor deposition (CVD). These comparative studies substantiate that the incubation amorphous/turbostratic BN layers, essential for the cBN nucleation on silicon, are not vital precursors for cBN nucleation on diamond, and they are inherently eliminated. At vastly reduced critical bias voltage, down to -10 V, cBN growth is still maintained on diamond surfaces, and cBN and underlying diamond crystallites exhibit an epitaxial relationship. However, the epitaxial growth is associated with stress in the cBN-diamond interfacial region. In addition, some twinning of crystallites and small-angle grain boundaries are observed between the cBN and diamond crystallites because of the slight lattice mismatch of 1.36%. The small-angle grain boundaries could be eliminated by imposing a little higher bias voltage during the initial growth stage. The heteroepitaxial growth of cBN films on different substrate materials are discussed in the view of lattice matching, surface-energy compatibility, and stability of the substrate against ion irradiation.

  7. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, Y.; Zheng, Y. F.; Zhang, X.; Xi, T. F.; Wei, S. C.

    2012-01-01

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 ± 1 °C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  8. Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Kaci, S.; Mansouri, H.; Bozetine, I.; Keffous, A.; Guerbous, L.; Siahmed, Y.; Aissiou, S.

    2017-02-01

    In this study, Morphological, optical and photoluminescence characterizations of nanostructured SiC micropowder embedded in PVA matrix and deposited as thin films on glass substrates are reported. we prepared the porous SiC microparticles/PVA thin films by spin coating method. The average size of SiC microparticles were 7 μm. An electroless method was used for producing porous silicon carbide powder under UV irradiation. Silver nanoparticles coated SiC powder was formed by polyol process. The etchant was composed of aqueous HF and different oxidants. Various porous morphologies were obtained and studied as a function of oxidant type, etching time, and wavelength of irradiation. We concluded that the chemical etching conditions of SiC powder seems to have a large impact on the resulting properties. We noticed that the best photoluminescence property was achieved when SiC powder was etched in HF/K2S2O8 at reaction temperature of 80 °C for t = 40min and under UV light of 254 nm.

  9. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  10. Time-Domain Thermoreflectance Measurements of Thermal Transport in Amorphous SiC Thin Films

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Hondongwa, Donald; King, Sean

    2010-03-01

    We present ultrafast optical pump-probe measurements of thermal transport in a series of amorphous SiC samples. The samples were grown on Si wafers by plasma enhanced chemical vapor deposition utilizing various combinations of methylsilanes and H2 and He diluent gases. The sample films were well characterized and found to have densities (1.3 -- 2.3 g cm-3) and dielectric constants (4.0 -- 7.2) that spanned a wide range of values. Prior to their measurement, the samples were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser that produced sub-picosecond pulses of a few nJ. The pulses heat the Al coating, causing a transient reflectivity change. As the Al film cools into the SiC film, the reflectivity change can be measured, giving a measure of the thermal effusivity of the SiC film. We then extract values for the thermal conductivity of the SiC films and find that it varies from less than half of the thermal conductivity of amorphous SiO2 for the lower density materials to somewhat larger than amorphous SiO2 for the highest density films.

  11. Effects of thermal annealing on photoluminescence of Si+/C+ implanted SiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Yu; Chao, Der-Sheng; Tsai, Hsu-Sheng; Liang, Jenq-Horng

    2016-04-01

    The mechanisms of photoluminescence (PL) originating from Si+/C+ implanted SiO2 are still unclear and need to be clarified. Thus, the purpose of this study is to thoroughly investigate the effects of ion implantation and post-annealing temperature on microstructures and PL characteristics of the Si+/C+ implanted SiO2 films. A comparative analysis was also conducted to clarify the different optical properties between the Si+ and Si+/C+ implanted SiO2 films. In this study, thermally-grown SiO2 films on Si substrates were used as the matrix materials. The Si+ ions and C+ ions were separately implanted into the SiO2 films at room temperature. After ion implantation, the post-annealing treatments were carried out using the furnace annealing (FA) method at various temperatures (600-1100 °C) for 1 h in a N2 ambient. The PL characteristics of the implanted SiO2 films were analyzed using a fluorescence spectrophotometer. The results revealed that the distinct PL peaks were observed at approximately 310, 450 and 650 nm in the Si+-implanted SiO2 films, which can be attributed to the defects, the so-called oxygen deficiency centers (ODCs) and non-bridging oxygen hole centers (NBOHCs), in the materials. In contrast to the Si+ ion implantation, the SiO2 films which were sequentially implanted with Si+ and C+ ions and annealed at 1100 °C can emit white light corresponding to the PL peaks located at around 420, 520 and 720 nm, those can be assigned to the Si-C bonding, C-C graphite-like structure (sp2), and Si nanocrystals, respectively. Moreover, a correlation between the optical properties, microstructures, and bonding configurations of the Si+/C+ implanted SiO2 films was also established in this study.

  12. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    SciTech Connect

    Morse, K.; Balooch, M.; Hamza, A.V.; Belak, J.

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  13. Comparative studies of monoclinic and orthorhombic WO3 films used for hydrogen sensor fabrication on SiC crystal

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Romanov, R. I.; Fominski, V. Y.; Volosova, M. A.; Demin, M. V.

    2016-09-01

    Amorphous WOx films were prepared on the SiC crystal by using two different methods, namely, reactive pulsed laser deposition (RPLD) and reactive deposition by ion sputtering (RDIS). After deposition, the WOx films were annealed in an air. The RISD film possessed a m-WO3 structure and consisted of closely packed microcrystals. Localized swelling of the films and micro-hills growth did not destroy dense crystal packing. RPLD film had layered β-WO3 structure with relatively smooth surface. Smoothness of the films were destroyed by localized swelling and the micro-openings formation was observed. Comparative study of m-WO3/SiC, Pt/m-WO3/SiC, and P-WO3/SiC samples shows that structural characteristics of the WO3 films strongly influence on the voltage/current response as well as on the rate of current growth during H2 detection at elevated temperatures.

  14. Ferroelectric films prepared by laser ablation directly on SiC substrates

    NASA Astrophysics Data System (ADS)

    Mou, D.; Linnros, J.; Petersson, C. S.; Rao, K. V.

    1998-11-01

    Because of the common physical properties of silicon carbide (SiC) and lead base ferroelectric films [such as lead zirconate titanate (PZT) and lead titanate (PTO)], it is interesting to investigate ferroelectrics and SiC based integrated devices for potential high radiation environments, high speed, high temperature, and high density memory applications. Here we first report our primary results of depositing lead base ferroelectric films directly onto bare SiC substrates. Ferroelectric films including undoped and doped PZT and PTO were directly deposited on bare 3C-SiC and 4H-SiC substrates. X-ray diffraction analyses indicate that all the PTO films deposited at substrate temperatures from 600 to 650 °C are polycrystalline of the pure perovskite phase. PZT films deposited at a substrate temperature of 570 °C are dominated by the pyrochlore phase and even at a higher substrate temperature of 650 °C both the perovskite and the pyrochlore phases coexist. The pyrochlore phase of the PZT films is able to be converted into the perovskite phase by rapid thermal annealing at 800 °C for 30-60 s. The formation of an interfacial layer of a nonferroelectric phase (Pb2Ti2O6), which is caused by interdiffusion, is one of the most serious problems during the fabrication of lead based ferroelectric films directly onto the Si wafer. However, there is no such interdiffusion observed between the ferroelectric films and the SiC substrates. Capacitance versus voltage (C-V) curves of metal/ferroelectric/semiconductor diode structures demonstrate typical C-V hysteresis loops and the capacitance versus temperature measurements further confirm the ferroelectric properties of the films.

  15. Low-energy SiC2H6+ and SiC3H9+ ion beam productions by the mass-selection of fragments produced from hexamethyldisilane for SiC film formations

    NASA Astrophysics Data System (ADS)

    Yoshimura, Satoru; Sugimoto, Satoshi; Murai, Kensuke; Kiuchi, Masato

    2016-12-01

    We have been attempting to produce low-energy ion beams from fragments produced through the decomposition of hexamethyldisilane (HMD) for silicon carbide (SiC) film formations. We mass-selected SiC2H6+ and SiC3H9+ ions from fragments produced from HMD, and finally produced low-energy SiC2H6+ and SiC3H9+ ion beams. The ion energy was approximately 100 eV. Then, the ion beams were irradiated to Si(100) substrates. The temperature of the Si substrate was 800°C during the ion irradiation. The X-ray diffraction and Raman spectroscopy of the substrates obtained following SiC2H6+ ion irradiation demonstrated the occurrence of 3C-SiC deposition. On the other hand, the film deposited by the irradiation of SiC3H9+ ions included diamond-like carbon in addition to 3C-SiC.

  16. Quasi-Freestanding multilayer graphene films on the carbon face of SiC

    SciTech Connect

    Siegel, D. A.; Hwang, C. G.; Fedorov, A. V.; Lanzara, A.

    2010-06-30

    The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB-stacking. The band structure of quasi-freestanding AB-bilayers is directly compared with bilayer graphene grown on the Si-face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly freestanding from an electronic point of view, due to the rotations between graphene layers.

  17. Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films

    NASA Astrophysics Data System (ADS)

    Joo, Sung-Jae; Choi, Je Hoon; Kim, Seong Jeen; Kim, Sang-Cheol

    2013-11-01

    Pd/Ta2O5/SiC Schottky-diode hydrogen sensors were fabricated, and their hydrogen gas sensing performance was investigated at 573 K and 773 K. Interfacial Ta2O5 films of 120 nm in thickness were formed by using rapid thermal oxidation (RTO) of the sputtered Ta films on SiC. The crystallinity of the Ta and the Ta2O5 films were characterized by using X-ray diffraction (XRD). As-sputtered Ta films on 4H-SiC are composed of α-Ta (body-centered-cubic) and β-Ta (tetragonal), and α-Ta (110) is the dominant orientation. After RTO at 573 K, the Ta films are converted to β-Ta2O5 (orthorhombic). The diode sensors show high sensitivity to H2 even at the low H2 concentration of 500 ppm, and the voltage change of the sensor upon H2 exposure is proportional to the H2 concentration in the range of 500 ˜ 2000 ppm at 573 K. The response voltage ΔV is shown to arise mostly from the change in the series resistance component of the sensor upon H2 exposure; the main origin of that change is believed to be the Ta2O5 interfacial layer. The response time t90 of the sensor at 573 K was estimated to be approximately 8 s.

  18. Enhancement of second harmonic generation in nanocrystalline SiC films based natural microcavities

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Skorik, S. N.; Jedryka, J.; Ozga, K.; Kityk, I. V.

    2017-01-01

    We explore second harmonic generation (SHG) features of nanocrystalline SiC films based natural microcavities (MC) with resonance modes in the vicinity of the fundamental radiation at 1064 nm wavelength for nanocrystalline films of 24R, 27R polytypes characterized by high radiation doubling frequency coefficients. The natural walls of the SiC NC serve a role of cavities. To learn the nonlinear resonance features of the MC near the fundamental wavelength 1064 nm three series of the nc-SiC films indicated as 7495, 7517 and 7522 with thicknesses varying within 250-600 nm were fabricated. The role of the coherent and non-coherent contributions with taking into an account of cavity resonance modes is discussed. The giant increase of the SHG was achieved which may be used for further fabrication of the frequency transducers and nonlinear optical triggers.

  19. Characterization Of Superconducting Samples With SIC System For Thin Film Developments: Status And Recent Results

    SciTech Connect

    Phillips, H. Lawrence; Reece, Charles E.; Valente-Feliciano, Anne-Marie; Xiao, Binping; Eremeev, Grigory V.

    2014-02-01

    Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system.

  20. Growth and interface phase stability of barium hexaferrite films on SiC(0001)

    SciTech Connect

    Lazarov, V. K.; Hasnip, P. J.; Cai, Z.; Ziemer, K. S.; Yoshida, K.

    2011-04-01

    We have studied interface phase stability of the BaFe{sub 12}O{sub 19} (BaM) thin films grown by molecular beam epitaxy on SiC(0001). The films were epitaxially grown with the following crystallographic relation: BaM(0001) parallel SiC(0001) and BaM(11-20) parallel SiC(11-20). High resolution TEM reveals the existence of two interfacial bands with different structure than BaM. The first band close to SiC is SiO{sub x} while the second has spinel structure and chemically corresponds to Fe{sub 3}O{sub 4}. These findings suggest that at initial growth stages Fe{sub 3}O{sub 4} is more favorable than BaM. Density functional theory modeling of the phase stability of BaM compared to Fe{sub 3}O{sub 4} shows that BaM is only stable at high oxygen partial pressures.

  1. Cubic Structure and Cation Disordering in Ybco Thin Film Deposited by High Speed Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Suh, Jeong-Dae; Sung, Gun Yong; Kang, Kwang Yong

    We have investigated the crystalline structure of high rate deposited YBa2Cu3Ox thin films prepared by high speed pulsed laser deposition. A cation disordered cubic structure with lattice parameter of 0.39 nm was found in YBCO thin film deposited at 12.2 nm/s deposition rate and 650°C substrate temperature conditions. The short range ordered cubic YBa2Cu3Ox thin film growth at high deposition rate was explained by the short migration length of Y and Ba cation atoms owing to the high incident flux rate.

  2. Characterization and photoluminescence of Co-doped SiC films

    SciTech Connect

    Sun, Xianke; Jin, Xin; Wang, Shiqi; Liu, Huarui; Sun, Peng; An, Yukai; Guo, Ruisong; Liu, Jiwen

    2013-11-15

    Co-doped SiC films are fabricated on Si (100) substrates by radio frequency magnetron sputtering, and the crystal structure, composition, element valences, local structure, and photoluminescence of the films are studied. Crystal structure analysis identifies the film structure as 3C-SiC and shows that the Co dopant atoms form CoSi secondary phase compounds in the films. The composition and element valence analysis show that the Co dopant atoms substituting for C sites in the SiC lattice exist in the form of Co{sup 2+} ions, and that C clusters are present in the films, which increase in amount with increasing Co dopant concentration. The analysis of local structure reveals that Co clusters, CoO and Co{sub 3}O{sub 4}, are not present in the films, and CoSi secondary phase compounds exist. All of the films show a violet photoluminescence peak located at 413 nm, which becomes stronger with increased Co dopant concentration and annealing temperature, and is found to originate from the C clusters.

  3. Interaction of ? molecules with silicon surfaces and the formation of SiC films

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Chen, Dong

    1996-06-01

    We report on the results of an investigation of the interaction of submonolayers, monolayers, and multilayers of 0957-4484/7/2/009/img2 molecules with Si(111) and Si(100) surfaces at a variety of temperatures. The results shed light on the mechanism of the formation of SiC films from the decomposition of 0957-4484/7/2/009/img2 molecules at elevated temperatures, and the interaction of the released carbon atoms with the silicon substrate.

  4. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.

    PubMed

    Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina

    2015-04-01

    Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer.

  5. Amorphous and excimer laser annealed SiC films for TFT fabrication

    NASA Astrophysics Data System (ADS)

    García, B.; Estrada, M.; Albertin, K. F.; Carreño, M. N. P.; Pereyra, I.; Resendiz, L.

    2006-02-01

    The characteristics of hydrogenated amorphous silicon carbide films prepared by PECVD and crystallized by KrF UV excimer laser annealing (ELA), for different annealing conditions, are studied to determine particulate size, surface roughness, band gap and resistivity in order to apply them to TFTs fabrication. Raman spectra for ELA SiC films indicate the presence of 6H-SiC polytype together with Si and C crystallites. We also describe the fabrication process to obtain a-Si 1- xC x:H TFTs and ELA TFTs on the same wafer, comparing their output and transfer characteristics.

  6. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Avila, A.; Montero, I.; Galán, L.; Ripalda, J. M.; Levy, R.

    2001-01-01

    Thin silicon carbide films have been deposited by chemical vapor deposition on p-type (100) silicon substrates. The composition and bonds formed in these films have been analyzed by x-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. The native surface oxide on the silicon carbide surface induced by air exposure has also been studied. Several phases are detected in the near-surface region: elemental Si, Si oxides (mainly SiO2), Si carbide (SiC) and Si oxicarbides (SiOxCy). Quantitative XPS analysis results indicate that, for atomic oxygen fractions <0.15, the Si-C phases are dominant in the films. Above this value no silicon oxicarbide is observed, but a multiphase material formed by elemental Si, Si oxides and Si carbides is observed. In spite of the film being a complex phase mixture, a simple relationship is found between the overall carbon and oxygen compositions. The carbon atomic fraction in the film decreases quasilinearly as the oxygen content increases, with a slope of about -1. An overall composition of SiOxC3-x in the 0.5

  7. Cubic Mn2Ga thin films: crossing the spin gap with ruthenium.

    PubMed

    Kurt, H; Rode, K; Stamenov, P; Venkatesan, M; Lau, Y-C; Fonda, E; Coey, J M D

    2014-01-17

    Cubic Mn2Ga films with the half-Heusler C1b structure are grown on V (001) epitaxial films. The phase is a soft ferrimagnet, with Curie temperature TC = 225 K and magnetization Ms=280  kA m(-1), equivalent to 1.65μB per formula. Adding ruthenium leads to an increase of TC up to 550 K in cubic Mn2Ru(x)Ga films with x = 0.33 and a collapse of the net magnetization. The anomalous Hall effect changes sign at x = 0.5, where the sign of the magnetization changes and the magnetic easy direction flips from in plane to perpendicular to the film. The Mn2Ru0.5Ga compound with a valence electron count of 21 is identified as a zero-moment ferrimagnet with high spin polarization, which shows evidence of half-metallicity.

  8. Comparison of nitrogen-vacancy complexes in diamond and cubic SiC: dose dependencies and spin-Hamiltonian parameters

    NASA Astrophysics Data System (ADS)

    Petrenko, T. L.; Bryksa, V. P.

    2017-08-01

    At present the nitrogen-vacancy (NV) complex in diamond is the most promising defect for application in the area of quantum computing. This provides a stimulus for an extensive search of other defects in semiconductors with similar properties. Recently it was shown that the NCVSi defect complex in SiC is perspectively appropriate for this goal as well. In the present work we perform comparative ab initio studies of NV complexes in diamond and 3C-SiC. We focus both on radiospectroscopic characterization of these defects and on the calculation of the equilibrium concentration of complexes in irradiated crystals. In particular a full set of spin-Hamiltonian parameters including g-tensors, hyperfine tensors and the spin-spin part of zero-field splitting constant Dss were calculated for both negative and neutral charge states as well as for excited quartet states of neutral complexes. Comparison of calculated values with the available experimental data and results of other calculations show good agreement, especially in the case when hybrid and meta-hybrid functionals were used. This makes the unambiguous identification of negative NV complexes in both materials possible. Our calculations reveal that the ground states of neutral complexes are a difficult case for both DFT calculations and experimental observations. This is caused by multi-determinantal behavior of wave function for such complexes, which leads to a large amount of spin contamination and to the broken symmetry solution which appeared for single Slater determinant DFT calculations. Based on the calculated minimum of free energy of neutral and negative complexes in SiC and diamond we obtained the equilibrium concentrations of these complexes depending on the vacancy concentration produced by irradiation. We show that in some dose regions both negative and neutral complexes coexist, while in other regions only one charge state prevails. Comparison of the calculated and experimental dose dependencies for

  9. Normal incidence reflectance of ion beam deposited SiC films in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Osantowski, John F.; Herzig, Howard; Gum, Jeffrey S.; Toft, Albert R.

    1988-01-01

    Results are presented from an experimental investigation of the normal-incidence reflectance at 58.4, 92.0, and 121.6 nm wavelength of 30- and 80-nm-thick SiC films produced by ion-beam deposition on unheated 5 x 5-cm microscope slides. The films were deposited in the 2-m evaporator described by Bradford et al. (1969) with chamber base pressure 1 microtorr, operating pressure 40 microtorr, and a 50-62-mA 750-eV Ar ion beam; the reflectance measurements were obtained in the reflector-monochromator system described by Osantowski (1974). Reflectances of over 30 percent were found at 92 and 121.6 nm, almost equal to those of polished CVD films of SiC and degrading only slightly after aging for 4 months. It is suggested that ion-beam deposition may be the best low-temperature technique for coating EUV optics for space astronomy.

  10. Measurement of Thin Film Integrated Passive Devices on SiC through 500 C

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Ponchak, George E.; Alterovitz, Samuel A.; Downey, Alan N.; Chevalier, Christine T.

    2004-01-01

    Wireless communication in jet engines and high temperature industrial applications requires FD integrated circuits (RFICs) on wide bandgap semiconductors such as Silicon Carbide (SiC). In this paper, thin-film NiCr resistors, MIM capacitors, and spiral inductors are fabricated on a high purity semi-insulating 4H-SiC substrate. The devices are experimentally characterized through 50 GHz at temperatures of up to 500 C and the equivalent circuits are deembedded from the measured data. It is shown that the NiCr resistors are stable within 10% to 300 C while the capacitors have a value stable within 10% through 500 C.

  11. Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films

    PubMed Central

    2010-01-01

    Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration. PMID:20672132

  12. Structure and luminescence properties of eu3+-doped cubic mesoporous silica thin films.

    PubMed

    Lu, Qingshan; Wang, Zhongying; Wang, Peiyu; Li, Jiangong

    2010-02-11

    Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

  13. High temperature ferromagnetism in cubic Mn-doped ZrO2 thin films

    NASA Astrophysics Data System (ADS)

    Hong, Nguyen Hoa; Park, Chul-Kwon; Raghavender, A. T.; Ruyter, Antoine; Chikoidze, Ekaterina; Dumont, Yves

    2012-09-01

    Theory has predicted that high temperature ferromagnetism (FM) should be found in cubic fake-diamonds, Mn-doped ZrO2. Experimentally, it is shown that Mn-doped ZrO2 ceramics are not ferromagnetic, but the nanosized Mn-doped ZrO2 thin films grown on LaAlO3 substrates can be ferromagnets with TC above 400 K. The largest saturated magnetic moment (Ms) is huge as of about 230 emu/cm3 for the Mn0.05Zr0.95O2 films, and it decreases as the Mn content increases. The intrinsic FM is strongly associated with the cubic structure of Mn-doped ZrO2, and the Mn-Mn interactions via oxygen intermediates are important. No electrical conductivity is observed. Mn-doped ZrO2 thin films can be truly considered as excellent candidates for spintronic applications.

  14. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation

    SciTech Connect

    Lebedev, A. A. Agrinskaya, N. V.; Lebedev, S. P.; Mynbaeva, M. G.; Petrov, V. N.; Smirnov, A. N.; Strel'chuk, A. M.; Titkov, A. N.; Shamshur, D. V.

    2011-05-15

    Multigraphene films grown by sublimation on the surface of a semi-insulating 6H-SiC substrate have been studied. It is shown that pregrowth annealing of the substrate in a quasiclosed growth cell improves the structural quality of a multigraphene film. Ohmic contacts to the film have been fabricated, and the Hall effect has been studied at low temperatures. It is found that a 2D electron gas exists in the films. It is concluded that the conductivity of the film is determined by defects existing within the graphene layer or at the interface between the graphene film and a SiC substrate.

  15. Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Yamamoto, Hideki; Kumakura, Kazuhide

    2017-03-01

    Cubic boron nitride (c-BN) films were grown on diamond (001) substrates by a new ion-beam-assisted molecular-beam-epitaxy (MBE) method with the irradiation of Ar+ ions and atomic nitrogen radicals (N*). From X-ray diffraction and cross-sectional transmission electron microscopy images, we confirmed the heteroepitaxial growth of single-domain c-BN(001) films on the diamond (001) substrates. Additionally, we revealed the growth phase diagram of BN films in the ion-beam-assisted MBE. This diagram indicates that the flux intensity of Ar+ ions should be higher than that of boron atoms for epitaxial c-BN growth.

  16. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    NASA Astrophysics Data System (ADS)

    Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-08-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  17. Void nucleation in biaxially strained ultrathin films of face-centered cubic metals

    NASA Astrophysics Data System (ADS)

    Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios

    2007-05-01

    We report an analysis of void nucleation as a relaxation mechanism in freestanding biaxially strained ultrathin films of face-centered cubic metals based on large-scale molecular-dynamics simulations. Above a critical strain level, multiple threading dislocations are emitted from the film surface. The surface step traces formed by gliding dislocations on intersecting and on adjacent parallel glide planes lead to formation and growth of surface pits and grooves, while vacancies form due to gliding of jogged dislocations and dislocation intersections. Coalescence of the surface pits with vacancy clusters is the precursor to the formation of a larger void extending across the film.

  18. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    SciTech Connect

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  19. Vector magneto-optical sensor based on transparent magnetic films with cubic crystallographic symmetry

    NASA Astrophysics Data System (ADS)

    Rogachev, A. E.; Vetoshko, P. M.; Gusev, N. A.; Kozhaev, M. A.; Prokopov, A. R.; Popov, V. V.; Dodonov, D. V.; Shumilov, A. G.; Shaposhnikov, A. N.; Berzhansky, V. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-10-01

    The concept of vector magneto-optical magnetometry is proposed and experimentally demonstrated. The key element of the vector magnetometer is a transparent high Faraday activity magnetic film with a cubic crystal lattice. Magnetocrystalline anisotropy of the film leads to the three dimensional trajectory of the film magnetization when the magnetization is rotated by the control magnetic field. It makes the magnetization sensitive to all three components of the external magnetic field. This field can be found from the harmonic composition of the Faraday rotation dependence on the azimuth angle of the control magnetic field. The demonstrated vector magnetometer is promising for mapping and visualization of ultra small magnetic fields.

  20. Three-dimensional skyrmion states in thin films of cubic helimagnets

    NASA Astrophysics Data System (ADS)

    Rybakov, F. N.; Borisov, A. B.; Bogdanov, A. N.

    2013-03-01

    A direct three-dimensional minimization of the standard energy functional shows that in thin films of cubic helimagnets, chiral skyrmions are modulated along three spatial directions. The structure of such three-dimensional skyrmions can be thought of as a superposition of conical modulations along the skyrmion axis and double-twist rotation in the perpendicular plane. We show that chiral modulations across the layer thickness radically change the skyrmion energetics and provide a thermodynamical stability of a skyrmion lattice in a broad range of applied magnetic fields. These results disclose a basic physical mechanism underlying the formation of skyrmion states recently observed in nanolayers of cubic helimagnets.

  1. Measurement of the elastic constants of a columnar SiC thin film.

    PubMed

    Pestka, K A; Maynard, J D; Gao, D; Carraro, C

    2008-02-08

    The technique of resonant ultrasound spectroscopy was used to measure the elastic properties of a polycrystalline cubic silicon carbide (3C-SiC) thin film. The film, grown on a silicon (100) substrate, was 1.69 microns thick with columnar crystalline grains and a (111) texture. The substrate with the film was placed between two transducers and the resonant frequencies were measured; measurements were repeated after selective, timed dry etching of the film, allowing a determination of the elastic constants of the film alone. The film elastic constants, c(11)=371 and c(12)=146 GPa, were within a few percent of the literature values (c(11)=386, c(12)=136 GPa) of crystalline 3C-SiC. However, the film elastic constant c(44), 111 GPa, was significantly smaller than the bulk literature value, 254 GPa. For the film, c44 approximately (c(11)-c(12))/2, indicating that, quite unlike a bulk 3C-SiC crystal, the thin film is elastically isotropic.

  2. Growth of Ba-hexaferrite films on single crystal 6-H SiC

    NASA Astrophysics Data System (ADS)

    Chen, Zhoahui; Yang, Aria; Yoon, S. D.; Ziemer, Katherine; Vittoria, Carmine; Harris, V. G.

    2006-06-01

    Barium hexaferrite films have been processed by pulsed laser deposition on single crystal 6-H silicon carbide substrates. Atomic force microscopy images show hexagonal crystals (˜0.5 μm in diameter) oriented with the c-axis perpendicular to the film plane. X-ray θ-2 θ diffraction measurements indicate a strong (0,0,2n) alignment of crystallites. The magnetization for low-pressure deposition (20 mTorr) is comparable to bulk values (4 πMs˜4320 G). The loop squareness, important for self-bias microwave device applications, increases with oxygen pressure reaching a maximum value of 70%. This marks the first growth of a microwave ferrite on SiC substrates and offers a new approach in the design and development of μ-wave and mm-wave monolithic integrated circuits.

  3. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    SciTech Connect

    Yin, H.; Ziemann, P.

    2014-06-23

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (10{sup 2} cm{sup 2}/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  4. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    NASA Astrophysics Data System (ADS)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  5. The cubic phase of phosphatidylethanolamine film by small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Sun, Run Guang; Zhang, Jing

    2004-02-01

    Using small angle x-ray scattering, we have investigated the effects of polyvinylpyrrolidone (PVP) and oleic acid (OA) on the structures of the cubic phase of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) films. At lower PVP concentrations, DEPE-PVP mixed films existed in two cubic phases. With increasing PVP concentration in the DEPE-PVP mixed phase, a phase transition from Q229 (Im3m) to Q224 (Pn3m) occurred. The effect of addition of OA to a DEPE-PVP mixed phase was also determined using a certain fixed amount. At 0.5 mol% OA, the presence of low amounts of OA allows the DEPE-PVP-OA system to organize in a cubic Q229 phase. At 1.0 mol% OA, the presence of larger amounts of OA induces formation of coexisting Q229 and Q224 phases. At 1.5 mol% OA, the presence of even larger amounts of OA promotes formation of a cubic Q224 phase in the DEPE-PVP-OA mixture.

  6. First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    SciTech Connect

    Naserifar, Saber; Goddard, William A.; Tsotsis, Theodore T.; Sahimi, Muhammad

    2015-05-07

    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film.

  7. First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    NASA Astrophysics Data System (ADS)

    Naserifar, Saber; Goddard, William A.; Tsotsis, Theodore T.; Sahimi, Muhammad

    2015-05-01

    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film.

  8. Growth and characterization of GaN thin films on Si(111) substrates using SiC intermediate layer

    SciTech Connect

    Lim, K.Y.; Lee, K.J.; Park, C.I.; Kim, K.C.; Choi, S.C.; Lee, W.H.; Suh, E.K.; Yang, G.M.; Nahm, K.S.

    2000-07-01

    GaN films have been grown atop Si-terminated 3C-SiC intermediate layer on Si(111) substrates using low pressure metalorganic chemical vapor deposition (LP-MOCVD). The SiC intermediate layer was grown by chemical vapor deposition (CVD) using tetramethylsilane (TMS) as the single source precursor. The Si terminated SiC surface was obtained by immediately flow of SiH{sub 4} gas after growth of SiC film. LP-MOCVD growth of GaN on 3C-SiC/Si(111) was carried out with trimethylgallium (TMG) and NH{sub 3}. Single crystalline hexagonal GaN layers can be grown on Si terminated SiC intermediate layer using an AlN or GaN buffer layer. Compared with GaN layers grown using a GaN buffer layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The GaN films were characterized by x-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). Full width at half maximum (FWHM) of double crystal x-ray diffraction (DCXD) rocking curve for GaN (0002) on 3C-SiC/Si(111) was 890 arcsec. PL near band edge emission peak position and FWHM at room temperature are 3.38 eV and 79.35 meV, respectively.

  9. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.

    2014-08-01

    The recent advances in epitaxial SiC films' growth on Si are overviewed. The basic classical methods currently used for SiC films' growth are discussed and their advantages and disadvantages are explored. The basic idea and the theoretical background for a new method of the synthesis of epitaxial SiC films on Si are given. It will be shown that the new method is significantly different from the classical techniques of thin-film growth where the evaporation of the atoms onto the substrate surface is exploited. The new method is based on the substitution of some atoms in the silicon matrix by the carbon atoms to form the molecules of silicon carbide. It will be shown that the following process of SiC nucleation happens gradually without destroying the crystalline structure of the silicon matrix, and the orientation of a grown film is imposed by the original crystalline structure of the silicon matrix (not only by the substrate surface as in conventional methods of film growth). A comparison of the new method with other epitaxy techniques will be given. The new method of solid-phase epitaxy based on the substitution of atoms and on the creation of dilatation dipoles solves one of the major problems in heteroepitaxy. It provides the synthesis of low-defective unstrained epitaxial films with a large difference between the lattice parameters of the film and the substrate without using any additional buffer layers. This method has another unique feature distinguishing it from the classical techniques of SiC films' growth—it allows the growing of SiC films of hexagonal polytypes. A new kind of phase transformation in solids owing to the chemical transformation of one substance into another will be described theoretically and revealed experimentally. This type of phase transformation, and the mechanism of a broad class of heterogeneous chemical reactions between gas and solid phases, will be illustrated by an example of the growth of SiC epitaxial layers due to the

  10. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    PubMed

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO3) with a special thermomechanical treatment (TMT), where BaTiO3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  11. Thermal crystallization of sputter-deposited amorphous Ge films: Competition of diamond cubic and hexagonal phases

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Yasuda, H.; Numakura, H.

    2016-12-01

    Following our previous studies on crystallization induced by electron irradiation, we have investigated the crystallization of sputter-deposited amorphous germanium films by heat treatments. On continuous heating, samples aged for 3 days and 4 months at room temperature crystallized at 500°C to form coarse spherical particles of a hexagonal structure, of about 100 nm in diameter, whereas samples aged for 7 months turned to homogeneous nanograins of the diamond cubic structure at 600°C. When the films aged for 4 months at room temperature were annealed at 350°C for 2 h and then heated, they crystallized at 550°C to form a mixture of the two microstructures, and those annealed at 350°C and further at 500°C for 1 h crystallized at 600°C mostly to nanograins. Crystallization by electron irradiation at 350°C to 4-month-aged samples has also been studied. With increasing annealing time at 350°C, coarse particles of a hexagonal structure ceased to appear, and were replaced by fine nanograins of the diamond cubic structure. These observations can be understood in terms of structural instability of sputter-deposited amorphous films. Medium-range ordered clusters must initially be present in the films and serve as nuclei of the metastable hexagonal phase. They are unstable, however, and are eliminated by annealing, resulting in the reduction in size and number of coarse particles with a metastable structure.

  12. Suppression of UV photoluminescence in sandwich-structured Si/C composite films

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Yuan, C. L.; Liu, R.; Ong, P. P.

    2002-10-01

    Thin films of composite silicon/carbon (Si/C) were prepared by pulsed-laser ablation alternately on C and Si materials on a rotary target, followed by vacuum deposition of the ablated materials on an ultra-clean glass substrate. The film structure consisted of alternate nanolayers of Si nanocrystals and amorphous C, with a fairly sharp demarcation boundary between adjacent layers forming well-defined sandwich structures. At room temperature, this composite nanolayered structure was found to yield much lower photoluminescent (PL) emission in the ultra violet region (300 390 nm) in comparison with that obtained for pure Si or for Si/Al2O3 thin films (see Zhu Y., Wang H. and Ong P. P. J. Phys. D, 33 (2000) 1965, and Zhu Y. and Ong P. P. J. Phys. Condens. Matter, 13 (2001) L1). The suppression mechanism of the UV PL emission appeared to occur in the interfacial surfaces between adjacent crystalline Si and amorphous C layers. It provides a possible way to selectively filter out the usually undesirable UV component of the PL emission from the silicon nanoparticles.

  13. Growth, nitrogen vacancy reduction and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AIN and InN

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.

    1992-02-01

    An atomic layer epitaxy deposition system configured for the growth of thin films of the III-V nitrides of Al, Ga and In has been designed, constructed and commissioned. The system allows the introduction of up to 16 gases without mixing. Self-terminating growth of crystalline GaN films has been achieved on single crystal wafers of (0001) alpha(6H)-SiC. Results of analyses via Auger spectroscopy, electron microscopy and electron diffraction are described. Deposition of AlN and GaN via gas-source MBE was also continued during this period. The principal emphasis concerned the initial stages of growth of both compounds on the substrates of (00001) alpha(6H)-SiC and (0001) sapphire, as determined using X-ray photoelectron spectroscopy. An initial layer of silicon nitride formed on the surface of SiC prior to the deposition of either nitride. The deposition of GaN on sapphire followed the Stranski-Krastanov mode of nucleation and growth, while on SiC, characteristics of three-dimensional growth were evident. By contrast, AlN grew initially in a layer-by-layer mode. Deposition of GaN on vicinal (100) Beta-SiC during UV irradiation resulted in the formation of a new 4H polytype of this material. Deposition of BN via gas-source MBE on Cu(110) resulted in nanocrystalline cBN; films grown on (111) Cu resulted in h-BN (graphitic phase). Similar studies using Si(100) substrates also resulted in the occurrence of cBN. The occurrence of the cubic polytype was enhanced while that of h-BN was discouraged with the use of the UV light at 400-500 C.

  14. Raman determination of layer stresses and strains for heterostructures and its application to the cubic SiC/Si system

    NASA Technical Reports Server (NTRS)

    Feng, Z. C.; Choyke, W. J.; Powell, J. A.

    1988-01-01

    A set of formulas for a generalized axial stress in diamond and zinc-blende semiconductors under axial stress is derived to calculate stress-related Raman shifts. By analyzing known Raman data on cubic SiC under hydrostatic pressures, one of the Raman-stress coefficients was obtained, and the existing elastic stiffness constants of cubic SiC were optimized. A method for calculating the stress and strain in SiC films on (100) Si is proposed. It is suggested that the stress and strain expressions and the method of the stress and strain determinations in heterostructures are quite general and may be used for other systems.

  15. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.

    PubMed

    Zhuang, Hao; Yang, Nianjun; Zhang, Lei; Fuchs, Regina; Jiang, Xin

    2015-05-27

    Microstructures of the materials (e.g., crystallinitiy, defects, and composition, etc.) determine their properties, which eventually lead to their diverse applications. In this contribution, the properties, especially the electrochemical properties, of cubic silicon carbide (3C-SiC) films have been engineered by controlling their microstructures. By manipulating the deposition conditions, nanocrystalline, microcrystalline and epitaxial (001) 3C-SiC films are obtained with varied properties. The epitaxial 3C-SiC film presents the lowest double-layer capacitance and the highest reversibility of redox probes, because of its perfect (001) orientation and high phase purity. The highest double-layer capacitance and the lowest reversibility of redox probes have been realized on the nanocrystalline 3C-SiC film. Those are ascribed to its high amount of grain boundaries, amorphous phases and large diversity in its crystal size. Based on their diverse properties, the electrochemical performances of 3C-SiC films are evaluated in two kinds of potential applications, namely an electrochemical capacitor using a nanocrystalline film and an electrochemical dopamine sensor using the epitaxial 3C-SiC film. The nanocrystalline 3C-SiC film shows not only a high double layer capacitance (43-70 μF/cm(2)) but also a long-term stability of its capacitance. The epitaxial 3C-SiC film shows a low detection limit toward dopamine, which is one to 2 orders of magnitude lower than its normal concentration in tissue. Therefore, 3C-SiC film is a novel but designable material for different emerging electrochemical applications such as energy storage, biomedical/chemical sensors, environmental pollutant detectors, and so on.

  16. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer

    SciTech Connect

    Yue, Naili; Zhang, Yong; Tsu, Raphael

    2013-02-18

    We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding {approx}1 {mu}m graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

  17. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer

    NASA Astrophysics Data System (ADS)

    Yue, Naili; Zhang, Yong; Tsu, Raphael

    2013-02-01

    We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding ˜1 μm graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

  18. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  19. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    PubMed Central

    Liu, Xingfang; Sun, Guosheng; Liu, Bin; Yan, Guoguo; Guan, Min; Zhang, Yang; Zhang, Feng; Chen, Yu; Dong, Lin; Zheng, Liu; Liu, Shengbei; Tian, Lixin; Wang, Lei; Zhao, Wanshun; Zeng, Yiping

    2013-01-01

    We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC) thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs) templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD). The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM). Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films. PMID:28809227

  20. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  1. Effect of cubic phase evolution on field emission properties of boron nitride island films

    SciTech Connect

    Teii, Kungen; Yamao, Ryota; Matsumoto, Seiichiro

    2009-12-01

    Field emission performance of boron nitride (BN) island films is studied in terms of cubic phase evolution in plasma-enhanced chemical vapor deposition. Fine-grained island films with large surface roughness can be grown for initial sp{sup 2}-bonded BN and subsequent cubic BN (cBN) phases by using low-energy (approx20 eV) ion bombardment. Ultraviolet photoelectron spectroscopy reveals that the electron affinity is as low as 0.3 eV for both sp{sup 2}-bonded BN and cBN phases. The evolution of cBN islands reduces the turn-on field down to around 9 V/mum and increases the current density up to 10{sup -4} A/cm{sup 2}. The emission is facilitated by the larger field enhancement due to the larger roughness and the higher conduction of cBN islands. The potential barrier height is estimated to be about 3.4 eV for emission from the Fermi level, while it is only about 0.3 eV for 'conduction band emission'.

  2. Cubic boron nitride thin film growth by boron and nitrogen ion implantation

    SciTech Connect

    Eyhusen, S.; Ronning, C.; Hofsaess, H.

    2005-08-01

    Cubic boron nitride (c-BN) thin films were deposited on silicon substrates using mass separated ion beam deposition (MSIBD). In order to investigate the influence of the ion energy on the growth of c-BN films, {sup 11}B{sup +} and {sup 14}N{sup +} ions were implanted into c-BN with ion energies ranging from 5 keV to 43 keV and substrate temperatures (T{sub S}) from room temperature (RT) to 250 deg. C. A systematic study on the interplay of E{sub ion} and T{sub S} has revealed a characteristic energy-dependent temperature threshold for c-BN growth. This behavior is explained by dynamic annealing of defects caused by a penetrating ion in a collision cascade. In this picture, the suppression of defect accumulation that is crucial for maintaining cubic phase formation is attributed to temperature-driven back diffusion and subsequent annihilation of B and N interstitial recoils. The model is confirmed by analyzing the depth profile of implanted, isotopically pure {sup 10}B, and its application for both c-BN nucleation and growth is discussed.

  3. Effect of post-deposition annealing on the growth and properties of cubic SnS films

    NASA Astrophysics Data System (ADS)

    Chalapathi, U.; Poornaprakash, B.; Park, Si-Hyun

    2017-03-01

    We report a detailed investigation of the effect of post-deposition annealing on the growth and physical properties of chemically grown cubic SnS films. Chemically deposited cubic SnS films were subjected to annealing in a graphite box with loaded elemental sulfur under N2 at 150-350 °C for 10, 30, and 60 min in order to understand the grain growth and morphology of the films. Films annealed at 150-250 °C for 10 min showed improved grain size and a more uniform grain morphology. Films annealed at 150-250 °C for 30 and 60 min showed a decrease in the grain size and non-uniform grain morphology for the cubic SnS phase. Films annealed at 300 and 350 °C for 10 min revealed the formation of minor secondary phase SnS2, and the grain morphology changed from round shape to flake-like. Longer annealing at 300 and 350 °C improved the extent of the SnS2 phase, and it was found to be the dominant phase after annealing at 350 °C for 60 min. The direct optical band gap of SnS films is 1.75-1.67 eV, depending on the annealing temperature and time. The films exhibited p-type electrical conductivity. The films annealed at 250 °C for 10 min showed a higher hole mobility of 77.7 cm2V-1s-1. Thus, lower annealing temperatures and shorter annealing times are favorable conditions to produce high-quality cubic SnS films.

  4. Structural and magnetic properties of a chemically ordered face-centered-cubic (111) Mn alloy film

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuowei; Li, Qiangyong; Venus, D.

    2006-04-01

    A 4 ML Ni/W(110) substrate is used to establish a (111) face-centered-cubic (fcc) template upon which 3 ML of Fe is deposited and annealed to 580 K to form a substrate with very good short and long range fcc (111) order, that is Fe rich at the surface. Mn alloy films are formed by annealing a subsequent Mn deposit of 0.3-1.6 ML. Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and directional AES show that an ordered alloy is not formed until an annealing temperature of 580 K, upon which a multilayer alloy with a P(23×23)R30° LEED pattern is created. The alloy films formed from 0.3 to 0.5 ML of Mn have magnetic properties similar to the FeNi substrate. Hysteresis loops and ac-susceptibility curves measured using the Kerr effect give square loops with a ferromagnetic moment along the in-plane fcc [-211] direction and a Curie temperature TC of about 460 K. There is an increase in coercive field likely due to the inhomogeneities introduced by the Mn. Alloy films formed from 0.8 to 1.6 ML of Mn show a marked increase in the width of the susceptibility peak, and a decrease in the peak temperature. The hysteresis loop becomes slanted with a reduced coercive field. The measurements are consistent with a paramagnetic or antiferromagnetic Mn alloy forming an uneven interface within the FeNi film, so that the remaining FeNi film has a wide distribution in TC.

  5. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  6. Growth and Chemical Thermodynamics Analysis of SiC Film on Si Substrate by Heating Polystyrene/Silica Bilayer Method

    NASA Astrophysics Data System (ADS)

    Li, Yun; Wang, Yu-xia; Chen, Zheng; Wang, Jian-wen; Zou, You-ming

    2008-04-01

    SiC films were prepared by modified heating polystyrene/silica bilayer method on Si (111) substrate in normal pressure flowing Ar ambient at 1300°C. The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.

  7. A study on various fabrication routes for preparing multilayered cubic boron nitride films and sp(3)-like boron nitride films

    NASA Astrophysics Data System (ADS)

    Wong, Sing Fai

    Cubic boron nitride (cBN) has a sp3-bonded structure which leads to excellent mechanical properties. Though cBN-rich films have been successfully fabricated by many techniques, the adhesion of the films is still unsatisfactory due to the high stresses. The maximum sustainable thickness of cBN-rich films with good adhesion is widely reported to be around 200 nm, so many practical applications of cBN coatings are hindered. In this study, we designed a series of deposition schemes in a logical sequence, in order to explore whether stress can be released, or other structural forms of BN with potential applications can be made, and to gain more fundamental understanding on the growth mechanisms of various phases observed in the films. Various fabrication processes were employed according to the following sequence: (1) A single-step process. It was showed that the maximum tolerable thickness of the cBN-rich films prepared by our system (183nm) was compatible with the result in literatures (200nm). (2) A multilayered deposition process. A thick sp2-bonded boron nitride (sP2-BN) buffer layer which was relatively deformable was added, and hence some stresses were released so as to allow a 643nm-thick, 87vol.% cBN-rich layer with acceptable adhesion to grow on top. (3) An advanced multilayer process with subsequent annealing process. A zirconium layer was pre-deposited to remove the soft buffer layer after postannealing. The interface could be strengthened as the zirconium-boride/nitride was formed. (4) Ion assist deposition at unheated condition. Composite BN films containing sp3 nanoclusters embedded in a sp2-BN matrix were fabricated. The IR technique was not sensitive enough to detect spa nanoclusters, but their presence was verified by the results of other measurements. In particular, the sp3 content can be over 30vo1.%, with a hardness 20GPa. The influences of the assist beam energy and substrate temperature on the generation of the sp3 nanoclusters were investigated

  8. Separate evaluation of multiple film-forming species in chemical vapor deposition of SiC using high aspect-ratio microchannels

    NASA Astrophysics Data System (ADS)

    Shima, Kohei; Sato, Noboru; Funato, Yuichi; Fukushima, Yasuyuki; Momose, Takeshi; Shimogaki, Yukihiro

    2017-06-01

    The effect of multiple film-forming species on the film quality during chemical vapor deposition (CVD) of SiC from CH3SiCl3/H2 was examined by separating each species using high aspect-ratio (AR) parallel-plate microchannels. Profiles of the chemical and physical properties of the grown SiC films, including the composition, crystallinity and surface roughness, were characterized along the microchannel depth. The exceptionally high AR, which was typically more than 1{,}000:1, allowed film growth with a variety of film-forming species that significantly changed with depth. We were thus able to examine the effect of each film-forming species on film growth. The exceptionally large depth, which was typically centimeter-scale, allowed depth profile analysis using various kinds of film characterization techniques having large detection areas. For CVD SiC from CH3SiCl3/H2, multiple film-forming species with different sticking probabilities of 8 × 10-7, 1 × 10-4, and 2 × 10-2 provided almost the same film quality.

  9. CO Oxidation Prefers the Eley-Rideal or Langmuir-Hinshelwood Pathway: Monolayer vs Thin Film of SiC.

    PubMed

    Sinthika, S; Vala, Surya Teja; Kawazoe, Y; Thapa, Ranjit

    2016-03-02

    Using the first-principles approach, we investigated the electronic and chemical properties of wurtzite silicon carbide (2H-SiC) monolayer and thin film structures and substantiated their catalytic activity toward CO oxidation. 2H-SiC monolayer, being planar, is quite stable and has moderate binding with O2, while CO interacts physically; thus, the Eley-Rideal (ER) mechanism prevails over the Langmuir-Hinshelwood (LH) mechanism with an easily cleared activation barrier. Contrarily, 2H-SiC thin film, which exhibits a nonplanar structure, allows moderate binding of both CO and O2 on its surface, thus favoring the LH mechanism over the ER one. Comprehending these results leads to a better understanding of the reaction mechanisms involving structural contrast. Weak overlapping between the 2p(z)(C) and 3p(z)(Si) orbitals of the SiC monolayer system has been found to be the primary reason to revert the active site toward sp(3) hybridization, during interaction with the molecules. In addition, the influences of graphite and Ag(111) substrates on the CO oxidation mechanism were also studied, and it is observed that the ER mechanism is preserved on SiC/G system, while CO oxidation on the SiC/Ag(111) system follows the LH mechanism. The calculated Sabatier activities of the SiC catalysts show that the catalysts are very efficient in catalyzing CO oxidation.

  10. Role of polytypism and degree of hexagonality on the photoinduced optical second harmonic generation in SiC nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Puziko, V.; Skorik, S.; Wojciechowski, A.; Fedorchuk, A. O.; Maciąg, A.

    2015-05-01

    Photoinduced optiсal second harmonic generation was studied in nanocrystalline SiC films prepared by the method of direct ion deposition. For the studies were chosen three types of polytypes (with different degree of hexagonality) - 24R with degree hexagonality G=25, 27R-G=44, 33R with - G=36. The bicolor photoinduced treatment was performed by the wavelengths 1064nm/532 nm by 15 ns YAG:Nd laser. The efficiency of the output SHG was evaluated by ratio of the corresponding signal intensities with respect to the references and by the time delay between the SHG and the fundamental maxima. Explanation of the observed effect is given within a framework of the occurrence of the nano-trapping levels in the film crystalline interfaces.

  11. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Chowdhury, Niru; Bedanta, Subhankar

    2014-09-01

    Epitaxial Fe thin films were grown on annealed MgO(001) substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE) magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW) nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  12. Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth

    NASA Astrophysics Data System (ADS)

    Nita, F.; Mastail, C.; Abadias, G.

    2016-02-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this

  13. Phase transitions in two-dimensional monolayer films on the (110) face-centered-cubic crystal surface

    NASA Astrophysics Data System (ADS)

    Patrykiejew, A.; Sokołowski, S.; Zientarski, T.; Binder, K.

    1998-03-01

    The results of Monte Carlo simulation of two-dimensional films formed on the (110) face of a face-centered-cubic crystal are presented. Systems with different corrugation of the gas-solid potential and different size of adsorbed atoms are discussed. It is demonstrated that even small changes in the gas-solid potential corrugation considerably affect the inner structure of the low-temperature ordered phases and the location of the order-disorder phase transition.

  14. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    SciTech Connect

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Ma, D. H.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  15. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  16. Control of the stabilization of cubic boron nitride thin films deposited by unbalanced magnetron sputtering and dc pulsed substrate biasing

    NASA Astrophysics Data System (ADS)

    Otano-Rivera, Wilfredo

    The formation of cubic boron nitride (cBN) thin films deposited by unbalanced magnetron sputtering and dc pulsed substrate biasing has been studied. Thin films were deposited at different pressures and negative bias voltages to study the effect of the energetic bombardment on the stabilization conditions of the cubic phase of BN thin films. It is shown that it is possible to clearly define a stabilization window for cBN by controlling the sputtering deposition process parameters of pressure and negative substrate bias. It is also shown that at higher deposition pressures charge exchange and momentum transfer collisions in the plasma sheath reduce the bombardment energy of the particles. These collisional processes result in the use of a higher substrate bias voltages for increasing gas pressures in order to maintain the momentum per arriving boron atom, P/a, imparted to the growing film inside the stabilization window for the cubic phase. The end result is a trend where the substrate bias voltage for the formation of cBN increases negatively as a function of pressure times sheath thickness. A series of films were also deposited on different types of substrates in order to study the effects of chemistry and epitaxy on the nucleation of cBN. It was possible to nucleate the BN cubic phase on a wide variety of substrates. Diamond coated silicon substrates were the only ones that showed a marked effect on the nucleation of the cBN, where the FWHM of the FTIR signal was reduced two-fold as compared to the FTIR signal of films deposited on silicon under similar deposition conditions. The experimental results suggest that there is a threshold energy for the bombarding ions below which it is not possible to nucleate cBN. This result, in combination with the fact that P/a controls the cBN stabilization during the nucleation stage and other reported observations pertinent to the cBN thin film formation, leads to a proposed mechanism for the nucleation and growth stages of cBN.

  17. Influence of sputtering power on structural, mechanical and photoluminescence properties of nanocrystalline SiC thin films

    SciTech Connect

    Singh, Narendra; Kaur, Davinder

    2016-05-06

    In the present study, SiC thin films were deposited on Si (100) substrate by magnetron sputtering using a 4N purity commercial SiC target in argon atmosphere. The effect of sputtering RF power (140-170W) on structural, mechanical and photoluminescence properties were systematically studied by X-ray diffraction, field emission scanning electron microscopy, Nanoindentation and Spectrophotometer respectively. X-ray diffraction shows polycrystalline 4H-SiC phase with (105) preferred orientation and an enhancement in crystallite size with increasing power was also observed. The decrement in hardness and Young’s modulus with increment in RF power was ascribed to Hall-Petch relation. The maximum hardness and Young’s modulus were found to be 32 GPa and 232 GPa respectively. The photoluminescence spectra show peaks at 384 nm (3.22 eV) which corresponds to bandgap of 4H-SiC (phonon assisted band to band recombination) and 416 nm (2.99 eV) may be attributed to defect states and intensity of both peaks decreases as power increases.

  18. X-ray reflectometry and simulation of the parameters of SiC epitaxial films on Si(111), grown by the atomic substitution method

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Nussupov, K. Kh.; Osipov, A. V.; Beisenkhanov, N. B.; Bakranova, D. I.

    2017-05-01

    The structure and composition of SiC nanolayers are comprehensively studied by X-ray reflectometry, IR-spectroscopy, and atomic-force microscopy (AFM) methods for the first time. SiC films were synthesized by the new method of topochemical substitution of substrate atoms at various temperatures and pressure of CO active gas on the surface of high-resistivity low-dislocation single-crystal n-type silicon (111). Based on an analysis and generalization of experimental data obtained using X-ray reflectometry, IR spectroscopy, and AFM methods, a structural model of SiC films on Si was proposed. According to this model, silicon carbide film consists of a number of layers parallel to the substrate, reminiscent of a layer cake. The composition and thickness of each layer entering the film structure is experimentally determined. It was found that all samples contain superstoichiometric carbon; however, its structure is significantly different for the samples synthesized at temperatures of 1250 and 1330°C, respectively. In the former case, the film surface is saturated with silicon vacancies and carbon in the structurally loose form reminiscent of HOPG carbon. In the films grown at 1330°C, carbon is in a dense structure with a close-to-diamond density.

  19. The Growth of Gallium Nitride Films via the Innovative Technique of Atomic Layer Epitaxy

    DTIC Science & Technology

    1989-06-01

    and since the two ma- terials are chemically similar (both being nitrides), the cubic structure might be maintained through to the growing film. The...graded layers were grown on sapphire and 1-SiC substrates. which resulted in layers having hexagonal and cubic structure respec- tively. The crystal

  20. Low-energy mass-selected ion beam production of fragments produced from hexamethyldisilane for SiC film formation

    SciTech Connect

    Yoshimura, Satoru Sugimoto, Satoshi; Kiuchi, Masato

    2016-03-14

    We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated the occurrence of 3C-SiC deposition.

  1. In situ hole doping of wide-gap semiconductors by dual-target simultaneous laser ablation: GaN and SiC epitaxial films

    NASA Astrophysics Data System (ADS)

    Muto, Hachizo; Asano, Takashi; Wang, Rong-Ping; Kusumori, Takeshi

    2005-10-01

    Apparatus for dual-target simultaneous laser ablation deposition and in situ doping techniques have been developed to achieve p-type doping during epitaxial growth of wide-band-gap semiconductors. The apparatus has two target holders with a target-rotation mechanism and a rotation-axis adjusting mechanism to obtain homogeneously doped films. Mg-doped GaN films have been fabricated on 6H-SiC(0001) and Si(111) substrates in NH3 ambient by simultaneous ablation of GaN and Mg-metal targets using two lasers. Junctions of the films with n-type substrates show a diode curve characteristic of p-n junctions, but not for junction with p-Si, indicating hole doping without further procedures. In situ p-type doping to SiC was also achieved by using SiC and Al4C3 targets.

  2. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon

    2007-09-03

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  3. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  4. Binary-collision modeling of ion-induced stress relaxation in cubic BN and amorphous C thin films

    SciTech Connect

    Abendroth, B.; Jaeger, H. U.; Moeller, W.; Bilek, M.

    2007-04-30

    It is demonstrated that ion-bombardment-induced stress release during physical vapor deposition of cubic boron nitride (cBN) and amorphous carbon (aC) films is related to collisional relocation of atoms. A model based on TRIM and molecular dynamics computer simulations is presented. Experimental results obtained using pulsed substrate bias are in good agreement with the model predictions at adequately chosen threshold energies of atomic relocation. The collisional relaxation model describes the experimental data significantly better than the widely applied thermal spike model.

  5. Stable protein device platform based on pyridine dicarboxylic acid-bound cubic-nanostructured mesoporous titania films.

    PubMed

    Kim, Hwajeong; Park, Sung Soo; Seo, Jooyeok; Ha, Chang-Sik; Moon, Cheil; Kim, Youngkyoo

    2013-08-14

    Here we shortly report a protein device platform that is extremely stable in a buffer condition similar to human bodies. The protein device platform was fabricated by covalently attaching cytochrome c (cyt c) protein molecules to organic coupler molecules (pyridine dicarboxylic acid, PDA) that were already covalently bound to an electron-transporting substrate. A cubic nanostructured mesoporous titania film was chosen as an electron-transporting substrate because of its large-sized cubic holes (∼7 nm) and highly crystalline cubic titania walls (∼0.4 nm lattice). Binding of PDA molecules to the mesoporous titania surface was achieved by esterification reaction between carboxylic acid groups (PDA) and hydroxyl groups (titania) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediator, whereas the immobilization of cyt c to the PDA coupler was carried out by the EDC-mediated amidation reaction between carboxylic acid groups (PDA) and amine groups (cyt c). Results showed that the 2,4-position isomer among several PDAs exhibited the highest oxidation and reduction peak currents. The cyt c-immobilized PDA-bound titania substrates showed stable and durable electrochemical performances upon continuous current-voltage cycling for 240 times (the final current change was less than 3%) and could detect superoxide that is a core indicator for various diseases including cancers.

  6. Structural and optical characteristics of the hexagonal ZnO films grown on cubic MgO (001) substrates.

    PubMed

    Shen, Xiangqian; Zhou, Hua; Li, Yaping; Kang, Junyong; Zheng, Jin-Cheng; Ke, Shanming; Wang, Qingkang; Wang, Hui-Qiong

    2016-11-01

    In this Letter, we report on the structural and optical characteristics of ZnO films with a wurtzite structure grown on MgO (001) substrates with cubic structures. The ZnO films were prepared through the molecular beam epitaxy method, and growth orientation transformation from [0001] to [10-10] direction was observed with the change of growth temperature and thickness. The x-ray diffraction pole figures and in situ RHEED patterns demonstrated that the rotational relationship among grains within the ZnO films appeared in a typical two-fold rotation of about 30° for the [0001] growth orientation and four-fold rotation of about 30° or 60° for the [10-10] growth orientation, respectively. Last, we investigated their optical properties through measuring the transmission and photoluminescence spectra of the ZnO films, which showed the bulk-like bandgap feature of the ZnO films in spite of the existing growth orientation transformation.

  7. Static and dynamic magnetic properties of cubic Mn-Co-Ga Heusler films

    SciTech Connect

    Demiray, A. S. Iihama, S.; Naganuma, H.; Oogane, M.; Ando, Y.; Kubota, T.; Mizukami, S. Miyazaki, T.

    2014-05-07

    We investigated the static and dynamic magnetic properties of thin films of Mn-Co-Ga Heusler compound. Gilbert damping and exchange stiffness constants of the films were evaluated by using the ferromagnetic resonance technique in the X-band regime (f = 9.4 GHz). By analyzing the experimental spectra, magnetic parameters of the films such as the line width and the Gilbert damping were deduced, and the exchange stiffness constant was estimated from the perpendicular standing spin-wave resonance. The Gilbert damping constant was estimated to be 0.017 in a specific film composition. The exchange stiffness constant showed a linear dependence on the film composition.

  8. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AIN and InN

    DTIC Science & Technology

    1992-12-01

    AD-A258 804 Final Technical Report Ii Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent...Technical 6/1/86-12/31/92 4. TITLE AND SUBTITLE Growth, Nitrogen Vacancy Reduction and 5. FUNDING NUMBERS Solid Solution Formation in Cubic GaN Thin...According to the structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had

  9. Crystal growth of SiC for electronic applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1989-01-01

    The development of SiC as a high temperature semiconductor material is discussed, focusing on the epitaxial growth of single crystal SiC films on inexpensive single crystal silicon wafers. Progress in the improvement of film morphology and the elimination of antiphase disorder is examined. Potential candidate materials for high temperature semiconductor devices are compared and SiC films are evaluated.

  10. Screening of metal flux for SiC solution growth by a thin-film combinatorial method.

    PubMed

    Yonezawa, Yoshiyuki; Ryo, Mina; Takigawa, Aki; Matsumoto, Yuji

    2011-10-01

    4H-SiC is a wide-bandgap semiconductor with potential applications in power devices. The lack of a liquid phase in SiC hinders conventional crystal growth from the melt; consequently, SiC wafers still have low quality and are nearly 100 times more expensive than Si wafers. To take advantage of the solution growth for improving the quality and reducing the cost of SiC, Ni addition to Si-Ti flux has been investigated. A combinatorial approach was employed to accelerate the screening of metal flux for the SiC solution growth.

  11. Deposition of epitaxially oriented films of cubic silicon carbide on silicon by laser ablation: Microstructure of the silicon-silicon- carbide interface

    NASA Astrophysics Data System (ADS)

    Rimai, L.; Ager, R.; Weber, W. H.; Hangas, J.; Samman, A.; Zhu, W.

    1995-06-01

    Excimer laser ablation has been used to deposit epitaxial films of β-SiC on single-crystal Si wafers, in a vacuum, at substrate temperatures between 1050 and 1250 °C. Such films can be grown by ablating ceramic SiC, carbon, or alternating silicon and carbon targets at a range of growth rates. X-ray θ-2θ diffraction shows the presence of strong, sharp reflections from crystal planes parallel to the substrate, 200 and 400 for [100] substrates and 111 and 222 for [111] oriented substrates. Wrong reflections, such as 111 for [100] substrates, are extremely weak or absent, indicating alignment with the substrates. The characterization of these films by a number of techniques is discussed. In all cases the film-substrate interface shows a characteristic microstructure of cavities in the Si substrate, similar to that observed for the carbonization layer initially formed as a precursor for chemical-vapor deposition of SiC films on Si. This implies that the initial film growth, for all cases, involves chemical reaction of the Si substrate with the carbon in the plume as well as transport through the growing film.

  12. Defects and domain structures in SBA-16 mesoporous films with 3D cubic structure

    NASA Astrophysics Data System (ADS)

    Wang, Ruihong; Chen, Qing; Chen, Fu Rong; Kai, Ji Jung; Peng, Lian-Mao

    2005-08-01

    We report here the observations and analysis of defects and domain structures in SBA-16 mesoporous films on molecular level using high resolution transmission electron microscopy. The films were made by dip-coating and have layered structure. Domain boundaries both perpendicular and parallel to the substrate were observed. It was found that while some observed low angle and high angle domain boundaries are similar to that found in normal crystals, distortions analogue to that existing in liquid crystal were also observed. The results are shown to provide useful information for understanding the growth mechanism and the properties of the film.

  13. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    PubMed

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-08

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

  14. Surface Transfer Doping of Cubic Boron Nitride Films by MoO3 and Tetrafluoro-tetracyanoquinodimethane (F4-TCNQ).

    PubMed

    He, Bin; Ng, Tsz-Wai; Lo, Ming-Fai; Lee, Chun-Sing; Zhang, Wenjun

    2015-05-13

    Cubic boron nitride (cBN) has strong potential for the applications in high-temperature and high-power electronics and deep ultraviolet devices due to its outstanding combined physical and chemical properties. P-type surface transfer doping of heteroepitaxial cBN films was achieved by employing MoO3 and tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) as the surface dopants. The surface conductivities of hydrogenated cBN films increased by 3-6 orders after the deposition of surface dopants. The photoemission spectroscopy (PES) measurements revealed the variation of electronic structures at the interface regions, which suggested that the electron transfer from cBN films to the surface dopants induced hole accumulation at the cBN surface and the increase of surface conductivity. Based on the PES results, the energy level diagrams at MoO3/cBN and F4-TCNQ/cBN interfaces were determined. The achievement provided a potential approach for fabricating cBN-based electronic devices, especially on micrometer and nanometer scales.

  15. Etching characteristics and mechanisms of SiC thin films in inductively-coupled HBr-Ar, N{sub 2}, O{sub 2} plasmas

    SciTech Connect

    Efremov, Alexander; Kang, Sungchil; Kwon, Kwang-Ho; Seok Choi, Won

    2011-11-15

    Etch characteristics and mechanisms of SiC thin films in HBr-Ar, HBr-N{sub 2}, and HBr-O{sub 2} inductively-coupled plasmas were studied using a combination of experimental and modeling methods. The etch rates of SiC thin films were measured as functions of the additive gas fraction in the range of 0-100% for Ar, N{sub 2}, and O{sub 2} at a fixed gas pressure (6 mTorr), input power (700 W), bias power (200 W), and total gas flow rate (40 sccm). The plasma chemistry was analyzed using Langmuir probe diagnostics and a global (zero-dimensional) plasma model. The good agreement between the behaviors of the SiC etch rate and the H atom flux could suggest that a chemical etch pathway is rather controlled by the gasification of carbon through the CH{sub x} or CH{sub x}Br{sub y} compounds.

  16. The Improvement of Ion Plated Ag and Au Film Adherence to Si3N4 and SiC Surfaces for Increased Tribological Performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1998-01-01

    A modified dc-diode plating system, utilizing a metallic screen cage as a cathode and referred as SCREEN CAGE ION PLATING (SCIP), is used to deposit Ag and Au lubricating films on Si3N4 and SiC surfaces. When deposition is performed in Ar or N2, glow discharge, the surface displays poor adhesive strength (less than 5 MPa). A dramatic increase in adhesive strength (less than 80 MPa) is achieved when plating is performed in a reactive 50% 02 + 50% Ar glow discharge. The excited/ionized oxygen species (O2(+)/O(+) in the glow discharge contribute to the oxidation of the Si3N4 or SiC surfaces as determined by X-ray Photoelectron Spectroscopy (XTS) depth profiling. The reactively sputter-oxidized S3N4 or SiC surfaces and the activated-oxidized-metastable Ag or Au species formed in the plasma cooperatively contribute to the increased adherence. As a result, the linear thermal expansion coefficient mismatch at the interface is reduced. These lubricating Ag and Au films under sliding conditions reduce the friction coefficient by a factor of 2-1/2 to 4.

  17. Tricontinuous Cubic Nanostructure and Pore Size Patterning in Mesostructured Silica Films Templated with Glycerol Monooleate.

    PubMed

    Dunphy, Darren R; Garcia, Fred L; Kaehr, Bryan; Khripin, Constantine Y; Collord, Andrew D; Baca, Helen K; Tate, Michael P; Hillhouse, Hugh W; Strzalka, Joseph W; Jiang, Zhang; Wang, Jin; Brinker, C Jeffrey

    2011-04-26

    The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data. Removal of GMO by UV/O(3) treatment or acid extraction induces a phase change to a nanoporous body-centered structure which we tentatively identify as based on the IW-P surface. To improve film quality, we add a co-surfactant to the GMO in a mass ratio of 1:10; when this co-surfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O(3) treated films yield pores of only ca. 4 nm. Using this pore size dependence on film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially-defined size-selective molecular adsorption.

  18. Tricontinuous Cubic Nanostructure and Pore Size Patterning in Mesostructured Silica Films Templated with Glycerol Monooleate

    PubMed Central

    Dunphy, Darren R.; Garcia, Fred L.; Kaehr, Bryan; Khripin, Constantine Y.; Collord, Andrew D.; Baca, Helen K.; Tate, Michael P.; Hillhouse, Hugh W.; Strzalka, Joseph W.; Jiang, Zhang; Wang, Jin; Brinker, C. Jeffrey

    2011-01-01

    The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data. Removal of GMO by UV/O3 treatment or acid extraction induces a phase change to a nanoporous body-centered structure which we tentatively identify as based on the IW-P surface. To improve film quality, we add a co-surfactant to the GMO in a mass ratio of 1:10; when this co-surfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O3 treated films yield pores of only ca. 4 nm. Using this pore size dependence on film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially-defined size-selective molecular adsorption. PMID:21572556

  19. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  20. Effect of different thickness crystalline SiC buffer layers on the ordering of MgB{sub 2} films probed by extended x-ray absorption fine structure

    SciTech Connect

    Putri, W. B. K.; Tran, D. H.; Kang, B.; Lee, O. Y.; Kang, W. N.; Miyanaga, T.; Yang, D. S.

    2014-03-07

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} dropping went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.

  1. Effect of calcination temperature on the textural properties and photocatalytic activities of highly ordered cubic mesoporous WO3/TiO2 films.

    PubMed

    Pan, Jia Hong; Sun, Darren D; Lee, Chongmu; Kim, Yong Joo; Lee, Wan In

    2010-07-01

    Highly organized cubic mesoporous WO3/TiO2 films were successfully prepared by evaporation-induced self-assembly (EISA) process, employing triblock copolymer as template. The characterization results by XRD, SEM, TEM, UV-Vis. spectrophotometry, and nitrogen adsorption-desorption isotherms reveal that the mesoporous films are made up of well-defined 3-D cubic (lm3m space group) mesoporous structure and nanocrystalline anatase frameworks with high surface area, uniform pore sizes and excellent optical transparency. Photocatalytic properties of the mesoporous WO3/TiO2 films in decomposing gaseous 2-propanol to CO2 were analyzed as a function of calcinations temperature. The highest photocatalytic activity was obtained for the films calcined at 450 degrees C, which possess an appropriate crystallinity and relevant ordering of mesoporous structure. It was found that that long-range ordering of mesopores is one of the important factors in determining the photocatalytic degradation of gaseous organics.

  2. Chemically deposited cubic structured CdO thin films: Room temperature

    NASA Astrophysics Data System (ADS)

    Bulakhe, R. N.; Lokhande, C. D.

    2013-06-01

    Cadmium oxide (CdO) thin films have been synthesized using a chemical bath deposition (CBD) method at room temperature. The prepared CdO thin film were annealed and further used for the structural, morphological, UVVIS characterization. The thermo emf study was made with the TEP setup. The structural study showed polycrystalline CdO material. Morphological study reveals the prism like morphology. Optical and thermo emf study showed n-type nature with optical band gap of 2.13 eV.

  3. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1991-06-01

    p PTIC (AD-A238 521 Semi-Annual Letter Report Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the...SUBTITLE Growth, Nitrogen Vacancy Reduction and S. FUNDING NUMBERS solid Solution Formation in Cubic GaN Thin Films and the R&T:s40000lsrqO5 Subsequent

  4. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AIN and InN

    DTIC Science & Technology

    1992-02-01

    IK AD-A248 058 - - H Final Technical ReportI I Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the...structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had formed. Moreover

  5. Nano-cubic structured titanium nitride particle films as cathodes for the effective electrocatalytic debromination of BDE-47.

    PubMed

    Su, Jingyang; Lu, Na; Zhao, Jujiao; Yu, Hongtao; Huang, Hao; Dong, Xinglong; Quan, Xie

    2012-09-15

    An energetic TiN cathode was fabricated for effective electrocatalytic debromination of 2,2',4,4'-tetrabromodiphenyl ethers (BDE-47); this was achieved by placing Ti foils in an aqueous suspension of TiN nanoparticles, then drying the system at 50 °C for 12 h. TEM and SEM characterization showed that the TiN nanoparticles-whose average size was approximately 50 nm-were ideal nano-cubic structures and distributed uniformly on the Ti substrate. When applied as a cathode in cyclic voltammetry measurements, the TiN electrode exhibited stable electrochemical performance over 20 cycles, in the ∼1-10 pH range. The overpotential of the TiN cathode for electrochemical reduction of water (the main side reaction during the electrocatalytic reduction of pollutants in aqueous solution) was determined as 0.54 V, which was much higher than the values for either a Pt wafer (0.12 V), or a Pt film (0.07 V). The TiN electrodes displayed superior electrocatalytic activity for the electrocatalytic debromination of BDE-47. The kinetic constant of BDE-47 degradation on TiN cathode is 0.65 h(-1), which was 2, 4 and 17 times as much as those on Pt film, Pt wafer and graphite cathodes, respectively. A pathway was proposed for the degradation of BDE-47, based on measurements of the intermediate products resulting from the removal of BDE-47 by GC-MS.

  6. Surface-enhanced Raman scattering of 4-aminothiophenol adsorbed on silver nanosheets deposited onto cubic boron nitride films.

    PubMed

    Zhou, Yanli; Zhi, Jinfang; Zhao, Jianwen; Xu, Maotian

    2010-01-01

    A simple method was found for the fabrication of silver nanosheets (AgNS) by the catalysis of gold nanoparticles (AuNP) on an amine-terminated cubic boron nitride (cBN) surface deposited on a Si(001) substrate in the presence of reductant. The morphology of the AgNS/AuNP/NH(2)-cBN/Si(001) sample was characterized by scanning electron microscopy and X-ray diffraction. The performance of the AgNS/AuNP/NH(2)-cBN/Si(001) sample as surface-enhanced Raman scattering (SERS) active substrate was evaluated by using 4-aminothiophenol (PATP) as the probe molecule. The SERS measurements showed that the maximum intensity was obtained on the AgNS/AuNP/NH(2)-cBN/Si(001) sample for 5 min silver deposition. Compared with the AuNP/NH(2)-cBN/Si(001) sample and a silver film/cBN/Si(001) prepared by the mirror reaction, the SERS signal of PATP was obviously improved on the above AgNS/AuNP/NH(2)-cBN/Si(001) film. The sensitivity and the stability of the AgNS/AuNP/NH(2)-cBN/Si(001) sample were also investigated.

  7. Determination of the optical bandgap and disorder energies of thin amorphous SiC and AlN films produced by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guerra, J. A.; Montañez, L.; Erlenbach, O.; Galvez, G.; De Zela, F.; Winnacker, A.; Weingärtner, R.

    2011-01-01

    Amorphous aluminum nitrite and silicon carbide (a-AlN and a-SiC) thin films were prepared by radio frequency magnetron sputtering. Due to the deposition method and production conditions the deposited films grown in amorphous state. We systematically measure the optical bandgap through optical transmission spectroscopy and its change with a cumulative thermal annealing. The results show a linear relation between the Tauc-gap and the Tauc-slope for both AlN and SiC films, which can be explained analytically from the existence of an Urbach focus, and therefore can be used to determine the Urbach focus or to ensure the correct usage of the bandgap determination methods.

  8. Chemical vapor deposition of Si:C and Si:C:P films-Evaluation of material quality as a function of C content, carrier gas and doping

    NASA Astrophysics Data System (ADS)

    Dhayalan, Sathish Kumar; Loo, Roger; Hikavyy, Andriy; Rosseel, Erik; Bender, Hugo; Richard, Olivier; Vandervorst, Wilfried

    2015-09-01

    Incorporation of source-drain stressors (S/D) for FinFETs to boost the channel mobility is a promising scaling approach. Typically SiGe:B S/D stressors are used for p FinFETs and Si:C:P S/D stressors for n FinFETs. The deposition of such Si:C:P S/D stressors requires a low thermal budget to freeze the C in substitutional sites and also to avoid problems associated with surface reflow of Si fins. In this work, we report the material properties of Si:C and Si:C:P epitaxial layers grown by chemical vapor deposition, in terms of their defectivity and C incorporation as a function of different process conditions. The undoped Si:C layers were found to be defect free for total C contents below 1%. Above this concentration defects were incorporated and the defect density increased with increasing C content. Abrupt epitaxial breakdown occurred beyond a total C content of 2.3% resulting in amorphous layers. P doping of Si:C layers brought down the resistivity and also thicker Si:C:P films underwent epitaxial breakdown. Additionally, the use of nitrogen instead of hydrogen as carrier gas resulted in an increase of the growth rate and substitutional C incorporation both by a factor of two, while the surface defect density reduced.

  9. Large transverse thermoelectric voltage effect in incline-oriented SrTi1-xNbxO3 films with cubic structure

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Zhao, Ting; Zhang, Hai-Hong; Wang, Bo; Zhang, Peng-Xiang; Yang, Jian-Feng

    2013-06-01

    SrTi1-xNbxO3 films with cubic structure were grown on LaAlO3 single crystal substrates by pulsed laser deposition, in which the inclination angle of the (001) plane orientation was in strict accordance with 10° against the film surface. The maximal peak value of transverse thermoelectric voltage of up to 6.88 V was obtained for the sample with the optimum thickness around 500 nm. The large voltage signals indicate SrTi1-xNbxO3 films have considerable anisotropy of the Seebeck coefficient ΔS which reaches to ˜25 μV/K. The results demonstrate cubic structure materials also can be used to develop large transverse thermoelectric voltage effect.

  10. Raman spectroscopic investigations of tetragonal to cubic transition in BaTiO{sub 3} films grown on LaAlO{sub 3} substrate

    SciTech Connect

    Kumar, Satish; Kumar, Dhirendra; Rathore, Ajay Kumar; Sathe, V. G.

    2016-05-23

    BaTiO{sub 3} [BTO] films have been grown on LaAlO{sub 3} (LAO) substrate using pulse laser deposition technique. The film is found highly oriented, possess 400 nm thickness and single phase in nature. However, the out-of-plane lattice parameter of the film obtained from the x-ray diffraction was found to be lower when compared to bulk compound indicating towards strain reversal. The Raman spectra recorded at room temperature showed that the film is tetragonal with C4v symmetry. Raman spectra collected at high temperatures for the film and the bulk compound showed that the tetragonal to cubic transition temperature in film is enhanced by 100 K.

  11. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  12. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    SciTech Connect

    Gloss, Jonas; Shah Zaman, Sameena; Jonner, Jakub; Novotny, Zbynek; Schmid, Michael; Varga, Peter; Urbánek, Michal

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phase diagram revealing the transformable region is presented.

  13. Morphology of Poly(3,4-ethylene dioxythiophene) (PEDOT) Thin Films, Crystals, Cubic Phases, Fibers and Tubes

    NASA Astrophysics Data System (ADS)

    Wu, Jinghang

    Poly(3,4-ethylene dioxythiophene) (PEDOT) is a chemically stable, conjugated polymer that is of considerable interest for a variety of organic electronic devices including microfabricated neural electrodes that interface with living cortical tissue. The properties of conducting polymers are strongly dependent on the morphology and structure of the material in the solid-state. The rigid pi-pi conjugated conformation of PEDOT facilitates charge transport and favors crystallization that reduces solubility and processability, making detailed studies of PEDOT morphology difficult. This has also made it hard to control the microstructure at a variety of length scales. In this dissertation the morphology of PEDOT has been studied and controlled at several different length scales from manometers to micrometers. On the nanoscale, the primary intermolecular (100) d-spacing in PEDOT crystals has been controlled from 1.15 nm to 1.52 nm by using different counter-ions as dopants. The surface morphology and crystallinity of electrochemically deposited PEDOT films have been controlled by changing deposition conditions. A highly ordered, crystalline PEDOT-Br phase was formed during electrochemical deposition in the presence of bromine counterions. On the tens of nanometers scale, isotropic PEDOT bicontinuous cubic structures with extremely large surface areas were developed using ternary non-ionic surfactant, water and oil systems. On the micrometer scale, aligned PEDOT fibers and tubes were prepared by electrospinning blends of poly(lactide-co-glycolide) (PLGA) or poly(caprolactone) (PCL) and EDOT monomer onto a rotating wheel or a dielectric gap in a metal substrate. These aligned fibers and tubes were shown to precisely direct neural regeneration in specific directions in vitro. These developments help understand the structure and properties of conjugated polymers for use in organic electronic devices.

  14. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1992-06-01

    AD-A253 331 Semiannual Report Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication...Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using...34 substrates, such as using a graded AlxGal-xN solid solution as a buffer layer. E. Conclusion We have shown that in the use of our modified gas source MBE

  15. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    PubMed

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  16. Hetero-epitaxial growth of the cubic single crystalline HfO 2 film as high k materials by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinqiang; Tu, Hailing; Wang, Xiaona; Xiong, Yuhua; Yang, Mengmeng; Wang, Lei; Du, Jun

    2010-10-01

    We report a hetero-epitaxial growth of cubic single crystalline HfO 2 film on Si substrates as high k materials by pulse laser ablation (PLA) at 820 °C. To eliminate the interfacial defects, the HfO 2 film has then been annealed at 900 °C for 5 min in N 2. Reflection high-energy electron diffraction (RHEED) results indicate orientation of the HfO 2 film on Si substrates corresponding to (∥( and [∥[. An interface layer has been revealed by high-resolution transmission electron microscope (HRTEM). Through capacitance-voltage ( C- V) and current-voltage ( I- V), it has been obtained that the leakage current of the HfO 2 gate insulator with dielectric constant of 26 is 5×10 -6 A/cm 2 at -1 V.

  17. The resonance susceptibility of two-layer exchange-coupled ferromagnetic film with a combined uniaxial and cubic anisotropy in the layers

    NASA Astrophysics Data System (ADS)

    Shul'ga, N. V.; Doroshenko, R. A.

    2016-12-01

    A numerical investigation of the resonance dynamic susceptibility of ferromagnetic exchange-coupled two-layer films with a combined cubic and uniaxial magnetic anisotropy of the layers has been performed. It has been found that the presence of cubic anisotropy leads to the fact that much of the off-diagonal components of the dynamic susceptibility are nonzero. The change of the ferromagnetic resonance frequencies and dynamic susceptibility upon the magnetization along the [100], [010], and [011] directions have been calculated. The evolution of the profile of the dynamic susceptibility occurring during the magnetization has been described. The impact of changes in the distribution of equilibrium and dynamic components of the magnetization on the dependences of the components of the dynamic susceptibility and the ferromagnetic resonance frequency on the external magnetic fields has been discussed.

  18. Postdeposition annealing induced transition from hexagonal Pr{sub 2}O{sub 3} to cubic PrO{sub 2} films on Si(111)

    SciTech Connect

    Weisemoeller, T.; Bertram, F.; Gevers, S.; Greuling, A.; Deiter, C.; Tobergte, H.; Neumann, M.; Wollschlaeger, J.; Giussani, A.; Schroeder, T.

    2009-06-15

    Films of hexagonal praseodymium sesquioxide (h-Pr{sub 2}O{sub 3}) were deposited on Si(111) by molecular beam epitaxy and thereafter annealed in 1 atm oxygen at different temperatures, ranging from 100 to 700 deg. C. The films of the samples annealed at 300 deg. C or more were transformed to PrO{sub 2} with B-oriented Fm3m structure, while films annealed at lower temperatures kept the hexagonal structure. The films are composed of PrO{sub 2} and PrO{sub 2-d}elta species, which coexist laterally and are tetragonally distorted due to the interaction at the interface between oxide film and Si substrate. Compared to PrO{sub 2}, PrO{sub 2-d}elta has the same cubic structure but with oxygen vacancies. The oxygen vacancies are partly ordered and increase the vertical lattice constant of the film, whereas the lateral lattice constant is almost identical for both species and on all samples. The latter lattice constant matches the lattice constant of the originally crystallized hexagonal praseodymium sesquioxide. That means that no long range reordering of the praseodymium atoms takes place during the phase transformation.

  19. Thermo-Mechanical Optimization of a Gold Thick-film based SiC Die-attach Assembly using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shun-Tien; Chen, Liang-Yu

    2002-01-01

    A parametric study of the thermomechanical reliability of a Au thick-film based Sic-die- attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 "C. This parametric study centered on material selection, structure design and process control. The die-attach assembly is composed of a 1 mm x 1 mm S i c die attached to a ceramic substrate (either 96% aluminum oxide (A1203) or aluminum nitride (AlN)) with a gold (Au) thick-film attach layer. The effects of die-size, Au attach layer thickness, substrate material, and stress relaxing temperature on the stress/strain distribution and relative fatigue lifetime of the die-attach assembly were numerically analyzed. By comparing the calculated permanent strain in the thick-film attach layer, FEA results indicate that AlN is superior to Al2O3. Thicker Au attach layers and smaller die sizes are recommended to reduce the permanent strain in thick-film die attach layer. Thicker S i c die also reduces the stress near the (top) surface region of the die. A stress relaxing temperature close to the midpoint of the operating temperature range further reduces the maximum stress/strain, thereby improving die-attach thermo-mechanical reliability. These recommendations present guidelines to optimize the thermo-mechanical performance of the die-attach assembly and are valid for a wide range of thermal environments.

  20. Thermo-Mechanical Optimization of a Gold Thick-film based SiC Die-attach Assembly using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shun-Tien; Chen, Liang-Yu

    2002-01-01

    A parametric study of the thermomechanical reliability of a Au thick-film based Sic-die- attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 "C. This parametric study centered on material selection, structure design and process control. The die-attach assembly is composed of a 1 mm x 1 mm S i c die attached to a ceramic substrate (either 96% aluminum oxide (A1203) or aluminum nitride (AlN)) with a gold (Au) thick-film attach layer. The effects of die-size, Au attach layer thickness, substrate material, and stress relaxing temperature on the stress/strain distribution and relative fatigue lifetime of the die-attach assembly were numerically analyzed. By comparing the calculated permanent strain in the thick-film attach layer, FEA results indicate that AlN is superior to Al2O3. Thicker Au attach layers and smaller die sizes are recommended to reduce the permanent strain in thick-film die attach layer. Thicker S i c die also reduces the stress near the (top) surface region of the die. A stress relaxing temperature close to the midpoint of the operating temperature range further reduces the maximum stress/strain, thereby improving die-attach thermo-mechanical reliability. These recommendations present guidelines to optimize the thermo-mechanical performance of the die-attach assembly and are valid for a wide range of thermal environments.

  1. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    PubMed

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite.

  2. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  3. Extended metastable Al solubility in cubic VAlN by metal-ion bombardment during pulsed magnetron sputtering: film stress vs subplantation

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Ruess, H.; Hans, M.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-07-01

    Dynamic ion-recoil mixing of near-film-surface atomic layers is commonly used to increase the metastable solubility limit xmax in otherwise immiscible thin film systems during physical vapor deposition. Recently, Al subplantation achieved by irradiating the film growth surface with Al+ metal-ion flux was shown to result in an unprecedented xmax for VAlN, far above values obtained with gas ion irradiation. However, it is reasonable to assume that ion irradiation necessary for subplantation also leads to a compressive stress σ buildup. In order to separate the effects of Al+ bombardment on σ and xmax, and realize low-stress high-xmax nitride alloys, we grow metastable cubic V1-xAlxN (0.17 ≤ x ≤ 0.74) films using reactive magnetron sputtering under different ion irradiation conditions. Al and V targets are operated in Ar/N2 discharges employing (i) conventional DC (Ar+, N2+), (ii) hybrid High-power pulsed magnetron sputtering (HIPIMS)/DC processing with one type of metal ion present (Al+ or V+/V2+), and (iii) HIPIMS with concurrent Al+ and V+/V2+ fluxes. Comparison to the ab initio calculated Al solubility limit reveals that xmax = 0.55 achieved with V+/V2+ irradiation is entirely accountable for by stress. In contrast, Al+ fluxes provide a substantial increase in xmax to 0.63, which is 12% higher than that expected based on the stress-induced increase in metastable solubility. Correlative stress and atom probe tomography data confirm that the metastable Al solubility enhancement is enabled by Al+ subplantation. The here proposed processing strategy allows for growth of single-phase cubic nitride alloys with significantly increased Al concentrations embodying tremendous promise for substantial improvements in high temperature oxidation resistance and mitigates the risk of stress-induced adhesive or cohesive coating failure.

  4. Effect of annealing on mechanical and optical properties of in-situ doped SiC thin films

    NASA Astrophysics Data System (ADS)

    Pham, Hoa T. M.; de Boer, Charles R.; Visser, Cassan C. C.; Sarro, Pasqualina M.

    2001-10-01

    In this paper we present the effect of the doping and annealing on the mechanical and optical properties of thin films of silicon carbide prepared by plasma enhanced chemical vapor deposition (PECVD) technique at 400 degree(s)C and using methane (CH4) as a C precursor and silane (SiH4) as a Si source. Diborane (B2H6) and phosphine (PH3) are employed as doping gas. A clear changes in internal stress when adding doping gas is observed. After an annealing cycle up to 650 degree(s)C the internal stress is increased for both doped and undoped films and it shifts from compressive to tensile stress region. Spectroscopic ellipsometer is used to investigate structural and optical properties of these films. The thickness of silicon carbide film is decreased for both doped and undoped films after annealing. The index of refraction and coefficient of extinction of undoped and in-situ doped silicon carbide film as a function of photon energy are obtained. Complex dielectric constant as a function of photon energy and energy bandgap of these films are calculated as well.

  5. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1990-07-01

    that the BGaN film remained predominantly single crystal, but shows both a normal cubic [110] pattern and a second hexagonal pattern [0110]. By contrast...27 Transmission electron microscopy (iEM) was used (Hitachi H-800) to more closely examine the microstructural evolution of the BN/ BGaN /GaN epitaxial...area diffraction (SAD) also showed the BGaN layer to be a mixture of cubic and wurtzitic phases. This layer was heavily faulted. The latter phenomenon

  6. Method for Simulating the Thickness Distribution of a Cubic Boron Nitride Film Deposited on a Curved Substrate using Ion-beam-assisted Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Valizadeh, R.; Colligon, J. S.; Kanematsu, H.; Morisato, K.

    A method for simulating the thickness distribution of cubic boron nitride (cBN) films deposited on a curved substrate using ion-beam-assisted vapor deposition (IBAD) is established and discussed. The deposition conditions are (i) boron arriving rate is 3.2 Å/s, (ii) ion current density is in the range 600-1600 μA/cm2, and (iii) gas composition fed into the ion source is 36% N2 + Ar. It was found that, due to simultaneous deposition and sputtering, the boron resputtering yield (which depends on the ion incident angle during cBN deposition) estimated from experimental data was higher than that of the boron sputtering yield of the BN films with a density of 3.482 g/cm3 calculated by the TRIM code. Using the above empirical boron resputtering yield, it is estimated that in the case of static coating, cBN films would not be formed when the incident angle is more than 40°. However, with continuous waving, the distribution of film thickness improves and the results are consistent with the experimental results. This estimation also agrees with the experimental results of discrete waving deposition within an allowable margin of error

  7. Atomistic mechanisms of strain relaxation due to ductile void growth in ultrathin films of face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Gungor, M. Rauf; Maroudas, Dimitrios

    2005-06-01

    A comprehensive computational analysis is reported of the atomistic mechanisms of strain relaxation and failure in free-standing Cu thin films under applied biaxial tensile strain for strain levels up to 6%. The analysis focuses on nanometer-scale-thick films with a preexisting void extending across the film thickness and the film plane oriented normal to the [111] crystallographic direction. Our computational study is based on isothermal-isostrain large-scale molecular-dynamics simulations within an embedded-atom-method parametrization for Cu. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Within the considered strain range, after an elastic response at a low strain (<2%), void growth is the major strain relaxation mechanism mediated by the emission of perfect screw dislocation pairs from the void surface and subsequent dislocation propagation; as a result, a plastic zone forms around the void. Plastic deformation is accompanied by the glide motion of the dislocations emitted from the void surface, void surface morphological transitions, formation of a step pattern on the film's surfaces, dislocation jogging, vacancy generation due to gliding jogged dislocations, dislocation-vacancy interactions, vacancy pipe diffusion along dislocation cores, as well as dislocation-dislocation interactions. The increase in film surface roughness with increasing strain eventually leads to nucleation and propagation from the film surfaces of threading dislocation loops, which ultimately break up when they reach the opposite free surface of the thin film.

  8. Characterization of amorphous SIC:H thin films grown by RF plasma enhanced CVD on annealing temperature

    NASA Astrophysics Data System (ADS)

    Park, M. G.; Choi, W. S.; Boo, J.-H.; Kim, Y. T.; Yoon, D. H.; Hong, B.

    2002-06-01

    n this work, we investigated the dependence of optical and electrical properties of hydrogenated amorphous silicon carbide (a-SiCa:H) films on annealing temperature (T_a) and radio frquency (RF) power. The substrate temperature (T_s was 250 °C, the RF power was varied from 30 W to 400 W, and the range of T_s, was from 400 °C to 600 °C. The a-SiC:H films were deposited by using PECVD (plasma enhanced chemical vapor deposition) system on Coming glass and p-type Si (100) wafer with a SiH4+CH4 gas tnudiue. The experimental results have shown that the optical band gap energy (E_g) of the aSiC:H thin films changed little with the annealing temperature while Eg increased with the RF power. The Raman spectnrn of the thin films annealed at high temperatures showed that graphitization of carbon clusters and rnicrocrystalline silicon occurs. The current voltage characteristics have shown good electrical properties in relation to the annealed films.

  9. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2009-07-15

    Transparent conducting Al-doped ZnO (AZO) thin films codoped with Si, or Si-codoped AZO (AZO:Si), were prepared by radio-frequency magnetron sputtering using a powder mixture of ZnO, Al{sub 2}O{sub 3}, and SiC as the target; the Si content (Si/[Si+Zn] atomic ratio) was varied from 0 to 1 at. %, but the Al content (Al/[Al+Zn] atomic ratio) was held constant. To investigate the effect of carbon on the electrical properties of AZO:Si thin films prepared using the powder targets containing SiC, the authors also prepared thin films using a mixture of ZnO, Al{sub 2}O{sub 3}, and SiO{sub 2} or SiO powders as the target. They found that when AZO:Si thin films were deposited on glass substrates at about 200 degree sign C, both Al and Si doped into ZnO acted as effective donors and the atomic carbon originating from the sputtered target acted as a reducing agent. As a result, sufficient improvement was obtained in the spatial distribution of resistivity on the substrate surface in AZO:Si thin films prepared with a Si content (Si/[Si+Zn] atomic ratio) of 0.75 at. % using powder targets containing SiC. The improvement in resistivity distribution was mainly attributed to increases in both carrier concentration and Hall mobility at locations on the substrate corresponding to the target erosion region. In addition, the resistivity stability of AZO: Si thin films exposed to air for 30 min at a high temperature was found to improve with increasing Si content.

  10. Contact formation in SiC devices

    NASA Astrophysics Data System (ADS)

    Pécz, B.

    2001-12-01

    In SiC devices designed for high temperature and high power applications, both ohmic and Schottky contacts are required which are stable at high temperature. The microstructure of contacts is very important to learn. Transmission electron microscopy (TEM) is a powerful method to reveal the microstructure of the contacts. Various contacts to SiC were investigated by TEM in cross-section and are discussed. TiN, Ni and Ni 2Si are ohmic contacts to n-type SiC, while multilayers and WN x contacts are used for Schottky purposes. Magnetron sputtered TiN layers were deposited at 700 °C onto cubic and hexagonal SiC as well. The contacts are ohmic, single crystalline, epitaxial, non-reactive and stable at high temperature. Ni contacts evaporated onto hexagonal SiC and subsequently annealed at 950 °C showed ohmic behavior, but Ni reacted with SiC. The reaction resulted in the formation of nickel silicide together with the formation of high number of voids. Deposition and annealing of Si/Ni multilayer contacts resulted in a void-free Ni 2Si contact layer preserving low contact resistivity. For Schottky purposes, multilayered contacts of Ti/Pt/Au/Ti can be used up to 575 °C, while WN x contacts are rectifying at least up to 800 °C.

  11. Effect of radio-frequency electric power applied to a boron nitride unbalanced magnetron sputter target on the deposition of cubic boron nitride thin film

    NASA Astrophysics Data System (ADS)

    Ko, Ji-Sun; Park, Jong-Keuk; Lee, Wook-Seong; Huh, Joo-Youl; Baik, Young-Joon

    2013-11-01

    Cubic boron nitride (c-BN) films were deposited by an unbalanced magnetron sputtering method. A (100) Si wafer with a nanocrystalline diamond thin film as a surface coating layer or that without it was used as a substrate. The target power was varied from 100 to 400 W. A boron nitride target was used, which was connected to a radio frequency power supply. High frequency power connected to a substrate holder was used for self-biasing. The deposition pressure was 0.27 MPa with a flow of Ar (18 sccm) — N2 (2 sccm) mixed gas. The existence of threshold bias voltages for c-BN formation and resputtering were observed irrespective of target power. The bias voltage window for c-BN formation broadened with increased target power. The deposition rate decreased with enhanced bias voltage and decreased target power. Residual stresses of the films did not vary noticeably with target power within the target power range of c-BN formation. A parameter space for c-BN formation according to the target power and the bias voltage, as two variables, was suggested.

  12. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1990-12-01

    Laboratories, Inc. 3. Structural Analysis Reflection high-energy electron diffraction performed during growth indicated that the BGaN film remained...was used (Hitachi H-800) to more closely examine the microstructural evolution of the BN/ BGaN /GaN epitaxial films. Cross-section TEM specimens were... BGaN layer to be a mixture of cubic and wurtzitic phases. This layer was heavily faulted. The latter phenomenon is to be expected given the high

  13. Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films with Cubic Pore Symmetry—On the Influence of Water on the Surface Oxygen Ion Transport.

    PubMed

    Elm, Matthias T; Hofmann, Jonas D; Suchomski, Christian; Janek, Jürgen; Brezesinski, Torsten

    2015-06-10

    Thermally stable, ordered mesoporous thin films of 8 mol % yttria-stabilized zirconia (YSZ) were prepared by solution-phase coassembly of chloride salt precursors with an amphiphilic diblock copolymer using an evaporation-induced self-assembly process. The resulting material is of high quality and exhibits a well-defined three-dimensional network of pores averaging 24 nm in diameter after annealing at 600 °C for several hours. The wall structure is polycrystalline, with grains in the size range of 7 to 10 nm. Using impedance spectroscopy, the total electrical conductivity was measured between 200 and 500 °C under ambient atmosphere as well as in dry atmosphere for oxygen partial pressures ranging from 1 to 10(-4) bar. Similar to bulk YSZ, a constant ionic conductivity is observed over the whole oxygen partial pressure range investigated. In dry atmosphere, the sol-gel derived films have a much higher conductivity, with different activation energies for low and high temperatures. Overall, the results indicate a strong influence of the surface on the transport properties in cubic fluorite-type YSZ with high surface-to-volume ratio. A qualitative defect model which includes surface effects (annihilation of oxygen vacancies as a result of water adsorption) is proposed to explain the behavior and sensitivity of the conductivity to variations in the surrounding atmosphere.

  14. Suppression of ferromagnetism and observation of quantum well states in epitaxial thin films of the cubic ruthenate BaRuO3

    NASA Astrophysics Data System (ADS)

    Burganov, Bulat; Paik, Hanjong; Shen, Kyle; Schlom, Darrell

    The pseudocubic perovskite ruthenates ARuO3, where A is alkaline earth metal, are correlated materials where Hund's coupling drives correlations and leads to a low coherence scale, large renormalization, and formation of local moments. The ferromagnetic BaRuO3 has an ideal cubic structure and a larger bandwidth, compared to its GdFeO3-distorted counterparts, CaRuO3 and SrRuO3. In stark contrast to SrRuO3, which is a Fermi liquid below TC, BaRuO3 exhibits critical fluctuations near TC that are enhanced under hydrostatic pressure, which suppresses the Fermi liquid coherence scale and TC and drives a crossover into non-FL regime. Here we use ARPES to characterize the momentum-resolved electronic structure of strained ultrathin BaRuO3 films grown in situ by molecular beam epitaxy. The films on STO (001) are metallic down to 2 u.c. thickness and manifest clearly defined subbands of well-defined quasiparticles which arise due to quantum confinement effects. We observe that the bands are moderately renormalized compared to bare GGA bands and discover that the ferromagnetism can be suppressed in the atomically thin limit. We discuss our results on BaRuO3 in the context of our recent ARPES studies of the other perovskite ruthenates, SrRuO3 and CaRuO3.

  15. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  16. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L-1 (cubic SiC NWs) and 5-8000 μmoL L-1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L-1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  17. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively.

    PubMed

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-25

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  18. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    PubMed Central

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361

  19. Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases

    NASA Astrophysics Data System (ADS)

    Ghafoor, Naureen; Johnson, Lars J. S.; Klenov, Dmitri O.; Demeulemeester, Jelly; Desjardins, Patrick; Petrov, Ivan; Hultman, Lars; Odén, Magnus

    2013-08-01

    Self-organization on the nanometer scale is a trend in materials research. Thermodynamic driving forces may, for example, yield chessboard patterns in metal alloys [Y. Ni and A. G. Khachaturyan, Nature Mater. 8, 410-414 (2009)], 10.1038/nmat2431 or nitrides [P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, and C. Mitterer, Appl. Phys. Lett. 83, 2049 (2003)], 10.1063/1.1608464 during spinodal decomposition. Here, we explore the ZrN-AlN system, which has one of the largest positive enthalpies of mixing among the transition metal aluminum nitrides [D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luefa, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 1698-1704 (2011), 10.1016/j.surfcoat.2011.09.019; B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol. 203, 883-886 (2008)], 10.1016/j.surfcoat.2008.08.027. Surprisingly, a highly regular superhard (36 GPa) two-dimensional nanolabyrinthine structure of two intergrown single crystal phases evolves during magnetron sputter thin film synthesis of Zr0.64Al0.36N/MgO(001). The self-organization is surface driven and the synergistic result of kinetic limitations, where the enthalpy reduction balances both investments in interfacial and elastic energies.

  20. Kronig-Penney-like description for band gap variation in SiC polytypes

    NASA Astrophysics Data System (ADS)

    Backes, W. H.; de Nooij, F. C.; Bobbert, P. A.; van Haeringen, W.

    1996-02-01

    A one-dimensional Kronig-Penney-like model for envelope wave functions is presented to explain the band gap variation of SiC polytypes. In this model the envelope functions obey discontinuous boundary conditions. The electronic band gaps of cubic and several hexagonal and rhombohedral SiC polytypes are calculated. The polytypic superlattices are assumed to be stackings of differently sized and orientated cubic SiC segments. The empirical Choyke-Hamilton-Patrick relation is understood and deviating trends for small hexagonalities and rhombohedral modifications are predicted.

  1. Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts

    NASA Astrophysics Data System (ADS)

    Werschmoeller, Dirk

    Monitoring and control of thermomechanical phenomena in tooling are imperative for advancing fundamental understanding, enhancing reliability, and improving workpiece quality in material removal processes. Polycrystalline cubic boron nitride (PCBN) tools are being used heavily in numerous machining processes, e.g., machining of hardened low carbon steel and superalloys. These processes are very sensitive to variations in local cutting conditions at, or close to, the tool-workpiece interface, but lack a thorough understanding of fundamental transient thermo-mechanical phenomena present. As a result, abrupt catastrophic tool failures and degraded machined surfaces frequently occur. Existing sensors are not suitable for process control and monitoring, as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to provide relevant data during machining. This research presents a novel approach for obtaining thermomechanical data from the close vicinity (i.e., 10s of micrometers) of the tool-workpiece interface. Arrays of micro thin film thermocouples with junction size 5 x 5 mum were fabricated by standard microfabrication methods and have been successfully embedded into PCBN using diffusion bonding. Electron microscopy and X-ray spectroscopy were employed to examine material interactions at the bonding interface and to determine optimal bonding parameters. Static and dynamic sensor performances have been characterized. The sensors exhibit excellent linearity up to 1300 °C, fast rise time of 150 ns, and possess good sensitivity. The inserts instrumented with embedded thin film C-type thermocouples were successfully applied to measure internal tool temperatures as close as 70 mum to the cutting edge while machining aluminum and hardened steel workpieces at industrially relevant cutting parameters. Acquired temperature data follow theoretical trends very well. Correlations between temperature and cutting parameters have

  2. C60 on SiC nanomesh.

    PubMed

    Chen, Wei; Zhang, Hong Liang; Xu, Hai; Tok, Eng Soon; Loh, Kian Ping; Wee, Andrew Thye Shen

    2006-11-02

    A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.

  3. Growth, nitrogen vacancy reduction, and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AlN and InN

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey-Trent, K. S.; Kester, Daniel; Paisley, Michael J.; Perry, Bill

    1992-06-01

    Undoped GaN films have been deposited by gas-source MBE having essentially intrinsic electrical character. Acceptor-type behavior has been achieved with Mg doping. The electrical properties of these latter films were resistivity = 0.5 omega-cm, Hall mobility (holes = 10 sq cm/V-s and carrier concentration = 1(10)(exp 18) cu cm. Photo-assisted gas-source MBE growth of stoichiometric GaN was also achieved using a 500 W Hg lamp. Illumination and Ga cell temperature altered the texture of the polycrystalline GaN in unusual ways, changing the growth habit from (0001) is parallel to (100) to (0001) is parallel to (111) and back again. Thin films of cubic-BN (c-BN) were also deposited on various substrates via both gas-source MBE and electron beam MBE. The use of Si(100) substrates, the latter technique, and the characterization tools of RHEED, XPS, LEED, SEM, FTIR, and HRTEM resulted in the achievement of an initial amorphous BN layer followed by a layer of turbostratic BN and subsequently by a layer of cubic BN. Cubic BN films were also deposited on polycrystalline diamond films grown via CVD on Si(100). The effect of the bombarding species was examined. Finally, the plans for both a systematic investigation of the ion implantation and contact development and related characterization of AlN and GaN with n- and p-type dopants and the construction and employment of a UV luminescence facility is discussed.

  4. In Situ Analysis of the Tribochemical Films Formed by SiC Sliding Against Mo in Partial Pressures of SO2, O2, and H2S Gases

    DTIC Science & Technology

    1996-02-01

    MoO3 or one of the substoichiometric MoOx ~2 ,x, 3! compounds—formed, although MoO2 is the first to crystal- lize from the chemisorbed state with...increasing thermal activity.31,32 We therefore designate the oxide to be MoOx . In SO2 , mixtures of MoS2 and MoOx would be expected. On the SiC wear scar...from Auger data. ~2<xɛ y , z51 or 2.! Gas Solid Mo SiC Tribofilm Transfer Tribofilm Transfer SO2 MoOx /MoS2 None SiOy/SiSz , C MoOx /MoS2 O2 MoOx None

  5. Embedded SIC-POVMs

    NASA Astrophysics Data System (ADS)

    Dang, Hoan; Blanchfield, Kate; Bengtsson, Ingemar; Appleby, Marcus

    2013-03-01

    Symmetric informationally complete (SIC) sets of quantum states have applications in foundational studies of quantum mechanics, quantum tomography, quantum communication, quantum cryptography, and classical signal processing. However, their existence in every dimension has not been proven, and no general construction has been known. During our study of linear dependencies in Weyl-Heisenberg orbits, we discovered 2-dimensional SICs embedded in a 6-dimensional Hilbert space. This offers a robust construction for 2-dimensional SICs, and may potentially impact the SIC existence problem. In this talk, I will explain how this construction works, and present numerical results for some other dimensions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and by the U. S. Office of Naval Research (Grant No. N00014-09-1-0247).

  6. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-05-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (-In2O3) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal ()-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although -In2O3 grains with wide band-gap energy were formed in In film by N2 annealing, they were not easily formed in N2-annealed InN films. Even if they were not detected in N2-annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]0.5%). Although [O]1% could be estimated by investigating In2O3 grains formed in N2-annealed InN films, [O]0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In2O3 grains formed by H2 annealing with higher reactivity with InN and O2, using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films.

  7. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  8. SiC Protective Coating for Photovoltaic Retinal Prostheses

    PubMed Central

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-01-01

    Objective To evaluate PECVD SiC as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach Retinal prostheses were implanted in rats subretinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiNx and thermal SiO2 were measured in accelerated soaking tests in saline at 87°C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results At 87°C SiNx dissolved at 18.3±0.3nm/day, while SiO2 grown at high temperature (1000°C) dissolved at 1.04±0.08A/day. SiC films demonstrated the best stability, with no quantifiable change after 112 days. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance SiC coatings demonstrating no erosion in accelerated aging test for 112 days at 87°C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4-month follow-up in vivo. The optimal thickness of SiC layers is about 560nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects. PMID:27323882

  9. Piecewise Cubic Interpolation Package

    SciTech Connect

    Fritsch, F. N.; LLNL,

    1982-04-23

    PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x) is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.

  10. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  11. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  12. SiC protective coating for photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-08-01

    Objective. To evaluate plasma-enhanced, chemically vapor deposited (PECVD) amorphous silicon carbide (α-SiC:H) as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach. Retinal prostheses were implanted in rats sub-retinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiN x and thermal SiO2 were measured in accelerated soaking tests in saline at 87 °C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results. At 87 °C SiN x dissolved at 18.3 ± 0.3 nm d-1, while SiO2 grown at high temperature (1000 °C) dissolved at 0.104 ± 0.008 nm d-1. SiC films demonstrated the best stability, with no quantifiable change after 112 d. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance. SiC coatings demonstrating no erosion in accelerated aging test for 112 d at 87 °C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4 month follow-up in vivo. The optimal thickness of SiC layers is about 560 nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects.

  13. Optical waveguide formed by cubic silicon carbide on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Tang, Xiao; Wongchotigul, Kobchat; Spencer, Michael G.

    1991-01-01

    Optical confinement in beta silicon carbide (beta-SiC) thin films on sapphire substrate is demonstrated. Measurements are performed on waveguides formed by the mechanical transfer of thin beta-SiC films to sapphire. Recent results of epitaxial films of SiC on sapphire substrates attest to the technological viability of optoelectronic devices made from silicon carbide. Far-field mode patterns are shown. It is believed that this is the first step in validating a silicon carbide optoelectronic technology.

  14. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting

    NASA Astrophysics Data System (ADS)

    Goel, Saurav; Luo, Xichun; Reuben, Robert L.; Rashid, Waleed Bin

    2011-11-01

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp 3 -sp 2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp 3 -sp 2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  15. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting

    PubMed Central

    2011-01-01

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear. PMID:22078069

  16. Effect of oxygen on ion-beam induced synthesis of SiC in silicon

    NASA Astrophysics Data System (ADS)

    Artamonov, V. V.; Valakh, M. Ya.; Klyui, N. I.; Melnik, V. P.; Romanyuk, A. B.; Romanyuk, B. N.; Yuhimchuk, V. A.

    1999-01-01

    The properties of Si-structures with a buried silicon carbide (SiC) layer created by high-dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. The effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layer is more effectively formed in Cz-Si or in Si (Cz-or Fz-) subjected to additional oxygen implantation. So we can conclude that oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed. Carbon segregation and amorphous carbon film formation on SiC grain boundaries were revealed.

  17. Laser Deposition of Cubic Boron Nitride on Electronic Materials.

    DTIC Science & Technology

    1991-08-12

    wurtzite or cubic structure of BN (see Figures 4 and 5). It is clear that the films grown via laser processing were amorphous rather than crystalline... cubic structure of BN can be obtained. It appears from our work and Dr. Doll’s work that excimer laser ablated species do not have sufficient energy

  18. Cubic topological Kondo insulators.

    PubMed

    Alexandrov, Victor; Dzero, Maxim; Coleman, Piers

    2013-11-27

    Current theories of Kondo insulators employ the interaction of conduction electrons with localized Kramers doublets originating from a tetragonal crystalline environment, yet all Kondo insulators are cubic. Here we develop a theory of cubic topological Kondo insulators involving the interaction of Γ(8) spin quartets with a conduction sea. The spin quartets greatly increase the potential for strong topological insulators, entirely eliminating the weak topological phases from the diagram. We show that the relevant topological behavior in cubic Kondo insulators can only reside at the lower symmetry X or M points in the Brillouin zone, leading to three Dirac cones with heavy quasiparticles.

  19. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  20. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  1. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  2. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE PAGES

    Yu, K. Y.; Chen, Y.; Li, J.; ...

    2016-11-28

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  3. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    SciTech Connect

    Yu, K. Y.; Chen, Y.; Li, J.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2016-11-28

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  4. Moment mapping of body-centered-cubic Fe{sub x}Mn{sub 1−x} alloy films on MgO(001)

    SciTech Connect

    Idzerda, Y. U. Bhatkar, H.; Arenholz, E.

    2015-05-07

    The alloy composition and elemental magnetic moments of bcc single crystal films of compositionally graded Fe{sub x}Mn{sub 1−x} films (20 nm thick films with 0.8 ≤ x ≤ 0.9) grown on MgO(001) are spatially mapped using X-ray absorption spectroscopy and magnetic circular dichroism. Electron diffraction measurements on single composition samples confirmed that the structure of Fe{sub x}Mn{sub 1−x} films remained epitaxial and in the bcc phase from 0.65 ≤ x ≤ 1, but rotated 45° with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x = 0.88. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x = 0.85, a slightly higher composition than observed in the bulk. Surprisingly, the Mn exhibits a very small net moment (<0.1 μ{sub B}) at all compositions, suggesting a complex Mn spin structure.

  5. Microstructure comparison of transparent and opaque CVD SiC

    SciTech Connect

    Kim, Y.; Zangvil, A.; Goela, J.S.; Taylor, R.L.

    1995-06-01

    Transparent, translucent, and opaque regions of high-purity bulk SiC, produced by CVD, have been characterized for physical properties as well as microstructure and chemical purity to correlate degree of transparency with other material characteristics. A good correlation was obtained between SiC vis-a-vis IR transmission and its microstructure. The transparent material is highly oriented toward the {l_angle}111{r_angle} direction and is characterized by pure, essentially defect-free, cubic {beta}-SiC columnar grains of size 5--10 {micro}m. The translucent material of various colors is mostly cubic in structure but contains large amounts of twins, usually as complex mixtures of several twinning variants and secondary twinning within a single grain. Opaque CVD SiC is randomly oriented, does not exhibit columnar grains, and contains one directional disorder with hexagonal ({alpha}-SiC) symmetry in a majority of grains and high density of dislocations elsewhere.

  6. SICs and Algebraic Number Theory

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon

    2017-08-01

    We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert's 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.

  7. Defects and electronic transport in hydrogenated amorphous SiC films of interest for low dielectric constant back end of the line dielectric systems

    NASA Astrophysics Data System (ADS)

    Pomorski, T. A.; Bittel, B. C.; Cochrane, C. J.; Lenahan, P. M.; Bielefeld, J.; King, S. W.

    2013-08-01

    Back end of line dielectrics with low dielectric constants are needed for current and future integrated circuit technology. However, an understanding of the defects that cause leakage currents and limit reliability in these films is not yet developed. We utilize conventional electron paramagnetic resonance (EPR), electrically detected magnetic resonance (EDMR), and leakage current measurements, complimented by Fourier transform infrared spectroscopy and Rutherford back scattering results, to investigate a-SiC:H dielectrics which have great potential use for back end of line dielectrics. We observe a strong correlation between conventional EPR defect density measurements and leakage currents. There is also a very strong correlation between hydrogen content and both leakage current and EPR defect density. The close correspondence between the EPR results and the leakage currents strongly indicates that the defects observed by EPR are largely responsible for the leakage currents and likely limit the dielectric reliability. Important reliability phenomena in these films are time-dependent dielectric breakdown and stress induced leakage current. Additionally, we have utilized EDMR via spin dependent trap assisted tunneling to investigate the direct link between defects observed in EPR and electrical transport.

  8. Growth and oxidization stability of cubic Zr{sub 1−x}Gd{sub x}N solid solution thin films

    SciTech Connect

    Höglund, C.; Alling, B.; Jensen, J.; Hultman, L.; Birch, J.; Hall-Wilton, R.

    2015-05-21

    We report Zr{sub 1−x}Gd{sub x}N thin films deposited by magnetron sputter deposition. We show a solid solubility of the highly neutron absorbing GdN into ZrN along the whole compositional range, which is in excellent agreement with our recent predictions by first-principles calculations. An oxidization study in air shows that Zr{sub 1−x}Gd{sub x}N with x reaching from 1 to close to 0 fully oxidizes, but that the oxidization is slowed down by an increased amount of ZrN or stopped by applying a capping layer of ZrN. The crystalline quality of Zr{sub 0.5}Gd{sub 0.5}N films increases with substrate temperatures increasing from 100 °C to 900 °C.

  9. Microstructure characterization of SiC nanowires as reinforcements in composites

    SciTech Connect

    Dong, Ronghua; Yang, Wenshu; Wu, Ping; Hussain, Murid; Xiu, Ziyang; Wu, Gaohui; Wang, Pingping

    2015-05-15

    SiC nanowires have been rarely investigated or explored along their axial direction by transmission electron microscopy (TEM). Here we report the investigation of the cross-section microstructure of SiC nanowires by embedding them into Al matrix. Morphology of SiC nanowires was cylindrical with smooth surface or bamboo shape. Cubic (3C-SiC) and hexagonal structure (2H-SiC) phases were detected by X-ray diffraction (XRD) analysis. High density stacking faults were observed in both the cylindrical and bamboo shaped nanowires which were perpendicular to their axial direction. Selected area electron diffraction (SAED) patterns of the cylindrical and bamboo shaped SiC nanowires both in the perpendicular and parallel direction to the axial direction were equivalent in the structure. After calculation and remodeling, it has been found that the SAED patterns were composed of two sets of diffraction patterns, corresponding to 2H-SiC and 3C-SiC, respectively. Therefore, it could be concluded that the SiC nanowires are composed of a large number of small fragments that are formed by hybrid 3C-SiC and 2H-SiC structures. - Graphical abstract: Display Omitted - Highlights: • Cross-section microstructure of SiC nanowires was observed in Al composite. • Cylindrical with smooth surface or bamboo shape SiC nanowires were found. • The cylindrical and bamboo shaped SiC nanowires were equivalent in structure. • Structure of SiC nanowires was remodeled. • SiC nanowires are composed of hybrid 3C-SiC and 2H-SiC structures.

  10. Diffusion of helium in SiC and implications for retention of cosmogenic He

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Trappisch, R.; Thomas, J. B.; Chaussende, D.

    2016-11-01

    Diffusion of helium has been characterized in silicon carbide of cubic and hexagonal (4H and 6H) forms. Polished sections of SiC were implanted with 3He at 100 keV at a dose of 1 × 1015/cm2. The implanted SiC samples were sealed under vacuum in silica glass ampoules, and annealed in 1-atm furnaces. 3He distributions following all experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For He diffusion in cubic SiC and 4H hexagonal SiC we obtain the following Arrhenius relations: Dcubic = 1.83 ×10-6 exp (- 254 ± 10kJmol-1 /RT)m2s-1 . D4H = 4.78 ×10-7 exp (- 255 ± 29kJmol-1 /RT)m2s-1 . While He diffusion is considerably slower in SiC than in many silicate phases, He retentivity may be limited under some conditions. For example, helium will be lost from SiC grains over much shorter timescales than potential survival times of SiC presolar grains in the solar nebula. When exposed to impact heating followed by slow cooling, nearly complete loss of He from SiC grains near the site of impact will occur within several hours to a few days. For SiC grains at greater distance from impact sites, He would be better retained, depending on the rapidity of cooling. At tens of km away from a large impactor, where peak T would be ∼800 K, SiC grains would lose about 50% of their He if the grains cooled within a few thousand years, and 5% if they cooled within a few tens of years. At greater distances where heating is more modest (500 K and lower), SiC grains would be quite retentive of He even for cases of very slow cooling. Helium would also be retained in cases of impact heating followed by very rapid cooling. For these short heating pulses, 10 μm diameter SiC grains would retain more than 50% of their He for peak heating temperatures of 2173, 1973 and 1773 K for durations of 3, 10 and 60 s, respectively.

  11. Hysteresis in the Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  12. Cubic colloidal platinum nanoparticles

    SciTech Connect

    Ahmadi, T.S.; Wang, Z.L.; Henglein, A.; El-Sayed, M.A.

    1996-06-01

    Cubic platinum nanoparticles (4-18 nm) have been synthesized for the first time in solution by the controlled reduction of K{sub 2}PtCl{sub 4} with hydrogen gas in the presence of sodium polyacrylate as a capping material. The nanoparticles are found to have fcc structures, similar to the bulk metal with (100) facets.

  13. BF into cubic meters

    Treesearch

    Henry Spelter

    2002-01-01

    Noted forest products industry researcher and writer says the conversion factor traditionally used to convert logs measured in board feet to cubic meters has risen. In the U.S., most timber is measured in terms of board feet. The log scales currently in use to estimate lumber recovery from roundwood, however, were created in the 19th century according to sawmill...

  14. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  15. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-01

    We report the observation of coherent surface states on cubic perovskite oxide SrVO3(001 ) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a dx y -derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the coherent surface state via modulating orbital state.

  16. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  17. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  18. Active Oxidation of SiC

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  19. Room temperature quantum emission from cubic silicon carbide nanoparticles.

    PubMed

    Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam

    2014-08-26

    The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.

  20. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-05-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C.

  1. Why is Polonium simple cubic?

    NASA Astrophysics Data System (ADS)

    Roundy, David; Kraig, Robert E.; Cohen, Marvin L.

    2002-03-01

    Scientists have long pondered why the simple cubic structure is so rarely seen in nature. Only one element forms the simple cubic structure: polonium. There are `proofs' dating back to 1954 that the simple cubic lattice should be unstable. We will attempt to address the question of why polonium takes the simple cubic structure by means of ab initio calculations using the pseudopotential density functional method. We will discuss the electronic structure of polonium in relation to its crystal structure.

  2. STM characterization of a graphitized SiC(0001)surface

    NASA Astrophysics Data System (ADS)

    Brar, Victor; Zhang, Yuanbo; Yayon, Yossi; Ohta, Taisuke; McChesney, Jessica; Rotenberg, Eli; Crommie, Mike

    2007-03-01

    The two-dimensional electron gas in a single graphene sheet exhibits unique properties due the cone-shaped electron band structure near the Fermi energy. Recently the growth of a single layer of graphene on SiC(0001) has been demonstrated, opening new possibilities for fabricating large scale graphene-based devices. We have performed scanning tunneling microscopy and spectroscopy of single and bi-layer graphene films on SiC(0001). Atomically resolved topographs and dI/dV maps show clear differences between the single and bi-layer surfaces at different length scales. We have characterized the energy dependence and spatial distribution of the electron local density of states in these single and bi-layer films.

  3. SiC multi-layer protective coating on carbon obtained by thermionic vacuum arc method

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T.-D.; Prodan, G.; Roşca, C.; Porosnicu, C.; Jepu, I.; Belc, M.; Prodan, M.; Stanescu, I. M.; Stefanov, C.; Contulov, M.; Mandes, A.; Dinca, V.; Vasile, E.; Zarovschi, V.; Nicolescu, V.

    2013-09-01

    SiC single-layer or multi-layer on C used to improve the oxidation resistance and tribological properties of C have been obtained by Thermionic Vacuum Arc (TVA) method. The 200nm thickness carbon thin films was deposed on glass or Si substrate and then 100÷500 nm thickness SiC successively layers on carbon thin film was deposed. The microstructure and mechanical characteristics of as-prepared SiC coating were investigated by Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDS), Electron Scattering Chemical Analysis (ESCA) and tribological techniques. Samples containing SiC single-layer or multi-layer coating on carbon were investigated up to 1000°C. The results of thermal treatments reveals the increase of oxidation resistance with increase of the number of SiC layers. The mechanism of oxidation protection is based on the reaction between SiC and elemental oxygen resulting SiO2 and CO. The tribological behavior of SiC coatings was evaluated with a tribometer with ball-on-disk configuration from CSM device with 6mm diameter sapphire ball, sliding speed in dry conditions being 0.2m/s, with normal contact loads of 0.5N, 1N, 1.5N and 2N, under unlubricated conditions. The friction coefficient on SiC was compared with the friction coefficient on uncoated carbon layer. Electrical surface resistance of SiC coating on carbon at different temperatures was measured comparing the potential drop on the sample with the potential drop on a series standard resistance in constant mode.

  4. Growth and characterization of cubic and non-cubic Ge nanocrystals

    SciTech Connect

    Mukherjee, S.; Pradhan, A.; Bhunia, S.; Mukherjee, S.; Maitra, T.; Nayak, A.

    2016-05-06

    Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 –2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm{sup −1} and 300 cm{sup −1} for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.

  5. Low damage, highly anisotropic dry etching of SiC

    SciTech Connect

    Wang, J.J.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Ren, F.; Ostling, M.; Zetterling, C.M.; Grow, J.M.; Shul, R.J.

    1998-03-01

    A parametric study of the etching characteristics of 6H p{sup +} and n{sup +} SiC and thin film SiC{sub 0.5}N{sub 0.5} in Inductively Coupled Plasma NF{sub 3}/O{sub 2} and NF{sub 3}/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF{sub 3} percentage and rf chuck power. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tin-oxide (ITO) masks display relatively good etch selectivity over SiC (maximum of {approximately} 70:1), while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF{sub 3}:O{sub 2} conditions.

  6. -SiC nanocomposite coatings synthesized by co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Masoudi, Mehran; Hashim, Mansor; Kamari, Halimah Mohamed

    2014-08-01

    In the present work, Ni-Al2O3, Ni-SiC and novel Ni-Al2O3-SiC metal matrix composite (MMC) coatings were electrodeposited onto pure copper samples using a modified Watt's nickel electroplating bath containing nano alumina and silicon carbide particles with an average particle size of 50 nm. The composition, crystalline structure and surface morphology of the deposits were characterized by X-ray diffractometry (XRD), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscopy (FESEM). The results indicated that Ni-Al2O3-SiC hybrid composite films with an acceptable homogeneity and granular structure having 9.2 and 7.7 % vol. Al2O3 and SiC nanoparticles, respectively were developed successfully. The nanoparticles incorporated in the nickel layer effectively increased the micro hardness and wear resistance owing to dispersion and grain-refinement strengthening, changing the nickel matrix morphology as well as the texture and preferred grain growth direction from <100> to the close-packed <111>. The oxidation resistance of the Ni-Al2O3-SiC hybrid composite coatings was measured to be approximately 41 % greater than the unreinforced Ni deposit and almost 30 % better than the Ni-Al2O3 composite coatings.

  7. Evidence for interstellar SiC in the Murray carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas; Wopenka, Brigitte; Fraundorf, Gail; Ming, Tang; Anders, Edward

    1987-01-01

    Silicon carbide has been identified in two separates from the Murray carbonaceous chondrite that are enriched 20,000-fold in isotopically anomalous neon and xenon. The SiC is present in the form of crystalline grains 0.1-1 micron in size. Cubic and 111-plane-twinned cubic are the most common ordered polytypes observed so far. The anomalous isotopic composition of its carbon, nitrogen, and silicon indicates a presolar origin, probably in the atmospheres of red giants. An additional silicon- and oxygen-rich phase shows large isotropic anomalies in nitrogen and silicon, also associated with a presolar origin.

  8. Evidence for interstellar SiC in the Murray carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas; Wopenka, Brigitte; Fraundorf, Gail; Ming, Tang; Anders, Edward

    1987-01-01

    Silicon carbide has been identified in two separates from the Murray carbonaceous chondrite that are enriched 20,000-fold in isotopically anomalous neon and xenon. The SiC is present in the form of crystalline grains 0.1-1 micron in size. Cubic and 111-plane-twinned cubic are the most common ordered polytypes observed so far. The anomalous isotopic composition of its carbon, nitrogen, and silicon indicates a presolar origin, probably in the atmospheres of red giants. An additional silicon- and oxygen-rich phase shows large isotropic anomalies in nitrogen and silicon, also associated with a presolar origin.

  9. Pd/CeO2/SiC Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature <450 C for these sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd

  10. The role of carbon surface diffusion on the growth of epitaxial graphene on SiC.

    SciTech Connect

    Thurmer, Konrad; Ohta, Taisuke; Nie, Shu; Bartelt, Norman Charles; Kellogg, Gary Lee

    2010-03-01

    Growth of high quality graphene films on SiC is regarded as one of the more viable pathways toward graphene-based electronics. Graphitic films form on SiC at elevated temperature because of preferential sublimation of Si. Little is known, however, about the atomistic processes of interrelated SiC decomposition and graphene growth. We have observed the formation of graphene on SiC by Si sublimation in an Ar atmosphere using low energy electron microscopy, scanning tunneling microcopy and atomic force microscopy. This work reveals that the growth mechanism depends strongly on the initial surface morphology, and that carbon diffusion governs the spatial relationship between SiC decomposition and graphene growth. Isolated bilayer SiC steps generate narrow ribbons of graphene, whereas triple bilayer steps allow large graphene sheets to grow by step flow. We demonstrate how graphene quality can be improved by controlling the initial surface morphology specifically by avoiding the instabilities inherent in diffusion-limited growth.

  11. Design and fabrication of large-scale lightweight SiC space mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhan; Zhang, Yumin; Han, Jiecai; He, Xiaodong; Yao, Wang

    2006-02-01

    Silicon carbide is a new type of optics material developed in recent years because it offered some advantages over other traditional optical substrate materials such as low density, low thermal expansion coefficient, high thermal conductivity, big special heat, big modulus of elasticity and potential cost and schedule. So in this paper, the silicon carbide space mirror was fabricated by both reaction bonded (RB) and chemical vapor deposition (CVD) process. The green body of the space mirror was prepared by silicon carbide powder, carbon powder, dilution and solidified agent using slip casting method. The space mirror blank was prepared by green body and pure silicon powder. They were laid in vacuum sintering furnace and sintered at 1500°C. In this temperature, silicon was melting then infiltrated in SiC green body and reacted with carbon to generate the new SiC, at the same time, bonded original SiC powder, in the end, the nonporous SiC/Si space mirror blank was fabricated. The reaction bonded silicon carbide (RBSiC) was consistent with original SiC powder, new generated SiC and unreacted Si. Because RBSiC was SiC/Si two-phase structure, the hardness difference between SiC and Si made the space mirror difficult to achieve precision optical surface by grinding. So a full density SiC thin film was coated on the surface of space mirror blank with RBSiC by chemical vapor deposition (CVD) process. The raw material was CH3SiCl3. The hydrogen (H2) was catalyst. The deposition temperature was 1300°C. The cooling rate could be controlled. The SiC space mirror was honeycomb open back lightweight structure. The honeycomb cellar could be triangle, rectangle, hexogen and sector. The biggest diameter of SiC space mirror blank which has been fabricated is approach one meter by forgoing process. In order to the forgoing process was feasible, a flat round SiC space mirror with 250mm diameter. The space mirror was composed of a 4mm thick round plane faceplate and hexagonal cellar

  12. Microstructure of TRISO Coated Particles from the AGR-1 Experiment I: SiC Grain Size and Grain Boundary Character

    SciTech Connect

    Rita Kirchhofer; John D, Hunn; Paul A. Demkowicz; James I. Cole; Brian P. Gorman

    2013-01-01

    Pre-irradiation SiC microstructures in TRISO coated fuel particles from the AGR-1 experiment were quantitatively characterized using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). From EBSD it was determined that only the cubic polymorph of as-deposited SiC was present and the SiC had a high fraction of CSL S3 grain boundaries. Additionally, the local area misorientation (LAM), which is a qualitative measurement of strain in the SiC lattice, was mapped for each fuel variant. The morphology of the SiC / IPyC interfaces were characterized by TEM following site-specific focused ion beam (FIB) specimen preparation. It was determined that the SiC layer had a heavily faulted microstructure typical of CVD deposited SiC and that the average grain diameter increased from the SiC/IPyC interface for all the fuel variants, except V3 that showed a constant grain size across the layer.

  13. Formation of a Buffer Layer for Graphene on C-Face SiC{0001}

    NASA Astrophysics Data System (ADS)

    He, Guowei; Srivastava, N.; Feenstra, R. M.

    2014-04-01

    Graphene films prepared by heating the SiC surface (the C-face of the {0001} surface) in a Si-rich environment have been studied using low-energy electron diffraction (LEED) and low-energy electron microscopy. Upon graphitization, an interface with symmetry is observed by in situ LEED. After oxidation, the interface displays symmetry. Electron reflectivity measurements indicate that these interface structures arise from a graphene-like "buffer layer" that forms between the graphene and the SiC, similar to that observed on Si-face SiC. From a dynamical LEED structure calculation for the oxidized C-face surface, it is found to consist of a graphene layer sitting on top of a silicate (Si2O3) layer, with the silicate layer having the well-known structure as previously studied on bare SiC surfaces. Based on this result, the structure of the interface prior to oxidation is discussed.

  14. System for the growth of bulk SiC crystals by modified CVD techniques

    NASA Technical Reports Server (NTRS)

    Steckl, Andrew J.

    1994-01-01

    The goal of this program was the development of a SiC CVD growth of films thick enough to be useful as pseudo-substrates. The cold-walled CVD system was designed, assembled, and tested. Extrapolating from preliminary evaluation of SiC films grown in the system at relatively low temperatures indicates that the growth rate at the final temperatures will be high enough to make our approach practical. Modifications of the system to allow high temperature growth and cleaner growth conditions are in progress. This program was jointly funded by Wright Laboratory, Materials Directorate and NASA LeRC and monitored by NASA.

  15. Molten salt corrosion of SiC: Pitting mechanism

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1985-01-01

    Thin films of Na2SO4 and Na2CO3 at 1000 C lead to severe pitting of sintered alpha-SiC. These pits are important as they cause a strength reduction in this material. The growth of product layers is related to pit formation for the Na2CO3 case. The early reaction stages involve repeated oxidation and dissolution to form sodium silicate. This results in severe grain boundary attack. After this a porous silica layer forms between the sodium silicate melt and the SiC. The pores in this layer appear to act as paths for the melt to reach the SiC and create larger pits.

  16. Study of Erosive Wear Behaviour on SIC/SIC Composites

    NASA Astrophysics Data System (ADS)

    Suh, Min-Soo

    In the field of aerospace propulsion system, erosive wear on continuous silicon carbide (SiC) fibre-reinforced SiC (SiC/SiC) composites is of significant issue to achieve high energy efficiency. This paper proposes a crucial factor and a design guideline of SiC/SiC composites for higher erosion performance regarding cost effectiveness. Fabrication and evaluation of impacts and wear on SiC/SiC composites are successfully carried out. Erosive wear behaviours of the CVI and the LPS composites evidently show that the crucial fabrication factor against solid particle erosion (SPE). Erosive wear mechanisms on various SiC/SiC composites are determined based on the analysis of erosive wear behaviour. Designing guideline for the SiC/SiC composites for pursuit of high erosion performance is also proposed as focusing on the followings; volume fraction of matrix, strength of the matrix, bonding strength, and PyC interface.

  17. Chemical reactions of atomic hydrogen at SiC surface and heterogeneous chemiluminescence

    NASA Astrophysics Data System (ADS)

    Styrov, V. V.; Tyutyunnikov, V. I.; Sergeev, O. T.; Oya, Y.; Okuno, K.

    2005-02-01

    In studies of the surface properties of SiC polytypes and chemical reactions of hydrogen atoms at SiC surfaces the surface (chemi)luminescence of SiC has been applied excited in the reaction of hydrogen atoms due to chemical energy released (heterogeneous chemiluminescence, HCL). The bulk photoluminescence (PL) have also been used for comparison with surface HCL. All the samples showed HCL, but only α-SiC (6H, 15R), technologically or specially doped (predominantly by N, B, Al), exhibited PL (λex=365 nm). Cubic polycrystalline β-SiC (or 3C SiC) did not show PL. The general luminescence band of α-SiC (6H, 15R) and B and Al doped SiC (6H) was a broad yellow band with λmax ranged from 620 to 650 nm for PL (110 K). Another less intensive luminescence band is a blue one, which has been observed only at low temperatures for α-SiC (6H,15R) and B and Al doped SiC (6H) in PL spectra and as a shoulder in HCL spectra (λmax=477 nm at 110 K for 15R SiC). The green band near 540 nm was also observed sometimes in PL spectra for α-SiC. The heat of adsorption of hydrogen atoms at polycrystalline β-SiC estimated from HCL data was found to be in the range from 2 to 3 eV.

  18. Low-Temperature Electrodep-osition of the High-Temperature Cubic Polymorph of Bismuth(III) Oxide

    DTIC Science & Technology

    1999-12-01

    8-Bi𔃺 3 electrodeposited cubic as opposed to a face centered cubic structure ontohigh degree of columnar growth, typical of textured films. The [31...The observation of mixed index reflections thickness of the film as determined by SEM agrees well with that would preclude a face centered cubic ... structure for calculated from the EQCM. The bar marker is 750 nm. our material, as these reflections are symmetry 104 E.W Bohannan et al. I Solid State

  19. Epitaxial Growth of beta-Silicon Carbide (SiC) on a Compliant Substrate via Chemical Vapor Deposition (CVD)

    NASA Technical Reports Server (NTRS)

    Mitchell, Sharanda L.

    1996-01-01

    Many lattice defects have been attributed to the lattice mismatch and the difference in the thermal coefficient of expansion between SiC and silicon (Si). Stacking faults, twins and antiphase boundaries are some of the lattice defects found in these SiC films. These defects may be a partial cause of the disappointing performance reported for the prototype devices fabricated from beta-SiC films. The objective of this research is to relieve some of the thermal stress due to lattice mismatch when SiC is epitaxially grown on Si. The compliant substrate is a silicon membrane 2-4 microns thick. The CVD process includes the buffer layer which is grown at 1360 C followed by a very thin epitaxial growth of SiC. Then the temperature is raised to 1500 C for the subsequent growth of SiC. Since silicon melts at 1415 C, the SiC will be grown on molten Silicon which is absorbed by a porous graphite susceptor eliminating the SiC/Si interface. We suspect that this buffer layer will yield less stressed material to help in the epitaxial growth of SiC.

  20. Interaction Of Water Molecules With SiC(001) Surfaces

    SciTech Connect

    Cicero, G; Catellani, A; Galli, G

    2004-08-10

    We have investigated the interaction of water molecules with the polar Si- and C- terminated surfaces of cubic Silicon Carbide by means of ab initio molecular dynamics simulations at finite temperature. Different water coverages were considered, from {1/4} to a complete monolayer. Irrespective of coverage, we find that water dissociates on the silicon terminated surfaces, leading to important changes in both its structural and electronic properties. On the contrary, the carbon terminated surface remains inert when exposed to water. We propose experiments to reveal the ionic and electronic structure of wet Si-terminated surfaces predicted by our calculations, which at full coverage are notably different from those of hydrated Si(001) substrates. Finally, we discuss the implications of our results for SiC surface functionalization.

  1. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    SciTech Connect

    Cao, J. |

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  2. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  3. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wang, X. J.; Gong, W. X.; Wu, K.; Wang, F. H.

    2013-10-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiCp/AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage-time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiCp/AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  4. A new approach for fabrications of SiC based photodetectors.

    PubMed

    Aldalbahi, Ali; Li, Eric; Rivera, Manuel; Velazquez, Rafael; Altalhi, Tariq; Peng, Xiaoyan; Feng, Peter X

    2016-03-18

    We report on a new approach to quickly synthesize high-quality single crystalline wide band gap silicon carbide (SiC) films for development of high-performance deep ultraviolet (UV) photodetectors. The fabricated SiC based UV photodetectors exhibited high response while maintaining cost-effectiveness and size miniaturization. Focus of the experiments was on studies of electrical and electronic properties, as well as responsivity, response and recovery times, and repeatability of the deep UV photodetectors. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to characterize the SiC materials. Analyses of the SEM data indicated that highly flat SiC thin films have been obtained. Based on the synthesized SiC, deep UV detectors are designed, fabricated, and tested with various UV wavelength lights at different radiation intensities. Temperature effect and bias effect on the photocurrent strength and signal-to-noise ratio, humidity effect on the response time and recovery time of the fabricated detectors have been carefully characterized and discussed. The detectors appear to have a very stable baseline and repeatability. The obtained responsivity is more than 40% higher compared to commercial detectors. The good performance of the photodetectors at operating temperature up to 300 °C remains nearly unchanged.

  5. A new approach for fabrications of SiC based photodetectors

    PubMed Central

    Aldalbahi, Ali; Li, Eric; Rivera, Manuel; Velazquez, Rafael; Altalhi, Tariq; Peng, Xiaoyan; Feng, Peter X.

    2016-01-01

    We report on a new approach to quickly synthesize high-quality single crystalline wide band gap silicon carbide (SiC) films for development of high-performance deep ultraviolet (UV) photodetectors. The fabricated SiC based UV photodetectors exhibited high response while maintaining cost-effectiveness and size miniaturization. Focus of the experiments was on studies of electrical and electronic properties, as well as responsivity, response and recovery times, and repeatability of the deep UV photodetectors. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to characterize the SiC materials. Analyses of the SEM data indicated that highly flat SiC thin films have been obtained. Based on the synthesized SiC, deep UV detectors are designed, fabricated, and tested with various UV wavelength lights at different radiation intensities. Temperature effect and bias effect on the photocurrent strength and signal-to-noise ratio, humidity effect on the response time and recovery time of the fabricated detectors have been carefully characterized and discussed. The detectors appear to have a very stable baseline and repeatability. The obtained responsivity is more than 40% higher compared to commercial detectors. The good performance of the photodetectors at operating temperature up to 300 °C remains nearly unchanged. PMID:26988399

  6. Post-growth thermal oxidation of wurtzite InN thin films into body-center cubic In{sub 2}O{sub 3} for chemical/gas sensing applications

    SciTech Connect

    Liu, H.F.; Yakovlev, N.L.; Chi, D.Z.; Liu, W.

    2014-06-01

    Post-growth thermal oxidations of InN have been studied using high-resolution x-ray diffraction (HRXRD) and secondary ion-mass spectroscopy (SIMS). The InN thin films, having relative high crystal quality, were grown by metal–organic chemical vapor deposition (MOCVD) on c-sapphire substrates using InGaN/GaN buffer layers. HRXRD reveals that oxidation of wurtzite InN into body-center cubic In{sub 2}O{sub 3} occurred at elevated temperatures. A Si{sub 3}N{sub 4} encapsulation improves the crystal quality of In{sub 2}O{sub 3} oxidized by using conventional rapid thermal annealing (RTA) but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profile, using contaminate elements as the ‘interface markers,’ provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. Together with the HRXRD results, we conclude that the crystal quality of the resultant In{sub 2}O{sub 3}/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal dissociation, which can be effectively tuned by cycle-RTA. The obtained In{sub 2}O{sub 3}/InN heterostructures can be fundamental materials for studying high speed chemical/gas sensing devices. - Graphical abstract: Oxidation of h-InN into bcc-In{sub 2}O{sub 3} has been realized at elevated temperatures. A Si{sub 3}N{sub 4} cap improves the crystal quality of In{sub 2}O{sub 3} oxidized by conventional RTA but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profiles provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. The crystal quality of the resultant In{sub 2}O{sub 3}/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal

  7. Combustion synthesis as a novel method for production of 1-D SiC nanostructures.

    PubMed

    Huczko, Andrzej; Bystrzejewski, Michał; Lange, Hubert; Fabianowska, Agnieszka; Cudziło, Stanisław; Panas, Andrzej; Szala, Mateusz

    2005-09-01

    1-D nanostructures of cubic phase silicon carbide (beta-SiC) were efficiently produced by combustion synthesis of mixtures containing Si-containing compounds and halocarbons in a calorimetric bomb. The influence of the operating parameters on 1-D SiC formation yield was studied. The heat release, the heating rate, and the chamber pressure increase were monitored during the process. The composition and structural features of the products were characterized by elemental analysis, X-ray diffraction, differential thermal analysis/ thermogravimetric technique, Raman spectroscopy, scanning and transmission electron microscopy, and energy-dispersive X-ray spectrometry. This self-induced growth process can produce SiC nanofibers and nanotubes ca. 20-100 nm in diameter with the aspect ratio higher than 1000. Bulk scale Raman studies showed the product to be comprised of mostly cubic polytype of SiC and that finite size effects are present. We believe that the nucleation mechanism involving radical gaseous species is responsible for 1-D nanostructures growth. The present study has enlarged the family of nanofibers and nanotubes available and offers a possible, new general route to 1-D crystalline materials.

  8. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  9. Sporadic SICs and the Normed Division Algebras

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    2017-08-01

    Symmetric informationally complete quantum measurements, or SICs, are mathematically intriguing structures, which in practice have turned out to exhibit even more symmetry than their definition requires. Recently, Zhu classified all the SICs whose symmetry groups act doubly transitively. I show that lattices of integers in the complex numbers, the quaternions and the octonions yield the key parts of these symmetry groups.

  10. Precise control of epitaxy of graphene by microfabricating SiC substrate

    NASA Astrophysics Data System (ADS)

    Fukidome, H.; Kawai, Y.; Fromm, F.; Kotsugi, M.; Handa, H.; Ide, T.; Ohkouchi, T.; Miyashita, H.; Enta, Y.; Kinoshita, T.; Seyller, Th.; Suemitsu, M.

    2012-07-01

    Epitaxial graphene (EG) on SiC is promising owing to a capability to produce high-quality film on a wafer scale. One of the remaining issues is microscopic thickness variation of EG near surface steps, which induces variations in its electronic properties and device characteristics. We demonstrate here that the variations of layer thickness and electronic properties are minimized by using microfabricated SiC substrates which spatially confines the epitaxy. This technique will contribute to the realization of highly reliable graphene devices.

  11. Molecular Dynamics Modeling of the Thermal Conductivity of Irradiated SiC as a Function of Cascade Overlap

    SciTech Connect

    Crocombette, J.-P.; Dumazer, Guillaume; Hoang, Nguyen Q.; Gao, Fei; Weber, William J.

    2007-01-15

    SiC thermal conductivity is known to decrease under irradiation. To understand this effect, we study the variation of the thermal conductivity of cubic SiC with defect accumulation induced by displacement cascades. We use an empirical potential of the Tersoff type in the framework of non-equilibrium molecular dynamics. The conductivity of SiC is found to decrease with dose, in very good quantitative agreement with low temperature irradiation experiments. The results are analyzed in view of the amorphization states that are created by the cascade accumulation simulations. The calculated conductivity values at lower doses are close to the smallest measured values after high temperature irradiation, indicating that the decrease of the conductivity observed at lower doses is related to the creation of point defects. A subsequent decrease takes place upon further cascade accumulation. It is characteristic of the amorphization of the material and is experimentally observed for low temperature irradiation only.

  12. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  13. Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature

    SciTech Connect

    Liu, Yu; Xie, Changqing

    2015-09-15

    Advances in the growth of silicon carbide (SiC) thin films with outstanding thermal and mechanical properties have received considerable attention. However, the fabrication of large-area free-standing SiC membrane still remains a challenge. Here, the authors report a plasma enhanced chemical vapor deposition process at a relatively high temperature to improve the free-standing SiC membrane area. A systematic study on the microstructural, mechanical, and optical properties of hydrogenated polycrystalline silicon carbide (poly-SiC{sub x}:H) thin films deposited at 600 °C with different annealing temperatures has been performed. In the as-deposited state, SiC{sub x}:H thin films show a polycrystalline structure. The crystallinity degree can be further improved with the increase of the postdeposition annealing temperature. The resulting process produced free-standing 2-μm-thick SiC membranes up to 70 mm in diameter with root mean square roughness of 3.384 nm and optical transparency of about 70% at 632.8 nm wavelength. The large-area SiC membranes made out of poly-SiC{sub x}:H thin films deposited at a relatively high temperature can be beneficial for a wide variety of applications, such as x-ray diffractive optical elements, optical and mechanical filtering, lithography mask, lightweight space telescopes, etc.

  14. Body-centered-cubic Ni and its magnetic properties.

    PubMed

    Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J

    2005-04-08

    The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.

  15. Electronic and Optical Properties of Nitrogen Doped SiC Nanocrystals: First Principles Study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2013-05-01

    A typical nitrogen doped spherical SiC nanocrystal with a diameter of 1.2 nm (Si43C44H76) using linear combination atomic orbital (LCAO) in combination with pseudopotential density functional calculation have been studied. Our selected SiC nanocrystal has been modeled taking all the cubic bulk SiC atoms contained within a sphere of a given radius and terminating the surface dangling bonds with hydrogen atoms. We have examined nine possible situations in which nitrogen has a high probability for replacement in the lattice or placed between atoms in the nanocrystal. We have found that the silicone can substitute with a nitrogen atom in each layer as the constructed nanocrystals remain thermodynamically stable. Also the nitrogen atom can be placed between the free atomic spaces as the more thermodynamically stable position of the nitrogen is between the topmost layers. Also the optical absorption and refractive index energy dispersions of the pure and various stable doped SiC nanocrystals were studied.

  16. Improvement sensitivity humidity sensor based on ZnO/SnO2 cubic structure

    NASA Astrophysics Data System (ADS)

    Sin, N. D. Md; Ahmad, S.; Malek, M. F.; Mamat, M. H.; Rusop, M.

    2013-06-01

    ZnO nanorod, SnO2 nanoparticle and ZnO/SnO2 cubic structure were prepared using sol-gel immersion method. These three structures had been growth on top sputtered ZnO thin film. The surface morphology of all thin film were characterized using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The prepared thin films were fabricated for humidity sensor application. The composite sensor ZnO/SnO2 cubic structure gave excellent sensitivity compare to ZnO nanorod and SnO2 nanoparticle. The improvement sensitivities of ZnO/SnO2 cubic structure were 22.5 times from ratio of R40RH% to R90RH% at 25°C. ZnO/SnO2 cubic structure had a great potential for humidity sensor application with good in repeatability and stability.

  17. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  18. Thermal expansion of the hexagonal (4H) polytype of SiC

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1986-01-01

    The principal axial coefficients of thermal expansion, alpha(11) and alpha(33), of the (4H) polytype of hexagonal alpha SiC have been determined by X-ray diffraction measurements in the temperature range 20-1000 C. Alpha(11) and alpha(33), derived from the lattice parameter measurements, were expressed as the second-order polynomials in temperature. Alpha(11) was found to be larger than alpha(33) over the entire temperature range, with a thermal expansion anisotropy factor A increasing from 0.04 at room temperature to 0.11 at 1000 C. The thermal expansion results for the (4H) structure were compared with previously published results for the cubic (3C) and the hexagonal (6H) SiC polytypes.

  19. Aspects on mediated glucose oxidation at a supported cubic phase.

    PubMed

    Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2017-12-01

    A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ultrafast Optical Measurements of Thermal Conductivity and Sound Velocity of Amorphous SiC

    NASA Astrophysics Data System (ADS)

    Hondongwa, Donald; Olasov, Lauren; Daly, Brian; King, Sean; Bielefeld, Jeff

    2011-03-01

    We present ultrafast optical measurements of longitudinal sound velocity and thermal transport in hydrogenated amorphous carbon (a-SiC:H) films. The films were grown on Si wafers by PECVD using combinations of methylsilanes and H2 and He diluent gases. The films were well characterized and found to have densities (1.0 -- 2.5 g cm-3) and dielectric constants (2.8 -- 7.2) that spanned a wide range of values. Prior to their measurement, the a-SiC:H films were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser. Transient reflectivity changes that are associated with very high frequency sound waves (picosecond ultrasonics) and the cooling rate of the SiC sample (Time Domain Thermorerflectance (TDTR)) were measured. We extract values for the thermal conductivity and sound velocity of the SiC films, and analyze the results in terms of rigidity percolation effects within the SiC layers. This work was supported by NSF award DMR-0906753.

  1. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  2. Multiple CubicBezier Curves.

    ERIC Educational Resources Information Center

    Khonsari, Michael M.; Horn, Douglas

    1990-01-01

    An algorithm is described for generating smooth curves of first-order continuity. The algorithm is composed of several cubic Bezier curves joined together at the user defined control points. Introduced is a tension control parameter which can be set thus providing additional flexibility in the design of free-form curves. (KR)

  3. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  4. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  5. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  6. Refractory Oxide Coatings on Sic Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.; Miller, Robert A.

    1994-01-01

    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed.

  7. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  8. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Larkin, David J. (Inventor); Powell, J. Anthony (Inventor)

    1992-01-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  9. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor)

    1991-01-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  10. Absorption and emission of silicon nanocrystals embedded in SiC: Eliminating Fabry-Pérot interference

    SciTech Connect

    Schnabel, M.; Summonte, C.; Canino, M.; Dyakov, S. A.; López-Conesa, L.; Löper, P.; Janz, S.; Wilshaw, P. R.

    2015-01-28

    Silicon nanocrystals embedded in SiC are studied by spectrophotometry and photoluminescence (PL) spectroscopy. Absorptivities are found to be affected by residual Fabry-Pérot interference arising from measurements of reflection and transmission at locations of different film thickness. Multiple computational and experimental methods to avoid these errors in thin film measurements, in general, are discussed. Corrected absorptivity depends on the quantity of Si embedded in the SiC but is independent of the Si crystallinity, indicating a relaxation of the k-conservation criterion for optical transitions in the nanocrystals. Tauc gaps of 1.8–2.0 and 2.12 eV are determined for Si nanoclusters and SiC, respectively. PL spectra exhibit a red-shift of ∼100 nm per nm nominal Si nanocluster diameter, which is in agreement with quantum confinement but revealed to be an artifact entirely due to Fabry-Pérot interference. Several simple experimental methods to diagnose or avoid interference in PL measurements are developed that are applicable to all thin films. Corrected PL is rather weak and invariant with passivation, indicating that non-paramagnetic defects are responsible for rapid non-radiative recombination. They are also responsible for the broad, sub-gap PL of the SiC, and can wholly account for the form of the PL of samples with Si nanoclusters. The PL intensity of samples with Si nanoclusters, however, can only be explained with an increased density of luminescent defects in the SiC due to Si nanoclusters, efficient tunneling of photogenerated carriers from Si nanoclusters to SiC defects, or with emission from a-Si nanoclusters. Films prepared on Si exhibit much weaker PL than the same films prepared on quartz substrates.

  11. Chemically vapor deposited silicon carbide (SiC) for optical applications

    NASA Astrophysics Data System (ADS)

    Pickering, Michael A.; Taylor, Raymond L.; Keeley, Joseph T.; Graves, George A.

    1989-10-01

    Important physical, optical, thermal, and mechanical properties of cubic (beta) silicon carbide produced via a bulk chemical vapor deposition (CVD) process, developed at CVD Incorporated, are presented in this paper. The material's properties make it an ideal candidate material for optical components for lidar mirrors, solar collectors and concentrators, and astronomical telescopes. The CVD process has been scaled to produce large monolithic pieces of bulk SiC, i.e., disks up to 60-cm (24-in.) diameter and plates up to 76-cm (30-in.) long by 46-cm (18-in.) wide with thickness up to 13 mm (0.5 in.).

  12. Development of Sic Gas Sensor Systems

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  13. Microstructural and Electrical Characterization of Silicon Carbide and Aluminum Nitride Thin Films Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kern, Richard Scott

    1996-08-01

    Monocrystalline thin films, multilayered heterostructures and solid solutions of silicon carbide (SiC) and aluminum nitride (AlN) have been grown on alpha(6H) -SiC(0001) substrates by gas-source molecular beam epitaxy. Growth mechanisms, defect formation, donor and acceptor doping, metal-insulator-semiconductor diodes, pseudomorphic heterostructures and solid solutions in these materials have been studied. Monocrystalline films of beta(3C) -SiC(111) and alpha(6H)-SiC(0001) have been controllably deposited on the silicon face of 6H-SiC(0001) substrates. Polytype control was achieved via changes in the substrate orientation, substrate temperature and gas phase chemistry. Step flow growth was achieved on vicinal substrates at growth temperatures of at least 1350^circC using the SiH _4-rm C_2H_4 -H_2 system. Step bunching, cubic SiC nucleation and double positioning boundaries were observed at all temperatures when H_2 was removed from the system or the growth was performed at below 1350^circC. In both cases, growth rate was strongly dependent on temperature. Films doped using either a NH_3/H _2 mixture or pure N_2 were n-type; Al, p-type. Uniform, controllable doping levels between 10^{15} and 10^{19} cm ^{-3} were achieved for both polytypes. The measured mobility in the undoped 6H polytype, 434 cm ^2 V^{-1} s ^{-1}, is the highest reported in this polytype. Monocrystalline AlN was deposited using aluminum evaporated from a modified MBE effusion cell and either activated nitrogen derived from a compact electron cyclotron resonance plasma source or ammonia. Growth using each of the nitrogen sources was optimized with respect to substrate temperature, reactant flux and system pressure. In general, very thin films (<=q50 A) grown on vicinal 6H-SiC had a higher defect density than those grown on nominally on-axis substrates due to defect formation at or near the steps on the SiC surface. Full-width half maximum (FWHM) values of the (0002)_ {AlN} X-ray diffraction Bragg

  14. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  15. Solving Cubic Equations by Polynomial Decomposition

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2011-01-01

    Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…

  16. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  17. Glycerol prevents dehydration in lipid cubic phases.

    PubMed

    Richardson, S J; Staniec, P A; Newby, G E; Rawle, J L; Slaughter, A R; Terrill, N J; Elliott, J M; Squires, A M

    2015-07-21

    Lipid cubic phase samples dry out and undergo phase transitions when exposed to air. We demonstrate experimentally and theoretically that adding glycerol controllably lowers the humidity at which cubic phases form. These results broaden the potential applications of cubic phases and open up the potential of a new humidity-responsive nanomaterial.

  18. UHV Growth of Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Campbell, Paul; Jernigan, Glenn; Perkins, Keith; Vanmil, Brenda; Myers-Ward, Rachel; Gaskill, Kurt; Culbertson, James; Robinson, Jeremy; Snow, Eric

    2008-03-01

    We report graphene growth on Si- and C-face semi-insulating 6H SiC in UHV by thermal Si desorption /reconstruction of the remaining C. The SiC was etched in H2 up to 1580 C to smooth the surface. XPS shows the H2-etched surfaces are covered by an oxide which desorbs at 1000 C, resulting in a surface containing excess Si. At 1300 C, the surface becomes stoichiometric in Si and C and a 3 x 3 R30 LEED pattern is observed. At 1350 C, we observe a 63 x 63 R30 LEED pattern develop when graphene has formed, and a 1x1 LEED pattern for graphite films formed at temperatures greater than 1400 C. Graphene layers were grown under a variety of temperatures and conditions and characterized using XPS, LEED, AFM, Raman spectroscopy, and Hall effect. Top-gated FETs were fabricated with a wide range of gate lengths (1-25 microns) and gate widths (2-130 microns), and transistor operation was obtained for both single and multiple graphene layers.

  19. Cryogenic Performance of Trex SiC Mirror

    NASA Technical Reports Server (NTRS)

    Foss, Colby; Kane, Dave; Bray, Donald; Hadaway, James

    2005-01-01

    Low cost, high performance lightweight Silicon Carbide (Sic) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter lightweight Sic mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance. CVC Sic is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD Sic. NASA has funded lightweight optical materials technology development efforts involving Sic mirrors for future space based telescope programs. As part of these efforts, a Trex Sic was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the test instrumentation, test results, and lessons learned.

  20. Characterization of Liquid Phase Sitered sic and Sic/sic Composite Materials

    NASA Astrophysics Data System (ADS)

    Lee, Moon Hee; Lee, Sang Pill; Hur, Kwan Do

    The characterization of liquid phase sintered(LPS) SiC based materials has been investigated with the analysis of microstructure and flexural strength. Especially, LPS-SiC materials were examined for the variation of test temperature and composition ratios (Al2O3,/Y2O3) of sintering additives. LPS-SiC based materials were fabricated by hot pressing(HP) associated with the liquid phase formation of sintering additives(Al2O3,Y2O3). LPS-SiCf/SiC composites were also fabricated with plane-woven(PW) Tyranno-SA fibers without an interfacial layer. LPS-SiC materials showed a dense morphology with the creation of the secondary phase like YAG. The composition ratio of sintering additives led to the variation of sintered density and flexural strength. The flexural strength of LPS-SiC materials was greatly decreased at the temperature higher than 1000°C. LPS-SiCf/SiC composites represented an average flexural strength of about 260 MPa, accompanying the catastrophic fracture behavior without any full-out phenomena.

  1. Packaging Technology Developed for High-Temperature SiC Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Lei, Jih-Fen

    2000-01-01

    A ceramic- and thick-film-materials-based prototype electronic package designed for silicon carbide (SiC) high-temperature sensors and electronics has been successfully tested at 500 C in an oxygen-containing air environment for 500 hours. This package was designed, fabricated, assembled, and electronically evaluated at the NASA Glenn Research Center at Lewis Field with an in-house-fabricated SiC semiconductor test chip. High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as space missions to the inner solar system or the emission control electronics and sensors in aeronautical engines. Single-crystal SiC has such excellent physical and chemical material properties that SiC-based semiconductor electronics can operate at temperatures over 600 C, which is significantly higher than the limit for Si-based semiconductor devices. SiC semiconductor chips were recently demonstrated to be operable at temperatures as high as 600 C, but only in the probe station environment because suitable packaging technology for sensors and electronics at temperatures of 500 C and beyond did not exist. Thus, packaging technology for SiC-based sensors and electronics is immediately needed for both application and commercialization of high-temperature SiC sensors and electronics. In response to this need, researchers at Glenn designed, fabricated, and assembled a prototype electronic package for high-temperature electronics, sensors, and microelectromechanical systems (MEMS) using aluminum nitride (AlN) substrate and gold (Au) thick-film materials. This prototype package successfully survived a soak test at 500 C in air for 500 hours. Packaging components tested included thick-film high-temperature metallization, internal wire bonds, external lead bonds, and a SiC diode chip die-attachment. Each test loop, which was composed of thick-film printed wire, wire bond, and lead bond was subjected to a 50-mA direct current for 250

  2. Weighted cubic and biharmonic splines

    NASA Astrophysics Data System (ADS)

    Kvasov, Boris; Kim, Tae-Wan

    2017-01-01

    In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

  3. Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2003-01-01

    A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film

  4. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film

    SciTech Connect

    Huh, Chul Kim, Tae-Youb; Ahn, Chang-Geun; Kim, Bong Kyu

    2015-05-25

    We report the strong visible light emission from silicon (Si) nanocrystals (NCs) embedded in a Si carbide (SiC) film. Compared to Si NC light-emitting diode (LED) by employing the Si nitride (SiN{sub x}) film as a surrounding matrix, the turn-on voltage of the Si NC LED with the SiC film was significantly decreased by 4 V. This was attributed to a smaller barrier height for injecting the electrons into the Si NCs due to a smaller band gap of SiC film than a SiN{sub x} film. The electroluminescence spectra increases with increasing forward voltage, indicating that the electrons are efficiently injected into the Si NCs in the SiC film. The light output power shows a linear increase with increasing forward voltage. The light emission originated from the Si NCs in a SiC film was quite uniform. The power efficiency of the Si NC LED with the SiC film was 1.56 times larger than that of the Si NC LED with the SiN{sub x} film. The Si NCs in a SiC film show unique advantages and are a promising candidate for application in optical devices.

  5. Solute embrittlement of SiC

    SciTech Connect

    Enrique, Raúl A.; Van der Ven, Anton

    2014-09-21

    The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

  6. Transparent polycrystalline cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  7. Hardness of cubic solid solutions

    PubMed Central

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications. PMID:28054659

  8. Transparent polycrystalline cubic silicon nitride.

    PubMed

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-17

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  9. Vacancy Relaxation in Cubic Crystals

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Weizer, V. G.

    1960-01-01

    The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).

  10. Transparent polycrystalline cubic silicon nitride

    PubMed Central

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  11. Hardness of cubic solid solutions

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55-0.85 in BNxP1-x, where BNxP1-x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications.

  12. The beneficial role of flash lamp annealing on the epitaxial growth of the 3C SiC on Si

    NASA Astrophysics Data System (ADS)

    Panknin, D.; Stoemenos, J.; Eickhoff, M.; Heera, V.; Voelskow, M.; Skorupa, W.

    2001-12-01

    For the realization of good quality 3C-SiC films epitaxially grown on Si, the perfection of the film during the early stage of growth is substantial. In this paper, the beneficial role of flash lamp annealing (FLA) for the elimination of the defects in the SiC films and the strain reduction at the SiC/Si interface is discussed. FLA is a highly transient process having a flash duration of a few milliseconds. When the energy density is sufficiently high, it melts the silicon at the SiC/Si interface increasing the temperature there well above the melting point of silicon. The melted Si dissolves the 3C-SiC near the interface. Additionally, the uppermost part of the 3C-SiC film is annealed due to the heat dissipation during the flash duration and the solidification of the molten region. During the solidification of the C-rich Si melt, SiC grows by liquid phase epitaxy at the annealed uppermost 3C-SiC film which acts as a seed. This process results in a substantial improvement of the SiC film eliminating also the cavities and the stress at the interface.

  13. SiC for Space Optics

    NASA Astrophysics Data System (ADS)

    Wellman, John

    2012-01-01

    This paper describes SiC mirrors that are large, ultra-lightweight, and actively controlled, for use in space telescopes. "Advanced Hybrid Mirrors” (AHMs) utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. They use replication techniques for high optical quality as well as rapid, low cost manufacturing. AHMs up to 1.35m in size have been made and tested, demonstrating wavefront error to better than the visible diffraction limit. AHMs can be fabricated at production rates after the first unit delivery as fast as 48 day intervals. "Superpolished Si/SiC Active Mirrors” (SSAMs) are similar to AHMs but the SiC mirror substrates have a layer of Si deposited on them to enable direct superpolishing. SSAMs can be much larger, can operate over a wider temperature range, and are better suited to UV astronomy. To make SSAMs larger than 1.8 m, multiple substrates can be joined together, using brazing techniques. Using wavefront sensing and control technology to command the embedded solid-state actuators, final mirror figure will be set after launch. This gives the active SiC mirror the ability to correct nearly any optical error, occurring anywhere in the optical system. As a result, active SiC mirrors can be made to relaxed figure requirements, enabling optical replication, or speeding up polishing, while assuring excellent final performance. Active SiC mirrors will reduce cost, risk and schedule for future astrophysics missions. Their high control authority allows relaxation of fabrication and assembly tolerances from optical to mechanical levels, speeding I & T. They enable rapid system testing to within required performance levels, even in 1 G, lowering mission risk. They are lighter weight and more durable than glass mirrors.

  14. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  15. Smooth cubic commensurate oxides on gallium nitride

    NASA Astrophysics Data System (ADS)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Biegalski, Michael D.; Christen, Hans M.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul

    2014-02-01

    Smooth, commensurate alloys of ⟨111⟩-oriented Mg0.52Ca0.48O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  16. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Tian, Y.L.

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  17. SiC MEMS For Harsh Environments

    DTIC Science & Technology

    2003-12-01

    allowed for high g shock loading of a functioning SiC MEMS accelerometer , with published results [1]. 2 2 HIGH TEMPERATURE TESTING OF SiC Measuring...2800 °C, thus capable of being operated in the temperature range of 600-1000 °C [4,5]. The need for the mechanical properties (modulus) of these SiC...VOR-MELT rheometers used for mechanical modulus measurements had a solids fixture, which held both ends of a vertically oriented rectangular cross

  18. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This illustration shows a cutaway drawing with callouts of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through five F-1 engines powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimball for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  19. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This is a cutaway view of the Saturn V first stage, known as the S-IC, detailing the five F-1 engines and fuel cells. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through the five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  20. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  1. The Effect of Inhibitors on the Susceptibility of Al 6013/SiC Interface to Localized Corrosion

    NASA Astrophysics Data System (ADS)

    Ahmad, Zaki; Aleem, B. J. Abdul

    2009-03-01

    Al 6013-20 SiC (p) in tempers T4, O, and F is sensitive to localized corrosion in 3.5 wt.% NaCl because of the preponderance of the secondary phase particles of Cu, Fe, and Cr at the Al/SiC interface. Treatment with cerium chloride effectively inhibited the localized corrosion of the alloy by suppressing the cathodic reactions at Al 6013/SiC interface as shown by electrochemical investigations. Morphological studies showed the formation of a protective cerium oxide/hydroxide films, which suppresses the corrosion of the alloy.

  2. Automated reasoning about cubic curves.

    SciTech Connect

    Padmanabhan, R.; McCune, W.; Mathematics and Computer Science; Univ. of Manitoba

    1995-01-01

    It is well known that the n-ary morphisms defined on projective algebraic curves satisfy some strong local-to-global equational rules of derivation not satisfied in general by universal algebras. For example, every rationally defined group law on a cubic curve must be commutative. Here we extract from the geometry of curves a first order property (gL) satisfied by all morphisms defined on these curves such that the equational consequences known for projective curves can be derived automatically from a set of six rules (stated within the first-order logic with equality). First, the rule (gL) is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove some incidence theorems on projective curves without any further reference to the underlying geometry or topology of the curves.

  3. Two-dimensional cubic convolution.

    PubMed

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  4. Structural Characterization of Polycrystalline 3C-SiC Films Prepared at High Rates by Atmospheric Pressure Plasma Chemical Vapor Deposition Using Monomethylsilane

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Hiroaki; Ohmi, Hiromasa; Nakamura, Ryota; Aketa, Masatoshi; Yasutake, Kiyoshi

    2006-10-01

    Polycrystalline cubic silicon carbide (3C-SiC) films were deposited at a relatively low temperature of 1070 K on Si(001) substrates by atmospheric pressure plasma chemical vapor deposition. Monomethylsilane (CH3SiH3) was used as the single source. CH4 and SiH4 dual sources were also used to compare deposition characteristics. Under the present deposition conditions, very high deposition rates of more than 3 nm/s were obtained. The structure of the SiC films was evaluated by reflection high-energy electron diffraction, Fourier transform infrared absorption spectroscopy and cross-sectional transmission electron microscopy. In addition, optical emission spectroscopy was employed to study the chemical reactions in the CH4/SiH4 and CH3SiH3 plasmas. The results showed that increasing H2 concentration is essential in forming a high quality 3C-SiC film by enhancing the hydrogen elimination reaction at the film-growing surface. From the optical emission spectra, it was found that atomic hydrogen generated by adding H2 in the plasma increase the amount of principal precursors for the film growth. The utilization of CH3SiH3 also led to a higher concentration of principal precursors in the plasma, enhancing the incorporation of Si-C bonds into the film. As a consequence of simultaneously using a high H2 concentration and the CH3SiH3 single source, the columnar growth of 3C-SiC crystallites was achieved.

  5. Universal Converter Using SiC

    SciTech Connect

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  6. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Black, W.M.

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  7. Passive SiC irradiation temperature monitor

    SciTech Connect

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  8. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2010-01-01

    Majority of very large potential benefits of wide band gap semiconductor power electronics have NOT been realized due in large part to high cost and high defect density of commercial wafers. Despite 20 years of development, present SiC wafer growth approach is yet to deliver majority of SiC's inherent performance and cost benefits to power systems. Commercial SiC power devices are significantly de-rated in order to function reliably due to the adverse effects of SiC crystal dislocation defects (thousands per sq cm) in the SiC wafer.

  9. 3D semiconducting nanostructures via inverse lipid cubic phases.

    PubMed

    Burton, M R; Lei, C; Staniec, P A; Terrill, N J; Squires, A M; White, N M; Nandhakumar, Iris S

    2017-07-25

    Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.

  10. Cubic zirconia as a high-quality facet coating for semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Chin, A. K.; Satyanarayan, A.; Zarrabi, J. H.; Vetterling, W.

    1988-08-01

    In this paper we describe the properties of high-quality, semiconductor laser facet coatings based on yttria-stabilizied cubic zirconia (90-m% ZrO2/10-m% Y2O3). We have found that cubic zirconia films can be reproducibly deposited by electron-beam evaporation with an index of refraction of 1.98 at 6328 Å, almost ideal for use as a single-layer antireflection coating for GaAs/GaAlAs-based lasers. ZrO2 has a monoclinic crystal structure at room temperature, but changes to tetragonal, hexagonal, and cubic phases upon heating to higher temperatures. However, the addition of the Y2O3 stabilizes ZrO2 in the cubic form, thus allowing electron-beam deposition of thin films of this material to be more controllable and reproducible without the usual addition of oxygen into the vacuum chamber during deposition. Preliminary aging tests of high-power GaAs/GaAlAs lasers show that cubic zirconia films suppress the photo-enhanced oxidation of laser facets that degrades device performance.

  11. Oxidation induced stress in SiO2/SiC structures

    NASA Astrophysics Data System (ADS)

    Li, Xiuyan; Ermakov, Alexei; Amarasinghe, Voshadhi; Garfunkel, Eric; Gustafsson, Torgny; Feldman, Leonard C.

    2017-04-01

    Physical stress in SiO2/SiC stacks formed by the thermal oxidation of SiC is studied experimentally through both room temperature ex-situ and variable temperature (25-1150 °C) in-situ investigations. Mechanisms giving rise to the stress are a thermal component, associated with differences in thermal expansion coefficients of the oxide and the substrate, and an intrinsic component associated with the different atomic densities and structure of the film and substrate. Ex-situ results show a ˜108 Pa compressive stress in the SiO2 film in a SiO2/SiC stack with a strong crystal face dependence (C face(000ī) and Si face (0001)) and processing (temperature, growth rate) dependence. Real-time stress determination demonstrates that at temperatures above ˜900 °C, the total intrinsic stress and a portion of the thermal stress may be relieved. On the basis of these findings, a viscous model is proposed to discuss the stress relaxation.

  12. Low energy metastable states and immiscibility in (SiC)1-X-(AlN)X

    NASA Astrophysics Data System (ADS)

    Burton, Benjamin; van de Walle, Axel; Davydov, Albert; Vinograd, Victor

    2009-03-01

    A cluster expansion Hamiltonian was fit to VASP/PAW calculated supercell formation energies, δEf, and first principles based phase diagrams (miscibility gaps) were calculated for the wurtzite-structure pseudobinary system SiC1-XAlNX. An unusually wide range of 3 δEf 125 kJ/mole MX (M= Al, Si; X= N, C) was calculated and all supercells with δEf 8 kJ/mole exhibited characteristic (SiC)m(AlN)n crystallography, in which (SiC)m indicates m SiC-double layers to the hexagonal c-axis, and similarly for (AlN)n. The prediction of (SiC)m(AlN)n low-energy metastable states, may explain why one can synthesize SiC1-XAlNX films, or single crystals of arbitrary bulk composition, in spite of the very strong tendency toward immiscibility. Specifically, one expects that metastable films or single crystals will be dominated by a disordered stacking of SiC- and AlN-double layers.

  13. Cubic scaling G W : Towards fast quasiparticle calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Kaltak, Merzuk; Klimeš, Jiří; Kresse, Georg

    2016-10-01

    Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling G W implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele's reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO3). The results are compared with conventional G W calculations. Good agreement is achieved, highlighting the strength of the present method.

  14. Erosion and strength degradation of biomorphic SiC.

    SciTech Connect

    Martinez-Fernandez, J.; de Arellano-Lopez, A. R; Varela-Feria, F. M.; Orlova, T. S.; Goretta, K. C.; Gutierrez-Mora, F.; Chen, N.; Routbort, J. L.; Energy Technology; Univ. de Sevilla; Russian Academy of Sciences

    2004-05-01

    Solid-particle-erosion studies were conducted on biomorphic SiC based on eucalyptus and pine, reaction-bonded (RB) SiC, and hot-pressed (HP) SiC. The erodents were angular SiC abrasives of average diameter 63, 143, or 390 {mu}m and the impact velocity was 100 m s{sup -1}. Impact occurred at normal incidence. Material loss in all targets occurred by brittle fracture. The biomorphic specimens eroded by formation of both lateral and radial cracks and their erosion rates were higher than both conventional SiCs. The RB SiC eroded as a classic brittle material, by formation and propagation of lateral cracks. The HP SiC, the hardest target, was the most erosion resistant. In erosion of the HP SiC, the abrasive particles, especially the largest ones, fragmented upon impact. The resulting dissipation of energy led to relatively low erosion rates. Flexural strength before and after erosion was measured for the biomorphic eucalyptus, RB SiC, and HP SiC. Erosion damage reduced the flexural strengths of all of the specimens. The relative strength reductions were lowest for the biomorphic eucalyptus and highest for the HP SiC. The hot-pressed SiC responded as predicted by accepted models of impact damage in brittle solids. The responses of the biomorphic and reaction-bonded SiC specimens were modeled as if they consisted of only SiC and porosity. This approximation agreed reasonably well with observed degradations of strength.

  15. Cubic spline functions for curve fitting

    NASA Technical Reports Server (NTRS)

    Young, J. D.

    1972-01-01

    FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.

  16. Modified cubic convolution resampling for Landsat

    NASA Technical Reports Server (NTRS)

    Prakash, A.; Mckee, B.

    1985-01-01

    An overview is given of Landsat Thematic Mapper resampling technique, including a modification of the well-known cubic convolution interpolator (nearest neighbor interpolation) used to provide geometric correction for TM data. Post launch study has shown that the modified cubic convolution interpolator can selectively enhance or suppress frequency bands in the output image. This selectivity is demonstrated on TM Band 3 imagery.

  17. Cubic spline functions for curve fitting

    NASA Technical Reports Server (NTRS)

    Young, J. D.

    1972-01-01

    FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.

  18. Cubic GaS: A Surface Passivator For GaAs

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Barron, Andrew R.; Power, Michael B.; Jenkins, Phillip P.; Macinnes, Andrew N.

    1994-01-01

    Thin films of cubic form of gallium sulfide (GaS) formed on surfaces of gallium arsenide (GaAs) substrates via metal/organic chemical vapor deposition (MOCVD). Deposited cubic GaS, crystalline lattice matched to substrate GaAs, neutralizes electrically active defects on surfaces of both n-doped and p-doped GaAs. Enabling important GaAs-based semiconducting materials to serve as substrates for metal/insulator/semiconductor (MIS) capacitors. Cubic GaS enables fabrication of ZnSe-based blue lasers and light-emitting diodes. Because GaS is optically transparent, deposited to form window layers for such optoelectronic devices as light-emitting diodes, solar optical cells, and semiconductor lasers. Its transparency makes it useful as interconnection material in optoelectronic integrated circuits. Also useful in peeled-film technology because selectively etched from GaAs.

  19. Multilayer epitaxial graphene grown on the SiC (000- 1) surface; structure and electronic properties

    SciTech Connect

    Sprinkle, M.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Tinkey, H.; Clark, M.C.; Soukiassian, P.; Martinotti, D.; Hass, J.; Conrad, E.H.

    2010-10-22

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (000{bar 1}) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  20. Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale

    SciTech Connect

    Zhuravlev, K. K.; Goncharov, Alexander F.; Tkachev, S. N.; Dera, P.; Prakapenka, V. B.

    2013-01-01

    We present results of concomitant measurements of synchrotron x-ray diffraction (XRD), Brillouin, and Raman spectroscopy on the single crystal samples of cubic silicon carbide (3C-SiC) under quasi-hydrostatic pressures up to 65 GPa, as well as x-ray diffraction and Raman spectroscopy up to 75 GPa. We determined the equation of state of 3C-SiC and pressure dependencies of the zone-center phonon, elastic tensor, and mode Gruneisen parameters. Cubic SiC lattice was found to be stable up to 75 GPa, but there is a tendency for destabilization above 40 GPa, based on softening of a transverse sound velocity. By applying the concomitant density and elasticity measurements, we determined the pressure on the SiC sample without referring to any other pressure scale thus establishing a new primary pressure scale with a 2%–4% precision up to 65 GPa. We proposed corrections to the existing ruby and neon pressure scales, and also calibrated cubic SiC as a pressure marker for the x-ray diffraction and Raman experiments.

  1. The (3 × 2) β -SiC(001) surface reconstruction investigated by photoelectron diffraction in the backscattering regime

    NASA Astrophysics Data System (ADS)

    Michel, E. G.; Dunham, D.; Tejeda, A.; Soukiassian, P.; Rotenberg, E.; Denlinger, J. D.

    2006-03-01

    The atomic positions of the (3× 2) reconstruction of the cubic polytype of SiC(001) are determined by using photoelectron diffraction in the backscattering regime. The comparison of multiple scattering spherical wave calculations with experimental data favours a modified version of the two-adlayer asymmetric dimer model. The atomic positions in the reconstructed layers are obtained from an R-factor refinement analysis. Atoms in the outermost layer form asymmetric dimers with a corrugation of (0.25 ± 0.10) Å. The second layer is also dimerized and originates rows of long and short dimers.

  2. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  3. Ultrahard nanotwinned cubic boron nitride.

    PubMed

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  4. Optical characterization of SiC wafers

    SciTech Connect

    Burton, J.C.; Pophristic, M.; Long, F.H.; Ferguson, I.

    1999-07-01

    Raman spectroscopy has been used to investigate wafers of both 4H-SiC and 6H-SiC. The two-phonon Raman spectra from both 4H- and 6H-SiC have been measured and found to be polytype dependent, consistent with changes in the vibrational density of states. They have observed electronic Raman scattering from nitrogen defect levels in both 4H- and 6H-SiC at room temperature. They have found that electronic Raman scattering from the nitrogen defect levels is significantly enhanced with excitation by red or near IR laser light. These results demonstrate that the laser wavelength is a key parameter in the characterization of SiC by Raman scattering. These results suggest that Raman spectroscopy can be used as a noninvasive, in situ diagnostic for SiC wafer production and substrate evaluation. They also present results on time-resolved photoluminescence spectra of n-type SiC wafers.

  5. Cubical Sets and Trace Monoid Actions

    PubMed Central

    Husainov, Ahmet A.

    2013-01-01

    This paper is devoted to connections between trace monoids and cubical sets. We prove that the category of trace monoids is isomorphic to the category of generalized tori and it is a reflective subcategory of the category of cubical sets. Adjoint functors between the categories of cubical sets and trace monoid actions are constructed. These functors carry independence preserving morphisms in the independence preserving morphisms. This allows us to build adjoint functors between the category of weak asynchronous systems and the category of higher dimensional automata. PMID:24453827

  6. Ultralight, Strong, Three-Dimensional SiC Structures.

    PubMed

    Chabi, Sakineh; Rocha, Victoria G; García-Tuñón, Esther; Ferraro, Claudio; Saiz, Eduardo; Xia, Yongde; Zhu, Yanqiu

    2016-02-23

    Ultralight and strong three-dimensional (3D) silicon carbide (SiC) structures have been generated by the carbothermal reduction of SiO with a graphene foam (GF). The resulting SiC foams have an average height of 2 mm and density ranging between 9 and 17 mg cm(-3). They are the lightest reported SiC structures. They consist of hollow struts made from ultrathin SiC flakes and long 1D SiC nanowires growing from the trusses, edges, and defect sites between layers. AFM results revealed an average flake thickness of 2-3 nm and lateral size of 2 μm. In-situ compression tests in the scanning electron microscope (SEM) show that, compared with most of the existing lightweight foams, the present 3D SiC exhibited superior compression strengths and significant recovery after compression strains of about 70%.

  7. Polyimide nanocomposites based on cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Ramasubramanian Sharma, Gayathri

    2009-12-01

    In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not

  8. Pressure induced structural phase transition in SiC

    NASA Astrophysics Data System (ADS)

    Gorai, S.; Bhattacharya, C.; Kondayya, G.

    2017-05-01

    Silicon carbide (SiC) is an excellent ceramic material which exists in several polytypes. In this work, we obtained the structural properties of the ambient Zinc-Blende and high pressure Rock-Salt structures of SiC from density functional theory (DFT). We studied the structural phase transition occurring under compression using Debye Gruneisen theory based on scaled binding energy model. We observed excellent agreement of our predicted 300 K isotherm for SiC with experimental data.

  9. Structural and magnetic properties of irradiated SiC

    SciTech Connect

    Wang, Yutian; Helm, Manfred; Chen, Xuliang; Yang, Zhaorong; Li, Lin; Shalimov, Artem; Prucnal, Slawomir; Munnik, Frans; Skorupa, Wolfgang; Zhou, Shengqiang; Tong, Wei

    2014-05-07

    We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance, and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC, which mutually influences the ferromagnetism in SiC.

  10. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  11. Biomechanical Analysis with Cubic Spline Functions

    ERIC Educational Resources Information Center

    McLaughlin, Thomas M.; And Others

    1977-01-01

    Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)

  12. Biomechanical Analysis with Cubic Spline Functions

    ERIC Educational Resources Information Center

    McLaughlin, Thomas M.; And Others

    1977-01-01

    Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)

  13. Effect of van der Waals interactions on the stability of SiC polytypes

    SciTech Connect

    Kawanishi, Sakiko Mizoguchi, Teruyasu

    2016-05-07

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW force increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.

  14. The single crystal elastic constants of hexagonal SiC to 1000 C

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1988-01-01

    The relationships between the sound velocities in the cubic and hexagonal crystal structures and the tensor transformations for the two structures are applied to determine the elastic stiffnesses for the hexagonal structures of SiC to 1000 C. These results are then applied to calculate the polycrystalline elastic moduli, E and G, and their temperature variations. The calculated values for E and G at 20 C are 420 and 180 GPa; for (dE/dT) and (dG/dT), the values are -0.020 and -0.007 GPa/C, respectively.These agree well with published experimental values for E and G of dense polycrystalline alpha silicon carbides.

  15. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  16. SiC Power MOSFET with Improved Gate Dielectric

    SciTech Connect

    Sbrockey, Nick M; Tompa, Gary S; Spencer, Michael G; Chandrashekhar, Chandra MVS

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  17. Microstructure of GaN epitaxy on SiC using AlN buffer layers

    SciTech Connect

    Ponce, F.A.; Krusor, B.S.; Major, J.S. Jr.; Plano, W.E.; Welch, D.F.

    1995-07-17

    The crystalline structure of GaN epilayers on (0001) SiC substrates has been studied using x-ray diffraction and transmission microscopy. The films were grown by metalorganic chemical vapor deposition, using AlN buffer layers. X-ray diffraction measurements show negligible strain in the epilayer, and a long-range variation in orientation. Transmission electron lattice images show that the AlN buffer layer consists of small crystallites. The nature of the buffer layer and its interfaces with the substrate and the GaN film is discussed. The defect structure of the GaN film away from the substrate consists mostly of threading dislocations with a density of {similar_to}10{sup 9} cm{sup {minus}2}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. A note on cubic convolution interpolation.

    PubMed

    Meijering, Erik; Unser, Michael

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  19. Great Plains makes 100 billion cubic feet

    SciTech Connect

    Not Available

    1987-03-01

    The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

  20. Electrostatic swelling of bicontinuous cubic lipid phases.

    PubMed

    Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J

    2015-04-28

    Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.

  1. Formation of cubic boron-nitride by the reactive sputter deposition of boron

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Makowiecki, D.W.; McKeman, M.A.

    1997-03-01

    Boron-nitride films are synthesized by RF magnetron sputtering boron targets where the deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are analyzed using Auger electron spectroscopy, transmission electron microscopy, nanoindentation, Raman spectroscopy and x-ray absorption spectroscopy. These techniques provide characterization of film composition, crystalline structure, hardness and chemical bonding, respectively. Reactive, rf-sputtering process parameters are established which lead to the growth of crystalline BN phases. The deposition of stable and adherent boron nitride coatings consisting of the cubic phase requires 400 `C substrate heating and the application of a 300 V negative bias.

  2. Cs diffusion in SiC high-energy grain boundaries

    NASA Astrophysics Data System (ADS)

    Ko, Hyunseok; Szlufarska, Izabela; Morgan, Dane

    2017-09-01

    Cesium (Cs) is a radioactive fission product whose release is of concern for Tristructural-Isotropic fuel particles. In this work, Cs diffusion through high energy grain boundaries (HEGBs) of cubic-SiC is studied using an ab-initio based kinetic Monte Carlo (kMC) model. The HEGB environment was modeled as an amorphous SiC, and Cs defect energies were calculated using the density functional theory (DFT). From defect energies, it was suggested that the fastest diffusion mechanism is the diffusion of Cs interstitial in an amorphous SiC. The diffusion of Cs interstitial was simulated using a kMC model, based on the site and transition state energies sampled from the DFT. The Cs HEGB diffusion exhibited an Arrhenius type diffusion in the range of 1200-1600 °C. The comparison between HEGB results and the other studies suggests not only that the GB diffusion dominates the bulk diffusion but also that the HEGB is one of the fastest grain boundary paths for the Cs diffusion. The diffusion coefficients in HEGB are clearly a few orders of magnitude lower than the reported diffusion coefficients from in- and out-of-pile samples, suggesting that other contributions are responsible, such as radiation enhanced diffusion.

  3. Wetting of polycrystalline SiC by molten Al and Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Cong, Xiao-Shuang; Shen, Ping; Wang, Yi; Jiang, Qichuan

    2014-10-01

    The wetting of α-SiC by molten Al and Al-Si alloys was investigated using a dispensed sessile drop method in a high vacuum. In the Al-SiC system, representative wetting stages were identified. The liquid spreading was initially controlled by the deoxidation of the SiC surface and then by the formation of Al4C3 at the interface. The intrinsic contact angle for molten Al on the polycrystalline α-SiC surface was suggested to be lower than 90̊ provided that the oxide films covering the Al and SiC surfaces were removed, i.e., the system is partial wetting in nature. An increase in the Si concentration in liquid Al weakened the interfacial reaction but improved the final wettability. The role of the Si addition on the wetting was presumably attributed to its segregation at the interface and the formation of strong chemical bonds with the SiC surface.

  4. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  5. Direct growth of freestanding GaN on C-face SiC by HVPE

    PubMed Central

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-01-01

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra. PMID:26034939

  6. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  7. Research of mechanical stresses in micromechanical structures based on silicon carbide films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mikhailova, O. N.; Korlyakov, A. V.; Lagosh, A. V.

    2017-07-01

    Investigations of the effect of residual atmosphere in the magnetron chamber on the mechanical stresses and the shape of micromechanical structure based on SiC film are discussed. Measurements of the curvature radius of SiC micromechanical structure deflection are presented.

  8. Electronic structure of epitaxial graphene layers on SiC: effects of the substrate

    SciTech Connect

    Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. Ngoc; Naud, C.; Mallet, P.; Veuillen, J.-Y.; Berger, C.; Conrad, E.H.; Magaud, L.

    2008-10-17

    A strong substrate-graphite bond is found in the first all-carbon layer by density functional theory calculations and x-ray diffraction for few graphene layers grown epitaxially on SiC. This first layer is devoid of graphene electronic properties and acts as a buffer layer. The graphene nature of the film is recovered by the second carbon layer grown on both the (0001) and (0001{sup -}) 4H-SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. Hence the graphene is doped and a gap opens at the Dirac point after three Bernal stacked carbon layers are formed.

  9. Current density-voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/crystalline Si heterojunction diodes prepared with varying H2 gas flow rates

    NASA Astrophysics Data System (ADS)

    Tabata, Akimori; Imori, Yoshikazu

    2015-02-01

    N-doped hydrogenated nanocrystalline cubic SiC (nc-3C-SiC:H) thin films were deposited on p-type crystalline Si (c-Si) substrates by hot-wire chemical vapor deposition from a SiH4/CH4/H2/N2 gas mixture. The current density-voltage and the admittance characteristics of the nc-3C-SiC:H/c-Si heterojunction diodes were investigated. As the H2 gas flow rate (F(H2)) increased from 25 to 100 sccm, the ideality factor and saturation current density deceased from 1.87 to 1.47 and 1.6 × 10-7 to 9.9 × 10-9 A/cm2, respectively. However, they increased to 1.82 and 3.0 × 10-7 A/cm2, respectively, when F(H2) was further increased to 1000 sccm. The relaxation time, evaluated from the admittance characteristics, decreased from 2.9 × 10-5 to 2.4 × 10-6 s with an increase in F(H2). The apparent built-in voltage, evaluated from the capacitance-voltage characteristics, decreased from 1.05 to 0.60 eV. These findings were mainly caused by interfacial defects, generated by a high density of H radicals during the nc-3C-SiC:H deposition process. The interfacial defect density increased with an increase in F(H2), resulting in deterioration of the diode characteristics.

  10. Cubic mesoporous titanium phosphonates with multifunctionality.

    PubMed

    Ma, Tian-Yi; Lin, Xiu-Zhen; Yuan, Zhong-Yong

    2010-07-26

    Cubic mesoporous titanium phosphonate materials with bridged organic groups inside the framework were synthesized by means of a one-pot hydrothermal autoclaving process, with the assistance of cationic surfactant cetyltrimethylammonium bromide. 1-Hydroxyethylidene-1,1-diphosphonic acid was used as the coupling molecule. A typical cubic mesophase with surface area of 1052 m(2) g(-1) and pore size of 2.6 nm was confirmed by XRD, TEM, and N(2) sorption analysis. The organophosphonate groups were homogeneously incorporated in the network of the mesoporous solids, as revealed by FTIR and magic-angle spinning (MAS) NMR spectroscopy, and thermogravimetry and differential scanning calorimetry (TG-DSC) measurements. The synthesized hydroxyethylidene-bridged cubic mesoporous titanium phosphonates proved to be thermally stable up to 350 degrees C, with a well-preserved hybrid framework and cubic mesoporous architecture. The obtained cubic mesophase could be transformed into a hexagonal mesophase by simply adjusting the molar ratios of the added raw materials, namely, a Ti/P molar ratio of 1:4 and a CTAB/Ti molar ratio of 1.9-2.3 for the cubic phase and Ti/P molar ratio of 3:4 and CTAB/Ti molar ratio of 0.1-0.4 for the hexagonal phase. The cubic hybrid materials could be used as efficient photocatalysts for the photodegradation of rhodamine B. Moreover, they were also used for adsorption of CO(2) and heavy metal ions and exhibited a significant capture amount of around 1.0 mmol g(-1) for CO(2) molecules at 35 degrees C and high adsorption capacity of 28.5 micromol g(-1) for Cu(2+) ions with good reusability, which demonstrated their promising potential in environmental remediation.

  11. Pristine SiC Candidates: Spectral Imaging and Auger Investigations

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Lebsack, E.; Bernatowicz, T. J.

    2010-03-01

    We describe a new spectral imaging method to locate pristine SiCs (those prepared without acid dissolution) from within Murchison matrix material. We present images,X-ray and Auger electron spectra from pristine SiCs, which show carbonaceous surface coatings.

  12. Interpolation by two-dimensional cubic convolution

    NASA Astrophysics Data System (ADS)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  13. Effects of silicon-on-insulator substrate on the residual stress within 3C-SiC/Si thin films

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Kim, J. H.; Kim, Y.; Lee, B.-T.; Jang, S.-J.; Moon, C.-K.; Song, H.-J.

    2003-09-01

    Single-crystalline 3C-SiC heteroepitaxial layers were grown on silicon-on-insulator (SOI) and Si wafers, to investigate effects of SOI substrates on the film quality. Residual stress measurement using a laser scan method and the Raman scattering spectroscopy indicated that internal stress within SiC films on SOI were indeed reduced, when compared with that of SiC films on Si.

  14. Single-crystal cubic silicon carbide: an in vivo biocompatible semiconductor for brain machine interface devices.

    PubMed

    Frewin, Christopher L; Locke, Christopher; Saddow, Stephen E; Weeber, Edwin J

    2011-01-01

    Single crystal silicon carbide (SiC) is a wide band-gap semiconductor which has shown both bio- and hemo-compatibility [1-5]. Although single crystalline SiC has appealing bio-sensing potential, the material has not been extensively characterized. Cubic silicon carbide (3C-SiC) has superior in vitro biocompatibility compared to its hexagonal counterparts [3, 5]. Brain machine interface (BMI) systems using implantable neuronal prosthetics offer the possibility of bi-directional signaling, which allow sensory feedback and closed loop control. Existing implantable neural interfaces have limited long-term reliability, and 3C-SiC may be a material that may improve that reliability. In the present study, we investigated in vivo 3C-SiC biocompatibility in the CNS of C56BL/6 mice. 3C-SiC was compared against the known immunoreactive response of silicon (Si) at 5, 10, and 35 days. The material was examined to detect CD45, a protein tyrosine phosphatase (PTP) expressed by activated microglia and macrophages. The 3C-SiC surface revealed limited immunoresponse and significantly reduced microglia compared to Si substrate.

  15. Epitaxy of cubic boron nitride on (001)-oriented diamond.

    PubMed

    Zhang, X W; Boyen, H-G; Deyneka, N; Ziemann, P; Banhart, F; Schreck, M

    2003-05-01

    Cubic boron nitride (c-BN), although offering a number of highly attractive properties comparable to diamond, like hardness, chemical inertness and a large electronic bandgap, up to now has not found the attention it deserves. This mostly has to do with preparational problems, with easy chemical routes not available and, instead, the necessity to apply ion-bombardment-assisted methods. Hence, most of the c-BN samples prepared as thin films have been nanocrystalline, making the prospect of using this material for high-temperature electronic applications an illusion. Although heteroepitaxial nucleation of c-BN on diamond substrates has been demonstrated using the high-pressure-high-temperature technique, none of the low-pressure methods ever succeeded in the epitaxial growth of c-BN on any substrate. Here, we demonstrate that heteroepitaxial c-BN films can be prepared at 900 degrees C on highly (001)-oriented diamond films, formed by chemical vapour deposition, using ion-beam-assisted deposition as a low-pressure technique. The orientation relationship was found to be c-BN(001)[100]||diamond(001)[100]. High-resolution transmission electron microscopy additionally proved that epitaxy can be achieved without an intermediate hexagonal BN layer that is commonly observed on various substrates.

  16. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  17. Three-dimensional crystalline SiC nanowire flowers

    NASA Astrophysics Data System (ADS)

    Ho, Ghim Wei; Weng Wong, Andrew See; Kang, Dae-Joon; Welland, Mark E.

    2004-08-01

    Several techniques have already been developed for synthesizing silicon carbide (SiC) material in the form of nanospheres and nanowires/rods. Here, we report the synthesis of a distinctly different kind of SiC nanostructure in the form of three-dimensional crystalline nanowire-based flower-like structures. Interest in such structures centres around the combination of a simple growth process based on SiC nanowire formation, with a resultant structure having potentially complex mechanical and optical properties, the latter a consequence of the wide band gap of bulk SiC. The synthesis of these SiC nanowire flowers is via a vapour-liquid-solid (VLS) process, on which a detailed study of both the chemical and structural composition has been carried out.

  18. Nano-Engineered Cubic Zirconia for Orthopaedic Implant Applications

    NASA Astrophysics Data System (ADS)

    Namavar, F.; Rubinstein, A.; Sabirianov, R.; Thiele, G.; Sharp, J.; Pokharel, U.; Namavar, R.; Garvin, K.

    2012-02-01

    Osseointegration failure of the prosthesis prevents long-term stability, which contributes to pain, implant loosening, and infection that usually necessitates revision surgery. Cell attachment and spreading in vitro is generally mediated by adhesive proteins such as fibronectin and vitronectin. We designed and produced pure cubic zirconia (ZrO2) ceramic coatings by ion beam assisted deposition (IBAD) with nanostructures comparable to the size of proteins. Our ceramic coatings exhibit high hardness and a zero contact angle with serum. In contrast to Hydroxyapatite (HA), nano-engineered zirconia films possess excellent adhesion to all orthopaedic materials. Adhesion and proliferation experiments were performed with a bona fide mesenchymal stromal cells cell line (OMA-AD). Our experimental results indicated that nano-engineered cubic zirconia is superior in supporting growth, adhesion, and proliferation. We performed a comparative analysis of adsorption energies of the FN fragment using quantum mechanical calculations and Monte Carlo simulation on both types of surfaces: smooth and nanostructured. We have found that the initial FN fragment adsorbs significantly stronger on the nanostructured surface than on the smooth surface.

  19. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  20. Superhard BC3 in cubic diamond structure

    DOE PAGES

    Zhang, Miao; Liu, Hanyu; Li, Quan; ...

    2015-01-06

    We solve the crystal structure of recently synthesized cubic BC3 using an unbiased swarm structure search, which identifies a highly symmetric BC3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish the first boron carbide inmore » the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less

  1. Image reconstruction by parametric cubic convolution

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Schowengerdt, R. A.

    1983-01-01

    Cubic convolution, which has been discussed by Rifman and McKinnon (1974), was originally developed for the reconstruction of Landsat digital images. In the present investigation, the reconstruction properties of the one-parameter family of cubic convolution interpolation functions are considered and thee image degradation associated with reasonable choices of this parameter is analyzed. With the aid of an analysis in the frequency domain it is demonstrated that in an image-independent sense there is an optimal value for this parameter. The optimal value is not the standard value commonly referenced in the literature. It is also demonstrated that in an image-dependent sense, cubic convolution can be adapted to any class of images characterized by a common energy spectrum.

  2. Electrical transport in three-dimensional cubic Skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Nagaosa, Naoto

    2015-03-01

    Two-dimensional magnetic Skyrmions have been well confirmed via various experimental techniques in the bulk or on epitaxial thin films. Besides, a topologically nontrivial three-dimensional cubic Skyrmion crystal in the bulk, which is essentially a hedgehog-antihedgehog pair texture predicted theoretically, has also been tentatively observed. Equipped with a sophisticated spectral analysis program, we adopt Matsubara Green's function technique to study electrical transport, especially diagonal conductivity, in such system. We consider conduction electrons interacting with spinwaves via the strong Hund's rule coupling, wherein fluctuation of monopolar emergent electromagnetic field exits within adiabatic approximation. We describe in detail the influence of temperature and Skyrmion number on both dc and ac conductivities. Possible deviation from Fermi liquid behavior will also be discussed.

  3. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  4. Diffuse reflectivity measurement using cubic cavity.

    PubMed

    Yu, Jia; Zhang, Y G; Gao, Qiang; Hu, Gang; Zhang, Z G; Wu, S H

    2014-04-01

    A method for measuring diffuse reflectivity using cubic cavity based on the variable port fraction method was developed by measuring oxygen P11 line at 762 nm using tunable diode laser absorption spectroscopy. An experimental method to determine the additional path length l0 was presented. We measured the diffuse reflectivity of a cubic cavity with scattering coatings of different thickness. The error of diffuse reflectivity was reduced from 0.004 to 0.0003 when the diffuse reflectivity increased from 0.867(4) to 0.9887(3). A simulation result manifests that the error of diffuse reflectivity has the potential to be further reduced at higher diffuse reflectivity.

  5. Growth Of Graphitic Polyhedra, SiC Platelets, And Carbon Nanotubes Filled With SiC Nanowires By Laser Ablation

    SciTech Connect

    Kokai, Fumio; Uchiyama, Kunihiro; Chigusa, Hajime; Nozaki, Iori; Noguchi, Eriko; Kameda, Yuto; Koshio, Akira

    2010-10-08

    Three characteristic silicon/carbon nanostructures, i.e., graphitic polyhedral (GP) particles, silicon carbide (SiC) platelets, and carbon nanotubes (CNTs) filled with SiC nanowires, were synthesized by the laser ablation of Si-C targets in the presence of high-pressure Ar gas up to 0.9 MPa. The growth of nanostructures was controlled merely by adjusting the Si content in graphite and the ambient Ar gas pressure. Deposits containing GP particles were purified by heat treatment at 550 deg. C in a pure oxygen atmosphere for 1 h. CNTs filled with SiC nanowires were grown without a catalyst. Unlike previous studies of CNTs filled with metals or compounds, all the CNTs checked by transmission electron microscopy contained SiC nanowires and no unfilled CNTs were produced. We discuss the growth mechanisms of the three nanostructures.

  6. Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates

    NASA Astrophysics Data System (ADS)

    Weißmantel, Steffen; Reiße, Günter

    2002-09-01

    Cubic boron nitride (c-BN) films were prepared by ion-beam-assisted pulsed laser deposition (IAPLD) using a KrF excimer laser for ablation. The c-BN growth rates of 50 nm/min at relatively low substrate temperatures of 250 °C were achieved by using high laser energy densities of more than 30 J/cm 2 and at ion beam energies of 600-700 eV. Main advantage of IAPLD for the deposition of c-BN films is that at high laser energy densities the ratio of ions from the ion beam to ablated atoms and ions necessary for cubic film growth can be reduced to 0.14, since the ablated boron and nitrogen species themselves have high mean kinetic energies of 130-180 eV. By using pulsed laser deposited h-BN intermediate layers, 300-420 nm thick well-adherent c-BN films can be prepared on Si and WC hard metal substrates. The maximum c-BN film thickness of some 0.5 μm is limited by the accumulation of particulates, formed during the ablation process, in the films. The microstructure, stress, hardness and adhesion of such layer systems deposited at high growth rates are presented.

  7. The Gorsky effect in the synthesis of silicon-carbide films from silicon by topochemical substitution of atoms

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.

    2017-07-01

    The mechanisms of evaporation of silicon from the surface of silicon carbide (SiC) grown by atomic substitution are studied. It is assumed that the emergence of elastic deformations at the stage of cooling of the sample with a SiC film is one of the causes of Si evaporation. It is demonstrated theoretically that elastic stresses induce the mechanochemical Gorsky effect in the SiC layer. This effect initiates redistribution of Si and C atoms in the SiC layer, which results in violation of the stoichiometry of films and asymmetry of their composition over the SiC-layer thickness. A method for growing epitaxial SiC films with a homogeneous composition and a low density of silicon vacancies from a gas mixture of carbon monoxide and trichlorosilane is proposed.

  8. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  9. Characterisation of SiC by IBIC and other IBA techniques

    NASA Astrophysics Data System (ADS)

    Jakšić, M.; Bošnjak, Ž.; Gracin, D.; Medunić, Z.; Pastuović, Ž.; Vittone, E.; Nava, F.

    2002-04-01

    Several new technological applications of silicon carbide have attracted significant attention in recent years. As a wide gap semiconductor it has the capability to be used as a room temperature radiation detector. For most applications, material properties like homogeneity of charge transport, presence of defects, resistance to radiation damage, influence of light impurities (such as hydrogen) are of prime importance. Two different kinds of samples, crystalline (4H-SiC) and thin, amorphous (a-Si 1- xC x:H) films, were studied using ion beam techniques. In the case of SiC single crystal radiation detectors, Li and proton beams with a wide range of energies were used to probe the charge collection efficiency at different device depths using the ion beam induced charge technique. Thin, amorphous and microcrystalline Si 1- xC x:H films with a different stoichiometry and different degrees of structural ordering were examined using RBS and ERDA.

  10. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

    PubMed

    Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P

    2012-11-30

    Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.

  11. Fabrication of large aperture SiC brazing mirror

    NASA Astrophysics Data System (ADS)

    Li, Ang; Wang, Peipei; Dong, Huiwen; Wang, Peng

    2016-10-01

    The SiC brazing mirror is the mirror whose blank is made by assembling together smaller SiC pieces with brazing technique. Using such kinds of joining techniques, people can manufacture large and complex SiC assemblies. The key technologies of fabricating and testing SiC brazing flat mirror especially for large aperture were studied. The SiC brazing flat mirror was ground by smart ultrasonic-milling machine, and then it was lapped by the lapping smart robot and measured by Coordinate Measuring Machine (CMM). After the PV of the surface below 4um, we did classic coarse polishing to the surface and studied the shape of the polishing tool which directly effects removal amount distribution. Finally, it was figured by the polishing smart robot and measured by Fizeau interferometer. We also studied the influence of machining path and removal functions of smart robots on the manufacturing results and discussed the use of abrasive in this process. At last, an example for fabricating and measuring a similar SiC brazing flat mirror with the aperture of 600 mm made by Shanghai Institute of Ceramics was given. The mirror blank consists of 6 SiC sectors and the surface was finally processed to a result of the Peak-to-Valley (PV) 150nm and Root Mean Square (RMS) 12nm.

  12. A monotonicity conjecture for real cubic maps

    SciTech Connect

    Dawson, S.P.; Galeeva, R.; Milnor, J.; Tresser, C.

    1993-12-01

    This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.

  13. Sound velocity anisotropy in cubic crystals

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Park, H. Y.

    1983-01-01

    Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride.

  14. Growth and electrical characterization of two-dimensional layered MoS{sub 2}/SiC heterojunctions

    SciTech Connect

    Lee, Edwin W.; Nath, Digbijoy N.; Lee, Choong Hee; Arehart, Aaron; Ma, Lu; Wu, Yiying; Rajan, Siddharth

    2014-11-17

    The growth and electrical characterization of the heterojunction formed between two-dimensional (2D) layered p-molybdenum disulfide (MoS{sub 2}) and nitrogen-doped 4H silicon carbide (SiC) are reported. The integration of 2D semiconductors with the conventional three-dimensional (3D) substrates could enable semiconductor heterostructures with unprecedented properties. In this work, direct growth of p-type MoS{sub 2} films on SiC was demonstrated using chemical vapor deposition, and the MoS{sub 2} films were found to be high quality based on x-ray diffraction and Raman spectra. The resulting heterojunction was found to display rectification and current-voltage characteristics consistent with a diode for which forward conduction in the low-bias region is dominated by multi-step recombination tunneling. Capacitance-voltage measurements were used to determine the built-in voltage for the p-MoS{sub 2}/n-SiC heterojunction diode, and we propose an energy band line up for the heterostructure based on these observations. The demonstration of heterogeneous material integration between MoS{sub 2} and SiC enables a promising new class of 2D/3D heterostructures.

  15. Compatibility of SiC and SiC Composites with Molten Lead

    SciTech Connect

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  16. Tribological Performance of Ni3Al Matrix Self-Lubricating Composites Containing Multilayer Graphene and Ti3SiC2 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Shi, Xiaoliang; Huang, Yuchun; Deng, Xiaobin; Yang, Kang; Liu, Xiyao

    2017-09-01

    The application of Ni3Al-based alloy (NA) in the field of aerospace was limited by its poor tribological properties. For improving the tribological performance of NA, multilayer graphene (MLG) and Ti3SiC2 were added in Ni3Al matrix composites. Tribological behavior of Ni3Al matrix composites containing 1.5 wt.% MLG and 10 wt.% Ti3SiC2 (NMT) against Si3N4 ball at 12 N-0.2 m/s from 25 to 750 °C was investigated. The results showed that NMT exhibited the excellent tribological behavior [lower friction coefficients (0.26-0.57) and less wear resistance (3.1-6.5 × 10-6 mm3 N-1 m-1)] due to synergetic effect of MLG and Ti3SiC2 over a wide temperature range from 25 to 750 °C. At 25-350 °C, part of MLG enriched on worn surface could play a role in reducing friction and improving wear resistance. At 350-550 °C, although MLG gradually lost the lubricating properties, the partial decomposition of Ti3SiC2 could continually improve the tribological properties of NMT. At 550-750 °C, Ti3SiC2 on worn surface was oxidized to form lubricating film, while Ti3SiC2 in the subsurface played an important role in supporting the film, resulting in the excellent high-temperature tribological performance. The research had good guiding significance for the preparation of wide temperature range self-lubricating material and the study of synergetic effect of complex solid lubricants.

  17. ICP Etching of SiC

    SciTech Connect

    Grow, J.M.; Lambers, E.S.; Ostling, M.; Pearton, S.J.; Ren, F.; Shul, R.J.; Wang, J.J.; Zetterling, C.-M.

    1999-02-04

    A number of different plasma chemistries, including NF{sub 3}/O{sub 2}, SF{sub 6}/O{sub 2}, SF{sub 6}/Ar, ICl, IBr, Cl{sub 2}/Ar, BCl{sub 3}/Ar and CH{sub 4}/H{sub 2}/Ar, have been investigated for dry etching of 6H and 3C-SiC in a Inductively Coupled Plasma tool. Rates above 2,000 {angstrom} cm{sup {minus}1} are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl{sub 2}-based etching does not provide high rates, even though the potential etch products (SiCi{sub 4} and CCl{sub 4}) are volatile. Photoresist masks have poor selectivity over SiC in F{sub 2}-based plasmas under normal conditions, and ITO or Ni are preferred.

  18. Quantification Of 4H- To 3C-Polymorphism In Silicon Carbide (SiC) Epilayers And An Investigation Of Recombination-Enhanced Dislocation Motion In SiC By Optical Emission Microscopy (Oem) Techniques

    NASA Technical Reports Server (NTRS)

    Speer, Kevin M.

    2004-01-01

    Environments that impose operational constraints on conventional silicon-(Si) based semiconductor devices frequently appear in military- and space-grade applications. These constraints include high temperature, high power, and high radiation environments. Silicon carbide (SiC), an alternative type of semiconductor material, has received abundant research attention in the past few years, owing to its radiation-hardened properties as well as its capability to withstand high temperatures and power levels. However, the growth and manufacture of SiC devices is still comparatively immature, and there are severe limitations in present crystal growth and device fabrication processes. Among these limitations is a variety of crystal imperfections known as defects. These imperfections can be point defects (e.g., vacancies and interstitials), line defects (e.g., edge and screw dislocations), or planar defects (e.g., stacking faults and double-positioning boundaries). All of these defects have been experimentally shown to be detrimental to the performance of electron devices made from SiC. As such, it is imperative that these defects are significantly reduced in order for SiC devices to become a viable entity in the electronics world. The NASA Glenn High Temperature Integrated Electronics & Sensors Team (HTIES) is working to identify and eliminate these defects in SiC by implementing improved epitaxial crystal growth procedures. HTIES takes two-inch SiC wafers and etches patterns, producing thousands of mesas into each wafer. Crystal growth is then carried out on top of these mesas in an effort to produce films of improved quality-resulting in electron devices that demonstrate superior performance-as well as fabrication processes that are cost-effective, reliable, and reproducible. In this work, further steps are taken to automate HTIES' SiC wafer inspection system. National Instruments LabVIEW image processing and pattern recognition routines are developed that are capable of

  19. Quantification Of 4H- To 3C-Polymorphism In Silicon Carbide (SiC) Epilayers And An Investigation Of Recombination-Enhanced Dislocation Motion In SiC By Optical Emission Microscopy (Oem) Techniques

    NASA Technical Reports Server (NTRS)

    Speer, Kevin M.

    2004-01-01

    Environments that impose operational constraints on conventional silicon-(Si) based semiconductor devices frequently appear in military- and space-grade applications. These constraints include high temperature, high power, and high radiation environments. Silicon carbide (SiC), an alternative type of semiconductor material, has received abundant research attention in the past few years, owing to its radiation-hardened properties as well as its capability to withstand high temperatures and power levels. However, the growth and manufacture of SiC devices is still comparatively immature, and there are severe limitations in present crystal growth and device fabrication processes. Among these limitations is a variety of crystal imperfections known as defects. These imperfections can be point defects (e.g., vacancies and interstitials), line defects (e.g., edge and screw dislocations), or planar defects (e.g., stacking faults and double-positioning boundaries). All of these defects have been experimentally shown to be detrimental to the performance of electron devices made from SiC. As such, it is imperative that these defects are significantly reduced in order for SiC devices to become a viable entity in the electronics world. The NASA Glenn High Temperature Integrated Electronics & Sensors Team (HTIES) is working to identify and eliminate these defects in SiC by implementing improved epitaxial crystal growth procedures. HTIES takes two-inch SiC wafers and etches patterns, producing thousands of mesas into each wafer. Crystal growth is then carried out on top of these mesas in an effort to produce films of improved quality-resulting in electron devices that demonstrate superior performance-as well as fabrication processes that are cost-effective, reliable, and reproducible. In this work, further steps are taken to automate HTIES' SiC wafer inspection system. National Instruments LabVIEW image processing and pattern recognition routines are developed that are capable of

  20. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    PubMed Central

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730

  1. Chemical-state-selective X-ray absorption spectroscopy by detecting bond-specific Auger electrons for SiO2/SiC interface

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Murai, Takaaki; Oji, Hiroshi; Nomoto, Toyokazu; Watanabe, Yukihiko; Kimoto, Yasuji

    2017-08-01

    Chemical-state-selective Si K-edge extended X-ray absorption fine structure (EXAFS) measurements of SiO2 and SiC are demonstrated by detecting bond-specific Auger electrons in SiC coated with a very thin SiO2 film. Differential-electron-yield (DEY) mode is used for the measurements. Each EXAFS spectrum may be subject to the following two spectrally overlapping influences: (i) the background spectrum formed by energy-losing SiC Auger electrons overlaps the SiO2 Auger peak, and (ii) the resonant SiO2 Auger peak overlaps the SiC Auger peak. The SiO2- and SiC-selective DEY-EXAFS spectra differ from each other and are similar to the spectra of bulk SiO2 and SiC, respectively, in the EXAFS regions, indicating that the two influences are negligible, and that this method can be considered valid for selection of chemical states.

  2. Bubble formation in oxide scales on SiC

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Mitchell, T. E.; Heuer, A. H.

    1984-01-01

    The oxidation of alpha-SiC single crystals and sintered alphaand beta-SiC polycrystals has been investigated at elevated temperatures. Bubble formation is commonly observed in oxide scales on polycrystalline SiC, but is rarely found on single-crystal scales; bubbles result from the preferential oxidation of C inclusions, which are abundant in SiC polycrystals. The absence of bubbles on single crystals, in fact, implies that diffusion of the gaseous species formed on oxidation, CO (or possibly SiO), controls the rate of oxidation of SiC.

  3. REVIEW ARTICLE: SiC sensors: a review

    NASA Astrophysics Data System (ADS)

    Wright, N. G.; Horsfall, A. B.

    2007-10-01

    Silicon carbide has attracted considerable attention in recent years as a potential material for sensor devices. This paper reviews the current status of SiC technology for a wide range of sensor applications. It is shown that SiC MEMs devices are well-established with operational devices demonstrated at high temperatures (up to 500 °C) for the sensing of motion, acceleration and gas flow. SiC sensors devices using electrical properties as the sensing mechanism have also been demonstrated principally for gas composition and radiation detection and have wide potential use in scientific, medical and combustion monitoring applications.

  4. Bubble formation in oxide scales on SiC

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Mitchell, T. E.; Heuer, A. H.

    1984-01-01

    The oxidation of alpha-SiC single crystals and sintered alphaand beta-SiC polycrystals has been investigated at elevated temperatures. Bubble formation is commonly observed in oxide scales on polycrystalline SiC, but is rarely found on single-crystal scales; bubbles result from the preferential oxidation of C inclusions, which are abundant in SiC polycrystals. The absence of bubbles on single crystals, in fact, implies that diffusion of the gaseous species formed on oxidation, CO (or possibly SiO), controls the rate of oxidation of SiC.

  5. Cast joining between SiC and aluminum

    SciTech Connect

    Sato, Kenji; Kagawa, Yutaka

    1989-10-01

    A simple cast joining process between reaction-bonded SiC and aluminum has been investigated. Processing variables to obtain strong bonding strength were examined. Metallurgical observation showed that an SiC particle/Al-Si alloy composite layer was formed between RB-SiC and solidified aluminum, and Al4C3 was formed between the SiC particle, in the composite layer, and the Al-Si alloy matrix. Formation of Al4C3 and the composite layer was controlled by casting temperature and time, respectively. The bonding strength increased with decreasing of an unjoined area which formed at the joined surface.

  6. Polymer precursors for SiC ceramic materials

    NASA Technical Reports Server (NTRS)

    Litt, Morton H.

    1986-01-01

    Work on precursor polymers to SiC was performed, concentrating on polymers made from decamethyl cyclohexasilyene units. The initial approach was to synthesize mixed diphenyl decamethyl cyclohexasilane, dephenylate, and polymerize. This produced polymers which had yields of up to 50 percent SiC. (Theoretical yield is 75 percent). The present approach is to make the polymer through the intermediate trans-1,4-diphenyl decamethyl cyclohexasilane. This should produce a crystalline polymer and high strength fibers. These will be thermally decomposed to SiC fibers. This requires new chemistry which is currently being studied.

  7. SiC Composite Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Verilli, Michael J.

    2006-01-01

    Turbine inlet guide vanes have been fabricated from composites of silicon carbide fibers in silicon carbide matrices. A unique design for a cloth made from SiC fibers makes it possible to realize the geometric features necessary to form these vanes in the same airfoil shapes as those of prior metal vanes. The fiber component of each of these vanes was made from SiC-fiber cloth coated with boron nitride. The matrix was formed by chemical-vapor infiltration with SiC, then slurry-casting of SiC, followed by melt infiltration with silicon. These SiC/SiC vanes were found to be capable of withstanding temperatures 400 F (222 C) greater than those that can be withstood by nickel-base-superalloy turbine airfoils now in common use in gas turbine engines. The higher temperature capability of SiC/SiC parts is expected to make it possible to use them with significantly less cooling than is used for metallic parts, thereby enabling engines to operate more efficiently while emitting smaller amounts of NOx and CO. The SiC/SiC composite vanes were fabricated in two different configurations. Each vane of one of the configurations has two internal cavities formed by a web between the suction and the pressure sides of the vane. Each vane of the other configuration has no web (see Figure 1). It is difficult to fabricate components having small radii, like those of the trailing edges of these vanes, by use of stiff stoichiometric SiC fibers currently preferred for SiC/SiC composites. To satisfy the severe geometric and structural requirements for these vanes, the aforementioned unique cloth design, denoted by the term Y-cloth, was conceived (see Figure 2). In the regions away from the trailing edge, the Y-cloth features a fiber architecture that had been well characterized and successfully demonstrated in combustor liners. To form a sharp trailing edge (having a radius of 0.3 mm), the cloth was split into two planes during the weaving process. The fiber tows forming the trailing

  8. Characteristics of Commercial SiC and Synthetic SiC as an Aggregate in Geopolymer Composites

    NASA Astrophysics Data System (ADS)

    Irfanita, R.; Afifah, K. N.; Asrianti; Subaer

    2017-03-01

    This main objective of this study is to investigate the effect silicon carbide (SiC) as an aggregate on the mechanical strength and microstructure of the geopolymer composites. The geopolymers binder were produced by using alkaline activation method of metakaolin and cured at 70oC for 2 hours. In this study commercial and synthetic SiC were used as aggregate to produce composite structure. Synthetic SiC was produced from rice husk ash and coconut shell carbon calcined at 750oC for 2 hours. The addition of SiC in geopolymers paste was varied from 0.25g, 0.50g to 0.75g to form geopolymers composites. The chemical compositions and crystallinity level of SiC and the resulting composites were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC and the composites were examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The physical and mechanical properties of the samples were determined based on apparent porosity, bulk density, and three bending flexural strength measurements. The results showed that the commercial and synthetic SiC were effectively produced geopolymers composites with different microstructure, physical and mechanical strength.

  9. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  10. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors

    NASA Astrophysics Data System (ADS)

    Soltani, A.; Barkad, H. A.; Mattalah, M.; Benbakhti, B.; De Jaeger, J.-C.; Chong, Y. M.; Zou, Y. S.; Zhang, W. J.; Lee, S. T.; BenMoussa, A.; Giordanengo, B.; Hochedez, J.-F.

    2008-02-01

    Deep-ultraviolet (DUV) solar-blind photodetectors based on high-quality cubic boron nitride (cBN) films with a metal/semiconductor/metal configuration were fabricated. The design of interdigitated circular electrodes enables high homogeneity of electric field between pads. The DUV photodetectors present a peak responsivity at 180nm with a very sharp cutoff wavelength at 193nm and a visible rejection ratio (180 versus 250nm) of more than four orders of magnitude. The characteristics of the photodetectors present extremely low dark current, high breakdown voltage, and high responsivity, suggesting that cBN films are very promising for DUV sensing.

  11. High Temperature (250 deg C) SiC Power Module for Military Hybrid Electrical Vehicle Applications

    DTIC Science & Technology

    2011-08-09

    Schottky diodes, SiC JFETs, SiC MOSFETs, and SiC BJTs are now commercially available from multiple companies such as Cree, SemiSouth, Rohm, and...MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE (250 °C) SIC POWER MODULE FOR MILITARY HYBRID ELECTRICAL VEHICLE APPLICATIONS...performance SiC power modules, HT-2000, for military systems and applications. The HT-2000 series of modules are rated to 1200V, are operational to

  12. Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.

    PubMed

    Hall, H T; Barnett, J D; Merrill, L

    1963-01-11

    Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.

  13. Liquid water in the domain of cubic crystalline ice Ic

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.

    1997-01-01

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  14. Liquid water in the domain of cubic crystalline ice Ic.

    PubMed

    Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R

    1997-07-22

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  15. Liquid water in the domain of cubic crystalline ice Ic

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.

    1997-01-01

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  16. Preparation of oriented silicon carbide films by laser ablation of ceramic silicon carbide targets

    NASA Astrophysics Data System (ADS)

    Rimai, L.; Ager, R.; Logothetis, E. M.; Weber, W. H.; Hangas, J.

    1991-10-01

    Stoichiometric films of SiC, 60-150 nm thick, were deposited on 001-line and 111-line Si wafers by laser ablation of ceramic stoichiometric SiC targets. Films grown at substrate temperatures above 1050 C show orientation epitaxial to the Si substrate along the film normal. Depending on the deposition conditions, the oriented crystalline dimension along this direction ranges from 20 nm up to the film thickness. The crystallite dimensions in the film plane range from 20 to 70 nm. Raman spectra indicate that the films often contain material other than crystalline SiC. Some of that is in the form of small (3-5 nm) graphitic inclusions.

  17. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  18. The Number Behind the Simplest SIC-POVM

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar

    2017-08-01

    The simple concept of a SIC poses a very deep problem in algebraic number theory, as soon as the dimension of Hilbert space exceeds three. A detailed description of the simplest possible example is given.

  19. Performance Limiting Defects in SiC Based Transistors

    DTIC Science & Technology

    2006-11-01

    measurements and very sensitive electrically detected magnetic resonance ( EDMR ) measurements to identify performance limiting defects in SiC based metal... EDMR measurements utilize spin- dependent recombination (SDR), a very sensitive electron spin resonance (ESR) technique which allows identification of

  20. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  1. Microwave joining of SiC ceramics and composites

    SciTech Connect

    Ahmad, I.; Silberglitt, R.; Tian, Y.L.; Katz, J.D.

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  2. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  3. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  4. Temperature behavior of the conduction electrons in the nitrogen-doped 3C SiC monocrystals as studied by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Savchenko, D.; Kalabukhova, E.; Prokhorov, A.; Lančok, J.; Shanina, B.

    2017-01-01

    The temperature behavior of the electron spin resonance (ESR) spectra of nitrogen donors in n-type bulk 3C SiC monocrystals with (ND - NA) ≈ 1017 cm-3 was studied at T = 10-50 K. The triplet lines due to the hyperfine (hf) interaction with 14N nuclei (I = 1, 99.6%) along with a single line with similar isotropic g values of 2.0050(3) were observed in the ESR spectrum of n-type 3C SiC monocrystals in the temperature interval from 10 to 35 K. The observed reduction of the hf splitting for the nitrogen donor residing cubic position (Nk) in the temperature interval from 15 to 35 K was attributed to the motion narrowing effect of the hf splitting. With further increase of the temperature up to 35 K, only one single line with a Lorentzian lineshape was observed in the ESR spectrum of n-type 3C SiC, which was previously assigned in the literature to the unknown deeper donor center. Based on the temperature behavior of the ESR linewidth, integral intensity, and g-value, we have attributed this signal to the conduction electrons (CEs). The temperature dependence of the CE ESR linewidth was described by an exponential law (Orbach process) with the value of the activation energy ΔE ≈ 40 meV close to the energy separation between 1 s(E) excited energy level and conduction band for nitrogen donors. The nitrogen donor pairs were found in the ESR spectrum of n-type 3C SiC. The electrical characteristics of 3C SiC sample were studied by using the contact-free microwave conductivity. The energy ionization of nitrogen donor Ei = 51.4 meV was obtained from the fitting of the experimental data with the theory.

  5. Synthesis of micro-sized interconnected Si-C composites

    DOEpatents

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  6. Electrical Characterization of Defects in SiC Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Schnabel, C. M.; Tabib-Azar, M.; Raffaelle, R. P.; Su, H. B.; Dudley, M.; Neudeck, P. G.; Bailey, S.

    2005-01-01

    We have been investigating the effect of screw dislocation and other structural defects on the electrical properties of SiC. SiC is a wide-bandgap semiconductor that is currently received much attention due to its favorable high temperature behavior and high electric field breakdown strength. Unfortunately, the current state-of-the-art crystal growth and device processing methods produce material with high defect densities, resulting in a limited commercial viability

  7. Face-Centered-Cubic Nanostructured Polymer Foams

    NASA Astrophysics Data System (ADS)

    Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.

    1998-03-01

    Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.

  8. Nontrivial topology of cubic alkali bismuthides

    NASA Astrophysics Data System (ADS)

    Rusinov, I. P.; Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Petrov, E. K.; Koroteev, Yu. M.; Echenique, P. M.; Chulkov, E. V.

    2017-06-01

    We report an ab initio study of the effect of pressure on vibrational and electronic properties of K3Bi and Rb3Bi in the cubic F m 3 ¯m structure. It is shown that the high-temperature cubic phase of K3Bi and Rb3Bi is dynamically unstable at T =0 but can be stabilized by pressure. The electronic spectra of alkali bismuthides are found to possess the bulk band touching at the Brillouin zone center and an inverted spin-orbit bulk band structure. Upon hydrostatic compression the compounds transform from the topologically nontrivial semimetal (K3Bi )/metal (Rb3Bi ) into a trivial semiconductor (metal) with a conical Dirac-type dispersion of electronic bands at the point of the topological transition. In K3Bi the dynamical stabilization occurs before the system undergoes the topological phase transition.

  9. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  10. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  11. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  12. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  13. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  14. Effect of cubic aeroelastic nonlinearities on flutter

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The effect of cubic aero-structural nonlinearities on aeroelastic flutter instability is here investigated. Focusing on the unstable flutter mode, the exact amplitude and frequency of the arising limit cycle oscillations are determined analytically. Both harmonic balance and multiple scales methods are adopted and perfect agreement of the explicit results is demonstrated, for the case of small perturbations of the aircraft speed in the neighborhood of the flutter instability.

  15. Cubic pencils of lines and bivariate interpolation

    NASA Astrophysics Data System (ADS)

    Carnicer, J. M.; Gasca, M.

    2008-10-01

    Cubic pencils of lines are classified up to projectivities. Explicit formulae for the addition of lines on the set of nonsingular lines of the pencils are given. These formulae can be used for constructing planar generalized principal lattices, which are sets of points giving rise to simple Lagrange formulae in bivariate interpolation. Special attention is paid to the irreducible nonsingular case, where elliptic functions are used in order to express the addition in a natural form.

  16. UV-induced SiC nanowire sensors

    NASA Astrophysics Data System (ADS)

    Peng, Gang; Zhou, Yingqiu; He, Yanlan; Yu, Xiaoyan; Zhang, Xue A.; Li, Gong Y.; Haick, Hossam

    2015-02-01

    Ultraviolet (UV)-induced sensors based on a single SiC nanowire (NW) were fabricated and the photoelectric properties including I-V characteristics and time response of the UV sensors were studied. SiC NWs (NWs) were prepared through pyrolyzing a polymer precursor with ferrocene as the catalyst by a CVD route. To elucidate the physical mechanism giving rise to the photoelectrical response in SiC NW sensors, three kinds of contacts between electrodes and SiC NW were prepared, i.e. Schottky contact, p-n junction contact, and Ohmic contact. The photoelectric measurements of the device with Schottky contact indicates the lowest dark current and the largest photocurrent. The results suggest that photocurrent generated at SiC NW-electrode contacts is a result of the photovoltaic effect, in which a built-in electric field accelerates photo generated charge carriers to the electronic contacts. The UV sensors based on SiC NWs could be applied in a harsh environment due to the excellent physical stability and photoelectric properties.

  17. Enterphase Integrity of Neutron Irradiated SiC Composites

    SciTech Connect

    Lara-Curzio, E.; Snead, L.L.

    1999-11-30

    SiC/SiC composites were fabricated from Hi-Nicalon{trademark} fibers with carbon, porous SiC and multilayer SiC interphases. These materials were then irradiated in the High Flux Beam Reactor with fast neutrons at 260 and 900-1060 degrees C to a dose of 1.1X10{sup 25} n/m{sup 2} corresponding to 1.1 displacements per atom (dpa). Results are presented for bend strength of both non-irradiated and irradiated materials. Within the interphases studied the multilayer SiC interphase material showed the least degradation (8-20%) in ultimate bend stress, while porous SiC underwent the greatest degradation ({approximately}35%). The Fiber matrix interphases are studied with TEM for both nonirradiated and irradiated materials. While no irradiation induced microstructural evolution of the interphase was observed, debonding of the interphase from the fiber was observed for all cases. This debonding is attributed to tensile stresses developed at the interface due to densification of the Hi-Nicalon{trademark} fiber. Residual stress analysis of the fiber matrix interface indicates that the irradiation-induced densification of Hi-Nicalon{trademark} and the volumetric expansion of the CVD SiC matrix cause tensile stresses well in excess of those which can be withstood by these, or any other viable SiC composite interphase.

  18. Fabrication of SiC mat by radiation processing

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Hyun; Jeun, Joon-Pyo; Seo, Dong-Kwon; Nho, Young-Chang

    2009-07-01

    Silicon carbide (SiC) exhibits many important properties, such as high intrinsic strength, stiffness, and high temperature stability. Therein, it is considered to be one of the most promising candidates for reinforcement of advanced ceramic matrix composites. The use of preceramic polymers presents the possibility of solving the intricacies involved in obtaining a new generation of ceramic materials. In this study, a radiation processing method was used to fabricate a cured polycarbosilane mat as a preceramic polymer. The polycarbosilane mat was cured by electron beam (e-beam) irradiation up to 10 MGy in an inert gas atmosphere. Next, the e-beam-cured PCS mat, as green fiber, was carbonized to produce the SiC mat. The conversion process of the PCS mat into the SiC mat was investigated by SEM, FT-IR, XRD, and TGA. According to FT-IR analysis, the Si-H peak intensity was observed to decrease as the polymer structure changed from polycarbosilane to SiC. The XRD patterns of SiC showed the diffraction peaks at (1 1 1), (2 2 0), and (3 1 1) which indicated the emergence of β-SiC. TGA curve shows that weight percent of residue of electrospun PCS mat, e-beam-cured PCS mat and pyrolyzed SiC mat up to 1000 °C were 72.5%, 88.3%, and 99.2%, respectively.

  19. Thin films in silicon carbide semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ostling, Mikael; Koo, Sang-Mo; Lee, Sang-Kwon; Zetterling, Carl-Mikael; Grishin, Alexander

    2004-12-01

    Silicon carbide (SiC) semiconductor devices have been established during the last decade as very useful high power, high speed and high temperature devices because of their inherent outstanding semiconductor materials properties. Due to its large band gap, SiC possesses a very high breakdown field and low intrinsic carrier concentration, which accordingly makes high voltage and high temperature operation possible. SiC is also suitable for high frequency device applications, because of the high saturation drift velocity and low permittivity. Thin film technology for various functions in the devices has been heavily researched. Suitable thin film technologies for Ohmic and low-resistive contact formation, passivation and new functionality utilizing ferroelectric materials have been developed. In ferroelectrics, the spontaneous polarization can be switched by an externally applied electric field, and thus are attractive for non-volatile memory and sensor applications. A novel integration of Junction-MOSFETs (JMOSFETs) and Nonvolatile FETs (NVFETs) on a single 4H-SiC substrate is realized. SiC JMOSFET controls the drain current effectively from the buried junction gate thereby allowing for a constant current level at elevated temperatures. SiC NVFET has similar functions with non-volatile memory capability due to ferroelectric gate stack, which operated up to 300°C with memory function retained up to 200°C.

  20. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  1. 46 CFR 160.035-9 - Cubic capacity of lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...

  2. 46 CFR 160.035-9 - Cubic capacity of lifeboats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...

  3. Northeastern forest survey revised cubic-foot volume equations

    Treesearch

    Charles T. Scott

    1981-01-01

    Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.

  4. Degree of disorder in cubic mesophases in thermotropics: thermodynamic study of a liquid crystal showing two cubic mesophases.

    PubMed

    Saito, Kazuya; Shinhara, Takashi; Nakamoto, Tadahiro; Kutsumizu, Shoichi; Yano, S; Sorai, Michio

    2002-03-01

    Heat capacity of a thermotropic mesogen ANBC(22) (4(')-alkoxy-3(')-nitrobiphenyl-4-carboxylic acid with 22 carbon atoms in alkyl chain) showing two cubic mesophases was measured by adiabatic calorimetry between 13 and 480 K. Excess enthalpies and entropies due to phase transitions were determined. A small thermal anomaly due to the cubic Im3m-->cubic Ia3d phase transition was successfully detected. Through an analysis of chain-length dependence of the entropy of transition, the sequence of two cubic mesophases (with space groups Ia3d and Im3m) is deduced for thermotropic mesogens ANBC(n). It is shown that the disorder of the core arrangement decreases in the order of Sm-C-->cubic (Im3m)-->cubic (Ia3d) while that of the chain in the reverse order cubic (Ia3d)-->cubic (Im3m)-->Sm C.

  5. Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si3N4/Si Substrates for Robust Microelectromechanical Systems Applications

    DTIC Science & Technology

    2002-01-01

    111) peak as a function of 3MS flow rate. Growth temperature: 1200°C, and N2 flow rate: 1 sccm. Fig. 5. Resistivity and sheet resistance of SiC films...at 300 K as a function of growth temperature. Flow rates: 30 sccm 3MS and 1 sccm N2. Fig. 6. Resistivity and sheet resistance of SiC films at 300 K...as a function of 3MS flow rate. Growth temperature: 1200°C, and N2 flow rate: 1 sccm. Fig. 7. Resistivity and sheet resistance of SiC films at 300 K as

  6. Mapping for Iterative MMSE-SIC with Belief Propagation

    NASA Astrophysics Data System (ADS)

    Gounai, Satoshi; Ohtsuki, Tomoaki; Kaneko, Toshinobu

    Multiple-Input Multiple-Output (MIMO) wireless systems offer both high data rates and high capacity. Since different signals are transmitted by different antennas simultaneously, interference occurs between the transmitted signals. Each receive antenna receives all the signals transmitted by each transmit antenna simultaneously. The receiver has to detect each signal from the multiplexed signal. A Minimum Mean Square Error (MMSE) algorithm is used for spatial filtering. MMSE filtering can realize low complexity signal detection, but the signal output by MMSE filtering suffers from interference by the other signals. MMSE-SIC combines MMSE filtering and Soft Interference Cancellation (SIC) with soft replicas and can achieve good Bit Error Rate (BER) performance. If an irregular LDPC code or a turbo code is used, the reliability and BER of the information bits output by the decoder are likely to be higher and better than the parity bits. In MMSE-SIC, bits with poor reliability lower the accuracy of soft replica estimation. When the soft replica is inaccurate, the gain obtained by SIC is small. M-ary Phase Shift Keying (PSK) and M-ary Quadrature Amplitude Modulation (QAM) also achieve high data rates. Larger constellations such as 8PSK and 16QAM transfer more bits per symbol, and the number of bits per symbol impacts the accuracy of SIC. Unfortunately, increasing the number of bits per symbol is likely to lower the accuracy of soft replica estimation. In this paper, we evaluate three mapping schemes for MMSE-SIC with an LDPC code and a turbo code with the goal of effectively increasing the SIC gain. The first scheme is information reliable mapping. In this scheme, information bits are assigned to strongly protected bits. In the second scheme, parity reliable mapping, parity bits are assigned to strongly protected bits. The last one is random mapping. Computer simulations show that in MMSE-SIC with an irregular LDPC code and a turbo code, information reliable mapping

  7. /SiC Composite to Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Jiménez, C.; Mergia, K.; Yialouris, P.; Messoloras, S.; Liedtke, V.; Wilhelmi, C.; Barcena, J.

    2014-08-01

    In view of aerospace applications, an innovative structure for joining a Ti alloy to carbon fiber reinforced silicon carbide has been developed. This is based on the perforation of the CMC material, and this procedure results in six-fold increase of the shear strength of the joint compared to the unprocessed CMC. The joint is manufactured using the active brazing technique and TiCuAg as filler metal. Sound joints without defects are produced and excellent wetting of both the composite ceramic and the metal is observed. The mechanical shear tests show that failure occurs always within the ceramic material and not at the joint. At the CMC/filler, Ti from the filler metal interacts with the SiC matrix to form carbides and silicides. In the middle of the filler region depletion of Ti and formation of Ag and Cu rich regions are observed. At the filler/Ti alloy interface, a layered structure of the filler and Ti alloy metallic elements is formed. For the perforation to have a significant effect on the improvement of the shear strength of the joint appropriate geometry is required.

  8. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    PubMed

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics.

  9. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  10. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  11. Spontaneous Graphitization of Ultrathin Cubic Structures: A Computational Study

    NASA Astrophysics Data System (ADS)

    Sorokin, Pavel B.; Kvashnin, Alexander G.; Zhu, Zhen; Tománek, David

    2014-12-01

    Results based on {\\em ab initio} density functional calculations indicate a general graphitization tendency in ultrathin slabs of cubic diamond, boron nitride, and many other cubic structures including rocksalt. Whereas such compounds often show an energy preference for cubic rather than layered atomic arrangements in the bulk, the surface energy of layered systems is commonly lower than that of their cubic counterparts. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.

  12. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure

    NASA Astrophysics Data System (ADS)

    Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J.-R.; Tiberj, A.; Jansen, A. G. M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M.; Lapertot, G.; Rouchon, D.; Zahab, A.-A.; Sauvajol, J.-L.; Dubois, L.; Lefloch, F.; Duclairoir, F.

    2016-01-01

    The epitaxial growth of graphene by the sublimation of Si-terminated silicon carbide (SiC) is studied inside a graphite enclosure in a radio-frequency furnace by comparing different in situ processes involving hydrogen etching or not and different growth conditions. For the growth under vacuum, even with the surface preparation of hydrogen etching, the morphology of the synthesized graphene is found full of voids and defects in the form of a multilayer graphene film. For the growth under Ar, the hydrogen etching plays a vital role to improve the graphene quality in terms of surface roughness, the number of graphene layers and the domain size. For the graphene samples grown with the proposed protocol, the original combination of micro-probe Raman spectroscopy and simultaneous optical transmission and reflection measurements reveals a detailed spatially resolved image of the graphene domains with monolayer domain size of ~5×5 μm2 on about 2/3 of the total sample surface. The magnetotransport data yield charge-carrier mobilities up to 2900 cm2/Vs as found for high quality graphene on the Si-face of SiC. The observed magnetoquantum oscillations in the magnetoresistance confirm the expected behavior of single-layer graphene.

  13. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix

    NASA Astrophysics Data System (ADS)

    Rui, Yunjun; Li, Shuxin; Xu, Jun; Song, Chao; Jiang, Xiaofan; Li, Wei; Chen, Kunji; Wang, Qimin; Zuo, Yuhua

    2011-09-01

    Si quantum dots (QDs) were formed by thermal annealing the hydrogenated amorphous silicon carbide films (a-SiCx:H) with different C/Si ratio x, which were controlled by using a different gas ratio R of methane to silane during the deposition process. By adjusting x and post annealing temperature, the QD size can be changed from 1.4 to 4.2 nm accordingly, which was verified by the Raman spectra and transmission electron microscopy images. Size-dependent electroluminescence (EL) was observed, and the EL intensity was higher for the sample containing small-sized Si QDs due to the quantum confinement effect (QCE). The EL peak energy as a function of the Si QDs size was in good agreement with a modified effective mass approximation (EMA) model. The calculated finite barrier potential of the Si QDs embedded in SiC matrix is 0.4 and 0.8 eV for conduction and valence band, respectively. Moreover, the current-voltage properties and the linear relationship between the integrated EL intensity and injection current indicate that the carrier transport is dominated by Fowler-Nordheim tunneling and the EL mechanism is originated from the bipolar recombination of electron-hole pairs at Si QDs. Our results demonstrate Si QDs embedded in amorphous SiC matrix has the potential application in Si-based light emitting devices and the third-generation solar cells.

  14. Fundamentals of Passive Oxidation In SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    1998-01-01

    The very slow oxidation kinetics of silicon carbide and silicon nitride, which derive from their adherent and passivating oxide films, has been explored at length in a broad series of studies utilizing thermogravimetric analysis, electron and optical micrography, energy dispersive spectrometry, x-ray diffractometry, micro-analytical depth profiling, etc. Some interesting microstructural phenomena accompanying the process of oxidation in the two materials will be presented. In Si3N4 the oxide is stratified, with an SiO2 topscale (which is relatively impervious to O2)underlain by a coherent subscale of silicon oxynitride which is even less permeable to O2- Such "defence in depth" endows Si3N4 with what is perhaps the highest oxidation resistance of any material, and results in a unique set of oxidation processes. In SiC the oxidation reactions are much simpler, yet new issues still emerge; for instance, studies involving controlled devitrification of the amorphous silica scale confirmed that the oxidation rate of SiC drops by more than an order of magnitude when the oxide scale fully crystallizes.

  15. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  16. The growth of cubic silicon carbide on a compliant substrate

    NASA Technical Reports Server (NTRS)

    Mitchell, Sharanda; Soward, Ida

    1995-01-01

    Research has shown that silicon carbide grown on silicon and 6H silicon carbide has problems associated with these substrates. This is because silicon and silicon carbide has a 20% lattice mismatch and cubic silicon carbide has not been successfully achieved on 6H silicon carbide. We are investigating the growth of silicon carbide on a compliant substrate in order to grow defect free silicon carbide. This compliant substrate consists of silicon/silicon dioxide with 1200 A of single crystal silicon on the top layer. We are using this compliant substrate because there is a possibility that the silicon dioxide layer and the carbonized layer will allow the silicon lattice to shrink or expand to match the lattice of the silicon carbide. This would improve the electrical properties of the film for the use of device fabrication. When trying to grow silicon carbide, we observed amorphous film. To investigate, we examined the process step by step using RHEED. RHEED data showed that each step was amorphous. We found that just by heating the substrate in the presence of hydrogen it changed the crystal structure. When heated to 1000 C for 2 minutes, RHEED showed that there was an amorphous layer on the surface. We also heated the substrate to 900 C for 2 minutes and RHEED data showed that there was a deterioration of the single crystalline structure. We assumed that the presence of oxygen was coming from the sides of the silicon dioxide layer. Therefore, we evaporated 2500 A of silicon to all four edges of the wafer to try to enclose the oxygen. When heating the evaporated wafer to 900 C the RHEED data showed single crystalline structure however at 1000 C the RHEED data showed deterioration of the single crystalline structure. We conclude that the substrate itself is temperature dependent and that the oxygen was coming from the sides of the silicon dioxide layer. We propose to evaporate more silicon on the edges of the wafer to eliminate the escape of oxygen. this will allow

  17. Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates.

    PubMed

    Richardson, S J; Burton, M R; Staniec, P A; Nandhakumar, I S; Terrill, N J; Elliott, J M; Squires, A M

    2016-02-07

    Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic 'single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (Q(II)) template. Further investigation into the mechanism for the orientation revealed the surprising result that the Q(II) template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain Q(II) samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of Q(II) phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.

  18. Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability

    SciTech Connect

    Soo, Y. L.; Chen, P. J.; Huang, S. H.; Shiu, T. J.; Tsai, T. Y.; Chow, Y. H.; Lin, Y. C.; Weng, S. C.; Chang, S. L.; Wang, G.; Cheung, C. L.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Haider, H.; Garvin, K. L.; Lee, J. F.; Lee, H. Y.; Chu, P. P.

    2008-12-01

    Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia (ZrO{sub 2}) has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. These films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase and high hardness at room temperature without chemical stabilizers. The local structure around Zr probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local structure was also found in a ZrO{sub 2} nanocrystal sample prepared by a sol-gel method. Variations in local structures due to thermal annealing were observed and analyzed. Most importantly, our x-ray results provide direct experimental evidence for the existence of oxygen vacancies arising from local disorder and distortion of the oxygen sublattice in nanocrystalline ZrO{sub 2}. These oxygen vacancies are regarded as the essential stabilizing factor for the nanostructurally stabilized cubic zirconia.

  19. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation.

    PubMed

    Cheng, Qijin; Tam, Eugene; Xu, Shuyan; Ostrikov, Kostya Ken

    2010-04-01

    Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 degrees C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

  20. Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry

    NASA Astrophysics Data System (ADS)

    Soukiassian, Patrick G.; Enriquez, Hanna B.

    2004-05-01

    The atomic scale ordering and properties of cubic silicon carbide (bgr-SiC) surfaces and nanostructures are investigated by atom-resolved room and high-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS), synchrotron radiation-based valence band and core level photoelectron spectroscopy (VB-PES, CL-PES) and grazing incidence x-ray diffraction (GIXRD). In this paper, we review the latest results on the atomic scale understanding of (i) the structure of bgr-SiC(100) surface reconstructions, (ii) temperature-induced metallic surface phase transition, (iii) one dimensional Si(C) self-organized nanostructures having unprecedented characteristics, and on (iv) nanochemistry at SiC surfaces with hydrogen. The organization of these surface reconstructions as well as the 1D nanostructures' self-organization are primarily driven by surface stress. In this paper, we address such important issues as (i) the structure of the Si-rich 3 × 2, the Si-terminated c (4 × 2), the C-terminated c (2 × 2) reconstructions of the bgr-SiC(100) surface, (ii) the temperature-induced reversible {\\mathrm {c}}(4\\times 2) \\Leftrightarrow 2\\times 1 metallic phase transition, (iii) the formation of highly stable (up to 900 °C) Si atomic and vacancy lines, (iv) the temperature-induced sp to sp3 diamond like surface transformation, and (v) the first example of H-induced semiconductor surface metallization on the bgr-SiC (100) 3 × 2 surface. The results are discussed and compared to other experimental and theoretical investigations.

  1. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  2. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  3. Two-layer tubes from cubic crystals

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A.

    2016-12-01

    Effective Young's moduli and Poisson's ratios of two-layer tubes from cubic crystals have been analyzed theoretically. It is shown (using derived formulas for numerical estimates) that the mechanical properties of two-layer tube composites from auxetics and nonauxetics are not described by the mixture rule. It is demonstrated that the deviation of the effective modulus from the mixture rule predictions rapidly increases with an increase in Young's modulus of the nonauxetic components of a composite. It is established that, combining auxetics and nonauxetics in layered tubes, one can obtain, depending on the packing order in layers, either a strong increase or a decrease in auxeticity.

  4. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  5. Electronic structure of nonstoichiometric cubic hydrides

    SciTech Connect

    Switendick, A.C.

    1980-01-01

    Using the supercell approach we have calculated the electronic structure of Y/sub 4/H/sub 8/, Y/sub 4/H/sub 9/, Y/sub 4/H/sub 11/, and Y/sub 4/H/sub 12/ as prototypic of nonstoichiometric cubic di- and trihydrides. The nature of the interaction between the yttrium and the octahedral and tetrahedral hydrogens is shown by the relative amount of charge contained in the crystal spheres. Each added hydrogen lowers one band which was already partially filled. The charge on both the octahedral and tetrahedral sites is very similar and significantly more than is contained in a comparable atomic sphere.

  6. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  7. Recent Developments in SiC Device Research

    NASA Astrophysics Data System (ADS)

    Harris, C. I.; Konstantinov, A. O.

    Silicon Carbide is fast emerging as a mature semiconductor. The unique combination of material properties offered by SiC will allow it to establish itself in applications where the ever dominant Si is approaching the physical (not technical) limits of it's operation. Three key areas will be explored in this paper: (i) High power electronics. SiC devices operating at several kV and capable of MW power handling will revolutionise the way electrical power is transmitted and made use of. Recent progress supported by ABB in Sweden suggests these breakthroughs will begin to play a key role soon after the turn of the century. (ii) High frequency devices made from SiC will also play an increasingly important part in the mobile telecommunication revolution in which we currently live. Northrop Grumman in the USA have demonstrated the transmission of digital TV using SiC based devices. The high power density achieved from such devices make them also suitable for base stations for mobile telephones. (iii) Finally we look at some examples of how SiC is being used to develop new types of sensors that can be used in extreme environments such as high temperatures, high pressures or corrosive environments. Feedback from such sensors is seen as essential to understanding how we effect the world around us and thereby how we can limit pollution.

  8. Amorphization of SiC under ion and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Zinkle, S. J.; Hay, J. C.; Osborne, M. C.

    1998-05-01

    This paper presents results on the microstructure and physical properties of SiC amorphized by both ion and neutron irradiation. Specifically, 0.56 MeV Si ions have been implanted in single crystal 6H-SiC from ambient through >200°C and the critical threshold for amorphization was measured as a function of the irradiation temperature. From a high resolution transmission electron microscopy (HRTEM) study of the crystalline to amorphous transition region in these materials, elongated pockets of amorphous material oriented parallel to the free surface are observed. Single crystal 6H-SiC and hot pressed and sintered 6H and 3C SiC were neutron irradiated at approximately 70°C to a dose of ˜2.56 dpa causing complete amorphization. Property changes resulting from the crystal to amorphous transition in SiC include a density decrease of 10.8%, a hardness decrease from 38.7 to 21.0 GPa, and a decrease in elastic modulus from 528 to 292 GPa. Recrystallization of the amorphized, single crystal 6H-SiC appears to occur in two stages. In the temperature range of ˜800-1000°C, crystallites nucleate and slowly grow. In the temperature range of 1125-1150°C spontaneous nucleation and rapid growth of crystallites occur. It is further noted that amorphized 6H (alpha) SiC recrystallizes to highly faulted fcc (beta) SiC.

  9. X-ray fluorescence microtomography of SiC shells

    SciTech Connect

    Ice, G.E.; Chung, J.S.; Nagedolfeizi, M.

    1997-04-01

    TRISCO coated fuel particles contain a small kernel of nuclear fuel encapsulated by alternating layers of C and SiC. The TRISCO coated fuel particle is used in an advanced fuel designed for passive containment of the radioactive isotopes. The SiC layer provides the primary barrier for radioactive elements in the kernel. The effectiveness of this barrier layer under adverse conditions is critical to containment. The authors have begun the study of SiC shells from TRISCO fuel. They are using the fluorescent microprobe beamline 10.3.1. The shells under evaluation include some which have been cycled through a simulated core melt-down. The C buffer layers and nuclear kernels of the coated fuel have been removed by laser drilling through the SiC and then exposing the particle to acid. Elements of interest include Ru, Sb, Cs, Ce and Eu. The radial distribution of these elements in the SiC shells can be attributed to diffusion of elements in the kernel during the melt-down. Other elements in the shells originate during the fabrication of the TRISCO particles.

  10. Study of deposition of YBa2Cu3O7-x on cubic zirconia

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Meola, Joseph E.; Jenkins, Kimberly A.

    1989-01-01

    Films of YBa2Cu3O7-x were grown on (100) cubic zirconia with 8 percent yttria by laser ablation from sintered targets of YBa2Cu3O7-x. The temperature of the zirconia substrate during growth was varied between 700 and 780 C. The atmosphere during growth was 170 mtorr of O2. The films were subsequently slowly cooled in-situ in 1 atm of O2. The best films were c-axis aligned and had a transition temperature of 87.7 K. The superconducting transition temperature and the X-ray diffraction analysis is reported as a function of the substrate temperature and of the angle between the laser beam and the target's normal.

  11. New primary pressure calibrants for high pressure and temperature scale: SiC-3C and cBN are possible candidates

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Kirill; Goncharov, Alexander; Prakapenka, Vitali

    2011-03-01

    Since the invention of a diamond-anvil cell, various high-pressure scales for in situ pressure measurements have been realized. Ruby-based pressure scale (Mao et al., 1986) is the best known and high-pressure scientific community has been using it for over two decades. However, it has limited use at elevated temperatures, due to the weakening and broadening of the ruby fluorescence line. The recent developments in the field of high temperature, high pressure physics and geophysics require some alternative pressure scale, capable of measuring pressures at temperatures up to 3000 K. Cubic boron nitride (cBN) was recently proposed as the possible pressure calibrant. It has been suggested that the simultaneous use of x-ray diffraction to measure density and Brillouin spectroscopy to obtain elastic properties of the crystal can be used to construct the pressure scale independent of any other pressure standards. However, the acoustic velocities of cBN are very close to those of diamond and, therefore, are hard to resolve in experiment in diamond-anvil cell. Another possible primary pressure calibrant is cubic silicon carbide (SiC-3C). We performed single crystal x-ray diffraction and Brillouin spectroscopy up to 1 Mbar in pressure at room temperature in the diamond-anvil cell and show that cBN and SiC-3C, indeed, can be used in constructing reliable and accurate high-pressure, high-temperature scale.

  12. Chemical vapor deposition of diamond thin films on titanium silicon carbide

    NASA Astrophysics Data System (ADS)

    Yang, Songlan

    2008-10-01

    Chemical vapor deposition (CVD) has been the main method for synthesizing diamond thin films on hetero substrate materials since 1980s. It has been well acknowledged that both nucleation and growth of diamond on non-diamond surfaces without pre-treatment are very difficult and slow. Furthermore, the weak adhesion between the diamond thin films and substrates has been a major problem for widespread application of diamond thin films. Up to now, Si has been the most frequently used substrate for the study of diamond thin films and various methods, including bias and diamond powder scratching, have been applied to enhance diamond nucleation density. In the present study, nucleation and growth of diamond thin films on Ti3SiC2, a newly developed ceramic-metallic material, using Microwave Plasma Enhanced (MPE) and Hot- Filament (HF) CVD reactors were carried out. In addition, synchrotron-based Near Edge Extended X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) was used to identify the electronic and chemical structures of various NCD films. The results from MPECVD showed that a much higher diamond nucleation density and a much higher film growth rate can be obtained on Ti3SiC2 compared with on Si. Consequently, nanocrystalline diamond (NCD) thin films were feasibly synthesized on Ti3SiC2 under the typical conditions for microcrystalline diamond film synthesis. Furthermore, the diamond films on Ti3SiC 2 exhibited better adhesion than on Si. The early stage growth of diamond thin films on Ti3SiC2 by HFCVD indicated that a nanowhisker-like diamond-graphite composite layer, different from diamond nucleation on Si, initially formed on the surface of Ti3SiC2, which resulted in high diamond nucleation density. These results indicate that Ti3SiC 2 has great potentials to be used both as substrates and interlayers on metals for diamond thin film deposition and application. This research may greatly expand the tribological application of both Ti3SiC 2 and diamond thin films

  13. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    SciTech Connect

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  14. Anodized Ti3SiC2 As an Anode Material for Li-ion Microbatteries.

    PubMed

    Tesfaye, Alexander T; Mashtalir, Olha; Naguib, Michael; Barsoum, Michel W; Gogotsi, Yury; Djenizian, Thierry

    2016-07-06

    We report on the synthesis of an anode material for Li-ion batteries by anodization of a common MAX phase, Ti3SiC2, in an aqueous electrolyte containing hydrofluoric acid (HF). The anodization led to the formation of a porous film containing anatase, a small quantity of free carbon, and silica. By varying the anodization parameters, various oxide morphologies were produced. The highest areal capacity was achieved by anodization at 60 V in an aqueous electrolyte containing 0.1 v/v HF for 3 h at room temperature. After 140 cycles performed at multiple applied current densities, an areal capacity of 380 μAh·cm(-2) (200 μA·cm(-2)) has been obtained, making this new material, free of additives and binders, a promising candidate as a negative electrode for Li-ion microbatteries.

  15. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less

  16. Rheological properties of Cubic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2016-11-01

    Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.

  17. Multiply charged monopoles in cubic dimer model

    NASA Astrophysics Data System (ADS)

    Ganesh Jaya, Sreejith; Powell, Stephen

    2015-03-01

    The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.

  18. Cubic membranes: a structure-based design for DNA uptake.

    PubMed

    Almsherqi, Zakaria; Hyde, Stephen; Ramachandran, Malarmathy; Deng, Yuru

    2008-09-06

    Cubic membranes are soft three-dimensional crystals found within cell organelles in a variety of living systems, despite the aphorism of Fedorov: 'crystallization is death'. They consist of multi-bilayer lipid-protein stacks, folded onto anticlastic surfaces that resemble triply periodic minimal surfaces, forming highly swollen crystalline sponges. Although cubic membranes have been observed in numerous cell types and under different pathophysiological conditions, knowledge about the formation and potential function(s) of non-lamellar, cubic structures in biological systems is scarce. We report that mitochondria with this cubic membrane organization isolated from starved amoeba Chaos carolinense interact sufficiently with short segments of phosphorothioate oligonucleotides (PS-ODNs) to give significant ODNs uptake. ODNs condensed within the convoluted channels of cubic membrane by an unknown passive targeting mechanism. Moreover, the interaction between ODNs and cubic membrane is sufficient to retard electrophoretic mobility of the ODN component in the gel matrix. These ODN-cubic membrane complexes are readily internalized within the cytoplasm of cultured mammalian cells. Transmission electron microscopic analysis confirms ODNs uptake by cubic membranes and internalization of ODN-cubic membrane complexes into the culture cells. Cubic membranes thus may offer a new, potentially benign medium for gene transfection.

  19. Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid.

    PubMed

    Taguchi, Tomitsugu; Miyazaki, Toshiki; Iikubo, Satoshi; Yamaguchi, Kenji

    2014-01-01

    SiC nanotubes can become candidate reinforcement materials for dental and orthopedic implants due to their light weight and excellent mechanical properties. However, the development of bioactive SiC materials has not been reported. In this study, hydroxyapatites were found on SiC nanotubes treated with NaOH and subsequently HCl solution after soaking in simulated body fluid. On the other hand, hydroxyapatites did not deposit on as-received SiC nanotubes, the SiC nanotubes with NH4OH solution treatment and SiC bulk materials with NaOH and subsequently HCl solution treatment. Therefore, we succeeded in the development of bioactive SiC nanotubes by downsizing SiC materials to nanometer size and treating with NaOH and subsequently HCl solutions for the first time.

  20. Chemical reactivity of SiC fibre-reinforced SiC with beryllium and lithium ceramic breeder materials

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    2000-12-01

    SiC fibre-reinforced SiC fabrics (f-SiC/SiC) are considered for structural materials of advanced fusion blanket concepts. Priority tasks are compatibility studies of SiC with Li breeder ceramics and the Be neutron multiplier. Isothermal and anisothermal powder reactions by DTA up to 1220°C were examined between Li 4SiO 4, Li 2ZrO 3 and Li 2TiO 3, respectively, and SiC and SiC/SiO 2 mixtures, respectively. The SiC/SiO 2 mixture simulated the chemical state of Nicalon fibres. Solid state reactions between SiC and Be pellets were studied by capsule experiments. The reaction products Be 2C and Si were observed between the initial phases after annealing at 800°C and 900°C. A parabolic time law with a chemical diffusion coefficient D˜=2.6×10 -15 m 2/s of Be in the products was deduced at 900°C. Additional oxygen released from SiO 2 as a component of the simulated fibres oxidised the reaction products via the gas phase by formation of a Be 2SiO 4 layer. All reactions are kinetically hindered below 700°C.

  1. Expanding the versatility of silicon carbide thin films and nanowires

    NASA Astrophysics Data System (ADS)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Thermochemistry and growth mechanism of SiC nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Ding, Lijuan; Xin, Lipeng; Zeng, Fan; Chen, Jun

    2017-09-01

    The chemical reaction thermodynamics and a novel two-stage growth mechanism of SiC nanowires synthesized by carbothermal reduction reactions were investigated based on the Si-C-O systems over a wide temperature range (1050 ≤ T ≤ 2000 K). The carbothermal reduction reaction process involves the fast formation of gaseous SiO and CO crucial intermediates, and the further carbon reduction of SiO to SiC. The relationship between the free energy changes and temperature at different pressures was also discussed. Some fundamental data in the work can help to analyze the thermochemistry of the carbothermal reduction reaction in the Si-C-O system, which is beneficial to optimize the temperature, pressure and the input precursors for controlling the SiC nanowire growth.

  3. Nitrogen Isotopes in SiC: Stellar Nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Huss, G. R.; Nichols, R. H., Jr.; Wasserburg, G. J.

    1995-09-01

    Nitrogen in presolar SiC varies over a wide range of concentrations and is typically 14N-rich relative to solar N, consistent with 15N being consumed during CNO processing in stellar envelopes [e.g. 1]. Although C is also heavily processed in the envelopes [1], no clear isotopic correlation exists between C and N [e.g. 2], making N-compositions difficult to interpret. Although the same general N features are seen in SiC from many meteorites, clear differences between meteorites have also been observed. In particular, Murchison SiC appears to have systematically higher 15N/14N ratios than Orgueil SiC [2, 3]. Among 15N-poor SiC grains for both meteorites, 15N/14N and 28Si/14N exhibit a positive correlation (Fig. 1). This indicates that a 15N-rich component has been added in roughly constant abundance (relative to Si), affecting the low-N grains most. The slope of the line bounding the field of Murchison SiC data is ~10x greater than that for Orgueil SiC (Fig. 1), implying that Murchison grains carry on average ~10x more of the 15N-rich component. If both meteorites sampled the same presolar SiC reservoir, as indicated by isotope systematics of other elements [3], then the 15N-rich component could not have been acquired at the stellar source or in interstellar space. Spallation in the early solar system can also be excluded. Although the pre-compaction exposure age for Murchison (>= 145 Ma [4]) is considerably longer than the total exposure history of Orgueil (~25 Ma [5]), 15N production rates [6] are 500_2000x too low to explain the data. A more likely scenario is that terrestrial N (15N/14N~0.0037) has been acquired by the grains during sample processing. Measured 15N/14N ratios seldom exceed that of terrestrial N (Fig. 1). A minimum of ~2.5 x 10^-5 atoms of 14N(sub)terr per 28Si atom (0.01%_0.1% of the 14N in a grain) is required to produce the correlation observed for Orgueil; >=10x more is required for Murchison. Systematic differences between SiC grain

  4. SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension

    SciTech Connect

    Appleby, D. M.

    2009-03-10

    The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d{sup 2}-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.

  5. Large And Highly Stable Structures Made Of SiC

    NASA Astrophysics Data System (ADS)

    Bougoin, M.; Lavenac, J.

    2012-07-01

    The Boostec® SiC material appears very attractive for manufacturing large space telescopes, thanks to its high specific stiffness and its thermal stability. Its physical properties are perfectly isotropic and it is remarkably more stable than the glass-ceramics in time and also against space radiations. This sintered SiC material has been fully qualified for application at cryogenic temperature. Thanks to its good mechanical strength and toughness, it can be used for making not only the mirrors but also the structure and the focal plane hardware of the optical instruments, thus making “all in SiC” and possibly “athermal” telescopes. The present paper describes the Boostec® SiC properties and then its manufacturing technology. Some examples of the structures of the Multi Spectral Imaging instruments of Sentinel-2 and also the very large Gaia one are further developed.

  6. Selective epitaxial growth of graphene on SiC

    NASA Astrophysics Data System (ADS)

    Camara, N.; Rius, G.; Huntzinger, J.-R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J.

    2008-09-01

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a "prepatterned" silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at ˜1582cm-1 in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  7. Selective epitaxial growth of graphene on SiC

    SciTech Connect

    Camara, N.; Rius, G.; Godignon, P.; Huntzinger, J.-R.; Tiberj, A.; Camassel, J.

    2008-09-22

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a ''prepatterned'' silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at {approx}1582 cm{sup -1} in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  8. Advanced SiC composites for fusion applications

    SciTech Connect

    Snead, L.L.; Schwarz, O.J.

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  9. SiC IR emitter design for thermophotovoltaic generators

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Ferguson, Luke; McCoy, Larry G.; Pernisz, Udo C.

    1996-02-01

    An improved ceramic spine disc burner/emitter for use in a thermophotovoltaic (TPV) generator is described. A columnar infrared (IR) emitter consisting of a stack of silicon carbide (SiC) spine discs provides for both high conductance for the combustion gases and efficient heat transfer from the hot combustion gases to the emitter. Herein, we describe the design, fabrication, and testing of this SiC burner as well as the characterization of the IR spectrum it emits. We note that when the SiC column is surrounded with fused silica heat shields, these heat shields suppress the emitted power beyond 4 microns. Thus, a TPV generator using GaSb photovoltaic cells covered by simple dielectric filters can convert over 30% of the emitted IR radiation to DC electric power.

  10. Modeling the Thermostructural Stability of Melt-infiltrated Sic/sic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.; McCue, Terry R.

    2003-01-01

    SiC/SiC composites developed by NASA with Sylramic-iBN fibers and melt-infiltrated (MI) SiC-Si matrices have demonstrated 1000-hour rupture life in air at 100 MPa and 1315OC. Recently it has been determined that a major factor controlling the long-term rupture life of these composites is not environment or stress, but an intrinsic microstructural and strength instability caused by a thermally-induced silicon attack of the Sic fibers. The objective of this paper is to present a simple diffusion-based analytical model which predicts well the observed effects of stress-free thermal exposure on the residual tensile strength of Sylramic-iBN/SiC-Si composites. The practical implications of the model for SiC/SiC composites with MI matrices are discussed.

  11. Direct observation of porous SiC formed by anodization in HF

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S.; Grimberg, Ilana; Weiss, Ben-Zion; Kurtz, Anthony D.

    1993-01-01

    A process for forming porous SiC from single-crystal SiC wafers has been demonstrated. Porous SiC can be fabricated by anodizing n-type 6H-SiC in HF under UV illumination. TEM reveals pores of sizes 10-30 nm with interpore spacings ranging from roughly 5 to 150 nm. This is the first reported direct observation of porous SiC formation.

  12. Synthesis of a Bulk Ti4SiC3 MAX Phase by Reduction of TiO2 with SiC.

    PubMed

    Istomin, Pavel; Istomina, Elena; Nadutkin, Aleksandr; Grass, Vladislav; Presniakov, Mikhail

    2016-11-07

    The bulk MAX phase Ti4SiC3 was first synthesized with a yield of 86% by a long-time thermal treatment of TiO2 and SiC powder mixture with a molar ratio of 2:3 at 1600 °C under vacuum conditions. It was found that the appearance of Ti4SiC3 was preceded by the formation of TiC and Ti3SiC2 as a result of the following reactions: (1) combined carbothermic and silicothermic reduction of TiO2 to TiC accompanied by evolution of SiO and CO gases; (2) silicidation of TiC with gaseous SiO, leading to the growth of Ti3SiC2. It was suggested that, apart from TiC and Ti3SiC2 solids, sublimed gaseous species such as Ti, Si, Si2C, SiC2, etc., could take part in the Ti4SiC3 formation that occurred in the next stage. The crystal structure of synthesized Ti4SiC3 was refined by X-ray diffraction Rietveld analysis and confirmed by high-resolution scanning transmission electron microscopy. The measured structural characteristics of bulk Ti4SiC3 are in good agreement with those predicted by ab initio calculations reported in the literature.

  13. On the Band Gap Variation in SiC Polytypes

    NASA Astrophysics Data System (ADS)

    van Haeringen, W.; Bobbert, P. A.; Backes, W. H.

    1997-07-01

    Electronic band gaps of SiC polytypes are reproduced within an interface matching technique of electronic wave functions. Essential features resulting from this treatment are introduced in a one-dimensional model, leading to a transparent description of the electronic band gap variation among polytypes. It is discussed in what sense the polytypes of SiC are exceptional in showing a relatively strong band gap variation, contrary to e.g. polytypes of ZnS and hypothetical polytypes made up from Si, C or AlAs.

  14. Saturn V S-IC (First Stage) Structural Arrangement

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This illustration, with callouts, shows the structural arrangement of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage was 138 feet long and 33 feet in diameter, and produced more than 7,500,000 pounds of thrust through five F-1 engines that were powered by liquid oxygen and kerosene. Four of the engines were mounted on an outer ring and gimbal for control purposes. The fifth engine was rigidly mounted in the center. When ignited, the roar produced by the five engines equaled the sound of 8,000,000 hi-fi sets.

  15. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  16. Development of CVD Mullite Coatings for SiC Fibers

    SciTech Connect

    Sarin, V.K.; Varadarajan, S.

    2000-03-15

    A process for depositing CVD mullite coatings on SiC fibers for enhanced oxidation and corrosion, and/or act as an interfacial protective barrier has been developed. Process optimization via systematic investigation of system parameters yielded uniform crystalline mullite coatings on SiC fibers. Structural characterization has allowed for tailoring of coating structure and therefore properties. High temperature oxidation/corrosion testing of the optimized coatings has shown that the coatings remain adherent and protective for extended periods. However, preliminary tests of coated fibers showed considerable degradation in tensile strength.

  17. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bottling mineral or spring water (previously classified under SIC 5149, Groceries and Related Products, NEC... classified under SIC 2819, Industrial Inorganic chemicals, NEC (recovering sulfur from natural gas..., separating, etc. of minerals in SIC 1499)); 488390Other Support Activities for Water Transportation Limited...

  18. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bottling mineral or spring water (previously classified under SIC 5149, Groceries and Related Products, NEC... classified under SIC 2819, Industrial Inorganic chemicals, NEC (recovering sulfur from natural gas..., separating, etc. of minerals in SIC 1499)); 488390Other Support Activities for Water Transportation Limited...

  19. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bottling mineral or spring water (previously classified under SIC 5149, Groceries and Related Products, NEC... classified under SIC 2819, Industrial Inorganic chemicals, NEC (recovering sulfur from natural gas..., separating, etc. of minerals in SIC 1499)); 488390Other Support Activities for Water Transportation Limited...

  20. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bottling mineral or spring water (previously classified under SIC 5149, Groceries and Related Products, NEC... classified under SIC 2819, Industrial Inorganic chemicals, NEC (recovering sulfur from natural gas..., separating, etc. of minerals in SIC 1499)); 488390Other Support Activities for Water Transportation Limited...

  1. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  2. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  3. Curvature and Tangency Handles for Control of Convex Cubic Shapes

    DTIC Science & Technology

    2000-01-01

    looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is

  4. Cubic meter volume optical coherence tomography

    PubMed Central

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  5. On the stability of cubic galileon accretion

    NASA Astrophysics Data System (ADS)

    Bergliaffa, Santiago Esteban Perez; Maier, Rodrigo

    2017-09-01

    We examine the linear stability of the nongravitating steady-state galileon accretion for the case of a Schwarzcshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided into two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.

  6. Polarization conversion in cubic Raman crystals

    NASA Astrophysics Data System (ADS)

    McKay, Aaron; Sabella, Alexander; Mildren, Richard P.

    2017-02-01

    Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB.

  7. Polarization conversion in cubic Raman crystals

    PubMed Central

    McKay, Aaron; Sabella, Alexander; Mildren, Richard P.

    2017-01-01

    Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327

  8. Cubic meter volume optical coherence tomography.

    PubMed

    Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G

    2016-12-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

  9. Triangulation of cubic panorama for view synthesis.

    PubMed

    Zhang, Chunxiao; Zhao, Yan; Wu, Falin

    2011-08-01

    An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.

  10. A smoothing algorithm using cubic spline functions

    NASA Technical Reports Server (NTRS)

    Smith, R. E., Jr.; Price, J. M.; Howser, L. M.

    1974-01-01

    Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.

  11. Very Smooth Ultrananocrystalline Diamond Film Growth by a Novel Pretreatment Technique.

    PubMed

    Park, Jong Cheon; Hwang, Sungu; Kim, Tae Gyu; Kim, Jin Kon; Chun, Ho Hwan; Shin, Sung Chul; Cho, Hyun

    2016-02-01

    Very smooth ultrananocrystalline diamond (UNCD) film growth on SiC substrate was achieved by a novel pretreatment technique consisted of SiC surface texturing and deaggregation of nanodiamond (ND) seed particles. Texturing of SiC surfaces in Ar and SF6/02 plasmas was found to be able to provide normalized roughness values of 0.5-7.0 compared to the untreated surface. SiC surface plasma-textured and seeded with H2 heat-treated ND particles at 600 degrees C showed the highest nucleation density of ~44.2 x 10(11) cm(-2) and a highly uniform coverage of surface with very fine ND seeds. The UNCD film grown with this new pretreatment technique showed a very smooth surface morphology consisted of small and uniformly distributed grains.

  12. The Commercialization of the SiC Flame Sensor

    NASA Astrophysics Data System (ADS)

    Fedison, Jeffrey B.

    2002-03-01

    The technical and scientific steps required to produce large quantities of SiC flame sensors is described. The technical challenges required to understand, fabricate, test and package SiC photodiodes in 1990 were numerous since SiC device know how was embryonic. A sense of urgency for a timely replacement of the Geiger Muller gas discharge tube soon entered the scene. New dual fuel GE Power Systems gas turbines, which were designed to lean burn either natural gas or oil for low NOx emissions required a much higher sensitivity sensor. Joint work between GE CRD and Cree Research sponsored by the GE Aircraft Engine Division developed the know how for the fabrication of high sensitivity, high yield, reliable SiC photodiodes. Yield issues were uncovered and overcome. The urgency for system insertion required that SiC diode and sensor circuitry development needed to be carried out simultaneously with power plant field tests of laboratory or prototype sensor assemblies. The sensor and reliability specifications were stringent since the sensors installed on power plant turbine combustor walls are subjected to high levels of vibration, elevated temperatures, and high pressures. Furthermore a fast recovery time was required to sense flame out in spite of the fact that the amplifier circuit needed have high gain and high dynamic range. SiC diode technical difficulties were encountered and overcome. The science of hydrocarbon flames will also be described together with the fortunate overlap of the strong OH emission band with the SiC photodiode sensitivity versus wavelength characteristic. The extremely low dark current (<1pA/cm^2) afforded by the wide band gap and the 3eV sensitivity cutoff at 400nm made if possible to produce low amplifier offsets, high sensitivity and high dynamic range along with immunity to black body radiation from combustor walls. Field tests at power plants that had experienced turbine tripping, whenever oil fuel and/or oil with steam injection for

  13. Vibration analysis of cubic rotary-linear piezoelectric actuator.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki

    2011-04-01

    Cubic design of a stator in a rotary-linear piezoelectric actuator is sophisticated and interesting, but the vibration theory of the cubic stator remains unclear when using the finite element method (FEM). In this paper, we analyze the vibration behavior of the cubic stator by applying the energy method, which distinguishes the component of mechanical energy. By changing the design of the stator (especially the length in the direction of the through-hole axis), we clarify how the vibration modes are in accordance at one equal frequency in cubic shape. The behavior of the vibration modes is discussed using conventional vibration theory of a beam and a plate. © 2011 IEEE

  14. Synthesis and characterization of organic/inorganic heterostructure films for hybrid light emitting diode

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki

    2007-10-01

    Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.

  15. Synthesis and field emission property of VO 2 nanorods with a body-centered-cubic structure

    NASA Astrophysics Data System (ADS)

    Wang, Yuquan; Zhang, Zhengjun

    2009-02-01

    Films consisting of vertically aligned VO 2 nanorods were prepared on planar silicon substrate by thermally heating a sheet of vanadium in a rough vacuum. These nanorods were found to be of a body-centered-cubic (BCC) structure with a lattice constant of 0.94 nm, which was not observed before for VO 2. Due to their sharp tip of the nanometer scale, the BCC VO 2 nanorods exhibited excellent field emission properties, which make them possible candidate materials for applications in field emission devices.

  16. Second harmonic conversion in cubic silicon carbide at 1.06 micron

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Jones, E. W.; Spencer, M. G.; Jackson, K. H.

    1991-01-01

    This letter describes second harmonic conversion in cubic silicon carbide (beta-SiC) at a wavelength of 1.06 micron. Epitaxial layers of beta-SiC formed by vapor phase growth on silicon are indeed birefringent, and thus phase matchable. Phase-matched films of beta-SiC have respectable conversion efficiencies even in the presence of adsorption at 532 nm. The measured value of the effective second order nonlinear susceptibility for beta-SiC is chi super (2) eff = 1.05 +/- 0.3 x 10 exp -9 esu.

  17. Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells.

    PubMed

    Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C

    2009-09-22

    We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

  18. Solving Buckmaster equation using cubic B-spline and cubic trigonometric B-spline collocation methods

    NASA Astrophysics Data System (ADS)

    Chanthrasuwan, Maveeka; Asri, Nur Asreenawaty Mohd; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah

    2017-08-01

    The cubic B-spline and cubic trigonometric B-spline functions are used to set up the collocation in finding solutions for the Buckmaster equation. These splines are applied as interpolating functions in the spatial dimension while the finite difference method (FDM) is used to discretize the time derivative. The Buckmaster equation is linearized using Taylor's expansion and solved using two schemes, namely Crank-Nicolson and fully implicit. The von Neumann stability analysis is carried out on the two schemes and they are shown to be conditionally stable. In order to demonstrate the capability of the schemes, some problems are solved and compared with analytical and FDM solutions. The proposed methods are found to generate more accurate results than the FDM.

  19. The effects of annealing temperature on structure and photoluminescence of SiC/AlN bilayer thin film

    NASA Astrophysics Data System (ADS)

    He, Xiao-xiong; Li, He-qin; Fan, Wen-bin; Do, Zhi

    2010-10-01

    The SiC/AlN bilayer thin films were grown by RF magnetron sputtering on the silicon(100)substrate, then were annealed from 500°C to 1000°C through the nitrogen gas. The optimum synthetic process was obtained, that is, the gas pressure was 0.5Pa, the flux of Ar was 60sccm, the sputtering power of SiC target was 150W for 1.5hr, while the sputtering power of pure Al target was 100W for 1hr, and the ratio of Ar to N2 was 2:1. Next the XRD, AFM and photoluminescence (PL) spectra of these films were measured with D/Max-γB X-ray diffraction and FL-4500 Fluorometric meter. Two PL emission peaks were observed respectively around 381nm and 400nm, and they came from the SiC particles and the carbon clusters respectively. The intensity of PL emission rises with the increasing of annealing temperature. The PL emission intensity of SiC/AlN bilayer thin film at 381nm is superior to SiC monolayer thin film while the that of SiC/AlN bilayer at 400 nm is inferior to SiC monolayer thin film. In addition to, the grain size of SiC/AlN bilayer thin film is finer than that of SiC monolayer thin film resulting from AFM morphology.

  20. Passivation of SiC device surfaces by aluminum oxide

    NASA Astrophysics Data System (ADS)

    Hallén, A.; Usman, M.; Suvanam, S.; Henkel, C.; Martin, D.; Linnarsson, M. K.

    2014-03-01

    A steady improvement in material quality and process technology has made electronic silicon carbide devices commercially available. Both rectifying and switched devices can today be purchased from several vendors. This successful SiC development over the last 25 years can also be utilized for other types of devices, such as light emitting and photovoltaic devices, however, there are still critical problems related to material properties and reliability that need to be addressed. This contribution will focus on surface passivation of SiC devices. This issue is of utmost importance for further development of SiC MOSFETs, which so far has been limited by reliability and low charge carrier surface mobilities. Also bipolar devices, such as BJTs, LEDs, or PV devices will benefit from more efficient and reliable surface passivation techniques in order to maintain long charge carrier lifetimes. Silicon carbide material enables the devices to operate at higher electric fields, higher temperatures and in more radiation dense applications than silicon devices. To be able to utilize the full potential of the SiC material, it is therefore necessary to develop passivation layers that can sustain these more demanding operation conditions. In this presentation it will also be shown that passivation layers of Al2O3 deposited by atomic layer deposition have shown superior radiation hardness properties compared to traditional SiO2-based passivation layers.

  1. Saturn V Stage I (S-IC) Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Become familiar with the Saturn V Stage I (S-IC) major structural components: Forward Skirt, Oxidizer Tank, Intertank, Fuel Tank, and Thrust Structure. b) Gain a general understanding of the Stage I subsystems: Fuel, Oxidizer, Instrumentation, Flight Control, Environmental Control, Electrical, Control Pressure, and Ordinance.

  2. Towards SiC Surface Functionalization: An Ab Initio Study

    SciTech Connect

    Cicero, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.

  3. Fe Isotopic Composition of Presolar SiC Mainstream Grains

    NASA Technical Reports Server (NTRS)

    Tripa, C. E.; Pellin, M. J.; Savina, M. R.; Davis, A. M.; Lewis, R. S.; Clayton, R. N.

    2002-01-01

    Iron isotopic distribution was measured in SiC mainstream grains from the Murchison meteorite by time-of-flight resonance ionization mass spectrometry. All grains exhibit 54Fe depletions of 50 to 200, lower than what are predicted by calculations of s-process nucleosynthesis in AGB stars. Additional information is contained in the original extended abstract.

  4. Chromium Isotopes in Presolar SiC Grains

    NASA Astrophysics Data System (ADS)

    Savina, M. R.; Levine, J.; Stephan, T.; Dauphas, N.; Davis, A. M.; Knight, K. B.; Pellin, M. J.

    2010-03-01

    The Cr isotopic composition of presolar SiC grains does not account for the anomalies noted in leachates of carbonaceous chondrites, nor does it agree with s-process nucleosynthesis models. It may be reflective of the origin material in the star that produced the grains.

  5. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  6. Epitaxial graphene on SiC{0001}: advances and perspectives.

    PubMed

    Norimatsu, Wataru; Kusunoki, Michiko

    2014-02-28

    We review here recent progress on epitaxial graphene grown on a SiC substrate. Epitaxial graphene can be easily grown by heating the SiC single crystal in a high vacuum or in an inert gas atmosphere. The SiC surfaces used for graphene growth contain Si- and C-terminated faces. On the Si-face, homogeneous and clean graphene can be grown with a controlled number of layers, and the carrier mobility reaches as high as several m(2) V s(-1), although this is reduced by the presence of the substrate steps. On the C-face, although the number of layers is not homogeneous, twisted bilayer graphene can be grown, which is expected to be the technique of choice to modify the electronic structure of graphene. From the application point of view, graphene on SiC will be the platform used to fabricate high-speed electronic devices and dense graphene nanoribbon arrays, which will be used to introduce a bandgap.

  7. Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface

    NASA Astrophysics Data System (ADS)

    Christle, David J.; Klimov, Paul V.; de las Casas, Charles F.; Szász, Krisztián; Ivády, Viktor; Jokubavicius, Valdas; Ul Hassan, Jawad; Syväjärvi, Mikael; Koehl, William F.; Ohshima, Takeshi; Son, Nguyen T.; Janzén, Erik; Gali, Ádám; Awschalom, David D.

    2017-04-01

    The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.

  8. Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC

    NASA Astrophysics Data System (ADS)

    Kuramochi, H.; Odaka, S.; Morita, K.; Tanaka, S.; Miyazaki, H.; Lee, M. V.; Li, S.-L.; Hiura, H.; Tsukagoshi, K.

    2012-03-01

    Thermal decomposition of vicinal SiC substrates with self-organized periodic nanofacets is a promising method to produce large graphene sheets toward the commercial exploitation of graphene's superior electronic properties. The epitaxial graphene films grown on vicinal SiC comprise two distinct regions of terrace and step; and typically exhibit anisotropic electron transport behavior, although limited areas in the graphene film showed ballistic transport. To evaluate the role of terraces and steps in electron transport properties, we compared graphene samples with terrace and step regions grown on 4H-SiC(0001). Arrays of field effect transistors were fabricated on comparable graphene samples with their channels parallel or perpendicular to the nanofacets to identify the source of measured reduced mobility. Minimum conductivity and electron mobility increased with the larger proportional terrace region area; therefore, the terrace region has superior transport properties to step regions. The measured electron mobility in the terrace region, ˜1000 cm2/Vs, is 10 times larger than that in the step region, ˜100 cm2/Vs. We conclusively determine that parasitic effects originate in regions of graphene that grow over step edges in 4H-SiC(0001).

  9. The distribution of elements in sequentially prepared MgB2 on SiC buffered Si substrate and possible pinning mechanisms

    NASA Astrophysics Data System (ADS)

    Chromik, Š.; Nishida, A.; Štrbík, V.; Gregor, M.; Espinós, J. P.; Liday, J.; Durný, R.

    2013-03-01

    MgB2 thin films are prepared by sequential evaporation of boron and magnesium bilayers on SiC buffered Si substrates followed by an in situ annealing. Precursor Mg-B bilayers are deposited by electron beam evaporation at room temperature. The amount of B is varied so as to result in different thickness (15 nm and 50 nm) of stoichiometric MgB2 final film after an in situ reaction with the excess Mg top layer in the vacuum. We show the distribution of the elements through the film. X-ray photoelectron spectroscopy analyses have shown that carbon is not free in the films (except the surface of the film) and silicon is in the compound form, too. In the case of the 15 nm thick films we see a strong interdiffusion of the elements (C, B) and we observe a suppression of TC of the film to 20 K. We register different slope of the H(T) dependence - the lowest temperature value of H for the 15 nm thick film exceeds the one for the 50 nm thick film in spite of lower TC. We suppose that δl pinning mechanism is dominant for the 15 nm thick film.

  10. Solitons in yttrium iron garnet thin films with localized gain

    SciTech Connect

    Pal, Ritu Kumar, C. N.; Loomba, Shally

    2016-05-06

    We present the exact analytical solutions of cubic-quintic nonlinear Schrödinger equation with localized gain. We have demonstrated that the bright and dark solitons exist for the repulsive cubic and attractive quintic nonlinearity. These solutions have been obtained for those values of parameters which support the formation of solitons in Yttrium iron garnet thin films. Our results may be useful to understand the nonlinear pulse excitations in thin films.

  11. Validation of the Symptoms of Illness Checklist (SIC) as a tool for health psychology research.

    PubMed

    Stowell, Jeffrey R; Hedges, Dawson W; Ghambaryan, Anna; Key, Colin; Bloch, George J

    2009-01-01

    We developed the Symptoms of Illness Checklist (SIC) to study psychological influences on physical symptoms of illness. A total of 520 participants completed the SIC and, in some samples, the Salient Stressor Impact Questionnaire, Perceived Stress Scale, Daily Hassles and Uplifts Scale, Derogatis Stress Profile, Life Experiences Survey, and the Symptoms CheckList-90-R. The SIC's test-retest, internal reliability, and validity verified by physician ratings, were very good. SIC correlations with diverse stress measures were less inflated than those of other instruments indicating the SIC is a reliable and valid tool to study psychological influences on physical illness.

  12. First principle identification of SiC monolayer as an efficient catalyst for CO oxidation

    SciTech Connect

    Sinthika, S. E-mail: sinthika90@gmail.com; Thapa, Ranjit E-mail: sinthika90@gmail.com; Reddy, C. Prakash

    2015-06-24

    Using density functional theory, we investigated the electronic properties of SiC monolayer and tested its catalytic activity toward CO oxidation. The planar nature of a SiC monolayer is found to stable and is a high band gap semiconductor. CO interacts physically with SiC surface, whereas O{sub 2} is adsorbed with moderate binding. CO oxidation on SiC monolayer prefers the Eley Rideal mechanism over the Langmuir Hinshelwood mechanism, with an easily surmountable activation barrier during CO{sub 2} formation. Overall metal free SiC monolayer can be used as efficient catalyst for CO oxidation.

  13. Cubic phases for studies of drug partition into lipid bilayers.

    PubMed

    Engström, S; Nordén, T P; Nyquist, H

    1999-08-01

    Drug partition into lipid bilayers in a cubic liquid-crystalline phase was investigated. Glyceryl monooleate was used to form the lipid bilayer in a reversed bicontinuous cubic liquid-crystalline phase. The reason for using the cubic phase is that it may coexist with an external aqueous phase, and that the phase boundary (cubic phase/aqueous bulk) is well-defined due to the stiffness of the cubic phase. This makes the cubic phase a potential candidate for high throughput screening (HTS) of the lipophilicity and the dissociation constant (if any) of drug compounds. Clomethiazole (CMZ), lidocaine, prilocaine and 4-phenylbutylamine (4-PBA) were chosen as model drug compounds. It was shown that it is possible to determine a pH-dependent apparent partition coefficient, Kbl/w, of a drug compound using a lipid bilayer expressed as a cubic liquid-crystalline structure. Good agreement was found when the resulting Kbl/w vs. pH curves for CMZ, lidocaine and prilocaine were fitted to a mathematical expression. This included the bilayer/water partition coefficient for the unionised and ionised drug respectively and the pKa of the drug. The effect of different experimental conditions; such as amount of cubic phase, temperature, agitation, sample preparation and interfacial area between the cubic phase and the aqueous bulk on the partition kinetics were investigated as well. The studies reveal that the time needed to reach partition equilibrium was, as expected, substantially reduced (from days to hours) by decreasing the amount of cubic phase, increasing the interfacial area between the cubic phase and the aqueous phase, and increasing the temperature and the agitation of the sample. It was also shown that the bilayer affinity of 4-PBA was increased when a zwitterionic lipid (i.e. dioleoyl phosphatidylcholine, DOPC) was incorporated in the bilayer.

  14. Growth of Low Defect Density Gallium Nitride (GaN) Films on Novel Tantalum Carbide (TaC) Substrates for Improved Device Performance

    DTIC Science & Technology

    2009-05-01

    on SiC substrates by pulse laser deposition (PLD) (10) and on magnesium oxide ( MgO ) substrates by electron beam evaporation (11), using TaC films...matched to GaN than currently used substrates. We created the TaC substrate, using pulse laser deposition (PLD) of TaC onto (0001) SiC substrates at...films grown on SiC or sapphire, and they contained more than an order of magnitude fewer dislocations compared to a typical value of 4 x 109 cm–2

  15. Plant size, etc., and aerial films. [chlorophyll concentration correlation to film density

    NASA Technical Reports Server (NTRS)

    Gausman, H.; Cardenas, R.; Gerbermann, A. H.

    1974-01-01

    Chlorophyll concentration of chlorotic leaves, expressed as milligrams of chlorophyll per cubic centimeter of leaf volume, was positively correlated to film density readings. Images on the film became darker as chlorophyll concentration increased. Plant size was not related to density readings.

  16. Structural Changes of Amorphous GeTe2 Films by Annealing (Formation of Metastable Crystalline GeTe2 Films)

    NASA Astrophysics Data System (ADS)

    Fukumoto, Hirofumi; Tsunetomo, Keiji; Imura, Takeshi; Osaka, Yukio

    1987-01-01

    Amorphous GeTe2 films with the thickness ˜0.5 μm, prepared by sputtering technique, transform into the crystalline GeTe2 films with the isomorphic structure to β-cristobalite, cubic SiO2, at Ta(annealing temperature){=}200°C. The cubic phase of GeTe2 is metastable and decomposes into the mixed crystal of GeTe and Te at Ta{=}250°C.

  17. Improved BN Coatings on SiC Fibers in SiC Matrices

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.

    2004-01-01

    Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally

  18. Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Fox, D. S.

    2003-01-01

    SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru

  19. PhySIC: a veto supertree method with desirable properties.

    PubMed

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  20. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.