Imhoff, Roland; Lange, Jens; Germar, Markus
2018-02-22
Spatial cueing paradigms are popular tools to assess human attention to emotional stimuli, but different variants of these paradigms differ in what participants' primary task is. In one variant, participants indicate the location of the target (location task), whereas in the other they indicate the shape of the target (identification task). In the present paper we test the idea that although these two variants produce seemingly comparable cue validity effects on response times, they rest on different underlying processes. Across four studies (total N = 397; two in the supplement) using both variants and manipulating the motivational relevance of cue content, diffusion model analyses revealed that cue validity effects in location tasks are primarily driven by response biases, whereas the same effect rests on delay due to attention to the cue in identification tasks. Based on this, we predict and empirically support that a symmetrical distribution of valid and invalid cues would reduce cue validity effects in location tasks to a greater extent than in identification tasks. Across all variants of the task, we fail to replicate the effect of greater cue validity effects for arousing (vs. neutral) stimuli. We discuss the implications of these findings for best practice in spatial cueing research.
Odour discrimination and identification are improved in early blindness.
Cuevas, Isabel; Plaza, Paula; Rombaux, Philippe; De Volder, Anne G; Renier, Laurent
2009-12-01
Previous studies showed that early blind humans develop superior abilities in the use of their remaining senses, hypothetically due to a functional reorganization of the deprived visual brain areas. While auditory and tactile functions have been investigated for long, little is known about the effects of early visual deprivation on olfactory processing. However, blind humans make an extensive use of olfactory information in their daily life. Here we investigated olfactory discrimination and identification abilities in early blind subjects and age-matched sighted controls. Three levels of cuing were used in the identification task, i.e., free-identification (no cue), categorization (semantic cues) and multiple choice (semantic and phonological cues). Early blind subjects significantly outperformed the controls in odour discrimination, free-identification and categorization. In addition, the larger group difference was observed in the free-identification as compared to the categorization and the multiple choice conditions. This indicated that a better access to the semantic information from odour perception accounted for part of the improved olfactory performances in odour identification in the blind. We concluded that early blind subjects have both improved perceptual abilities and a better access to the information stored in semantic memory than sighted subjects.
Motivation and appraisal in perception of poorly specified speech.
Lidestam, Björn; Beskow, Jonas
2006-04-01
Normal-hearing students (n = 72) performed sentence, consonant, and word identification in either A (auditory), V (visual), or AV (audiovisual) modality. The auditory signal had difficult speech-to-noise relations. Talker (human vs. synthetic), topic (no cue vs. cue-words), and emotion (no cue vs. facially displayed vs. cue-words) were varied within groups. After the first block, effects of modality, face, topic, and emotion on initial appraisal and motivation were assessed. After the entire session, effects of modality on longer-term appraisal and motivation were assessed. The results from both assessments showed that V identification was more positively appraised than A identification. Correlations were tentatively interpreted such that evaluation of self-rated performance possibly depends on subjective standard and is reflected on motivation (if below subjective standard, AV group), or on appraisal (if above subjective standard, A group). Suggestions for further research are presented.
Visually-guided attention enhances target identification in a complex auditory scene.
Best, Virginia; Ozmeral, Erol J; Shinn-Cunningham, Barbara G
2007-06-01
In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors.
Visually-guided Attention Enhances Target Identification in a Complex Auditory Scene
Ozmeral, Erol J.; Shinn-Cunningham, Barbara G.
2007-01-01
In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors. PMID:17453308
Liu, Dengtang; Ji, Chengfeng; Zhuo, Kaiming; Song, Zhenhua; Wang, Yingchan; Mei, Li; Zhu, Dianming; Xiang, Qiong; Chen, Tianyi; Yang, Zhilei; Zhu, Guang; Wang, Ya; Cheung, Eric Fc; Xiang, Yu-Tao; Fan, Xiaoduo; Chan, Raymond Ck; Xu, Yifeng; Jiang, Kaida
2017-03-01
Schizophrenia is associated with impairment in prospective memory, the ability to remember to carry out an intended action in the future. It has been established that cue identification (detection of the cue event signaling that an intended action should be performed) and intention retrieval (retrieval of an intention from long-term memory following the recognition of a prospective cue) are two important processes underlying prospective memory. The purpose of this study was to examine prospective memory deficit and underlying cognitive processes in patients with first-episode schizophrenia. This study examined cue identification and intention retrieval components of event-based prospective memory using a dual-task paradigm in 30 patients with first-episode schizophrenia and 30 healthy controls. All participants were also administered a set of tests assessing working memory and retrospective memory. Both cue identification and intention retrieval were impaired in patients with first-episode schizophrenia compared with healthy controls ( ps < 0.05), with a large effect size for cue identification (Cohen's d = 0.98) and a medium effect size for intention retrieval (Cohen's d = 0.62). After controlling for working memory and retrospective memory, the difference in cue identification between patients and healthy controls remained significant. However, the difference in intention retrieval between the two groups was no longer significant. In addition, there was a significant inverse relationship between cue identification and negative symptoms ( r = -0.446, p = 0.013) in the patient group. These findings suggest that both cue identification and intention retrieval in event-based prospective memory are impaired in patients with first-episode schizophrenia. Cue identification and intention retrieval could be potentially used as biomarkers for early detection and treatment prognosis of schizophrenia. In addition, addressing cue identification deficit through cognitive enhancement training may potentially improve negative symptoms as well.
Speech identification in noise: Contribution of temporal, spectral, and visual speech cues.
Kim, Jeesun; Davis, Chris; Groot, Christopher
2009-12-01
This study investigated the degree to which two types of reduced auditory signals (cochlear implant simulations) and visual speech cues combined for speech identification. The auditory speech stimuli were filtered to have only amplitude envelope cues or both amplitude envelope and spectral cues and were presented with/without visual speech. In Experiment 1, IEEE sentences were presented in quiet and noise. For in-quiet presentation, speech identification was enhanced by the addition of both spectral and visual speech cues. Due to a ceiling effect, the degree to which these effects combined could not be determined. In noise, these facilitation effects were more marked and were additive. Experiment 2 examined consonant and vowel identification in the context of CVC or VCV syllables presented in noise. For consonants, both spectral and visual speech cues facilitated identification and these effects were additive. For vowels, the effect of combined cues was underadditive, with the effect of spectral cues reduced when presented with visual speech cues. Analysis indicated that without visual speech, spectral cues facilitated the transmission of place information and vowel height, whereas with visual speech, they facilitated lip rounding, with little impact on the transmission of place information.
Social effects of an anthropomorphic help agent: humans versus computers.
David, Prabu; Lu, Tingting; Kline, Susan; Cai, Li
2007-06-01
The purpose of this study was to examine perceptions of fairness of a computer-administered quiz as a function of the anthropomorphic features of the help agent offered within the quiz environment. The addition of simple anthropomorphic cues to a computer help agent reduced the perceived friendliness of the agent, perceived intelligence of the agent, and the perceived fairness of the quiz. These differences were observed only for male anthropomorphic cues, but not for female anthropomorphic cues. The results were not explained by the social attraction of the anthropomorphic agents used in the quiz or by gender identification with the agents. Priming of visual cues provides the best account of the data. Practical implications of the study are discussed.
Electrophysiological correlates of figure-ground segregation directly reflect perceptual saliency.
Straube, Sirko; Grimsen, Cathleen; Fahle, Manfred
2010-03-05
In a figure identification task, we investigated the influence of different visual cue configurations (spatial frequency, orientation or a combination of both) on the human EEG. Combining psychophysics with ERP and time-frequency analysis, we show that the neural response at about 200ms reflects perceptual saliency rather than physical cue contrast. Increasing saliency caused (i) a negative shift of the posterior P2 coinciding with a power decrease in the posterior theta-band and (ii) an amplitude and latency increase of the posterior P3. We demonstrate that visual cues interact for a percept that is non-linearly related to the physical figure-ground properties.
Won, Jong Ho; Lorenzi, Christian; Nie, Kaibao; Li, Xing; Jameyson, Elyse M; Drennan, Ward R; Rubinstein, Jay T
2012-08-01
Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered "temporal envelopes," i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues.
Flaherty, Mary; Dent, Micheal L.; Sawusch, James R.
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with “d” or “t” and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal. PMID:28562597
Flaherty, Mary; Dent, Micheal L; Sawusch, James R
2017-01-01
The influence of experience with human speech sounds on speech perception in budgerigars, vocal mimics whose speech exposure can be tightly controlled in a laboratory setting, was measured. Budgerigars were divided into groups that differed in auditory exposure and then tested on a cue-trading identification paradigm with synthetic speech. Phonetic cue trading is a perceptual phenomenon observed when changes on one cue dimension are offset by changes in another cue dimension while still maintaining the same phonetic percept. The current study examined whether budgerigars would trade the cues of voice onset time (VOT) and the first formant onset frequency when identifying syllable initial stop consonants and if this would be influenced by exposure to speech sounds. There were a total of four different exposure groups: No speech exposure (completely isolated), Passive speech exposure (regular exposure to human speech), and two Speech-trained groups. After the exposure period, all budgerigars were tested for phonetic cue trading using operant conditioning procedures. Birds were trained to peck keys in response to different synthetic speech sounds that began with "d" or "t" and varied in VOT and frequency of the first formant at voicing onset. Once training performance criteria were met, budgerigars were presented with the entire intermediate series, including ambiguous sounds. Responses on these trials were used to determine which speech cues were used, if a trading relation between VOT and the onset frequency of the first formant was present, and whether speech exposure had an influence on perception. Cue trading was found in all birds and these results were largely similar to those of a group of humans. Results indicated that prior speech experience was not a requirement for cue trading by budgerigars. The results are consistent with theories that explain phonetic cue trading in terms of a rich auditory encoding of the speech signal.
Won, Jong Ho; Lorenzi, Christian; Nie, Kaibao; Li, Xing; Jameyson, Elyse M.; Drennan, Ward R.; Rubinstein, Jay T.
2012-01-01
Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered “temporal envelopes,” i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues. PMID:22894230
Cue combination in a combined feature contrast detection and figure identification task.
Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula
2006-11-01
Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.
A designated odor-language integration system in the human brain.
Olofsson, Jonas K; Hurley, Robert S; Bowman, Nicholas E; Bao, Xiaojun; Mesulam, M-Marsel; Gottfried, Jay A
2014-11-05
Odors are surprisingly difficult to name, but the mechanism underlying this phenomenon is poorly understood. In experiments using event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), we investigated the physiological basis of odor naming with a paradigm where olfactory and visual object cues were followed by target words that either matched or mismatched the cue. We hypothesized that word processing would not only be affected by its semantic congruency with the preceding cue, but would also depend on the cue modality (olfactory or visual). Performance was slower and less precise when linking a word to its corresponding odor than to its picture. The ERP index of semantic incongruity (N400), reflected in the comparison of nonmatching versus matching target words, was more constrained to posterior electrode sites and lasted longer on odor-cue (vs picture-cue) trials. In parallel, fMRI cross-adaptation in the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (ATL) was observed in response to words when preceded by matching olfactory cues, but not by matching visual cues. Time-series plots demonstrated increased fMRI activity in OFC and ATL at the onset of the odor cue itself, followed by response habituation after processing of a matching (vs nonmatching) target word, suggesting that predictive perceptual representations in these regions are already established before delivery and deliberation of the target word. Together, our findings underscore the modality-specific anatomy and physiology of object identification in the human brain. Copyright © 2014 the authors 0270-6474/14/3414864-10$15.00/0.
Evoking and Measuring Identification with Narrative Characters – A Linguistic Cues Framework
van Krieken, Kobie; Hoeken, Hans; Sanders, José
2017-01-01
Current research on identification with narrative characters poses two problems. First, although identification is seen as a dynamic process of which the intensity varies during reading, it is usually measured by means of post-reading questionnaires containing self-report items. Second, it is not clear which linguistic characteristics evoke identification. The present paper proposes that an interdisciplinary framework allows for more precise manipulations and measurements of identification, which will ultimately advance our understanding of the antecedents and nature of this process. The central hypothesis of our Linguistic Cues Framework is that identification with a narrative character is a multidimensional experience for which different dimensions are evoked by different linguistic cues. The first part of the paper presents a literature review on identification, resulting in a renewed conceptualization of identification which distinguishes six dimensions: a spatiotemporal, a perceptual, a cognitive, a moral, an emotional, and an embodied dimension. The second part argues that each of these dimensions is influenced by specific linguistic cues which represent various aspects of the narrative character’s perspective. The proposed relations between linguistic cues and identification dimensions are specified in six propositions. The third part discusses what psychological and neurocognitive methods enable the measurement of the various identification dimensions in order to test the propositions. By establishing explicit connections between the linguistic characteristics of narratives and readers’ physical, psychological, and neurocognitive responses to narratives, this paper develops a research agenda for future empirical research on identification with narrative characters. PMID:28751875
Evoking and Measuring Identification with Narrative Characters - A Linguistic Cues Framework.
van Krieken, Kobie; Hoeken, Hans; Sanders, José
2017-01-01
Current research on identification with narrative characters poses two problems. First, although identification is seen as a dynamic process of which the intensity varies during reading, it is usually measured by means of post-reading questionnaires containing self-report items. Second, it is not clear which linguistic characteristics evoke identification. The present paper proposes that an interdisciplinary framework allows for more precise manipulations and measurements of identification, which will ultimately advance our understanding of the antecedents and nature of this process. The central hypothesis of our Linguistic Cues Framework is that identification with a narrative character is a multidimensional experience for which different dimensions are evoked by different linguistic cues. The first part of the paper presents a literature review on identification, resulting in a renewed conceptualization of identification which distinguishes six dimensions: a spatiotemporal, a perceptual, a cognitive, a moral, an emotional, and an embodied dimension. The second part argues that each of these dimensions is influenced by specific linguistic cues which represent various aspects of the narrative character's perspective. The proposed relations between linguistic cues and identification dimensions are specified in six propositions. The third part discusses what psychological and neurocognitive methods enable the measurement of the various identification dimensions in order to test the propositions. By establishing explicit connections between the linguistic characteristics of narratives and readers' physical, psychological, and neurocognitive responses to narratives, this paper develops a research agenda for future empirical research on identification with narrative characters.
Interactive Effects of Color Realism and Learners' IQ on Effectiveness of Visual Instruction.
ERIC Educational Resources Information Center
Berry, Louis H.; Dwyer, Francis M.
1982-01-01
Undergraduates of different levels of ability (IQ) profited differentially from color cueing of instructional materials pertaining to the human heart. Visualization was not equally effective in achievement of different educational objectives (drawing, identification, terminology, and comprehension tests). Delayed retention of material was not…
The perception of sentence stress in cochlear implant recipients.
Meister, Hartmut; Landwehr, Markus; Pyschny, Verena; Wagner, Petra; Walger, Martin
2011-01-01
Sentence stress is a vital attribute of speech since it indicates the importance of specific words within an utterance. Basic acoustic correlates of stress are syllable duration, intensity, and fundamental frequency (F0). Objectives of the study were to determine cochlear implant (CI) users' perception of the acoustic correlates and to uncover which cues are used for stress identification. Several experiments addressed the discrimination of changes in syllable duration, intensity, and F0 as well as stress identification based on these cues. Moreover, the discrimination of combined cues and identification of stress in conversational speech was examined. Both natural utterances and artificial manipulations of the acoustic cues were used as stimuli. Discrimination of syllable duration did not differ significantly between CI recipients and a control group of normal-hearing listeners. In contrast, CI users performed significantly worse on tasks of discrimination and stress identification based on F0 as well as on intensity. Results from these measurements were significantly correlated with the ability to identify stress in conversational speech. Discrimination performance for covarying F0 and intensity changes was more strongly correlated to identification performance than was found for discrimination of either F0 or intensity alone. Syllable duration was not related to stress identification in natural utterances. The outcome emphasizes the importance of both F0 and intensity for CI users' identification of sentence-based stress. Both cues were used separately for stress perception, but combining the cues provided extra benefit for most of the subjects.
Mi, Lin; Tao, Sha; Wang, Wenjing; Dong, Qi; Guan, Jingjing; Liu, Chang
2016-03-01
The purpose of this study was to examine the relationship between English vowel identification and English vowel formant discrimination for native Mandarin Chinese- and native English-speaking listeners. The identification of 12 English vowels was measured with the duration cue preserved or removed. The thresholds of vowel formant discrimination on the F2 of two English vowels,/Λ/and/i/, were also estimated using an adaptive-tracking procedure. Native Mandarin Chinese-speaking listeners showed significantly higher thresholds of vowel formant discrimination and lower identification scores than native English-speaking listeners. The duration effect on English vowel identification was similar between native Mandarin Chinese- and native English-speaking listeners. Moreover, regardless of listeners' language background, vowel identification was significantly correlated with vowel formant discrimination for the listeners who were less dependent on duration cues, whereas the correlation between vowel identification and vowel formant discrimination was not significant for the listeners who were highly dependent on duration cues. This study revealed individual variability in using multiple acoustic cues to identify English vowels for both native and non-native listeners. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustic cue integration in speech intonation recognition with cochlear implants.
Peng, Shu-Chen; Chatterjee, Monita; Lu, Nelson
2012-06-01
The present article reports on the perceptual weighting of prosodic cues in question-statement identification by adult cochlear implant (CI) listeners. Acoustic analyses of normal-hearing (NH) listeners' production of sentences spoken as questions or statements confirmed that in English the last bisyllabic word in a sentence carries the dominant cues (F0, duration, and intensity patterns) for the contrast. Furthermore, these analyses showed that the F0 contour is the primary cue for the question-statement contrast, with intensity and duration changes conveying important but less reliable information. On the basis of these acoustic findings, the authors examined adult CI listeners' performance in two question-statement identification tasks. In Task 1, 13 CI listeners' question-statement identification accuracy was measured using naturally uttered sentences matched for their syntactic structures. In Task 2, the same listeners' perceptual cue weighting in question-statement identification was assessed using resynthesized single-word stimuli, within which fundamental frequency (F0), intensity, and duration properties were systematically manipulated. Both tasks were also conducted with four NH listeners with full-spectrum and noise-band-vocoded stimuli. Perceptual cue weighting was assessed by comparing the estimated coefficients in logistic models fitted to the data. Of the 13 CI listeners, 7 achieved high performance levels in Task 1. The results of Task 2 indicated that multiple sources of acoustic cues for question-statement identification were utilized to different extents depending on the listening conditions (e.g., full spectrum vs. spectrally degraded) or the listeners' hearing and amplification status (e.g., CI vs. NH).
Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian; Rubinstein, Jay T
2014-06-01
Won et al. (J Acoust Soc Am 132:1113-1119, 2012) reported that cochlear implant (CI) speech processors generate amplitude-modulation (AM) cues recovered from broadband speech frequency modulation (FM) and that CI users can use these cues for speech identification in quiet. The present study was designed to extend this finding for a wide range of listening conditions, where the original speech cues were severely degraded by manipulating either the acoustic signals or the speech processor. The manipulation of the acoustic signals included the presentation of background noise, simulation of reverberation, and amplitude compression. The manipulation of the speech processor included changing the input dynamic range and the number of channels. For each of these conditions, multiple levels of speech degradation were tested. Speech identification was measured for CI users and compared for stimuli having both AM and FM information (intact condition) or FM information only (FM condition). Each manipulation degraded speech identification performance for both intact and FM conditions. Performance for the intact and FM conditions became similar for stimuli having the most severe degradations. Identification performance generally overlapped for the intact and FM conditions. Moreover, identification performance for the FM condition was better than chance performance even at the maximum level of distortion. Finally, significant correlations were found between speech identification scores for the intact and FM conditions. Altogether, these results suggest that despite poor frequency selectivity, CI users can make efficient use of AM cues recovered from speech FM in difficult listening situations.
Neurovascular patterning cues and implications for central and peripheral neurological disease
Gamboa, Nicholas T.; Taussky, Philipp; Park, Min S.; Couldwell, William T.; Mahan, Mark A.; Kalani, M. Yashar S.
2017-01-01
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology. PMID:28966815
Nosewitness Identification: Effects of Negative Emotion
Ferreira, Jacqueline; Rocha, Marta; Silva, Carlos F.; Olsson, Mats J.
2015-01-01
Every individual has a unique body odor (BO), similar to a fingerprint. In forensic research, identification of culprit BOs has been performed by trained dogs, but not by humans. We introduce the concept of nosewitness identification and present the first experimental results on BO memory in witness situations involving violent crimes. Two experiments indicated that BO associated with male characters in authentic videos could later be identified in BO lineup tests well above chance. Moreover, culprit BO in emotional crime videos could be identified considerably better than the BO of a male person in neutral videos. This indicates that nosewitness identification benefits from emotional encoding. Altogether, the study testifies to the virtue of body odor as a cue to identify individuals observed under negative emotion. PMID:25612211
On the front lines: Stakeholder threat cues determine how identified employees cope with scandal.
Grandey, Alicia A; Krannitz, Morgan A; Slezak, Tyler
2015-07-01
When organizational identity is threatened as a result of scandal, highly identified members who represent the threatened organization to stakeholders have a particularly challenging and overlooked experience. Addressing a theoretical paradox, we propose that organizational identification interacts with the threat cues from stakeholders to determine employee responses. We conducted a multimethod, in vivo test of these ideas with university fundraising employees after events threatened the university's moral identity. Interview and archival data demonstrated that stakeholders expressed identity threat to fundraisers, who experienced their own identity-related distress and engaged in both group-dissociative and group-affirming responses. Surveys of professional and student university fundraisers demonstrated that more identified employees were more distressed (e,g., felt anxious, grief, betrayed) regardless of stakeholder threat cues. Yet, when employees perceived weak threat cues from stakeholders, more identified members were less likely to dissociate from the group and more likely to affirm the group's positive identity with stakeholders. These benefits of identification were not present when the stakeholder threat cues were strong. We discuss future research and practical implications of front-line employee identification and stakeholder cues during scandal. (c) 2015 APA, all rights reserved).
Pitch contour identification with combined place and temporal cues using cochlear implants
Luo, Xin; Padilla, Monica; Landsberger, David M.
2012-01-01
This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506
Dubois, Matthieu; Poeppel, David; Pelli, Denis G.
2013-01-01
To understand why human sensitivity for complex objects is so low, we study how word identification combines eye and ear or parts of a word (features, letters, syllables). Our observers identify printed and spoken words presented concurrently or separately. When researchers measure threshold (energy of the faintest visible or audible signal) they may report either sensitivity (one over the human threshold) or efficiency (ratio of the best possible threshold to the human threshold). When the best possible algorithm identifies an object (like a word) in noise, its threshold is independent of how many parts the object has. But, with human observers, efficiency depends on the task. In some tasks, human observers combine parts efficiently, needing hardly more energy to identify an object with more parts. In other tasks, they combine inefficiently, needing energy nearly proportional to the number of parts, over a 60∶1 range. Whether presented to eye or ear, efficiency for detecting a short sinusoid (tone or grating) with few features is a substantial 20%, while efficiency for identifying a word with many features is merely 1%. Why? We show that the low human sensitivity for words is a cost of combining their many parts. We report a dichotomy between inefficient combining of adjacent features and efficient combining across senses. Joining our results with a survey of the cue-combination literature reveals that cues combine efficiently only if they are perceived as aspects of the same object. Observers give different names to adjacent letters in a word, and combine them inefficiently. Observers give the same name to a word’s image and sound, and combine them efficiently. The brain’s machinery optimally combines only cues that are perceived as originating from the same object. Presumably such cues each find their own way through the brain to arrive at the same object representation. PMID:23734220
Dubois, Matthieu; Poeppel, David; Pelli, Denis G
2013-01-01
To understand why human sensitivity for complex objects is so low, we study how word identification combines eye and ear or parts of a word (features, letters, syllables). Our observers identify printed and spoken words presented concurrently or separately. When researchers measure threshold (energy of the faintest visible or audible signal) they may report either sensitivity (one over the human threshold) or efficiency (ratio of the best possible threshold to the human threshold). When the best possible algorithm identifies an object (like a word) in noise, its threshold is independent of how many parts the object has. But, with human observers, efficiency depends on the task. In some tasks, human observers combine parts efficiently, needing hardly more energy to identify an object with more parts. In other tasks, they combine inefficiently, needing energy nearly proportional to the number of parts, over a 60∶1 range. Whether presented to eye or ear, efficiency for detecting a short sinusoid (tone or grating) with few features is a substantial 20%, while efficiency for identifying a word with many features is merely 1%. Why? We show that the low human sensitivity for words is a cost of combining their many parts. We report a dichotomy between inefficient combining of adjacent features and efficient combining across senses. Joining our results with a survey of the cue-combination literature reveals that cues combine efficiently only if they are perceived as aspects of the same object. Observers give different names to adjacent letters in a word, and combine them inefficiently. Observers give the same name to a word's image and sound, and combine them efficiently. The brain's machinery optimally combines only cues that are perceived as originating from the same object. Presumably such cues each find their own way through the brain to arrive at the same object representation.
Capuchin monkeys' use of human and conspecific cues to solve a hidden object-choice task.
Essler, Jennifer L; Schwartz, Lindsay P; Rossettie, Mattea S; Judge, Peter G
2017-09-01
Learning by watching others can provide valuable information with adaptive consequences, such as identifying the presence of a predator or locating a food source. The extent to which nonhuman animals can gain information by reading the cues of others is often tested by evaluating responses to human gestures, such as a point, and less often evaluated by examining responses to conspecific cues. We tested whether ten brown capuchin monkeys (Cebus [Sapajus] apella) were able to use cues from monkeys and a pointing cue from a human to obtain hidden rewards. A monkey could gain access to a reward hidden in one of two locations by reading a cue from a conspecific (e.g., reaching) or a human pointing. We then tested whether they could transfer this skill from monkeys to humans, from humans to monkeys, and from one conspecific to another conspecific. One group of monkeys was trained and tested using a conspecific as the cue-giver and was then tested with a human cue-giver. The second group of monkeys was trained and tested with a human cue-giver and was then tested with a monkey cue-giver. Monkeys that were successful with a conspecific cue-giver were also tested with a novel conspecific cue-giver. Monkeys learned to use a human point and conspecific cues to obtain rewards. Monkeys that had learned to use the cues of a conspecific to obtain rewards performed significantly better than expected by chance when they were transferred to the cues of a novel conspecific. Monkeys that learned to use a human point to obtain rewards performed significantly better than expected by chance when tested while observing conspecific cues. Some evidence suggested that transferring between conspecific cue-givers occurred with more facility than transferring across species. Results may be explained by simple rules of association learning and stimulus generalization; however, spontaneous flexible use of gestures across conspecifics and between different species may indicate capuchins can generalize learned social cues within and partially across species.
Right hemispheric dominance in gaze-triggered reflexive shift of attention in humans.
Okada, Takashi; Sato, Wataru; Toichi, Motomi
2006-11-01
Recent findings suggest a right hemispheric dominance in gaze-triggered shifts of attention. The aim of this study was to clarify the dominant hemisphere in the gaze processing that mediates attentional shift. A target localization task, with preceding non-predicative gaze cues presented to each visual field, was undertaken by 44 healthy subjects, measuring reaction time (RT). A face identification task was also given to determine hemispheric dominance in face processing for each subject. RT differences between valid and invalid cues were larger when presented in the left rather than the right visual field. This held true regardless of individual hemispheric dominance in face processing. Together, these results indicate right hemispheric dominance in gaze-triggered reflexive shifts of attention in normal healthy subjects.
Deployment of spatial attention to words in central and peripheral vision.
Ducrot, Stéphanie; Grainger, Jonathan
2007-05-01
Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.
Complexity of culture: the role of identity and context in bicultural individuals' body ideals.
Guan, Mei; Lee, Fiona; Cole, Elizabeth R
2012-07-01
Culture plays an important role in shaping body image, and people from different cultures have different beliefs about what constitutes the "ideal" body type. This study examines the relationship between culture and body ideals in Asian-American and Black-American women. Results from two studies show that subjective cultural identity and situational cultural cues had different relationships with body ideals. Among Asian-American women, identification with Asian culture was related to a thinner body ideal, but exposure to Asian cultural cues (relative to American cultural cues) was related to a thicker body ideal. Among Black-American women, identification with Black culture was related to a thicker body ideal, but exposure to Black cultural cues (relative to American cultural cues) was related to a thinner body ideal. These results have theoretical and practical implications for understanding how internal and external manifestations of culture can differentially influence body image.
Auditory Emotional Cues Enhance Visual Perception
ERIC Educational Resources Information Center
Zeelenberg, Rene; Bocanegra, Bruno R.
2010-01-01
Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…
The minor third communicates sadness in speech, mirroring its use in music.
Curtis, Meagan E; Bharucha, Jamshed J
2010-06-01
There is a long history of attempts to explain why music is perceived as expressing emotion. The relationship between pitches serves as an important cue for conveying emotion in music. The musical interval referred to as the minor third is generally thought to convey sadness. We reveal that the minor third also occurs in the pitch contour of speech conveying sadness. Bisyllabic speech samples conveying four emotions were recorded by 9 actresses. Acoustic analyses revealed that the relationship between the 2 salient pitches of the sad speech samples tended to approximate a minor third. Participants rated the speech samples for perceived emotion, and the use of numerous acoustic parameters as cues for emotional identification was modeled using regression analysis. The minor third was the most reliable cue for identifying sadness. Additional participants rated musical intervals for emotion, and their ratings verified the historical association between the musical minor third and sadness. These findings support the theory that human vocal expressions and music share an acoustic code for communicating sadness.
Environmental Cues in Double-Occupancy Rooms to Support Patients With Dementia.
Motzek, Tom; Bueter, Kathrin; Marquardt, Gesine
2016-04-01
The purpose of this study was to evaluate the effectiveness of different environmental cues in double-occupancy rooms of an acute care hospital to support patients' abilities to identify their bed and wardrobe. The quasi-experiment was conducted on a geriatric ward of an acute care hospital. Patients with dementia were included (n = 42). To test the effectiveness of environmental cues, two rooms were enhanced with the environmental cue "color," two rooms with the cue "number," and two rooms with the cue "patient's name". Four rooms were not redesigned and were used as control rooms. For analysis, we pooled the intervention groups color and number (n = 14) and compared it with the control group (n = 22). The environmental cues color and number were significantly effective to improve the identification of the wardrobe from the third to the fifth day after admission. However, for the 10th-12th day after admission, we found no difference in results. Furthermore, results indicate improvements in the ability to identify the bed by using the environmental cues color and number. As this study indicated, the environmental cues color and number are helpful for these patients to identify their bed and wardrobe. However, these cues were most effective from the third to the fifth day after admission. To sustain their effectiveness on patients' identification abilities during their hospital stay, we discuss, whether verbal prompting and an ongoing mentioning of such cues, embedded in the daily work of nurses, could be beneficial. © The Author(s) 2015.
Context cue focality influences strategic prospective memory monitoring.
Hunter Ball, B; Bugg, Julie M
2018-02-12
Monitoring the environment for the occurrence of prospective memory (PM) targets is a resource-demanding process that produces cost (e.g., slower responding) to ongoing activities. However, research suggests that individuals are able to monitor strategically by using contextual cues to reduce monitoring in contexts in which PM targets are not expected to occur. In the current study, we investigated the processes supporting context identification (i.e., determining whether or not the context is appropriate for monitoring) by testing the context cue focality hypothesis. This hypothesis predicts that the ability to monitor strategically depends on whether the ongoing task orients attention to the contextual cues that are available to guide monitoring. In Experiment 1, participants performed an ongoing lexical decision task and were told that PM targets (TOR syllable) would only occur in word trials (focal context cue condition) or in items starting with consonants (nonfocal context cue condition). In Experiment 2, participants performed an ongoing first letter judgment (consonant/vowel) task and were told that PM targets would only occur in items starting with consonants (focal context cue condition) or in word trials (nonfocal context cue condition). Consistent with the context cue focality hypothesis, strategic monitoring was only observed during focal context cue conditions in which the type of ongoing task processing automatically oriented attention to the relevant features of the contextual cue. These findings suggest that strategic monitoring is dependent on limited-capacity processing resources and may be relatively limited when the attentional demands of context identification are sufficiently high.
Modeling human pilot cue utilization with applications to simulator fidelity assessment.
Zeyada, Y; Hess, R A
2000-01-01
An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.
ERIC Educational Resources Information Center
Moradi, Shahram; Lidestam, Bjorn; Danielsson, Henrik; Ng, Elaine Hoi Ning; Ronnberg, Jerker
2017-01-01
Purpose: We sought to examine the contribution of visual cues in audiovisual identification of consonants and vowels--in terms of isolation points (the shortest time required for correct identification of a speech stimulus), accuracy, and cognitive demands--in listeners with hearing impairment using hearing aids. Method: The study comprised 199…
Cunningham, Clare L; Ramos, Mari F
2014-05-01
Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues.
Working memory enhances visual perception: evidence from signal detection analysis.
Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W
2010-03-01
We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be re-presented in the display, where it surrounded either the target (on valid trials) or a distractor (on invalid trials). Perceptual identification of the target, as indexed by A', was enhanced on valid relative to invalid trials but only when the cue was kept in WM. There was minimal effect of the cue when it was merely attended and not kept in WM. Verbal cues were as effective as visual cues at modulating perceptual identification, and the effects were independent of the effects of target saliency. Matches to the contents of WM influenced perceptual sensitivity even under conditions that minimized competition for selecting the target. WM cues were also effective when targets were less likely to fall in a repeated WM stimulus than in other stimuli in the search display. There were no effects of WM on decisional criteria, in contrast to sensitivity. The findings suggest that reentrant feedback from WM can affect early stages of perceptual processing.
Francis, Alexander L; Driscoll, Courtney
2006-09-01
We examined the effect of perceptual training on a well-established hemispheric asymmetry in speech processing. Eighteen listeners were trained to use a within-category difference in voice onset time (VOT) to cue talker identity. Successful learners (n=8) showed faster response times for stimuli presented only to the left ear than for those presented only to the right. The development of a left-ear/right-hemisphere advantage for processing a prototypically phonetic cue supports a model of speech perception in which lateralization is driven by functional demands (talker identification vs. phonetic categorization) rather than by acoustic stimulus properties alone.
Schiller, Peter H; Kwak, Michelle C; Slocum, Warren M
2012-08-01
This study examined how effectively visual and auditory cues can be integrated in the brain for the generation of motor responses. The latencies with which saccadic eye movements are produced in humans and monkeys form, under certain conditions, a bimodal distribution, the first mode of which has been termed express saccades. In humans, a much higher percentage of express saccades is generated when both visual and auditory cues are provided compared with the single presentation of these cues [H. C. Hughes et al. (1994) J. Exp. Psychol. Hum. Percept. Perform., 20, 131-153]. In this study, we addressed two questions: first, do monkeys also integrate visual and auditory cues for express saccade generation as do humans and second, does such integration take place in humans when, instead of eye movements, the task is to press levers with fingers? Our results show that (i) in monkeys, as in humans, the combined visual and auditory cues generate a much higher percentage of express saccades than do singly presented cues and (ii) the latencies with which levers are pressed by humans are shorter when both visual and auditory cues are provided compared with the presentation of single cues, but the distribution in all cases is unimodal; response latencies in the express range seen in the execution of saccadic eye movements are not obtained with lever pressing. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Dissociating emotion-induced blindness and hypervision.
Bocanegra, Bruno R; Zeelenberg, René
2009-12-01
Previous findings suggest that emotional stimuli sometimes improve (emotion-induced hypervision) and sometimes impair (emotion-induced blindness) the visual perception of subsequent neutral stimuli. We hypothesized that these differential carryover effects might be due to 2 distinct emotional influences in visual processing. On the one hand, emotional stimuli trigger a general enhancement in the efficiency of visual processing that can carry over onto other stimuli. On the other hand, emotional stimuli benefit from a stimulus-specific enhancement in later attentional processing at the expense of competing visual stimuli. We investigated whether detrimental (blindness) and beneficial (hypervision) carryover effects of emotion in perception can be dissociated within a single experimental paradigm. In 2 experiments, we manipulated the temporal competition for attention between an emotional cue word and a subsequent neutral target word by varying cue-target interstimulus interval (ISI) and cue visibility. Interestingly, emotional cues impaired target identification at short ISIs but improved target identification when competition was diminished by either increasing ISI or reducing cue visibility, suggesting that emotional significance of stimuli can improve and impair visual performance through distinct perceptual mechanisms.
Integration of Pragmatic and Phonetic Cues in Spoken Word Recognition
Rohde, Hannah; Ettlinger, Marc
2015-01-01
Although previous research has established that multiple top-down factors guide the identification of words during speech processing, the ultimate range of information sources that listeners integrate from different levels of linguistic structure is still unknown. In a set of experiments, we investigate whether comprehenders can integrate information from the two most disparate domains: pragmatic inference and phonetic perception. Using contexts that trigger pragmatic expectations regarding upcoming coreference (expectations for either he or she), we test listeners' identification of phonetic category boundaries (using acoustically ambiguous words on the/hi/∼/∫i/continuum). The results indicate that, in addition to phonetic cues, word recognition also reflects pragmatic inference. These findings are consistent with evidence for top-down contextual effects from lexical, syntactic, and semantic cues, but they extend this previous work by testing cues at the pragmatic level and by eliminating a statistical-frequency confound that might otherwise explain the previously reported results. We conclude by exploring the time-course of this interaction and discussing how different models of cue integration could be adapted to account for our results. PMID:22250908
Preference conditioning in healthy individuals: correlates with hazardous drinking.
Balodis, Iris M; Lockwood, Kathleen P; Magrys, Sylvia A; Olmstead, Mary C
2010-06-01
Conditioned reward is a classic measure of drug-induced brain changes in animal models of addiction. The process can be examined in humans using the Conditioned Pattern Preference (CPP) task, in which participants associate nonverbal cues with reward but demonstrate low awareness of this conditioning. Previously, we reported that alcohol intoxication does not affect CPP acquisition in humans, but our data indicated that prior drug use may impact conditioning scores. To test this possibility, the current study examined the relationship between self-reported alcohol use and preference conditioning in the CPP task. Working memory was assessed during conditioning by asking participants to count the cues that appeared at each location on a computer screen. Participants (69 female and 23 male undergraduate students) completed the Alcohol Use Disorders Identification Test (AUDIT) and the Rutgers Alcohol Problem Index (RAPI) as measures of hazardous drinking. Self-reported hazardous drinking was significantly correlated with preference conditioning in that individuals who scored higher on these scales exhibited an increased preference for the reward-paired cues. In contrast, hazardous drinking did not affect working memory errors on the CPP task. These findings support evidence that repeated drug use sensitizes neural pathways mediating conditioned reward and point to a neurocognitive disposition linking substance misuse and responses to reward-paired stimuli. The relationship between hazardous drinking and conditioned reward is independent of changes in cognitive function, such as working memory.
Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J
2013-06-07
Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the field's common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues
Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas
2016-01-01
Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.
The Responses of Young Domestic Horses to Human-Given Cues
Proops, Leanne; Rayner, Jenny; Taylor, Anna M.; McComb, Karen
2013-01-01
It has been suggested that the process of domestication, at least in some species, has led to an innate predisposition to be skilled at reading human communicative and attentional cues. Adult domestic horses (Equus caballus) are highly sensitive to subtle bodily cues when determining if a person is attending to them but they are less adept at using human communicative cues in object choice tasks. Here we provide the first study into the ontogeny of such skills in order to gain insights into the mechanisms underlying these abilities. Compared with adult horses, youngsters under the age of three could use body orientation but not more subtle cues such as head movement and open/closed eyes to correctly choose an attentive person to approach for food. Across two object choice experiments, the performance of young horses was comparable to that of adult horses – subjects were able to correctly choose a rewarded bucket using marker placement, pointing and touching cues but could not use body orientation, gaze, elbow pointing or tapping cues. Taken together these results do not support the theory that horses possess an innate predisposition to be particularly skilled at using human cues. Horses' ability to determine whether humans are attending to them using subtle body cues appears to require significant experience to fully develop and their perhaps less remarkable use of limited cues in object choice tasks, although present at a much earlier age, is likely to reflect a more general learning ability related to stimulus enhancement rather than a specific ‘human-reading’ skill. PMID:23840572
Appearance-based multimodal human tracking and identification for healthcare in the digital home.
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-08-05
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.
Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-01-01
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare. PMID:25098207
Effects of cue types on sex differences in human spatial memory.
Chai, Xiaoqian J; Jacobs, Lucia F
2010-04-02
We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.
Auditory orienting of attention: Effects of cues and verbal workload with children and adults.
Phélip, Marion; Donnot, Julien; Vauclair, Jacques
2016-01-01
The use of tone cues has an improving effect on the auditory orienting of attention for children as for adults. Verbal cues, on the contrary, do not seem to orient attention as efficiently before the age of 9 years. However, several studies have reported inconsistent effects of orienting attention on ear asymmetries. Multiple factors are questioned, such as the role of verbal workload. Indeed, the semantic nature of the dichotic pairs and their load of processing may explain orienting of attention performance. Thus, by controlling for the role of verbal workload, the present experiment aimed to evaluate the development of capacities for the auditory orienting of attention. Right-handed, 6- to 12-year-olds and adults were recruited to complete either a tone cue or a verbal cue dichotic listening task in the identification of familiar words or nonsense words. A factorial design analysis of variance showed a significant right-ear advantage for all the participants and for all the types of stimuli. A major developmental effect was observed in which verbal cues played an important role: they allowed the 6- to 8-year-olds to improve their performance of identification in the left ear. These effects were taken as evidence of the implication of top-down processes in cognitive flexibility across development.
Feature-selective attention enhances color signals in early visual areas of the human brain.
Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A
2006-09-19
We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.
Context Switch Effects on Acquisition and Extinction in Human Predictive Learning
ERIC Educational Resources Information Center
Rosas, Juan M.; Callejas-Aguilera, Jose E.
2006-01-01
Four experiments tested context switch effects on acquisition and extinction in human predictive learning. A context switch impaired probability judgments about a cue-outcome relationship when the cue was trained in a context in which a different cue underwent extinction. The context switch also impaired judgments about a cue trained in a context…
The Trust Project - Symbiotic Human Machine Teams: Social Cueing for Trust and Reliance
2016-06-30
AFRL-RH-WP-TR-2016-0096 THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE Susan Rivers, Monika Lohani, Marissa...30 JUN 2012 – 30 JUN 2016 4. TITLE AND SUBTITLE THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE 5a. CONTRACT
Galvan, Moriah; Vonk, Jennifer
2016-01-01
The ability of domestic dogs (C. lupus famaliaris) to follow and attend to human emotion expressions is well documented. It is unknown whether domestic cats (F. silvestris catus) possess similar abilities. Because cats belong to the same order (Carnivora), but did not evolve to live in complex social groups, research with them enables us to tease apart the influence of social structure versus domestication processes on the capacity to recognize human communicative cues, such as emotions. Two experiments were conducted to determine the extent to which domestic cats discriminate between human emotion cues. The first experiment presented cats with facial and postural cues of happiness and anger from both an unfamiliar experimenter and their familiar owner in the absence of vocal cues. The second experiment presented cats with vocal cues of human emotion through a positively or negatively charged conversation between an experimenter and owner. Domestic cats were only modestly sensitive to emotion, particularly when displayed by their owner, suggesting that a history of human interaction alone may not be sufficient to shape such abilities in domestic cats.
Motion cue effects on human pilot dynamics in manual control
NASA Technical Reports Server (NTRS)
Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.
1977-01-01
Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.
The shaping of social perception by stimulus and knowledge cues to human animacy
Ramsey, Richard; Liepelt, Roman; Prinz, Wolfgang; Hamilton, Antonia F. de C.
2016-01-01
Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self–other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design. PMID:26644594
The shaping of social perception by stimulus and knowledge cues to human animacy.
Cross, Emily S; Ramsey, Richard; Liepelt, Roman; Prinz, Wolfgang; de C Hamilton, Antonia F
2016-01-19
Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self-other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design. © 2015 The Authors.
Near-optimal integration of facial form and motion.
Dobs, Katharina; Ma, Wei Ji; Reddy, Leila
2017-09-08
Human perception consists of the continuous integration of sensory cues pertaining to the same object. While it has been fairly well shown that humans use an optimal strategy when integrating low-level cues proportional to their relative reliability, the integration processes underlying high-level perception are much less understood. Here we investigate cue integration in a complex high-level perceptual system, the human face processing system. We tested cue integration of facial form and motion in an identity categorization task and found that an optimal model could successfully predict subjects' identity choices. Our results suggest that optimal cue integration may be implemented across different levels of the visual processing hierarchy.
Choi, Damee; Minote, Natsumi; Watanuki, Shigeki
2017-01-26
Oxytocin receptor (OXTR) gene polymorphisms are related to individual differences in emotional processing of social cues. However, whether OXTR polymorphisms affect emotional processing of nonsocial cues remains unclear. The present study investigated the relationship between the OXTR rs53576 polymorphism and emotional processing of social cues and nonsocial cues. Event-related potentials were recorded from 88 male participants while images of humans and images of objects were presented as social cues and nonsocial cues, respectively. First, the results showed that GG carriers of OXTR rs53576 showed more negative N1 (50-200 ms) than AA carriers in response to images of both humans and objects. Second, GG carriers showed more negative N2 (200-320 ms) than AA carriers in response to images of humans but not in response to images of objects. Third, GG carriers showed more negative N2 in response to images of humans than images of objects, whereas AA carriers showed the opposite pattern. Fourth, we observed no difference in late positive potential (600-1000 ms) to images of humans or objects that depended on the OXTR rs53576 polymorphism. These results suggest that the OXTR rs53576 polymorphism affects emotional processing of not only social cues but also nonsocial cues in the very early stage (reflected in N1); however, the data also suggest that the OXTR rs53576 polymorphism is related specifically to increased emotional processing of social cues in the middle stage (reflected in N2).
Identification of an insect-produced olfactory cue that primes plant defenses
USDA-ARS?s Scientific Manuscript database
It is increasingly clear that plants can perceive and respond to olfactory cues. Yet, knowledge about the specificity and sensitivity of such perception remains limited. We previously documented priming of anti-herbivore defenses in tall goldenrod plants (Solidago altissima) by volatile emissions fr...
Blocking Spatial Navigation Across Environments That Have a Different Shape
2015-01-01
According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form. PMID:26569017
Fiore, Stephen M; Wiltshire, Travis J; Lobato, Emilio J C; Jentsch, Florian G; Huang, Wesley H; Axelrod, Benjamin
2013-01-01
As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava(TM) mobile robotics platform in a hallway navigation scenario. Cues associated with the robot's proxemic behavior were found to significantly affect participant perceptions of the robot's social presence and emotional state while cues associated with the robot's gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot's mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.
Emotional tears facilitate the recognition of sadness and the perceived need for social support.
Balsters, Martijn J H; Krahmer, Emiel J; Swerts, Marc G J; Vingerhoets, Ad J J M
2013-02-12
The tearing effect refers to the relevance of tears as an important visual cue adding meaning to human facial expression. However, little is known about how people process these visual cues and their mediating role in terms of emotion perception and person judgment. We therefore conducted two experiments in which we measured the influence of tears on the identification of sadness and the perceived need for social support at an early perceptional level. In two experiments (1 and 2), participants were exposed to sad and neutral faces. In both experiments, the face stimuli were presented for 50 milliseconds. In experiment 1, tears were digitally added to sad faces in one condition. Participants demonstrated a significant faster recognition of sad faces with tears compared to those without tears. In experiment 2, tears were added to neutral faces as well. Participants had to indicate to what extent the displayed individuals were in need of social support. Study participants reported a greater perceived need for social support to both sad and neutral faces with tears than to those without tears. This study thus demonstrated that emotional tears serve as important visual cues at an early (pre-attentive) level.
Cue-reactors: individual differences in cue-induced craving after food or smoking abstinence.
Mahler, Stephen V; de Wit, Harriet
2010-11-10
Pavlovian conditioning plays a critical role in both drug addiction and binge eating. Recent animal research suggests that certain individuals are highly sensitive to conditioned cues, whether they signal food or drugs. Are certain humans also more reactive to both food and drug cues? We examined cue-induced craving for both cigarettes and food, in the same individuals (n = 15 adult smokers). Subjects viewed smoking-related or food-related images after abstaining from either smoking or eating. Certain individuals reported strong cue-induced craving after both smoking and food cues. That is, subjects who reported strong cue-induced craving for cigarettes also rated stronger cue-induced food craving. In humans, like in nonhumans, there may be a "cue-reactive" phenotype, consisting of individuals who are highly sensitive to conditioned stimuli. This finding extends recent reports from nonhuman studies. Further understanding this subgroup of smokers may allow clinicians to individually tailor therapies for smoking cessation.
Identification and the Influence of Cultural Stereotyping on Postvideogame Play Hostility
ERIC Educational Resources Information Center
Eastin, Matthew S.; Appiah, Osei; Cicchirllo, Vincent
2009-01-01
The current study examines the impact of racial representation on character identification and postgame play hostility. Examining data from Black and White participants, results suggest that cueing racial attributes influences identification and elicits stereotyping and hostile outcomes. Specifically, White players displayed more hostile thoughts…
Auditory emotional cues enhance visual perception.
Zeelenberg, René; Bocanegra, Bruno R
2010-04-01
Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by emotional cues as compared to neutral cues. When the cue was presented visually we replicated the emotion-induced impairment found in other studies. Our results suggest emotional stimuli have a twofold effect on perception. They impair perception by reflexively attracting attention at the expense of competing stimuli. However, emotional stimuli also induce a nonspecific perceptual enhancement that carries over onto other stimuli when competition is reduced, for example, by presenting stimuli in different modalities. Copyright 2009 Elsevier B.V. All rights reserved.
Does direct human eye contact function as a warning cue for domestic sheep (Ovis aries)?
Beausoleil, Ngaio J; Stafford, Kevin J; Mellor, David J
2006-08-01
Direct eye contact may function as a warning cue during interspecific interactions, and human staring has been shown to influence the behavior of many species. The authors used an arena test to assess whether human staring altered the behavior of domestic sheep (Ovis aries) compared with no human eye contact. Sheep glanced at the staring human's face more often in the first 2 min of the test, indicating that they perceived a difference between the human stimuli. Staring also elicited more locomotor activity and urination than averted gaze. However, there were no differences in fear-related behaviors, suggesting that a staring human did not represent a greater immediate threat than a nonwatching human. These results imply that human staring is a warning cue for domestic sheep, but no more. Without further reinforcement, sheep quickly habituated to the warning cue. ((c) 2006 APA, all rights reserved).
Boucher, Jean-David; Pattacini, Ugo; Lelong, Amelie; Bailly, Gerrard; Elisei, Frederic; Fagel, Sascha; Dominey, Peter Ford; Ventre-Dominey, Jocelyne
2012-01-01
Human-human interaction in natural environments relies on a variety of perceptual cues. Humanoid robots are becoming increasingly refined in their sensorimotor capabilities, and thus should now be able to manipulate and exploit these social cues in cooperation with their human partners. Previous studies have demonstrated that people follow human and robot gaze, and that it can help them to cope with spatially ambiguous language. Our goal is to extend these findings into the domain of action, to determine how human and robot gaze can influence the speed and accuracy of human action. We report on results from a human-human cooperation experiment demonstrating that an agent's vision of her/his partner's gaze can significantly improve that agent's performance in a cooperative task. We then implement a heuristic capability to generate such gaze cues by a humanoid robot that engages in the same cooperative interaction. The subsequent human-robot experiments demonstrate that a human agent can indeed exploit the predictive gaze of their robot partner in a cooperative task. This allows us to render the humanoid robot more human-like in its ability to communicate with humans. The long term objectives of the work are thus to identify social cooperation cues, and to validate their pertinence through implementation in a cooperative robot. The current research provides the robot with the capability to produce appropriate speech and gaze cues in the context of human-robot cooperation tasks. Gaze is manipulated in three conditions: Full gaze (coordinated eye and head), eyes hidden with sunglasses, and head fixed. We demonstrate the pertinence of these cues in terms of statistical measures of action times for humans in the context of a cooperative task, as gaze significantly facilitates cooperation as measured by human response times.
ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110
Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.
Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.
2012-01-01
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068
Distributed acoustic cues for caller identity in macaque vocalization.
Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B
2015-12-01
Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.
Distributed acoustic cues for caller identity in macaque vocalization
Doyle, Alex M.; Mullarkey, Matthew P.; Mishkin, Mortimer; Averbeck, Bruno B.
2015-01-01
Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured ‘coo’ call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral–temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call’s fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized. PMID:27019727
Conditioned responses elicited by experimentally produced cues for smoking.
Mucha, R F; Pauli, P; Angrilli, A
1998-03-01
Several theories of drug-craving postulate that a signal for drug elicits conditioned responses. However, depending on the theory, a drug cue is said to elicit drug similar, drug compensatory, positive motivational, and negative motivational effects. Since animal data alone cannot tease apart the relative importance of different cue-related processes in the addict, we developed and examined a model of drug cues in the human based on a two-sound, differential conditioning procedure using smoking as the reinforcer. After multiple pairings of a sound with smoking, there was a preference for the smoking cue on a conditioned preference test. The acute effects of smoking (increased heart rate, respiration rate, skin conductance level, skin conductance fluctuations, EEG beta power and trapezius EMG, decreased alpha power) were not affected by the smoking cue, although subjects drew more on their cigarette in the presence of the smoking cue than in the presence of a control cue. Moreover, the cue did not change baseline behaviour except for a possible increase in EEG beta power and an increase in trapezius EMG at about the time when smoking should have occurred. The findings confirm the value of experimental models of drug cues in the human for comparing different cue phenomena in the dependent individual. They indicate that an acquired signal for drug in the human may elicit incentive motivational effects and associated preparatory motor responses in addition to possible conditioned tolerance.
Cue Integration in Categorical Tasks: Insights from Audio-Visual Speech Perception
Bejjanki, Vikranth Rao; Clayards, Meghan; Knill, David C.; Aslin, Richard N.
2011-01-01
Previous cue integration studies have examined continuous perceptual dimensions (e.g., size) and have shown that human cue integration is well described by a normative model in which cues are weighted in proportion to their sensory reliability, as estimated from single-cue performance. However, this normative model may not be applicable to categorical perceptual dimensions (e.g., phonemes). In tasks defined over categorical perceptual dimensions, optimal cue weights should depend not only on the sensory variance affecting the perception of each cue but also on the environmental variance inherent in each task-relevant category. Here, we present a computational and experimental investigation of cue integration in a categorical audio-visual (articulatory) speech perception task. Our results show that human performance during audio-visual phonemic labeling is qualitatively consistent with the behavior of a Bayes-optimal observer. Specifically, we show that the participants in our task are sensitive, on a trial-by-trial basis, to the sensory uncertainty associated with the auditory and visual cues, during phonemic categorization. In addition, we show that while sensory uncertainty is a significant factor in determining cue weights, it is not the only one and participants' performance is consistent with an optimal model in which environmental, within category variability also plays a role in determining cue weights. Furthermore, we show that in our task, the sensory variability affecting the visual modality during cue-combination is not well estimated from single-cue performance, but can be estimated from multi-cue performance. The findings and computational principles described here represent a principled first step towards characterizing the mechanisms underlying human cue integration in categorical tasks. PMID:21637344
Lineup identification by children: effects of clothing bias.
Freire, Alejo; Lee, Kang; Williamson, Karen S; Stuart, Sarah J E; Lindsay, R C L
2004-06-01
This study examined effects of clothing cues on children's identification accuracy from lineups. Four- to 14-year-olds (n = 228) saw 12 video clips of individuals, each wearing a distinctly colored shirt. After watching each clip children were presented with a target-present or target-absent photo lineup. Three clothing conditions were included. In 2 conditions all lineup members wore the same colored shirt; in the third, biased condition, the shirt color of only one individual matched that seen in the preceding clip (the target in target-present trials and the replacement in target-absent trials). Correct identifications of the target in target-present trials were most frequent in the biased condition, whereas in target-absent trials the biased condition led to more false identifications of the target replacement. Older children were more accurate than younger children, both in choosing the target from target-present lineups and rejecting target-absent lineups. These findings suggest that a simple clothing cue such as shirt color can have a significant impact on children's lineup identification accuracy.
Lineup Identification by Children: Effects of Clothing Bias
Freire, Alejo; Lee, Kang; Williamson, Karen S.; Stuart, Sarah J. E.; Lindsay, R. C. L.
2008-01-01
This study examined effects of clothing cues on children's identification accuracy from lineups. Four- to 14-year-olds (n = 228) saw 12 video clips of individuals, each wearing a distinctly colored shirt. After watching each clip children were presented with a target-present or target-absent photo lineup. Three clothing conditions were included. In 2 conditions all lineup members wore the same colored shirt; in the third, biased condition, the shirt color of only one individual matched that seen in the preceding clip (the target in target-present trials and the replacement in target-absent trials). Correct identifications of the target in target-present trials were most frequent in the biased condition, whereas in target-absent trials the biased condition led to more false identifications of the target replacement. Older children were more accurate than younger children, both in choosing the target from target-present lineups and rejecting target-absent lineups. These findings suggest that a simple clothing cue such as shirt color can have a significant impact on children's lineup identification accuracy. PMID:15264450
ERIC Educational Resources Information Center
Charman, Steve D.; Carlucci, Marianna; Vallano, Jon; Gregory, Amy Hyman
2010-01-01
The current manuscript proposes a theory of how witnesses assess their confidence following a lineup identification, called the selective cue integration framework (SCIF). Drawing from past research on the postidentification feedback effect, the SCIF details a three-stage process of confidence assessment that is based largely on a…
Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients
ERIC Educational Resources Information Center
Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.; Chatterjee, Monita
2017-01-01
Purpose: The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method: Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally…
Cross-Frequency Integration for Consonant and Vowel Identification in Bimodal Hearing
ERIC Educational Resources Information Center
Kong, Ying-Yee; Braida, Louis D.
2011-01-01
Purpose: Improved speech recognition in binaurally combined acoustic-electric stimulation (otherwise known as "bimodal hearing") could arise when listeners integrate speech cues from the acoustic and electric hearing. The aims of this study were (a) to identify speech cues extracted in electric hearing and residual acoustic hearing in the…
INTEGRATION OF STIMULUS CUES BY NORMAL AND MENTALLY RETARDED CHILDREN. FINAL REPORT.
ERIC Educational Resources Information Center
ELAM, CLAUDE B.
TWO EXPERIMENTS WERE CONDUCTED IN ORDER TO OBTAIN A MATHEMATICAL DESCRIPTION OF THE PERCEPTUAL PROCESS BY WHICH NORMAL AND MENTALLY RETARDED SUBJECTS SYNTHESIZE STIMULUS CUES IN PERCEPTUAL IDENTIFICATION. THE INITIAL STUDY EMPLOYED 50 COLLEGE STUDENTS, 34 GRADE SCHOOL STUDENTS, AND 24 MENTALLY RETARDED CHILDREN (AGES 9-16) AS SUBJECTS. THE…
Nonverbal Cues to Deception in Children.
ERIC Educational Resources Information Center
Shimmin, Harold; Noel, Richard C.
The purpose of this study was to investigate nonverbal facial, body, and paralanguage cues to deception in children. A sample of 31 Hispanic and Black second and third grade students were videotaped while playing a color identification that required six honest and six deceptive verbal responses to a randomized stimulus presentation. Frame-by-frame…
Cue Representation and Situational Awareness in Task Analysis
ERIC Educational Resources Information Center
Carl, Diana R.
2009-01-01
Task analysis in human performance technology is used to determine how human performance can be well supported with training, job aids, environmental changes, and other interventions. Early work by Miller (1953) and Gilbert (1969, 1974) addressed cue processing in task execution and recommended cue descriptions in task analysis. Modern task…
Plotnik, Joshua M.; Pokorny, Jennifer J.; Keratimanochaya, Titiporn; Webb, Christine; Beronja, Hana F.; Hennessy, Alice; Hill, James; Hill, Virginia J.; Kiss, Rebecca; Maguire, Caitlin; Melville, Beckett L.; Morrison, Violet M. B.; Seecoomar, Dannah; Singer, Benjamin; Ukehaxhaj, Jehona; Vlahakis, Sophia K.; Ylli, Dora; Clayton, Nicola S.; Roberts, John; Fure, Emilie L.; Duchatelier, Alicia P.; Getz, David
2013-01-01
Recent research suggests that domesticated species – due to artificial selection by humans for specific, preferred behavioral traits – are better than wild animals at responding to visual cues given by humans about the location of hidden food. \\Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants’ inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation. PMID:23613804
Plotnik, Joshua M; Pokorny, Jennifer J; Keratimanochaya, Titiporn; Webb, Christine; Beronja, Hana F; Hennessy, Alice; Hill, James; Hill, Virginia J; Kiss, Rebecca; Maguire, Caitlin; Melville, Beckett L; Morrison, Violet M B; Seecoomar, Dannah; Singer, Benjamin; Ukehaxhaj, Jehona; Vlahakis, Sophia K; Ylli, Dora; Clayton, Nicola S; Roberts, John; Fure, Emilie L; Duchatelier, Alicia P; Getz, David
2013-01-01
Recent research suggests that domesticated species--due to artificial selection by humans for specific, preferred behavioral traits--are better than wild animals at responding to visual cues given by humans about the location of hidden food. \\Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants' inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation.
Localization Performance of Multiple Vibrotactile Cues on Both Arms.
Wang, Dangxiao; Peng, Cong; Afzal, Naqash; Li, Weiang; Wu, Dong; Zhang, Yuru
2018-01-01
To present information using vibrotactile stimuli in wearable devices, it is fundamental to understand human performance of localizing vibrotactile cues across the skin surface. In this paper, we studied human ability to identify locations of multiple vibrotactile cues activated simultaneously on both arms. Two haptic bands were mounted in proximity to the elbow and shoulder joints on each arm, and two vibrotactile motors were mounted on each band to provide vibration cues to the dorsal and palmar side of the arm. The localization performance under four conditions were compared, with the number of the simultaneously activated cues varying from one to four in each condition. Experimental results illustrate that the rate of correct localization decreases linearly with the increase in the number of activated cues. It was 27.8 percent for three activated cues, and became even lower for four activated cues. An analysis of the correct rate and error patterns show that the layout of vibrotactile cues can have significant effects on the localization performance of multiple vibrotactile cues. These findings might provide guidelines for using vibrotactile cues to guide the simultaneous motion of multiple joints on both arms.
Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm.
Moessnang, Carolin; Finkelmeyer, Andreas; Vossen, Alexandra; Schneider, Frank; Habel, Ute
2011-01-01
Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal. A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment. No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research. The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans. © 2011 Moessnang et al.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
Social Engagement in Public Places: A Tale of One Robot
2014-03-01
study we examined a prediction of Computers Are Social Actors (CASA) framework: the more machines present human -like characteristics in a consistent...social cues to increasing levels of social cues during story-telling to human -like game-playing interaction. We found several strong aspects of...support for CASA: the robot that provides even minimal social cues (speech) is more engaging than a robot that does nothing, and the more human -like the
Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.
Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo
2013-04-01
In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.
Individual Sensitivity to Spectral and Temporal Cues in Listeners With Hearing Impairment
Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.
2015-01-01
Purpose The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal (amplitude envelope). Spectral and/or temporal dimensions of synthetic speech were systematically manipulated along a continuum, and recognition was measured using the manipulated stimuli. Level was controlled to ensure cue audibility. Discriminant function analysis was used to determine to what degree spectral and temporal information contributed to the identification of each stimulus. Results Listeners with normal hearing were influenced to a greater extent by spectral cues for all stimuli. Listeners with hearing impairment generally utilized spectral cues when the information was static (spectral shape) but used temporal cues when the information was dynamic (formant transition). The relative use of spectral and temporal dimensions varied among individuals, especially among listeners with hearing loss. Conclusion Information about spectral and temporal cue use may aid in identifying listeners who rely to a greater extent on particular acoustic cues and applying that information toward therapeutic interventions. PMID:25629388
The major histocompatibility complex and the chemosensory signalling of individuality in humans.
Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R
The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.
The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues
Imre, István; Di Rocco, Richard; Belanger, Cowan; Brown, Grant; Johnson, Nicholas S.
2014-01-01
Using semi-natural enclosures, this study investigated (1) whether adult sea lamprey Petromyzon marinus show avoidance of damage-released conspecific cues, damage-released heterospecific cues and predator cues and (2) whether this is a general response to injured heterospecific fishes or a specific response to injured P. marinus. Ten replicate groups of 10 adult P. marinus, separated by sex, were exposed to one of the following nine stimuli: deionized water (control), extracts prepared from adult P. marinus, decayed adult P. marinus (conspecific stimuli), sympatric white sucker Catostomus commersonii, Amazon sailfin catfish Pterygoplichthys pardalis (heterospecific stimuli), 2-phenylethylamine (PEA HCl) solution, northern water snake Nerodia sipedon washing, human saliva (predator cues) and an adult P. marinus extract and human saliva combination (a damage-released conspecific cue and a predator cue). Adult P. marinus showed a significant avoidance response to the adult P. marinus extract as well as to C. commersonii, human saliva, PEA and the adult P. marinus extract and human saliva combination. For mobile P. marinus, the N. sipedon washing induced behaviour consistent with predator inspection. Exposure to the P. pardalis extract did not induce a significant avoidance response during the stimulus release period. Mobile adult female P. marinus showed a stronger avoidance behaviour than mobile adult male P. marinus in response to the adult P. marinus extract and the adult P. marinus extract and human saliva combination. The findings support the continued investigation of natural damage-released alarm cue and predator-based repellents for the behavioural manipulation of P. marinus populations in the Laurentian Great Lakes.
Short Term Gains, Long Term Pains: How Cues About State Aid Learning in Dynamic Environments
Gureckis, Todd M.; Love, Bradley C.
2009-01-01
Successful investors seeking returns, animals foraging for food, and pilots controlling aircraft all must take into account how their current decisions will impact their future standing. One challenge facing decision makers is that options that appear attractive in the short-term may not turn out best in the long run. In this paper, we explore human learning in a dynamic decision-making task which places short- and long-term rewards in conflict. Our goal in these studies was to evaluate how people’s mental representation of a task affects their ability to discover an optimal decision strategy. We find that perceptual cues that readily align with the underlying state of the task environment help people overcome the impulsive appeal of short-term rewards. Our experimental manipulations, predictions, and analyses are motivated by current work in reinforcement learning which details how learners value delayed outcomes in sequential tasks and the importance that “state” identification plays in effective learning. PMID:19427635
Wandner, Laura D; Letzen, Janelle E; Torres, Calia A; Lok, Benjamin; Robinson, Michael E
2014-11-01
Demographic characteristics have been found to influence pain management decisions, but limited focus has been placed on participants' reactions to feedback about their use of sex, race, or age to make these decisions. The present study aimed to examine the effects of providing feedback about the use of demographic cues to participants making pain management decisions. Participants (N = 107) viewed 32 virtual human patients with standardized levels of pain and provided ratings for virtual humans' pain intensity and their treatment decisions. Real-time lens model idiographic analyses determined participants' decision policies based on cues used. Participants were subsequently informed about cue use and completed feedback questions. Frequency analyses were conducted on responses to these questions. Between 7.4 and 89.4% of participants indicated awareness of their use of demographic or pain expression cues. Of those individuals, 26.9 to 55.5% believed this awareness would change their future clinical decisions, and 66.6 to 75.9% endorsed that their attitudes affect their imagined clinical practice. Between 66.6 and 79.1% of participants who used cues reported willingness to complete an online tutorial about pain across demographic groups. This study was novel because it provided participants feedback about their cue use. Most participants who used cues indicated willingness to participate in an online intervention, suggesting this technology's utility for modifying biases. This is the first study to make individuals aware of whether a virtual human's sex, race, or age influences their decision making. Findings suggest that a majority of the individuals who were made aware of their use of demographic cues would be willing to participate in an online intervention. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.
2009-01-01
In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.
Psychophysiology of prospective memory.
Rothen, Nicolas; Meier, Beat
2014-01-01
Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.
Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.
Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi
2016-10-01
Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.
Ma, Joan K-Y; Whitehill, Tara L; So, Susanne Y-S
2010-08-01
Speech produced by individuals with hypokinetic dysarthria associated with Parkinson's disease (PD) is characterized by a number of features including impaired speech prosody. The purpose of this study was to investigate intonation contrasts produced by this group of speakers. Speech materials with a question-statement contrast were collected from 14 Cantonese speakers with PD. Twenty listeners then classified the productions as either questions or statements. Acoustic analyses of F0, duration, and intensity were conducted to determine which acoustic cues distinguished the production of questions from statements, and which cues appeared to be exploited by listeners in identifying intonational contrasts. The results show that listeners identified statements with a high degree of accuracy, but the accuracy of question identification ranged from 0.56% to 96% across the 14 speakers. The speakers with PD used similar acoustic cues as nondysarthric Cantonese speakers to mark the question-statement contrast, although the contrasts were not observed in all speakers. Listeners mainly used F0 cues at the final syllable for intonation identification. These data contribute to the researchers' understanding of intonation marking in speakers with PD, with specific application to the production and perception of intonation in a lexical tone language.
The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues.
Imre, I; Di Rocco, R T; Belanger, C F; Brown, G E; Johnson, N S
2014-05-01
Using semi-natural enclosures, this study investigated (1) whether adult sea lamprey Petromyzon marinus show avoidance of damage-released conspecific cues, damage-released heterospecific cues and predator cues and (2) whether this is a general response to injured heterospecific fishes or a specific response to injured P. marinus. Ten replicate groups of 10 adult P. marinus, separated by sex, were exposed to one of the following nine stimuli: deionized water (control), extracts prepared from adult P. marinus, decayed adult P. marinus (conspecific stimuli), sympatric white sucker Catostomus commersonii, Amazon sailfin catfish Pterygoplichthys pardalis (heterospecific stimuli), 2-phenylethylamine (PEA HCl) solution, northern water snake Nerodia sipedon washing, human saliva (predator cues) and an adult P. marinus extract and human saliva combination (a damage-released conspecific cue and a predator cue). Adult P. marinus showed a significant avoidance response to the adult P. marinus extract as well as to C. commersonii, human saliva, PEA and the adult P. marinus extract and human saliva combination. For mobile P. marinus, the N. sipedon washing induced behaviour consistent with predator inspection. Exposure to the P. pardalis extract did not induce a significant avoidance response during the stimulus release period. Mobile adult female P. marinus showed a stronger avoidance behaviour than mobile adult male P. marinus in response to the adult P. marinus extract and the adult P. marinus extract and human saliva combination. The findings support the continued investigation of natural damage-released alarm cue and predator-based repellents for the behavioural manipulation of P. marinus populations in the Laurentian Great Lakes. © 2014 The Fisheries Society of the British Isles.
Reminder Cues Modulate the Renewal Effect in Human Predictive Learning
Bustamante, Javier; Uengoer, Metin; Lachnit, Harald
2016-01-01
Associative learning refers to our ability to learn about regularities in our environment. When a stimulus is repeatedly followed by a specific outcome, we learn to expect the outcome in the presence of the stimulus. We are also able to modify established expectations in the face of disconfirming information (the stimulus is no longer followed by the outcome). Both the change of environmental regularities and the related processes of adaptation are referred to as extinction. However, extinction does not erase the initially acquired expectations. For instance, following successful extinction, the initially learned expectations can recover when there is a context change – a phenomenon called the renewal effect, which is considered as a model for relapse after exposure therapy. Renewal was found to be modulated by reminder cues of acquisition and extinction. However, the mechanisms underlying the effectiveness of reminder cues are not well understood. The aim of the present study was to investigate the impact of reminder cues on renewal in the field of human predictive learning. Experiment I demonstrated that renewal in human predictive learning is modulated by cues related to acquisition or extinction. Initially, participants received pairings of a stimulus and an outcome in one context. These stimulus-outcome pairings were preceded by presentations of a reminder cue (acquisition cue). Then, participants received extinction in a different context in which presentations of the stimulus were no longer followed by the outcome. These extinction trials were preceded by a second reminder cue (extinction cue). During a final phase conducted in a third context, participants showed stronger expectations of the outcome in the presence of the stimulus when testing was accompanied by the acquisition cue compared to the extinction cue. Experiment II tested an explanation of the reminder cue effect in terms of simple cue-outcome associations. Therefore, acquisition and extinction cues were equated for their associative histories in Experiment II, which should abolish their impact on renewal if based on simple cue-outcome associations. In contrast to this prediction, Experiment II replicated the findings from Experiment I indicating that the effectiveness of reminder cues did not require direct reminder cue-outcome associations. PMID:28066293
Transfer of absolute and relative predictiveness in human contingency learning.
Kattner, Florian
2015-03-01
Previous animal-learning studies have shown that the effect of the predictive history of a cue on its associability depends on whether priority was set to the absolute or relative predictiveness of that cue. The present study tested this assumption in a human contingency-learning task. In both experiments, one group of participants was trained with predictive and nonpredictive cues that were presented according to an absolute-predictiveness principle (either continuously or partially reinforced cue configurations), whereas a second group was trained with co-occurring cues that differed in predictiveness (emphasizing the relative predictive validity of the cues). In both groups, later test discriminations were learned more readily if the discriminative cues had been predictive in the previous learning stage than if they had been nonpredictive. These results imply that both the absolute and relative predictiveness of a cue lead positive transfer with regard to its associability. The data are discussed with respect to attentional models of associative learning.
The skylight gradient of luminance helps sandhoppers in sun and moon identification.
Ugolini, Alberto; Galanti, Giuditta; Mercatelli, Luca
2012-08-15
To return to the ecologically optimal zone of the beach, the sandhopper Talitrus saltator (Montagu) maintains a constant sea-land direction based on the sun and moon compasses. In this study, we investigated the role of the skylight gradient of luminance in sun and moon identification under natural and artificial conditions of illumination. Clock-shifted (inverted) sandhoppers tested under the sun (during their subjective night) and under the full moon (during their subjective day) exhibit orientation in accordance with correct identification of the sun and the moon at night. Tested in artificial conditions of illumination at night without the artificial gradient of luminance, the artificial astronomical cue is identified as the moon even when the conditions of illumination allow sun compass orientation during the day. When the artificial gradient of luminance is added, the artificial astronomical cue is identified as the sun. The role of the sky gradient of luminance in sun and moon identification is discussed on the basis of present and past findings.
Landwehr, Markus; Fürstenberg, Dirk; Walger, Martin; von Wedel, Hasso; Meister, Hartmut
2014-01-01
Advances in speech coding strategies and electrode array designs for cochlear implants (CIs) predominantly aim at improving speech perception. Current efforts are also directed at transmitting appropriate cues of the fundamental frequency (F0) to the auditory nerve with respect to speech quality, prosody, and music perception. The aim of this study was to examine the effects of various electrode configurations and coding strategies on speech intonation identification, speaker gender identification, and music quality rating. In six MED-EL CI users electrodes were selectively deactivated in order to simulate different insertion depths and inter-electrode distances when using the high definition continuous interleaved sampling (HDCIS) and fine structure processing (FSP) speech coding strategies. Identification of intonation and speaker gender was determined and music quality rating was assessed. For intonation identification HDCIS was robust against the different electrode configurations, whereas fine structure processing showed significantly worse results when a short electrode depth was simulated. In contrast, speaker gender recognition was not affected by electrode configuration or speech coding strategy. Music quality rating was sensitive to electrode configuration. In conclusion, the three experiments revealed different outcomes, even though they all addressed the reception of F0 cues. Rapid changes in F0, as seen with intonation, were the most sensitive to electrode configurations and coding strategies. In contrast, electrode configurations and coding strategies did not show large effects when F0 information was available over a longer time period, as seen with speaker gender. Music quality relies on additional spectral cues other than F0, and was poorest when a shallow insertion was simulated.
Jordbro, Ethan J.; Di Rocco, Richard T.; Imre, Istvan; Johnson, Nicholas; Brown, Grant E.
2016-01-01
Recent studies proposed the use of chemosensory alarm cues to control the distribution of invasive sea lamprey Petromyzon marinus populations in the Laurentian Great Lakes and necessitate the evaluation of sea lamprey chemosensory alarm cues on valuable sympatric species such as white sucker. In two laboratory experiments, 10 replicate groups (10 animals each) of migratory white suckers were exposed to deionized water (control), conspecific whole-body extract, heterospecific whole-body extract (sea lamprey) and two potential predator cues (2-phenylethylamine HCl (PEA HCl) and human saliva) during the day, and exposed to the first four of the above cues at night. White suckers avoided the conspecific and the sea lamprey whole-body extract both during the day and at night to the same extent. Human saliva did not induce avoidance during the day. PEA HCl did not induce avoidance at a higher concentration during the day, or at night at the minimum concentration that was previously shown to induce maximum avoidance by sea lamprey under laboratory conditions. Our findings suggest that human saliva and PEA HCl may be potential species-specific predator cues for sea lamprey.
Boucher, Jean-David; Pattacini, Ugo; Lelong, Amelie; Bailly, Gerard; Elisei, Frederic; Fagel, Sascha; Dominey, Peter Ford; Ventre-Dominey, Jocelyne
2012-01-01
Human–human interaction in natural environments relies on a variety of perceptual cues. Humanoid robots are becoming increasingly refined in their sensorimotor capabilities, and thus should now be able to manipulate and exploit these social cues in cooperation with their human partners. Previous studies have demonstrated that people follow human and robot gaze, and that it can help them to cope with spatially ambiguous language. Our goal is to extend these findings into the domain of action, to determine how human and robot gaze can influence the speed and accuracy of human action. We report on results from a human–human cooperation experiment demonstrating that an agent’s vision of her/his partner’s gaze can significantly improve that agent’s performance in a cooperative task. We then implement a heuristic capability to generate such gaze cues by a humanoid robot that engages in the same cooperative interaction. The subsequent human–robot experiments demonstrate that a human agent can indeed exploit the predictive gaze of their robot partner in a cooperative task. This allows us to render the humanoid robot more human-like in its ability to communicate with humans. The long term objectives of the work are thus to identify social cooperation cues, and to validate their pertinence through implementation in a cooperative robot. The current research provides the robot with the capability to produce appropriate speech and gaze cues in the context of human–robot cooperation tasks. Gaze is manipulated in three conditions: Full gaze (coordinated eye and head), eyes hidden with sunglasses, and head fixed. We demonstrate the pertinence of these cues in terms of statistical measures of action times for humans in the context of a cooperative task, as gaze significantly facilitates cooperation as measured by human response times. PMID:22563315
Ridley-Siegert, Thomas L; Crombag, Hans S; Yeomans, Martin R
2015-12-01
There is a wealth of data showing a large impact of food cues on human ingestion, yet most studies use pictures of food where the precise nature of the associations between the cue and food is unclear. To test whether novel cues which were associated with the opportunity of winning access to food images could also impact ingestion, 63 participants participated in a game in which novel visual cues signalled whether responding on a keyboard would win (a picture of) chocolate, crisps, or nothing. Thirty minutes later, participants were given an ad libitum snack-intake test during which the chocolate-paired cue, the crisp-paired cue, the non-winning cue and no cue were presented as labels on the food containers. The presence of these cues significantly altered overall intake of the snack foods; participants presented with food labelled with the cue that had been associated with winning chocolate ate significantly more than participants who had been given the same products labelled with the cue associated with winning nothing, and in the presence of the cue signalling the absence of food reward participants tended to eat less than all other conditions. Surprisingly, cue-dependent changes in food consumption were unaffected by participants' level of contingency awareness. These results suggest that visual cues that have been pre-associated with winning, but not consuming, a liked food reward modify food intake consistent with current ideas that the abundance of food associated cues may be one factor underlying the 'obesogenic environment'. Copyright © 2015 Elsevier Inc. All rights reserved.
Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.
Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey
2018-03-01
People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.
Acoustic cues to perception of word stress by English, Mandarin, and Russian speakers.
Chrabaszcz, Anna; Winn, Matthew; Lin, Candise Y; Idsardi, William J
2014-08-01
This study investigated how listeners' native language affects their weighting of acoustic cues (such as vowel quality, pitch, duration, and intensity) in the perception of contrastive word stress. Native speakers (N = 45) of typologically diverse languages (English, Russian, and Mandarin) performed a stress identification task on nonce disyllabic words with fully crossed combinations of each of the 4 cues in both syllables. The results revealed that although the vowel quality cue was the strongest cue for all groups of listeners, pitch was the second strongest cue for the English and the Mandarin listeners but was virtually disregarded by the Russian listeners. Duration and intensity cues were used by the Russian listeners to a significantly greater extent compared with the English and Mandarin participants. Compared with when cues were noncontrastive across syllables, cues were stronger when they were in the iambic contour than when they were in the trochaic contour. Although both English and Russian are stress languages and Mandarin is a tonal language, stress perception performance of the Mandarin listeners but not of the Russian listeners is more similar to that of the native English listeners, both in terms of weighting of the acoustic cues and the cues' relative strength in different word positions. The findings suggest that tuning of second-language prosodic perceptions is not entirely predictable by prosodic similarities across languages.
Spinozzi, Giovanna; De Lillo, Carlo; Truppa, Valentina; Castorina, Giulia
2009-02-01
Recent experimental results suggest that human and nonhuman primates differ in how they process visual information to assemble component parts into global shapes. To assess whether some of the observed differences in perceptual grouping could be accounted for by the prevalence of different grouping factors in different species, we carried out 2 experiments designed to evaluate the relative use of proximity, similarity of shape, and orientation as grouping cues in humans (Homo sapiens) and capuchin monkeys (Cebus apella). Both species showed similarly high levels of accuracy using proximity as a cue. Moreover, for both species, grouping by orientation similarity produced a lower level of performance than grouping by proximity. Differences emerged with respect to the use of shape similarity as a cue. In humans, grouping by shape similarity also proved less effective than grouping by proximity but the same was not observed in capuchins. These results suggest that there may be subtle differences between humans and capuchin monkeys in the weighting assigned to different grouping cues that may affect the way in which they combine local features into global shapes. Copyright 2009 APA, all rights reserved.
ERIC Educational Resources Information Center
Francis, Alexander L.; Driscoll, Courtney
2006-01-01
We examined the effect of perceptual training on a well-established hemispheric asymmetry in speech processing. Eighteen listeners were trained to use a within-category difference in voice onset time (VOT) to cue talker identity. Successful learners (n = 8) showed faster response times for stimuli presented only to the left ear than for those…
The effect of semantic context on prospective memory performance.
Thomas, Brandon J; McBride, Dawn M
2016-01-01
The current study provides evidence for spontaneous processing in prospective memory (PM) or memory for intentions. Discrepancy-plus-search is the spontaneous processing of PM cues via disruptions in processing fluency of ongoing task items. We tested whether this mechanism can be demonstrated in an ongoing rating task with a dominant semantic context. Ongoing task items were manipulated such that the PM cues were members of a semantic category (i.e., Body Parts) that was congruent or discrepant with the dominant semantic category in the ongoing task. Results showed that participants correctly responded to more PM cues when there was a category discrepancy between the PM cues and ongoing task items. Moreover, participants' identification of PM cues was accompanied by faster ongoing task reaction times when PM cues were discrepant with ongoing task items than when they were congruent. These results suggest that a discrepancy-plus-search process supports PM retrieval in certain contexts, and that some discrepancy-plus-search mechanisms may result from the violation of processing expectations within a semantic context.
Fiore, Stephen M.; Wiltshire, Travis J.; Lobato, Emilio J. C.; Jentsch, Florian G.; Huang, Wesley H.; Axelrod, Benjamin
2013-01-01
As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human–robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot AvaTM mobile robotics platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals. PMID:24348434
Twelfth Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Wempe, T. E.
1976-01-01
Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems.
Neuroimaging the interaction of mind and metabolism in humans
D’Agostino, Alexandra E.; Small, Dana M.
2012-01-01
Hormonal and metabolic signals interact with neural circuits orchestrating behavior to guide food intake. Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) enable the identification of where in the brain particular mental processes like desire, satiety and pleasure occur. Once these neural circuits are described it then becomes possible to determine how metabolic and hormonal signals can alter brain response to influence psychological states and decision-making processes to guide intake. Here, we provide an overview of the contributions of functional neuroimaging to the understanding of how subjective and neural responses to food and food cues interact with metabolic/hormonal factors. PMID:24024114
Satisficing in split-second decision making is characterized by strategic cue discounting.
Oh, Hanna; Beck, Jeffrey M; Zhu, Pingping; Sommer, Marc A; Ferrari, Silvia; Egner, Tobias
2016-12-01
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through satisficing, fast but "good-enough" heuristic decision making that prioritizes some sources of information (cues) while ignoring others. However, the decision-making strategies we adopt under uncertainty and time pressure, for example during emergencies that demand split-second choices, are presently unknown. To characterize these decision strategies quantitatively, the present study examined how people solve a novel multicue probabilistic classification task under varying time pressure, by tracking shifts in decision strategies using variational Bayesian inference. We found that under low time pressure, participants correctly weighted and integrated all available cues to arrive at near-optimal decisions. With increasingly demanding, subsecond time pressures, however, participants systematically discounted a subset of the cue information by dropping the least informative cue(s) from their decision making process. Thus, the human cognitive apparatus copes with uncertainty and severe time pressure by adopting a "drop-the-worst" cue decision making strategy that minimizes cognitive time and effort investment while preserving the consideration of the most diagnostic cue information, thus maintaining "good-enough" accuracy. This advance in our understanding of satisficing strategies could form the basis of predicting human choices in high time pressure scenarios. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Ittyerah, Miriam; Gaunet, Florence
2009-03-01
The study raises the question of whether guide dogs and pet dogs are expected to differ in response to cues of referential communication given by their owners; especially since guide dogs grow up among sighted humans, and while living with their blind owners, they still have interactions with several sighted people. Guide dogs and pet dogs were required to respond to point, point and gaze, gaze and control cues of referential communication given by their owners. Results indicate that the two groups of dogs do not differ from each other, revealing that the visual status of the owner is not a factor in the use of cues of referential communication. Both groups of dogs have higher frequencies of performance and faster latencies for the point and the point and gaze cues as compared to gaze cue only. However, responses to control cues are below chance performance for the guide dogs, whereas the pet dogs perform at chance. The below chance performance of the guide dogs may be explained by a tendency among them to go and stand by the owner. The study indicates that both groups of dogs respond similarly in normal daily dyadic interaction with their owners and the lower comprehension of the human gaze may be a less salient cue among dogs in comparison to the pointing gesture.
Moradi, Shahram; Lidestam, Björn; Danielsson, Henrik; Ng, Elaine Hoi Ning; Rönnberg, Jerker
2017-09-18
We sought to examine the contribution of visual cues in audiovisual identification of consonants and vowels-in terms of isolation points (the shortest time required for correct identification of a speech stimulus), accuracy, and cognitive demands-in listeners with hearing impairment using hearing aids. The study comprised 199 participants with hearing impairment (mean age = 61.1 years) with bilateral, symmetrical, mild-to-severe sensorineural hearing loss. Gated Swedish consonants and vowels were presented aurally and audiovisually to participants. Linear amplification was adjusted for each participant to assure audibility. The reading span test was used to measure participants' working memory capacity. Audiovisual presentation resulted in shortened isolation points and improved accuracy for consonants and vowels relative to auditory-only presentation. This benefit was more evident for consonants than vowels. In addition, correlations and subsequent analyses revealed that listeners with higher scores on the reading span test identified both consonants and vowels earlier in auditory-only presentation, but only vowels (not consonants) in audiovisual presentation. Consonants and vowels differed in terms of the benefits afforded from their associative visual cues, as indicated by the degree of audiovisual benefit and reduction in cognitive demands linked to the identification of consonants and vowels presented audiovisually.
Masking release for words in amplitude-modulated noise as a function of modulation rate and task
Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.
2009-01-01
For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883
Divided listening in noise in a mock-up of a military command post.
Abel, Sharon M; Nakashima, Ann; Smith, Ingrid
2012-04-01
This study investigated divided listening in noise in a mock-up of a vehicular command post. The effects of background noise from the vehicle, unattended speech of coworkers on speech understanding, and a visual cue that directed attention to the message source were examined. Sixteen normal-hearing males participated in sixteen listening conditions, defined by combinations of the absence/presence of vehicle and speech babble noises, availability of a vision cue, and number of channels (2 or 3, diotic or dichotic, and loudspeakers) over which concurrent series of call sign, color, and number phrases were presented. All wore a communications headset with integrated hearing protection. A computer keyboard was used to encode phrases beginning with an assigned call sign. Subjects achieved close to 100% correct phrase identification when presented over the headset (with or without vehicle noise) or over the loudspeakers, without vehicle noise. In contrast, the percentage correct phrase identification was significantly less by 30 to 35% when presented over loudspeakers with vehicle noise. Vehicle noise combined with babble noise decreased the accuracy by an additional 12% for dichotic listening. Vision cues increased phrase identification accuracy by 7% for diotic listening. Outcomes could be explained by the at-ear energy spectra of the speech and noise.
Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B
2016-07-05
Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.
Frozen with fear: Conditioned suppression in a virtual reality model of human anxiety.
Allcoat, Devon; Greville, W James; Newton, Philip M; Dymond, Simon
2015-09-01
Freezing-like topographies of behavior are elicited in conditioned suppression tasks whereby appetitive behavior is reduced by presentations of an aversively conditioned threat cue relative to a safety cue. Conditioned suppression of operant behavior by a Pavlovian threat cue is an established laboratory model of quantifying the response impairment seen in anxiety disorders. Little is known however about how different response topographies indicative of conditioned suppression are elicited in humans. Here, we refined a novel virtual reality (VR) paradigm in which presentations of a threat cue of unpredictable duration occurred while participants performed an operant response of shooting and destroying boxes searching for hidden gold. The VR paradigm detected significant suppression of response topographies (shots, hits and breaks) for a Pavlovian threat cue relative to a safety cue and novel cue presentations. Implications of the present findings for translational research on appetitive and aversive conflict in anxiety disorders are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Remembering Places in Space: A Human Analog Study of the Morris Water Maze
NASA Astrophysics Data System (ADS)
Fitting, Sylvia; Allen, Gary L.; Wedell, Douglas H.
We conducted a human analog study of the Morris Water Maze, with individuals indicating a remembered location in a 3 m diameter arena over different intervals of time and with different memory loads. The primary focus of the study was to test a theory of how varying cue location and number of cues affects memory for spatial location. As expected, memory performance, as measured by proximity to the actual location, was negatively affected by increasing memory load, increasing delay interval, and decreasing the number of cues. As memory performance decremented, bias effects increased and were in accordance with the cue-based memory model described by Fitting, Wedell and Allen (2005). Specifically, remembered locations were biased toward the nearest cue and error decreased with more cues. These results demonstrate that localization processes that apply to small two-dimensional task fields may generalize to a larger traversable task field.
Acoustic Cues to Perception of Word Stress by English, Mandarin, and Russian Speakers
Chrabaszcz, Anna; Winn, Matthew; Lin, Candise Y.; Idsardi, William J.
2017-01-01
Purpose This study investigated how listeners’ native language affects their weighting of acoustic cues (such as vowel quality, pitch, duration, and intensity) in the perception of contrastive word stress. Method Native speakers (N = 45) of typologically diverse languages (English, Russian, and Mandarin) performed a stress identification task on nonce disyllabic words with fully crossed combinations of each of the 4 cues in both syllables. Results The results revealed that although the vowel quality cue was the strongest cue for all groups of listeners, pitch was the second strongest cue for the English and the Mandarin listeners but was virtually disregarded by the Russian listeners. Duration and intensity cues were used by the Russian listeners to a significantly greater extent compared with the English and Mandarin participants. Compared with when cues were noncontrastive across syllables, cues were stronger when they were in the iambic contour than when they were in the trochaic contour. Conclusions Although both English and Russian are stress languages and Mandarin is a tonal language, stress perception performance of the Mandarin listeners but not of the Russian listeners is more similar to that of the native English listeners, both in terms of weighting of the acoustic cues and the cues’ relative strength in different word positions. The findings suggest that tuning of second-language prosodic perceptions is not entirely predictable by prosodic similarities across languages. PMID:24686836
A conflict rat model of cue-induced relapse to cocaine seeking.
Cooper, Ayelet; Barnea-Ygael, Noam; Levy, Dino; Shaham, Yavin; Zangen, Abraham
2007-09-01
Relapse to drug use in humans can be induced by exposure to drug-associated cues. The ability of drug cues to provoke 'relapse' has been studied in laboratory animals using a reinstatement model in which resumption of drug seeking is assessed after extinction of drug-reinforced responding. In this model, there are no adverse consequences of drug-seeking behavior. However, in humans, abstinence is often self-imposed, and relapse episodes likely involve making a choice between the desire for the drug and the negative consequences of pursuing it (a conflict situation). In this paper, we describe a conflict model of cue-induced relapse in rats that approximate the human condition. Rats were trained to lever press for cocaine; infusions were paired with a discrete light cue. An 'electric barrier' was then introduced by electrifying the floor area near the levers. Responding decreased over days with increasing shock intensities, until the rats did not approach the levers for 3 days. Subsequently, the effect of intermittent noncontingent light-cue presentations on resumption of lever responding (relapse) was assessed in extinction tests, with the electric barrier remaining activated; during testing, lever presses led to contingent light-cue presentations. Noncontingent cue exposure led to resumption of lever presses during the relapse tests in 14 of the 24 rats. Surprisingly, 24 h later, 11 of the 24 rats resumed lever responding in a subsequent post-noncontingent cue test under similar extinction conditions. Large individual differences in responding were observed during both tests. At its current stage of development, the conflict relapse model appears particularly suitable for studying individual differences in cue-induced relapse to cocaine seeking or factors that promote this relapse.
A proposed mechanism for rapid adaptation to spectrally distorted speech.
Azadpour, Mahan; Balaban, Evan
2015-07-01
The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.
Léger, Agnès C.; Reed, Charlotte M.; Desloge, Joseph G.; Swaminathan, Jayaganesh; Braida, Louis D.
2015-01-01
Consonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance. For NH listeners, scores were higher in interrupted noise than in steady-state noise for all speech types (indicating substantial masking release). For HI listeners, masking release was typically observed for TFS and recovered-envelope speech but not for unprocessed and envelope speech. For both groups of listeners, TFS and recovered-envelope speech yielded similar levels of performance and consonant confusion patterns. The masking release observed for TFS and recovered-envelope speech may be related to level effects associated with the manner in which the TFS processing interacts with the interrupted noise signal, rather than to the contributions of TFS cues per se. PMID:26233038
NASA Astrophysics Data System (ADS)
Best, Andrew; Kapalo, Katelynn A.; Warta, Samantha F.; Fiore, Stephen M.
2016-05-01
Human-robot teaming largely relies on the ability of machines to respond and relate to human social signals. Prior work in Social Signal Processing has drawn a distinction between social cues (discrete, observable features) and social signals (underlying meaning). For machines to attribute meaning to behavior, they must first understand some probabilistic relationship between the cues presented and the signal conveyed. Using data derived from a study in which participants identified a set of salient social signals in a simulated scenario and indicated the cues related to the perceived signals, we detail a learning algorithm, which clusters social cue observations and defines an "N-Most Likely States" set for each cluster. Since multiple signals may be co-present in a given simulation and a set of social cues often maps to multiple social signals, the "N-Most Likely States" approach provides a dramatic improvement over typical linear classifiers. We find that the target social signal appears in a "3 most-likely signals" set with up to 85% probability. This results in increased speed and accuracy on large amounts of data, which is critical for modeling social cognition mechanisms in robots to facilitate more natural human-robot interaction. These results also demonstrate the utility of such an approach in deployed scenarios where robots need to communicate with human teammates quickly and efficiently. In this paper, we detail our algorithm, comparative results, and offer potential applications for robot social signal detection and machine-aided human social signal detection.
Khoramshahi, Mahdi; Shukla, Ashwini; Raffard, Stéphane; Bardy, Benoît G; Billard, Aude
2016-01-01
The ability to follow one another's gaze plays an important role in our social cognition; especially when we synchronously perform tasks together. We investigate how gaze cues can improve performance in a simple coordination task (i.e., the mirror game), whereby two players mirror each other's hand motions. In this game, each player is either a leader or follower. To study the effect of gaze in a systematic manner, the leader's role is played by a robotic avatar. We contrast two conditions, in which the avatar provides or not explicit gaze cues that indicate the next location of its hand. Specifically, we investigated (a) whether participants are able to exploit these gaze cues to improve their coordination, (b) how gaze cues affect action prediction and temporal coordination, and (c) whether introducing active gaze behavior for avatars makes them more realistic and human-like (from the user point of view). 43 subjects participated in 8 trials of the mirror game. Each subject performed the game in the two conditions (with and without gaze cues). In this within-subject study, the order of the conditions was randomized across participants, and subjective assessment of the avatar's realism was assessed by administering a post-hoc questionnaire. When gaze cues were provided, a quantitative assessment of synchrony between participants and the avatar revealed a significant improvement in subject reaction-time (RT). This confirms our hypothesis that gaze cues improve the follower's ability to predict the avatar's action. An analysis of the pattern of frequency across the two players' hand movements reveals that the gaze cues improve the overall temporal coordination across the two players. Finally, analysis of the subjective evaluations from the questionnaires reveals that, in the presence of gaze cues, participants found it not only more human-like/realistic, but also easier to interact with the avatar. This work confirms that people can exploit gaze cues to predict another person's movements and to better coordinate their motions with their partners, even when the partner is a computer-animated avatar. Moreover, this study contributes further evidence that implementing biological features, here task-relevant gaze cues, enable the humanoid robotic avatar to appear more human-like, and thus increase the user's sense of affiliation.
Morrisey, Marcus Neil; Reed, Catherine L; McIntosh, Daniel N; Rutherford, M D
2018-04-25
Human actions induce attentional orienting toward the target of the action. We examined the influence of action cueing in social (man throwing toward a human) and non-social (man throwing toward a tree) contexts in observers with and without autism spectrum condition (ASC). Results suggested that a social interaction enhanced the cueing effect for neurotypical participants. Participants with ASC did not benefit from non-predictive cues and were slower in social contexts, although they benefitted from reliably predictive cues. Social orienting appears to be automatic in the context of an implied social interaction for neurotypical observers, but not those with ASC. Neurotypical participants' behavior may be driven by automatic processing, while participants with ASC use an alternative, effortful strategy.
Mulcahy, Nicholas J; Call, Josep
2009-08-01
The object-choice task tests animals' ability to use human-given cues to find a hidden reward located in 1 of 2 (or more) containers. Great apes are generally unskillful in this task whereas other species including dogs (Canis familiaris) and goats (Capra hircus) can use human-given cues to locate the reward. However, great apes are typically positioned proximal to the containers when receiving the experimenter's cue whereas other species are invariably positioned distally. The authors investigated how the position of the subject, the human giving the cue and the containers (and the distance among them) affected the performance of 19 captive great apes. Compared to the proximal condition, the distal condition involved larger distances and, critically, it reduced the potential ambiguity of the cues as well as the strong influence that the sight of the containers may have had when subjects received the cue. Subjects were far more successful in the distal compared to the proximal condition. The authors suggest several possibilities to account for this difference and discuss our findings in relation to previous and future object-choice research. Copyright 2009 APA, all rights reserved.
The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
Shine, Jonathan P; Valdés-Herrera, José P; Hegarty, Mary; Wolbers, Thomas
2016-06-15
Spatial navigation is a multisensory process involving integration of visual and body-based cues. In rodents, head direction (HD) cells, which are most abundant in the thalamus, integrate these cues to code facing direction. Human fMRI studies examining HD coding in virtual environments (VE) have reported effects in retrosplenial complex and (pre-)subiculum, but not the thalamus. Furthermore, HD coding appeared insensitive to global landmarks. These tasks, however, provided only visual cues for orientation, and attending to global landmarks did not benefit task performance. In the present study, participants explored a VE comprising four separate locales, surrounded by four global landmarks. To provide body-based cues, participants wore a head-mounted display so that physical rotations changed facing direction in the VE. During subsequent MRI scanning, subjects saw stationary views of the environment and judged whether their orientation was the same as in the preceding trial. Parameter estimates extracted from retrosplenial cortex and the thalamus revealed significantly reduced BOLD responses when HD was repeated. Moreover, consistent with rodent findings, the signal did not continue to adapt over repetitions of the same HD. These results were supported by a whole-brain analysis showing additional repetition suppression in the precuneus. Together, our findings suggest that: (1) consistent with the rodent literature, the human thalamus may integrate visual and body-based, orientation cues; (2) global reference frame cues can be used to integrate HD across separate individual locales; and (3) immersive training procedures providing full body-based cues may help to elucidate the neural mechanisms supporting spatial navigation. In rodents, head direction (HD) cells signal facing direction in the environment via increased firing when the animal assumes a certain orientation. Distinct brain regions, the retrosplenial cortex (RSC) and thalamus, code for visual and vestibular cues of orientation, respectively. Putative HD signals have been observed in human RSC but not the thalamus, potentially because body-based cues were not provided. Here, participants encoded HD in a novel virtual environment while wearing a head-mounted display to provide body-based cues for orientation. In subsequent fMRI scanning, we found evidence of an HD signal in RSC, thalamus, and precuneus. These findings harmonize rodent and human data, and suggest that immersive training procedures provide a viable way to examine the neural basis of navigation. Copyright © 2016 the authors 0270-6474/16/366371-11$15.00/0.
Computationally modeling interpersonal trust.
Lee, Jin Joo; Knox, W Bradley; Wormwood, Jolie B; Breazeal, Cynthia; Desteno, David
2013-01-01
We present a computational model capable of predicting-above human accuracy-the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.
Two stages of directed forgetting: Electrophysiological evidence from a short-term memory task.
Gao, Heming; Cao, Bihua; Qi, Mingming; Wang, Jing; Zhang, Qi; Li, Fuhong
2016-06-01
In this study, a short-term memory test was used to investigate the temporal course and neural mechanism of directed forgetting under different memory loads. Within each trial, two memory items with high or low load were presented sequentially, followed by a cue indicating whether the presented items should be remembered. After an interval, subjects were asked to respond to the probe stimuli. The ERPs locked to the cues showed that (a) the effect of cue type was initially observed during the P2 (160-240 ms) time window, with more positive ERPs for remembering relative to forgetting cues; (b) load effects were observed during the N2-P3 (250-500 ms) time window, with more positive ERPs for the high-load than low-load condition; (c) the cue effect was also observed during the N2-P3 time window, with more negative ERPs for forgetting versus remembering cues. These results demonstrated that directed forgetting involves two stages: task-relevance identification and information discarding. The cue effects during the N2 epoch supported the view that directed forgetting is an active process. © 2016 Society for Psychophysiological Research.
D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina
2017-10-01
Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.
No Two Cues Are Alike: Depth of Learning during Infancy Is Dependent on What Orients Attention
ERIC Educational Resources Information Center
Wu, Rachel; Kirkham, Natasha Z.
2010-01-01
Human infants develop a variety of attentional mechanisms that allow them to extract relevant information from a cluttered multimodal world. We know that both social and nonsocial cues shift infants' attention, but not how these cues differentially affect learning of multimodal events. Experiment 1 used social cues to direct 8- and 4-month-olds'…
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Nawroth, Christian; von Borell, Eberhard; Langbein, Jan
2015-01-01
Recently, comparative research on the mechanisms and species-specific adaptive values of attributing attentive states and using communicative cues has gained increased interest, particularly in non-human primates, birds, and dogs. Here, we investigate these phenomena in a farm animal species, the dwarf goat (Capra aegagrus hircus). In the first experiment, we investigated the effects of different human head and body orientations, as well as human experimenter presence/absence, on the behaviour of goats in a food-anticipating paradigm. Over a 30-s interval, the experimenter engaged in one of four different postures or behaviours (head and body towards the subject-'Control', head to the side, head and body away from the subject, or leaving the room) before delivering a reward. We found that the level of subjects' active anticipatory behaviour was highest in the control condition and decreased with a decreasing level of attention paid to the subject by the experimenter. Additionally, goats 'stared' (i.e. stood alert) at the experimental set-up for significantly more time when the experimenter was present but paid less attention to the subject ('Head' and 'Back' condition) than in the 'Control' and 'Out' conditions. In a second experiment, the experimenter provided different human-given cues that indicated the location of a hidden food reward in a two-way object choice task. Goats were able to use both 'Touch' and 'Point' cues to infer the correct location of the reward but did not perform above the level expected by chance in the 'Head only' condition. We conclude that goats are able to differentiate among different body postures of a human, including head orientation; however, despite their success at using multiple physical human cues, they fail to spontaneously use human head direction as a cue in a food-related context.
Klostermann, André; Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim
2015-01-01
For perceptual-cognitive skill training, a variety of intervention methods has been proposed, including the so-called “color-cueing method” which aims on superior gaze-path learning by applying visual markers. However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior. Consequently, after a preparatory study on the identification of appropriate visual cues for life-size displays, a perceptual-training experiment on decision-making in beach volleyball was conducted, contrasting two cueing interventions (functional vs. dysfunctional gaze path) with a conservative control condition (anticipation-related instructions). Gaze analyses revealed learning effects for the dysfunctional group only. Regarding decision-making, all groups showed enhanced performance with largest improvements for the control group followed by the functional and the dysfunctional group. Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making. However, before completely denying the method’s value, optimisations should be checked regarding, for instance, cueing-pattern characteristics and gaze-related feedback. PMID:26648894
Emotions in primary care: Are there cultural differences in the expression of cues and concerns?
Schouten, Barbara C; Schinkel, Sanne
2015-11-01
This study compared native-Dutch and Turkish-Dutch patients' expressions of emotional cues/concerns and GPs' responses to these cues/concerns. Relations between patient's cues/concerns and GPs' perceptions of the patient's health complaint were examined too. 82 audiotaped encounters with native-Dutch and 38 with Turkish-Dutch GP patients were coded using the VR-CoDES and VR-CoDES-P. Patients filled out a survey before each consultation to assess their cultural identification, Dutch language proficiency and health-related variables. GPs filled out a survey after each consultation to assess their perceptions of the patient's health complaint. Turkish-Dutch patients expressed more cues than native-Dutch patients, which was explained by higher worries about their health and worse perceived general health. GPs responded more often with space-providing responses to Turkish-Dutch patients compared to native-Dutch patients. Turkish-Dutch patients' cue expression strongly influenced GPs' perceptions about the presence of psychosocial problems. Migrant patient-related factors influence the amount of emotional cue expression in primary care. GPs perceive these cues as indicating the presence of psychosocial problems and provide space for patients to elaborate on their emotional distress. GPs should be trained in using more affective communication techniques to enhance elicitation of the underlying reasons for migrant patients' enhanced emotional cue expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aristizabal, José A; Ramos-Álvarez, Manuel M; Callejas-Aguilera, José E; Rosas, Juan M
2017-12-01
One experiment in human predictive learning explored the impact of a context change on attention to contexts and predictive ratings controlled by the cue. In Context A: cue X was paired with an outcome four times, while cue Y was presented without an outcome four times in Context B:. In both contexts filler cues were presented without the outcome. During the test, target cues X and Y were presented either in the context where they were trained, or in the alternative context. With the context change expectation of the outcome X, expressed as predictive ratings, decreased in the presence of X and increased in the presence of Y. Looking at the contexts, expressed as a percentage of the overall gaze dwell time on a trial, was high across the four training trials, and increased with the context change. Results suggest that the presentation of unexpected information leads to increases in attention to contextual cues. Implications for contextual control of behavior are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
2018-01-05
research team recorded fMRI or event-related potentials while subjects were playing two cognitive games . At the first experiment, human subjects played a...theory-of-mind bilateral game with two types of computerized agents: with or without humanlike cues. At the second experiment, human subjects played...a unilateral game in which the human subjects played the role of the Coach (or supervisor) while a computer agent played as the Player
Moradi, Shahram; Lidestam, Björn; Rönnberg, Jerker
2016-06-17
The present study compared elderly hearing aid (EHA) users (n = 20) with elderly normal-hearing (ENH) listeners (n = 20) in terms of isolation points (IPs, the shortest time required for correct identification of a speech stimulus) and accuracy of audiovisual gated speech stimuli (consonants, words, and final words in highly and less predictable sentences) presented in silence. In addition, we compared the IPs of audiovisual speech stimuli from the present study with auditory ones extracted from a previous study, to determine the impact of the addition of visual cues. Both participant groups achieved ceiling levels in terms of accuracy in the audiovisual identification of gated speech stimuli; however, the EHA group needed longer IPs for the audiovisual identification of consonants and words. The benefit of adding visual cues to auditory speech stimuli was more evident in the EHA group, as audiovisual presentation significantly shortened the IPs for consonants, words, and final words in less predictable sentences; in the ENH group, audiovisual presentation only shortened the IPs for consonants and words. In conclusion, although the audiovisual benefit was greater for EHA group, this group had inferior performance compared with the ENH group in terms of IPs when supportive semantic context was lacking. Consequently, EHA users needed the initial part of the audiovisual speech signal to be longer than did their counterparts with normal hearing to reach the same level of accuracy in the absence of a semantic context. © The Author(s) 2016.
Improved memory for reward cues following acute buprenorphine administration in humans.
Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack
2015-03-01
In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.
Chang, Son-A; Won, Jong Ho; Kim, HyangHee; Oh, Seung-Ha; Tyler, Richard S.; Cho, Chang Hyun
2018-01-01
Background and Objectives It is important to understand the frequency region of cues used, and not used, by cochlear implant (CI) recipients. Speech and environmental sound recognition by individuals with CI and normal-hearing (NH) was measured. Gradients were also computed to evaluate the pattern of change in identification performance with respect to the low-pass filtering or high-pass filtering cutoff frequencies. Subjects and Methods Frequency-limiting effects were implemented in the acoustic waveforms by passing the signals through low-pass filters (LPFs) or high-pass filters (HPFs) with seven different cutoff frequencies. Identification of Korean vowels and consonants produced by a male and female speaker and environmental sounds was measured. Crossover frequencies were determined for each identification test, where the LPF and HPF conditions show the identical identification scores. Results CI and NH subjects showed changes in identification performance in a similar manner as a function of cutoff frequency for the LPF and HPF conditions, suggesting that the degraded spectral information in the acoustic signals may similarly constraint the identification performance for both subject groups. However, CI subjects were generally less efficient than NH subjects in using the limited spectral information for speech and environmental sound identification due to the inefficient coding of acoustic cues through the CI sound processors. Conclusions This finding will provide vital information in Korean for understanding how different the frequency information is in receiving speech and environmental sounds by CI processor from normal hearing. PMID:29325391
Chang, Son-A; Won, Jong Ho; Kim, HyangHee; Oh, Seung-Ha; Tyler, Richard S; Cho, Chang Hyun
2017-12-01
It is important to understand the frequency region of cues used, and not used, by cochlear implant (CI) recipients. Speech and environmental sound recognition by individuals with CI and normal-hearing (NH) was measured. Gradients were also computed to evaluate the pattern of change in identification performance with respect to the low-pass filtering or high-pass filtering cutoff frequencies. Frequency-limiting effects were implemented in the acoustic waveforms by passing the signals through low-pass filters (LPFs) or high-pass filters (HPFs) with seven different cutoff frequencies. Identification of Korean vowels and consonants produced by a male and female speaker and environmental sounds was measured. Crossover frequencies were determined for each identification test, where the LPF and HPF conditions show the identical identification scores. CI and NH subjects showed changes in identification performance in a similar manner as a function of cutoff frequency for the LPF and HPF conditions, suggesting that the degraded spectral information in the acoustic signals may similarly constraint the identification performance for both subject groups. However, CI subjects were generally less efficient than NH subjects in using the limited spectral information for speech and environmental sound identification due to the inefficient coding of acoustic cues through the CI sound processors. This finding will provide vital information in Korean for understanding how different the frequency information is in receiving speech and environmental sounds by CI processor from normal hearing.
McNeese, Nathan J; Cooke, Nancy J; Branaghan, Russell; Knobloch, Ashley; Taylor, Amanda
2017-04-01
Improvised Explosive Devices (IEDs) have become one of the deadliest threats to military personnel, resulting in over 50% of American combat casualties in Iraq and Afghanistan. Identification of IED emplacement is conducted by mission payload operators (MPOs). Yet, experienced MPOs are limited in number, making MPO training a critical intervention. In this article, we implement a Cognitive Engineering Based on Expert Skill methodology to better understand how experienced MPOs identify the emplacement of IEDs for the purposes of improving training. First, expert knowledge was elicited through interviews and questionnaires to identify the types of perceptual cues used and how these cues are cognitively processed. Results indicate that there are many different static and dynamic cues that interact with each other over time and space. Using data from the interviews and questionnaires, an empirically grounded framework is presented that explains the cognitive process of IED emplacement detection. Using the overall findings and the framework, IED emplacement training scenarios were developed and built into a simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer
2010-01-01
Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…
Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.
Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L
2016-09-07
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.
De Loof, Esther; Van Opstal, Filip; Verguts, Tom
2016-04-01
Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of varenicline on alcohol cue reactivity in heavy drinkers.
Roberts, Walter; Harrison, Emily L R; McKee, Sherry A
2017-09-01
Clinical trials and human laboratory studies have established that varenicline can reduce rates of alcohol use among heavy drinkers. Less is known about the mechanisms by which varenicline has this effect on drinking behavior. Reactivity to alcohol cues is often cited as the primary cause of relapse among those being treated for alcohol use disorder, and several front-line treatments for alcohol use disorder work, at least in part, by minimizing cue-induced alcohol craving. The current double-blind, placebo-controlled human laboratory study tested the effects of varenicline on alcohol cue reactivity in a group of heavy-drinking adult smokers and nonsmokers. As part of a larger series of sequential human laboratory experiments testing the effects of varenicline on drinking outcomes, participants were assigned (between-participant) to receive either active varenicline (2 mg/day) or placebo. Following a titration period, participants (n = 77) attended a laboratory session during which they were exposed to alcohol and neutral cues using a standard cue reactivity paradigm. Alcohol cue exposure increased craving for alcohol in both medication groups. However, participants receiving varenicline showed a smaller increase in alcohol craving compared to participants receiving placebo. The medication effect did not differ between smokers and nonsmokers. Among smokers, alcohol cue exposure also increased tobacco craving. Varenicline did not attenuate this effect. Results support the use of varenicline for reducing alcohol use in heavy drinkers and identify a potential mechanism by which varenicline reduces drinking. Varenicline continues to show promise as a pharmacological treatment for alcohol use disorder.
Eye Contact Is Crucial for Referential Communication in Pet Dogs.
Savalli, Carine; Resende, Briseida; Gaunet, Florence
2016-01-01
Dogs discriminate human direction of attention cues, such as body, gaze, head and eye orientation, in several circumstances. Eye contact particularly seems to provide information on human readiness to communicate; when there is such an ostensive cue, dogs tend to follow human communicative gestures more often. However, little is known about how such cues influence the production of communicative signals (e.g. gaze alternation and sustained gaze) in dogs. In the current study, in order to get an unreachable food, dogs needed to communicate with their owners in several conditions that differ according to the direction of owners' visual cues, namely gaze, head, eyes, and availability to make eye contact. Results provided evidence that pet dogs did not rely on details of owners' direction of visual attention. Instead, they relied on the whole combination of visual cues and especially on the owners' availability to make eye contact. Dogs increased visual communicative behaviors when they established eye contact with their owners, a different strategy compared to apes and baboons, that intensify vocalizations and gestures when human is not visually attending. The difference in strategy is possibly due to distinct status: domesticated vs wild. Results are discussed taking into account the ecological relevance of the task since pet dogs live in human environment and face similar situations on a daily basis during their lives.
Perception of musical and lexical tones by Taiwanese-speaking musicians.
Lee, Chao-Yang; Lee, Yuh-Fang; Shr, Chia-Lin
2011-07-01
This study explored the relationship between music and speech by examining absolute pitch and lexical tone perception. Taiwanese-speaking musicians were asked to identify musical tones without a reference pitch and multispeaker Taiwanese level tones without acoustic cues typically present for speaker normalization. The results showed that a high percentage of the participants (65% with an exact match required and 81% with one-semitone errors allowed) possessed absolute pitch, as measured by the musical tone identification task. A negative correlation was found between occurrence of absolute pitch and age of onset of musical training, suggesting that the acquisition of absolute pitch resembles the acquisition of speech. The participants were able to identify multispeaker Taiwanese level tones with above-chance accuracy, even though the acoustic cues typically present for speaker normalization were not available in the stimuli. No correlations were found between the performance in musical tone identification and the performance in Taiwanese tone identification. Potential reasons for the lack of association between the two tasks are discussed. © 2011 Acoustical Society of America
The habenula encodes negative motivational value associated with primary punishment in humans.
Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P
2014-08-12
Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.
Apfelbaum, Keith S; McMurray, Bob
2015-08-01
Traditional studies of human categorization often treat the processes of encoding features and cues as peripheral to the question of how stimuli are categorized. However, in domains where the features and cues are less transparent, how information is encoded prior to categorization may constrain our understanding of the architecture of categorization. This is particularly true in speech perception, where acoustic cues to phonological categories are ambiguous and influenced by multiple factors. Here, it is crucial to consider the joint contributions of the information in the input and the categorization architecture. We contrasted accounts that argue for raw acoustic information encoding with accounts that posit that cues are encoded relative to expectations, and investigated how two categorization architectures-exemplar models and back-propagation parallel distributed processing models-deal with each kind of information. Relative encoding, akin to predictive coding, is a form of noise reduction, so it can be expected to improve model accuracy; however, like predictive coding, the use of relative encoding in speech perception by humans is controversial, so results are compared to patterns of human performance, rather than on the basis of overall accuracy. We found that, for both classes of models, in the vast majority of parameter settings, relative cues greatly helped the models approximate human performance. This suggests that expectation-relative processing is a crucial precursor step in phoneme categorization, and that understanding the information content is essential to understanding categorization processes.
McMurray, Bob
2014-01-01
Traditional studies of human categorization often treat the processes of encoding features and cues as peripheral to the question of how stimuli are categorized. However, in domains where the features and cues are less transparent, how information is encoded prior to categorization may constrain our understanding of the architecture of categorization. This is particularly true in speech perception, where acoustic cues to phonological categories are ambiguous and influenced by multiple factors. Here, it is crucial to consider the joint contributions of the information in the input and the categorization architecture. We contrasted accounts that argue for raw acoustic information encoding with accounts that posit that cues are encoded relative to expectations, and investigated how two categorization architectures—exemplar models and back-propagation parallel distributed processing models—deal with each kind of information. Relative encoding, akin to predictive coding, is a form of noise reduction, so it can be expected to improve model accuracy; however, like predictive coding, the use of relative encoding in speech perception by humans is controversial, so results are compared to patterns of human performance, rather than on the basis of overall accuracy. We found that, for both classes of models, in the vast majority of parameter settings, relative cues greatly helped the models approximate human performance. This suggests that expectation-relative processing is a crucial precursor step in phoneme categorization, and that understanding the information content is essential to understanding categorization processes. PMID:25475048
Perceptual precision of passive body tilt is consistent with statistically optimal cue integration
Karmali, Faisal; Nicoucar, Keyvan; Merfeld, Daniel M.
2017-01-01
When making perceptual decisions, humans have been shown to optimally integrate independent noisy multisensory information, matching maximum-likelihood (ML) limits. Such ML estimators provide a theoretic limit to perceptual precision (i.e., minimal thresholds). However, how the brain combines two interacting (i.e., not independent) sensory cues remains an open question. To study the precision achieved when combining interacting sensory signals, we measured perceptual roll tilt and roll rotation thresholds between 0 and 5 Hz in six normal human subjects. Primary results show that roll tilt thresholds between 0.2 and 0.5 Hz were significantly lower than predicted by a ML estimator that includes only vestibular contributions that do not interact. In this paper, we show how other cues (e.g., somatosensation) and an internal representation of sensory and body dynamics might independently contribute to the observed performance enhancement. In short, a Kalman filter was combined with an ML estimator to match human performance, whereas the potential contribution of nonvestibular cues was assessed using published bilateral loss patient data. Our results show that a Kalman filter model including previously proven canal-otolith interactions alone (without nonvestibular cues) can explain the observed performance enhancements as can a model that includes nonvestibular contributions. NEW & NOTEWORTHY We found that human whole body self-motion direction-recognition thresholds measured during dynamic roll tilts were significantly lower than those predicted by a conventional maximum-likelihood weighting of the roll angular velocity and quasistatic roll tilt cues. Here, we show that two models can each match this “apparent” better-than-optimal performance: 1) inclusion of a somatosensory contribution and 2) inclusion of a dynamic sensory interaction between canal and otolith cues via a Kalman filter model. PMID:28179477
Spatial Attention Enhances Perceptual Processing of Single-Element Displays
NASA Technical Reports Server (NTRS)
Bacon, William; Johnston, James C.; Remington, Roger W.; Null, Cynthia H. (Technical Monitor)
1994-01-01
Shiu and Pashler (1993) reported that precueing masked, single-element displays had negligible effects on identification accuracy. They argued that spatial attention does not actually enhance stimulus perceptibility, but only reduces decision noise. Alternatively, such negative results may arise if cues are sub-optimal, or if masks place an insufficient premium on timely deployment of attention. We report results showing that valid cueing enhances processing of even single-element displays. Spatial attention does indeed enhance perceptual processes.
Melodic Contour Identification and Music Perception by Cochlear Implant Users
Galvin, John J.; Fu, Qian-Jie; Shannon, Robert V.
2013-01-01
Research and outcomes with cochlear implants (CIs) have revealed a dichotomy in the cues necessary for speech and music recognition. CI devices typically transmit 16–22 spectral channels, each modulated slowly in time. This coarse representation provides enough information to support speech understanding in quiet and rhythmic perception in music, but not enough to support speech understanding in noise or melody recognition. Melody recognition requires some capacity for complex pitch perception, which in turn depends strongly on access to spectral fine structure cues. Thus, temporal envelope cues are adequate for speech perception under optimal listening conditions, while spectral fine structure cues are needed for music perception. In this paper, we present recent experiments that directly measure CI users’ melodic pitch perception using a melodic contour identification (MCI) task. While normal-hearing (NH) listeners’ performance was consistently high across experiments, MCI performance was highly variable across CI users. CI users’ MCI performance was significantly affected by instrument timbre, as well as by the presence of a competing instrument. In general, CI users had great difficulty extracting melodic pitch from complex stimuli. However, musically-experienced CI users often performed as well as NH listeners, and MCI training in less experienced subjects greatly improved performance. With fixed constraints on spectral resolution, such as it occurs with hearing loss or an auditory prosthesis, training and experience can provide a considerable improvements in music perception and appreciation. PMID:19673835
Duranton, Charlotte; Range, Friederike; Virányi, Zsófia
2017-07-01
Dogs are renowned for being skilful at using human-given communicative cues such as pointing. Results are contradictory, however, when it comes to dogs' following human gaze, probably due to methodological discrepancies. Here we investigated whether dogs follow human gaze to one of two food locations better than into distant space even after comparable pre-training. In Experiments 1 and 2, the gazing direction of dogs was recorded in a gaze-following into distant space and in an object-choice task where no choice was allowed, in order to allow a direct comparison between tasks, varying the ostensive nature of the gazes. We found that dogs only followed repeated ostensive human gaze into distant space, whereas they followed all gaze cues in the object-choice task. Dogs followed human gaze better in the object-choice task than when there was no obvious target to look at. In Experiment 3, dogs were tested in another object-choice task and were allowed to approach a container. Ostensive cues facilitated the dogs' following gaze with gaze as well as their choices: we found that dogs in the ostensive group chose the indicated container at chance level, whereas they avoided this container in the non-ostensive group. We propose that dogs may perceive the object-choice task as a competition over food and may interpret non-ostensive gaze as an intentional cue that indicates the experimenter's interest in the food location she has looked at. Whether ostensive cues simply mitigate the competitive perception of this situation or they alter how dogs interpret communicative gaze needs further investigation. Our findings also show that following gaze with one's gaze and actually choosing one of the two containers in an object-choice task need to be considered as different variables. The present study clarifies a number of questions related to gaze-following in dogs and adds to a growing body of evidence showing that human ostensive cues can strongly modify dog behaviour.
Marshall-Pescini, Sarah; Passalacqua, Chiara; Miletto Petrazzini, Maria Elena; Valsecchi, Paola; Prato-Previde, Emanuela
2012-01-01
Dogs appear to be sensitive to human ostensive communicative cues in a variety of situations, however there is still a measure of controversy as to the way in which these cues influence human-dog interactions. There is evidence for instance that dogs can be led into making evaluation errors in a quantity discrimination task, for example losing their preference for a larger food quantity if a human shows a preference for a smaller one, yet there is, so far, no explanation for this phenomenon. Using a modified version of this task, in the current study we investigated whether non-social, social or communicative cues (alone or in combination) cause dogs to go against their preference for the larger food quantity. Results show that dogs' evaluation errors are indeed caused by a social bias, but, somewhat contrary to previous studies, they highlight the potent effect of stimulus enhancement (handling the target) in influencing the dogs' response. A mild influence on the dog's behaviour was found only when different ostensive cues (and no handling of the target) were used in combination, suggesting their cumulative effect. The discussion addresses possible motives for discrepancies with previous studies suggesting that both the intentionality and the directionality of the action may be important in causing dogs' social biases.
Marshall-Pescini, Sarah; Passalacqua, Chiara; Miletto Petrazzini, Maria Elena; Valsecchi, Paola; Prato-Previde, Emanuela
2012-01-01
Dogs appear to be sensitive to human ostensive communicative cues in a variety of situations, however there is still a measure of controversy as to the way in which these cues influence human-dog interactions. There is evidence for instance that dogs can be led into making evaluation errors in a quantity discrimination task, for example losing their preference for a larger food quantity if a human shows a preference for a smaller one, yet there is, so far, no explanation for this phenomenon. Using a modified version of this task, in the current study we investigated whether non-social, social or communicative cues (alone or in combination) cause dogs to go against their preference for the larger food quantity. Results show that dogs' evaluation errors are indeed caused by a social bias, but, somewhat contrary to previous studies, they highlight the potent effect of stimulus enhancement (handling the target) in influencing the dogs' response. A mild influence on the dog's behaviour was found only when different ostensive cues (and no handling of the target) were used in combination, suggesting their cumulative effect. The discussion addresses possible motives for discrepancies with previous studies suggesting that both the intentionality and the directionality of the action may be important in causing dogs' social biases. PMID:22558150
Gender differences in identifying emotions from auditory and visual stimuli.
Waaramaa, Teija
2017-12-01
The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.
Human Factors Assessment of Respiratory Support Pack (RSP) Cue Card
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Hudy, Cynthia; Smith, Danielle; Byrne, Vicky
2005-01-01
The Respiratory Support Pack (RSP) is a medical pack onboard the International Space Station (ISS) that contains much of the necessary equipment for providing aid to a conscious or unconscious crewmember in respiratory distress. Inside the RSP lid pocket is a 5.5 by 11 inch paper cue card, which is used by a Crew Medical Officer as the procedure to set up the equipment and deliver oxygen to a crewmember. In training, crewmembers expressed concerns about the readability and usability of the cue card; consequently, updating the cue card was prioritized as an activity to be completed prior to Space Shuttle return-to-flight. The Usability Testing and Analysis Facility at the Johnson Space Center evaluated the current layout of the cue card, and proposed several new cue card designs based on human factors principals. A series of three studies were performed in order to experimentally compare performance with each of the cue card designs. Nonmedically trained personnel used either a redesigned RSP cue card, or the original card to simulate resuscitation (using a mannequin along with the hardware). Time to completion, errors and subjective ratings were recorded. The addition of pictures, colors, borders, and simplification of the flow of information (making minimal changes to the actual procedure content) elicited great benefits during testing. Time to complete RSP procedures was reduced by as much as three minutes with the final cue card design. Detailed results from these studies, as well as general guidelines for cue card design will be discussed.
Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher
2017-09-05
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.
Differential processing of binocular and monocular gloss cues in human visual cortex
Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.
2016-01-01
The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596
Age-related changes in human posture control: Sensory organization tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1989-01-01
Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.
Erblich, J; Lerman, C; Self, D W; Diaz, G A; Bovbjerg, D H
2005-04-01
Cue-induced craving for addictive substances has long been known to contribute to the problem of persistent addiction in humans. Research in animals over the past decade has solidly established the central role of dopamine in cue-induced craving for addictive substances, including nicotine. Analogous studies in humans, however, are lacking, especially among African-American smokers, who have lower quit rates than Caucasian smokers. Based on the animal literature, the study's objective was to test the hypothesis that smokers carrying specific variants in dopamine-related genes previously associated with risk for addictive behaviors would exhibit heightened levels of cigarette craving following laboratory exposure to cues. To this end, cigarette craving was induced in healthy African-American smokers (n=88) through laboratory exposure to smoking cues. Smokers carrying either the DRD2 (D2 dopamine receptor gene) TaqI A1 RFLP or the SLC6A3 (dopamine transporter gene) 9-repeat VNTR polymorphisms had stronger cue-induced cravings than noncarriers (Ps <0.05 and 0.01, respectively). Consistent with the separate biological pathways involved (receptor, transporter), carriers of both polymorphisms had markedly higher craving responses compared to those with neither (P<0.0006), reflecting additive effects. Findings provide support for the role of dopamine in cue-induced craving in humans, and suggest a possible genetic risk factor for persistent smoking behavior in African-American smokers.
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans.
Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J
2006-03-24
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Using multisensory cues to facilitate air traffic management.
Ngo, Mary K; Pierce, Russell S; Spence, Charles
2012-12-01
In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.
NASA Technical Reports Server (NTRS)
Kirkpatrick, M.; Brye, R. G.
1974-01-01
A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.
Attention is necessary for subliminal instrumental conditioning.
Mastropasqua, Tommaso; Turatto, Massimo
2015-08-10
The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior.
Do domestic dogs learn words based on humans' referential behaviour?
Tempelmann, Sebastian; Kaminski, Juliane; Tomasello, Michael
2014-01-01
Some domestic dogs learn to comprehend human words, although the nature and basis of this learning is unknown. In the studies presented here we investigated whether dogs learn words through an understanding of referential actions by humans rather than simple association. In three studies, each modelled on a study conducted with human infants, we confronted four word-experienced dogs with situations involving no spatial-temporal contiguity between the word and the referent; the only available cues were referential actions displaced in time from exposure to their referents. We found that no dogs were able to reliably link an object with a label based on social-pragmatic cues alone in all the tests. However, one dog did show skills in some tests, possibly indicating an ability to learn based on social-pragmatic cues.
How visual cues for when to listen aid selective auditory attention.
Varghese, Lenny A; Ozmeral, Erol J; Best, Virginia; Shinn-Cunningham, Barbara G
2012-06-01
Visual cues are known to aid auditory processing when they provide direct information about signal content, as in lip reading. However, some studies hint that visual cues also aid auditory perception by guiding attention to the target in a mixture of similar sounds. The current study directly tests this idea for complex, nonspeech auditory signals, using a visual cue providing only timing information about the target. Listeners were asked to identify a target zebra finch bird song played at a random time within a longer, competing masker. Two different maskers were used: noise and a chorus of competing bird songs. On half of all trials, a visual cue indicated the timing of the target within the masker. For the noise masker, the visual cue did not affect performance when target and masker were from the same location, but improved performance when target and masker were in different locations. In contrast, for the chorus masker, visual cues improved performance only when target and masker were perceived as coming from the same direction. These results suggest that simple visual cues for when to listen improve target identification by enhancing sounds near the threshold of audibility when the target is energetically masked and by enhancing segregation when it is difficult to direct selective attention to the target. Visual cues help little when target and masker already differ in attributes that enable listeners to engage selective auditory attention effectively, including differences in spectrotemporal structure and in perceived location.
Holmes, Thomas H; McCormick, Mark I
2010-03-01
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes. Copyright (c) 2010. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Iverson, Paul; Hazan, Valerie; Bannister, Kerry
2005-11-01
Recent work [Iverson et al. (2003) Cognition, 87, B47-57] has suggested that Japanese adults have difficulty learning English /r/ and /l/ because they are overly sensitive to acoustic cues that are not reliable for /r/-/l/ categorization (e.g., F2 frequency). This study investigated whether cue weightings are altered by auditory training, and compared the effectiveness of different training techniques. Separate groups of subjects received High Variability Phonetic Training (natural words from multiple talkers), and 3 techniques in which the natural recordings were altered via signal processing (All Enhancement, with F3 contrast maximized and closure duration lengthened; Perceptual Fading, with F3 enhancement reduced during training; and Secondary Cue Variability, with variation in F2 and durations increased during training). The results demonstrated that all of the training techniques improved /r/-/l/ identification by Japanese listeners, but there were no differences between the techniques. Training also altered the use of secondary acoustic cues; listeners became biased to identify stimuli as English /l/ when the cues made them similar to the Japanese /r/ category, and reduced their use of secondary acoustic cues for stimuli that were dissimilar to Japanese /r/. The results suggest that both category assimilation and perceptual interference affect English /r/ and /l/ acquisition.
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Mereish, Ethan H; Padovano, Hayley Treloar; Wemm, Stephanie; Miranda, Robert
2018-07-01
Drug-related cues evoke craving and stimulate motivational systems in the brain. The acoustic startle reflex captures activation of these motivational processes and affords a unique measure of reactivity to drug cues. This study examined the effects of cannabis-related cues on subjective and eye blink startle reactivity in the human laboratory and tested whether these effects predicted youth's cue-elicited cannabis craving in the natural environment. Participants were 55 frequent cannabis users, ages 16 to 24 years (M = 19.9, SD = 1.9; 55% male; 56% met criteria for cannabis dependence), who were recruited from a clinical trial to reduce cannabis use. Eye blink electromyographic activity was recorded in response to acoustic probes that elicited startle reactivity while participants viewed pleasant, unpleasant, neutral, and cannabis picture cues. Following the startle assessment, participants completed an ecological momentary assessment protocol that involved repeated assessments of cue-elicited craving in real time in their real-world environments. Multilevel models included the presence or absence of visible cannabis cues in the natural environment, startle magnitude, and the cross-level interaction of cues by startle to test whether cue-modulated startle reactivity in the laboratory was associated with cue-elicited craving in the natural environment. Analyses showed that cannabis-related stimuli evoked an appetitive startle response pattern in the laboratory, and this effect was associated with increased cue-elicited craving in the natural environment, b = - 0.15, p = .022, 95% CI [- 0.28, - 0.02]. Pleasant stimuli also evoked an appetitive response pattern, but in this case, blunted response was associated with increased cue-elicited craving in the natural environment, b = 0.27, p < .001, 95% CI [0.12, 0.43]. Our findings support cue-modulated startle reactivity as an index of the phenotypic expression of cue-elicited cannabis craving.
Perception of Voicing Cues by Children with Early Otitis Media with and without Language Impairment.
ERIC Educational Resources Information Center
Groenen, Paul; And Others
1996-01-01
This study examined identification and discrimination of initial bilabial stop consonants differing in voicing by 10 9-year-old children with a history of severe otitis media with effusion (OME). Long-term effects of OME were found for both identification and discrimination performance. In cases of language impairment with early OME, no additional…
Voice gender identification by cochlear implant users: The role of spectral and temporal resolution
NASA Astrophysics Data System (ADS)
Fu, Qian-Jie; Chinchilla, Sherol; Nogaki, Geraldine; Galvin, John J.
2005-09-01
The present study explored the relative contributions of spectral and temporal information to voice gender identification by cochlear implant users and normal-hearing subjects. Cochlear implant listeners were tested using their everyday speech processors, while normal-hearing subjects were tested under speech processing conditions that simulated various degrees of spectral resolution, temporal resolution, and spectral mismatch. Voice gender identification was tested for two talker sets. In Talker Set 1, the mean fundamental frequency values of the male and female talkers differed by 100 Hz while in Talker Set 2, the mean values differed by 10 Hz. Cochlear implant listeners achieved higher levels of performance with Talker Set 1, while performance was significantly reduced for Talker Set 2. For normal-hearing listeners, performance was significantly affected by the spectral resolution, for both Talker Sets. With matched speech, temporal cues contributed to voice gender identification only for Talker Set 1 while spectral mismatch significantly reduced performance for both Talker Sets. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to 4-8 spectral channels. The results suggest that, because of the reduced spectral resolution, cochlear implant patients may attend strongly to periodicity cues to distinguish voice gender.
Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals.
Joo, Sung Jun; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C
2016-10-19
Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. Copyright © 2016 the authors 0270-6474/16/3610791-12$15.00/0.
Accurate estimation of human body orientation from RGB-D sensors.
Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao
2013-10-01
Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Lima, José Bento Pereira; Rosa-Freitas, Maria Goreti; Rodovalho, Cynara Melo; Santos, Fátima; Lourenço-de-Oliveira, Ricardo
2014-01-01
Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil. PMID:25185008
Sensitivity to differences in the motor origin of drawings: from human to robot.
De Preester, Helena; Tsakiris, Manos
2014-01-01
This study explores the idea that an observer is sensitive to differences in the static traces of drawings that are due to differences in motor origin. In particular, our aim was to test if an observer is able to discriminate between drawings made by a robot and by a human in the case where the drawings contain salient kinematic cues for discrimination and in the case where the drawings only contain more subtle kinematic cues. We hypothesized that participants would be able to correctly attribute the drawing to a human or a robot origin when salient kinematic cues are present. In addition, our study shows that observers are also able to detect the producer behind the drawings in the absence of these salient kinematic cues. The design was such that in the absence of salient kinematic cues, the drawings are visually very similar, i.e. only differing in subtle kinematic differences. Observers thus had to rely on these subtle kinematic differences in the line trajectories between drawings. However, not only motor origin (human versus robot) but also motor style (natural versus mechanic) plays a role in attributing a drawing to the correct producer, because participants scored less high when the human hand draws in a relatively mechanical way. Overall, this study suggests that observers are sensitive to subtle kinematic differences between visually similar marks in drawings that have a different motor origin. We offer some possible interpretations inspired by the idea of "motor resonance".
Sensitivity to Differences in the Motor Origin of Drawings: From Human to Robot
De Preester, Helena; Tsakiris, Manos
2014-01-01
This study explores the idea that an observer is sensitive to differences in the static traces of drawings that are due to differences in motor origin. In particular, our aim was to test if an observer is able to discriminate between drawings made by a robot and by a human in the case where the drawings contain salient kinematic cues for discrimination and in the case where the drawings only contain more subtle kinematic cues. We hypothesized that participants would be able to correctly attribute the drawing to a human or a robot origin when salient kinematic cues are present. In addition, our study shows that observers are also able to detect the producer behind the drawings in the absence of these salient kinematic cues. The design was such that in the absence of salient kinematic cues, the drawings are visually very similar, i.e. only differing in subtle kinematic differences. Observers thus had to rely on these subtle kinematic differences in the line trajectories between drawings. However, not only motor origin (human versus robot) but also motor style (natural versus mechanic) plays a role in attributing a drawing to the correct producer, because participants scored less high when the human hand draws in a relatively mechanical way. Overall, this study suggests that observers are sensitive to subtle kinematic differences between visually similar marks in drawings that have a different motor origin. We offer some possible interpretations inspired by the idea of “motor resonance”. PMID:25014198
The Role of Contingency Awareness in Single-Cue Human Eyeblink Conditioning
ERIC Educational Resources Information Center
Weidemann, Gabrielle; Best, Erin; Lee, Jessica C; Lovibond, Peter F.
2013-01-01
Single-cue delay eyeblink conditioning is presented as a prototypical example of automatic, nonsymbolic learning that is carried out by subcortical circuits. However, it has been difficult to assess the role of cognition in single-cue conditioning because participants become aware of the simple stimulus contingency so quickly. In this experiment…
Quantifying density cues in grouping displays.
Machilsen, Bart; Wagemans, Johan; Demeyer, Maarten
2016-09-01
Perceptual grouping processes are typically studied using sparse displays of spatially separated elements. Unless the grouping cue of interest is a proximity cue, researchers will want to ascertain that such a cue is absent from the display. Various solutions to this problem have been employed in the literature; however, no validation of these methods exists. Here, we test a number of local density metrics both through their performance as constrained ideal observer models, and through a comparison with a large dataset of human detection trials. We conclude that for the selection of stimuli without a density cue, the Voronoi density metric is preferable, especially if combined with a measurement of the distance to each element's nearest neighbor. We offer the entirety of the dataset as a benchmark for the evaluation of future, possibly improved, metrics. With regard to human processes of grouping by proximity, we found observers to be insensitive to target groupings that are more sparse than the surrounding distractor elements, and less sensitive to regularity cues in element positioning than to local clusterings of target elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pack, Adam A; Herman, Louis M
2007-02-01
The authors tested whether the understanding by dolphins (Tursiops truncatus) of human pointing and head-gazing cues extends to knowing the identity of an indicated object as well as its location. In Experiment 1, the dolphins Phoenix and Akeakamai processed the identity of a cued object (of 2 that were present), as shown by their success in selecting a matching object from among 2 alternatives remotely located. Phoenix was errorless on first trials in this task. In Experiment 2, Phoenix reliably responded to a cued object in alternate ways, either by matching it or by acting directly on it, with each type of response signaled by a distinct gestural command given after the indicative cue. She never confused matching and acting. In Experiment 3, Akeakamai was able to process the geometry of pointing cues (but not head-gazing cues), as revealed by her errorless responses to either a proximal or distal object simultaneously present, when each object was indicated only by the angle at which the informant pointed. The overall results establish that these dolphins could identify, through indicative cues alone, what a human is attending to as well as where.
Depth reversals in stereoscopic displays driven by apparent size
NASA Astrophysics Data System (ADS)
Sacher, Gunnar; Hayes, Amy; Thornton, Ian M.; Sereno, Margaret E.; Malony, Allen D.
1998-04-01
In visual scenes, depth information is derived from a variety of monocular and binocular cues. When in conflict, a monocular cue is sometimes able to override the binocular information. We examined the accuracy of relative depth judgments in orthographic, stereoscopic displays and found that perceived relative size can override binocular disparity as a depth cue in a situation where the relative size information is itself generated from disparity information, not from retinal size difference. A size discrimination task confirmed the assumption that disparity information was perceived and used to generate apparent size differences. The tendency for the apparent size cue to override disparity information can be modulated by varying the strength of the apparent size cue. In addition, an analysis of reaction times provides supporting evidence for this novel depth reversal effect. We believe that human perception must be regarded as an important component of stereoscopic applications. Hence, if applications are to be effective and accurate, it is necessary to take into account the richness and complexity of the human visual perceptual system that interacts with them. We discuss implications of this and similar research for human performance in virtual environments, the design of visual presentations for virtual worlds, and the design of visualization tools.
Differential processing of binocular and monocular gloss cues in human visual cortex.
Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E
2016-06-01
The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.
Bednar, Adam; Boland, Francis M; Lalor, Edmund C
2017-03-01
The human ability to localize sound is essential for monitoring our environment and helps us to analyse complex auditory scenes. Although the acoustic cues mediating sound localization have been established, it remains unknown how these cues are represented in human cortex. In particular, it is still a point of contention whether binaural and monaural cues are processed by the same or distinct cortical networks. In this study, participants listened to a sequence of auditory stimuli from different spatial locations while we recorded their neural activity using electroencephalography (EEG). The stimuli were presented over a loudspeaker array, which allowed us to deliver realistic, free-field stimuli in both the horizontal and vertical planes. Using a multivariate classification approach, we showed that it is possible to decode sound source location from scalp-recorded EEG. Robust and consistent decoding was shown for stimuli that provide binaural cues (i.e. Left vs. Right stimuli). Decoding location when only monaural cues were available (i.e. Front vs. Rear and elevational stimuli) was successful for a subset of subjects and showed less consistency. Notably, the spatio-temporal pattern of EEG features that facilitated decoding differed based on the availability of binaural and monaural cues. In particular, we identified neural processing of binaural cues at around 120 ms post-stimulus and found that monaural cues are processed later between 150 and 200 ms. Furthermore, different spatial activation patterns emerged for binaural and monaural cue processing. These spatio-temporal dissimilarities suggest the involvement of separate cortical mechanisms in monaural and binaural acoustic cue processing. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher
2017-01-01
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357
Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior.
Garofalo, Sara; di Pellegrino, Giuseppe
2015-01-01
Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction.
Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior
Garofalo, Sara; di Pellegrino, Giuseppe
2015-01-01
Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction. PMID:26157371
Attention is necessary for subliminal instrumental conditioning
Mastropasqua, Tommaso; Turatto, Massimo
2015-01-01
The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior. PMID:26257144
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
Communication between domestic dogs (Canis familiaris) and humans: dogs are good learners.
Elgier, Angel M; Jakovcevic, Adriana; Barrera, Gabriela; Mustaca, Alba E; Bentosela, Mariana
2009-07-01
Communication involves a wide range of behaviours that animals emit in their daily lives and can take place between different species, as is the case of domestic dogs (Canis familiaris) and humans. Dogs have shown to be successful at following human cues to solve the object choice task. The question is what are the mechanisms involved in these communicative abilities. This article presents a review of studies about the communicative capacities of domestic dogs emphasizing the ones that considered the effect of associative learning upon these skills. In addition, evidence about differences in dogs' performance in following physical or social cues is summarized and two studies where both signals compete are presented here. The obtained results suggest that the training of a colour cue reverses the dogs' preference for the social one. These results are discussed in light of the findings that gave importance to the learning effect, concluding that the dogs fundamentally follow those cues that allowed them to obtain reinforcers in their previous learning history.
Comprehension of human pointing gestures in horses (Equus caballus).
Maros, Katalin; Gácsi, Márta; Miklósi, Adám
2008-07-01
Twenty domestic horses (Equus caballus) were tested for their ability to rely on different human gesticular cues in a two-way object choice task. An experimenter hid food under one of two bowls and after baiting, indicated the location of the food to the subjects by using one of four different cues. Horses could locate the hidden reward on the basis of the distal dynamic-sustained, proximal momentary and proximal dynamic-sustained pointing gestures but failed to perform above chance level when the experimenter performed a distal momentary pointing gesture. The results revealed that horses could rely spontaneously on those cues that could have a stimulus or local enhancement effect, but the possible comprehension of the distal momentary pointing remained unclear. The results are discussed with reference to the involvement of various factors such as predisposition to read human visual cues, the effect of domestication and extensive social experience and the nature of the gesture used by the experimenter in comparative investigations.
Responding to social and symbolic extrafoveal cues: cue shape trumps biological relevance.
Hermens, Frouke; Bindemann, Markus; Mike Burton, A
2017-01-01
Social cues presented at visual fixation have been shown to strongly influence an observer's attention and response selection. Here we ask whether the same holds for cues (initially) presented away from fixation, as cues are commonly perceived in natural vision. In six experiments, we show that extrafoveally presented cues with a distinct outline, such as pointing hands, rotated heads, and arrow cues result in strong cueing of responses (either to the cue itself, or a cued object). In contrast, cues without a clear outline, such as gazing eyes and direction words exert much weaker effects on participants' responses to a target cue. We also show that distraction effects on response times are relatively weak, but that strong interference effects can be obtained by measuring mouse trajectories. Eye tracking suggests that gaze cues are slower to respond to because their direction cannot easily be perceived in extrafoveal vision. Together, these data suggest that the strength of an extrafoveal cue is determined by the shape of the cue outline, rather than its biological relevance (i.e., whether the cue is provided by another human being), and that this shape effect is due to how easily the direction of a cue can be perceived in extrafoveal vision.
Connotative Meaning of Military Chat Communications
2009-09-01
humans recognize connotative cues expressing uncertainty, perception of personal threat, and urgency; formulate linguistic and non-linguistic means for...built a matrix of speech “cues” representative of uncertainty, perception of personal threat, and urgency, but also applied maximum entropy analysis...results. This project proposed to: (1) conduct a study of how humans recognize connotative cues expressing uncertainty, perception of personal
ERIC Educational Resources Information Center
Moreno-Fernandez, Maria M.; Abad, Maria J. F.; Ramos-Alvarez, Manuel M.; Rosas, Juan M.
2011-01-01
Predictive value for continuously reinforced cues is affected by context changes when they are trained within a context in which a different cue undergoes partial reinforcement. An experiment was conducted with the goal of exploring the mechanisms underlying this context-switch effect. Human participants were trained in a predictive learning…
Facial cues to perceived height influence leadership choices in simulated war and peace contexts.
Re, Daniel E; DeBruine, Lisa M; Jones, Benedict C; Perrett, David I
2013-01-31
Body size and other signs of physical prowess are associated with leadership hierarchies in many social species. Here we (1) assess whether facial cues associated with perceived height and masculinity have different effects on leadership judgments in simulated wartime and peacetime contexts and (2) test how facial cues associated with perceived height and masculinity influence dominance perceptions. Results indicate that cues associated with perceived height and masculinity in potential leaders‟ faces are valued more in a wartime (vs. peacetime) context. Furthermore, increasing cues of apparent height and masculinity in faces increased perceived dominance. Together, these findings suggest that facial cues of physical stature contribute to establishing leadership hierarchies in humans.
The Effect of an Extinction Cue on ABA-Renewal: Does Valence Matter?
ERIC Educational Resources Information Center
Dibbets, Pauline; Maes, Joseph H. R.
2011-01-01
The present human fear conditioning study examined whether the valence of an extinction cue has a differential effect on attenuating renewal that is induced by removal of the extinction context. Additionally, the study aimed to assess whether such attenuating effect is based on a modulatory or safety-signal role of the cue. In acquisition,…
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.
2013-01-01
Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…
Koenig, Stephan; Uengoer, Metin; Lachnit, Harald
2017-01-01
We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H) and the uncertainty of their prediction (L < P > H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466
Range, Friederike; Virányi, Zsófia
2017-01-01
Dogs are renowned for being skilful at using human-given communicative cues such as pointing. Results are contradictory, however, when it comes to dogs' following human gaze, probably due to methodological discrepancies. Here we investigated whether dogs follow human gaze to one of two food locations better than into distant space even after comparable pre-training. In Experiments 1 and 2, the gazing direction of dogs was recorded in a gaze-following into distant space and in an object-choice task where no choice was allowed, in order to allow a direct comparison between tasks, varying the ostensive nature of the gazes. We found that dogs only followed repeated ostensive human gaze into distant space, whereas they followed all gaze cues in the object-choice task. Dogs followed human gaze better in the object-choice task than when there was no obvious target to look at. In Experiment 3, dogs were tested in another object-choice task and were allowed to approach a container. Ostensive cues facilitated the dogs’ following gaze with gaze as well as their choices: we found that dogs in the ostensive group chose the indicated container at chance level, whereas they avoided this container in the non-ostensive group. We propose that dogs may perceive the object-choice task as a competition over food and may interpret non-ostensive gaze as an intentional cue that indicates the experimenter's interest in the food location she has looked at. Whether ostensive cues simply mitigate the competitive perception of this situation or they alter how dogs interpret communicative gaze needs further investigation. Our findings also show that following gaze with one's gaze and actually choosing one of the two containers in an object-choice task need to be considered as different variables. The present study clarifies a number of questions related to gaze-following in dogs and adds to a growing body of evidence showing that human ostensive cues can strongly modify dog behaviour. PMID:28791164
Individual variation in resisting temptation: implications for addiction.
Saunders, Benjamin T; Robinson, Terry E
2013-11-01
When exposed to the sights, sounds, smells and/or places that have been associated with rewards, such as food or drugs, some individuals have difficulty resisting the temptation to seek out and consume them. Others have less difficulty restraining themselves. Thus, Pavlovian reward cues may motivate maladaptive patterns of behavior to a greater extent in some individuals than in others. We are just beginning to understand the factors underlying individual differences in the extent to which reward cues acquire powerful motivational properties, and therefore, the ability to act as incentive stimuli. Here we review converging evidence from studies in both human and non-human animals suggesting that a subset of individuals are more "cue reactive", in that certain reward cues are more likely to attract these individuals to them and motivate actions to get them. We suggest that those individuals for whom Pavlovian reward cues become especially powerful incentives may be more vulnerable to impulse control disorders, such as binge eating and addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Individual variation in resisting temptation: implications for addiction
Saunders, Benjamin T.; Robinson, Terry E.
2013-01-01
When exposed to the sights, sounds, smells and/or places that have been associated with rewards, such as food or drugs, some individuals have difficulty resisting the temptation to seek out and consume them. Others have less difficulty restraining themselves. Thus, Pavlovian reward cues may motivate maladaptive patterns of behavior to a greater extent in some individuals than in others. We are just beginning to understand the factors underlying individual differences in the extent to which reward cues acquire powerful motivational properties, and therefore, the ability to act as incentive stimuli. Here we review converging evidence from studies in both human and non-human animals suggesting that a subset of individuals are more “cue reactive”, in that certain reward cues are more likely to attract these individuals to them and motivate actions to get them. We suggest that those individuals for whom Pavlovian reward cues become especially powerful incentives may be more vulnerable to impulse control disorders, such as binge eating and addiction. PMID:23438893
Human protein status modulates brain reward responses to food cues.
Griffioen-Roose, Sanne; Smeets, Paul Am; van den Heuvel, Emmy; Boesveldt, Sanne; Finlayson, Graham; de Graaf, Cees
2014-07-01
Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. We investigated the effect of human protein status on neural responses to different food cues with the use of functional magnetic resonance imaging (fMRI). The food cues varied by taste category (sweet compared with savory) and protein content (low compared with high). In addition, food preferences and intakes were measured. We used a randomized crossover design whereby 23 healthy women [mean ± SD age: 22 ± 2 y; mean ± SD body mass index (in kg/m(2)): 22.5 ± 1.8] followed two 16-d fully controlled dietary interventions involving consumption of either a low-protein diet (0.6 g protein · kg body weight(-1) · d(-1), ~7% of energy derived from protein, approximately half the normal protein intake) or a high-protein diet (2.2 g protein · kg body weight(-1) · d(-1), ~25% of energy, approximately twice the normal intake). On the last day of the interventions, blood oxygen level-dependent (BOLD) responses to odor and visual food cues were measured by using fMRI. The 2 interventions were followed by a 1-d ad libitum phase, during which a large array of food items was available and preference and intake were measured. When exposed to food cues (relative to the control condition), the BOLD response was higher in reward-related areas (orbitofrontal cortex, striatum) in a low-protein state than in a high-protein state. Specifically, BOLD was higher in the inferior orbitofrontal cortex in response to savory food cues. In contrast, the protein content of the food cues did not modulate the BOLD response. A low protein state also increased preferences for savory food cues and increased protein intake in the ad libitum phase as compared with a high-protein state. Protein status modulates brain responses in reward regions to savory food cues. These novel findings suggest that dietary protein status affects taste category preferences, which could play an important role in the regulation of protein intake in humans. This trial was registered at www.trialregister.nl/trialreg/admin/rctview.asp?TC=3288 as NTR3288. © 2014 American Society for Nutrition.
Unconscious Desire: The Affective and Motivational Aspects of Subliminal Sexual Priming.
Gillath, Omri; Collins, Tara
2016-01-01
Sexual arousal is thought to be the result of the processing of sexual cues at two levels: conscious and unconscious. Whereas numerous studies have examined the affective and motivational responses to supraliminal (consciously processed) sexual cues, much less is known regarding the responses to subliminal (processed outside of one's awareness) sexual cues. Five studies examined responses to subliminal sexual cues. Studies 1–3 demonstrated increases in adults' positive affect following exposure to subliminal sexual cues compared to control cues. Study 4 demonstrated that the positive affect resulting from exposure to subliminal sexual cues increased motivation to further engage in a neutral task. Study 5 provided evidence suggesting that the affect and motivation found in Studies 1–4 were associated with motivation to engage in sex specifically, rather than a general approach motivation. The implications of these findings for the processing of subliminal sexual cues and for human sexuality are discussed.
Boddez, Yannick; Haesen, Kim; Baeyens, Frank; Beckers, Tom
2014-01-01
Blocking is the most important phenomenon in the history of associative learning theory: for over 40 years, blocking has inspired a whole generation of learning models. Blocking is part of a family of effects that are typically termed “cue competition” effects. Common amongst all cue competition effects is that a cue-outcome relation is poorly learned or poorly expressed because the cue is trained in the presence of an alternative predictor or cause of the outcome. We provide an overview of the cognitive processes involved in cue competition effects in humans and propose a stage framework that brings these processes together. The framework contends that the behavioral display of cue competition is cognitively construed following three stages that include (1) an encoding stage, (2) a retention stage, and (3) a performance stage. We argue that the stage framework supports a comprehensive understanding of cue competition effects. PMID:25429280
Human Perception of Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Zhang, Guan-Lu
2010-01-01
Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that the GIF resolution hypothesis is completely valid for non-rotational periodic motions. Additionally, human perception of translation is impaired without visual or spatial reference. The performance of ground-base subjects in estimating tilt after brief training is comparable with that of crewmembers without training.
Ross, M; Lanyon, L J; Viswanathan, J; Manoach, D S; Barton, J J S
2011-11-24
Monkey studies report greater activity in the lateral intraparietal area and more efficient saccades when targets coincide with the location of prior reward cues, even when cue location does not indicate which responses will be rewarded. This suggests that reward can modulate spatial attention and visual selection independent of the "action value" of the motor response. Our goal was first to determine whether reward modulated visual selection similarly in humans, and next, to discover whether reward and penalty differed in effect, if cue effects were greater for cognitively demanding antisaccades, and if financial consequences that were contingent on stimulus location had spatially selective effects. We found that motivational cues reduced all latencies, more for reward than penalty. There was an "inhibition-of-return"-like effect at the location of the cue, but unlike the results in monkeys, cue valence did not modify this effect in prosaccades, and the inhibition-of-return effect was slightly increased rather than decreased in antisaccades. When financial consequences were contingent on target location, locations without reward or penalty consequences lost the benefits seen in noncontingent trials, whereas locations with consequences maintained their gains. We conclude that unlike monkeys, humans show reward effects not on visual selection but on the value of actions. The human saccadic system has both the capacity to enhance responses to multiple locations simultaneously, and the flexibility to focus motivational enhancement only on locations with financial consequences. Reward is more effective than penalty, and both interact with the additional attentional demands of the antisaccade task. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Soeter, Marieke; Kindt, Merel
2015-01-01
Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.
Neural Mechanisms of Credit Assignment in a Multicue Environment
Kolling, Nils; Brown, Joshua W.; Rushworth, Matthew
2016-01-01
In complex environments, many potential cues can guide a decision or be assigned responsibility for the outcome of the decision. We know little, however, about how humans and animals select relevant information sources that should guide behavior. We show that subjects solve this relevance selection and credit assignment problem by selecting one cue and its association with a particular outcome as the main focus of a hypothesis. To do this, we examined learning while using a task design that allowed us to estimate the focus of each subject's hypotheses on a trial-by-trial basis. When a prediction is confirmed by the outcome, then credit for the outcome is assigned to that cue rather than an alternative. Activity in medial frontal cortex is associated with the assignment of credit to the cue that is the main focus of the hypothesis. However, when the outcome disconfirms a prediction, the focus shifts between cues, and the credit for the outcome is assigned to an alternative cue. This process of reselection for credit assignment to an alternative cue is associated with lateral orbitofrontal cortex. SIGNIFICANCE STATEMENT Learners should infer which features of environments are predictive of significant events, such as rewards. This “credit assignment” problem is particularly challenging when any of several cues might be predictive. We show that human subjects solve the credit assignment problem by implicitly “hypothesizing” which cue is relevant for predicting subsequent outcomes, and then credit is assigned according to this hypothesis. This process is associated with a distinctive pattern of activity in a part of medial frontal cortex. By contrast, when unexpected outcomes occur, hypotheses are redirected toward alternative cues, and this process is associated with activity in lateral orbitofrontal cortex. PMID:26818500
Context-Outcome Associations Mediate Context-Switch Effects in a Human Predictive Learning Task
ERIC Educational Resources Information Center
Leon, Samuel P.; Abad, Maria J. F.; Rosas, Juan M.
2011-01-01
Four experiments explored the role of contexts in information retrieval after different levels of acquisition training in human predictive learning. Participants were trained where cue (X) was followed by an outcome in context A while a different cue (Y) was followed by the absence of the outcome in context B. When 4 training trials with each cue…
ERIC Educational Resources Information Center
Rosas, Juan M.; Garcia-Gutierrez, Ana; Callejas-Aguilera, Jose E.
2006-01-01
Two experiments were conducted to evaluate the context switch effect upon retrieval of the information about a cue-outcome relationship in human predictive learning. The results replicated the well-known effect of renewal of the cue-outcome relationship due to a context change after a retroactive interference treatment, as much as the null effect…
ERIC Educational Resources Information Center
Luque, David; Moris, Joaquin; Orgaz, Cristina; Cobos, Pedro L.; Matute, Helena
2011-01-01
Backward blocking (BB) and interference between cues (IbC) are cue competition effects produced by very similar manipulations. In a standard BB design, both effects might occur simultaneously, which implies a potential problem for studying BB. In the present study with humans, the magnitude of both effects was compared using a non-causal scenario…
Fowlkes, Charless C.; Banks, Martin S.
2010-01-01
The shape of the contour separating two regions strongly influences judgments of which region is “figure” and which is “ground.” Convexity and other figure–ground cues are generally assumed to indicate only which region is nearer, but nothing about how much the regions are separated in depth. To determine the depth information conveyed by convexity, we examined natural scenes and found that depth steps across surfaces with convex silhouettes are likely to be larger than steps across surfaces with concave silhouettes. In a psychophysical experiment, we found that humans exploit this correlation. For a given binocular disparity, observers perceived more depth when the near surface's silhouette was convex rather than concave. We estimated the depth distributions observers used in making those judgments: they were similar to the natural-scene distributions. Our findings show that convexity should be reclassified as a metric depth cue. They also suggest that the dichotomy between metric and nonmetric depth cues is false and that the depth information provided many cues should be evaluated with respect to natural-scene statistics. Finally, the findings provide an explanation for why figure–ground cues modulate the responses of disparity-sensitive cells in visual cortex. PMID:20505093
Facilitation of voluntary goal-directed action by reward cues.
Lovibond, Peter F; Colagiuri, Ben
2013-10-01
Reward-associated cues are known to influence motivation to approach both natural and man-made rewards, such as food and drugs. However, the mechanisms underlying these effects are not well understood. To model these processes in the laboratory with humans, we developed an appetitive Pavlovian-instrumental transfer procedure with a chocolate reward. We used a single unconstrained response that led to an actual rather than symbolic reward to assess the strength of reward motivation. Presentation of a chocolate-paired cue, but not an unpaired cue, markedly enhanced instrumental responding over a 30-s period. The same pattern was observed with 10-s and 30-s cues, showing that close cue-reward contiguity is not necessary for facilitation of reward-directed action. The results confirm that reward-related cues can instigate voluntary action to obtain that reward. The effectiveness of long-duration cues suggests that in clinical settings, attention should be directed to both proximal and distal cues for reward.
Nonspecific verbal cues alleviate forgetting by young children.
Morgan, Kirstie; Hayne, Harlene
2007-11-01
Verbal reminders play a pervasive role in memory retrieval by human adults. In fact, relatively nonspecific verbal information (e.g. 'Remember the last time we ate at that restaurant?') will often cue vivid recollections of a past event even when presented outside the original encoding context. Although research has shown that memory retrieval by young children can be initiated by physical cues and by highly specific verbal cues, the effect of less specific verbal cues is not known. Using a Visual Recognition Memory (VRM) procedure, we examined the effect of nonspecific verbal cues on memory retrieval by 4-year-old children. Our findings showed that nonspecific verbal cues were as effective as highly specific nonverbal cues in facilitating memory retrieval after a 2-week delay. We conclude that, at least by 4 years of age, children are able to use nonspecific verbal reminders to cue memory retrieval, and that the VRM paradigm may be particularly valuable in examining the age at which this initially occurs.
Altruists are trusted based on non-verbal cues.
Oda, Ryo; Naganawa, Takuya; Yamauchi, Shinsaku; Yamagata, Noriko; Matsumoto-Oda, Akiko
2009-12-23
The identification of altruists based on non-verbal cues might offer a solution to the problem of subtle cheating. Previous studies have indicated that the ability to discriminate altruists from non-altruists emerges during evolution. However, behavioural differences with regard to social exchanges involving altruists and non-altruists have not been studied. We investigated differences in responses to videotaped altruists and non-altruists with the Faith Game. Participants tended to entrust real money to altruists more than to non-altruists, providing strong evidence that cognitive adaptations evolve as counter-strategies to subtle cheating.
Reduced recruitment of orbitofrontal cortex to human social chemosensory cues in social anxiety.
Zhou, Wen; Hou, Ping; Zhou, Yuxiang; Chen, Denise
2011-04-01
Social anxiety refers to the prevalent and debilitating experience of fear and anxiety of being scrutinized in social situations. It originates from both learned (e.g. adverse social conditioning) and innate (e.g. shyness) factors. Research on social anxiety has traditionally focused on negative emotions induced by visual and auditory social cues in socially anxious clinical populations, and posits a dysfunctional orbitofrontal-amygdala circuit as a primary etiological mechanism. Yet as a trait, social anxiety is independent of one's specific emotional state. Here we probe the neural substrate of intrinsic social anxiety by employing a unique type of social stimuli, airborne human social chemosensory cues that are inherently social, ubiquitously present, and yet operating below verbal awareness. We show that the adopted social chemosensory cues were not perceived to be human-related, did not differentially bias self-report of anxiety or autonomic nervous system responses, yet individuals with elevated social anxiety demonstrated a reduced recruitment of the orbitofrontal cortex to social chemosensory cues. No reciprocal activity in the amygdala was observed. Our findings point to an intrinsic neural substrate underlying social anxiety that is not associated with prior adverse social conditioning, thereby providing the first neural evidence for the inherent social aspect of this enigmatic phenomenon. Copyright © 2010 Elsevier Inc. All rights reserved.
Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals
Czuba, Thaddeus B.; Cormack, Lawrence K.; Huk, Alexander C.
2016-01-01
Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no “cross-cue” adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. SIGNIFICANCE STATEMENT Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how—or indeed if—these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. PMID:27798134
Spatial midsession reversal learning in rats: Effects of egocentric Cue use and memory.
Rayburn-Reeves, Rebecca M; Moore, Mary K; Smith, Thea E; Crafton, Daniel A; Marden, Kelly L
2018-07-01
The midsession reversal task has been used to investigate behavioral flexibility and cue use in non-human animals, with results indicating differences in the degree of control by environmental cues across species. For example, time-based control has been found in rats only when tested in a T-maze apparatus and under specific conditions in which position and orientation (i.e., egocentric) cues during the intertrial interval could not be used to aid performance. Other research in an operant setting has shown that rats often produce minimal errors around the reversal location, demonstrating response patterns similar to patterns exhibited by humans and primates in this task. The current study aimed to reduce, but not eliminate, the ability for rats to utilize egocentric cues by placing the response levers on the opposite wall of the chamber in relation to the pellet dispenser. Results showed that rats made minimal errors prior to the reversal, suggesting time-based cues were not controlling responses, and that they switched to the second correct stimulus within a few trials after the reversal event. Video recordings also revealed highly structured patterns of behavior by the majority of rats, which often differed depending on which response was reinforced. We interpret these findings as evidence that rats are adept at utilizing their own egocentric cues and that these cues, along with memory for the recent response-reinforcement contingencies, aid in maximizing reinforcement over the session. Copyright © 2018 Elsevier B.V. All rights reserved.
Odor Emotional Quality Predicts Odor Identification.
Bestgen, Anne-Kathrin; Schulze, Patrick; Kuchinke, Lars
2015-09-01
It is commonly agreed upon a strong link between emotion and olfaction. Odor-evoked memories are experienced as more emotional compared with verbal, visual, and tactile stimuli. Moreover, the emotional quality of odor cues increases memory performance, but contrary to this, odors are poor retrieval cues for verbal labels. To examine the relation between the emotional quality of an odor and its likelihood of identification, this study evaluates how normative emotion ratings based on the 3-dimensional affective space model (that includes valence, arousal, and dominance), using the Self-Assessment Manikin by Bradley and Lang (Bradley MM, Lang PJ. 1994. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry. 25(1):49-59.) and the Positive and Negative Affect Schedule (Watson D, Clark LA, Tellegen A. 1988. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 54(6):1063-1070.) predict the identification of odors in a multiple choice condition. The best fitting logistic regression model includes squared valence and dominance and thus, points to a significant role of specific emotional features of odors as a main clue for odor identification. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Colour-cueing in visual search.
Laarni, J
2001-02-01
Several studies have shown that people can selectively attend to stimulus colour, e.g., in visual search, and that preknowledge of a target colour can improve response speed/accuracy. The purpose was to use a form-identification task to determine whether valid colour precues can produce benefits and invalid cues costs. The subject had to identify the orientation of a "T"-shaped element in a ring of randomly-oriented "L"s when either two or four of the elements were differently coloured. Contrary to Moore and Egeth's (1998) recent findings, colour-based attention did affect performance under data-limited conditions: Colour cues produced benefits when processing load was high; when the load was reduced, they incurred only costs. Surprisingly, a valid colour cue succeeded in improving performance in the high-load condition even when its validity was reduced to the chance level. Overall, the results suggest that knowledge of a target colour does not facilitate the processing of the target, but makes it possible to prioritize it.
Counterbalancing in smoking cue research: a critical analysis.
Sayette, Michael A; Griffin, Kasey M; Sayers, W Michael
2010-11-01
Cue exposure research has been used to examine key issues in smoking research, such as predicting relapse, testing new medications, investigating the neurobiology of nicotine dependence, and examining reactivity among smokers with comorbid psychopathologies. Determining the order that cues are presented is one of the most critical steps in the design of these investigations. It is widely assumed that cue exposure studies should counterbalance the order in which smoking and control (neutral) cues are presented. This article examines the premises underlying the use of counterbalancing in experimental research, and it evaluates the degree to which counterbalancing is appropriate in smoking cue exposure studies. We reviewed the available literature on the use of counterbalancing techniques in human smoking cue exposure research. Many studies counterbalancing order of cues have not provided critical analyses to determine whether this approach was appropriate. Studies that have reported relevant data, however, suggest that order of cue presentation interacts with type of cue (smoking vs. control), which raises concerns about the utility of counterbalancing. Primarily, this concern arises from potential carryover effects, in which exposure to smoking cues affects subsequent responding to neutral cues. Cue type by order of cue interactions may compromise the utility of counterbalancing. Unfortunately, there is no obvious alternative that is optimal across studies. Strengths and limitations of several alternative designs are considered, and key questions are identified to advance understanding of the optimal conditions for conducting smoking cue exposure studies.
Weierstall, Roland; Moran, James; Giebel, Gilda; Elbert, Thomas
2014-01-01
Recent field research has demonstrated that an attraction to aggressive behavior and cruelty is common among combatants and perpetrators involved in organized violence. The biological basis of this appetitive perception of aggression in humans has to date not been studied. We examined testosterone as a potential hormonal moderator during induction of specifically appetitive aggressive behavior in the laboratory. To activate physiological responding related to appetitive aggression, 145 university students (72 women) listened to tape recordings of variants of a violent story. The perspective of the listener in the story was randomized between subjects. Participants were required to either identify as perpetrator, neutral observer, or victim. We assessed changes in saliva testosterone in response to the story. Subsequently, a series of pictorial stimuli (IAPS) with different valence ratings was presented and participants determined the length of viewing time with a button click. This viewing time for negative IAPS was assessed as a dependent variable indicating level of interest in violent scenes. Men identified themselves with the perpetrator more than women irrespective of the particular perspective presented by the story. Men who responded with an increase in saliva testosterone when adopting the perpetrator perspective chose to view the negative IAPS pictures for longer intervals than participants in other conditions or those who did not exhibit a release in testosterone. Testosterone moderates attraction to cruel and violent cues in men, as indicated by extended deliberate viewing of violence cues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combination of Light and Melatonin Time Cues for Phase Advancing the Human Circadian Clock
Burke, Tina M.; Markwald, Rachel R.; Chinoy, Evan D.; Snider, Jesse A.; Bessman, Sara C.; Jung, Christopher M.; Wright, Kenneth P.
2013-01-01
Study Objectives: Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Design: Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m2)-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m2)-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Setting: Sleep and chronobiology laboratory environment free of time cues. Participants: Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Results: Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Conclusion: Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders. Citation: Burke TM; Markwald RR; Chinoy ED; Snider JA; Bessman SC; Jung CM; Wright Jr KP. Combination of light and melatonin time cues for phase advancing the human circadian clock. SLEEP 2013;36(11):1617-1624. PMID:24179293
Social Performance Cues Induce Behavioral Flexibility in Humans
Toelch, Ulf; Bruce, Matthew J.; Meeus, Marius T. H.; Reader, Simon M.
2011-01-01
Behavioral flexibility allows individuals to react to environmental changes, but changing established behavior carries costs, with unknown benefits. Individuals may thus modify their behavioral flexibility according to the prevailing circumstances. Social information provided by the performance level of others provides one possible cue to assess the potential benefits of changing behavior, since out-performance in similar circumstances indicates that novel behaviors (innovations) are potentially useful. We demonstrate that social performance cues, in the form of previous players’ scores in a problem-solving computer game, influence behavioral flexibility. Participants viewed only performance indicators, not the innovative behavior of others. While performance cues (high, low, or no scores) had little effect on innovation discovery rates, participants that viewed high scores increased their utilization of innovations, allowing them to exploit the virtual environment more effectively than players viewing low or no scores. Perceived conspecific performance can thus shape human decisions to adopt novel traits, even when the traits employed cannot be copied. This simple mechanism, social performance feedback, could be a driver of both the facultative adoption of innovations and cumulative cultural evolution, processes critical to human success. PMID:21811477
Daum, Moritz M; Ulber, Julia; Gredebäck, Gustaf
2013-10-01
The present study aims to investigate the interplay of verbal and nonverbal communication with respect to infants' perception of pointing gestures. Infants were presented with still images of pointing hands (cue) in combination with an acoustic stimulus. The communicative content of this acoustic stimulus was varied from being human and communicative to artificial. Saccadic reaction times (SRTs) from the cue to a peripheral target were measured as an indicator of the modulation of covert attention. A significant cueing effect (facilitated SRTs for congruent compared with incongruent trials) was only present in a condition with additional communicative and referential speech. In addition, the size of the cueing effect increased the more human and communicative the acoustic stimulus was. This indicates a beneficial effect of verbal communication on the perception of nonverbal communicative pointing gestures, emphasizing the important role of verbal communication in facilitating social understanding across domains. These findings additionally suggest that human and communicative (ostensive) signals are not qualitatively different from other less social signals but just quantitatively the most attention grabbing among a number of other signals.
Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita
2009-01-01
Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g. intensity properties) may also contribute. This study examined the effects of cooperating or conflicting acoustic cues on speech intonation recognition by adult CI and normal hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues (i.e. F0 contour and intensity patterns) were either cooperating or conflicting. Subjects identified if each stimulus is a 'statement' or a 'question' in a single-interval, 2-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners' intonation recognition was enhanced by cooperating F0 contour and intensity cues, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners' intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. Copyright (C) 2009 S. Karger AG, Basel.
Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita
2009-01-01
Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g., intensity properties) may also contribute. This study examined the effects of acoustic cues being cooperating or conflicting on speech intonation recognition by adult cochlear implant (CI), and normal-hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues, i.e., F0 contour and intensity patterns, were either cooperating or conflicting. Subjects identified if each stimulus is a “statement” or a “question” in a single-interval, two-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners’ intonation recognition was enhanced by F0 contour and intensity cues being cooperating, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners’ intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally-degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. PMID:19372651
Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde; Nairn, Angus C; Taylor, Jane R
2014-01-01
The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.
Ontogenetic changes in responses to settlement cues by Anemonefish
NASA Astrophysics Data System (ADS)
Dixson, D. L.; Munday, P. L.; Pratchett, M.; Jones, G. P.
2011-12-01
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred naïve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.
Sanchez, Hayde; Nairn, Angus C.; Taylor, Jane R.
2014-01-01
The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior. PMID:25259911
ERIC Educational Resources Information Center
Lewkowicz, David J.
2003-01-01
Three experiments examined 4- to 10-month-olds' perception of audio-visual (A-V) temporal synchrony cues in the presence or absence of rhythmic pattern cues. Results established that infants of all ages could discriminate between two different audio-visual rhythmic events. Only 10-month-olds detected a desynchronization of the auditory and visual…
Hernik, Mikolaj; Fearon, Pasco; Csibra, Gergely
2014-04-22
Animal actions are almost universally constrained by the bilateral body-plan. For example, the direction of travel tends to be constrained by the orientation of the animal's anteroposterior axis. Hence, an animal's behaviour can reliably guide the identification of its front and back, and its orientation can reliably guide action prediction. We examine the hypothesis that the evolutionarily ancient relation between anteroposterior body-structure and behaviour guides our cognitive processing of agents and their actions. In a series of studies, we demonstrate that, after limited exposure, human infants as young as six months of age spontaneously encode a novel agent as having a certain axial direction with respect to its actions and rely on it when anticipating the agent's further behaviour. We found that such encoding is restricted to objects exhibiting cues of agency and does not depend on generalization from features of familiar animals. Our research offers a new tool for investigating the perception of animate agency and supports the proposal that the underlying cognitive mechanisms have been shaped by basic biological adaptations in humans.
Cánovas, Rosa; García, Rubén Fernández; Cimadevilla, Jose Manuel
2011-01-01
The aim of this study was to examine the influence of the number of cues and cue location in human spatial learning. To assess their importance, subjects performed variants of a virtual task called "The Boxes Room". Participants were trained to locate, in a computer-generated environment with 16 boxes, the rewarded boxes through 8 trials. In experiment I, the number of distal cues available was zero, one, two or the standard arrangement (seven cues). In experiment II, place navigation was compared based on distal landmarks (extra-maze cues placed on the walls) and proximal landmarks (proximal cues placed between the boxes). The results of experiment I demonstrated that one cue in the room is enough to obtain a good performance in the task. Experiment II showed that groups using proximal cues were slower and less accurate than groups using distal cues. In addition, our data suggest that men are better navigators than women, as they found the rewarded boxes sooner and committed fewer errors in both studies. These results indicate that performance can change depending on the number and location of available cues. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.
Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O
2018-01-11
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Bastle, Ryan M; Kufahl, Peter R; Turk, Mari N; Weber, Suzanne M; Pentkowski, Nathan S; Thiel, Kenneth J; Neisewander, Janet L
2012-08-01
Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed.
Sheffield, Benjamin M; Schuchman, Gerald; Bernstein, Joshua G W
2015-01-01
As cochlear implant (CI) acceptance increases and candidacy criteria are expanded, these devices are increasingly recommended for individuals with less than profound hearing loss. As a result, many individuals who receive a CI also retain acoustic hearing, often in the low frequencies, in the nonimplanted ear (i.e., bimodal hearing) and in some cases in the implanted ear (i.e., hybrid hearing) which can enhance the performance achieved by the CI alone. However, guidelines for clinical decisions pertaining to cochlear implantation are largely based on expectations for postsurgical speech-reception performance with the CI alone in auditory-only conditions. A more comprehensive prediction of postimplant performance would include the expected effects of residual acoustic hearing and visual cues on speech understanding. An evaluation of auditory-visual performance might be particularly important because of the complementary interaction between the speech information relayed by visual cues and that contained in the low-frequency auditory signal. The goal of this study was to characterize the benefit provided by residual acoustic hearing to consonant identification under auditory-alone and auditory-visual conditions for CI users. Additional information regarding the expected role of residual hearing in overall communication performance by a CI listener could potentially lead to more informed decisions regarding cochlear implantation, particularly with respect to recommendations for or against bilateral implantation for an individual who is functioning bimodally. Eleven adults 23 to 75 years old with a unilateral CI and air-conduction thresholds in the nonimplanted ear equal to or better than 80 dB HL for at least one octave frequency between 250 and 1000 Hz participated in this study. Consonant identification was measured for conditions involving combinations of electric hearing (via the CI), acoustic hearing (via the nonimplanted ear), and speechreading (visual cues). The results suggest that the benefit to CI consonant-identification performance provided by the residual acoustic hearing is even greater when visual cues are also present. An analysis of consonant confusions suggests that this is because the voicing cues provided by the residual acoustic hearing are highly complementary with the mainly place-of-articulation cues provided by the visual stimulus. These findings highlight the need for a comprehensive prediction of trimodal (acoustic, electric, and visual) postimplant speech-reception performance to inform implantation decisions. The increased influence of residual acoustic hearing under auditory-visual conditions should be taken into account when considering surgical procedures or devices that are intended to preserve acoustic hearing in the implanted ear. This is particularly relevant when evaluating the candidacy of a current bimodal CI user for a second CI (i.e., bilateral implantation). Although recent developments in CI technology and surgical techniques have increased the likelihood of preserving residual acoustic hearing, preservation cannot be guaranteed in each individual case. Therefore, the potential gain to be derived from bilateral implantation needs to be weighed against the possible loss of the benefit provided by residual acoustic hearing.
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1981-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Modeling heading and path perception from optic flow in the case of independently moving objects
Raudies, Florian; Neumann, Heiko
2013-01-01
Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589
Captive Bottlenose Dolphins Do Discriminate Human-Made Sounds Both Underwater and in the Air.
Lima, Alice; Sébilleau, Mélissa; Boye, Martin; Durand, Candice; Hausberger, Martine; Lemasson, Alban
2018-01-01
Bottlenose dolphins ( Tursiops truncatus ) spontaneously emit individual acoustic signals that identify them to group members. We tested whether these cetaceans could learn artificial individual sound cues played underwater and whether they would generalize this learning to airborne sounds. Dolphins are thought to perceive only underwater sounds and their training depends largely on visual signals. We investigated the behavioral responses of seven dolphins in a group to learned human-made individual sound cues, played underwater and in the air. Dolphins recognized their own sound cue after hearing it underwater as they immediately moved toward the source, whereas when it was airborne they gazed more at the source of their own sound cue but did not approach it. We hypothesize that they perhaps detected modifications of the sound induced by air or were confused by the novelty of the situation, but nevertheless recognized they were being "targeted." They did not respond when hearing another group member's cue in either situation. This study provides further evidence that dolphins respond to individual-specific sounds and that these marine mammals possess some capacity for processing airborne acoustic signals.
Tauzin, Tibor; Csík, Andor; Kis, Anna; Kovács, Krisztina; Topál, József
2015-07-01
Ostensive signals preceding referential cues are crucial in communication-based human knowledge acquisition processes. Since dogs are sensitive to both human ostensive and referential signals, here we investigate whether they also take into account the order of these signals and, in an object-choice task, respond to human pointing more readily when it is preceded by an ostensive cue indicating communicative intent. Adult pet dogs (n = 75) of different breeds were presented with different sequences of a three-step human action. In the relevant sequence (RS) condition, subjects were presented with an ostensive attention getter (verbal addressing and eye contact), followed by referential pointing at one of two identical targets and then a non-ostensive attention getter (clapping of hands). In the irrelevant sequence (IS) condition, the order of attention getters was swapped. We found that dogs chose the target indicated by pointing more frequently in the RS as compared to the IS condition. While dogs selected randomly between the target locations in the IS condition, they performed significantly better than chance in the RS condition. Based on a further control experiment (n = 22), it seems that this effect is not driven by the aversive or irrelevant nature of the non-ostensive cue. This suggests that dogs are sensitive to the order of signal sequences, and the exploitation of human referential pointing depends on the behaviour pattern in which the informing cue is embedded.
Do Domestic Dogs Learn Words Based on Humans’ Referential Behaviour?
Tempelmann, Sebastian; Kaminski, Juliane; Tomasello, Michael
2014-01-01
Some domestic dogs learn to comprehend human words, although the nature and basis of this learning is unknown. In the studies presented here we investigated whether dogs learn words through an understanding of referential actions by humans rather than simple association. In three studies, each modelled on a study conducted with human infants, we confronted four word-experienced dogs with situations involving no spatial-temporal contiguity between the word and the referent; the only available cues were referential actions displaced in time from exposure to their referents. We found that no dogs were able to reliably link an object with a label based on social-pragmatic cues alone in all the tests. However, one dog did show skills in some tests, possibly indicating an ability to learn based on social-pragmatic cues. PMID:24646732
Śmigasiewicz, Kamila; Hasan, Gabriel Sami; Verleger, Rolf
2017-01-01
In dynamically changing environments, spatial attention is not equally distributed across the visual field. For instance, when two streams of stimuli are presented left and right, the second target (T2) is better identified in the left visual field (LVF) than in the right visual field (RVF). Recently, it has been shown that this bias is related to weaker stimulus-driven orienting of attention toward the RVF: The RVF disadvantage was reduced with salient task-irrelevant valid cues and increased with invalid cues. Here we studied if also endogenous orienting of attention may compensate for this unequal distribution of stimulus-driven attention. Explicit information was provided about the location of T1 and T2. Effectiveness of the cue manipulation was confirmed by EEG measures: decreasing alpha power before stream onset with informative cues, earlier latencies of potentials evoked by T1-preceding distractors at the right than at the left hemisphere when T1 was cued left, and decreasing T1- and T2-evoked N2pc amplitudes with informative cues. Importantly, informative cues reduced (though did not completely abolish) the LVF advantage, indicated by improved identification of right T2, and reflected by earlier N2pc latency evoked by right T2 and larger decrease in alpha power after cues indicating right T2. Overall, these results suggest that endogenously driven attention facilitates stimulus-driven orienting of attention toward the RVF, thereby partially overcoming the basic LVF bias in spatial attention.
Signals for the lysosome: a control center for cellular clearance and energy metabolism
Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.
2015-01-01
Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508
Aymerich-Franch, Laura; Petit, Damien; Ganesh, Gowrishankar; Kheddar, Abderrahmane
2016-11-01
Whole-body embodiment studies have shown that synchronized multi-sensory cues can trick a healthy human mind to perceive self-location outside the bodily borders, producing an illusion that resembles an out-of-body experience (OBE). But can a healthy mind also perceive the sense of self in more than one body at the same time? To answer this question, we created a novel artificial reduplication of one's body using a humanoid robot embodiment system. We first enabled individuals to embody the humanoid robot by providing them with audio-visual feedback and control of the robot head movements and walk, and then explored the self-location and self-identification perceived by them when they observed themselves through the embodied robot. Our results reveal that, when individuals are exposed to the humanoid body reduplication, they experience an illusion that strongly resembles heautoscopy, suggesting that a healthy human mind is able to bi-locate in two different bodies simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.
Helicopter human factors research
NASA Technical Reports Server (NTRS)
Nagel, David C.; Hart, Sandra G.
1988-01-01
Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.
Sex differences in virtual navigation influenced by scale and navigation experience.
Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A
2017-04-01
The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.
Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong
2017-01-01
Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.
Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong
2017-01-01
Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435
Myers, Karyn M; Carlezon, William A
2010-11-01
Conditioned drug craving and withdrawal elicited by cues paired with drug use or acute withdrawal are among the many factors contributing to compulsive drug taking. Understanding how to stop these cues from having these effects is a major goal of addiction research. Extinction is a form of learning in which associations between cues and the events they predict are weakened by exposure to the cues in the absence of those events. Evidence from animal models suggests that conditioned responses to drug cues can be extinguished, although the degree to which this occurs in humans is controversial. Investigations into the neurobiological substrates of extinction of conditioned drug craving and withdrawal may facilitate the successful use of drug cue extinction within clinical contexts. While this work is still in the early stages, there are indications that extinction of drug- and withdrawal-paired cues shares neural mechanisms with extinction of conditioned fear. Using the fear extinction literature as a template, it is possible to organize the observations on drug cue extinction into a cohesive framework. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of Visual Propioceptive Cue Conflicts on Human Tracking Performance
1977-06-01
maintain adequate iwifommsie it *a necessaty for the Subjects to dusregaril sensations of motion. The results rewaead that the conditions of...discussions. Dr. George L. Smith served as the Graduate School Representative on the comittee. The research reported herein was conducted at the Advanced...where no motion cues art . provided or when Motion cues are inappropriate to actual flight conditions. The latter (i.e., inappropriate motion) has
ERIC Educational Resources Information Center
Jorge A. Pinto,; Vogel, Edgar H.; Núñez, Daniel E.
2017-01-01
The learned predictiveness effect or LPE is the finding that when people learn that certain cues are reliable predictors of an outcome in an initial stage of training (phase 1), they exhibit a learning bias in favor of these cues in a subsequent training involving new outcomes (phase 2) despite all cues being equally reliable in phase 2. In…
Counterbalancing in Smoking Cue Research: A Critical Analysis
Griffin, Kasey M.; Sayers, W. Michael
2010-01-01
Introduction: Cue exposure research has been used to examine key issues in smoking research, such as predicting relapse, testing new medications, investigating the neurobiology of nicotine dependence, and examining reactivity among smokers with comorbid psychopathologies. Determining the order that cues are presented is one of the most critical steps in the design of these investigations. It is widely assumed that cue exposure studies should counterbalance the order in which smoking and control (neutral) cues are presented. This article examines the premises underlying the use of counterbalancing in experimental research, and it evaluates the degree to which counterbalancing is appropriate in smoking cue exposure studies. Methods: We reviewed the available literature on the use of counterbalancing techniques in human smoking cue exposure research. Results: Many studies counterbalancing order of cues have not provided critical analyses to determine whether this approach was appropriate. Studies that have reported relevant data, however, suggest that order of cue presentation interacts with type of cue (smoking vs. control), which raises concerns about the utility of counterbalancing. Primarily, this concern arises from potential carryover effects, in which exposure to smoking cues affects subsequent responding to neutral cues. Conclusions: Cue type by order of cue interactions may compromise the utility of counterbalancing. Unfortunately, there is no obvious alternative that is optimal across studies. Strengths and limitations of several alternative designs are considered, and key questions are identified to advance understanding of the optimal conditions for conducting smoking cue exposure studies. PMID:20884695
Cue competition effects in human causal learning.
Vogel, Edgar H; Glynn, Jacqueline Y; Wagner, Allan R
2015-01-01
Five experiments involving human causal learning were conducted to compare the cue competition effects known as blocking and unovershadowing, in proactive and retroactive instantiations. Experiment 1 demonstrated reliable proactive blocking and unovershadowing but only retroactive unovershadowing. Experiment 2 replicated the same pattern and showed that the retroactive unovershadowing that was observed was interfered with by a secondary memory task that had no demonstrable effect on either proactive unovershadowing or blocking. Experiments 3a, 3b, and 3c demonstrated that retroactive unovershadowing was accompanied by an inflated memory effect not accompanying proactive unovershadowing. The differential pattern of proactive versus retroactive cue competition effects is discussed in relationship to amenable associative and inferential processing possibilities.
Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia
2015-12-01
Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.
Keating, Peter; Nodal, Fernando R; King, Andrew J
2014-01-01
For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for the localization of tones by humans, some species show very different behaviour. Ferrets are widely used for studying both clinical and fundamental aspects of spatial hearing, but it is not known whether the duplex theory applies to this species or, if so, to what extent the frequency range over which each binaural cue is used depends on acoustical or neurophysiological factors. To address these issues, we trained ferrets to lateralize tones presented over earphones and found that the frequency dependence of ITD and ILD sensitivity broadly paralleled that observed in humans. Compared with humans, however, the transition between ITD and ILD sensitivity was shifted toward higher frequencies. We found that the frequency dependence of ITD sensitivity in ferrets can partially be accounted for by acoustical factors, although neurophysiological mechanisms are also likely to be involved. Moreover, we show that binaural cue sensitivity can be shaped by experience, as training ferrets on a 1-kHz ILD task resulted in significant improvements in thresholds that were specific to the trained cue and frequency. Our results provide new insights into the factors limiting the use of different sound localization cues and highlight the importance of sensory experience in shaping the underlying neural mechanisms. PMID:24256073
Dread of uncertain pain: An event-related potential study
Huang, Yujing; Shang, Qian; Dai, Shenyi; Ma, Qingguo
2017-01-01
Humans experience more stress about uncertain situations than certain situations. However, the neural mechanism underlying the uncertainty of a negative stimulus has not been determined. In the present study, event-related potential was recorded to examine neural responses during the dread of unpredictable pain. We used a cueing paradigm in which predictable cues were always followed by electric shocks, unpredictable cues by electric shocks at a 50/50 ratio and safe cues by no electric shock. Visual analogue scales following electric shocks were presented to quantify subjective anxiety levels. The behavioral results showed that unpredictable cues evoked high-level anxiety compared with predictable cues in both painful and unpainful stimulation conditions. More importantly, the ERPs results revealed that unpredictable cues elicited a larger P200 at parietal sites than predictable cues. In addition, unpredictable cues evoked larger P200 compared with safe cues at frontal electrodes and compared with predictable cues at parietal electrodes. In addition, larger P3b and LPP were observed during perception of safe cues compared with predictable cues at frontal and central electrodes. The similar P3b effect was also revealed in the left sites. The present study underlined that the uncertain dread of pain was associated with threat appraisal process in pain system. These findings on early event-related potentials were significant for a neural marker and development of therapeutic interventions. PMID:28832607
A comparison of daily and occasional smokers' implicit affective responses to smoking cues.
Haight, John; Dickter, Cheryl L; Forestell, Catherine A
2012-03-01
Previous research has not compared implicit affective responses to smoking-related stimuli in occasional (i.e., those who smoke less than one cigarette per day) and daily smokers (i.e., those who smoke at least once per day). In addition to assessing their motivations for smoking, implicit affective responses were measured using the Affect Misattribution Procedure (AMP) in occasional (n=19) and daily smokers (n=34) to smoking-related and neutral cues. Half of the cues depicted a human interacting with an object (i.e., active), whereas the remaining cues depicted objects alone (i.e., inactive). Results indicated that for the active cues, daily smokers responded more positively to smoking-related than to neutral cues, whereas occasional smokers showed no difference in their implicit responses. In addition to smoking frequency, relative differences in implicit responses to active cues were related to cognitive enhancement motivation. For inactive cues, implicit responses were related to cognitive enhancement as well as reinforcement. Because daily smokers have more positive implicit responses to active smoking-related cues than occasional smokers, these cues may play an important role in maintaining smoking behavior in daily smokers. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of interword spacing in reading Japanese: an eye movement study.
Sainio, Miia; Hyönä, Jukka; Bingushi, Kazuo; Bertram, Raymond
2007-09-01
The present study investigated the role of interword spacing in a naturally unspaced language, Japanese. Eye movements were registered of native Japanese readers reading pure Hiragana (syllabic) and mixed Kanji-Hiragana (ideographic and syllabic) text in spaced and unspaced conditions. Interword spacing facilitated both word identification and eye guidance when reading syllabic script, but not when the script contained ideographic characters. We conclude that in reading Hiragana interword spacing serves as an effective segmentation cue. In contrast, spacing information in mixed Kanji-Hiragana text is redundant, since the visually salient Kanji characters serve as effective segmentation cues by themselves.
Papsin, Blake C.; Paludetti, Gaetano; Gordon, Karen A.
2015-01-01
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology. PMID:26317976
Giannantonio, Sara; Polonenko, Melissa J; Papsin, Blake C; Paludetti, Gaetano; Gordon, Karen A
2015-01-01
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology.
Training Lie Detectors to Use Nonverbal Cues Instead of Global Heuristics.
ERIC Educational Resources Information Center
Fiedler, Klaus; Walka, Isabella
1993-01-01
Finds that naive human lie detectors follow content-related heuristics (like infrequency of reported events or falsifiability) but can flexibly change their strategy as they learn about authentic nonverbal cues that discriminate lies from truthful communications. (SR)
The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans.
Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A
2016-11-01
Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution.
Kolarik, Andrew J; Moore, Brian C J; Zahorik, Pavel; Cirstea, Silvia; Pardhan, Shahina
2016-02-01
Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.
The architecture of human kin detection
Lieberman, Debra; Tooby, John; Cosmides, Leda
2012-01-01
Evolved mechanisms for assessing genetic relatedness have been found in many species, but their existence in humans has been a matter of controversy. Here we report three converging lines of evidence, drawn from siblings, that support the hypothesis that kin detection mechanisms exist in humans. These operate by computing, for each familiar individual, a unitary regulatory variable (the kinship index) that corresponds to a pairwise estimate of genetic relatedness between self and other. The cues that the system uses were identified by quantitatively matching individual exposure to potential cues of relatedness to variation in three outputs relevant to the system’s evolved functions: sibling altruism, aversion to personally engaging in sibling incest, and moral opposition to third party sibling incest. As predicted, the kin detection system uses two distinct, ancestrally valid cues to compute relatedness: the familiar other’s perinatal association with the individual’s biological mother, and duration of sibling coresidence. PMID:17301784
Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning
Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred
2017-01-01
Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809
Experience with a second language affects the use of fundamental frequency in speech segmentation
Broersma, Mirjam; Cho, Taehong; Kim, Sahyang; Martínez-García, Maria Teresa; Connell, Katrina
2017-01-01
This study investigates whether listeners’ experience with a second language learned later in life affects their use of fundamental frequency (F0) as a cue to word boundaries in the segmentation of an artificial language (AL), particularly when the cues to word boundaries conflict between the first language (L1) and second language (L2). F0 signals phrase-final (and thus word-final) boundaries in French but word-initial boundaries in English. Participants were functionally monolingual French listeners, functionally monolingual English listeners, bilingual L1-English L2-French listeners, and bilingual L1-French L2-English listeners. They completed the AL-segmentation task with F0 signaling word-final boundaries or without prosodic cues to word boundaries (monolingual groups only). After listening to the AL, participants completed a forced-choice word-identification task in which the foils were either non-words or part-words. The results show that the monolingual French listeners, but not the monolingual English listeners, performed better in the presence of F0 cues than in the absence of such cues. Moreover, bilingual status modulated listeners’ use of F0 cues to word-final boundaries, with bilingual French listeners performing less accurately than monolingual French listeners on both word types but with bilingual English listeners performing more accurately than monolingual English listeners on non-words. These findings not only confirm that speech segmentation is modulated by the L1, but also newly demonstrate that listeners’ experience with the L2 (French or English) affects their use of F0 cues in speech segmentation. This suggests that listeners’ use of prosodic cues to word boundaries is adaptive and non-selective, and can change as a function of language experience. PMID:28738093
Lower region: a new cue for figure-ground assignment.
Vecera, Shaun P; Vogel, Edward K; Woodman, Geoffrey F
2002-06-01
Figure-ground assignment is an important visual process; humans recognize, attend to, and act on figures, not backgrounds. There are many visual cues for figure-ground assignment. A new cue to figure-ground assignment, called lower region, is presented: Regions in the lower portion of a stimulus array appear more figurelike than regions in the upper portion of the display. This phenomenon was explored, and it was demonstrated that the lower-region preference is not influenced by contrast, eye movements, or voluntary spatial attention. It was found that the lower region is defined relative to the stimulus display, linking the lower-region preference to pictorial depth perception cues. The results are discussed in terms of the environmental regularities that this new figure-ground cue may reflect.
Itzhak, Yossef; Roger-Sánchez, Concepción; Kelley, Jonathan B; Anderson, Karen L
2010-03-01
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Thurman, Steven M; Lu, Hongjing
2014-01-01
Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.
Mistaking minds and machines: How speech affects dehumanization and anthropomorphism.
Schroeder, Juliana; Epley, Nicholas
2016-11-01
Treating a human mind like a machine is an essential component of dehumanization, whereas attributing a humanlike mind to a machine is an essential component of anthropomorphism. Here we tested how a cue closely connected to a person's actual mental experience-a humanlike voice-affects the likelihood of mistaking a person for a machine, or a machine for a person. We predicted that paralinguistic cues in speech are particularly likely to convey the presence of a humanlike mind, such that removing voice from communication (leaving only text) would increase the likelihood of mistaking the text's creator for a machine. Conversely, adding voice to a computer-generated script (resulting in speech) would increase the likelihood of mistaking the text's creator for a human. Four experiments confirmed these hypotheses, demonstrating that people are more likely to infer a human (vs. computer) creator when they hear a voice expressing thoughts than when they read the same thoughts in text. Adding human visual cues to text (i.e., seeing a person perform a script in a subtitled video clip), did not increase the likelihood of inferring a human creator compared with only reading text, suggesting that defining features of personhood may be conveyed more clearly in speech (Experiments 1 and 2). Removing the naturalistic paralinguistic cues that convey humanlike capacity for thinking and feeling, such as varied pace and intonation, eliminates the humanizing effect of speech (Experiment 4). We discuss implications for dehumanizing others through text-based media, and for anthropomorphizing machines through speech-based media. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Acoustic and Perceptual Effects of Dysarthria in Greek with a Focus on Lexical Stress
NASA Astrophysics Data System (ADS)
Papakyritsis, Ioannis
The field of motor speech disorders in Greek is substantially underresearched. Additionally, acoustic studies on lexical stress in dysarthria are generally very rare (Kim et al. 2010). This dissertation examined the acoustic and perceptual effects of Greek dysarthria focusing on lexical stress. Additional possibly deviant speech characteristics were acoustically analyzed. Data from three dysarthric participants and matched controls was analyzed using a case study design. The analysis of lexical stress was based on data drawn from a single word repetition task that included pairs of disyllabic words differentiated by stress location. This data was acoustically analyzed in terms of the use of the acoustic cues for Greek stress. The ability of the dysarthric participants to signal stress in single words was further assessed in a stress identification task carried out by 14 naive Greek listeners. Overall, the acoustic and perceptual data indicated that, although all three dysarthric speakers presented with some difficulty in the patterning of stressed and unstressed syllables, each had different underlying problems that gave rise to quite distinct patterns of deviant speech characteristics. The atypical use of lexical stress cues in Anna's data obscured the prominence relations of stressed and unstressed syllables to the extent that the position of lexical stress was usually not perceptually transparent. Chris and Maria on the other hand, did not have marked difficulties signaling lexical stress location, although listeners were not 100% successful in the stress identification task. For the most part, Chris' atypical phonation patterns and Maria's very slow rate of speech did not interfere with lexical stress signaling. The acoustic analysis of the lexical stress cues was generally in agreement with the participants' performance in the stress identification task. Interestingly, in all three dysarthric participants, but more so in Anna, targets stressed on the 1st syllable were more impervious to error judgments of lexical stress location than targets stressed on the 2nd syllable, although the acoustic metrics did not always suggest a more appropriate use of lexical stress cues in 1st syllable position. The findings contribute to our limited knowledge of the speech characteristics of dysarthria across different languages.
Polston, J.E.; Pritchett, C.E.; Sell, E.M.; Glick, S.D.
2012-01-01
Numerous studies utilizing drug self-administration have shown the importance of conditioned cues in maintaining and reinstating addictive behaviors. However, most used simple cues that fail to replicate the complexity of cues present in human craving and addiction. We have recently shown that music can induce behavioral and neurochemical changes in rats following classical conditioning with psychostimulants. However, such effects have yet to be characterized utilizing operant self-administration procedures, particularly with regard to craving and relapse. The goal of the present study was to validate the effectiveness of music as a contextual conditioned stimulus using cocaine in an operant reinstatement model of relapse. Rats were trained to lever press for cocaine with a musical cue, and were subsequently tested during reinstatement sessions to determine how musical conditioning affected drug seeking behavior. Additionally, in vivo microdialysis was used to determine basolateral amygdala involvement during reinstatement. Lastly, tests were conducted to determine whether the putative anti-addictive agent 18-methoxycoronaridine (18-MC) could attenuate cue-induced drug seeking behavior. Our results show that music-conditioned animals exhibited increased drug seeking behaviors when compared to controls during reinstatement test sessions. Furthermore, music-conditioned subjects exhibited increased extracellular dopamine in the basolateral amygdala during reinstatement sessions. Perhaps most importantly, 18-MC blocked musical cue-induced reinstatement. Thus, music can be a powerful contextual conditioned cue in rats, capable of inducing changes in both brain neurochemistry and drug seeking behavior during abstinence. The fact that 18-MC blocked cue-induced reinstatement suggests that α3β4 nicotinic receptors may be involved in the mechanism of craving, and that 18-MC may help prevent relapse to drug addiction in humans. PMID:22885280
Luiga, I; Bachmann, T
2007-11-01
Enns and Di Lollo [Psychological Science, 8 (2), 135-139, 1997] have introduced the object substitution theory of visual masking. Object substitution masking occurs when focusing attention on the target is delayed. However, Posner (Quarterly Journal of Experimental Psychology, 32, 3-25, 1980) has already shown that attention can be directed to a target at least in two ways: intentionally (endogenously) and automatically (exogenously). We conducted two experiments to explore the effects of endogenous and exogenous cues on substitution masking. The results showed that when attention was shifted to the target location automatically (using a local peripheral pre-cue), masking was attenuated. A decrease in target identification dependent on a delay of mask offset, typical to substitution masking, was not observed. However, strong substitution masking occurred when the target location was not pre-cued or when attention was directed to the target location intentionally (using a symbolic pre-cue displayed centrally). The hypothesis of two different mechanisms of attentional control in substitution masking was confirmed.
Extinction Can Reduce the Impact of Reward Cues on Reward-Seeking Behavior.
Lovibond, Peter F; Satkunarajah, Michelle; Colagiuri, Ben
2015-07-01
Reward-associated cues are thought to promote relapse after treatment of appetitive disorders such as drug-taking, binge eating, and gambling. This process has been modelled in the laboratory using a Pavlovian-instrumental transfer (PIT) design in which Pavlovian cues facilitate instrumental reward-directed action. Attempts to reduce facilitation by cue exposure (extinction) have produced mixed results. We tested the effect of extinction in a recently developed PIT procedure using a natural reward, chocolate, in human participants. Facilitation of instrumental responding was only observed in participants who were aware of the Pavlovian contingencies. Pavlovian extinction successfully reduced, but did not completely eliminate, expectancy of reward and facilitation of instrumental responding. The results indicate that exposure can reduce the ability of cues to promote reward-directed behavior in the laboratory. However, the residual potency of extinguished cues means that additional active strategies may be needed in clinical practice to train patients to resist the impact of these cues in their environment. Copyright © 2015. Published by Elsevier Ltd.
Cue competition affects temporal dynamics of edge-assignment in human visual cortex.
Brooks, Joseph L; Palmer, Stephen E
2011-03-01
Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.
Spatial separation of target and competitor cues enhances blocking of human causality judgements.
Glautier, Steven
2002-04-01
Three experiments were carried out. Each required subjects to make judgements about the causal status of cues following a two-stage blocking procedure. In Stage 1 a competitor cue was consistently paired with an outcome, and in Stage 2 the competitor continued to be paired with the outcome but was accompanied by a target cue. It was predicted that causal judgements for the target would be reduced by the presence of the competitor. In Experiments 1 and 2 the blocking procedure was implemented as a computer simulation of a card game during which subjects had to learn which cards produced the best payouts. The cues that subjects used to make their judgement were colours and symbols that appeared on the backs of the cards. When the target and competitor cues appeared on the same card blocking effects did not emerge, but when they appeared as part of different cards blocking effects were found. Thus, spatial separation of target and competitor cues appeared to facilitate blocking. Experiment 3 replicated the blocking result using spatially separated target and competitor cues.
Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María
2018-01-30
Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species identification in remote malaria diagnosis.
Captive Bottlenose Dolphins Do Discriminate Human-Made Sounds Both Underwater and in the Air
Lima, Alice; Sébilleau, Mélissa; Boye, Martin; Durand, Candice; Hausberger, Martine; Lemasson, Alban
2018-01-01
Bottlenose dolphins (Tursiops truncatus) spontaneously emit individual acoustic signals that identify them to group members. We tested whether these cetaceans could learn artificial individual sound cues played underwater and whether they would generalize this learning to airborne sounds. Dolphins are thought to perceive only underwater sounds and their training depends largely on visual signals. We investigated the behavioral responses of seven dolphins in a group to learned human-made individual sound cues, played underwater and in the air. Dolphins recognized their own sound cue after hearing it underwater as they immediately moved toward the source, whereas when it was airborne they gazed more at the source of their own sound cue but did not approach it. We hypothesize that they perhaps detected modifications of the sound induced by air or were confused by the novelty of the situation, but nevertheless recognized they were being “targeted.” They did not respond when hearing another group member’s cue in either situation. This study provides further evidence that dolphins respond to individual-specific sounds and that these marine mammals possess some capacity for processing airborne acoustic signals. PMID:29445350
Head-body ratio as a visual cue for stature in people and sculptural art.
Mather, George
2010-01-01
Body size is crucial for determining the outcome of competition for resources and mates. Many species use acoustic cues to measure caller body size. Vision is the pre-eminent sense for humans, but visual depth cues are of limited utility in judgments of absolute body size. The reliability of internal body proportion as a potential cue to stature was assessed with a large sample of anthropometric data, and the ratio of head height to body height (HBR) was found to be highly correlated with stature. A psychophysical experiment was carried out to investigate whether the cue actually influences stature judgments. Participants were shown pairs of photographs of human figures in which HBR had been manipulated systematically, and asked to select the figure that appeared taller. Results showed that figures with a relatively small HBR were consistently perceived as taller than figures with a relatively large HBR. Many classical statues such as Michelangelo's David depart from the classical proportions defined in Leonardo's Vitruvian Man. A supplementary experiment showed that perceived stature in classical statues also depends on HBR. Michelangelo's David was created with the HBR of a man 165 cm (5 ft 5 in) tall.
In situ modeling of multimodal floral cues attracting wild pollinators across environments
Dahlbom, Josefin; Ghosh, Suhrid; Olsson, Amadeus; Dyakova, Olga; Suresh, Shravanti Krishna
2017-01-01
With more than 80% of flowering plant species specialized for animal pollination, understanding how wild pollinators utilize resources across environments can encourage efficient planting and maintenance strategies to maximize pollination and establish resilience in the face of environmental change. A fundamental question is how generalist pollinators recognize “flower objects” in vastly different ecologies and environments. On one hand, pollinators could employ a specific set of floral cues regardless of environment. Alternatively, wild pollinators could recognize an exclusive signature of cues unique to each environment or flower species. Hoverflies, which are found across the globe, are one of the most ecologically important alternative pollinators after bees and bumblebees. Here, we have exploited their cosmopolitan status to understand how wild pollinator preferences change across different continents. Without employing any a priori assumptions concerning the floral cues, we measured, predicted, and finally artificially recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical) using a field-based methodology. We found that although “flower signatures” were unique for each environment, some multimodal lures were ubiquitously attractive, despite not carrying any reward, or resembling real flowers. While it was unexpected that cue combinations found in real flowers were not necessary, the robustness of our lures across insect species and ecologies could reflect a general strategy of resource identification for generalist pollinators. Our results provide insights into how cosmopolitan pollinators such as hoverflies identify flowers and offer specific ecologically based cues and strategies for attracting pollinators across diverse environments. PMID:29180408
Dyspnea-Related Cues Engage the Prefrontal Cortex
Herigstad, Mari; Hayen, Anja; Evans, Eleanor; Hardinge, Frances M.; Davies, Robert J.; Wiech, Katja
2015-01-01
BACKGROUND: Dyspnea is the major source of disability in COPD. In COPD, environmental cues (eg, the prospect of having to climb stairs) become associated with dyspnea and may trigger dyspnea even before physical activity commences. We hypothesized that brain activation relating to such cues would be different between patients with COPD and healthy control subjects, reflecting greater engagement of emotional mechanisms in patients. METHODS: Using functional MRI (FMRI), we investigated brain responses to dyspnea-related word cues in 41 patients with COPD and 40 healthy age-matched control subjects. We combined these findings with scores on self-report questionnaires, thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enabled identification of brain networks responsible for pain processing despite absence of a physical challenge. RESULTS: Patients with COPD demonstrated activation in the medial prefrontal cortex and anterior cingulate cortex, which correlated with the visual analog scale (VAS) response to word cues. This activity independently correlated with patient responses on questionnaires of depression, fatigue, and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex, and precuneus correlated with the VAS dyspnea scale but not with the questionnaires. CONCLUSIONS: The findings suggest that engagement of the emotional circuitry of the brain is important for interpretation of dyspnea-related cues in COPD and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and the findings suggest that such mechanisms may be relevant in COPD. PMID:26134891
Pilot response to peripheral vision cues during instrument flying tasks.
DOT National Transportation Integrated Search
1968-02-01
In an attempt to more closely associate the visual aspects of instrument flying with that of contact flight, a study was made of human response to peripheral vision cues relating to aircraft roll attitude. Pilots, ranging from 52 to 12,000 flying hou...
Robidoux, Serje; Rauwerda, Derek; Besner, Derek
2014-05-01
Whether or not lexical access from print requires spatial attention has been debated intensively for the last 30 years. Studies involving colour naming generally find evidence that "unattended" words are processed. In contrast, reading-based experiments do not find evidence of distractor processing. One theory ascribes the discrepancy to weaker attentional demands for colour identification. If colour naming does not capture all of a subject's attention, the remaining attentional resources can be deployed to process the distractor word. The present study combined exogenous spatial cueing with colour naming and reading aloud separately and found that colour naming is less sensitive to the validity of a spatial cue than is reading words aloud. Based on these results, we argue that colour naming studies do not effectively control attention so that no conclusions about unattended distractor processing can be drawn from them. Thus we reiterate the consistent conclusion drawn from reading aloud and lexical decision studies: There is no word identification without (spatial) attention.
Farnier, Kevin; Bengtsson, Marie; Becher, Paul G; Witzell, Johanna; Witzgall, Peter; Manduríc, Sanja
2012-06-01
Potato cyst nematodes (PCNs) are a major pest of solanaceous crops such as potatoes, tomatoes, and eggplants and have been widely studied over the last 30 years, with the majority of earlier studies focusing on the identification of natural hatching factors. As a novel approach, we focused instead on chemicals involved in nematode orientation towards its host plant. A new dual choice sand bioassay was designed to study nematode responses to potato root exudates (PRE). This bioassay, conducted together with a traditional hatching bioassay, showed that biologically active compounds that induce both hatching and attraction of PCNs can be collected by water extraction of incised potato roots. Furthermore, our results demonstrated that PCN also were attracted by potato root volatiles. Further work is needed to fully understand how PCNs use host plant chemical cues to orientate towards hosts. Nevertheless, the simple attraction assay used in this study provides an important tool for the identification of host-emitted attractants.
NASA Astrophysics Data System (ADS)
Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon
2015-06-01
Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.
Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Modenese, Luca; Kavanagh, Justin J
2017-02-01
Anticholinergic medications largely exert their effects due to actions on the muscarinic receptor, which mediates the functions of acetylcholine in the peripheral and central nervous systems. In the central nervous system, acetylcholine plays an important role in the modulation of movement. This study investigated the effects of over-the-counter medications with varying degrees of central anticholinergic properties on fixation stability, saccadic response time and the dynamics associated with this eye movement during a temporally-cued visual reaction time task, in order to establish the significance of central cholinergic pathways in influencing eye movements during reaction time tasks. Twenty-two participants were recruited into the placebo-controlled, human double-blind, four-way crossover investigation. Eye tracking technology recorded eye movements while participants reacted to visual stimuli following temporally informative and uninformative cues. The task was performed pre-ingestion as well as 0.5 and 2 h post-ingestion of promethazine hydrochloride (strong centrally acting anticholinergic), hyoscine hydrobromide (moderate centrally acting anticholinergic), hyoscine butylbromide (anticholinergic devoid of central properties) and a placebo. Promethazine decreased fixation stability during the reaction time task. In addition, promethazine was the only drug to increase saccadic response time during temporally informative and uninformative cued trials, whereby effects on response time were more pronounced following temporally informative cues. Promethazine also decreased saccadic amplitude and increased saccadic duration during the temporally-cued reaction time task. Collectively, the results of the study highlight the significant role that central cholinergic pathways play in the control of eye movements during tasks that involve stimulus identification and motor responses following temporal cues.
Figueroa-Guzman, Yazmin; Mueller, Christopher; Vranjkovic, Oliver; Wisniewski, Samantha; Yang, Zheng; Li, Shi-Jiang; Bohr, Colin; Graf, Evan N; Baker, David A; Mantsch, John R
2011-07-01
Cocaine addiction is characterized by a persistently heightened susceptibility to drug relapse. For this reason, the identification of medications that prevent drug relapse is a critical goal of drug abuse research. Drug re-exposure, the onset of stressful life events, and exposure to cues previously associated with drug use have been identified as determinants of relapse in humans and have been found to reinstate extinguished cocaine seeking in rats. This study examined the effects of acute oral (gavage) administration of levo-tetrahydropalmatine (l-THP), a tetrahydroprotoberberine isoquinoline with a pharmacological profile that includes antagonism of D1, D2 and D3 dopamine receptors, on the reinstatement of extinguished cocaine seeking by a cocaine challenge (10mg/kg, ip), a stressor (uncontrollable electric footshock [EFS]) or response-contingent exposure to a stimulus (tone and light complex) previously associated with drug delivery in male Sprague-Dawley rats. Extinguished drug seeking was reinstated by ip cocaine, EFS, or response-contingent presentation of drug-associated cues in vehicle-pretreated rats following extinction of iv cocaine self-adminisration. Oral administration of either 3.0 or 10.0mg/kg l-THP 1h prior to reinstatement testing significantly attenuated reinstatement by each of the stimuli. Food-reinforced responding and baseline post-extinction responding were significantly attenuated at the 10.0, but not the 3.0mg/kg, l-THP dose, indicating that the effects of 3mg/kg l-THP on reinstatement were likely independent of non-specific motor impairment. These findings further suggest that l-THP may have utility for the treatment of cocaine addiction. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Robot Faces that Follow Gaze Facilitate Attentional Engagement and Increase Their Likeability.
Willemse, Cesco; Marchesi, Serena; Wykowska, Agnieszka
2018-01-01
Gaze behavior of humanoid robots is an efficient mechanism for cueing our spatial orienting, but less is known about the cognitive-affective consequences of robots responding to human directional cues. Here, we examined how the extent to which a humanoid robot (iCub) avatar directed its gaze to the same objects as our participants affected engagement with the robot, subsequent gaze-cueing, and subjective ratings of the robot's characteristic traits. In a gaze-contingent eyetracking task, participants were asked to indicate a preference for one of two objects with their gaze while an iCub avatar was presented between the object photographs. In one condition, the iCub then shifted its gaze toward the object chosen by a participant in 80% of the trials (joint condition) and in the other condition it looked at the opposite object 80% of the time (disjoint condition). Based on the literature in human-human social cognition, we took the speed with which the participants looked back at the robot as a measure of facilitated reorienting and robot-preference, and found these return saccade onset times to be quicker in the joint condition than in the disjoint condition. As indicated by results from a subsequent gaze-cueing tasks, the gaze-following behavior of the robot had little effect on how our participants responded to gaze cues. Nevertheless, subjective reports suggested that our participants preferred the iCub following participants' gaze to the one with a disjoint attention behavior, rated it as more human-like and as more likeable. Taken together, our findings show a preference for robots who follow our gaze. Importantly, such subtle differences in gaze behavior are sufficient to influence our perception of humanoid agents, which clearly provides hints about the design of behavioral characteristics of humanoid robots in more naturalistic settings.
Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control
Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol
2017-01-01
Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291
The perception of intonation questions and statements in Cantonese.
Ma, Joan K-Y; Ciocca, Valter; Whitehill, Tara L
2011-02-01
In tone languages there are potential conflicts in the perception of lexical tone and intonation, as both depend mainly on the differences in fundamental frequency (F0) patterns. The present study investigated the acoustic cues associated with the perception of sentences as questions or statements in Cantonese, as a function of the lexical tone in sentence final position. Cantonese listeners performed intonation identification tasks involving complete sentences, isolated final syllables, and sentences without the final syllable (carriers). Sensitivity (d' scores) were similar for complete sentences and final syllables but were significantly lower for carriers. Sensitivity was also affected by tone identity. These findings show that the perception of questions and statements relies primarily on the F0 characteristics of the final syllables (local F0 cues). A measure of response bias (c) provided evidence for a general bias toward the perception of statements. Logistic regression analyses showed that utterances were accurately classified as questions or statements by using average F0 and F0 interval. Average F0 of carriers (global F0 cue) was also found to be a reliable secondary cue. These findings suggest that the use of F0 cues for the perception of intonation question in tonal languages is likely to be language-specific.
The electrophysiological correlate of saliency: evidence from a figure-detection task.
Straube, Sirko; Fahle, Manfred
2010-01-11
Although figure-ground segregation in a natural environment usually relies on multiple cues, we experience a coherent figure without usually noticing the individual single cues. It is still unclear how various cues interact to achieve this unified percept and whether this interaction depends on task demands. Studies investigating the effect of cue combination on the human EEG are still lacking. In the present study, we combined psychophysics, ERP and time-frequency analysis to investigate the interaction of orientation and spatial frequency as visual cues in a figure detection task. The figure was embedded in a matrix of Gabor elements, and we systematically varied figure saliency by changing the underlying cue configuration. We found a strong correlation between the posterior P2 amplitude and the perceived saliency of the figure: the P2 amplitude decreased with increasing saliency. Analogously, the power of the theta-band decreased for more salient figures. At longer latencies, the posterior P3 component was modulated in amplitude and latency, possibly reflecting increased decision confidence at higher saliencies. In conclusion, when the cue composition (e.g. one or two cues) or cue strength is changed in a figure detection task, first differences in the electrophysiological response reflect the perceived saliency and not directly the underlying cue configuration.
Groppe, Sarah E; Gossen, Anna; Rademacher, Lena; Hahn, Alexa; Westphal, Luzie; Gründer, Gerhard; Spreckelmeyer, Katja N
2013-08-01
Evidence accumulates that the neuropeptide oxytocin plays an important role in mediating social interaction among humans and that a dysfunction in oxytocin-modulated brain mechanisms might lie at the core of disturbed social behavior in neuropsychiatric disease. Explanatory models suggest that oxytocin guides social approach and avoidance by modulating the perceived salience of socially meaningful cues. Animal data point toward the ventral tegmental area (VTA) as the brain site where this modulation takes place. We used functional magnetic resonance imaging and a social incentive delay task to test the hypothesis that oxytocin modulates the neural processing of socially relevant cues in the VTA, hereby facilitating behavioral response. Twenty-eight nulliparous women (not taking any hormones) received intranasal oxytocin or placebo in a double-blind randomized clinical trial with a parallel-group design. Oxytocin significantly enhanced VTA activation in response to cues signaling social reward (friendly face) or social punishment (angry face). Oxytocin effects on behavioral performance were modulated by individual differences in sociability with enhanced performance in women scoring low but decreased performance in women scoring high on self-reported measures of agreeableness. Our data provide evidence that the VTA is the human brain site where oxytocin attaches salience to socially relevant cues. This mechanism might play an important role in triggering motivation to react at the prospect of social reward or punishment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Phonological perception by birds: budgerigars can perceive lexical stress.
Hoeschele, Marisa; Fitch, W Tecumseh
2016-05-01
Metrical phonology is the perceptual "strength" in language of some syllables relative to others. The ability to perceive lexical stress is important, as it can help a listener segment speech and distinguish the meaning of words and sentences. Despite this importance, there has been little comparative work on the perception of lexical stress across species. We used a go/no-go operant paradigm to train human participants and budgerigars (Melopsittacus undulatus) to distinguish trochaic (stress-initial) from iambic (stress-final) two-syllable nonsense words. Once participants learned the task, we presented both novel nonsense words, and familiar nonsense words that had certain cues removed (e.g., pitch, duration, loudness, or vowel quality) to determine which cues were most important in stress perception. Members of both species learned the task and were then able to generalize to novel exemplars, showing categorical learning rather than rote memorization. Tests using reduced stimuli showed that humans could identify stress patterns with amplitude and pitch alone, but not with only duration or vowel quality. Budgerigars required more than one cue to be present and had trouble if vowel quality or amplitude were missing as cues. The results suggest that stress patterns in human speech can be decoded by other species. Further comparative stress-perception research with more species could help to determine what species characteristics predict this ability. In addition, tests with a variety of stimuli could help to determine how much this ability depends on general pattern learning processes versus vocalization-specific cues.
van den Akker, Karolien; Havermans, Remco C; Bouton, Mark E; Jansen, Anita
2014-10-01
Animals and humans can easily learn to associate an initially neutral cue with food intake through classical conditioning, but extinction of learned appetitive responses can be more difficult. Intermittent or partial reinforcement of food cues causes especially persistent behaviour in animals: after exposure to such learning schedules, the decline in responding that occurs during extinction is slow. After extinction, increases in responding with renewed reinforcement of food cues (reacquisition) might be less rapid after acquisition with partial reinforcement. In humans, it may be that the eating behaviour of some individuals resembles partial reinforcement schedules to a greater extent, possibly affecting dieting success by interacting with extinction and reacquisition. Furthermore, impulsivity has been associated with less successful dieting, and this association might be explained by impulsivity affecting the learning and extinction of appetitive responses. In the present two studies, the effects of different reinforcement schedules and impulsivity on the acquisition, extinction, and reacquisition of appetitive responses were investigated in a conditioning paradigm involving food rewards in healthy humans. Overall, the results indicate both partial reinforcement schedules and, possibly, impulsivity to be associated with worse extinction performance. A new model of dieting success is proposed: learning histories and, perhaps, certain personality traits (impulsivity) can interfere with the extinction and reacquisition of appetitive responses to food cues and they may be causally related to unsuccessful dieting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dogs respond appropriately to cues of humans' attentional focus.
Virányi, Zsófia; Topál, József; Gácsi, Márta; Miklósi, Adám; Csányi, Vilmos
2004-05-31
Dogs' ability to recognise cues of human visual attention was studied in different experiments. Study 1 was designed to test the dogs' responsiveness to their owner's tape-recorded verbal commands (Down!) while the Instructor (who was the owner of the dog) was facing either the dog or a human partner or none of them, or was visually separated from the dog. Results show that dogs were more ready to follow the command if the Instructor attended them during instruction compared to situations when the Instructor faced the human partner or was out of sight of the dog. Importantly, however, dogs showed intermediate performance when the Instructor was orienting into 'empty space' during the re-played verbal commands. This suggests that dogs are able to differentiate the focus of human attention. In Study 2 the same dogs were offered the possibility to beg for food from two unfamiliar humans whose visual attention (i.e. facing the dog or turning away) was systematically varied. The dogs' preference for choosing the attentive person shows that dogs are capable of using visual cues of attention to evaluate the human actors' responsiveness to solicit food-sharing. The dogs' ability to understand the communicatory nature of the situations is discussed in terms of their social cognitive skills and unique evolutionary history.
Peripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement
Rogers, Cassandra; Warren, Paul A.
2017-01-01
Safe movement through the environment requires us to monitor our surroundings for moving objects or people. However, identification of moving objects in the scene is complicated by self-movement, which adds motion across the retina. To identify world-relative object movement, the brain thus has to ‘compensate for’ or ‘parse out’ the components of retinal motion that are due to self-movement. We have previously demonstrated that retinal cues arising from central vision contribute to solving this problem. Here, we investigate the contribution of peripheral vision, commonly thought to provide strong cues to self-movement. Stationary participants viewed a large field of view display, with radial flow patterns presented in the periphery, and judged the trajectory of a centrally presented probe. Across two experiments, we demonstrate and quantify the contribution of peripheral optic flow to flow parsing during forward and backward movement. PMID:29201335
University-Affiliated Alcohol Marketing Enhances the Incentive Salience of Alcohol Cues.
Bartholow, Bruce D; Loersch, Chris; Ito, Tiffany A; Levsen, Meredith P; Volpert-Esmond, Hannah I; Fleming, Kimberly A; Bolls, Paul; Carter, Brooke K
2018-01-01
We tested whether affiliating beer brands with universities enhances the incentive salience of those brands for underage drinkers. In Study 1, 128 undergraduates viewed beer cues while event-related potentials (ERPs) were recorded. Results showed that beer cues paired with in-group backgrounds (logos for students' universities) evoked an enhanced P3 ERP component, a neural index of incentive salience. This effect varied according to students' levels of identification with their university, and the amplitude of the P3 response prospectively predicted alcohol use over 1 month. In Study 2 ( N = 104), we used a naturalistic advertisement exposure to experimentally create in-group brand associations and found that this manipulation caused an increase in the incentive salience of the beer brand. These data provide the first evidence that marketing beer via affiliating it with students' universities enhances the incentive salience of the brand for underage students and that this effect has implications for their alcohol involvement.
Castelhano, Monica S; Pollatsek, Alexander; Cave, Kyle R
2008-08-01
Participants searched for a picture of an object, and the object was either a typical or an atypical category member. The object was cued by either the picture or its basic-level category name. Of greatest interest was whether it would be easier to search for typical objects than to search for atypical objects. The answer was"yes," but only in a qualified sense: There was a large typicality effect on response time only for name cues, and almost none of the effect was found in the time to locate (i.e., first fixate) the target. Instead, typicality influenced verification time-the time to respond to the target once it was fixated. Typicality is thus apparently irrelevant when the target is well specified by a picture cue; even when the target is underspecified (as with a name cue), it does not aid attentional guidance, but only facilitates categorization.
EOID Evaluation and Automated Target Recognition
2002-09-30
Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects (MLOs) that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist
EOID Evaluation and Automated Target Recognition
2001-09-30
Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist the
Fotros, Aryandokht; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Gravel, Paul; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2013-08-01
Drug-related cues are potent triggers for relapse in people with cocaine dependence. Dopamine (DA) release within a limbic network of striatum, amygdala and hippocampus has been implicated in animal studies, but in humans it has only been possible to measure effects in the striatum. The objective here was to measure drug cue-induced DA release in the amygdala and hippocampus using high-resolution PET with [(18)F]fallypride. Twelve cocaine-dependent volunteers (mean age: 39.6 ± 8.0 years; years of cocaine use: 15.9 ± 7.4) underwent two [(18)F]fallypride high-resolution research tomography-PET scans, one with exposure to neutral cues and one with cocaine cues. [(18)F]Fallypride non-displaceable-binding potential (BPND) values were derived for five regions of interest (ROI; amygdala, hippocampus, ventral limbic striatum, associative striatum, and sensorimotor striatum). Subjective responses to the cues were measured with visual analog scales and grouped using principal component analysis. Drug cue exposure significantly decreased BPND values in all five ROI in subjects who had a high-, but not low-, craving response (limbic striatum: p=0.019, associative striatum: p=0.008, sensorimotor striatum: p=0.004, amygdala: p=0.040, and right hippocampus: p=0.025). Individual differences in the cue-induced craving response predicted the magnitude of [(18)F]fallypride responses within the striatum (ventral limbic: r=0.581, p=0.048; associative: r=0.589, p=0.044; sensorimotor: r=0.675, p=0.016). To our knowledge this study provides the first evidence of drug cue-induced DA release in the amygdala and hippocampus in humans. The preferential induction of DA release among high-craving responders suggests that these aspects of the limbic reward network might contribute to drug-seeking behavior.
The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans
Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A
2016-01-01
Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution. PMID:27312405
Melodic contour identification by cochlear implant listeners.
Galvin, John J; Fu, Qian-Jie; Nogaki, Geraldine
2007-06-01
While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users' ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the "root note" of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However, MCI performance was significantly correlated with vowel recognition performance; FMI performance was not correlated with cochlear implant subjects' phoneme recognition performance. Preliminary results also showed that the MCI training improved all subjects' MCI performance; the improved MCI performance also generalized to improved FMI performance. Preliminary data indicate that the closed-set MCI task is a viable approach toward quantifying an important component of cochlear implant users' music perception. The improvement in MCI performance and generalization to FMI performance with training suggests that MCI training may be useful for improving cochlear implant users' music perception and appreciation; such training may be necessary to properly evaluate patient performance, as acute measures may underestimate the amount of musical information transmitted by the cochlear implant device and received by cochlear implant listeners.
Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies.
Tang, D W; Fellows, L K; Small, D M; Dagher, A
2012-06-06
In healthy individuals, food cues can trigger hunger and feeding behavior. Likewise, smoking cues can trigger craving and relapse in smokers. Brain imaging studies report that structures involved in appetitive behaviors and reward, notably the insula, striatum, amygdala and orbital frontal cortex, tend to be activated by both visual food and smoking cues. Here, by carrying out a meta-analysis of human neuro-imaging studies, we investigate the neural network activated by: 1) food versus neutral cues (14 studies, 142 foci) 2) smoking versus neutral cues (15 studies, 176 foci) 3) smoking versus neutral cues when correlated with craving scores (7 studies, 108 foci). PubMed was used to identify cue-reactivity imaging studies that compared brain response to visual food or smoking cues to neutral cues. Fourteen articles were identified for the food meta-analysis and fifteen articles were identified for the smoking meta-analysis. Six articles were identified for the smoking cue correlated with craving analysis. Meta-analyses were carried out using activation likelihood estimation. Food cues were associated with increased blood oxygen level dependent (BOLD) response in the left amygdala, bilateral insula, bilateral orbital frontal cortex, and striatum. Smoking cues were associated with increased BOLD signal in the same areas, with the exception of the insula. However, the smoking meta-analysis of brain maps correlating cue-reactivity with subjective craving did identify the insula, suggesting that insula activation is only found when craving levels are high. The brain areas identified here are involved in learning, memory and motivation, and their cue-induced activity is an index of the incentive salience of the cues. Using meta-analytic techniques to combine a series of studies, we found that food and smoking cues activate comparable brain networks. There is significant overlap in brain regions responding to conditioned cues associated with natural and drug rewards. Copyright © 2012 Elsevier Inc. All rights reserved.
Experiments in sensing transient rotational acceleration cues on a flight simulator
NASA Technical Reports Server (NTRS)
Parrish, R. V.
1979-01-01
Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing.
Jin, Zheng; Shiomura, Kimihiro; Jiang, Lizhu
2015-02-01
Love, sex, and money are the most direct cues involved in the fundamental forms of mate preferences. These fundamental forms are not mutually exclusive but are interrelated. As a result, humans base their mate choices on multiple cues. In this study, 62 undergraduate women (M age = 20.4 yr., SD = 1.4) from China and Japan served as the participants. They performed a variation of the semantic priming task, in which they were instructed to decide by means of a key-press whether the target was human or non-human. The primes were images that portrayed potent evolutionary factors for mate preference (i.e., love, sex, and money), and the manipulation was based on whether the prime and target matched regarding gender, independent of the target decision task (human vs non-human). Participants gave faster responses to male targets than to female targets under priming. The results generally supported the evolutionary premises that assume mate preference is determined by fundamental forms of providing emotional (love), material (money), and fertility support (sex). The money priming effect was stronger in the Chinese women than in the Japanese women, suggesting that social context may influence mate preferences.
No two cues are alike: Depth of learning during infancy is dependent on what orients attention.
Wu, Rachel; Kirkham, Natasha Z
2010-10-01
Human infants develop a variety of attentional mechanisms that allow them to extract relevant information from a cluttered multimodal world. We know that both social and nonsocial cues shift infants' attention, but not how these cues differentially affect learning of multimodal events. Experiment 1 used social cues to direct 8- and 4-month-olds' attention to two audiovisual events (i.e., animations of a cat or dog accompanied by particular sounds) while identical distractor events played in another location. Experiment 2 directed 8-month-olds' attention with colorful flashes to the same events. Experiment 3 measured baseline learning without attention cues both with the familiarization and test trials (no cue condition) and with only the test trials (test control condition). The 8-month-olds exposed to social cues showed specific learning of audiovisual events. The 4-month-olds displayed only general spatial learning from social cues, suggesting that specific learning of audiovisual events from social cues may be a function of experience. Infants cued with the colorful flashes looked indiscriminately to both cued locations during test (similar to the 4-month-olds learning from social cues) despite attending for equal duration to the training trials as the 8-month-olds with the social cues. Results from Experiment 3 indicated that the learning effects in Experiments 1 and 2 resulted from exposure to the different cues and multimodal events. We discuss these findings in terms of the perceptual differences and relevance of the cues. Copyright 2010 Elsevier Inc. All rights reserved.
Combination of light and melatonin time cues for phase advancing the human circadian clock.
Burke, Tina M; Markwald, Rachel R; Chinoy, Evan D; Snider, Jesse A; Bessman, Sara C; Jung, Christopher M; Wright, Kenneth P
2013-11-01
Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m(2))-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m(2))-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Sleep and chronobiology laboratory environment free of time cues. Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders.
Role of somatosensory and vestibular cues in attenuating visually induced human postural sway
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1993-01-01
The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied that (1) the vestibular loss subjects did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system 'gain' were not used to compensate for a vestibular deficit, and (2) the threshold for the use of vestibular cues in normals was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.
The contribution of color to attention capture effects during search for onset targets.
Goller, Florian; Ditye, Thomas; Ansorge, Ulrich
2016-04-01
The literature on top-down contingent capture is concerned with the question of what constitutes a search set. Is it restricted to single stimulus properties such as color or onsets, or can such sets be more complex? In nine experiments (N = 140), we tested whether cueing effects during search for onset targets were affected by cue color. According to the classic theory of contingent capture (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044, 1992), during search for onset targets, cues capture attention on the basis of a match between the cue's onset and top-down control settings directed to the target onsets. However, such cueing effects were based on cues of a color similar to the target color. Therefore, matches of the cue color to the target color could have contributed to the effects. Indeed, here we found cueing effects when the cues and targets were of the same color, but not when they were of different colors (Exps. 1a, 1b, 4a, and 4b). In addition, same-color cueing effects were stronger than different-color cueing effects (Exps. 2a, 2b, 3a, 3b, and the white-target conditions of Exp. 5). In Experiment 5, we also identified efficient search for only one target color as a critical prerequisite for the differences between cueing by color-similar and -dissimilar onset cues. We conclude with a discussion of the contributions of cue-to-set color matches, deallocation of attention, and intertrial priming to what appear to be top-down contingent-capture effects based on abrupt onsets.
Role of orbitofrontal cortex neuronal ensembles in the expression of incubation of heroin craving
Fanous, Sanya; Goldart, Evan M.; Theberge, Florence R.M.; Bossert, Jennifer M.; Shaham, Yavin; Hope, Bruce T.
2012-01-01
In humans, exposure to cues previously associated with heroin use often provokes relapse after prolonged withdrawal periods. In rats, cue-induced heroin-seeking progressively increases after withdrawal (incubation of heroin craving). Here, we examined the role of orbitofrontal cortex (OFC) neuronal ensembles in the enhanced response to heroin cues after prolonged withdrawal or the expression of incubation of heroin craving. We trained rats to self-administer heroin (6-h/d for 10 d) and assessed cue-induced heroin-seeking in extinction tests after 1 or 14 withdrawal days. Cue-induced heroin-seeking increased from 1 day to 14 days and was accompanied by increased Fos expression in ~12% of OFC neurons. Non-selective inactivation of OFC neurons with the GABA agonists baclofen+muscimol decreased cue-induced heroin-seeking on withdrawal day 14 but not day 1. We then used the Daun02 inactivation procedure to assess a causal role of the minority of selectively activated Fos-expressing OFC neurons (that presumably form cue-encoding neuronal ensembles) in cue-induced heroin-seeking after 14 withdrawal days. We trained cfos-lacZ transgenic rats to self-administer heroin and 11 days later re-exposed them to heroin-associated cues or novel cues for 15 min (induction day) followed by OFC Daun02 or vehicle injections 90 min later; we then tested the rats in extinction tests 3 days later. Daun02 selectively decreased cue-induced heroin-seeking in rats previously re-exposed to the heroin-associated cues on induction day, but not in rats previously exposed to novel cues. Results suggest that heroin-cue-activated OFC neuronal ensembles contribute to the expression of incubation of heroin craving. PMID:22915104
Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.
Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Wallois, Fabrice
2017-01-01
Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.
Human interaction with robotic systems: performance and workload evaluations.
Reinerman-Jones, L; Barber, D J; Szalma, J L; Hancock, P A
2017-10-01
We first tested the effect of differing tactile informational forms (i.e. directional cues vs. static cues vs. dynamic cues) on objective performance and perceived workload in a collaborative human-robot task. A second experiment evaluated the influence of task load and informational message type (i.e. single words vs. grouped phrases) on that same collaborative task. In both experiments, the relationship of personal characteristics (attentional control and spatial ability) to performance and workload was also measured. In addition to objective performance and self-report of cognitive load, we evaluated different physiological responses in each experiment. Results showed a performance-workload association for directional cues, message type and task load. EEG measures however, proved generally insensitive to such task load manipulations. Where significant EEG effects were observed, right hemisphere amplitude differences predominated, although unexpectedly these latter relationships were negative. Although EEG measures were partially associated with performance, they appear to possess limited utility as measures of workload in association with tactile displays. Practitioner Summary: As practitioners look to take advantage of innovative tactile displays in complex operational realms like human-robotic interaction, associated performance effects are mediated by cognitive workload. Despite some patterns of association, reliable reflections of operator state can be difficult to discern and employ as the number, complexity and sophistication of these respective measures themselves increase.
Evolution of circadian rhythms: from bacteria to human.
Bhadra, Utpal; Thakkar, Nirav; Das, Paromita; Pal Bhadra, Manika
2017-07-01
The human body persists in its rhythm as per its initial time zone, and transition always occur according to solar movements around the earth over 24 h. While traveling across different latitudes and longitudes, at the pace exceeding the earth's movement, the changes in the external cues exceed the level of toleration of the body's biological clock. This poses an alteration in our physiological activities of sleep-wake pattern, mental alertness, organ movement, and eating habits, causing them to temporarily lose the track of time. This is further re-synchronized with the physiological cues of the destination over time. The mechanism of resetting of the clocks with varying time zones and cues occur in organisms from bacteria to humans. It is the result of the evolution of different pathways and molecular mechanisms over the time. There has been evolution of numerous comprehensive mechanisms using various research tools to get a deeper insight into the rapid turnover of molecular mechanisms in various species. This review reports insights into the evolution of the circadian mechanism and its evolutionary shift which is vital and plays a major role in assisting different organisms to adapt in different zones and controls their internal biological clocks with changing external cues. Copyright © 2017 Elsevier B.V. All rights reserved.
Orienting asymmetries and physiological reactivity in dogs' response to human emotional faces.
Siniscalchi, Marcello; d'Ingeo, Serenella; Quaranta, Angelo
2018-06-19
Recent scientific literature shows that emotional cues conveyed by human vocalizations and odours are processed in an asymmetrical way by the canine brain. In the present study, during feeding behaviour, dogs were suddenly presented with 2-D stimuli depicting human faces expressing the Ekman's six basic emotion (e.g. anger, fear, happiness, sadness, surprise, disgust, and neutral), simultaneously into the left and right visual hemifields. A bias to turn the head towards the left (right hemisphere) rather than the right side was observed with human faces expressing anger, fear, and happiness emotions, but an opposite bias (left hemisphere) was observed with human faces expressing surprise. Furthermore, dogs displayed higher behavioural and cardiac activity to picture of human faces expressing clear arousal emotional state. Overall, results demonstrated that dogs are sensitive to emotional cues conveyed by human faces, supporting the existence of an asymmetrical emotional modulation of the canine brain to process basic human emotions.
Lowen, Steven B; Rohan, Michael L; Gillis, Timothy E; Thompson, Britta S; Wellons, Clara B W; Andersen, Susan L
2015-01-01
Adolescents are highly vulnerable to addiction and are four times more likely to become addicted at first exposure than at any other age. The dopamine D1 receptor, which is typically overexpressed in the normal adolescent prefrontal cortex, is involved in drug cue responses and is associated with relapse in animal models. In human drug addicts, imaging methods have detected increased activation in response to drug cues in reward- and habit-associated brain regions. These same methods can be applied more quantitatively to rodent models. Here, changes in neuronal activation in response to cocaine-conditioned cues were observed using functional magnetic resonance imaging in juvenile rats that were made to over-express either D1 receptors or green fluorescent protein by viral-mediated transduction. Reduced activation was observed in the amygdala and dopamine cell body regions in the low cue-preferring/control juvenile rats in response to cocaine cues. In contrast, increased activation was observed in the dorsal striatum, nucleus accumbens, prefrontal cortex, and dopamine cell bodies in high cue-preferring/D1 juveniles. The increase in cue salience that is mediated by increased D1 receptor density, rather than excessive cocaine experience, appears to underlie the transition from aversion to reward in cue-induced neural response and may form the basis for habit-forming vulnerability.
Perception-based synthetic cueing for night vision device rotorcraft hover operations
NASA Astrophysics Data System (ADS)
Bachelder, Edward N.; McRuer, Duane
2002-08-01
Helicopter flight using night-vision devices (NVDs) is difficult to perform, as evidenced by the high accident rate associated with NVD flight compared to day operation. The approach proposed in this paper is to augment the NVD image with synthetic cueing, whereby the cues would emulate position and motion and appear to be actually occurring in physical space on which they are overlaid. Synthetic cues allow for selective enhancement of perceptual state gains to match the task requirements. A hover cue set was developed based on an analogue of a physical target used in a flight handling qualities tracking task, a perceptual task analysis for hover, and fundamentals of human spatial perception. The display was implemented on a simulation environment, constructed using a virtual reality device, an ultrasound head-tracker, and a fixed-base helicopter simulator. Seven highly trained helicopter pilots were used as experimental subjects and tasked to maintain hover in the presence of aircraft positional disturbances while viewing a synthesized NVD environment and the experimental hover cues. Significant performance improvements were observed when using synthetic cue augmentation. This paper demonstrates that artificial magnification of perceptual states through synthetic cueing can be an effective method of improving night-vision helicopter hover operations.
Affective Prosody Labeling in Youths with Bipolar Disorder or Severe Mood Dysregulation
ERIC Educational Resources Information Center
Deveney, Christen M.; Brotman, Melissa A.; Decker, Ann Marie; Pine, Daniel S.; Leibenluft, Ellen
2012-01-01
Background: Accurate identification of nonverbal emotional cues is essential to successful social interactions, yet most research is limited to emotional face expression labeling. Little research focuses on the processing of emotional prosody, or tone of verbal speech, in clinical populations. Methods: Using the Diagnostic Analysis of Nonverbal…
Goal attribution to inanimate moving objects by Japanese macaques (Macaca fuscata)
Atsumi, Takeshi; Koda, Hiroki; Masataka, Nobuo
2017-01-01
Humans interpret others’ goals based on motion information, and this capacity contributes to our mental reasoning. The present study sought to determine whether Japanese macaques (Macaca fuscata) perceive goal-directedness in chasing events depicted by two geometric particles. In Experiment 1, two monkeys and adult humans were trained to discriminate between Chasing and Random sequences. We then introduced probe stimuli with various levels of correlation between the particle trajectories to examine whether participants performed the task using higher correlation. Participants chose stimuli with the highest correlations by chance, suggesting that correlations were not the discriminative cue. Experiment 2 examined whether participants focused on particle proximity. Participants differentiated between Chasing and Control sequences; the distance between two particles was identical in both. Results indicated that, like humans, the Japanese macaques did not use physical cues alone to perform the discrimination task and integrated the cues spontaneously. This suggests that goal attribution resulting from motion information is a widespread cognitive phenotype in primate species. PMID:28053305
Lidestam, Björn; Rönnberg, Jerker
2016-01-01
The present study compared elderly hearing aid (EHA) users (n = 20) with elderly normal-hearing (ENH) listeners (n = 20) in terms of isolation points (IPs, the shortest time required for correct identification of a speech stimulus) and accuracy of audiovisual gated speech stimuli (consonants, words, and final words in highly and less predictable sentences) presented in silence. In addition, we compared the IPs of audiovisual speech stimuli from the present study with auditory ones extracted from a previous study, to determine the impact of the addition of visual cues. Both participant groups achieved ceiling levels in terms of accuracy in the audiovisual identification of gated speech stimuli; however, the EHA group needed longer IPs for the audiovisual identification of consonants and words. The benefit of adding visual cues to auditory speech stimuli was more evident in the EHA group, as audiovisual presentation significantly shortened the IPs for consonants, words, and final words in less predictable sentences; in the ENH group, audiovisual presentation only shortened the IPs for consonants and words. In conclusion, although the audiovisual benefit was greater for EHA group, this group had inferior performance compared with the ENH group in terms of IPs when supportive semantic context was lacking. Consequently, EHA users needed the initial part of the audiovisual speech signal to be longer than did their counterparts with normal hearing to reach the same level of accuracy in the absence of a semantic context. PMID:27317667
Attention to irrelevant cues is related to positive symptoms in schizophrenia.
Morris, Richard; Griffiths, Oren; Le Pelley, Michael E; Weickert, Thomas W
2013-05-01
Many modern learning theories assume that the amount of attention to a cue depends on how well that cue predicted important events in the past. Schizophrenia is associated with deficits in attention and recent theories of psychosis have argued that positive symptoms such as delusions and hallucinations are related to a failure of selective attention. However, evidence demonstrating that attention to irrelevant cues is related to positive symptoms in schizophrenia is lacking. We used a novel method of measuring attention to nonpredictive (and thus irrelevant) cues in a causal learning test (Le Pelley ME, McLaren IP. Learned associability and associative change in human causal learning. Q J Exp Psychol B. 2003;56:68-79) to assess whether healthy adults and people with schizophrenia discriminate previously predictive and nonpredictive cues. In a series of experiments with independent samples, we demonstrated: (1) when people with schizophrenia who had severe positive symptoms successfully distinguished between predictive and nonpredictive cues during training, they failed to discriminate between predictive and nonpredictive cues relative to healthy adults during subsequent testing and (2) learning about nonpredictive cues was correlated with more severe positive symptoms scores in schizophrenia. These results suggest that positive symptoms of schizophrenia are related to increased attention to nonpredictive cues during causal learning. This deficit in selective attention results in learning irrelevant causal associations and may be the basis of positive symptoms in schizophrenia.
The Voice of Emotion: Acoustic Properties of Six Emotional Expressions.
NASA Astrophysics Data System (ADS)
Baldwin, Carol May
Studies in the perceptual identification of emotional states suggested that listeners seemed to depend on a limited set of vocal cues to distinguish among emotions. Linguistics and speech science literatures have indicated that this small set of cues included intensity, fundamental frequency, and temporal properties such as speech rate and duration. Little research has been done, however, to validate these cues in the production of emotional speech, or to determine if specific dimensions of each cue are associated with the production of a particular emotion for a variety of speakers. This study addressed deficiencies in understanding of the acoustical properties of duration and intensity as components of emotional speech by means of speech science instrumentation. Acoustic data were conveyed in a brief sentence spoken by twelve English speaking adult male and female subjects, half with dramatic training, and half without such training. Simulated expressions included: happiness, surprise, sadness, fear, anger, and disgust. The study demonstrated that the acoustic property of mean intensity served as an important cue for a vocal taxonomy. Overall duration was rejected as an element for a general taxonomy due to interactions involving gender and role. Findings suggested a gender-related taxonomy, however, based on differences in the ways in which men and women use the duration cue in their emotional expressions. Results also indicated that speaker training may influence greater use of the duration cue in expressions of emotion, particularly for male actors. Discussion of these results provided linkages to (1) practical management of emotional interactions in clinical and interpersonal environments, (2) implications for differences in the ways in which males and females may be socialized to express emotions, and (3) guidelines for future perceptual studies of emotional sensitivity.
Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2018-01-01
Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.
Human cortical activity evoked by contextual processing in attentional orienting.
Zhao, Shuo; Li, Chunlin; Uono, Shota; Yoshimura, Sayaka; Toichi, Motomi
2017-06-07
The ability to assess another person's direction of attention is paramount in social communication, many studies have reported a similar pattern between gaze and arrow cues in attention orienting. Neuroimaging research has also demonstrated no qualitative differences in attention to gaze and arrow cues. However, these studies were implemented under simple experiment conditions. Researchers have highlighted the importance of contextual processing (i.e., the semantic congruence between cue and target) in attentional orienting, showing that attentional orienting by social gaze or arrow cues could be modulated through contextual processing. Here, we examine the neural activity of attentional orienting by gaze and arrow cues in response to contextual processing using functional magnetic resonance imaging. The results demonstrated that the influence of neural activity through contextual processing to attentional orienting occurred under invalid conditions (when the cue and target were incongruent versus congruent) in the ventral frontoparietal network, although we did not identify any differences in the neural substrates of attentional orienting in contextual processing between gaze and arrow cues. These results support behavioural data of attentional orienting modulated by contextual processing based on the neurocognitive architecture.
Homeostatic circuits selectively gate food cue responses in insular cortex
Livneh, Yoav; Ramesh, Rohan n.; Burgess, christian R.; Levandowski, Kirsten M.; Madara, Joseph c.; Fenselau, henning; Goldey, Glenn J.; Diaz, Veronica E.; Jikomes, nick; Resch, Jon M.; Lowell, Bradford B.; Andermann, Mark L.
2017-01-01
Physiological needs bias perception and attention to relevant sensory cues. This process is ‘hijacked’ by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how ‘cognitive’ cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food- cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic ‘hunger neurons’ (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues. PMID:28614299
Heterogeneity in brain reactivity to pleasant and food cues: evidence of sign-tracking in humans
Versace, Francesco; Kypriotakis, George; Basen-Engquist, Karen
2016-01-01
Aberrant brain reward responses to food-related cues are an implied characteristic of human obesity; yet, findings are inconsistent. To explain these inconsistencies, we aimed to uncover endophenotypes associated with heterogeneity in attributing incentive salience to food cues in the context of other emotionally salient cues; a phenomenon described as sign- vs goal tracking in preclinical models. Data from 64 lean and 88 obese adults who were 35.5 ± 9.4 years old and predominantly women (79%) were analyzed. Participants viewed food-related, pleasant, neutral and unpleasant images while recording electroencephalograph. Late positive potentials were used to assess incentive salience attributed to the visual stimuli. Eating and affective traits were also assessed. Findings demonstrated that obese individuals, in general, do not demonstrate aberrant brain reward responses to food-related cues. As hypothesized, latent profile analysis of the late positive potential uncovered two distinct groups. ‘Sign-trackers’ showed greater responses to food-related cues (P < 0.001) but lower responses to pleasant stimuli (P < 0.001) compared with ‘goal-trackers’. There were proportionally more obese than lean ‘sign-trackers’ (P = 0.03). Obese ‘sign-trackers’ reported significantly higher levels of emotional eating and food craving (P < 0.001). By examining the heterogeneity in brain reactivity to various emotional stimuli, this translational study highlights the need to consider important neurobehavioral endophenotypes of obesity. PMID:26609106
Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality
NASA Astrophysics Data System (ADS)
Hua, Hong
2017-05-01
Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).
Integration trumps selection in object recognition.
Saarela, Toni P; Landy, Michael S
2015-03-30
Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Richter, S. Helene; Vogel, Anne S.; Ueltzhöffer, Kai; Muzzillo, Chiara; Vogt, Miriam A.; Lankisch, Katja; Armbruster-Genç, Diana J. N.; Riva, Marco A.; Fiebach, Christian J.; Gass, Peter; Vollmayr, Barbara
2014-01-01
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved “ongoing” and cued “switch” trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the “ongoing” baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research. PMID:24834036
The acoustical bright spot and mislocalization of tones by human listeners.
Macaulay, Eric J; Hartmann, William M; Rakerd, Brad
2010-03-01
Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0 degrees (straight ahead) to 90 degrees (extreme right). During this task, the tone levels and phases were measured in the listeners' ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55 degrees . In a source-identification task, listeners' localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener's identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD).
Kluge, Annette; Gronau, Norbert
2018-01-01
To cope with the already large, and ever increasing, amount of information stored in organizational memory, "forgetting," as an important human memory process, might be transferred to the organizational context. Especially in intentionally planned change processes (e.g., change management), forgetting is an important precondition to impede the recall of obsolete routines and adapt to new strategic objectives accompanied by new organizational routines. We first comprehensively review the literature on the need for organizational forgetting and particularly on accidental vs. intentional forgetting. We discuss the current state of the art of theory and empirical evidence on forgetting from cognitive psychology in order to infer mechanisms applicable to the organizational context. In this respect, we emphasize retrieval theories and the relevance of retrieval cues important for forgetting. Subsequently, we transfer the empirical evidence that the elimination of retrieval cues leads to faster forgetting to the forgetting of organizational routines, as routines are part of organizational memory. We then propose a classification of cues (context, sensory, business process-related cues) that are relevant in the forgetting of routines, and discuss a meta-cue called the "situational strength" cue, which is relevant if cues of an old and a new routine are present simultaneously. Based on the classification as business process-related cues (information, team, task, object cues), we propose mechanisms to accelerate forgetting by eliminating specific cues based on the empirical and theoretical state of the art. We conclude that in intentional organizational change processes, the elimination of cues to accelerate forgetting should be used in change management practices.
Kluge, Annette; Gronau, Norbert
2018-01-01
To cope with the already large, and ever increasing, amount of information stored in organizational memory, “forgetting,” as an important human memory process, might be transferred to the organizational context. Especially in intentionally planned change processes (e.g., change management), forgetting is an important precondition to impede the recall of obsolete routines and adapt to new strategic objectives accompanied by new organizational routines. We first comprehensively review the literature on the need for organizational forgetting and particularly on accidental vs. intentional forgetting. We discuss the current state of the art of theory and empirical evidence on forgetting from cognitive psychology in order to infer mechanisms applicable to the organizational context. In this respect, we emphasize retrieval theories and the relevance of retrieval cues important for forgetting. Subsequently, we transfer the empirical evidence that the elimination of retrieval cues leads to faster forgetting to the forgetting of organizational routines, as routines are part of organizational memory. We then propose a classification of cues (context, sensory, business process-related cues) that are relevant in the forgetting of routines, and discuss a meta-cue called the “situational strength” cue, which is relevant if cues of an old and a new routine are present simultaneously. Based on the classification as business process-related cues (information, team, task, object cues), we propose mechanisms to accelerate forgetting by eliminating specific cues based on the empirical and theoretical state of the art. We conclude that in intentional organizational change processes, the elimination of cues to accelerate forgetting should be used in change management practices. PMID:29449821
Byrne, Patrick A; Crawford, J Douglas
2010-06-01
It is not known how egocentric visual information (location of a target relative to the self) and allocentric visual information (location of a target relative to external landmarks) are integrated to form reach plans. Based on behavioral data from rodents and humans we hypothesized that the degree of stability in visual landmarks would influence the relative weighting. Furthermore, based on numerous cue-combination studies we hypothesized that the reach system would act like a maximum-likelihood estimator (MLE), where the reliability of both cues determines their relative weighting. To predict how these factors might interact we developed an MLE model that weighs egocentric and allocentric information based on their respective reliabilities, and also on an additional stability heuristic. We tested the predictions of this model in 10 human subjects by manipulating landmark stability and reliability (via variable amplitude vibration of the landmarks and variable amplitude gaze shifts) in three reach-to-touch tasks: an egocentric control (reaching without landmarks), an allocentric control (reaching relative to landmarks), and a cue-conflict task (involving a subtle landmark "shift" during the memory interval). Variability from all three experiments was used to derive parameters for the MLE model, which was then used to simulate egocentric-allocentric weighting in the cue-conflict experiment. As predicted by the model, landmark vibration--despite its lack of influence on pointing variability (and thus allocentric reliability) in the control experiment--had a strong influence on egocentric-allocentric weighting. A reduced model without the stability heuristic was unable to reproduce this effect. These results suggest heuristics for extrinsic cue stability are at least as important as reliability for determining cue weighting in memory-guided reaching.
Flexible attention deployment in threatening contexts: an instructed fear conditioning study.
Shechner, Tomer; Pelc, Tatiana; Pine, Daniel S; Fox, Nathan A; Bar-Haim, Yair
2012-10-01
Factors leading humans to shift attention away from danger cues remain poorly understood. Two laboratory experiments reported here show that context interacts with learning experiences to shape attention avoidance of mild danger cues. The first experiment exposed 18 participants to contextual threat of electric shock. Attention allocation to mild danger cues was then assessed with the dot-probe task. Results showed that contextual threat caused subjects to avert attention from danger cues. In the second experiment, 36 participants were conditioned to the same contextual threat used in Experiment 1. These subjects then were randomly assigned to either an experimental group, trained to shift attention toward danger cues, or a placebo group exposed to the same stimuli without the training component. As in Experiment 1, contextual threat again caused attention allocation away from danger in the control group. However, this did not occur in the experimental group. These experiments show that acute contextual threat and learning experiences interact to shape the deployment of attention away from danger cues.
Modeling of Depth Cue Integration in Manual Control Tasks
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Kaiser, Mary K.; Davis, Wendy
2003-01-01
Psychophysical research has demonstrated that human observers utilize a variety of visual cues to form a perception of three-dimensional depth. However, most of these studies have utilized a passive judgement paradigm, and failed to consider depth-cue integration as a dynamic and task-specific process. In the current study, we developed and experimentally validated a model of manual control of depth that examines how two potential cues (stereo disparity and relative size) are utilized in both first- and second-order active depth control tasks. We found that stereo disparity plays the dominate role for determining depth position, while relative size dominates perception of depth velocity. Stereo disparity also plays a reduced role when made less salient (i.e., when viewing distance is increased). Manual control models predict that position information is sufficient for first-order control tasks, while velocity information is required to perform a second-order control task. Thus, the rules for depth-cue integration in active control tasks are dependent on both task demands and cue quality.
Graded Neuronal Modulations Related to Visual Spatial Attention.
Mayo, J Patrick; Maunsell, John H R
2016-05-11
Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary "spotlight" of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused ("cued" vs "uncued"). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral performance and neuronal responses during neutral cueing were intermediate to those of the cued and uncued conditions. We found no signatures of a single mechanism of attention that switches between stimulus locations. Thus, attention-related changes in neuronal activity are largely hemisphere-specific and graded according to task demands. Copyright © 2016 the authors 0270-6474/16/365353-09$15.00/0.
Graded Neuronal Modulations Related to Visual Spatial Attention
Maunsell, John H. R.
2016-01-01
Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary “spotlight” of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. SIGNIFICANCE STATEMENT Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused (“cued” vs “uncued”). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral performance and neuronal responses during neutral cueing were intermediate to those of the cued and uncued conditions. We found no signatures of a single mechanism of attention that switches between stimulus locations. Thus, attention-related changes in neuronal activity are largely hemisphere-specific and graded according to task demands. PMID:27170131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang; ...
2014-08-20
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
Expectancy modulates pupil size during endogenous orienting of spatial attention.
Dragone, Alessio; Lasaponara, Stefano; Pinto, Mario; Rotondaro, Francesca; De Luca, Maria; Doricchi, Fabrizio
2018-05-01
fMRI investigations in healthy humans have documented phasic changes in the level of activation of the right temporal-parietal junction (TPJ) during cued voluntary orienting of spatial attention. Cues that correctly predict the position of upcoming targets in the majority of trials, i.e., predictive cues, produce higher deactivation of the right TPJ as compared with non-predictive cues. Since the right TPJ is the recipient of noradrenergic (NE) innervation, it has been hypothesised that changes in the level of TPJ activity are matched with changes in the level of NE activity. Based on aforementioned fMRI findings, this might imply that orienting with predictive cues is matched with different levels of NE activity as compared with non-predictive cues. To test this hypothesis, we measured changes in pupil dilation, an indirect index of NE activity, during voluntary orienting of attention with highly predictive (80% validity) or non-predictive (50% validity) cues. In agreement with current interpretations of the tonic/phasic activity of the Locus Coeruleus-Norepinephrinic system (LC-NE), we found that the steady level of cue predictiveness that characterised both the predictive and non-predictive conditions caused, across consecutive blocks of trials, a progressive decrement in pupil dilation during the baseline-fixation period that anticipated the cue period. With predictive cues we observed increased pupil dilation as compared with non-predictive cues. In addition, the relative reduction in pupil size observed with non-predictive cues increased as a function of cue-duration. These results show that changes in the predictiveness of cues that guide voluntary orienting of spatial attention are matched with changes in pupil dilation and, putatively, with corresponding changes in LC-NE activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Social Cues Alter Implicit Motor Learning in a Serial Reaction Time Task.
Geiger, Alexander; Cleeremans, Axel; Bente, Gary; Vogeley, Kai
2018-01-01
Learning is a central ability for human development. Many skills we learn, such as language, are learned through observation or imitation in social contexts. Likewise, many skills are learned implicitly, that is, without an explicit intent to learn and without full awareness of the acquired knowledge. Here, we asked whether performance in a motor learning task is modulated by social vs. object cues of varying validity. To address this question, we asked participants to carry out a serial reaction time (SRT) task in which, on each trial, people have to respond as fast and as accurately as possible to the appearance of a stimulus at one of four possible locations. Unbeknownst to participants, the sequence of successive locations was sequentially structured, so that knowledge of the sequence facilitates anticipation of the next stimulus and hence faster motor responses. Crucially, each trial also contained a cue pointing to the next stimulus location. Participants could thus learn based on the cue, or on learning about the sequence of successive locations, or on a combination of both. Results show an interaction between cue type and cue validity for the motor responses: social cues (vs. object cues) led to faster responses in the low validity (LV) condition only. Concerning the extent to which learning was implicit, results show that in the cued blocks only, the highly valid social cue led to implicit learning. In the uncued blocks, participants showed no implicit learning in the highly valid social cue condition, but did in all other combinations of stimulus type and cueing validity. In conclusion, our results suggest that implicit learning is context-dependent and can be influenced by the cue type, e.g., social and object cues.
Nonspecific Verbal Cues Alleviate Forgetting by Young Children
ERIC Educational Resources Information Center
Morgan, Kirstie; Hayne, Harlene
2007-01-01
Verbal reminders play a pervasive role in memory retrieval by human adults. In fact, relatively nonspecific verbal information (e.g. "Remember the last time we ate at that restaurant?") will often cue vivid recollections of a past event even when presented outside the original encoding context. Although research has shown that memory retrieval by…
Evidence of Blocking with Geometric Cues in a Virtual Watermaze
ERIC Educational Resources Information Center
Redhead, Edward S.; Hamilton, Derek A.
2009-01-01
Three computer based experiments, testing human participants in a non-immersive virtual watermaze task, used a blocking design to assess whether two sets of geometric cues would compete in a manner described by associative models of learning. In stage 1, participants were required to discriminate between visually distinct platforms. In stage 2,…
Reorienting in Images of a Three-Dimensional Environment
ERIC Educational Resources Information Center
Kelly, Debbie M.; Bischof, Walter F.
2005-01-01
Adult humans searched for a hidden goal in images depicting 3-dimensional rooms. Images contained either featural cues, geometric cues, or both, which could be used to determine the correct location of the goal. In Experiment 1, participants learned to use featural and geometric information equally well. However, men and women showed significant…
Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement
Hu, Bo; Knill, David C.
2012-01-01
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567
[Expression of the emotions in the drawing of a man by the child from 5 to 11 years of age].
Brechet, Claire; Picard, Delphine; Baldy, René
2007-06-01
This study examines the development of children's ability to express emotions in their human figure drawing. Sixty children of 5, 8, and 11 years were asked to draw "a man," and then a "sad", "happy," "angry" and "surprised" man. Expressivity of the drawings was assessed by means of two procedures: a limited choice and a free labelling procedure. Emotionally expressive drawings were then evaluated in terms of the number and the type of graphic cues that were used to express emotion. It was found that children are able to depict happiness and sadness at 8, anger and surprise at 11. With age, children use increasingly numerous and complex graphic cues for each emotion (i.e., facial expression, body position, and contextual cues). Graphic cues for facial expression (e.g., concave mouth, curved eyebrows, wide opened eyes) share strong similarities with specific "action units" described by Ekman and Friesen (1978) in their Facial Action Coding System. Children's ability to depict emotion in their human figure drawing is discussed in relation to perceptual, conceptual, and graphic abilities.
The face-specific proportion congruency effect: social stimuli as contextual cues.
Jiménez-Moya, Gloria; Rodríguez-Bailón, Rosa; Lupiáñez, Juan
2018-06-18
Previous research shows that larger interference is observed in contexts associated with a high proportion of congruent trials than in those associated with a low proportion of congruent trials. Given that one of the most relevant contexts for human beings is social context, researchers have recently explored the possibility that social stimuli could also work as contextual cues for the allocation of attentional control. In fact, it has been shown that individuals use social categories (i.e., men and women) as cues to allocate attentional control. In this work, we go further by showing that individual faces (instead of the social categories they belong to) associated with a high proportion of congruent trials can also lead to larger interference effects compared to individual faces predicting a relatively low proportion of congruent trials. Furthermore, we show that faces associated with a high proportion of congruent trials are more positively evaluated than faces associated with a high proportion of incongruent trials. These results demonstrate that unique human faces are potential contextual cues than can be employed to apply cognitive control when performing an automatic task.
Human body segmentation via data-driven graph cut.
Li, Shifeng; Lu, Huchuan; Shao, Xingqing
2014-11-01
Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.
Identification of memory reactivation during sleep by EEG classification.
Belal, Suliman; Cousins, James; El-Deredy, Wael; Parkes, Laura; Schneider, Jules; Tsujimura, Hikaru; Zoumpoulaki, Alexia; Perapoch, Marta; Santamaria, Lorena; Lewis, Penelope
2018-04-17
Memory reactivation during sleep is critical for consolidation, but also extremely difficult to measure as it is subtle, distributed and temporally unpredictable. This article reports a novel method for detecting such reactivation in standard sleep recordings. During learning, participants produced a complex sequence of finger presses, with each finger cued by a distinct audio-visual stimulus. Auditory cues were then re-played during subsequent sleep to trigger neural reactivation through a method known as targeted memory reactivation (TMR). Next, we used electroencephalography data from the learning session to train a machine learning classifier, and then applied this classifier to sleep data to determine how successfully each tone had elicited memory reactivation. Neural reactivation was classified above chance in all participants when TMR was applied in SWS, and in 5 of the 14 participants to whom TMR was applied in N2. Classification success reduced across numerous repetitions of the tone cue, suggesting either a gradually reducing responsiveness to such cues or a plasticity-related change in the neural signature as a result of cueing. We believe this method will be valuable for future investigations of memory consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of False Tilt Cues on the Training of Manual Roll Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.
2015-01-01
This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.
fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users.
Filbey, Francesca M; Dunlop, Joseph; Ketcherside, Ariel; Baine, Jessica; Rhinehardt, Tyler; Kuhn, Brittany; DeWitt, Sam; Alvi, Talha
2016-10-01
Although there is emergent evidence illustrating neural sensitivity to cannabis cues in cannabis users, the specificity of this effect to cannabis cues as opposed to a generalized hyper-sensitivity to hedonic stimuli has not yet been directly tested. Using fMRI, we presented 53 daily, long-term cannabis users and 68 non-using controls visual and tactile cues for cannabis, a natural reward, and, a sensory-perceptual control object to evaluate brain response to hedonic stimuli in cannabis users. The results showed an interaction between group and reward type such that the users had greater response during cannabis cues relative to natural reward cues (i.e., fruit) in the orbitofrontal cortex, striatum, anterior cingulate gyrus, and ventral tegmental area compared to non-users (cluster-threshold z = 2.3, P < 0.05). In the users, there were positive brain-behavior correlations between neural response to cannabis cues in fronto-striatal-temporal regions and subjective craving, marijuana-related problems, withdrawal symptoms, and levels of THC metabolites (cluster-threshold z = 2.3, P < 0.05). These findings demonstrate hyper-responsivity, and, specificity of brain response to cannabis cues in long-term cannabis users that are above that of response to natural reward cues. These observations are concordant with incentive sensitization models suggesting sensitization of mesocorticolimbic regions and disruption of natural reward processes following drug use. Although the cross-sectional nature of this study does not provide information on causality, the positive correlations between neural response and indicators of cannabis use (i.e., THC levels) suggest that alterations in the reward system are, in part, related to cannabis use. Hum Brain Mapp 37:3431-3443, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.
1996-04-01
This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.
Cares, Alexa; Pace, Elizabeth; Denious, Jean; Crane, Lori A
2015-01-01
Although some studies have examined the prevalence of substance use among nurses, few have assessed substance use in the workplace or early cues for identifying these health conditions. Primary data collected as part of a larger program evaluation were examined with the purpose of better understanding (a) the context and perceived consequences of substance use and mental illness among nurses and (b) barriers and opportunities for earlier identification and treatment of these issues among nurses, their colleagues, and employers. Anonymous surveys were mailed to 441 active and recent participants of a peer health assistance program in the summer of 2010. The survey examined drug-related behaviors in the workplace; behavioral cues that may permit earlier identification of substance use and mental illness; perceptions of barriers to seeking assistance; and strategies for preventing problems and overcoming barriers to seeking assistance. Responses were received from 302 nurses (69%). Nearly half (48%) reported drug or alcohol use at work, and two fifths (40%) felt that their competency level was affected by their use. More than two thirds of respondents thought their problem could have been recognized earlier. The most highly rated barriers to seeking assistance for substance use and mental illness included fear and embarrassment and concerns about losing one's nursing license. Respondents recommended greater attention be paid to early identification of risk factors during nurses' professional training as a prevention strategy. Findings from this study provide preliminary data that can be used by schools of nursing and health care employers to improve early identification of nurses' substance use and mental illness treatment needs. These data also suggest a need for more research to explore the prevention and early identification of co-occurring disorders in health care settings where nurses practice.
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Curry, R. E.
1977-01-01
Vestibular perception and integration of several sensory inputs in simulation were studied. The relationship between tilt sensation induced by moving fields and those produced by actual body tilt is discussed. Linearvection studies were included and the application of the vestibular model for perception of orientation based on motion cues is presented. Other areas of examination includes visual cues in approach to landing, and a comparison of linear and nonlinear wash out filters using a model of the human vestibular system is given.
Human Factors Assessment and Redesign of the ISS Respiratory Support Pack (RSP) Cue Card
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Hudy, Cynthia; Whitmore, Mihriban; Smith, Danielle
2007-01-01
The Respiratory Support Pack (RSP) is a medical pack onboard the International Space Station (ISS) that contains much of the necessary equipment for providing aid to a conscious or unconscious crewmember in respiratory distress. Inside the RSP lid pocket is a 5.5 by 11 inch paper procedural cue card, which is used by a Crew Medical Officer (CMO) to set up the equipment and deliver oxygen to a crewmember. In training, crewmembers expressed concerns about the readability and usability of the cue card; consequently, updating the cue card was prioritized as an activity to be completed. The Usability Testing and Analysis Facility at the Johnson Space Center (JSC) evaluated the original layout of the cue card, and proposed several new cue card designs based on human factors principles. The approach taken for the assessment was an iterative process. First, in order to completely understand the issues with the RSP cue card, crewmember post training comments regarding the RSP cue card were taken into consideration. Over the course of the iterative process, the procedural information was reorganized into a linear flow after the removal of irrelevant (non-emergency) content. Pictures, color coding, and borders were added to highlight key components in the RSP to aid in quickly identifying those components. There were minimal changes to the actual text content. Three studies were conducted using non-medically trained JSC personnel (total of 34 participants). Non-medically trained personnel participated in order to approximate a scenario of limited CMO exposure to the RSP equipment and training (which can occur six months prior to the mission). In each study, participants were asked to perform two respiratory distress scenarios using one of the cue card designs to simulate resuscitation (using a mannequin along with the hardware). Procedure completion time, errors, and subjective ratings were recorded. The last iteration of the cue card featured a schematic of the RSP, colors, borders, and simplification of the flow of information. The time to complete the RSP procedure was reduced by approximately three minutes with the new design. In an emergency situation, three minutes significantly increases the probability of saving a life. In addition, participants showed the highest preference for this design. The results of the studies and the new design were presented to a focus group of astronauts, flight surgeons, medical trainers, and procedures personnel. The final cue card was presented to a medical control board and approved for flight. The revised RSP cue card is currently onboard ISS.
Inhibition of Fear by Learned Safety Signals: minisymposium review
Fernando, Anushka B. P.; Kazama, Andy M.; Jovanovic, Tanja; Ostroff, Linnaea E.; Sangha, Susan
2012-01-01
Safety signals are learned cues that predict the non-occurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to utilize safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning and expression in rodents, non-human primates and humans. PMID:23055481
The contribution of dynamic visual cues to audiovisual speech perception.
Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador
2015-08-01
Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun
2017-09-01
Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.
Bayesian Cue Integration as a Developmental Outcome of Reward Mediated Learning
Weisswange, Thomas H.; Rothkopf, Constantin A.; Rodemann, Tobias; Triesch, Jochen
2011-01-01
Average human behavior in cue combination tasks is well predicted by Bayesian inference models. As this capability is acquired over developmental timescales, the question arises, how it is learned. Here we investigated whether reward dependent learning, that is well established at the computational, behavioral, and neuronal levels, could contribute to this development. It is shown that a model free reinforcement learning algorithm can indeed learn to do cue integration, i.e. weight uncertain cues according to their respective reliabilities and even do so if reliabilities are changing. We also consider the case of causal inference where multimodal signals can originate from one or multiple separate objects and should not always be integrated. In this case, the learner is shown to develop a behavior that is closest to Bayesian model averaging. We conclude that reward mediated learning could be a driving force for the development of cue integration and causal inference. PMID:21750717
Speech Cues Contribute to Audiovisual Spatial Integration
Bishop, Christopher W.; Miller, Lee M.
2011-01-01
Speech is the most important form of human communication but ambient sounds and competing talkers often degrade its acoustics. Fortunately the brain can use visual information, especially its highly precise spatial information, to improve speech comprehension in noisy environments. Previous studies have demonstrated that audiovisual integration depends strongly on spatiotemporal factors. However, some integrative phenomena such as McGurk interference persist even with gross spatial disparities, suggesting that spatial alignment is not necessary for robust integration of audiovisual place-of-articulation cues. It is therefore unclear how speech-cues interact with audiovisual spatial integration mechanisms. Here, we combine two well established psychophysical phenomena, the McGurk effect and the ventriloquist's illusion, to explore this dependency. Our results demonstrate that conflicting spatial cues may not interfere with audiovisual integration of speech, but conflicting speech-cues can impede integration in space. This suggests a direct but asymmetrical influence between ventral ‘what’ and dorsal ‘where’ pathways. PMID:21909378
Ecological and evolutionary traps
Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.
2002-01-01
Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.
Regulation of centriolar satellite integrity and its physiology.
Hori, Akiko; Toda, Takashi
2017-01-01
Centriolar satellites comprise cytoplasmic granules that are located around the centrosome. Their molecular identification was first reported more than a quarter of a century ago. These particles are not static in the cell but instead constantly move around the centrosome. Over the last decade, significant advances in their molecular compositions and biological functions have been achieved due to comprehensive proteomics and genomics, super-resolution microscopy analyses and elegant genetic manipulations. Centriolar satellites play pivotal roles in centrosome assembly and primary cilium formation through the delivery of centriolar/centrosomal components from the cytoplasm to the centrosome. Their importance is further underscored by the fact that mutations in genes encoding satellite components and regulators lead to various human disorders such as ciliopathies. Moreover, the most recent findings highlight dynamic structural remodelling in response to internal and external cues and unexpected positive feedback control that is exerted from the centrosome for centriolar satellite integrity.
Nawroth, Christian; Ebersbach, Mirjam; von Borell, Eberhard
2013-06-01
Previous studies have shown that apes, dogs and horses seem to be able to attribute attentive states to humans. Subjects had to choose between two persons: one who was able to see the animal and one who was not. Using a similar paradigm, we tested a species that does not rely strongly on visual cues, the domestic pig (Sus scrofa domestica). Subjects could choose between two unfamiliar persons, with only one showing attention, in three different conditions (body, head away, body turned - head front). Subjects (n=16) only showed a tendency towards the attentive human in the head away condition. However, by pooling those two conditions where the position of the human head was the only salient cue, we found a significant preference for the attentive person. Moreover, two approach styles could be distinguished - an impulsive style with short response times and a non-impulsive style where response times were relatively long. With the second approach style, pigs chose the attentive person significantly more often than expected by chance level, which was not the case when subjects chose impulsively. These first results suggest that pigs are able to use head cues to discriminate between different attentive states of humans. Copyright © 2013 Elsevier B.V. All rights reserved.
Péter, András; Topál, József; Miklósi, Ádám; Pongrácz, Péter
2016-04-01
Performance in object search tasks is not only influenced by the subjects' object permanence ability. For example, ostensive cues of the human manipulating the target markedly affect dogs' choices. However, the interference between the target's location and the spatial cues of the human hiding the object is still unknown. In a five-location visible displacement task, the experimental groups differed in the hiding route of the experimenter. In the 'direct' condition he moved straight towards the actual location, hid the object and returned to the dog. In the 'indirect' conditions, he additionally walked behind each screen before returning. The two 'indirect' conditions differed from each other in that the human either visited the previously baited locations before (proactive interference) or after (retroactive interference) hiding the object. In the 'indirect' groups, dogs' performance was significantly lower than in the 'direct' group, demonstrating that for dogs, in an ostensive context, spatial cues of the hider are as important as the observed location of the target. Based on their incorrect choices, dogs were most attracted to the previously baited locations that the human visited after hiding the object in the actual trial. This underlines the importance of retroactive interference in multiple choice tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
San Martín, René; Appelbaum, Lawrence G.; Huettel, Scott A.; Woldorff, Marty G.
2016-01-01
Adaptive choice behavior depends critically on identifying and learning from outcome-predicting cues. We hypothesized that attention may be preferentially directed toward certain outcome-predicting cues. We studied this possibility by analyzing event-related potential (ERP) responses in humans during a probabilistic decision-making task. Participants viewed pairs of outcome-predicting visual cues and then chose to wager either a small (i.e., loss-minimizing) or large (i.e., gain-maximizing) amount of money. The cues were bilaterally presented, which allowed us to extract the relative neural responses to each cue by using a contralateral-versus-ipsilateral ERP contrast. We found an early lateralized ERP response, whose features matched the attention-shift-related N2pc component and whose amplitude scaled with the learned reward-predicting value of the cues as predicted by an attention-for-reward model. Consistently, we found a double dissociation involving the N2pc. Across participants, gain-maximization positively correlated with the N2pc amplitude to the most reliable gain-predicting cue, suggesting an attentional bias toward such cues. Conversely, loss-minimization was negatively correlated with the N2pc amplitude to the most reliable loss-predicting cue, suggesting an attentional avoidance toward such stimuli. These results indicate that learned stimulus–reward associations can influence rapid attention allocation, and that differences in this process are associated with individual differences in economic decision-making performance. PMID:25139941
Attenuating fearful memories: effect of cued extinction on intrusions.
Marks, Elizabeth H; Zoellner, Lori A
2014-12-01
Exposure-based therapies for posttraumatic stress disorder are thought to reduce intrusive memories through extinction processes. Methods that enhance extinction may translate to improved treatment. Rat research suggests retrieving a memory via a conditioned stimulus (CS) cue, and then modifying the retrieved memory within a specific reconsolidation window may enhance extinction. In humans, studies (e.g., Kindt & Soeter, 2013; Schiller et al., 2010) using basic learning paradigms show discrepant findings. Using a distressing film paradigm, participants (N = 148) completed fear acquisition and extinction. At extinction, they were randomized to 1 of 3 groups: CS cue within reconsolidation window, CS cue outside window, or non-CS cue within window. Intrusions were assessed 24 hr after extinction. Participants receiving the CS cue and completing extinction within the reconsolidation window had more intrusions (M = 2.40, SD = 2.54) than those cued outside (M = 1.65, SD = 1.70) or those receiving a non-CS cue (M = 1.24, SD = 1.26), F(2, 145) = 4.52, p = .01, d = 0.55. Consistent with the reconsolidation hypothesis, presenting a CS cue does appear to activate a specific period of time during which a memory can be updated. However, the CS cue caused increased, rather than decreased, frequency of intrusions. Understanding parameters of preextinction cueing may help us better understand reconsolidation as a potential memory updating mechanism.
The effects of varenicline on stress-induced and cue-induced craving for cigarettes.
Ray, Lara A; Lunny, Katy; Bujarski, Spencer; Moallem, Nathasha; Krull, Jennifer L; Miotto, Karen
2013-07-01
Varenicline is a partial agonist of the α4β2 nicotinic acetylcholine receptor approved by the FDA for the treatment of nicotine dependence. While the clinical efficacy of varenicline for smoking cessation is well-supported, its biobehavioral mechanisms of action remain poorly understood. This randomized, crossover, placebo-controlled, human laboratory study combines guided imagery stress exposure with in vivo presentation of cigarette cues to test the effects of varenicline on stress-induced and cue-induced craving for cigarettes. A total of 40 (13 females) daily smokers (≥10 cigarettes per day) completed a guided imagery exposure (stress and neutral) followed by the presentation of cigarette cues at the target dose of varenicline (1mg twice per day) and on matched placebo. Multilevel regression models revealed a significant main effect of varenicline (p<.01) such that it reduced cigarette craving across the experimental paradigm, compared to placebo. There was also a significant medication×stress×trial interaction indicating that varenicline attenuated cue induced craving following neutral imagery but not when cues were preceded by stress induction (i.e., stress+cues). These results elucidate the biobehavioral effects of varenicline for nicotine dependence and suggest that varenicline-induced amelioration of cigarette craving is unique to tonic craving and cue-induced craving following neutral imagery but does not extend to the combination of stress plus cues. Copyright © 2013. Published by Elsevier Ireland Ltd.
Janssen, Simone; Schmidt, Sabine
2009-07-01
The perception of prosodic cues in human speech may be rooted in mechanisms common to mammals. The present study explores to what extent bats use rhythm and frequency, typically carrying prosodic information in human speech, for the classification of communication call series. Using a two-alternative, forced choice procedure, we trained Megaderma lyra to discriminate between synthetic contact call series differing in frequency, rhythm on level of calls and rhythm on level of call series, and measured the classification performance for stimuli differing in only one, or two, of the above parameters. A comparison with predictions from models based on one, combinations of two, or all, parameters revealed that the bats based their decision predominantly on frequency and in addition on rhythm on the level of call series, whereas rhythm on level of calls was not taken into account in this paradigm. Moreover, frequency and rhythm on the level of call series were evaluated independently. Our results show that parameters corresponding to prosodic cues in human languages are perceived and evaluated by bats. Thus, these necessary prerequisites for a communication via prosodic structures in mammals have evolved far before human speech.
Santa Ana, Elizabeth J; Prisciandaro, James J; Saladin, Michael E; McRae-Clark, Aimee L; Shaftman, Stephanie R; Nietert, Paul J; Brady, Kathleen T
2015-04-01
Based on preclinical studies showing that the partial N-methyl-D-aspartate (NMDA) agonist D-cycloserine (DCS) facilitates extinction of cocaine self-administration and cocaine-induced conditioned place preference, we evaluated whether 50 mg of DCS would reduce craving to cocaine cues when combined with cue exposure (CE) in cocaine dependent humans. In this double-blind placebo-controlled pilot study, 47 cocaine dependent participants were randomized to DCS or placebo (PBO), plus CE. Participants received DCS or PBO 30 minutes prior to two CE sessions, conducted one day apart. Craving and heart rate was assessed prior to CE sessions, during CE trials, and after CE trials. These measures were assessed again at a 1-week follow-up (session 3) after the second CE session. DCS failed to significantly attenuate cocaine cue reactivity based on subjective craving and physiological reactivity (heart rate) compared to PBO. The CE protocol, consisting of repeated exposure to drug cues combined with skills training, resulted in extinction to cocaine cues as suggested by decreased craving within and between sessions in both treatment conditions. All participants exhibited elevated heart rate with repeated exposures, demonstrating a potentiation in heart rate between sessions. 50 mg of DCS may not be effective for extinguishing reactivity to drug cues for individuals with cocaine dependence. Future studies examining the effect of DCS on facilitating extinction to drug cues should examine variations in cue exposure length, number of CE presentations, and timing of DCS dose administration prior to cue exposures, which may differentially impact drug cue reactivity. © American Academy of Addiction Psychiatry.
Person-Centered Emotional Support and Gender Attributions in Computer-Mediated Communication
ERIC Educational Resources Information Center
Spottswood, Erin L.; Walther, Joseph B.; Holmstrom, Amanda J.; Ellison, Nicole B.
2013-01-01
Without physical appearance, identification in computer-mediated communication is relatively ambiguous and may depend on verbal cues such as usernames, content, and/or style. This is important when gender-linked differences exist in the effects of messages, as in emotional support. This study examined gender attribution for online support…
ERIC Educational Resources Information Center
Mulligan, Neil W.; Dew, Ilana T. Z.
2009-01-01
The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…
USDA-ARS?s Scientific Manuscript database
Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this spe...
DOT National Transportation Integrated Search
1979-01-01
The report describes the initial phase of a two-phase project on the visual, on-the-road detection of driving while intoxicated (DWI). The purpose of the overall project is to develop and test procedures for enhancing on-the-road detection of DWI. Th...
An Analysis of Communicative Functions of Teachers and Their Students Who Are Congenitally Deafblind
ERIC Educational Resources Information Center
Bruce, Susan; Godbold, Emily; Naponelli-Gold, Sarah
2004-01-01
Children who are congenitally deafblind face barriers to the development of early communication functions, including limited access to social and context cues that support the identification of functions expressed by others. This study addresses two research questions: What functions of communication will teachers express when interacting with…
Acquisition of L2 Vowel Duration in Japanese by Native English Speakers
ERIC Educational Resources Information Center
Okuno, Tomoko
2013-01-01
Research has demonstrated that focused perceptual training facilitates L2 learners' segmental perception and spoken word identification. Hardison (2003) and Motohashi-Saigo and Hardison (2009) found benefits of visual cues in the training for acquisition of L2 contrasts. The present study examined factors affecting perception and production…
The effect of background and illumination on color identification of real, 3D objects.
Allred, Sarah R; Olkkonen, Maria
2013-01-01
For the surface reflectance of an object to be a useful cue to object identity, judgments of its color should remain stable across changes in the object's environment. In 2D scenes, there is general consensus that color judgments are much more stable across illumination changes than background changes. Here we investigate whether these findings generalize to real 3D objects. Observers made color matches to cubes as we independently varied both the illumination impinging on the cube and the 3D background of the cube. As in 2D scenes, we found relatively high but imperfect stability of color judgments under an illuminant shift. In contrast to 2D scenes, we found that background had little effect on average color judgments. In addition, variability of color judgments was increased by an illuminant shift and decreased by embedding the cube within a background. Taken together, these results suggest that in real 3D scenes with ample cues to object segregation, the addition of a background may improve stability of color identification.
Alerting prefixes for speech warning messages. [in helicopters
NASA Technical Reports Server (NTRS)
Bucher, N. M.; Voorhees, J. W.; Karl, R. L.; Werner, E.
1984-01-01
A major question posed by the design of an integrated voice information display/warning system for next-generation helicopter cockpits is whether an alerting prefix should precede voice warning messages; if so, the characteristics desirable in such a cue must also be addressed. Attention is presently given to the results of a study which ascertained pilot response time and response accuracy to messages preceded by either neutral cues or the cognitively appropriate semantic cues. Both verbal cues and messages were spoken in direct, phoneme-synthesized speech, and a training manipulation was included to determine the extent to which previous exposure to speech thus produced facilitates these messages' comprehension. Results are discussed in terms of the importance of human factors research in cockpit display design.
Perceptual grouping in the human brain: common processing of different cues.
Seymour, Kiley; Karnath, Hans-Otto; Himmelbach, Marc
2008-12-03
The perception of global scenes and objects consisting of multiple constituents is based on the integration of local elements or features. Gestalt grouping cues, such as proximity or similarity, can aid this process. Using functional MRI we investigated whether grouping guided by different gestalt cues rely on distinct networks in the brain or share a common network. Our study revealed that gestalt grouping involved the inferior parietal cortex, middle temporal gyrus and prefrontal cortex irrespective of the specific cue used. These findings agree with observations in neurological patients, which suggest that inferior parietal regions may aid the integration of local features into a global gestalt. Damage to this region results in simultanagnosia, a deficit in perceiving multiple objects and global scenes.
Dimension-based attention in visual short-term memory.
Pilling, Michael; Barrett, Doug J K
2016-07-01
We investigated how dimension-based attention influences visual short-term memory (VSTM). This was done through examining the effects of cueing a feature dimension in two perceptual comparison tasks (change detection and sameness detection). In both tasks, a memory array and a test array consisting of a number of colored shapes were presented successively, interleaved by a blank interstimulus interval (ISI). In Experiment 1 (change detection), the critical event was a feature change in one item across the memory and test arrays. In Experiment 2 (sameness detection), the critical event was the absence of a feature change in one item across the two arrays. Auditory cues indicated the feature dimension (color or shape) of the critical event with 80 % validity; the cues were presented either prior to the memory array, during the ISI, or simultaneously with the test array. In Experiment 1, the cue validity influenced sensitivity only when the cue was given at the earliest position; in Experiment 2, the cue validity influenced sensitivity at all three cue positions. We attributed the greater effectiveness of top-down guidance by cues in the sameness detection task to the more active nature of the comparison process required to detect sameness events (Hyun, Woodman, Vogel, Hollingworth, & Luck, Journal of Experimental Psychology: Human Perception and Performance, 35; 1140-1160, 2009).
Comparison of two weighted integration models for the cueing task: linear and likelihood
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2003-01-01
In a task in which the observer must detect a signal at two locations, presenting a precue that predicts the location of a signal leads to improved performance with a valid cue (signal location matches the cue), compared to an invalid cue (signal location does not match the cue). The cue validity effect has often been explained with a limited capacity attentional mechanism improving the perceptual quality at the cued location. Alternatively, the cueing effect can also be explained by unlimited capacity models that assume a weighted combination of noisy responses across the two locations. We compare two weighted integration models, a linear model and a sum of weighted likelihoods model based on a Bayesian observer. While qualitatively these models are similar, quantitatively they predict different cue validity effects as the signal-to-noise ratios (SNR) increase. To test these models, 3 observers performed in a cued discrimination task of Gaussian targets with an 80% valid precue across a broad range of SNR's. Analysis of a limited capacity attentional switching model was also included and rejected. The sum of weighted likelihoods model best described the psychophysical results, suggesting that human observers approximate a weighted combination of likelihoods, and not a weighted linear combination.
Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid
2014-01-01
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687
Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.
Kraft, James M; Maloney, Shannon I; Brainard, David H
2002-01-01
Two experiments were conducted to study how scene complexity and cues to depth affect human color constancy. Specifically, two levels of scene complexity were compared. The low-complexity scene contained two walls with the same surface reflectance and a test patch which provided no information about the illuminant. In addition to the surfaces visible in the low-complexity scene, the high-complexity scene contained two rectangular solid objects and 24 paper samples with diverse surface reflectances. Observers viewed illuminated objects in an experimental chamber and adjusted the test patch until it appeared achromatic. Achromatic settings made tinder two different illuminants were used to compute an index that quantified the degree of constancy. Two experiments were conducted: one in which observers viewed the stimuli directly, and one in which they viewed the scenes through an optical system that reduced cues to depth. In each experiment, constancy was assessed for two conditions. In the valid-cue condition, many cues provided valid information about the illuminant change. In the invalid-cue condition, some image cues provided invalid information. Four broad conclusions are drawn from the data: (a) constancy is generally better in the valid-cue condition than in the invalid-cue condition: (b) for the stimulus configuration used, increasing image complexity has little effect in the valid-cue condition but leads to increased constancy in the invalid-cue condition; (c) for the stimulus configuration used, reducing cues to depth has little effect for either constancy condition: and (d) there is moderate individual variation in the degree of constancy exhibited, particularly in the degree to which the complexity manipulation affects performance.
Gated audiovisual speech identification in silence vs. noise: effects on time and accuracy
Moradi, Shahram; Lidestam, Björn; Rönnberg, Jerker
2013-01-01
This study investigated the degree to which audiovisual presentation (compared to auditory-only presentation) affected isolation point (IPs, the amount of time required for the correct identification of speech stimuli using a gating paradigm) in silence and noise conditions. The study expanded on the findings of Moradi et al. (under revision), using the same stimuli, but presented in an audiovisual instead of an auditory-only manner. The results showed that noise impeded the identification of consonants and words (i.e., delayed IPs and lowered accuracy), but not the identification of final words in sentences. In comparison with the previous study by Moradi et al., it can be concluded that the provision of visual cues expedited IPs and increased the accuracy of speech stimuli identification in both silence and noise. The implication of the results is discussed in terms of models for speech understanding. PMID:23801980
Asmaro, Deyar; Liotti, Mario
2014-01-10
There has been a great deal of interest in understanding how the human brain processes appetitive food cues, and knowing how such cues elicit craving responses is particularly relevant when current eating behavior trends within Westernized societies are considered. One substance that holds a special place with regard to food preference is chocolate, and studies that used functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have identified neural regions and electrical signatures that are elicited by chocolate cue presentations. This review will examine fMRI and ERP findings from studies that used high-caloric food and chocolate cues as stimuli, with a focus on responses observed in samples of healthy participants, as opposed to those with eating-related pathology. The utility of using high-caloric and chocolate stimuli as a means of understanding the human reward system will also be highlighted, as these findings may be particularly important for understanding processes related to pathological overeating and addiction to illicit substances. Finally, research from our own lab that focused on chocolate stimulus processing in chocolate cravers and non-cravers will be discussed, as the approach used may help bridge fMRI and ERP findings so that a more complete understanding of appetitive stimulus processing in the temporal and spatial domains may be established.
Asmaro, Deyar; Liotti, Mario
2014-01-01
There has been a great deal of interest in understanding how the human brain processes appetitive food cues, and knowing how such cues elicit craving responses is particularly relevant when current eating behavior trends within Westernized societies are considered. One substance that holds a special place with regard to food preference is chocolate, and studies that used functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have identified neural regions and electrical signatures that are elicited by chocolate cue presentations. This review will examine fMRI and ERP findings from studies that used high-caloric food and chocolate cues as stimuli, with a focus on responses observed in samples of healthy participants, as opposed to those with eating-related pathology. The utility of using high-caloric and chocolate stimuli as a means of understanding the human reward system will also be highlighted, as these findings may be particularly important for understanding processes related to pathological overeating and addiction to illicit substances. Finally, research from our own lab that focused on chocolate stimulus processing in chocolate cravers and non-cravers will be discussed, as the approach used may help bridge fMRI and ERP findings so that a more complete understanding of appetitive stimulus processing in the temporal and spatial domains may be established. PMID:24434747
ERIC Educational Resources Information Center
Perianez, Jose A.; Barcelo, Francisco
2009-01-01
Task-cueing studies suggest that the updating of sensory and task representations both contribute to behavioral task-switch costs [Forstmann, B. U., Brass, M., & Koch, I. (2007). "Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure." "Psychological Research, 71"(4),…
Cue Set Stimulation as a Factor in Human Response Generation.
ERIC Educational Resources Information Center
Petelle, John L.
The hypotheses that there will be a significant difference (1) in the number of responses generated according to economic issues, (2) in the number of responses generated according to social issues, (3) in the number of responses generated between the category of economic issues and the category of social issues, (4) in cue ranking by response…
Effects of Visual Cues and Self-Explanation Prompts: Empirical Evidence in a Multimedia Environment
ERIC Educational Resources Information Center
Lin, Lijia; Atkinson, Robert K.; Savenye, Wilhelmina C.; Nelson, Brian C.
2016-01-01
The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load, and intrinsic motivation in an interactive multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were…
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
Follow your nose: Implicit spatial processing within the chemosensory systems.
Wudarczyk, Olga A; Habel, Ute; Turetsky, Bruce I; Gur, Raquel E; Kellermann, Thilo; Schneider, Frank; Moessnang, Carolin
2016-11-01
Although most studies agree that humans cannot smell in stereo, it was recently suggested that olfactory localization is possible when assessed implicitly. In a spatial cueing paradigm, lateralized olfactory cues impaired the detection of congruently presented visual targets, an effect contrary to the typical facilitation observed in other sensory domains. Here, we examined the specificity and the robustness of this finding by studying implicit localization abilities in another chemosensory system and by accounting for possible confounds in a modified paradigm. Sixty participants completed a spatial cueing task along with an explicit localization task, using trigeminal (Experiment 1) and olfactory (Experiment 2) stimuli. A control task was implemented to control for residual somatosensory stimulation (Experiment 3). In the trigeminal experiment, stimuli were localized with high accuracy on the explicit level, while the cueing effect in form of facilitation was limited to response accuracy. In the olfactory experiment, responses were slowed by congruent cues on the implicit level, while no explicit localization was observed. Our results point to the robustness of the olfactory interference effect, corroborating the implicit-explicit dissociation of olfactory localization, and challenging the view that humans lost the ability to extract spatial information from smell. The absence of a similar interference for trigeminal cues suggests distinct implicit spatial processing mechanisms within the chemosensory systems. Moreover, the lack of a typical facilitation effect in the trigeminal domain points to important differences from spatial information processing in other, nonchemosensory domains. The possible mechanisms driving the effects are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Pursey, Kirrilly M.; Stanwell, Peter; Callister, Robert J.; Brain, Katherine; Collins, Clare E.; Burrows, Tracy L.
2014-01-01
Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies. PMID:25988110
Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L
2014-01-01
Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.
Cocaine cue-induced dopamine release in the human prefrontal cortex.
Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2016-08-01
Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.
Howe, William M.; Berry, Anne S.; Francois, Jennifer; Gilmour, Gary; Carp, Joshua M.; Tricklebank, Mark; Lustig, Cindy; Sarter, Martin
2013-01-01
We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex during specific trial sequences in rats performing a task requiring signal detection as well as rejection of non-signal events. Cholinergic release events recorded with sub-second resolution (“transients”) were observed only during signal-hit trials, not during signal-miss trials or non-signal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived non-signal events (“incongruent hits”). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we employed a version of the task previously validated for use in research in humans and BOLD-fMRI. Incongruent hits activated a region in the right rostral prefrontal cortex (BA 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior. PMID:23678117
Role of somatosensory and vestibular cues in attenuating visually induced human postural sway
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Benolken, M. S.
1995-01-01
The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied (1) that the subjects experiencing vestibular loss did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system "gain" were not used to compensate for a vestibular deficit, and (2) that the threshold for the use of vestibular cues in normal subjects was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.
Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus)
Di Rocco, Richard; Belanger, Cowan; Imre, István; Brown, Grant; Johnson, Nicholas S.
2014-01-01
Sea lamprey (Petromyzon marinus) avoid damage-released and predator chemosensory cues at night, but their response to these cues during the day is unknown. Here, we explored (i) whether sea lamprey avoid these cues during the day and (ii) the effect of water temperature on the avoidance of chemosensory alarm cues in two diurnal laboratory experiments. We hypothesized that daytime activity would be temperature-dependent and that only sea lamprey vulnerable to predation (i.e., not hiding) would behaviourally respond to chemosensory alarm cues. Ten groups of ten sea lamprey were exposed to one of a variety of potential chemosensory cues. The experiments were conducted over a range of temperatures to quantify the effect of temperature on avoidance behaviour. Consistent with our hypothesis, a higher proportion of animals were active during daytime as water temperature increased. Moving sea lamprey showed an avoidance response to 2-phenylethylamine (a compound found in mammalian urine) and human saliva once water temperatures had risen to mean (±SD) = 13.7 (±1.4) °C. Resting and hiding sea lamprey did not show an avoidance response to any of the experimental stimuli.
Pigeons Exhibit Contextual Cueing to Both Simple and Complex Backgrounds
Wasserman, Edward A.; Teng, Yuejia; Castro, Leyre
2014-01-01
Repeated pairings of a particular visual context with a specific location of a target stimulus facilitate target search in humans. We explored an animal model of this contextual cueing effect using a novel Cueing-Miscueing design. Pigeons had to peck a target which could appear in one of four possible locations on four possible color backgrounds or four possible color photographs of real-world scenes. On 80% of the trials, each of the contexts was uniquely paired with one of the target locations; on the other 20% of the trials, each of the contexts was randomly paired with the remaining target locations. Pigeons came to exhibit robust contextual cueing when the context preceded the target by 2 s, with reaction times to the target being shorter on correctly-cued trials than on incorrectly-cued trials. Contextual cueing proved to be more robust with photographic backgrounds than with uniformly colored backgrounds. In addition, during the context-target delay, pigeons predominately pecked toward the location of the upcoming target, suggesting that attentional guidance contributes to contextual cueing. These findings confirm the effectiveness of animal models of contextual cueing and underscore the important part played by associative learning in producing the effect. PMID:24491468
Tauzin, Tibor; Csík, Andor; Lovas, Kata; Gergely, György; Topál, József
2017-02-01
Both human infants and nonhuman primates can recognize unfamiliar entities as instrumental agents ascribing to them goals and efficiency of goal-pursuit. This competence relies on movement cues indicating distal sensitivity to the environment and choice of efficient goal-approach. Although dogs' evolved sensitivity to social cues allow them to recognize humans as communicative agents, it remains unclear whether they have also evolved a basic concept of instrumental agency. We used a preferential object-choice procedure to test whether adult pet dogs and human toddlers can identify unfamiliar entities as agents based on different types of movement cues that specify different levels of agency. In the navigational agency condition, dogs preferentially chose an object that modified its pathway to avoid collision with obstacles over another object showing no evidence of distal sensitivity (regularly bumping into obstacles). However, in the goal-efficiency condition where neither object collided with obstacles as it navigated toward a distal target, but only 1 of them exhibited efficient goal-approach as well, toddlers, but not dogs, showed a preference toward the efficient goal-directed agent. These findings indicate that dogs possess a limited concept of environmentally sensitive navigational agency that they attribute to self-propelled entities capable of modifying their movement to avoid colliding with obstacles. Toddlers, in contrast, demonstrated clear sensitivity to cues of efficient variability of goal-approach as the basis for differentiating, attributing, and showing preference for goal-directed instrumental agency. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bio-inspired display of polarization information using selected visual cues
NASA Astrophysics Data System (ADS)
Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader
2003-12-01
For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.
A comparison of form processing involved in the perception of biological and nonbiological movements
Thurman, Steven M.; Lu, Hongjing
2016-01-01
Although there is evidence for specialization in the human brain for processing biological motion per se, few studies have directly examined the specialization of form processing in biological motion perception. The current study was designed to systematically compare form processing in perception of biological (human walkers) to nonbiological (rotating squares) stimuli. Dynamic form-based stimuli were constructed with conflicting form cues (position and orientation), such that the objects were perceived to be moving ambiguously in two directions at once. In Experiment 1, we used the classification image technique to examine how local form cues are integrated across space and time in a bottom-up manner. By comparing with a Bayesian observer model that embodies generic principles of form analysis (e.g., template matching) and integrates form information according to cue reliability, we found that human observers employ domain-general processes to recognize both human actions and nonbiological object movements. Experiments 2 and 3 found differential top-down effects of spatial context on perception of biological and nonbiological forms. When a background does not involve social information, observers are biased to perceive foreground object movements in the direction opposite to surrounding motion. However, when a background involves social cues, such as a crowd of similar objects, perception is biased toward the same direction as the crowd for biological walking stimuli, but not for rotating nonbiological stimuli. The model provided an accurate account of top-down modulations by adjusting the prior probabilities associated with the internal templates, demonstrating the power and flexibility of the Bayesian approach for visual form perception. PMID:26746875
Klapper, André; Ramsey, Richard; Wigboldus, Daniël; Cross, Emily S
2014-11-01
Humans automatically imitate other people's actions during social interactions, building rapport and social closeness in the process. Although the behavioral consequences and neural correlates of imitation have been studied extensively, little is known about the neural mechanisms that control imitative tendencies. For example, the degree to which an agent is perceived as human-like influences automatic imitation, but it is not known how perception of animacy influences brain circuits that control imitation. In the current fMRI study, we examined how the perception and belief of animacy influence the control of automatic imitation. Using an imitation-inhibition paradigm that involves suppressing the tendency to imitate an observed action, we manipulated both bottom-up (visual input) and top-down (belief) cues to animacy. Results show divergent patterns of behavioral and neural responses. Behavioral analyses show that automatic imitation is equivalent when one or both cues to animacy are present but reduces when both are absent. By contrast, right TPJ showed sensitivity to the presence of both animacy cues. Thus, we demonstrate that right TPJ is biologically tuned to control imitative tendencies when the observed agent both looks like and is believed to be human. The results suggest that right TPJ may be involved in a specialized capacity to control automatic imitation of human agents, rather than a universal process of conflict management, which would be more consistent with generalist theories of imitative control. Evidence for specialized neural circuitry that "controls" imitation offers new insight into developmental disorders that involve atypical processing of social information, such as autism spectrum disorders.
Dynamic sound localization in cats
Ruhland, Janet L.; Jones, Amy E.
2015-01-01
Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts. PMID:26063772
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Simms, Victoria; McCormack, Teresa; Beckers, Tom
2012-04-01
The effect of additivity pretraining on blocking has been taken as evidence for a reasoning account of human and animal causal learning. If inferential reasoning underpins this effect, then developmental differences in the magnitude of this effect in children would be expected. Experiment 1 examined cue competition effects in children's (4- to 5-year-olds and 6- to 7-year-olds) causal learning using a new paradigm analogous to the food allergy task used in studies of human adult causal learning. Blocking was stronger in the older than the younger children, and additivity pretraining only affected blocking in the older group. Unovershadowing was not affected by age or by pretraining. In experiment 2, levels of blocking were found to be correlated with the ability to answer questions that required children to reason about additivity. Our results support an inferential reasoning explanation of cue competition effects. (c) 2012 APA, all rights reserved.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
Beyond Stimulus Cues and Reinforcement Signals: A New Approach to Animal Metacognition
Couchman, Justin J.; Coutinho, Mariana V. C.; Beran, Michael J.; Smith, J. David
2010-01-01
Some metacognition paradigms for nonhuman animals encourage the alternative explanation that animals avoid difficult trials based only on reinforcement history and stimulus aversion. To explore this possibility, we placed humans and monkeys in successive uncertainty-monitoring tasks that were qualitatively different, eliminating many associative cues that might support transfer across tasks. In addition, task transfer occurred under conditions of deferred and rearranged feedback—both species completed blocks of trials followed by summary feedback. This ensured that animals received no trial-by-trial reinforcement. Despite distancing performance from associative cues, humans and monkeys still made adaptive uncertainty responses by declining the most difficult trials. These findings suggest that monkeys’ uncertainty responses could represent a higher-level, decisional process of cognitive monitoring, though that process need not involve full self-awareness or consciousness. The dissociation of performance from reinforcement has theoretical implications concerning the status of reinforcement as the critical binding force in animal learning. PMID:20836592
Some influences of touch and pressure cues on human spatial orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1978-01-01
In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.
Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris).
Racca, Anaïs; Amadei, Eleonora; Ligout, Séverine; Guo, Kun; Meints, Kerstin; Mills, Daniel
2010-05-01
Although domestic dogs can respond to many facial cues displayed by other dogs and humans, it remains unclear whether they can differentiate individual dogs or humans based on facial cues alone and, if so, whether they would demonstrate the face inversion effect, a behavioural hallmark commonly used in primates to differentiate face processing from object processing. In this study, we first established the applicability of the visual paired comparison (VPC or preferential looking) procedure for dogs using a simple object discrimination task with 2D pictures. The animals demonstrated a clear looking preference for novel objects when simultaneously presented with prior-exposed familiar objects. We then adopted this VPC procedure to assess their face discrimination and inversion responses. Dogs showed a deviation from random behaviour, indicating discrimination capability when inspecting upright dog faces, human faces and object images; but the pattern of viewing preference was dependent upon image category. They directed longer viewing time at novel (vs. familiar) human faces and objects, but not at dog faces, instead, a longer viewing time at familiar (vs. novel) dog faces was observed. No significant looking preference was detected for inverted images regardless of image category. Our results indicate that domestic dogs can use facial cues alone to differentiate individual dogs and humans and that they exhibit a non-specific inversion response. In addition, the discrimination response by dogs of human and dog faces appears to differ with the type of face involved.
Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.
Jin, Jia; Yu, Liping; Ma, Qingguo
2015-01-01
Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.
Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni
2012-01-01
The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759
Uncertainty during Anticipation Modulates Neural Responses to Aversion in Human Insula and Amygdala
Sarinopoulos, I.; Grupe, D. W.; Mackiewicz, K. L.; Herrington, J. D.; Lor, M.; Steege, E. E.
2010-01-01
Uncertainty about potential negative future outcomes can cause stress and is a central feature of anxiety disorders. The stress and anxiety associated with uncertain situations may lead individuals to overestimate the frequency with which uncertain cues are followed by negative outcomes, an example of covariation bias. Using functional magnetic resonance imaging, we found that uncertainty-related expectations modulated neural responses to aversion. Insula and amygdala responses to aversive pictures were larger after an uncertain cue (that preceded aversive or neutral pictures) than a certain cue (that always preceded aversive pictures). Anticipatory anterior cingulate cortex (ACC) activity elicited by the cues was inversely associated with the insula and amygdala responses to aversive pictures following the cues. Nearly 75% of subjects overestimated the frequency of aversive pictures following uncertain cues, and ACC and insula activity predicted this uncertainty-related covariation bias. Findings provide the first evidence of the brain mechanisms of covariation bias and highlight the temporal dynamics of ACC, insula, and amygdala recruitment for processing aversion in the context of uncertainty. PMID:19679543
NASA Technical Reports Server (NTRS)
Eckstein, Miguel P.; Abbey, Craig K.; Pham, Binh T.; Shimozaki, Steven S.
2004-01-01
Human performance in visual detection, discrimination, identification, and search tasks typically improves with practice. Psychophysical studies suggest that perceptual learning is mediated by an enhancement in the coding of the signal, and physiological studies suggest that it might be related to the plasticity in the weighting or selection of sensory units coding task relevant information (learning through attention optimization). We propose an experimental paradigm (optimal perceptual learning paradigm) to systematically study the dynamics of perceptual learning in humans by allowing comparisons to that of an optimal Bayesian algorithm and a number of suboptimal learning models. We measured improvement in human localization (eight-alternative forced-choice with feedback) performance of a target randomly sampled from four elongated Gaussian targets with different orientations and polarities and kept as a target for a block of four trials. The results suggest that the human perceptual learning can occur within a lapse of four trials (<1 min) but that human learning is slower and incomplete with respect to the optimal algorithm (23.3% reduction in human efficiency from the 1st-to-4th learning trials). The greatest improvement in human performance, occurring from the 1st-to-2nd learning trial, was also present in the optimal observer, and, thus reflects a property inherent to the visual task and not a property particular to the human perceptual learning mechanism. One notable source of human inefficiency is that, unlike the ideal observer, human learning relies more heavily on previous decisions than on the provided feedback, resulting in no human learning on trials following a previous incorrect localization decision. Finally, the proposed theory and paradigm provide a flexible framework for future studies to evaluate the optimality of human learning of other visual cues and/or sensory modalities.
Little, Anthony C; DeBruine, Lisa M; Jones, Benedict C
2011-07-07
Evolutionary approaches to human attractiveness have documented several traits that are proposed to be attractive across individuals and cultures, although both cross-individual and cross-cultural variations are also often found. Previous studies show that parasite prevalence and mortality/health are related to cultural variation in preferences for attractive traits. Visual experience of pathogen cues may mediate such variable preferences. Here we showed individuals slideshows of images with cues to low and high pathogen prevalence and measured their visual preferences for face traits. We found that both men and women moderated their preferences for facial masculinity and symmetry according to recent experience of visual cues to environmental pathogens. Change in preferences was seen mainly for opposite-sex faces, with women preferring more masculine and more symmetric male faces and men preferring more feminine and more symmetric female faces after exposure to pathogen cues than when not exposed to such cues. Cues to environmental pathogens had no significant effects on preferences for same-sex faces. These data complement studies of cross-cultural differences in preferences by suggesting a mechanism for variation in mate preferences. Similar visual experience could lead to within-cultural agreement and differing visual experience could lead to cross-cultural variation. Overall, our data demonstrate that preferences can be strategically flexible according to recent visual experience with pathogen cues. Given that cues to pathogens may signal an increase in contagion/mortality risk, it may be adaptive to shift visual preferences in favour of proposed good-gene markers in environments where such cues are more evident.
San Martín, René; Appelbaum, Lawrence G; Huettel, Scott A; Woldorff, Marty G
2016-01-01
Adaptive choice behavior depends critically on identifying and learning from outcome-predicting cues. We hypothesized that attention may be preferentially directed toward certain outcome-predicting cues. We studied this possibility by analyzing event-related potential (ERP) responses in humans during a probabilistic decision-making task. Participants viewed pairs of outcome-predicting visual cues and then chose to wager either a small (i.e., loss-minimizing) or large (i.e., gain-maximizing) amount of money. The cues were bilaterally presented, which allowed us to extract the relative neural responses to each cue by using a contralateral-versus-ipsilateral ERP contrast. We found an early lateralized ERP response, whose features matched the attention-shift-related N2pc component and whose amplitude scaled with the learned reward-predicting value of the cues as predicted by an attention-for-reward model. Consistently, we found a double dissociation involving the N2pc. Across participants, gain-maximization positively correlated with the N2pc amplitude to the most reliable gain-predicting cue, suggesting an attentional bias toward such cues. Conversely, loss-minimization was negatively correlated with the N2pc amplitude to the most reliable loss-predicting cue, suggesting an attentional avoidance toward such stimuli. These results indicate that learned stimulus-reward associations can influence rapid attention allocation, and that differences in this process are associated with individual differences in economic decision-making performance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Little, Anthony C.; DeBruine, Lisa M.; Jones, Benedict C.
2011-01-01
Evolutionary approaches to human attractiveness have documented several traits that are proposed to be attractive across individuals and cultures, although both cross-individual and cross-cultural variations are also often found. Previous studies show that parasite prevalence and mortality/health are related to cultural variation in preferences for attractive traits. Visual experience of pathogen cues may mediate such variable preferences. Here we showed individuals slideshows of images with cues to low and high pathogen prevalence and measured their visual preferences for face traits. We found that both men and women moderated their preferences for facial masculinity and symmetry according to recent experience of visual cues to environmental pathogens. Change in preferences was seen mainly for opposite-sex faces, with women preferring more masculine and more symmetric male faces and men preferring more feminine and more symmetric female faces after exposure to pathogen cues than when not exposed to such cues. Cues to environmental pathogens had no significant effects on preferences for same-sex faces. These data complement studies of cross-cultural differences in preferences by suggesting a mechanism for variation in mate preferences. Similar visual experience could lead to within-cultural agreement and differing visual experience could lead to cross-cultural variation. Overall, our data demonstrate that preferences can be strategically flexible according to recent visual experience with pathogen cues. Given that cues to pathogens may signal an increase in contagion/mortality risk, it may be adaptive to shift visual preferences in favour of proposed good-gene markers in environments where such cues are more evident. PMID:21123269
Brain mediators of predictive cue effects on perceived pain
Atlas, Lauren Y.; Bolger, Niall; Lindquist, Martin A.; Wager, Tor D.
2010-01-01
Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for low or high painful thermal stimulation, and we assessed how cues influenced human subjects’ pain reports and BOLD fMRI responses to matched levels of noxious heat. We used multi-level mediation analysis to identify brain regions that 1) are modulated by predictive cues, 2) predict trial-to-trial variations in pain reports, and 3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pre-task expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing. PMID:20881115
Elgier, Angel M; Jakovcevic, Adriana; Mustaca, Alba E; Bentosela, Mariana
2009-05-01
Domestic dogs are very successful at following human cues like gazing or pointing to find hidden food in an object choice task. They solve this kind of situation at their first attempts and from early stages of their development and perform better than wolves. Most of the authors proposed that these abilities are a domestication product, and independent from learning processes. There are few systematic studies on the effects of learning on dogs' communicative skills. We aim to evaluate the effect of extinction and reversal learning procedures on the use of the pointing gesture in an object choice task. The results showed that dogs stopped following the pointing cue in the extinction and that they learned to choose the not pointed container in the reversal learning. Results suggest that instrumental learning plays an important role in interspecific communication mechanisms between humans and dogs. In both experiments for half of the subjects the pointer was the owner and for the rest was a stranger. A differential effect was found: extinction was slower but reversal learning was faster when the owner gave the cue. This data indicates that the relationship of the dog with the person who emits the cue influences performance.
Spatialized audio improves call sign recognition during multi-aircraft control.
Kim, Sungbin; Miller, Michael E; Rusnock, Christina F; Elshaw, John J
2018-07-01
We investigated the impact of a spatialized audio display on response time, workload, and accuracy while monitoring auditory information for relevance. The human ability to differentiate sound direction implies that spatial audio may be used to encode information. Therefore, it is hypothesized that spatial audio cues can be applied to aid differentiation of critical versus noncritical verbal auditory information. We used a human performance model and a laboratory study involving 24 participants to examine the effect of applying a notional, automated parser to present audio in a particular ear depending on information relevance. Operator workload and performance were assessed while subjects listened for and responded to relevant audio cues associated with critical information among additional noncritical information. Encoding relevance through spatial location in a spatial audio display system--as opposed to monophonic, binaural presentation--significantly reduced response time and workload, particularly for noncritical information. Future auditory displays employing spatial cues to indicate relevance have the potential to reduce workload and improve operator performance in similar task domains. Furthermore, these displays have the potential to reduce the dependence of workload and performance on the number of audio cues. Published by Elsevier Ltd.
Motor resonance may originate from sensorimotor experience.
Petroni, Agustín; Baguear, Federico; Della-Maggiore, Valeria
2010-10-01
In humans, the motor system can be activated by passive observation of actions or static pictures with implied action. The origin of this facilitation is of major interest to the field of motor control. Recently it has been shown that sensorimotor learning can reconfigure the motor system during action observation. Here we tested directly the hypothesis that motor resonance arises from sensorimotor contingencies by measuring corticospinal excitability in response to abstract non-action cues previously associated with an action. Motor evoked potentials were measured from the first dorsal interosseus (FDI) while human subjects observed colored stimuli that had been visually or motorically associated with a finger movement (index or little finger abduction). Corticospinal excitability was higher during the observation of a colored cue that preceded a movement involving the recorded muscle than during the observation of a different colored cue that preceded a movement involving a different muscle. Crucially this facilitation was only observed when the cue was associated with an executed movement but not when it was associated with an observed movement. Our findings provide solid evidence in support of the sensorimotor hypothesis of action observation and further suggest that the physical nature of the observed stimulus mediating this phenomenon may in fact be irrelevant.
Perceiving crowd attention: Gaze following in human crowds with conflicting cues.
Sun, Zhongqiang; Yu, Wenjun; Zhou, Jifan; Shen, Mowei
2017-05-01
People automatically redirect their visual attention by following others' gaze orientation, a phenomenon called "gaze following." This is an evolutionarily generated socio-cognitive process that provides people with information about their environments. Often, however, people in crowds can have rather different gaze orientations. This study investigated how gaze following occurs in situations with many conflicting gazes. In two experiments, we modified the gaze cueing paradigm to use a crowd rather than a single individual. Specifically, participants were presented with a group of human avatars with differing gaze orientations, and the target appeared randomly on the left or right side of a display. We found that (a) when a marked difference existed in the number of avatars with divergent gaze orientations, participants automatically followed the majority's gaze orientation, and (b) the strongest gaze cue effect occurred when all gazes shared the same orientation, with the response superiority of the majority's oriented location monotonically diminishing with the number of gazes with divergent orientations. These findings suggested that the majority rule plays a role in gaze following behavior when individuals are confronted with conflicting multigaze scenes, and that an increasing subgroup size appears to enlarge the strength of the gaze cueing effect.
The effect of D-cycloserine on subliminal cue exposure in spider fearful individuals.
Gutner, Cassidy A; Weinberger, Joel; Hofmann, Stefan G
2012-01-01
Research on D-cycloserine (DCS) has demonstrated a significant effect on symptom reduction in human studies that utilized conventional exposure-based approaches. Recent studies have offered promising results for targeting fears through subliminal paradigms. In this double-blind, randomized placebo-controlled study, 45 spider fearful individuals received DCS or placebo pills prior to completing a subliminal cue exposure task to images of spiders. Participants completed self-report questionnaires and a behavioral approach task to a live caged tarantula. After repeated exposure to subliminal spider cues, participants in the DCS group reported a greater reduction in disgust than individuals in the placebo group. No difference was observed in fear ratings. These findings suggest that DCS augments the reduction in disgust in spider fearful subjects after subliminal exposure to spider cues.
Virányi, Zsófia; Gácsi, Márta; Kubinyi, Eniko; Topál, József; Belényi, Beatrix; Ujfalussy, Dorottya; Miklósi, Adám
2008-07-01
Dogs have a remarkable skill to use human-given cues in object-choice tasks, but little is known to what extent their closest wild-living relative, the wolf can achieve this performance. In Study 1, we compared wolf and dog pups hand-reared individually and pet dogs of the same age in their readiness to form eye-contact with a human experimenter in an object-choice task and to follow her pointing gesture. The results showed that dogs already at 4 months of age use momentary distal pointing to find hidden food even without intensive early socialization. Wolf pups, on the contrary, do not attend to this subtle pointing. Accordingly in Studies 2 and 3, these wolves were tested longitudinally with this and four other (easier) human-given cues. This revealed that wolves socialized at a comparable level to dogs are able to use simple human-given cues spontaneously if the human's hand is close to the baited container (e.g. touching, proximal pointing). Study 4 showed that wolves can follow also momentary distal pointing similarly to dogs if they have received extensive formal training. Comparing the wolves to naïve pet dogs of the same age revealed that during several months of formal training wolves can reach the level of dogs in their success of following momentary distal pointing in parallel with improving their readiness to form eye-contact with a human experimenter. We assume that the high variability in the wolves' communicative behaviour might have provided a basis for selection during the course of domestication of the dog.
USDA-ARS?s Scientific Manuscript database
In the natural environment, the longhorned beetle, Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), finds it’s maturation-feeding and host plants by using chemical cues. In this study, we described the identification and characterization of four new cDNAs that encode Minus-C odorant binding pr...
USDA-ARS?s Scientific Manuscript database
The plant hormones regulate many physiological processes including apple fruit ripening by integrating diverse developmental cues and environmental signals. In addition to the well-characterized role of ethylene, jasmonic acid (JA) and its derivatives have also been suggested to play an important ro...
Effects of Phonetic Similarity in the Identification of Mandarin Tones
ERIC Educational Resources Information Center
Li, Bin; Shao, Jing; Bao, Mingzhen
2017-01-01
Tonal languages differ in how they use phonetic correlates, e.g. average pitch height and pitch direction, for tonal contrasts. Thus, native speakers of a tonal language may need to adjust their attention to familiar or unfamiliar phonetic cues when perceiving non-native tones. On the other hand, speakers of a non-tonal language may need to…
Voice Quality and Gender Stereotypes: A Study of Lebanese Women with Reinke's Edema
ERIC Educational Resources Information Center
Matar, Nayla; Portes, Cristel; Lancia, Leonardo; Legou, Thierry; Baider, Fabienne
2016-01-01
Purpose Women with Reinke's edema (RW) report being mistaken for men during telephone conversations. For this reason, their masculine-sounding voices are interesting for the study of gender stereotypes. The study's objective is to verify their complaint and to understand the cues used in gender identification. Method Using a self-evaluation study,…
The behavioural immune system and the psychology of human sociality.
Schaller, Mark
2011-12-12
Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context-contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour-including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system--including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being.
The behavioural immune system and the psychology of human sociality
Schaller, Mark
2011-01-01
Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context–contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour—including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system—including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being. PMID:22042918
Human Infant Faces Provoke Implicit Positive Affective Responses in Parents and Non-Parents Alike
Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H.; Caria, Andrea; Buffolino, Simona; Venuti, Paola
2013-01-01
Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors. PMID:24282537
Human infant faces provoke implicit positive affective responses in parents and non-parents alike.
Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H; Caria, Andrea; Buffolino, Simona; Venuti, Paola
2013-01-01
Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors.
Self-motion facilitates echo-acoustic orientation in humans
Wallmeier, Ludwig; Wiegrebe, Lutz
2014-01-01
The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556
Motivation and short-term memory in visual search: Attention's accelerator revisited.
Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton
2018-05-01
A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nathan, Pradeep J; O'Neill, Barry V; Mogg, Karin; Bradley, Brendan P; Beaver, John; Bani, Massimo; Merlo-Pich, Emilio; Fletcher, Paul C; Swirski, Bridget; Koch, Annelize; Dodds, Chris M; Bullmore, Edward T
2012-03-01
The mesolimbic dopamine system plays a critical role in the reinforcing effects of rewards. Evidence from pre-clinical studies suggests that D₃ receptor antagonists may attenuate the motivational impact of rewarding cues. In this study we examined the acute effects of the D₃ receptor antagonist GSK598809 on attentional bias to rewarding food cues in overweight to obese individuals (n=26, BMI mean=32.7±3.7, range 27-40 kg/m²) who reported binge and emotional eating. We also determined whether individual differences in restrained eating style modulated the effects of GSK598809 on attentional bias. The study utilized a randomized, double-blind, placebo-controlled cross-over design with each participant tested following acute administration of placebo and GSK598809 (175 mg). Attentional bias was assessed by the visual probe task and modified Stroop task using food-related words. Overall GSK598809 had no effects on attentional bias in either the visual probe or food Stroop tasks. However, the effect of GSK598809 on both visual probe and food Stroop attentional bias scores was inversely correlated with a measure of eating restraint allowing the identification of two subpopulations, low- and high-restrained eaters. Low-restrained eaters had a significant attentional bias towards food cues in both tasks under placebo, and this was attenuated by GSK598809. In contrast, high-restrained eaters showed no attentional bias to food cues following either placebo or GSK598809. These findings suggest that excessive attentional bias to food cues generated by individual differences in eating traits can be modulated by D₃ receptor antagonists, warranting further investigation with measures of eating behaviour and weight loss.
Orbán, Levente L.; Plowright, Catherine M.S.
2014-01-01
We present two methods for observing bumblebee choice behavior in an enclosed testing space. The first method consists of Radio Frequency Identification (RFID) readers built into artificial flowers that display various visual cues, and RFID tags (i.e., passive transponders) glued to the thorax of bumblebee workers. The novelty in our implementation is that RFID readers are built directly into artificial flowers that are capable of displaying several distinct visual properties such as color, pattern type, spatial frequency (i.e., “busyness” of the pattern), and symmetry (spatial frequency and symmetry were not manipulated in this experiment). Additionally, these visual displays in conjunction with the automated systems are capable of recording unrewarded and untrained choice behavior. The second method consists of recording choice behavior at artificial flowers using motion-sensitive high-definition camcorders. Bumblebees have number tags glued to their thoraces for unique identification. The advantage in this implementation over RFID is that in addition to observing landing behavior, alternate measures of preference such as hovering and antennation may also be observed. Both automation methods increase experimental control, and internal validity by allowing larger scale studies that take into account individual differences. External validity is also improved because bees can freely enter and exit the testing environment without constraints such as the availability of a research assistant on-site. Compared to human observation in real time, the automated methods are more cost-effective and possibly less error-prone. PMID:25489677
Orbán, Levente L; Plowright, Catherine M S
2014-11-15
We present two methods for observing bumblebee choice behavior in an enclosed testing space. The first method consists of Radio Frequency Identification (RFID) readers built into artificial flowers that display various visual cues, and RFID tags (i.e., passive transponders) glued to the thorax of bumblebee workers. The novelty in our implementation is that RFID readers are built directly into artificial flowers that are capable of displaying several distinct visual properties such as color, pattern type, spatial frequency (i.e., "busyness" of the pattern), and symmetry (spatial frequency and symmetry were not manipulated in this experiment). Additionally, these visual displays in conjunction with the automated systems are capable of recording unrewarded and untrained choice behavior. The second method consists of recording choice behavior at artificial flowers using motion-sensitive high-definition camcorders. Bumblebees have number tags glued to their thoraces for unique identification. The advantage in this implementation over RFID is that in addition to observing landing behavior, alternate measures of preference such as hovering and antennation may also be observed. Both automation methods increase experimental control, and internal validity by allowing larger scale studies that take into account individual differences. External validity is also improved because bees can freely enter and exit the testing environment without constraints such as the availability of a research assistant on-site. Compared to human observation in real time, the automated methods are more cost-effective and possibly less error-prone.
Role of Cigarette Sensory Cues in Modifying Puffing Topography
Rees, Vaughan W.; Kreslake, Jennifer M.; Wayne, Geoffrey Ferris; O Connor, Richard J.; Cummings, K. Michael; Connolly, Gregory N.
2012-01-01
Background Human puffing topography promotes tobacco dependence by ensuring nicotine delivery, but the factors that determine puffing behavior are not well explained by existing models. Chemosensory cues generated by variations in cigarette product design features may serve as conditioned cues to allow the smoker to optimize nicotine delivery by adjusting puffing topography. Internal tobacco industry research documents were reviewed to understand the influence of sensory cues on puffing topography, and to examine how the tobacco industry has designed cigarettes, including modified risk tobacco products (MRTPs), to enhance puffing behavior to optimize nicotine delivery and product acceptability. Methods Relevant internal tobacco industry documents were identified using systematic searching with key search terms and phrases, and then snowball sampling method was applied to establish further search terms. Results Modern cigarettes are designed by cigarette manufacturers to provide sensory characteristics that not only maintain appeal, but provide cues which inform puffing intensity. Alterations in the chemosensory cues provided in tobacco smoke play an important role in modifying smoking behavior independently of the central effects of nicotine. Conclusions An associative learning model is proposed to explain the influence of chemosensory cues on variation in puffing topography. These cues are delivered via tobacco smoke and are moderated by design features and additives used in cigarettes. The implications for regulation of design features of modified risk tobacco products, which may act to promote intensive puffing while lowering risk perceptions, are discussed. PMID:22365895
Spatial Attention, Motor Intention, and Bayesian Cue Predictability in the Human Brain.
Kuhns, Anna B; Dombert, Pascasie L; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2017-05-24
Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying cortical mechanisms and their specificity for different cognitive subsystems. The present study aimed at identifying common and distinct neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor intention task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are encoded in distinct brain regions, but that crosstalk with the hippocampus may be necessary to integrate new trialwise outcomes in both cognitive systems. SIGNIFICANCE STATEMENT The brain is able to infer the environments' statistical structure and responds strongly to expectancy violations. In the spatial attentional domain, it has been shown that parts of the attentional networks are sensitive to the predictability of stimuli. It remains unknown, however, whether these effects are ubiquitous or if they are specific for different cognitive systems. The present study compared the influence of model-derived cue predictability on brain activity in the spatial attentional and motor intentional system. We identified areas with distinct predictability-dependent activation for spatial attention and motor intention, but also common connectivity changes of these regions with the hippocampus. These findings provide novel insights into the generality and specificity of predictive processing signatures in the human brain. Copyright © 2017 the authors 0270-6474/17/375334-11$15.00/0.
Reward sensitivity predicts ice cream-related attentional bias assessed by inattentional blindness.
Li, Xiaoming; Tao, Qian; Fang, Ya; Cheng, Chen; Hao, Yangyang; Qi, Jianjun; Li, Yu; Zhang, Wei; Wang, Ying; Zhang, Xiaochu
2015-06-01
The cognitive mechanism underlying the association between individual differences in reward sensitivity and food craving is unknown. The present study explored the mechanism by examining the role of reward sensitivity in attentional bias toward ice cream cues. Forty-nine college students who displayed high level of ice cream craving (HICs) and 46 who displayed low level of ice cream craving (LICs) performed an inattentional blindness (IB) task which was used to assess attentional bias for ice cream. In addition, reward sensitivity and coping style were assessed by the Behavior Inhibition System/Behavior Activation System Scales and Simplified Coping Style Questionnaire. Results showed significant higher identification rate of the critical stimulus in the HICs than LICs, suggesting greater attentional bias for ice cream in the HICs. It was indicated that attentional bias for food cues persisted even under inattentional condition. Furthermore, a significant correlation was found between the attentional bias and reward sensitivity after controlling for coping style, and reward sensitivity predicted attentional bias for food cues. The mediation analyses showed that attentional bias mediated the relationship between reward sensitivity and food craving. Those findings suggest that the association between individual differences in reward sensitivity and food craving may be attributed to attentional bias for food-related cues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ghai, Shashank; Ghai, Ishan
2018-01-01
Rhythmic auditory cueing has been shown to enhance gait performance in several movement disorders. The “entrainment effect” generated by the stimulations can enhance auditory motor coupling and instigate plasticity. However, a consensus as to its influence over gait training among patients with multiple sclerosis is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing in studies gait performance in patients with multiple sclerosis. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until Dec 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 602 records, five studies (PEDro score: 5.7 ± 1.3) involving 188 participants (144 females/40 males) met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e., velocity (Hedge's g: 0.67), stride length (0.70), and cadence (1.0), and reduction in timed 25 feet walking test (−0.17). Underlying neurophysiological mechanisms, and clinical implications are discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance gait performance in the multiple sclerosis community. PMID:29942278
The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards
Burke, Kathryn A.; Franz, Theresa M.; Miller, Danielle N.; Schoenbaum, Geoffrey
2009-01-01
Cues that reliably predict rewards trigger the thoughts and emotions normally evoked by those rewards. Humans and other animals will work, often quite hard, for these cues. This is termed conditioned reinforcement. The ability to use conditioned reinforcers to guide our behaviour is normally beneficial; however, it can go awry. For example, corporate icons, such as McDonald’s Golden Arches, influence consumer behaviour in powerful and sometimes surprising ways1, and drug-associated cues trigger relapse to drug seeking in addicts and animals exposed to addictive drugs, even after abstinence or extinction2,3. Yet, despite their prevalence, it is not known how conditioned reinforcers control human or other animal behaviour. One possibility is that they act through the use of the specific rewards they predict; alternatively, they could control behaviour directly by activating emotions that are independent of any specific reward. In other words, the Golden Arches may drive business because they evoke thoughts of hamburgers and fries, or instead, may be effective because they also evoke feelings of hunger or happiness. Moreover, different brain circuits could support conditioned reinforcement mediated by thoughts of specific outcomes versus more general affective information. Here we have attempted to address these questions in rats. Rats were trained to learn that different cues predicted different rewards using specialized conditioning procedures that controlled whether the cues evoked thoughts of specific outcomes or general affective representations common to different outcomes. Subsequently, these rats were given the opportunity to press levers to obtain short and otherwise unrewarded presentations of these cues. We found that rats were willing to work for cues that evoked either outcome-specific or general affective representations. Furthermore the orbitofrontal cortex, a prefrontal region important for adaptive decision-making4, was critical for the former but not for the latter form of conditioned reinforcement. PMID:18563088
The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards.
Burke, Kathryn A; Franz, Theresa M; Miller, Danielle N; Schoenbaum, Geoffrey
2008-07-17
Cues that reliably predict rewards trigger the thoughts and emotions normally evoked by those rewards. Humans and other animals will work, often quite hard, for these cues. This is termed conditioned reinforcement. The ability to use conditioned reinforcers to guide our behaviour is normally beneficial; however, it can go awry. For example, corporate icons, such as McDonald's Golden Arches, influence consumer behaviour in powerful and sometimes surprising ways, and drug-associated cues trigger relapse to drug seeking in addicts and animals exposed to addictive drugs, even after abstinence or extinction. Yet, despite their prevalence, it is not known how conditioned reinforcers control human or other animal behaviour. One possibility is that they act through the use of the specific rewards they predict; alternatively, they could control behaviour directly by activating emotions that are independent of any specific reward. In other words, the Golden Arches may drive business because they evoke thoughts of hamburgers and fries, or instead, may be effective because they also evoke feelings of hunger or happiness. Moreover, different brain circuits could support conditioned reinforcement mediated by thoughts of specific outcomes versus more general affective information. Here we have attempted to address these questions in rats. Rats were trained to learn that different cues predicted different rewards using specialized conditioning procedures that controlled whether the cues evoked thoughts of specific outcomes or general affective representations common to different outcomes. Subsequently, these rats were given the opportunity to press levers to obtain short and otherwise unrewarded presentations of these cues. We found that rats were willing to work for cues that evoked either outcome-specific or general affective representations. Furthermore the orbitofrontal cortex, a prefrontal region important for adaptive decision-making, was critical for the former but not for the latter form of conditioned reinforcement.
Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao
2017-10-01
Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
Stop identity cue as a cue to language identity
NASA Astrophysics Data System (ADS)
Castonguay, Paula Lisa
The purpose of the present study was to determine whether language membership could potentially be cued by the acoustic-phonetic detail of word-initial stops and retained all the way through the process of lexical access to aid in language identification. Of particular interest were language-specific differences in CE and CF word-initial stops. Experiment 1 consisted of an interlingual homophone production task. The purpose of this study was to examine how word-initial stop consonants differ in terms of acoustic properties in Canadian English (CE) and Canadian French (CF) interlingual homophones. The analyses from the bilingual speakers in Experiment 1 indicate that bilinguals do produce language-specific differences in CE and CF word-initial stops, and that closure duration, voice onset time, and burst spectral SD may provide cues to language identity in CE and CF stops. Experiment 2 consisted of a Phoneme and Language Categorization task. The purpose of this study was to examine how stop identity cues, such as VOT and closure duration, influence a listener to identify word-initial stop consonants as belonging to Canadian English (CE) or Canadian French (CF). The RTs from the bilingual listeners in this study indicate that bilinguals do perceive language-specific differences in CE and CF word-initial stops, and that voice onset time may provide cues to phoneme and language membership in CE and CF stops. Experiment 3 consisted of a Phonological-Semantic priming task. The purpose of this study was to examine how subphonetic variations, such as changes in the VOT, affect lexical access. The results of Experiment 3 suggest that language-specific cues, such as VOT, affects the composition of the bilingual cohort and that the extent to which English and/or French words are activated is dependent on the language-specific cues present in a word. The findings of this study enhanced our theoretical understanding of lexical structure and lexical access in bilingual speakers. In addition, this study provides further insight on cross-language effects at the subphonetic level.
Granja-Travez, Rommel Santiago; Wilkinson, Rachael C; Persinoti, Gabriela Felix; Squina, Fabio M; Fülöp, Vilmos; Bugg, Timothy D H
2018-05-01
The identification of enzymes responsible for oxidation of lignin in lignin-degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin-degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B-type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi-copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase-like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β-aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca-lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four-coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three-coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site-directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase-like multicopper oxidases in some lignin-degrading bacteria. Structural data are available in the PDB under the accession number 6EVG. © 2018 Federation of European Biochemical Societies.
Low is large: spatial location and pitch interact in voice-based body size estimation.
Pisanski, Katarzyna; Isenstein, Sari G E; Montano, Kelyn J; O'Connor, Jillian J M; Feinberg, David R
2017-05-01
The binding of incongruent cues poses a challenge for multimodal perception. Indeed, although taller objects emit sounds from higher elevations, low-pitched sounds are perceptually mapped both to large size and to low elevation. In the present study, we examined how these incongruent vertical spatial cues (up is more) and pitch cues (low is large) to size interact, and whether similar biases influence size perception along the horizontal axis. In Experiment 1, we measured listeners' voice-based judgments of human body size using pitch-manipulated voices projected from a high versus a low, and a right versus a left, spatial location. Listeners associated low spatial locations with largeness for lowered-pitch but not for raised-pitch voices, demonstrating that pitch overrode vertical-elevation cues. Listeners associated rightward spatial locations with largeness, regardless of voice pitch. In Experiment 2, listeners performed the task while sitting or standing, allowing us to examine self-referential cues to elevation in size estimation. Listeners associated vertically low and rightward spatial cues with largeness more for lowered- than for raised-pitch voices. These correspondences were robust to sex (of both the voice and the listener) and head elevation (standing or sitting); however, horizontal correspondences were amplified when participants stood. Moreover, when participants were standing, their judgments of how much larger men's voices sounded than women's increased when the voices were projected from the low speaker. Our results provide novel evidence for a multidimensional spatial mapping of pitch that is generalizable to human voices and that affects performance in an indirect, ecologically relevant spatial task (body size estimation). These findings suggest that crossmodal pitch correspondences evoke both low-level and higher-level cognitive processes.
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
A specific role for posterior dorsolateral striatum in human habit learning
Tricomi, Elizabeth; Balleine, Bernard W.; O’Doherty, John P.
2009-01-01
Habits are characterized by an insensitivity to their consequences and, as such, can be distinguished from goal-directed actions. The neural basis of the development of demonstrably outcome insensitive habitual actions in humans has not been previously characterized. In this experiment, we show that extensive training on a free-operant task reduces the sensitivity of participants’ behavior to a reduction in outcome value. Analysis of functional magnetic resonance imagine (fMRI) data acquired during training revealed a significant increase in task-related cue sensitivity in a right posterior putamen/globus pallidus region as training progressed. These results provide evidence for a shift from goal-directed to habit-based control of instrumental actions in humans, and suggest that cue-driven activation in a specific region of dorsolateral posterior putamen may contribute to the habitual control of behavior in humans. PMID:19490086
Optimal cue integration in ants.
Wystrach, Antoine; Mangan, Michael; Webb, Barbara
2015-10-07
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. © 2015 The Author(s).
Neural Representation of Motion-In-Depth in Area MT
Sanada, Takahisa M.
2014-01-01
Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481
Caloric restriction in the presence of attractive food cues: external cues, eating, and weight.
Polivy, Janet; Herman, C Peter; Coelho, Jennifer S
2008-08-06
A growing body of research on caloric restriction (CR) in many species of laboratory animals suggests that underfeeding leads to better health and longevity in the calorically-restricted animal (e.g., see [[34]. J.P. Pinel, S. Assanand and D.R. Lehman, (2000). Hunger, eating and ill health. Am Psychol, 55, 1105-1116.], for a review). Although some objections have been raised by scientists concerned about negative psychological and behavioral sequelae of such restriction, advocates of CR continue to urge people to adopt sharply reduced eating regimes in order to increase their longevity. Yet very few people are even attempting to reap the benefits of such restriction. The present paper explores one factor that may deter many humans from drastically reducing their food consumption--the presence of abundant, attractive food cues in the environment. Research on the influence of food cues on food-related behaviors is reviewed to demonstrate that the presence of food cues makes restriction of intake more difficult.
Developmental changes in the understanding of implied motion in two-dimensional pictures.
Friedman, S L; Stevenson, M B
1975-09-01
The power of various pictorial movement cues in eliciting a reading of movement was studied to determine the relationship between the ease with which a picture is interpreted and the degree to which the picture retains the structure of reality. Movement was indicated in 2 ways: pictorial conventions indicated movement by lines, blurs, and vibration marks; and pictorial postures indicated movement by figures which were isomorphic with the postures involved in real movement. Preschoolers, first graders, sixth graders, and college students were asked to label and sort pictures of human figures as "moving" or "still". Members of the 2 young groups did not classify pictures with conventional cues as "moving" as often as they did pictures with postural cues. Members of the 2 older groups classified both types of pictures as "moving". Since postural cues for movement are recognized at an earlier age than conventional cues, those that are more similar to reality may be easier to understand.
Beyond scene gist: Objects guide search more than scene background.
Koehler, Kathryn; Eckstein, Miguel P
2017-06-01
Although the facilitation of visual search by contextual information is well established, there is little understanding of the independent contributions of different types of contextual cues in scenes. Here we manipulated 3 types of contextual information: object co-occurrence, multiple object configurations, and background category. We isolated the benefits of each contextual cue to target detectability, its impact on decision bias, confidence, and the guidance of eye movements. We find that object-based information guides eye movements and facilitates perceptual judgments more than scene background. The degree of guidance and facilitation of each contextual cue can be related to its inherent informativeness about the target spatial location as measured by human explicit judgments about likely target locations. Our results improve the understanding of the contributions of distinct contextual scene components to search and suggest that the brain's utilization of cues to guide eye movements is linked to the cue's informativeness about the target's location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bradberry, Charles W
2011-02-01
Drug abuse is a serious risk factor for the incidence and severity of multiple psychiatric illnesses. Understanding the neurobiological consequences of repeated exposure to abused drugs can help to inform how those risks are manifested in terms of specific neurochemical mechanisms and brain networks. This review examines selective studies in non-human primates that employed a cocaine self-administration model. Neurochemical consequences of chronic exposure appear to differ from observations in rodent studies. Whereas chronic intermittent exposure in the rodent is usually associated with a dose-dependent increase in dopaminergic response to a cocaine challenge, in the rhesus monkey, high cumulative exposure was not observed to cause a sensitized dopamine response. These non-human primate observations are concordant with clinical findings in human users. The results of cue exposure studies on dopaminergic transmission are also reviewed. Direct microdialysis measurements indicate that there is not a sustained increase in dopamine associated with cocaine-linked cues. As an alternative to striatal dopaminergic mechanisms mediating cue effects, single unit studies in prefrontal cortex during self-administration in monkeys suggests the orbitofrontal and anterior cingulate cortex are strongly engaged by cocaine cues. Based on the strong clinical imaging literature on cortical and cognitive dysfunction associated with addiction, it is proposed that the strong engagement of cortical systems during repeated cocaine reinforcement results in maladaptive changes that contribute to the risks of drug use for exacerbation of other psychiatric disorders.
Volumetric 3D display using a DLP projection engine
NASA Astrophysics Data System (ADS)
Geng, Jason
2012-03-01
In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.
Overshadowing of geometric cues by a beacon in a spatial navigation task.
Redhead, Edward S; Hamilton, Derek A; Parker, Matthew O; Chan, Wai; Allison, Craig
2013-06-01
In three experiments, we examined whether overshadowing of geometric cues by a discrete landmark (beacon) is due to the relative saliences of the cues. Using a virtual water maze task, human participants were required to locate a platform marked by a beacon in a distinctively shaped pool. In Experiment 1, the beacon overshadowed geometric cues in a trapezium, but not in an isosceles triangle. The longer escape latencies during acquisition in the trapezium control group with no beacon suggest that the geometric cues in the trapezium were less salient than those in the triangle. In Experiment 2, we evaluated whether generalization decrement, caused by the removal of the beacon at test, could account for overshadowing. An additional beacon was placed in an alternative corner. For the control groups, the beacons were identical; for the overshadow groups, they were visually unique. Overshadowing was again found in the trapezium. In Experiment 3, we tested whether the absence of overshadowing in the triangle was due to the geometric cues being more salient than the beacon. Following training, the beacon was relocated to a different corner. Participants approached the beacon rather than the trained platform corner, suggesting that the beacon was more salient. These results suggest that associative processes do not fully explain cue competition in the spatial domain.
Pigeons exhibit contextual cueing to both simple and complex backgrounds.
Wasserman, Edward A; Teng, Yuejia; Castro, Leyre
2014-05-01
Repeated pairings of a particular visual context with a specific location of a target stimulus facilitate target search in humans. We explored an animal model of this contextual cueing effect using a novel Cueing-Miscueing design. Pigeons had to peck a target which could appear in one of four possible locations on four possible color backgrounds or four possible color photographs of real-world scenes. On 80% of the trials, each of the contexts was uniquely paired with one of the target locations; on the other 20% of the trials, each of the contexts was randomly paired with the remaining target locations. Pigeons came to exhibit robust contextual cueing when the context preceded the target by 2s, with reaction times to the target being shorter on correctly-cued trials than on incorrectly-cued trials. Contextual cueing proved to be more robust with photographic backgrounds than with uniformly colored backgrounds. In addition, during the context-target delay, pigeons predominately pecked toward the location of the upcoming target, suggesting that attentional guidance contributes to contextual cueing. These findings confirm the effectiveness of animal models of contextual cueing and underscore the important part played by associative learning in producing the effect. This article is part of a Special Issue entitled: SQAB 2013: Contextual Con. Copyright © 2014 Elsevier B.V. All rights reserved.
Albiach-Serrano, Anna; Sebastián-Enesco, Carla; Seed, Amanda; Colmenares, Fernando; Call, Josep
2015-11-01
When presented with the broken cloth problem, both human children and nonhuman great apes prefer to pull a continuous cloth over a discontinuous cloth in order to obtain a desired object resting on top. This has been interpreted as evidence that they preferentially attend to the functionally relevant cues of the task (e.g., presence or absence of a gap along the cloth). However, there is controversy regarding whether great apes' behavior is underpinned by causal knowledge, involving abstract concepts (e.g., support, connection), or by perceptual knowledge, based on percepts (e.g., contact, continuity). We presented chimpanzees, orangutans, and 2-, 3-, and 4-year-old children with two versions of the broken cloth problem. The Real condition, made with paper strips, could be solved based on either perceptual cues or causal knowledge. The Painted condition, which looked very similar, could be solved only by attending to perceptual cues. All groups mastered the Real condition, in line with previous results. Older children (3- and 4-year-olds) performed significantly better in this condition than all other groups, but the performance of apes and children did not differ sharply, with 2-year-olds and apes obtaining similar results. In contrast, only 4-year-olds solved the Painted condition. We propose causal knowledge to explain the general good performance of apes and humans in the Real condition compared with the Painted condition. In addition, we suggest that symbolic knowledge might account for 4-year-olds' performance in the Painted condition. Our findings add to the growing literature supporting the idea that learning from arbitrary cues is not a good explanation for the performance of apes and humans on some kinds of physical task. Copyright © 2015 Elsevier Inc. All rights reserved.
Pain Assessment and Treatment Disparities: A Virtual Human Technology Investigation
Hirsh, Adam T.; George, Steven Z.; Robinson, Michael E.
2009-01-01
Pain assessment and treatment is influenced by patient demographic characteristics and nonverbal expressions. Methodological challenges have limited the empirical investigation of these issues. The current analogue study employed an innovative research design and novel virtual human (VH) technology to investigate disparities in pain-related clinical decision making. Fifty-four nurses viewed vignettes consisting of a video clip of the VH patient and clinical summary information describing a post-surgical context. Participants made assessment (pain intensity and unpleasantness) and treatment (non-opioid and opioid medications) decisions on computerized visual analogue scales. VH demographic cues of sex, race, and age, as well as facial expression of pain, were systematically manipulated and hypothesized to influence decision ratings. Idiographic and nomothetic statistical analyses were conducted to test these hypotheses. Idiographic results indicated that sex, race, age, and pain expression cues accounted for significant, unique variance in decision policies among many nurses. Pain expression was the most salient cue in this context. Nomothetic results indicated differences within VH cues of interest; the size and consistency of these differences varied across policy domains. This study demonstrates the application of VH technology and lens model methodology to the study of disparities in pain-related decision making. Assessment and treatment of acute post-surgical pain often varies based on VH demographic and facial expression cues. These data contribute to the existing literature on disparities in pain practice and highlight the potential of a novel approach that may serve as a model for future investigation of these critical issues. PMID:19269742
Assessing Spatial Learning and Memory in Rodents
Vorhees, Charles V.; Williams, Michael T.
2014-01-01
Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks. PMID:25225309
Pain assessment and treatment disparities: a virtual human technology investigation.
Hirsh, Adam T; George, Steven Z; Robinson, Michael E
2009-05-01
Pain assessment and treatment is influenced by patient demographic characteristics and nonverbal expressions. Methodological challenges have limited the empirical investigation of these issues. The current analogue study employed an innovative research design and novel virtual human (VH) technology to investigate disparities in pain-related clinical decision-making. Fifty-four nurses viewed vignettes consisting of a video clip of the VH patient and clinical summary information describing a post-surgical context. Participants made assessment (pain intensity and unpleasantness) and treatment (non-opioid and opioid medications) decisions on computerized visual analogue scales. VH demographic cues of sex, race, and age, as well as facial expression of pain, were systematically manipulated and hypothesized to influence decision ratings. Idiographic and nomothetic statistical analyses were conducted to test these hypotheses. Idiographic results indicated that sex, race, age, and pain expression cues accounted for significant, unique variance in decision policies among many nurses. Pain expression was the most salient cue in this context. Nomothetic results indicated differences within VH cues of interest; the size and consistency of these differences varied across policy domains. This study demonstrates the application of VH technology and lens model methodology to the study of disparities in pain-related decision-making. Assessment and treatment of acute post-surgical pain often varies based on VH demographic and facial expression cues. These data contribute to the existing literature on disparities in pain practice and highlight the potential of a novel approach that may serve as a model for future investigation of these critical issues.
A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.
2002-01-01
This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.
Narayanan, Shrikanth; Georgiou, Panayiotis G
2013-02-07
The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion.
The acoustical bright spot and mislocalization of tones by human listeners
Macaulay, Eric J.; Hartmann, William M.; Rakerd, Brad
2010-01-01
Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0° (straight ahead) to 90° (extreme right). During this task, the tone levels and phases were measured in the listeners’ ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55°. In a source-identification task, listeners’ localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener’s identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD). PMID:20329844
McMenamin, Brenton W.; Marsolek, Chad J.; Morseth, Brianna K.; Speer, MacKenzie F.; Burton, Philip C.; Burgund, E. Darcy
2016-01-01
Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities – an abstract category (AC) subsystem that operates effectively in the left hemisphere, and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad fronto-parietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue/probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations. PMID:26883940
Vrancken, Leia; Germeys, Filip; Verfaillie, Karl
2017-01-01
A considerable amount of research on identity recognition and emotion identification with the composite design points to the holistic processing of these aspects in faces and bodies. In this paradigm, the interference from a nonattended face half on the perception of the attended half is taken as evidence for holistic processing (i.e., a composite effect). Far less research, however, has been dedicated to the concept of gaze. Nonetheless, gaze perception is a substantial component of face and body perception, and holds critical information for everyday communicative interactions. Furthermore, the ability of human observers to detect direct versus averted eye gaze is effortless, perhaps similar to identity perception and emotion recognition. However, the hypothesis of holistic perception of eye gaze has never been tested directly. Research on gaze perception with the composite design could facilitate further systematic comparison with other aspects of face and body perception that have been investigated using the composite design (i.e., identity and emotion). In the present research, a composite design was administered to assess holistic processing of gaze cues in faces (Experiment 1) and bodies (Experiment 2). Results confirmed that eye and head orientation (Experiment 1A) and head and body orientation (Experiment 2A) are integrated in a holistic manner. However, the composite effect was not completely disrupted by inversion (Experiments 1B and 2B), a finding that will be discussed together with implications for future research.
McMenamin, Brenton W; Marsolek, Chad J; Morseth, Brianna K; Speer, MacKenzie F; Burton, Philip C; Burgund, E Darcy
2016-06-01
Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities-an abstract category (AC) subsystem that operates effectively in the left hemisphere and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad frontoparietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue-probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations.
Monaural Sound Localization Revisited
NASA Technical Reports Server (NTRS)
Wightman, Frederic L.; Kistler, Doris J.
1997-01-01
Research reported during the past few decades has revealed the importance for human sound localization of the so-called 'monaural spectral cues.' These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.
Swinford-Jackson, S E; Anastasio, N C; Fox, R G; Stutz, S J; Cunningham, K A
2016-06-02
Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Swinford-Jackson, Sarah E.; Anastasio, Noelle C.; Fox, Robert G.; Stutz, Sonja J.; Cunningham, Kathryn A.
2016-01-01
Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity (“incubation”) is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. PMID:26926963
Monaural sound localization revisited.
Wightman, F L; Kistler, D J
1997-02-01
Research reported during the past few decades has revealed the importance for human sound localization of the so-called "monaural spectral cues." These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.
Kamboj, Sunjeev K; Massey-Chase, Rachel; Rodney, Lydia; Das, Ravi; Almahdi, Basil; Curran, H Valerie; Morgan, Celia J A
2011-09-01
The effects of D-cycloserine (DCS) in animal models of anxiety disorders and addiction indicate a role for N-methyl D-aspartate (NMDA) receptors in extinction learning. Exposure/response prevention treatments for anxiety disorders in humans are enhanced by DCS, suggesting a promising co-therapy regime, mediated by NMDA receptors. Exposure/response prevention may also be effective in problematic drinkers, and DCS might enhance habituation to cues in these individuals. Since heavy drinkers show ostensible conditioned responses to alcohol cues, habituation following exposure/response prevention should be evident in these drinkers, with DCS enhancing this effect. The objective of this study is to investigate the effect of DCS on exposure/response prevention in heavy drinkers. In a randomised, double-blind, placebo-controlled study, heavy social drinkers recruited from the community received either DCS (125 mg; n = 19) or placebo (n = 17) 1 h prior to each of two sessions of exposure/response prevention. Cue reactivity and attentional bias were assessed during these two sessions and at a third follow-up session. Between-session drinking behaviour was recorded. Robust cue reactivity and attentional bias to alcohol cues was evident, as expected of heavy drinkers. Within- and between-session habituation of cue reactivity, as well as a reduction in attentional bias to alcohol cues over time was found. However, there was no evidence of greater habituation in the DCS group. Subtle stimulant effects (increased subjective contentedness and euphoria) which were unrelated to exposure/response prevention were found following DCS. DCS does not appear to enhance habituation of alcohol cue reactivity in heavy non-dependent drinkers. Its utility in enhancing treatments based on exposure/response prevention in dependent drinkers or drug users remains open.
The Effect of D-cycloserine on Subliminal Cue Exposure in Spider Fearful Individuals
Gutner, Cassidy A.; Weinberger, Joel; Hofmann, Stefan G.
2012-01-01
Research on d-cycloserine (DCS) has demonstrated a significant effect on symptom reduction in human studies that utilized conventional exposure-based approaches. Recent studies have offered promising results for targeting fears through subliminal paradigms. In this double-blind, randomized placebo controlled study, 45 spider fearful individuals received DCS or placebo pills prior to completing a subliminal cue exposure task to images of spiders. Participants completed self-report questionnaires and a behavioral approach task to a live caged tarantula. After repeated exposure to subliminal spider cues, participants in the DCS group reported a greater reduction in disgust than individuals in the placebo group. No difference was observed in fear ratings. These findings suggest that DCS augments the reduction in disgust in spider fearful subjects after subliminal exposure to spider cues. PMID:22992160
The ability for cocaine and cocaine-associated cues to compete for attention
Pitchers, Kyle K.; Wood, Taylor R.; Skrzynski, Cari J.; Robinson, Terry E.; Sarter, Martin
2017-01-01
In humans, reward cues, including drug cues in addicts, are especially effective in biasing attention towards them, so much so they can disrupt ongoing task performance. It is not known, however, whether this happens in rats. To address this question, we developed a behavioral paradigm to assess the capacity of an auditory drug (cocaine) cue to evoke cocaine-seeking behavior, thus distracting thirsty rats from performing a well-learned sustained attention task (SAT) to obtain a water reward. First, it was determined that an auditory cocaine cue (tone-CS) reinstated drug-seeking equally in sign-trackers (STs) and goal-trackers (GTs), which otherwise vary in the propensity to attribute incentive salience to a localizable drug cue. Next, we tested the ability of an auditory cocaine cue to disrupt performance on the SAT in STs and GTs. Rats were trained to self-administer cocaine intravenously using an Intermittent Access self-administration procedure known to produce a progressive increase in motivation for cocaine, escalation of intake, and strong discriminative stimulus control over drug-seeking behavior. When presented alone, the auditory discriminative stimulus elicited cocaine-seeking behavior while rats were performing the SAT, but it was not sufficiently disruptive to impair SAT performance. In contrast, if cocaine was available in the presence of the cue, or when administered non-contingently, SAT performance was severely disrupted. We suggest that performance on a relatively automatic, stimulus-driven task, such as the basic version of the SAT used here, may be difficult to disrupt with a drug cue alone. A task that requires more top-down cognitive control may be needed. PMID:27890441
Control of Working Memory in Rhesus Monkeys (Macaca mulatta)
Tu, Hsiao-Wei; Hampton, Robert R.
2014-01-01
Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219
Ecological statistics of Gestalt laws for the perceptual organization of contours.
Elder, James H; Goldberg, Richard M
2002-01-01
Although numerous studies have measured the strength of visual grouping cues for controlled psychophysical stimuli, little is known about the statistical utility of these various cues for natural images. In this study, we conducted experiments in which human participants trace perceived contours in natural images. These contours are automatically mapped to sequences of discrete tangent elements detected in the image. By examining relational properties between pairs of successive tangents on these traced curves, and between randomly selected pairs of tangents, we are able to estimate the likelihood distributions required to construct an optimal Bayesian model for contour grouping. We employed this novel methodology to investigate the inferential power of three classical Gestalt cues for contour grouping: proximity, good continuation, and luminance similarity. The study yielded a number of important results: (1) these cues, when appropriately defined, are approximately uncorrelated, suggesting a simple factorial model for statistical inference; (2) moderate image-to-image variation of the statistics indicates the utility of general probabilistic models for perceptual organization; (3) these cues differ greatly in their inferential power, proximity being by far the most powerful; and (4) statistical modeling of the proximity cue indicates a scale-invariant power law in close agreement with prior psychophysics.
Cohen, Alexandra O.; Dreyfuss, Michael F. W.; Casey, B. J.
2016-01-01
The capacity to suppress inappropriate thoughts, emotions and actions in favor of appropriate ones shows marked changes throughout childhood and adolescence. Most research has focused on pre-frontal circuit development to explain these changes. Yet, subcortical circuitry involving the amygdala and ventral striatum (VS) has been shown to modulate cue-triggered motivated behaviors in rodents. The nature of the interaction between these two subcortical regions in humans is less well understood, especially during development when there appears to be heightened sensitivity to emotional cues. In the current study, we tested how task-based cortico-subcortical and subcortico-subcortical functional connectivity in 155 participants ages from 5 to 32 impacted cognitive control performance on an emotional go/nogo task. Functional connectivity between the amygdala and VS was inversely correlated with age and predicted cognitive control to emotional cues, when controlling for performance to neutral cues. In contrast, increased medial pre-frontal-amygdala connectivity was associated with better cognitive control to emotional cues and this cortical-subcortical connectivity mediated the association between amygdala-VS connectivity and emotional cognitive control. These findings suggest a dissociation in how subcortical-subcortical and cortical-subcortical connectivity impact cognitive control across development. PMID:27445212
Response-cue interval effects in extended-runs task switching: memory, or monitoring?
Altmann, Erik M
2017-09-26
This study investigated effects of manipulating the response-cue interval (RCI) in the extended-runs task-switching procedure. In this procedure, a task cue is presented at the start of a run of trials and then withdrawn, such that the task has to be stored in memory to guide performance until the next task cue is presented. The effects of the RCI manipulation were not as predicted by an existing model of memory processes in task switching (Altmann and Gray, Psychol Rev 115:602-639, 2008), suggesting that either the model is incorrect or the RCI manipulation did not have the intended effect. The manipulation did produce a theoretically meaningful pattern, in the form of a main effect on response time that was not accompanied by a similar effect on the error rate. This pattern, which replicated across two experiments, is interpreted here in terms of a process that monitors for the next task cue, with a longer RCI acting as a stronger signal that a cue is about to appear. The results have implications for the human factors of dynamic task environments in which critical events occur unpredictably.
Using response time distributions to examine top-down influences on attentional capture.
Burnham, Bryan R
2013-02-01
Three experiments examined contingent attentional capture, which is the finding that cuing effects are larger when cues are perceptually similar to a target than when they are dissimilar to the target. This study also analyzed response times (RTs) in terms of the underlying distributions for valid cues and invalid cues. Specifically, an ex-Gaussian analysis and a vincentile analysis examined the influence of top-down attentional control settings on the shift and skew of RT distributions and how the shift and the skew contributed to the cuing effects in the mean RTs. The results showed that cue/target similarity influenced the size of cuing effects. The RT distribution analyses showed that the cuing effects reflected only a shifting effect, not a skewing effect, in the RT distribution between valid cues and invalid cues. That is, top-down attentional control moderated the cuing effects in the mean RTs through distribution shifting, not distribution skewing. The results support the contingent orienting hypothesis (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044, 1992) over the attentional disengagement account (Theeuwes, Atchley, & Kramer, 2000) as an explanation for when top-down attentional settings influence the selection of salient stimuli.
ERIC Educational Resources Information Center
Haese, Julia B.
1984-01-01
Twelve moderately retarded adults served as subjects in testing the hypothesis that colored drawings would be more effective in teaching the identification of common kitchen utensils. The study demonstrated that such adults performed better in discrimination tasks with color coding as an aid to developing such living skills as food preparation.…
Fuller, Christina D.; Galvin, John J.; Maat, Bert; Free, Rolien H.; Başkent, Deniz
2014-01-01
Cochlear implants (CIs) are auditory prostheses that restore hearing via electrical stimulation of the auditory nerve. Compared to normal acoustic hearing, sounds transmitted through the CI are spectro-temporally degraded, causing difficulties in challenging listening tasks such as speech intelligibility in noise and perception of music. In normal hearing (NH), musicians have been shown to better perform than non-musicians in auditory processing and perception, especially for challenging listening tasks. This “musician effect” was attributed to better processing of pitch cues, as well as better overall auditory cognitive functioning in musicians. Does the musician effect persist when pitch cues are degraded, as it would be in signals transmitted through a CI? To answer this question, NH musicians and non-musicians were tested while listening to unprocessed signals or to signals processed by an acoustic CI simulation. The task increasingly depended on pitch perception: (1) speech intelligibility (words and sentences) in quiet or in noise, (2) vocal emotion identification, and (3) melodic contour identification (MCI). For speech perception, there was no musician effect with the unprocessed stimuli, and a small musician effect only for word identification in one noise condition, in the CI simulation. For emotion identification, there was a small musician effect for both. For MCI, there was a large musician effect for both. Overall, the effect was stronger as the importance of pitch in the listening task increased. This suggests that the musician effect may be more rooted in pitch perception, rather than in a global advantage in cognitive processing (in which musicians would have performed better in all tasks). The results further suggest that musical training before (and possibly after) implantation might offer some advantage in pitch processing that could partially benefit speech perception, and more strongly emotion and music perception. PMID:25071428
Özdem, Ceylan; Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann; Brass, Marcel; Van Overwalle, Frank
2017-10-01
Attributing mind to interaction partners has been shown to increase the social relevance we ascribe to others' actions and to modulate the amount of attention dedicated to them. However, it remains unclear how the relationship between higher-order mind attribution and lower-level attention processes is established in the brain. In this neuroimaging study, participants saw images of an anthropomorphic robot that moved its eyes left- or rightwards to signal the appearance of an upcoming stimulus in the same (valid cue) or opposite location (invalid cue). Independently, participants' beliefs about the intentionality underlying the observed eye movements were manipulated by describing the eye movements as under human control or preprogrammed. As expected, we observed a validity effect behaviorally and neurologically (increased response times and activation in the invalid vs. valid condition). More importantly, we observed that this effect was more pronounced for the condition in which the robot's behavior was believed to be controlled by a human, as opposed to be preprogrammed. This interaction effect between cue validity and belief was, however, only found at the neural level and was manifested as a significant increase of activation in bilateral anterior temporoparietal junction.
Human Life History Strategies.
Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver
2017-01-01
Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.
Incubation of Cue-Induced Craving in Adults Addicted to Cocaine Measured by Electroencephalography.
Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z
2016-11-01
A common trigger for relapse in drug addiction is the experience of craving via exposure to cues previously associated with drug use. Preclinical studies have consistently demonstrated incubation of cue-induced drug-seeking during the initial phase of abstinence, followed by a decline over time. In humans, the incubation effect has been shown for alcohol, nicotine, and methamphetamine addictions, but not for heroin or cocaine addiction. Understanding the trajectory of cue-induced craving during abstinence in humans is of importance for addiction medicine. To assess cue-induced craving for cocaine in humans using both subjective and objective indices of cue-elicited responses. Seventy-six individuals addicted to cocaine with varying durations of abstinence (ie, 2 days, 1 week, 1 month, 6 months, and 1 year) participated in this laboratory-based cross-sectional study from June 19, 2007, to November 26, 2012. The late positive potential component of electroencephalography, a recognized marker of incentive salience, was used to track motivated attention to drug cues across these self-selected groups. Participants also completed subjective ratings of craving for cocaine before presentation of a cue, and ratings of cocaine "liking" (hedonic feelings toward cocaine) and "wanting" (craving for cocaine) after presentation of cocaine-related pictures. Data analysis was conducted from June 5, 2015, to March 30, 2016. The late positive potential amplitudes and ratings of liking and wanting cocaine in response to cocaine-related pictures were quantified and compared across groups. Among the 76 individuals addicted to cocaine, 19 (25%) were abstinent for 2 days, 20 (26%) were abstinent for 1 week, 15 (20%) were abstinent for 1 month, 12 (16%) were abstinent for 6 months, and 10 (13%) were abstinent for 1 year. In response to drug cues, the mean (SD) late positive potential amplitudes showed a parabolic trajectory that was higher at 1 (1.26 [1.36] µV) and 6 (1.17 [1.19] µV) months of abstinence and lower at 2 days (0.17 [1.09] µV), 1 week (0.36 [1.26] µV), and 1 year (-0.27 [1.74] µV) of abstinence (P = .02, partial η2 = 0.16). In contrast, the subjective assessment of baseline craving (mean [SD] rating: 2 days, 26.05 [9.85]; 1 week, 18.70 [11.01]; 1 month, 10.87 [10.70]; 6 months, 6.92 [8.47]; and 1 year, 3.00 [3.77]) and cue-induced liking (mean [SD] rating: 2 days, 3.06 [2.34]; 1 week, 2.33 [2.87]; 1 month, 1.15 [2.03]; 6 months, 1.00 [2.24]; and 1 year, 1.00 [1.26]) and wanting (mean [SD] rating: 2 days, 3.44 [2.62]; 1 week, 2.72 [2.87]; 1 month, 1.46 [2.33]; 6 months, 1.00 [2.16]; and 1 year, 1.00 [1.55]) of cocaine showed a linear decline from 2 days to 1 year of abstinence (P ≤ .001, partial η2 > 0.26). The late positive potential responses to drug cues, indicative of motivated attention, showed a trajectory similar to that reported in animal models. In contrast, we did not detect incubation of subjective cue-induced craving. Thus, the objective electroencephalographic measure may possibly be a better indicator of vulnerability to cue-induced relapse than subjective reports of craving, although this hypothesis must be empirically tested. These results suggest the importance of deploying intervention between 1 month and 6 months of abstinence, when addicted individuals may be most vulnerable to, and perhaps least cognizant of, risk of relapse.
Eyewitness Identification Reforms: Are Suggestiveness-Induced Hits and Guesses True Hits?
Wells, Gary L; Steblay, Nancy K; Dysart, Jennifer E
2012-05-01
Research-based reforms for collecting eyewitness identification evidence (e.g., unbiased pre-lineup instructions, double-blind administration) have been proposed by psychologists and adopted in increasing numbers of jurisdictions across the United States. It is well known that reducing rates of mistaken identifications can also reduce accurate identification rates (hits). But the reforms are largely designed to reduce the suggestiveness of the procedures they are meant to replace. Accordingly, we argue that it is misleading to label any hits obtained because of suggestive procedures as "hits" and then saddle reforms with the charge that they reduce the rate of these illegitimate hits. Eyewitness identification evidence should be based solely on the independent memory of the witness, not aided by biased instructions, cues from lineup administrators, or the use of lineup fillers who make the suspect stand out. Failure to call out these hits as being illegitimate can give solace to those who are motivated to preserve the status quo. © The Author(s) 2012.
McDougall, Siné; Isherwood, Sarah
2009-05-01
Communication using icons is now commonplace. It is therefore important to understand the processes involved in icon comprehension and the stimulus cues that individuals utilize to facilitate identification. In this study, we examined predictors of icon identification as participants gained experience with icons over a series of learning trials. A dynamic pattern of findings emerged in which the primary predictors of identification changed as learning progressed. In early learning trials, semantic distance (the closeness of the relationship between icon and function) was the best predictor of performance, accounting for up to 55% of the variance observed, whereas familiarity with the function was more important in later trials. Other stimulus characteristics, such as our familiarity with the graphic in the icon and its concreteness, were also found to be important for icon design. The theoretical implications of these findings are discussed, with particular emphasis on the parallels with picture naming. The icon identification norms from this study may be downloaded from brm.psychonomic-journals.org/content/supplemental.
Factors That Influence Fast Mapping in Children Exposed to Spanish and English
Alt, Mary; Meyers, Christina; Figueroa, Cecilia
2015-01-01
Purpose The purpose of this study was to determine if children exposed to two languages would benefit from the phonotactic probability cues of a single language in the same way as monolingual peers and to determine if cross-linguistic influence would be present in a fast mapping task. Method Two groups of typically-developing children (monolingual English and bilingual Spanish-English) took part in a computer-based fast mapping task which manipulated phonotactic probability. Children were preschool-aged (N = 50) or school-aged (N = 34). Fast mapping was assessed through name identification and naming tasks. Data were analyzed using mixed ANOVAs with post-hoc testing and simple regression. Results Bilingual and monolingual preschoolers showed sensitivity to English phonotactic cues in both tasks, but bilingual preschoolers were less accurate than monolingual peers in the naming task. School-aged bilingual children had nearly identical performance to monolingual peers. Conclusions Knowing that children exposed to two languages can benefit from the statistical cues of a single language can help inform ideas about instruction and assessment for bilingual learners. PMID:23816663
Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry.
Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E
2008-05-01
A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems.
Exposure to the Taste of Alcohol Elicits Activation of the Mesocorticolimbic Neurocircuitry
Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E
2010-01-01
A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems. PMID:17653109
NPSNET: Aural cues for virtual world immersion
NASA Astrophysics Data System (ADS)
Dahl, Leif A.
1992-09-01
NPSNET is a low-cost visual and aural simulation system designed and implemented at the Naval Postgraduate School. NPSNET is an example of a virtual world simulation environment that incorporates real-time aural cues through software-hardware interaction. In the current implementation of NPSNET, a graphics workstation functions in the sound server role which involves sending and receiving networked sound message packets across a Local Area Network, composed of multiple graphics workstations. The network messages contain sound file identification information that is transmitted from the sound server across an RS-422 protocol communication line to a serial to Musical Instrument Digital Interface (MIDI) converter. The MIDI converter, in turn relays the sound byte to a sampler, an electronic recording and playback device. The sampler correlates the hexadecimal input to a specific note or stored sound and sends it as an audio signal to speakers via an amplifier. The realism of a simulation is improved by involving multiple participant senses and removing external distractions. This thesis describes the incorporation of sound as aural cues, and the enhancement they provide in the virtual simulation environment of NPSNET.