Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee
2015-10-01
Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.
Structural and optical studies on antimony and zinc doped CuInS2 thin films
NASA Astrophysics Data System (ADS)
Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.
2009-11-01
The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.
NASA Astrophysics Data System (ADS)
Barragan-Yani, D.; Albe, K.
2018-04-01
The segregation of GaIn and NaCu to perfect 60° dislocations in CuIn1-xGaxSe2 is investigated by means of density functional theory calculations. We find that the segregation process is mainly driven by the elastic interaction of both defect types with the strain field of the dislocation. GaIn moves into the negatively strained region, while NaCu is found in the positively strained region. We show that both defects affect the electronic defect levels induced by the dislocation core and GaIn is able to passivate the β-core in CuInSe2. This result indicates that β-cores are inactive in CuIn1-xGaxSe2. NaCu; however, they do not have a significant effect on the electrical properties of the studied dislocation cores. Therefore, the experimentally observed sodium segregation to dislocation cores in CuIn1-xGaxSe2 cannot be considered as the passivation mechanism of the electrically active cores in that material.
Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.
Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho
2015-10-14
A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.
Air-annealing of Cu(In, Ga)Se2/CdS and performances of CIGS solar cells
NASA Astrophysics Data System (ADS)
Niu, X.; Zhu, H.; Liang, X.; Guo, Y.; Li, Z.; Mai, Y.
2017-12-01
In this study, the annealing treatment on Cu(In, Ga)Se2 (CIGS)/CdS interface in air is systematically investigated under different annealing temperatures from room temperature to 150 °C and different durations. It is found that when CIGS/CdS interface is annealed for a proper duration the corresponding CIGS thin film solar cells show enhanced open circuit voltage (Voc) and fill factor (FF) as well as corresponding conversion efficiency. The capacitance-voltage (C-V) and time-resolved photoluminescence (TR-PL) measurement results indicate that the CIGS thin film solar cells exhibit an increase in net defect density (NCV) and long lifetime for the carriers, respectively, after the annealing treatment of CIGS/CdS at a mediate annealing temperature here. Moreover, the net defect density of annealed solar cells at higher annealing temperatures for a long duration is reduced. All the variations in the solar cell performances, NCV and carrier lifetime would be related to the passivation of Se vacancies and InCu defects, surface (interface) states as well as positive interface discharges and Cu migration etc. A high efficiency CIGS solar cell of 14.4% is achieved. The optimized solar cell of 17.2% with a MgF2 anti-reflective layer has been obtained.
NASA Astrophysics Data System (ADS)
Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan
2017-11-01
The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.
Investigation of thin film solar cells based on Cu2S and ternary compounds such as CuInS2
NASA Technical Reports Server (NTRS)
Loferski, J. J.
1975-01-01
Production and characterization in thin film form of Cu2S and related Cu compounds such as CuInS2 for photovoltaic cells are examined. The low cost process technology being reported, namely the sulfurization method, is capable of producing films on various substrates. Cathodoluminescence is being used as a diagnostic tool to identify Cu(x)S and CuInS2 compounds. Also, single crystals of CuInS2 are being prepared and it is contemplated that p-n junctions will be made in such crystals.
NASA Astrophysics Data System (ADS)
Korir, Peter C.; Dejene, Francis B.
2018-04-01
In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.
Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices
NASA Technical Reports Server (NTRS)
Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.
1998-01-01
Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.
Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap
NASA Astrophysics Data System (ADS)
Latha, M.; Aruna Devi, R.; Velumani, S.
2018-05-01
CuIn1-xGaxSe2 nanocrystals (CIGSe NCs) were synthesized with different gallium (Ga) content by the hot injection process at low reaction temperature for the first time. The Ga content [x = Ga(In + Ga)] was varied such as 0, 0.25, 0.50 and 0.75 to study their influences on the structural, morphological, compositional and optical properties of CIGSe NCs. X-ray diffraction (XRD) analysis showed the peak shift towards higher 2θ angle. The lattice parameters a and c were decreased linearly as x value increases which propitiated Vegard's law. Transmission electron microscopy (TEM) analysis revealed a decrease in the particle size from 55 to 22 nm. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra indicated a blue shift towards the lower wavelength and bandgap was tuned from 1.04 to 1.41eV. Apart from this, CIGSe thin films were prepared by doctor blade coating method followed by annealing under Se/Ar atmosphere. The mobility of CIGSe thin film increased whereas resistivity decreased. Moreover, the photoconductivity of CIGSe annealed thin film exhibited almost 2-fold increase under an illumination of light. We realize from these results that the synthesized CIGSe NCs with x = 0.25 is expected to have the important perspective to be efficiently exploited as an absorber layer in cost-effective thin film solar cells.
Development of CIGS2 Thin Films on Ultralightweight Flexible Large Area Foil Sunstrates
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.
2005-01-01
The development of thin film solar cells is aimed at reducing the costs for photovoltaic systems. Use of thin film technology and thin foil substrate such as 5-mil thick stainless steel foil or 1-mil thick Ti would result in considerable costs savings. Another important aspect is manufacturing cost. Current single crystal technology for space power can cost more than $ 300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn1-xGaxS2 (CIGS2), CuIn(1-x)Ga(x)Se(2-y)S(y) (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite for example, the array manufacturing cost alone may exceed $ 2 million. Moving to thin film technology could reduce this expense to less than $ 500K. Earlier publications have demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6 in x 4 in) substrates. This paper presents the developmental study of achieving stress free Mo coating; uniform coatings of Mo back contact and metallic precursors. The paper also presents the development of sol gel process, refurbishment of selenization/sulfurization furnace, chemical bath deposition (CBD) for n-type CdS and scrubber for detoxification of H2S and H2Se gases.
NASA Astrophysics Data System (ADS)
Redinger, Alex; Levcenko, Sergiu; Hages, Charles J.; Greiner, Dieter; Kaufmann, Christian A.; Unold, Thomas
2017-03-01
Recent reports have suggested that the long decay times in time resolved photoluminescence (TRPL), often measured in Cu(In, Ga)Se2 absorbers, may be a result of detrapping from sub-bandgap defects. In this work, we show via temperature dependent measurements, that long lifetimes >50 ns can be observed that reflect the true minority carrier lifetime not related to deep trapping. Temperature dependent time resolved photoluminescence and steady state photoluminescence imaging measurements are used to analyze the effect of annealing in air and in a nitrogen atmosphere between 300 K and 350 K. We show that heating the Cu(In, Ga)Se2 absorber in air can irreversibly decrease the TRPL decay time, likely due to a deterioration of the absorber surface. Annealing in an oxygen-free environment yields a temperature dependence of the TRPL decay times in accordance with Schockley Read Hall recombination kinetics and weakly varying capture cross sections according to T0.6.
NASA Astrophysics Data System (ADS)
Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.
2017-02-01
Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.
NASA Astrophysics Data System (ADS)
Cheng, Ke; Han, Kaikai; Kuang, Zhongcheng; Jin, Ranran; Hu, Junxia; Guo, Longfei; Liu, Ya; Lu, Zhangbo; Du, Zuliang
2017-04-01
In this work, CuInGa alloy precursor films are fabricated by co-sputtering of CuIn and CuGa targets simultaneously. After selenization in a tube-type rapid thermal annealing system under a Se atmosphere, the Cu(In, Ga)Se2 (CIGS) absorber layers are obtained. Standard soda lime glass (SLG)/Mo/CIGS/CdS/i-ZnO/ITO/Ag grid structural solar cells are fabricated based on the selenized CIGS absorbers. The influences of selenization temperatures on the composition, crystallinity, and device performances are systematically investigated by x-ray energy dispersive spectroscopy, x-ray diffraction, Raman spectroscopy, and the current density-voltage ( J- V) measurement. It is found that the elemental ratio of Cu/(In + Ga) strongly depends on the selenization temperatures. Because of the appropriate elemental ratio, a 9.92% conversion efficiency is reached for the CIGS absorber selenized at 560°C. After the additional optimization by pre-annealing treatment at 280°C before the selenization, a highest conversion efficiency of 11.19% with a open-circuit ( V oc) of 456 mV, a short-circuit ( J sc) of 40.357 mA/cm2 and a fill factor of 60.82% without antireflection coating has been achieved. Above 13% efficiency improvement was achievable. Our experimental findings presented in this work demonstrate that the post-selenization of co-sputtered CuIn and CuGa precursor is a promising way to fabricate high quality CIGS absorbers.
NASA Astrophysics Data System (ADS)
Petuenju, Eric Nguwuo
The present thesis study is part of the work of The Laboratory of New Materials for Energy and Electrochemistry systems (LaNoMat) that search new techniques to elaborate new materials for photovoltaic solar applications. This aims contribute to the development of the exploitation of solar energy into electrical energy by the maximum of the population throughout the world. This work deals with the determination of CuInS2 thin film deposition parameters by ultrasonic spray pyrolysis method for applications in the technology of three dimensional (3D) solar cells. The structure of the band gap of CuInS2 (a semiconductor material with a direct bandgap of 1.55 eV) makes it an excellent candidate for the role of the absorber in thin film technology for solar photovoltaic applications. 3D solar photovoltaic technology requires the production of a p-n junction with n and p-type semiconductors to make networks. The production and growth of such networks depends on the creation of thin films which have the characteristics of an ultrathin nanocomposite or extremely thin absorber (typically a few tens of nanometers) or which act as a quantum dot. To allow the emergence of 3D photovoltaic technology, it is important to develop methods for the growth of thin layers of materials such as CuInS 2, which are potentially interesting for this purpose. But the development of methods for thin film deposition, for the reasons of competition and accessibility, must be considered as an important factor in the context of the development of three-dimensional photovoltaic solar cells at low cost (production costs: of the order of 0,5 a 0,3$US/Watt-peak) (Beard et al., 2014). To do this it is necessary to use materials manufacturing technology readily available and inexpensive, and allowing to have materials on large surface, such as pyrolysis which allows to reduce costs by a factor of 100 compared to the crystallogenesis. Pyrolysis is defined as a process for decomposing one or more compounds by heat to obtain the formation of a new compound. The main objective of this thesis focuses on the use of ultrasonic spray pyrolysis technique to grow CuInS2 thin films and characterize them by different techniques. This choice is linked to the fact that the CuInS2 is a direct gap semiconductor material, which can act as absorber in solar photovoltaic technology. However, the growth of thin films of this material is subject to a problem of creation of interpenetrating networks of different types of semiconductors (n and p-type), which implies a suitable choice of deposition technique. It should be noted that the interest in existing methods, the ALCVD (Atomic Layer Vapor Deposition) and ILGAR (Ion Layer Gas Reaction) developed in paragraphs 2.4.1 and 2.4.2, is confronted with time limits of these methods. Indeed these two methods, owing to the principle of sequential production process, take place very slowly; and we showed that the thickness of the obtained thin film is proportional to the deposition time. In this work, spray pyrolysis is carried out in two different ways, namely ultrasonic and pneumatic spraying. Of these two methods, we showed that the transducer based ultrasonic spray pyrolysis is the method that can be used to grow thin films of CuInS2 a good homogeneity of the crystallites size (of the order of 110 A) and the morphology of the layers. Ultrasonic spraying was done with a piezoelectric system using a transducer. This system consists of a cylindrical container made of Teflon 5 cm diameter and 15 cm long in which is introduced the solution containing the precursor. The container is mounted on an ultrasonic transducer, component of the piezoelectric system TDK nebulizer unit NB-80E-01, which transforms the solution in aerosol. The aerosol is transported through a teflon tube by a carrier gas, the nitrogen, into a floating motion to the substrate. The substrate is placed on a heating plate whose temperature is controlled by a control monitor. The supply in solution of the container is done with the aid of an electric pump. The nature of the samples obtained is dependent of the supporting electrolyte for the deposition of the precursors. We showed that the use of precursors in an aqueous solution leads to the production of thin layers of indium sulfide In 2S3 clusters while the use of the precursors in alcoholic solution leads to the production of thin layers of CuInS2. The precursors ratio for deposition of CuInS2 is Cu: In: S = 1: 1: 4. The thickness of thin films of In2S3 is of the order of 812 nm. These layers are composed of microaggregates with size ranging from 3 to 20 microns. The particle size in the thin films of In2S 3 is of about 220 A. The thickness of the thin film of CuInS 2 is of the order of 600 nm. Spectrophotometry has identified that all obtained CuInS2 thin films have an average band gap value of 1.40 eV. This indicates the presence of intermediate states, such as copper vacancies in the material band gap. The absorption spectra also allowed us to distinguish peaks that can be attributed to the contribution of sub-bands corresponding to the indium-sulfur bond and the sulfur 3s-band. The samples were characterized by X-ray Diffraction to identify crystalline structure while their surface morphology as well as their semi-quantitative chemical composition were determined using the energy-dispersive x-ray spectroscopy. The ensuing results show that the thin films obtained are homogeneous, transparent and polycrystalline with the crystallites size of the order of 110 A. The thin films obtained by this method do not require annealing to improve their crystallinity. The growth of thin films depends on the substrate humidification period. For a wetting time of about 3 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.81: 3.18. The obtained samples are indexed as CIS1. For a wetting time of about 7 minutes, thin layers are obtained with stoichiometry of Cu: In: S = 1: 1.23: 2.07. The obtained samples are indexed as CIS2. Contrary to layers CIS1, the layers CIS2 also contain chlorine. The obtained thin films are p-type and, under illumination of 100 mW/cm 2 by a xenon lamp, an increase of the density of charge carriers of about 62% is obtained, but this value does not account the recombination phenomena. In the case of the pneumatic spraying method, the spraying principle is based on the application of Venturi effect, which allows to spray the solution of precursors using a carrier gas. This method is called gas blasting spray pyrolysis. The gas used here is nitrogen. The sprayer is an airbrush - Iwata hp-eclipse bcs - which aspires the solution through a tube connected to the bottle containing the precursor solution, and sprays it through a nozzle according to the principle of the Venturi effect. The precursors ratio is Cu:In:S=1:1:4. The obtained thin films are CuInS2. They are heterogeneous, dense, opaque, and polycrystalline with a crystallites size of the order of 550 A. The stoichiometry of the obtained layers is of order of 1:1.45:2.28. The thin films obtained by this method require annealing (heating of the samples in an oven for one hour at a temperature of 300 ° C) to improve their crystallinity. The thickness of the obtained thin film of CuInS2 is of the order of 1190 nm. The comparative analysis of the samples obtained by the two types of spray pyrolysis is then performed. It shows that ultrasonic aerosol spray would provide CuInS2 thin films for solar applications both in the roles of nanocomposite ultra-thin absorber and extremely thin absorber as in that of quantum dot absorber. In conclusion, transducer based ultrasonic spray pyrolysis is therefore a method that would allow the deposition of CuInS2 on TiO 2 and contribute to resolve a major limitation in three-dimensional photovoltaic solar cells technology, namely the realization of interpenetrating networks of n-type and p-type semiconductors, on a large scale and without time constraint.
19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya. R. N.
2008-01-01
CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.
The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.
2003-01-01
Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.
Investigation of Sb-Containing Precursors for Cu(In, Ga)Se2 Thin Films Through Design of Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansfield, Lorelle M.; To, Bobby; Reedy, Robert C.
2016-11-21
The Design of Experiments (DoE) module in JMP statistical software was used to determine the best parameters for Sb-containing CIGS precursors with a fixed selenization step. Solar cells were fabricated and measured for all completed films. The most important factor influencing the current-voltage device parameters was identified as the temperature and antimony flux interaction. The DoE prediction profiler and predictive contour plots provided guidance to further improve the device parameters. In one follow-up run, we increased device efficiency from 14.9% to 15.5% Additional gains in efficiency to 16.9% were realized by introducing an intentional Ga gradient and an antireflective coating.
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Kawakita, Shirou; Imaizumi, Mitsuru; Kuwajima, Saburou; Sakurai, Keiichiro; Matsubara, Koji; Niki, Sigeru
2005-05-01
Optical coating on Cu(In, Ga)Se2 thin film solar cells, which have high radiation tolerance, is investigated in order to improve their radiative properties for thermal balance in space. Due to low thermal emissivity, the temperature of the CIGS solar cell is expected to exceed the allowable limit if no coating is applied. Evaporated single-layer coating of silicon dioxide and additional over-layer coatings on the CIGS solar cells increase the emissivity from 0.18 to 0.75. The coating with the over-layer coatings realizes higher emissivity with less thickness than that of the single SiO2 coating. In addition, optical coatings reflecting UV rays and infrared radiation are designed and evaporated on the cells to control solar input. The developed optical coatings could give the CIGS solar cells appropriate thermal radiative properties for space applications without any degradations of the cell performance.
Spray CVD for Making Solar-Cell Absorber Layers
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius
2007-01-01
Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
Recent Progress in Nanoelectrical Characterizations of CdTe and Cu(In,Ga)Se2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Chun-Sheng; To, Bobby; Glynn, Stephen
2016-11-21
We report two recent nanoelectrical characterizations of CdTe and Cu(In, Ga)Se2 (CIGS) thin-film solar cells by developing atomic force microscopy-based nanoelectrical probes. Charges trapped at defects at the CdS/CdTe interface were probed by Kelvin probe force microscopy (KPFM) potential mapping and by ion-milling the CdTe superstrate device in a bevel glancing angle of ~0.5 degrees. The results show randomly distributed donor-like defects at the interface. The effect of K post-deposition treatment on the near-surface region of the CIGS film was studied by KPFM potential and scanning spreading resistance microscopy (SSRM) resistivity mapping, which shows passivation of grain-boundary potential and improvementmore » of resistivity uniformity by the K treatment.« less
Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari
2014-10-27
Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications
NASA Technical Reports Server (NTRS)
Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.
2002-01-01
Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Jiu, Jinting; Suganuma, Katsuaki
2016-04-01
In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS2 (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In2S3 to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm2 is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2002-01-01
Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao; Jiang, Chun-Sheng; Moutinho, Helio
2016-11-21
We located the electrical junction (EJ) of Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnSe4 (CZTS) solar cells with ~20-nm accuracy using a scanning capacitance spectroscopy (SCS) technique. A procedure was developed to prepare the cross-sectional samples and grow critical high-quality insulating layers for the SCS measurement. We found that CIGS has a buried homojunction with the EJ located at ~40 nm inside the CIGS/CdS interface. An n-type CIGS was probed in the region 10-30 nm away from the interface. By contrast, the CZTS/CdS cells have a heterointerface junction with a shallower EJ (~20 nm) than CIGS. The EJ is ~20 nm frommore » the CZTS/CdS interface, which is consistent with asymmetrical carrier concentrations of the p-CZTS and n-CdS in a heterojunction cell. The unambiguous determination of the junction locations helped explain the large open circuit voltage difference between the state-of-the-art devices of CIGS and CZTS.« less
NASA Astrophysics Data System (ADS)
Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee
2017-08-01
Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.
Structure and photoelectrochemistry of silver-copper-indium-diselenide ((AgCu)InSe2) thin film
NASA Astrophysics Data System (ADS)
Zhang, Lin Rui; Li, Tong; Wang, Hao; Pang, Wei; Chen, Yi Chuan; Song, Xue Mei; Zhang, Yong Zhe; Yan, Hui
2018-02-01
In this work, silver (Ag) precursors with different thicknesses were sputtered on the surfaces of CuIn alloys, and (AgCu)InSe2 (ACIS) films were formed after selenization at 550 °C under nitrogen condition using a rapid thermal process furnace. The structure and electrical properties of the ACIS films were investigated. The result showed that the distribution of Ag+ ion was more uniform with increasing the thickness of Ag precursor, and the surface of the thin-film became more homogeneous and denser. When Ag/Cu ratio ≥0.249, the small grain particles disappeared. The band gap can be rationally controlled by adjusting Ag content. When (Ag + Cu)/In ratio ≥ 1.15, the surface of the ACIS thin-film mainly exhibited n-type semiconductor. Through the photoelectrochemistry measurement, it was observed that the incorporation of Ag+ ions could improve photocurrent by adjusting the band gap. With the Ag precursor thickness increased, the dark current decreased at the more negative potential.
Free Energy Defect Model for the Cu-In-Ga-Se Tetrahedral Lattice
NASA Astrophysics Data System (ADS)
Stanbery, B. J.
2003-03-01
The most efficient thin-film photovoltaic converters of solar insolation to electrical power have recently achieved conversion efficiencies exceeding 19%, and are based on light absorbing layers containing the binary alloy (CuInSe_2)_1-X(CuGaSe_2)X of the α phases of these ternary chalcopyrite compounds. A statistical quantum mechanical model of the thermodynamic equilibrium defect structure of the tetrahedral lattice of copper, indium, and selenium with composition in the domain between that of the stoichiometric CuIn_1-XGa_XSe2 alloy and the β phase Cu(In_1-XGa_X)_3Se5 composition is presented. Compositions more copper-deficient than the latter have been reported experimentally to result in a breakdown of the tetrahedral coordination characteristic of the chalcopyrite lattice. These computations are based on a cluster expansion algorithm that minimizes the total free energy of the system using the Gibbs-Duhem equation to compute quasichemical reaction equilibria between the neutral clusters, and explicitly incorporates Fermi-Dirac statistics to determine their ionization equilibria and consequent carrier concentrations in the conduction and valence bands. The results are consistent with recent experimental evidence that the stoichiometric CuIn_1-XGa_XSe2 composition segregates in equilibrium into a two-phase mixture of a copper-deficient quaternary Cu_1-γIn_1-XGa_XSe2 composition and the binary Cu_2-δSe compound. The model predicts that the hole majority carrier (p-type) can only be achieved in the equilibrium single-phase chalcopyrite lattice with compositions that correspond to Cu_1-γIn_1-XGa_XSe_2+ɛ with γ and ɛ >0. This predicted requirement for selenium enrichment compared to the stoichiometric CuIn_1-XGa_XSe2 alloy composition for the dominance of holes over electrons as the majority carrier type is consistent with experimental evidence, and is explained in terms of a transition of the dominant lattice defect from the selenium vacancy in the stoichiometric case to the copper vacancy defect in the selenium-enriched lattice. This result is of particular importance since all CuIn_1-XGa_XSe2 thin-film solar cells utilize p-type absorber films.
NASA Astrophysics Data System (ADS)
Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Santhoshi Monica, S. Esther; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Ezhil Raj, A. Moses
2017-12-01
CuInS2 (CIS) thin films have been synthesized onto the glass substrates for different solvent volumes (10, 30, 50 and 70 ml) by nebulizer spray technique. The effect of solvent volume on the structural, morphological, compositional, optical and electrical properties of CIS thin films has been investigated. X-ray diffraction patterns suggest that the obtained CIS films are polycrystalline with the tetragonal structure. The surface morphology of the prepared CIS films purely depends on the solvent volume. The elemental quantitative investigation and the stoichiometric ratio of the CIS thin films were verified from XPS and EDS. High absorbance with the optical band gap of 1.13 eV was obtained at the higher solvent volume. All the deposited CIS thin films exhibited p-type semiconducting behavior with the high electrical conductivity and carrier concentration. CIS thin films deposited onto the FTO substrate were used as a counter electrode (CE) in dye-sensitized solar cells. CIS CEs possessed high electrocatalytic behavior and fast electron charge transfer at the CE/electrolyte interface. The CIS CE prepared using 50 ml solvent volume generated high energy conversion efficiency of about 3.25%.
Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, Adam; Al-Jassim, Mowafak; Diercks, David
The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less
Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries
Stokes, Adam; Al-Jassim, Mowafak; Diercks, David; ...
2017-10-26
The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less
Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells
Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; ...
2016-09-20
In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn 1-xMg xO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Gamore » dopants were added, the electron concentrations were on the order of 10 17 cm -3 or 10 20 cm -3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu 2ZnSnS 4 (CZTS), Cu(In, Ga)Se 2 (CIGS) and other solar cell absorbers.« less
Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells
NASA Astrophysics Data System (ADS)
Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.
2018-01-01
This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.
NASA Astrophysics Data System (ADS)
Panchenko, Iuliana; Bickel, Steffen; Meyer, Jörg; Mueller, Maik; Wolf, Jürgen M.
2018-02-01
This study presents the results for Cu/In bonding based on the solid-liquid interdiffusion (SLID) principle for fine-pitch interconnects in three-dimensional integration. The microbumps were fabricated on Si wafers (55 µm pitch, 25 µm top bump diameter, 35 µm bottom bump diameter). In was electroplated directly on Cu only on the top die microbumps. Two different In thicknesses were manufactured (3 and 5 µm). The interconnects were successfully fabricated at a bonding temperature of 170 °C. High temperature storage was carried out at 150 and 200 °C for different times between 2 and 72 h directly after the interconnect formation in order to investigate the temperature stability. The microstructure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The intermetallic compound (IMC) found in the microbumps after electroplating was CuIn2. The intermetallic interlayer consists of Cu11In9 and a thin layer of Cu2In after bonding and isothermal storage.
Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun
2012-02-01
In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.
Caractérisations structurale et morphologique des couches minces de CuInS2 et d'In-S "airless spray"
NASA Astrophysics Data System (ADS)
Kamoun, N.; Belgacem, S.; Amlouk, M.; Bennaceur, R.; Abdelmoula, K.; Belhadj Amara, A.
1994-03-01
We have prepared CuInS2 thin layers by airless spray "S.P.A." in order to use them as an absorber in a photovoltaic cell. The X-ray diffraction analysis has showed that these layers are well crystallized with a privileged (112) principal orientation for a ratio of the concentrations in the pulverized solution x=frac[Cu^I][In^{III]}=1.1. After heat treatment under vacuum the crystallization have been clearly improved. The structural analysis of the thin CuInS2 layers have revealed that a secondary phases of In2S3 and In6S7 are present. Thus we have realized by the same technique thin In-S layers whose structural and morphological properties have been studied. This analysis has showed that the In-S layers are well crystallized for a ratio y=frac[In^{3+]}[S^{2-]}=0.6 in the spray solution. The In-S layers are essentially formed by a β-In2S3 material. Although the In6S7 phase appears to the detriment of β-In2S3 phase for y= 0.75. Nous avons préparé des couches minces de CuInS2, par pulvérisation chimique réactive sans air "P.S.A.", en vue de leur utilisation en tant qu'absorbeur dans un dispositif photovoltaïque. L'analyse par diffraction X a montré que ces couches sont bien cristallisées et que l'orientation principale (112) est privilégiée pour un rapport de concentrations x=frac[Cu^I]{[In^{III}]}=1,1 dans la solution à pulvériser. Après le traitement thermique sous vide la cristallisation est nettement améliorée. L'analyse structurale des couches minces de CuInS2 a révélé que ces couches renferment des phases secondaires d'In2S3 et d'In6S7. Ainsi nous avons réalisé par la même technique "P.S.A.", des couches minces d'In-S dont nous avons étudié les propriétés structurales et morphologiques, Cette analyse a montré que les couches d'In-S sont bien cristallisées. Pour un rapport de concentrations en solution de pulvérisation y=frac[In^{3+]}[S^{2-]}=0,6 les couches d'In-S sont surtout formées du matériau β-In2S3. Alors que la phase In6S7 apparaît au détriment de la phase β-In2S3 pour y= 0,75.
NASA Astrophysics Data System (ADS)
Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong
2018-01-01
The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.
Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth
2018-01-01
Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals. PMID:29569443
Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films
NASA Astrophysics Data System (ADS)
Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.
2018-01-01
Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.
NASA Astrophysics Data System (ADS)
Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun
2015-11-01
In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.
Advances in thin-film solar cells for lightweight space photovoltaic power
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.
1989-01-01
The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.
NASA Astrophysics Data System (ADS)
Newell, Michael Jason
Environmental sustainability requires resource management that takes future generations into account. The present generation has witnessed changes across the planet, unprecedented in human history and disrupting communities and cities around the world, due to shifting global climate. This is primarily the result of fossil fuels, which powered modern civilization but dramatically increased levels of CO2 and other greenhouse gases, and may be the least sustainable aspect of human civilization. Chapter 1 justifies the research from an environmental perspective and provides initial research parameters. Thin film photovoltaic (PV) modules are reported the most sustainable among energy production technologies currently available. Electrodeposited PV layers offer significant improvement to sustainability metrics over current thin film production methods, at reduced cost, but have rarely been demonstrated on an industrial scale. Quasi-rest potential (QRP) ultimately led to large-scale, electrodeposited thin film CdTe modules. An in-situ material characterization technique that allows adjustment of the deposition voltage (Vdep) to match the exact experimental conditions, QRP enabled precise control of deposit stoichiometry and crystallinity. Chapter 2 discusses theory and literature regarding QRP, and introduces the open-circuit voltage transient (Voc T), developed by the present research for analyzing QRP as a function of both Vdep and time. VocT data from a CdTe ethylene glycol bath matches details and speculations from the literature. Although predicted to have wide applicability, experimental QRP data have never been published for compounds unrelated to CdTe. Chapter 3 discusses VocTs performed in pursuit of electrodeposited CuInS2, demonstrating functionality as a QRP scan in a variety of ethylene glycol solutions. Stoichiometries of deposited films were improved by using the V ocT to determine appropriate plating voltages. VocTs enabled QRP, in-situ rest potential (EM2), and current simultaneously vs Vdep and correlated with cyclic voltammetry experiments. Films approaching stoichiometric CuInS2 were generally obtained around -1 V vs Ag/AgCl, just noble of onset of metallic indium deposition, with a QRP around -0.8 V and EM2 between -0.55 V and -0.6 V. Sulfur content of deposited films could also be significantly increased during deposition using open-circuit techniques based on VocT data. Serendipitous production of large copper sulfide nanowires is briefly discussed.
Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Kasick, Michael P.
2004-01-01
Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between them, to determine the cause of the poor yields. As a student of electrical engineering with some material science background, my role in this research is to develop techniques for analyzing the electrical characteristics of the CuInS2 cells. My first task was to design a shadow mask to be used to place molybdenum contacts under a layer of CuInS;! in order to analyze the contact resistance between the materials. In addition, I have also analyzed evaporated aluminum top contacts and have tested various methods of increasing their thicknesses in order to decrease series resistance. More recently I have worked with other members of the research group in reviving a vertical cold-wall reactor for experimentation with CuInS2 quantum dots. As part of that project, I have improved the design for a variable frequency and pulse width square wave generator to be used in driving the precursor injection process. My task throughout the remainder of my tenure is to continue to analyze and develop tools for the analysis of electrical properties of the CuInS2 cells with the ultimate goal of discovering ways to improve the efficiency of our photovoltaic cells. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While The research group lead by Dr. Hepp has spent several years researching copper indium
Li, Xiaoxue; Xie, Keyu; Song, Long; Zhao, Mengjia; Zhang, Zhipan
2017-07-26
The effective separation of photogenerated electrons and holes in photocatalysts is a prerequisite for efficient photocatalytic water splitting. CuInS 2 (CIS) is a widely used light absorber that works properly in photovoltaics but only shows limited performance in solar-driven hydrogen evolution due to its intrinsically severe charge recombination. Here, we prepare hierarchical graphitic C 3 N 4 -supported CuInS 2 (denoted as GsC) by an in situ growth of CIS directly on exfoliated thin graphitic C 3 N 4 nanosheets (g-C 3 N 4 NS) and demonstrate efficient separation of photoinduced charge carriers in the GsC by forming the Z-scheme system for the first time in CIS-catalyzed water splitting. Under visible light illumination, the GsC features an enhanced hydrogen evolution rate up to 1290 μmol g -1 h -1 , which is 3.3 and 6.1 times higher than that of g-C 3 N 4 NS and bare-CIS, respectively, thus setting a new performance benchmark for CIS-based water-splitting photocatalysts.
Influence of temperature on the CuIn1-xGaxSe2films deposited by picosecond laser ablation
NASA Astrophysics Data System (ADS)
Sima, Cornelia; Toma, Ovidiu
2017-12-01
The goal of this study is to investigate the influence of the deposition temperature on the CuIn1-xGaxSe2 (CIGS-copper indium gallium diselenide) film characteristics deposited by picosecond laser ablation method using a Nd:YVO4 laser (8 ps, 0.2 W, 50 kHz, 532 nm; 5.7 mJ/cm2; 36 × 107 pulses). The films were deposited starting from a CuIn0.7Ga0.3Se2 target, in vacuum at 3 × 10-5 Torr for 2 h, at room temperature (RT) and 100/200/300/400 °C substrate temperature; as substrate, optical glass was used. Structure, film morphology, composition and optical properties were investigated by X ray diffraction, scanning electron microscopy (energy dispersive X ray spectroscopy), spectroscopic ellipsometry and optical spectrophotometry. CIGS crystalline films have the dominant peak corresponding to (112) direction more pronounced starting with 200 °C deposition temperature. The thickness gradually decreased with temperature increasing, being 1.44 μm at RT and 0.72 μm at 400 °C; atomic composition in the case of In, Ga, Se increased after annealing, while in the case of Cu it decreased comparing with RT; refractive indices exhibited a short decreasing tendency by increasing the deposition temperature, while the optical band gap values for CuIn0.7Ga0.3Se2 laser ablated thin films increased.
NASA Astrophysics Data System (ADS)
Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj
2018-03-01
We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.
A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials
NASA Technical Reports Server (NTRS)
Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.
NASA Astrophysics Data System (ADS)
Skvarenina, L.; Gajdos, A.; Macku, R.; Skarvada, P.
2017-12-01
The aim of this research is to detect and localize microstructural defects by using an electrically excited light emission from a forward/reverse-bias stressed pn-junction in thin-film Cu(In; Ga)Se2 solar cells with metal wrap through architecture. A different origin of the local light emission from intrinsic/extrinsic imperfections in these chalcopyrite-based solar cells can be distinguished by a spectrally-filtered electroluminescence mapping. After a light emission mapping and localization of the defects in a macro scale is performed a micro scale exploration of the solar cell surface by a scanning electron microscope which follows the particular defects obtained by an electroluminescence. In particular, these macroscopic/microscopic examinations are performed independently, then the searching of the corresponding defects in the micro scale is rather difficult due to a diffused light emission obtained from the macro scale localization. Some of the defects accompanied by a highly intense light emission very often lead to a strong local overheating. Therefore, the lock-in infrared thermography is also performed along with an electroluminescence mapping.
NASA Astrophysics Data System (ADS)
Patil, Prasanna Dnyaneshwar
Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from 3 cm2 V-1 s-11 in SiO2 back gated device to 18 cm2 V-1 s-11 in top gated electrolyte devices. Similarly, subthreshold swing can be improved from 30 V/dec to 0.2 V/dec and on/off ratio can be increased from 102 to 103 by using an electrolyte as a top gate. These FETs were also tested as phototransistors. Our photo-response characterization indicate photo-responsivity 32 A/W with external quantum efficiency exceeding 103 % when excited with a 658 nm wavelength laser at room temperature. Our phototransistor also exhibit response times tens of micros with specific detectivity (D*) values reaching 1012 Jones. The CuIn7Se11 phototransistor properties can be further tuned & enhanced by applying a back gate voltage along with increased source drain bias. For example, photo-responsivity can gain substantial improvement up to 320 A/W upon application of a gate voltage (Vg = 30 V) and/or increased source-drain bias. The photo-responsivity exhibited by these photo detectors are at least an order of magnitude better than commercially available conventional Si based photo detectors coupled with response times that are orders of magnitude better than several other family of layered materials investigated so far. Further photocurrent generation mechanisms, effect of traps is discussed in detail.
Yuan, Yong-Jun; Chen, Da-Qin; Huang, Yan-Wei; Yu, Zhen-Tao; Zhong, Jia-Song; Chen, Ting-Ting; Tu, Wen-Guang; Guan, Zhong-Jie; Cao, Da-Peng; Zou, Zhi-Gang
2016-05-10
Exploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 μmol h(-1) g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 . Importantly, the MoS2 /CuInS2 photocatalyst shows a much higher photocatalytic activity than that of Pt-loaded CuInS2 photocatalyst. The enhanced photocatalytic activities of MoS2 /CuInS2 photocatalysts can be attributed to the improved charge separation at the interface of MoS2 and CuInS2, which is demonstrated by the significant enhancement of photocurrent responses in MoS2 /CuInS2 photoelectrodes. This work presents a noble-metal-free photocatalyst that responds to visible light for solar H2 generation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun
2015-12-18
In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.
Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD
NASA Technical Reports Server (NTRS)
Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.
NASA Technical Reports Server (NTRS)
Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.
2005-01-01
Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Ke; Wang, Xiaoyun; Liu, Jingjing
Highlights: • Cu/In bilayer was fabricated by BMSMW deposition technique. • High quality CIS film was successfully fabricated. • A preferable ratio of Cu:In:S close to 1:1:2 was approached. • The SPV response as high as 6 mV was achieved. - Abstract: High-quality CuInS{sub 2} (CIS) thin films have been fabricated by sulfurization of electrodeposited copper–indium bilayer. A novel bell-like wave modulated square wave (BWMSW) electrodeposition technique is employed for the deposition of copper thin film. Three independent parameters (current or potential, frequency, duty cycle) are available for the BWMSW electrodeposition, which is different from the traditional electrodeposition technique withmore » only one adjustable parameter (current or potential). The influences of deposition parameters such as frequency, duty cycle and the concentration of complexing agent are investigated. Benefited from the high quality copper film obtained by the BWMSW technique, the indium film is electrodeposited successfully on the copper layer to form a compact copper–indium alloy bilayer. After sulfurized at 600 °C for 60 min, the phase pure CIS film is obtained with better crystallinity. The structures, morphologies and optoelectronic properties of the CIS film are also characterized.« less
NASA Astrophysics Data System (ADS)
Jindal, Shikha; Giripunje, S. M.
2018-07-01
Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.
Vapour phase techniques for deposition of CZTS thin films: A review
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Kumar, Sandeep; Singh, Sukhpal
2018-05-01
With the surge of thin film photovoltaic technologies in recent years, for cost reduction and increased production there is a need for earth abundant and non-toxic raw materials. Existing thin film solar cells comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe contain elements that are rare in earth's crust and in case of CdTe toxic. Cu2ZnSnS4 (CZTS), having Kesterite structure, a direct band gap of 1.4 - 1.5 eV and an absorption coefficient of 104 cm-1 makes a promising candidate for absorber layer in thin film solar cells. So far many physical and chemical techniques have been employed for deposition of CZTS thin films. This review focuses on various vapour phase techniques used for fabrication of films, recent advances in these techniques and their future outlook.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana
Band-edge effects - including grading, electrostatic fluctuations, bandgap fluctuations, and band tails - affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In, Ga)Se2 devices, recent increases in diffusion length imply changes to the optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties, is examined.
Kim, Haeri; Park, Se Jin; Kim, Byungwoo; Hwang, Yun Jeong; Min, Byoung Koun
2018-02-05
CuIn 1-x Ga x S 2-y Se y (CIGSSe) thin films have attracted a great deal of attention as promising absorbing materials for solar cell applications, owing to their favorable optical properties (e.g. a direct band gap and high absorption coefficients) and stable structure. Many studies have sought to improve the efficiency of solar cells using these films, and it has been found that surface modification through post-heat treatment can lead to surface passivation of surface defects and a subsequent increase in efficiency. The surface properties of solution-processed CIGSSe films are considered to be particularly important in this respect, owing to the fact that they are more prone to defects. In this work, CIGSSe thin films with differing S/Se ratios at their surface were synthesized by using a precursor solution and post-sulfurization heat treatment. These CIGSSe thin films were investigated with current-voltage and Kelvin probe force microscope (KPFM) analyses. Surface photovoltage (SPV), which is the difference in the work function in the dark and under illumination, was measured by using KPFM, which can examine the screening and the modification of surface charge through carrier trapping. As the concentration of S increases on the CIGSSe film surface, higher work functions and more positive SPV values were observed. Based on these measurements, we inferred the band-bending behavior of CIGSSe absorber films and proposed reasons for the improvement in solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang
2018-04-24
Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.
Cu(In,Ga)S2, Thin-Film Solar Cells Prepared by H2S Sulfurization of CuGa-In Precursor
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Kulkarni, Shashank R.; Chavan, Sanjay S.; Ghongadi, Shantinath R.
2005-01-01
Thin-film CuInS2 solar cell is the leading candidate for space power because of bandgap near the optimum value for AM0 solar radiation outside the earth's atmosphere, excellent radiation hardness, and freedom from intrinsic degradation mechanisms unlike a-Si:H cells. Ultra-lightweight thin-film solar cells deposited on flexible polyimide plastic substrates such as Kapton(trademark), Upilex(trademark), and Apical(trademark) have a potential for achieving specific power of 1000 W/kg, while the state-of-art specific power of the present day solar cells is 66 W/kg. This paper describes the preparation of Cu-rich CuIn(sub 1-x)Ga(sub x)S(sub 2) (CIGS2) thin films and solar cells by a process of sulfurization of CuGa-In precursor similar to that being used for preparation of large-compact-grain CuIn(sub 1-x)Ga(sub x)Se2 thin films and efficient solar cells at FSEC PV Materials Lab.
Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng
2018-01-07
A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Lee, Jaehyuk; Kim, Ju Hun; Lee, Byeong Jun; Lee, Jae Sung
2018-02-01
Electrical anodization of Cu foil produces one-dimensional Cu nanowires of high surface areas, which turns to CuIn alloy nanowires by indium electrodeposition replacing edge site Cu atoms. An electrochemical pre-activation forms a highly conformal amorphous In(OH)3 overlayer with oxygen vacancy on the CuIn alloy that facilitates CO2 adsorption to promote selective CO formation suppressing competing H2 adsorption. Thus the activated CuIn alloy nanowires catalyse electrochemical CO2 conversion to CO with high CO selectivity (>68.2%) and high current density (ca. -3.9 mAcm-2) at -0.6 VRHE, which represents the higher partial CO current density (ca. -2.66 mAcm-2) than that of previously reported CuIn alloy powders without nanostructuring. The performance remains stable for more than 15 h without significant degradation.
NASA Astrophysics Data System (ADS)
Esmaili, Parisa; Kangarlou, Haleh; Savaloni, Hadi; Ghorannevis, Mahmood
Aqueous solutions with 70 °C and pH = 2.5 constant values were prepared from convenient chemical compounds to produce In2S3: Cu crystals and thin films. Crystal compositions were grown in this solution under special conditions. Micrographs showed amorphous In2S3 orange powder and transparent vitreous pieces of CuInS2 crystals. Indium sulfide films were produced using the same solution in CBD method, on the glass substrates at different [Cu/In] molar ratio concentrations. Cu+ ions by different concentration doped from copper chloride source into In2S3 films. The produced films were post-annealed at 400 °C for about 1 h. Their crystallography, phase transitions, element analysis and nanostructures were investigated by X-ray diffraction, SEM, EDAX and AFM analyses. β-In2S3 phase was dominant and by doping copper impurity, XRD results suggested the formation of CuInS2 compositions. Morphology of the films, nano-structures, grain shapes and hardness was changed. Optical reflectance was measured in the UV-VIS wavelength range by a spectrophotometer. Other optical properties and optical band gaps were calculated using Kramers-Kronig relations on reflectivity curves. Electronic properties were calculated by full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, generalized gradient approximation (GGA) was used for the exchange-correlation potential calculation. Band gap structures, density of states and imaginary parts of dielectric function were calculated for In2S3: Cu compositions.
Comparison of CIGS solar cells made with different structures and fabrication techniques
Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.; ...
2016-11-03
Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less
Comparison of CIGS solar cells made with different structures and fabrication techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.
Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less
Sun, Mingye; Zhu, Dehua; Ji, Wenyu; Jing, Pengtao; Wang, Xiuying; Xiang, Weidong; Zhao, Jialong
2013-12-11
Photoinduced electron transfer (ET) processes from CuInS2/CdS core/shell quantum dots (QDs) with different core sizes and shell thicknesses to TiO2 electrodes were investigated by time-resolved photoluminescence (PL) spectroscopy. The ET rates and efficiencies from CuInS2/CdS QDs to TiO2 were superior to those of CuInS2/ZnS QDs. An enhanced ET efficiency was surprisingly observed for 2.0 nm CuInS2 core QDs after growth of the CdS shell. On the basis of the experimental and theoretical analysis, the improved performances of CuInS2/CdS QDs were attributed to the passivation of nonradiative traps by overcoating shell and enhanced delocalization of electron wave function from core to CdS shell due to lower conduction band offset. These results indicated that the electron distribution regulated by the band alignment between core and shell of QDs and the passivation of surface defect states could improve ET performance between donor and acceptor.
Ding, Ke; Jing, Lihong; Liu, Chunyan; Hou, Yi; Gao, Mingyuan
2014-02-01
Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core-shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mn-doping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evidence for Cu2-xSe platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Simsek Sanli, E.; Ramasse, Q. M.; Mainz, R.; Weber, A.; Abou-Ras, D.; Sigle, W.; van Aken, P. A.
2017-07-01
Cu(In,Ga)Se2 (CIGS)-based solar cells reach high power-conversion efficiencies of above 22%. In this work, a three-stage co-evaporation method was used for their fabrication. During the growth stages, the stoichiometry of the absorbers changes from Cu-poor ([Cu]/([In] + [Ga]) < 1) to Cu-rich ([Cu]/([In] + [Ga]) > 1) and finally becomes Cu-poor again when the growth process is completed. It is known that, according to the Cu-In-Ga-Se phase diagram, a Cu-rich growth leads to the presence of Cu2-xSe (x = 0-0.25), which is assumed to assist in recrystallization, grain growth, and defect annihilation in the CIGS layer. So far, Cu2-xSe precipitates with spatial extensions on the order of 10-100 nm have been detected only in Cu-rich CIGS layers. In the present work, we report Cu2-xSe platelets with widths of only a few atomic planes at grain boundaries and as inclusions within grains in a polycrystalline, Cu-poor CIGS layer, as evidenced by high-resolution scanning transmission electron microscopy (STEM). The chemistry of the Cu-Se secondary phase was analyzed by electron energy-loss spectroscopy, and STEM image simulation confirmed the identification of the detected phase. These results represent additional experimental evidence for the proposed topotactical growth model for Cu-Se-assisted CIGS thin-film formation under Cu-rich conditions.
Thin-Film Solar Cells on Metal Foil Substrates for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.
2004-01-01
Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Once the technology has gained spaceflight certification it should find rapid acceptance in specific satellite markets.
Raphael, E.; Jara, D. H.; Schiavon, M. A.
2017-01-19
Quantum dot-sensitized solar cells (QDSSCs) offer new opportunities to address the clean energy challenge, being one of the top candidates for third generation photovoltaics. Like dye-sensitized solar cells (DSSCs), QDSSCs normally use liquid electrolytes that suffer from issues such as evaporation or leakage. In this study a gel polysulfide electrolyte was prepared containing a natural polymer, agar, and was used as a quasi-solid-state electrolyte in solar cells to replace the conventional liquid electrolytes. This gel electrolyte shows almost the same conductivity as the liquid one. The solar cells were fabricated using CuInS 2 quantum dots (QDs), previously synthesized, deposited onmore » TiO 2 photoanodes by electrophoretic deposition (EPD). CdS was deposited on TiO 2 by successive ionic layer adsorption and reaction (SILAR). Reduced graphene oxide (RGO)–Cu 2S, brass, and thin film CuxS were used as counter electrodes. Compared to a liquid polysulfide water based electrolyte, solar cells based on CuInS 2 and CdS using gel polymer electrolyte (GPE) exhibit greater incident photon to current conversion efficiency (IPCE = 51.7% at 520 nm and 72.7% at 440 nm), photocurrent density (J sc = 10.75 and 13.51 mA cm -2), and power conversion efficiency (η = 2.97 and 2.98%) while exhibiting significantly enhanced stability. The solar cells employing the agar-based gel polymeric electrolyte are about a factor of 0.20 more stable than using a liquid electrolyte. The higher photovoltaic performance is due to the good conductivity and high wettability as well as the superior permeation capability of the gel electrolyte into the mesoporous matrix of a TiO 2 film« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raphael, E.; Jara, D. H.; Schiavon, M. A.
Quantum dot-sensitized solar cells (QDSSCs) offer new opportunities to address the clean energy challenge, being one of the top candidates for third generation photovoltaics. Like dye-sensitized solar cells (DSSCs), QDSSCs normally use liquid electrolytes that suffer from issues such as evaporation or leakage. In this study a gel polysulfide electrolyte was prepared containing a natural polymer, agar, and was used as a quasi-solid-state electrolyte in solar cells to replace the conventional liquid electrolytes. This gel electrolyte shows almost the same conductivity as the liquid one. The solar cells were fabricated using CuInS 2 quantum dots (QDs), previously synthesized, deposited onmore » TiO 2 photoanodes by electrophoretic deposition (EPD). CdS was deposited on TiO 2 by successive ionic layer adsorption and reaction (SILAR). Reduced graphene oxide (RGO)–Cu 2S, brass, and thin film CuxS were used as counter electrodes. Compared to a liquid polysulfide water based electrolyte, solar cells based on CuInS 2 and CdS using gel polymer electrolyte (GPE) exhibit greater incident photon to current conversion efficiency (IPCE = 51.7% at 520 nm and 72.7% at 440 nm), photocurrent density (J sc = 10.75 and 13.51 mA cm -2), and power conversion efficiency (η = 2.97 and 2.98%) while exhibiting significantly enhanced stability. The solar cells employing the agar-based gel polymeric electrolyte are about a factor of 0.20 more stable than using a liquid electrolyte. The higher photovoltaic performance is due to the good conductivity and high wettability as well as the superior permeation capability of the gel electrolyte into the mesoporous matrix of a TiO 2 film« less
Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel
2005-05-01
CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.
2005-01-01
The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.
Application of Quantum Dot nanocrystal in Luminescent solar concentrators
NASA Astrophysics Data System (ADS)
Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir
2018-03-01
The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.
Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine.
Jiang, Xin-Yuan; Zhang, Ling; Liu, Yi-Li; Yu, Xiao-Dong; Liang, Yan-Yu; Qu, Peng; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2018-06-01
In this study, on the basis of hierarchical CuInS 2 -based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS 2 /NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O 2 -dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O 2 -sensitive photocathode and the SOx-catalytic event toward O 2 reduction. Based on the sarcosine-controlled O 2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS 2 -based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS 2 -based heterostructured photocathodic enzymatic sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui; Liu, Qinghui; Tan, Mingrui; Zhou, Qiang; Zhang, Hanzhuang
2016-12-01
The role of ZnS shell on the photo-physical properties within CuInS2/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS2 and CuInS2/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
Photovoltaic Properties of Selenized CuGa/In Films with Varied Compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan
2016-11-21
Thin CuGa/In films with varied compositions were deposited by co-evaporation and then selenized in situ with evaporated selenium. The selenized Cu(In, Ga)Se2 absorbers were used to fabricate 390 solar cells. Cu/(Ga+In) and Ga/(Ga+In) (Cu/III and Ga/III) were independently varied, and photovoltaic performance was optimal at Cu/III of 77-92% for all Ga/III compositions studied (Ga/III ~ 30, 50, and 70%). The best absorbers at each Ga/III composition were characterized with time-resolved photoluminescence, scanning electron microscopy, and secondary ion mass spectrometry, and devices were studied with temperature-dependent current density-voltage, light and electrical biased quantum efficiency, and capacitance-voltage. The best cells with Ga/IIImore » ~ 30, 50, and 70% had efficiencies of 14.5, 14.4, and 12.2% and maximum power temperature coefficients of -0.496, -0.452, and -0.413%/degrees C, respectively. This resulted in the Ga/III ~ 50% champion having the highest efficiency at temperatures greater than 40 degrees C, making it the optimal composition for practical purposes. This optimum is understood as a result of the absorber's band gap grading- where minimum band gap dominates short-circuit current density, maximum space charge region band gap dominates open-circuit voltage, and average absorber band gap dominates maximum power temperature coefficient.« less
New crystal structures in hexagonal CuInS2 nanocrystals
NASA Astrophysics Data System (ADS)
Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.
2013-03-01
CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.
Effect of Selenization Processes on CIGS Solar Cell Performance.
Wu, C H; Wu, P W; Chen, J H; Kao, J Y; Hsu, C Y
2018-07-01
Cu(In, Ga)Se2 (CIGS) films were fabricated by a two-step process method using sputtering from Cu0.7Ga0.3 and In targets. The metallic precursor structures of In/CuGa/In were prepared, and CuGa film was adjusted to the thicknesses of 150, 200, 250 and 300 nm, in order to optimize the CIGS film. After selenization, three independent CIGS (112), CIGS (220/204) and CIGS (312/116) began to crystallize at ~280 °C and phase peaks continued growing until 560 °C. Experimental results showed that with a single stage selenization method, the excessive stoichiometry of the CIGS films was obtained. Using three sequential stages for the selenization process, with a annealing time of 20 min, the stoichiometry of the CIGS absorbers with the Cu/(In + Ga) and Ga/(In + Ga) showed atomic ratios of 0.94 and 0.34, respectively. The intensity of the (112) XRD diffraction peak became stronger, indicating an improvement in the crystallinity. Raman spectra of CIGS absorbers showed a main peak (174 cm-1) and two weak signals (212 and 231 cm-1). TEM image for electron diffraction pattern showed that the grains were randomly oriented. CIGS solar cell device prepared with a proper selenization, a maximum efficiency of 12.45% was obtained.
Liu, Li; Xiao, Yuan-Yuan; Ji, Yan-Hong; Liu, Ming-Zhi; Chen, Yao; Zeng, Yu-Lian; Zhang, Yao-Guang; Jin, Li
2017-08-01
Chinese rare minnow (Gobiocypris rarus) embryos were used as an experimental model to investigate the effects of CuInS 2 /ZnS quantum dots (QDs) on the early life stages of G. rarus. Normal developmental parameters (survival rate, body length and average heart rate), biomarker genes [stress response (Hsp70), detoxification (Cyp1a), organizer function and axis formation (Wnt8α), and muscle (Mstn)], enzymatic activity and DNA damage were recorded as endpoints in the developing embryos/larvae after exposure until 96h post-fertilization (hpf). Reduced survival rate, decreased heart rate, altered body length, increased malformation rate, decreased hatching rate, advanced hatching time in response to low concentrations (50 and 100nmol/L) and delayed hatching time in response to high concentrations were observed after exposure, as were many other toxic effects, including pericardial edema and bent tails. The 72 hpf LC 50 (median lethal concentration) was determined to be 624.364nmol/L. Treatment with certain concentrations of CuInS 2 /ZnS QDs significantly increased the superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels and significantly induced DNA damage. After treatment with CuInS 2 /ZnS QDs, the embryos showed highly up-regulated expression of Hsp70, Cyp1a and Wnt8a and significantly up-regulated expression of Mstn at 12 hpf. Overall, this study indicates that CuInS 2 /ZnS QDs are potentially toxic to G. rarus embryos. The information presented in this study will be helpful for fully understanding the toxicity induced by CuInS 2 /ZnS QDs in fish embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films
NASA Astrophysics Data System (ADS)
Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.
2017-01-01
We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.
Park, Jae -Cheol; Lee, Jeon -Ryang; Al-Jassim, Mowafak; ...
2016-10-17
Here we have demonstrated that the bandgap of Cu(In 1-xGa x)Se 2(CIGS) absorber layers was readily controlled by using a one-step sputtering process. CIGS thin-film sample libraries with different Ga/(In + Ga) ratios were synthesized on soda-lime glass at 550 °C using a combinatorial magnetron sputtering system employing CuInSe 2(CIS) and CuGaSe 2(CGS) targets. Energy-dispersive X-ray fluorescence spectrometry (EDS-XRF) confirmed that the CIGS films had different Ga/(In + Ga) ratios, which were varied by the sample configuration on the substrate and ranged from 0.2 to 0.9. X-ray diffraction and Raman spectroscopy revealed that the CIGS films had a pure chalcopyritemore » phase without any secondary phase such as Cu-Se or ordered vacancy compound (OVC), respectively. Furthermore, we found that the optical bandgap energies of the CIGS films determined by transmittance measurements ranged from 1.07 eV to 1.53 eV as the Ga/(In + Ga) ratio increased from 0.2 to 0.9, demonstrating that the one-step sputtering process using CIS and CGS targets is another simple route to control the bandgap energy of the CIGS absorber layer.« less
Thin Film Solar Cells: Organic, Inorganic and Hybrid
NASA Technical Reports Server (NTRS)
Dankovich, John
2004-01-01
Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive especially for space applications. Thin film photovoltaics have the potential to alleviate these problems and create a cheap and efficient way to harness the power of the sun.
The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.
Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng
2012-10-21
A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.
NASA Technical Reports Server (NTRS)
Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.
2005-01-01
This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.
We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less
Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.; ...
2017-07-27
We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less
NASA Astrophysics Data System (ADS)
Hu, Xiaobo; Gupta, Amit; Sakurai, Takeaki; Yamada, Akimasa; Ishizuka, Shogo; Niki, Shigeru; Akimoto, Katsuhiro
2013-10-01
The properties of the defect level located 0.8 eV above the valence band in Cu(In1-x,Gax)Se2 thin films were investigated by a photo-capacitance method using a monochromatic probe light with an energy of 0.7 to 1.8 eV. In addition to the probe light, laser light with a wavelength of 1.55 μm, corresponding to 0.8 eV, was also used to study the saturation effect of the defect level at 0.8 eV. A suppression of electron-hole recombination due to saturation of the defect level was observed at room temperature while no saturation effect was observed at 140 K. The results suggest that the defect level at 0.8 eV acts as a recombination center at least at room temperature.
Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W
2016-05-18
Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.
Chalcogenide thin films deposited by rfMS technique using a single quaternary target
NASA Astrophysics Data System (ADS)
Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.
2017-12-01
Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas; ...
2017-12-20
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
NASA Astrophysics Data System (ADS)
Jindal, Shikha; Giripunje, Sushama M.
2017-11-01
Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.
NASA Astrophysics Data System (ADS)
Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.
2013-10-01
A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.
Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng
2015-08-19
An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.
Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang
2017-03-01
Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.
Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors
NASA Astrophysics Data System (ADS)
Hollingsworth, Jennifer Ann
1999-11-01
The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.
A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control
Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; ...
2009-01-01
We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less
NASA Astrophysics Data System (ADS)
Ibdah, Abdel-Rahman; Koirala, Prakash; Aryal, Puruswottam; Pradhan, Puja; Marsillac, Sylvain; Rockett, Angus A.; Podraza, Nikolas J.; Collins, Robert W.
2017-11-01
Complete polycrystalline thin-film photovoltaic (PV) devices employing CuIn1-xGaxSe2/CdS and CdS/CdTe heterojunctions have been studied by ex situ spectroscopic ellipsometry (SE). In this study, layer thicknesses have been extracted along with photon energy independent parameters such as compositions that describe the dielectric function spectra ε(E) of the individual layers. For accurate ex situ SE analysis of these PV devices, a database of ε(E) spectra is required for all thin film component materials used in each of the two absorber technologies. When possible, database measurements are performed by applying SE in situ immediately after deposition of the thin film materials and after cooling to room temperature in order to avoid oxidation and surface contamination. Determination of ε(E) from the resulting in situ SE data requires structural information that can be obtained from analysis of SE data acquired in real time during the deposition process. From the results of ex situ analysis of the complete CuIn1-xGaxSe2 (CIGS) and CdTe PV devices, the deduced layer thicknesses in combination with the parameters describing ε(E) can be employed in further studies that simulate the external quantum efficiency (EQE) spectra of the devices. These simulations have been performed here by assuming that all electron-hole pairs generated within the active layers, i.e. layers incorporating a dominant absorber component (either CIGS or CdTe), are separated and collected. The active layers may include not only the bulk absorber but also window and back contact interface layers, and individual current contributions from these layers have been determined in the simulations. In addition, the ex situ SE analysis results enable calculation of the absorbance spectra for the inactive layers and the overall reflectance spectra, which lead to quantification of all optical losses in terms of a current density deficit. Mapping SE can be performed given the high speed of multichannel ellipsometers employing array detection, and the resulting EQE simulation capability has wide applications in predicting large area PV module output. The ultimate goal is an on-line capability that enables prediction of PV sub-cell current output as early as possible in the production process.
Development of Cu(In,Ga)Se2 Test Coupons for Potential Induced Degradation Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, Miguel A.; Hacke, Peter; Repins, Ingrid
We report on the design, fabrication and accelerated testing of fully encapsulated small area coupons (approximately 7.5cm x 7.5 cm) for the purpose of researching potential induced degradation in Cu(In, Ga)Se2 based PV modules. The fabrication of these coupons enables the study of the solar cells and the materials used in PV module manufacturing such as top and bottom glass covers of different composition (soda-lime glass, high temperature glass, alkaline-free glass, etc), plastic-based top covers, ethylene vinyl acetate and edge seal encapsulation materials. The coupons can also be used to emulate framed and frameless modules that utilize either monolithically interconnectedmore » modules or singular cell type of modules. The design of the coupons, their fabrication, the materials used and their testing for 1000 hours under 85 degrees C and 85% RH conditions are presented.« less
Thermodynamic assessment of Ag–Cu–In
Muzzillo, Christopher P.; Anderson, Tim
2018-01-16
The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.
Thermodynamic assessment of Ag–Cu–In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Anderson, Tim
The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.
Dip coated TiO2 nanostructured thin film: synthesis and application
NASA Astrophysics Data System (ADS)
Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy
2016-02-01
TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.
NASA Astrophysics Data System (ADS)
Chavhan, S.; Sharma, R.
2006-07-01
The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.
A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening.
Liu, Ziping; Liu, Shasha
2018-04-17
In this work, a novel simple fluorescent biosensor for the highly sensitive and selective detection of adrenaline was established. Firstly, water-soluble CuInS 2 quantum dots (QDs) capped by L-Cys were synthesized via a hydrothermal synthesis method. Then, the positively charged adrenaline was assembled on the surface of CuInS 2 QDs due to the electrostatic interactions and hydrogen bonding, which led to the formation of adrenaline-CuInS 2 QD (Adr-CuInS 2 QD) electrostatic complexes. Tyrosinase (TYR) can catalyze adrenaline to generate H 2 O 2 , and additionally oxidize the adrenaline to adrenaline quinone. Both the H 2 O 2 and the adrenaline quinone can quench the fluorescence of the CuInS 2 QDs through the electron transfer (ET) process. Thus, the determination of adrenaline could be facilely achieved by taking advantage of the fluorescence "turn off" feature of CuInS 2 QDs. Under the optimum conditions, the fluorescence quenching ratio I f /I f0 (I f and I f0 were the fluorescence intensity of Adr-CuInS 2 QDs in the presence and absence of TYR, respectively) was proportional to the logarithm of adrenaline concentration in the range of 1 × 10 -8 -1 × 10 -4 mol L -1 with the detection limit of 3.6 nmol L -1 . The feasibility of the proposed biosensor in real sample assay was also studied and satisfactory results were obtained. Significantly, the proposed fluorescent biosensor can also be utilized to screen TYR inhibitors. Graphical abstract Schematic illustration of the fluorescent biosensor for adrenaline detection (A) and tyrosinase inhibitor screening (B).
NASA Astrophysics Data System (ADS)
Hsiao, Chih-Chun; Su, Yu-Sheng; Chung, Shu-Ru
2017-09-01
Among solid-state lighting technology, phosphor-converted white light-emitting diodes (pc-WLEDs) are excellent candidates to replace incandescent lamps for their merit of high energy conservation, long lifetime, high luminous efficiency as well as polarized emissions. Semiconductor quantum dots (QDs) are emerging color tunable emissive light converters. They have shown significant promise as light emitters, as solar cells, and in biological imaging. It has been demonstrated that the pc-WLED devices integrated with red emissive ZnCdSe QDs show improved color rendering index of device. However, cadmium-based QDs have limited future owing to the well-known toxicity. Recently, non-cadmium luminescence materials, i.e. CuInS2-based QDs, are investigated as desirable low toxic alternatives. Particularly, CuInS2-based QDs exhibit very broad emissions spectra with full width at half maximum (FWHM) of 100-120 nm, large Stokes shifts of 200 300 meV and finely-tunable emissions. In order to adjust emission wavelengths and improved quantum yield (QY), CuInS2/ZnS (CIS/ZnS) core/shell structure was introduced. Therefore, CIS/ZnS QDs have been extensively investigated and be used as color converter in solid-state lighting. Synthesis and application of CuInS2/ZnS core/shell QDs are conducted using a hot injection route. CIS/ZnS core/shell QDs with molar ratio of Cu:In equal to 1:4 are prepared. For WLED fabrication, the CIS/ZnS QD is dispersed in toluene first, and then it is blended with transparent acrylic-based UV resin. Subsequently, the commercial green-emitting Lu3Al5O12: Ce3+ (LuAG) phosphors are mixed with QDs-resin mixture. After that, the QDs-phosphors-resin mixtures are put in the oven at 140 °C for 1 h to evaporate the toluene. Subsequently, the homogeneous QDs-phosphors-resin mixture is dropped on the top of a blue LED chip (InGaN). Then, the device is cured by 400 W UV light to form WLED. The emission wavelength of CIS/ZnS QD exhibits yellow region of 552 nm with QY of 76 %, and with relatively broad bandwidth of 86 nm. The structure of CIS/ZnS belongs to chalcopyrite phase and its average particle size is 3.2 nm. The luminous efficacy, color rendering index (CRI), correlated color temperature (CCT), and CIE chromaticity coordinate of WLED is 47 lm/W, 89, 5661 K, and (0.33, 0.29), respectively.
WO{sub 3} thin film based multiple sensor array for electronic nose application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.
2015-06-24
Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.
NASA Astrophysics Data System (ADS)
Yang, Chang-Ting; Hsiang, Hsing-I.
2017-12-01
The effects of different ligand exchange solvents and heat treatment conditions on the densification and microstructure development of CuIn0.7Ga0.3Se2 (CIGS) crystallites synthesized using the heating-up method were studied in this work. The heat treatment effects on the organic molecules and crystalline structure were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was observed that oleylamine (OLA) adsorbed onto the CIGS surface was difficult to remove during sintering. Ligand-exchange with m-xylene or 1-hexanethiol can promote the removal of oleylamine adsorbed onto the CIGS surface and prevent the residual carbon from forming during sintering, which leads to grain growth and densification. A dense CuIn0.7Ga0.3Se2 can be obtained using the precursor powders after ligand-exchange with 1-hexanethiol and m-xylene to remove organic molecules and sintering at 600 °C for 2 h under Se atmosphere.
Self-anti-reflective density-modulated thin films by HIPS technique
NASA Astrophysics Data System (ADS)
Keles, Filiz; Badradeen, Emad; Karabacak, Tansel
2017-08-01
A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.
Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng
2016-02-10
Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.
NASA Astrophysics Data System (ADS)
Reena Philip, Rachel; Pradeep, B.; Shripathi, T.
2005-04-01
Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.
Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, B. J.; Egaas, B.; Velumani, S.
Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGSmore » absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.« less
NASA Astrophysics Data System (ADS)
Gardelis, Spiros; Nassiopoulou, Androula G.
2014-05-01
We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.
Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor
NASA Astrophysics Data System (ADS)
Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita
2016-10-01
In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.
Chen, Jixin; Li, Ye; Wang, Le; Zhou, Tianliang; Xie, Rong-Jun
2018-05-16
Semiconductor quantum dots (QDs) are promising luminescent materials for use in lighting, display and bio-imaging, and the color tuning is a necessity for such applications. In this work, we report tunable colors and deep-red or near infrared (NIR) emissions in Cu-In-S and Cu-In-S/ZnS QDs by incorporating Sn. These QDs (with a size of 5 nm) with varying Sn concentrations and/or Cu/In ratios were synthesized by a non-injection method, and characterized by a variety of analytical techniques (i.e., XRD, TEM, XPS, absorption, photoluminescence, decay time, etc.). The Cu-Sn-In-S and Cu-Sn-In-S/ZnS QDs with Cu/In = 1/2 show the emission maximum in the ranges of 701-894 nm and 628-785 nm, respectively. The red-shift in emission is ascribed to the decrease of the band gap with the Sn doping. The highest quantum yield of 75% is achieved in Cu-Sn-In-S/ZnS with 0.1 mmol Sn and Cu/In = 1/2. Both the white and NIR LEDs were fabricated by using Cu-Sn-In-S/ZnS QDs and a 365 nm LED chip. The white LED exhibits superhigh color rendering indices of Ra = 97.2 and R9 = 91 and a warm color temperature of 2700 K. And the NIR LED shows an interesting broadband near-infrared emission centered at 741 nm, allowing for applications in optical communication, sensing and medical devices.
UV absorption control of thin film growth
Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.
1991-01-01
A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.
Effects of sodium and potassium on the photovoltaic performance of CIGS solar cells
Raguse, John M.; Muzzillo, Christopher P.; Sites, James R.; ...
2016-11-17
Here, the deliberate introduction of K and Na into Cu(In, Ga)Se 2 (CIGS) absorbers was investigated by varying a combination of an SiO 2 diffusion barrier, coevaporation of KF with the CIGS absorber, and a KF postdeposition treatment (PDT). Devices made with no diffusion barrier and KF coevaporation treatment exhibited the highest photovoltaic conversion efficiency with the smallest overall distribution in key current density-voltage (J-V) performance metrics. Out-diffusion of Na and K from the substrate, KF coevaporation, and KF PDT all increased carrier concentration, open-circuit voltage, fill factor, and power conversion efficiency. Quantum-efficiency analysis of devices highlighted the greatest lossmore » in the short-circuit current density due to incomplete absorption and collection. Secondary ion mass spectrometry illustrated the efficacy of the SiO 2 film as a sodium and potassium diffusion barrier, as well as their relative concentration in the absorber. Introduction of KF appeared to enhance diffusion of Na from the substrate, in agreement with previous studies.« less
Insight into the core-shell structures of Cu-In-S microspheres
NASA Astrophysics Data System (ADS)
Wochnik, Angela S.; Frank, Anna; Heinzl, Christoph; Häusler, Jonas; Schneider, Julian; Hoffmann, Ramona; Matich, Sonja; Scheu, Christina
2013-12-01
In this study we report about the inner and outer structure of CuInS2 microspheres which might be used e.g. in pastes for simple, low-cost solar cell preparation, as well as in electrodes for light-driven water splitting. The microspheres are synthesized via a mild, template-free solvothermal synthesis route and characterised by electron and focused ion beam microscopy, X-ray diffraction, inductively coupled plasma atomic emission and energy dispersive X-ray spectroscopy. The investigations of cross sections prepared by focused ion beam showed that the spheres consist of compact cores and flaky surface structures. Depending on the reaction time, the core possesses a stoichiometric or Cu-rich chemical composition surrounded by an In-rich shell. The flaky surface always comprises a stoichiometric composition in tetragonal chalcopyrite crystal structure, whereas the other areas additionally show minor contributions of CuS, and CuInS2 in hexagonal wurtzite structure. The presence of different phases can be beneficial for future applications since they offer different absorption behaviour in the visible range.
NASA Astrophysics Data System (ADS)
Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.; Bahramian, B.
2016-04-01
CuInSe2 , CuInS2 ( CIS2 and CuInGaS2 alloys and their compounds with band gaps between 1.05 and 1.7eV are absorbance materials based on chalcopyrite, in which, because of their suitable direct band gap, high absorbance coefficient and short carrier diffusion are used as absorbance layers in solar cells. In this work, the effects of decrease in p H and thickness variation on characteristics of the CIS2 absorber layers, grown by spin coating on glass substrates, are investigated. Furthermore by using thiourea as a sulphur source in solvent, the sulfurization of layers was done easier than other sulfurization methods. Due to the difficulty in dissolving thiourea in the considered solvent that leads to a fast deposition during the dissolving process, precise conditions are employed in order to prepare the solution. In fact, this procedure can facilitate the sulfurization process of CuIn layers. The results obtained from this investigation indicate reductions in absorbance and band gap in the visible region of the spectrum as a result of decrease in p H. Finally, conductivity of layers is studied by the current vs. voltage curve that represents reduction of electrical resistance with decrease and increase in p H and thickness, respectively.
NASA Astrophysics Data System (ADS)
Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin
2014-08-01
Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.
NASA Technical Reports Server (NTRS)
Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.
2003-01-01
Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.
Growth and process identification of CuInS 2 on GaP by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Hwang, H. L.; Sun, C. Y.; Fang, C. S.; Chang, S. D.; Cheng, C. H.; Yang, M. H.; Lin, H. H.; Tuwan-Mu, H.
1981-10-01
Experimental techniques for growing CuInS 2 layers on GaP substrates by the metalorganic method have been developed. Hydrogen sulfide gas together with the vapors of CuCl( NCCH3) n and InCl3( NCCH3) both of which were generated by bubbling nitrogen through sources, using a solvent of acetonitride, were used as transport agents. Various characterization techniques such as atomic absorption (AA), neutron activation analysis (NAA), energy dispersive analysis by X-rays (EDAX), Rutherford back-scattering analysis (RBS), and X-ray analyses were used to help understand the fundamental mechanism of the CVD growth.
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R
2018-02-23
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (
Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2
NASA Astrophysics Data System (ADS)
Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.
2017-12-01
The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...
2018-01-18
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less
NASA Astrophysics Data System (ADS)
Chen, Chong; Ling, Lanyu; Li, Fumin
2017-01-01
In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.
The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.
2003-01-01
CuInS2 was deposited by spray pyrolysis using single-source precursors synthesized in-house. Films with either (112) or (204/220) preferred orientation always showed Cu-rich and In-rich composition respectively. The In-rich (204/220)-oriented films always contained a secondary phase evaluated as an In-rich compound, and the hindrance of (112)-oriented grain growth was confirmed by glancing angle X-ray diffraction. In conclusion, only the Cu-rich (112)-oriented films with dense columnar grains can be prepared without the secondary In-rich compound. The effect of extra Cu on the grain size and the solar cell results will be also presented.
The effects of Na on high pressure phases of CuIn(0.5)Ga(0.5)Se(2) from ab initio calculation.
Pluengphon, P; Bovornratanaraks, T; Vannarat, S; Pinsook, U
2012-03-07
The effects of Na atoms on high pressure structural phase transitions of CuIn(0.5)Ga(0.5)Se(2) (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe(2) phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na(InGa)) is higher than that of Na at Cu sites (Na(Cu)). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na(Cu)-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa(-1) under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.
Li, Qiang; Zhao, Yinghe; Guo, Jiyuan; Zhou, Qionghua; Chen, Qian; Wang, Jinlan
2018-02-22
2D black phosphorus (BP) and transition metal chalcogenides (TMCs) have beneficial electronic, optical, and physical properties at the few-layer limit. However, irreversible degradation of exfoliated or chemical vapor deposition-grown ultrathin BP and TMCs like GaSe via oxidation under ambient conditions limits their applications. Herein, the on-surface growth of an oxidation-resistant 2D thin film of a metal coordination polymer is demonstrated by multiscale simulations. We show that the preparation of such heterostructures can be conducted in solution, in which pristine BP and GaSe present better stability than in an air environment. Our calculations reveal that the interaction between the polymer layer and 2D materials is dominated by van der Waals forces; thus, the electronic properties of pristine BP and GaSe are well preserved. Meanwhile, the isolation from oxygen and water can be achieved by monolayer polymers, due to the nature of their close-packed layers. Our facile strategy for enhancing the environmental stability of ultrathin materials is expected to accelerate efforts to implement 2D materials in electronic and optoelectronic applications.
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2003-01-01
Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.
Takahashi, Hideyuki; Fujiki, Hironari; Yokoyama, Shun; Kai, Takayuki; Tohji, Kazuyuki
2018-01-01
To apply CuInSe2 (CIS)-based printable solar batteries; an aqueous phase synthesis method of Cu-In (CI) alloy nanoparticles is studied. Metal complexes in the original solution are restricted to homogenized species by utilizing calculations. For example; [(Cu2+)(ASP2−)2] [ASP: the “body (C4H5O4N)” of aspartic acid (C4H7O4N)] is predominant in the pH 6–13 region (CASP/CCu > 6); while In complexes can be restricted to [(In3+)(OH−)(EDTA4−)] (pH 10–12; CEDTA/CIn = 2) and/or [(In3+)(ASP2−)2] (pH 7–9; CASP/CIn = 5). These results indicate that the added amount of complex reagents should be determined by calculations and not the stoichiometric ratio. The reduction potential of homogenized metal complex is measured by cyclic voltammetry (CV) measurements and evaluated by Nernst’s equation using the overall stability constants. CuIn alloy nanoparticles with a small amount of byproduct (In nanoparticles) are successfully synthesized. The CI precursor films are spin-coated onto the substrate using a 2-propanol dispersion. Then the films are converted into CIS solar cells; which show a maximum conversion efficiency of 2.30%. The relationship between the open circuit potential; short circuit current density; and fill factor indicate that smoothing of the CIS films and improving the crystallinity and thickness increase the solar cell conversion efficiency. PMID:29642413
[Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen
2009-03-01
Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.
Three-dimensional morphology of CuInS2:P3HT hybrid blends for photovoltaic applications
NASA Astrophysics Data System (ADS)
Krause, Christopher; Scheunemann, Dorothea; Parisi, Jürgen; Borchert, Holger
2015-11-01
Despite potential advantages, the performance of hybrid solar cells with colloidal nanocrystals remains low compared to pure organic solar cells, in particular, when Cd- and Pb-free nanocrystals are employed. To understand this discrepancy, we analyzed possible limiting factors of the performance of hybrid solar cells with CuInS2 nanoparticles and the polymer poly(3-hexylthiophene) (P3HT). Optimizing the thickness of the active layer indicated that charge transport limits the performance of the solar cells. Since charge transport is among others influenced by the morphology of the bulk heterojunction layer, we performed a detailed analysis of the blend morphology. Therefore, we used electron tomography which provides three-dimensional information on the interpenetrating network formed by the hybrid CuInS2:P3HT system. Using statistical methods, we analyzed the distribution of the nanoparticles inside the polymer matrix and the structure of the percolation paths. We found that the morphology appears well suited for application in hybrid solar cells, meaning that other factors must be the bottleneck. Therefore, we investigated in a second step the influence of a post-deposition ligand exchange with acetic acid. This strategy resulted in a strong relative improvement of the solar cell performance, although absolute performance parameters remain low in comparison to hybrid solar cells with colloidal cadmium or lead chalcogenide nanocrystals.
NASA Astrophysics Data System (ADS)
Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo
2012-10-01
Three-dimensional (3D) compound solar cells with the structure of
Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing
NASA Astrophysics Data System (ADS)
Ghosh, A.; Bhowmick, T.; Majumder, S. B.
2018-02-01
In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.
Pati, Sumati; Maity, A; Banerji, P; Majumder, S B
2014-04-07
In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.
NASA Astrophysics Data System (ADS)
Chen, Qin-Miao; Zhou, Fang-Fang; Yuan, Hong-Chun; Chen, Jin; Ni, Yi; Zhu, Xi-Fang; Dou, Xiao-Ming
2017-07-01
Chalcopyrite and wurtzite CuInS2 (CIS) nanomaterials were synthesized from Cu2+, In3+, thiourea with or without triethanolamine (TEA) by simple hot injection method at low temperature. The effect of synthesis duration on the various properties of the synthesized CIS nanomaterials was studied. It shows that for chalcopyrite CIS, the optimal synthesis duration is 60 min and the synthesized nanomaterial is in spherical shape with diameter of about 90 nm. However, for the wurtzite CIS, the optimal synthesis duration should reach 150 min and the synthesized nanomaterial looks like nanoplate with thicknesses of ˜10 nm and diameters near 100 nm. The photovoltaic characteristics of two types of nanomaterials are quite different. This study may contribute to the synthesis of CIS nanomaterials at low temperatures.
Enhancement of P3HT organic photodiodes by the addition of a GaSe9 alloy thin layer
NASA Astrophysics Data System (ADS)
Siqueira, M. C.; Hoff, A.; de, C., Col; Machado, K. D.; Hümmelgen, I. A.; Serbena, J. P. M.
2017-08-01
We report on gallium-selenium alloy (GaSe9) thin films simultaneously functioning as both blocking layer and active layer on poly(3-hexylthiophene-2, 5-diyl) (P3HT)-based organic photodiodes in order to enhance device performance. In addition to improved transport of the photogenerated charge carriers, GaSe9 films also contribute to light absorption on a different wavelength interval than that of P3HT. Three different devices are compared: ITO/GaSe9/Al, ITO/P3HT/Al and ITO/P3HT/GaSe9/Al, with the last one presenting a lower dark current density (0.90 μA cm-2), higher ON/OFF current ratio (61) and fastest response under AM 1.5 light irradiance. The observed responsivity is 7.3 mA W-1 and is almost linearly dependent on irradiance in the range 0.6-60 W m-2. A maximum external quantum efficiency of 135% and specific detectivity of 16.7 × 1011 Jones at 390 nm incident light wavelength are obtained.
NASA Astrophysics Data System (ADS)
Ghosh, A.; Majumder, S. B.
2017-07-01
Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.
Mezher, Michelle; Mansfield, Lorelle M.; Horsley, Kimberly; ...
2017-08-14
The chemical and electronic structures of industrial chalcopyrite photovoltaic absorbers after KF post-deposition treatment (KF-PDT) are investigated using electron spectroscopies to probe the occupied and unoccupied electronic states. In contrast to a variety of recent publications on the impact of KF-PDT, this study focuses on industrial Cu(In,Ga)(S,Se) 2 absorbers that also contain sulfur at the surface. We find that the KF-PDT removes surface adsorbates and oxides and also observe a change in the S/Se ratio. Furthermore, the KF-PDT leads to a Cu reduction at the surface but to a much lower degree than the strongly Cu-depleted or even Cu-free surfacesmore » reported for (non-industrial) sulfur-free Cu(In,Ga)Se 2 absorbers. Furthermore, the valence band maximum at the surface is found at a lower energy compared to the untreated absorber, and the conduction band minimum is found at a higher energy, overall revealing a widening of the bandgap in the surface region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezher, Michelle; Mansfield, Lorelle M.; Horsley, Kimberly
The chemical and electronic structures of industrial chalcopyrite photovoltaic absorbers after KF post-deposition treatment (KF-PDT) are investigated using electron spectroscopies to probe the occupied and unoccupied electronic states. In contrast to a variety of recent publications on the impact of KF-PDT, this study focuses on industrial Cu(In,Ga)(S,Se) 2 absorbers that also contain sulfur at the surface. We find that the KF-PDT removes surface adsorbates and oxides and also observe a change in the S/Se ratio. Furthermore, the KF-PDT leads to a Cu reduction at the surface but to a much lower degree than the strongly Cu-depleted or even Cu-free surfacesmore » reported for (non-industrial) sulfur-free Cu(In,Ga)Se 2 absorbers. Furthermore, the valence band maximum at the surface is found at a lower energy compared to the untreated absorber, and the conduction band minimum is found at a higher energy, overall revealing a widening of the bandgap in the surface region.« less
Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels
Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin; ...
2017-08-25
Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less
Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin
Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less
NASA Astrophysics Data System (ADS)
Schroeder, David James
From the results presented here a number of conclusions regarding the effects of point defects on the properties of epitaxial single crystal CuInsb{1-x}Gasb{x}Sesb2 (CIGS) may be drawn. These conclusions may be divided into three categories: the effects of point defects on Ga diffusion and diffusivity, the influence of impurities and alloying elements on doping and mobility, and the effects of impurities on minority carrier recombination kinetics. The diffusivity of Ga into CIGS during growth was found to be strongly dependent of the Cu/In ratio of the growing layer. Diffusivity ranged from a minimum of 2.7×10sp{-13}\\ cmsp2/s at Cu/In = 0.94 to 5 × 10sp{-11} cmsp2/s at Cu/In = 1.41 and 7×10sp{-12} cmsp2/s at Cu/In = 0.43. The diffusion occurred by a vacancy mechanism with Ga, apparently, diffusing through either Cu or In vacancies. The sharp change in diffusivity with changing Cu/In ratio helps to explain the difficulty in maintaining a desired Ga profile in polycrystalline CIGS device absorber layers. Increasing Ga content was found to increase both acceptor and donor density. The decrease in Jsbsc found in Ga-containing polycrystalline devices, is likely caused by a large increase in acceptor density, which may cause less inversion of the surface of the p-type CIGS making the junction more sensitive to surface states. The effect of adding Na by diffusion from either NaOH or Nasp2Se was to reduce the donor density. These results help to explain results in polycrystalline CIGS devices where Na increased hole concentrations, Vsboc, and device efficiency. Unlike Ga and Na, Cr and Se were not found to have any strong effect when added in concentrations ≤10sp{19} cmsp{-3} using ion implantation. The lack of an effect of Se on doping conclusively determines that Na has an effect beyond simply introducing either O or Se into the bulk of the CIGS. While both implanted Se and Cr created large numbers of donors and acceptors before being annealed, both caused a decrease in acceptor concentration after annealing with the effect of Cr being larger than that of Se. Both Se and Cr reduced hole mobility over the entire temperature range investigated. These results imply that CIGS-based devices should be insensitive to accidental transition metal contamination. The steady state photoconductivity of samples which had been ion implanted with Se and Cr, as well as samples which were contaminated with Na by diffusion, was measured. These measurements were made to determine whether contamination by these elements or severe radiation damage affects minority carrier recombination kinetics. In all cases the photoconductivity was found to be unaffected other than by changes in mobility. (Abstract shortened by UMI.)
Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation
NASA Astrophysics Data System (ADS)
Demin, I. E.; Kozlov, A. G.
2018-01-01
The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.
High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik
Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz
2013-01-15
The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inertmore » gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.« less
Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang
2016-08-17
In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang
2016-01-01
Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature. PMID:27834895
NASA Astrophysics Data System (ADS)
Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel
2018-03-01
In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.
Gas-Sensing Characteristics of SrFeO3-δ Thin Film Probed by a Homemade Apparatus
NASA Astrophysics Data System (ADS)
Manikandan, M.; Santhosh Kumar, B.; Mukil Raj, T.; Moorthy Babu, S.; Venkateswaran, C.
2018-05-01
SrFeO2.97 phase obtained by annealing radiofrequency-sputtered stoichiometric film at 600°C for 24 h has been tested using a homemade apparatus coupled with impedance spectrometry. Oxygen nonstoichiometry plays a vital role in sensing of reducing gases. Hence, this phase showed efficient sensing performance for different reducing gases such as acetone (CH3COCH3), ethanol (C2H5OH), ammonia (NH3), and hydrogen sulfide (H2S), with high sensing response recorded for H2S gas at 60°C.
NASA Astrophysics Data System (ADS)
Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki
2018-02-01
For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.
Tsin, Fabien; Thomere, Angélica; Bris, Arthur Le; Collin, Stéphane; Lincot, Daniel; Rousset, Jean
2016-05-18
Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study. The addition of boron to the electrolyte leads to significant effects on the morphology and crystalline structure as well as an evolution of the optical properties of the material. Varying the concentration of boric acid from 0 to 15 mM strongly improves the compactness of the deposit and increases the band gap from 3.33 to 3.45 eV. Investigations were also conducted to estimate and determine the influence of boric acid on the electrical properties of the ZnO layers. As a result, no doping effect effect by boron was demonstrated. However, the role of boric acid on the material quality has also been proven and discussed. Boric acid strongly contributes to the growth of high quality electrodeposited zinc oxide. The high doping level of the film can be attributed to the perchlorate ions introduced in the bath. Finally, a ZnO layer electrodeposited in a boron rich electrolyte was tested as front contact of a Cu(In, Ga)(S, Se)2 based solar cell. An efficiency of 12.5% was measured with a quite high fill factor (>70%) which confirms the high conductivity of the ZnO thin film.
Low temperature photochemical vapor deposition of alloy and mixed metal oxide films
Liu, David K.
1992-01-01
Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma; Rother, Gernot; Wu, Zili
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Tumuluri, Uma; Rother, Gernot; Wu, Zili
2016-03-21
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Enhanced luminescence of Cu-In-S nanocrystals by surface modification.
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo
2012-04-01
We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.
Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application
NASA Astrophysics Data System (ADS)
Nimbalkar, Amol R.; Patil, Maruti G.
2017-12-01
In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.
Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
NASA Astrophysics Data System (ADS)
Saritas, Sevda; Kundakci, Mutlu; Coban, Omer; Tuzemen, Sebahattin; Yildirim, Muhammet
2018-07-01
Iron oxide is a widely used sensitive material for gas sensor applications. They have fascinated much attention in the field of gas sensing and detecting under atmospheric conditions and at 200 °C temperature due to their low cost in production; simplicity and fast of their use; large number of detectable gases. Iron oxide gas sensors constitute investigated for hazardous gases used in various fields. The morphological structure (particle size, pore size, etc.), optical, magnetic and electrical properties of Ni:Fe2O3, Mg:Fe2O3 and Fe2O3 thin films which grown by Spray pyrolysis (SP) have been investigated. XRD, Raman and AFM techniques have been used for structural analysis. AFM measurements have been provided very useful information about surface topography. I-V (Van der Pauw) technique has been used for response of gas sensor. These devices offer a wide variety of advantages over traditional analytical instruments such as low cost, short response time, easy manufacturing, and small size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang
In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CHmore » species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.« less
Low temperature photochemical vapor deposition of alloy and mixed metal oxide films
Liu, D.K.
1992-12-15
Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.
Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells
Muzzillo, Christopher P.; Anderson, Timothy J.
2017-12-29
Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less
Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Anderson, Timothy J.
Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less
NASA Astrophysics Data System (ADS)
Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru
1998-07-01
The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.
Raman Enhancement Effect on Thin GaSe Flake and Its Thickness Dependence
NASA Astrophysics Data System (ADS)
Quan, Lin; Song, Yuqing; Zhang, Guanghui; Wu, Yukun; Jin, Ke; Ding, Huaiyi; Pan, Nan; Luo, Yi; Wang, Xiaoping
Chemical enhancement is one of the important mechanisms in surface-enhanced Raman spectroscopy, however, its origin is still under debate. Two dimensional (2D) layered material is thought to be a strong candidate to investigate the chemical mechanism of Raman enhancement because it has flat surface, well defined structure and without the interference of electromagnetic enhancement. Herein we report the systematic studies of Raman enhancement effect on the gallium selenide (GaSe) flake by using copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman signal of CuPc on the monolayer GaSe can be significantly increased by one order of magnitude than that on the SiO2/Si substrate. Meanwhile, the enhancement effect is found to decrease with increasing the thickness of GaSe flake. The origin of the Raman enhancement is attributed to the chemical mechanism resulted from the charge transfer between the GaSe flake and the detected molecules. The supposition is further verified by the investigation of Raman enhancement effect of CuPc with different thicknesses on the GaSe flake. Our work will shed more light on the understanding of the chemical mechanism for Raman enhancement and expand more practical applications of GaSe.
Temperature Dependent Photoluminescence of CuInS2 with ZnS Capping
2014-05-11
cadmium or zinc like cadmium selenide. The optical properties of core-type nanocrystals can be fine-tuned by changing the quantum dot size. Core...Physics Department To August 2011 University of Notre Dame, South Bend, Indiana - Computational work involving the half-life of Fe60 - Data
Making Ternary Quantum Dots From Single-Source Precursors
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius
2007-01-01
A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.
CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David
2002-01-01
CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal mask. PV parameters of a CIGS2 solar cell on 127 micrometers thick SS flexible foil measured under AM 0 conditions at NASA GRC were: V(sub oc) = 802.9 mV, J(sub sc) = 25.07 mA per square centimeters, FF = 60.06%, and efficiency 0 = 8.84%. For this cell, AM 1.5 PV parameters measured at NREL were: V(sub oc) = 788 mV, J(sub sc) = 19.78 mA per square centimeter, FF = 59.44%, efficiency 0 = 9.26%. Quantum efficiency curve showed a sharp QE cutoff equivalent to CIGS2 bandgap of approximately 1.50 eV, fairly close to the optimum value for efficient AM0 PV conversion in the space.
Inert gases in Sea of Fertility regolith
NASA Technical Reports Server (NTRS)
Vinogradov, A. P.; Zadorozhnyy, I. K.
1974-01-01
The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.
Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung
2016-12-01
Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.
Ce doped NiO nanoparticles as selective NO2 gas sensor
NASA Astrophysics Data System (ADS)
Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree
2018-03-01
Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.
Separation membrane development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.W.
1998-08-01
A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.
Method for introduction of gases into microspheres
Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.
A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.
Xu, Lu; Deng, Lin-Long; Cao, Jing; Wang, Xin; Chen, Wei-Yi; Jiang, Zhiyuan
2017-12-01
Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hole mobility. Almost all these HTMs reported needed lithium salt, e.g., lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) doping, to improve hole mobility and performance. However, the use of Li-TFSI should be avoided because the hygroscopic nature of Li-TFSI could cause decomposition of perovskite and reduce device stability. Herein, we employed solution-processed CuIn 0.1 Ga 0.9 (S 0.9 Se 0.1 ) 2 (CIGSSe) nanocrystals as a novel inorganic HTM in perovskite solar cells. A power conversion efficiency of 9.15% was obtained for CIGSSe-based devices with improved stability, compared to devices using spiro-OMeTAD as HTM. This work offers a promising candidate of Cu-based inorganic HTM for efficient and stable perovskite solar cells.
New type of standalone gas sensors based on dye, thin films, and subwavelength structures
NASA Astrophysics Data System (ADS)
Schnieper, Marc; Davoine, Laurent; Holgado, Miguel; Casquel del Campo, Rafael; Barranco, Angel
2009-02-01
A new gas sensor was developed to enable visual indication of a contamination by specific gases like NO2, SO2, UV, etc. The sensor works with a combination of subwavelength structures and specific active dye thin film layers. The objective is to use the optical changes of the dye thin films after exposure and a custom designed subwavelength structure, a suited combination of both will produce a strong color change. The indication should be visible for the human eye. To enhance this visual aspect, we used a reference sensor sealed into a non-contaminated atmosphere. This work was realized within the PHODYE STREP Project, a collaboration of the 6th Framework Program Priority Information Society Technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp
This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for themore » performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.« less
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong
2014-07-01
Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.
NASA Astrophysics Data System (ADS)
Kukreja, Ratandeep Singh
The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the deposition chamber. Hexagonal -- BN thin films are successfully deposited using Diborane (B2H6) (5% in H2), Ammonia (NH3) and H2 as precursor gases in the conventional MPECVD mode with and without the negative DC bias. The quality of h-BN in the films improved with pressure and when NH3 used as the first precursor gas in the deposition chamber. c-BN thin films are successfully deposited using Boron-Trifluoride (BF3) (10% in Argon (Ar)), N2, H2, Ar and Helium (He) gases in the electron cyclotron resonance (ECR) mode of the MPECVD system with negative DC bias. Up-to 66% c-BN in the films is achieved under deposition conditions of lower gas flow rates and higher deposition pressures than that reported in the literature for film deposited by ECR-MPECVD. It is shown that the percentage c-BN in the films correlates with the deposition pressure, BF3/H2 ratio and, negative DC bias during nucleation and growth. Diamond thin films are deposited using 60%Ar, 39% H2 and, 1%CH4 at 600°C, 700°C and 800°C substrate temperatures, measured by an IR pyrometer, on Si substrates pre-treated with 3-6nm diamond sol and 20-40mum diamond slurry. Raman spectroscopy, FTIR, X-Ray diffraction (XRD) and, photo-thermal reflectivity methods are used to characterize the thin films. Residual stresses observed for the diamond thin films deposited in this study are tensile in nature and increased with deposition temperature. Better quality diamond films with lower residual stresses are obtained for films deposited on Si substrate pre-treated with 3-6nm diamond sol. Preliminary results on thermal conductivity, k, suggest that k is directly dependent on the deposition temperature and independent of substrate pre-treatment signifying that the nano-seeding technique can be used to replace conventional surface activation technique for diamond seeding where needed.
Deposition of thin insulation layers from the gas phase
NASA Technical Reports Server (NTRS)
Behn, R.; Hagedorn, H.; Kammermaier, J.; Kobale, M.; Packonik, H.; Ristow, D.; Seebacher, G.
1981-01-01
The continuous deposition of thin organic dielectric films on metallized carrier foils by glow discharge in monomeric gases is described. Depending on the applied monomers, the films had a dissipation factor of .001 to .003 (1 kHz), a relative permittivity of 2.3 to 2.5 and a resistivity of about 10 to the 17th power omega cm. Additionally, they proved to have a high mechanical homogeneity. Self-healing rolled capacitors with a very high capacitance per volume and of consistently high quality were fabricated from the metallized carrier foils covered with the dielectric film.
BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seager, S.; Bains, W.; Hu, R.
2013-11-10
Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some casesmore » O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young;
2007-01-01
The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet weight and AMO efficiency goals, but also must be durable enough to survive launch conditions and space environments.
NASA Astrophysics Data System (ADS)
Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.
2018-03-01
In this work, first the CuInS2 (CIS2) layers are deposited on Aluminum and polyethylene terephthalate (PET) as flexible substrates, and on glass and soda lime glass (SLG) as rigid substrates by the sol-gel method. Then the samples are analyzed by x-ray diffractomery (XRD) and atomic force microscope (AFM) to investigate the crystal structures and surface roughness of the samples. The I-V curve measurements and Seebeck effect setup are used to measure the electrical properties of the samples. The XRD data obtained for the CIS2 layers show that all the prepared samples have a single phase with a preferred orientation that is substrate-dependent. The samples grown on the rigid substrates had higher crystallite sizes. The results obtained for the optical measurements indicate the dependence of the band gap energy on the substrate type. The measured Seebeck coefficient showed that the carriers were of p-type in all the samples. According to the AFM images, the surface roughness also varied in the CIS2 layers with different substrates. In this regard, the type of substrate could be an important parameter for the final performance of the fabricated CIS2 cells.
NASA Astrophysics Data System (ADS)
Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo
2014-09-01
Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.
Fast photoresponse and high detectivity in copper indium selenide (CuIn7Se11) phototransistors
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy; Patil, Prasanna D.; Wasala, Milinda; Lei, Sidong; Nolander, Andrew; Sivakumar, Pooplasingam; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat
2018-03-01
The fast and sensitive detection of light can lead to a variety of optoelectronics and/or photonic-based applications in fields ranging from fast optical switching devices to health and environmental monitoring systems. Although several systems based on organic and inorganic materials show high sensitivity to visible light, in general they suffer from slow response times. Here we show that phototransistors fabricated using multilayers of CuIn7Se11 exhibit response times of ~ tens of µs with responsivity (R) values > 10 AW-1 and with external quantum efficiencies reaching beyond 103 % when excited with a 658 nm wavelength laser. These devices also show high specific detectivity (D *) values of ~1012 Jones. The responsivity and detectivity exhibited by these phototransistors are at least an order of magnitude better than commercially available conventional Si-based photodetectors, coupled with response times that are orders of magnitude better than several other families of layered materials investigated so far. The properties of the CuIn7Se11 phototransistor can be further tuned and enhanced by applying a back-gate voltage. Our investigations indicate that such layered ternary compounds can potentially be used as components in opto-electronics-related applications.
Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells
Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying
2015-01-01
Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, K.H.; Ahluwalia, R.K.
1994-10-18
A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, Kwan H.; Ahluwalia, Rajesh K.
1994-01-01
A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.
Colorimetric Detection Of Substances In Liquids And Gases
NASA Technical Reports Server (NTRS)
Harris, J. Milton; Mcgill, R. Andrew; Paley, Mark S.
1992-01-01
Thin polymer films containing solvatochromic dyes used as sensing elements to detect substances dissolved in liquids and gases. Dyes do not react with liquids in which dissolved, but do respond to changes in chemical compositions by changing color. Concentration determined visually by comparison of color with predetermined standard chart, or spectrophotometrically.
Highly Sensitive Nanostructured SnO2 Thin Films For Hydrogen Sensing
NASA Astrophysics Data System (ADS)
Patil, L. A.; Shinde, M. D.; Bari, A. R.; Deo, V. V.
2010-10-01
Nanostructured SnO2 thin films were prepared by ultrasonic spray pyrolysis technique. Aqueous solution (0.05 M) of SnCl4ṡ5H2O in double distilled water was chosen as the starting solution for the preparation of the films. The stock solution was delivered to nozzle with constant and uniform flow rate of 70 ml/h by Syringe pump SK5001. Sono-tek spray nozzle, driven by ultrasonic frequency of 120 kHz, converts the solution into fine spray. The aerosol produced by nozzle was sprayed on glass substrate heated at 150 °C. The sensing performance of the films was tested for various gases such as LPG, hydrogen, ethanol, carbon dioxide and ammonia. The sensor (30 min) showed high gas response (S = 3040 at 350 °C) on exposure of 1000 ppm of hydrogen and high selectivity against other gases. Its response time was short (2 s) and recovery was also fast (12 s). To understand reasons behind this uncommon gas sensing performance of the films, their structural, microstructural, and optical properties were studied using X-ray diffraction, electron microscopy (SEM and TEM) respectively. The results are interpreted
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-09
We report the preparation of Cu 2 S, In 2 S 3 , CuInS 2 and Cu(In,Ga)S 2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN 1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
NASA Astrophysics Data System (ADS)
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-01
We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
NASA Astrophysics Data System (ADS)
Cheshme Khavar, Amir Hossein; Mahjoub, Ali Reza; Taghavinia, Nima
2017-12-01
Superstrate configuration CuInS2 (CIS) solar cells are fabricated using a spray pyrolysis method. We avoided selenization process, cyanide etching and CdS buffer layer, to keep the process ‘green’. CIS layers are formed by spray pyrolysis of an aqueous precursor ink containing metal chloride salts and thiourea at 350 °C. We investigated the effect of intentional Zn doping on structural, morphological and photovoltaic response of the fabricated CIS films by dissolving ZnCl2 in aqueous precursor solution. At a zinc doping level ranging between 0.25 and 1.00 mol%, Zn doping is found to improve the CIS crystal growth and surface morphology of CIS films. Compared with the performance of the non-doped CIS cell, the Zn-doped CIS solar cell displayed a remarkable efficiency enhancement of 58-97% and the maximum enhancement was obtained at a Zn content of 0.5 mol%. The device structure consists of
Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface
NASA Astrophysics Data System (ADS)
Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka
2018-06-01
Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.
Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.
Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less
Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry
Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.; ...
2017-09-07
Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less
Baker, Paul A; Goodloe, David R; Vohra, Yogesh K
2017-11-14
The purpose of this study is to understand the basic mechanisms responsible for the synthesis of nanostructured diamond films in a microwave plasma chemical vapor deposition (MPCVD) process and to identify plasma chemistry suitable for controlling the morphology and electrical properties of deposited films. The nanostructured diamond films were synthesized by MPCVD on Ti-6Al-4V alloy substrates using H₂/CH₄/N₂ precursor gases and the plasma chemistry was monitored by the optical emission spectroscopy (OES). The synthesized thin-films were characterized by x -ray diffraction and scanning electron microscopy. The addition of B₂H₆ to the feedgas during MPCVD of diamond thin-films changes the crystal grain size from nanometer to micron scale. Nanostructured diamond films grown with H₂/CH₄/N₂ gases demonstrate a broad (111) Bragg x -ray diffraction peak (Full-Width at Half-Maximum (FWHM) = 0.93° 2θ), indicating a small grain size, whereas scans show a definite sharpening of the diamond (111) peak (FWHM = 0.30° 2θ) with the addition of boron. OES showed a decrease in CN (carbon-nitrogen) radical in the plasma with B₂H₆ addition to the gas mixture. Our study indicates that CN radical plays a critical role in the synthesis of nanostructured diamond films and suppression of CN radical by boron-addition in the plasma causes a morphological transition to microcrystalline diamond.
Comparison of the agglomeration behavior of thin metallic films on SiO2
NASA Astrophysics Data System (ADS)
Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.
2005-07-01
The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peer, Akshit; Hu, Zhongjian; Singh, Ajay
A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less
Peer, Akshit; Hu, Zhongjian; Singh, Ajay; ...
2017-07-05
A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less
NASA Astrophysics Data System (ADS)
Singh, Dharmendra Pratap; Vimal, Tripti; Mange, Yatin J.; Varia, Mahesh C.; Nann, Thomas; Pandey, K. K.; Manohar, Rajiv; Douali, Redouane
2018-01-01
CuInS2/ZnS core/shell quantum dots (CIS/ZnS QDs) dispersed ferroelectric liquid crystal (FLC) mixtures have been characterized for their application in electro-optical devices, energy storage, and solar cells. Physical properties of the CIS/ZnS QD-FLC (ferroelectric liquid crystal) mixtures have also been investigated with varying QD concentrations in order to optimize the critical concentration of QDs in mixtures. The presence of QDs breaks the geometrical symmetry in the FLC matrix, which results in a change in the physical properties of the mixtures. We observed the reduced values of primary and secondary order parameters (tilt angle and spontaneous polarization, respectively) for mixtures, which also depend on the concentration of QDs. The reduction of spontaneous polarization in QDs-FLC mixtures is attributed to the adverse role of flexoelectric contribution in the mixtures. The 92% faster electro-optic response and enhanced capacitance indicate the possible application of these mixtures in electro-optical devices and solar cells. Photoluminescence emission of pure FLC and QDs-FLC mixtures has been thermally tailored, which is explained by suitable models.
Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.
Shah, Kinjal J; Imae, Toyoko
2016-05-09
The 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNF) were hybridized with cation and anion-exchange organoclays, where poly(amido amine) dendrimers were loaded to enhance the functionality of gas adsorption, since dendrimers have the high adsorbability and the enough selectivity on the gas adsorption. The thin films were prepared from the organoclay-TOCNF hybrids and supplied to the gas adsorption. The adsorption of CO2 and NH3 gases increased with an increasing amount of organoclays in TOCNF films, but the behavior of the increase depended on gases, clays, and dendrimers. The hydrotalcite organoclay-TOCNF films displayed the highest adsorption of both gases, but the desorption of CO2 gas from hydrotalcite organoclay-TOCNF films was drastically high in comparison with the other systems. While the CO2 gas is adsorbed and remained on cationic dendrimer sites in cation-exchange organoclay-TOCNF films, the CO2 gas is adsorbed on cationic clay sites in anion exchange organoclay-TOCNF films, and it is easily desorbed from the films. The NH3 adsorption is inversive to the CO2 adsorption. Then the CO2 molecules adsorbed on the cationic dendrimers and the NH3 molecules adsorbed on the anionic dendrimers are preferably captured in these adsorbents. The present research incorporated dendrimers will be contributing to the development of gas-specialized adsorbents, which are selectively storable only in particular gases.
NASA Astrophysics Data System (ADS)
Kumar, Shani; Dhingra, Vishal; Garg, Amit; Chowdhuri, Arijit
2016-05-01
Worldwide researchers are actively engaged in utilizing Graphene and its related materials in gas sensing applications. A high surface-to-volume ratio that offers scope of optimization leading to enhanced sensing performance besides lower sensor operating temperatures are some advantages that graphene based sensors possess over conventional semiconducting metal oxide (SMO) sensors. Conventional SMO based gas sensors are known to suffer from problems of cross-selectivity where selectivity is understood to be a gas sensor's ability to preferentially detect one particular gas without responding to or experiencing interference from other gases present in the ambient. In the current study gas sensing mechanism of Graphene oxide (GO) thin films is investigated by repeatedly exposing the sensing configuration to various gases and its cross-selectivity response to the same is examined. In the investigation typical gas sensing response characteristics of the sensor configuration are studied in both oxidizing as well as reducing environments. The gas sensing data is acquired by means of Keithley 6487 picoammeter which is interfaced with a customized Gas Sensing Test Rig (GSTR) that provides a controlled ambient to the sensors for measurement of reproducible characteristics. GSTR further provided the option of varying the operating temperature and gas concentration for the different sensor configurations under study. XRD studies indicate formation of GO with typical crystallite size of 4.2 nm. UV-Vis investigations reveal a typical band-gap of 4.42 (eV) which is in conformity with those reported in the available literature.1,2
NASA Astrophysics Data System (ADS)
Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang
2017-07-01
Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.
Fast Photo-detection in Phototransistors based on Group III-VI Layered Materials.
NASA Astrophysics Data System (ADS)
Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat
Response time of a photo detector is one of the crucial aspect of photo-detection. Recently it has been shown that direct band gap of few layered group III-VI materials helps in increased absorption of light thereby enhancing the photo responsive properties of these materials. Ternary system of Copper Indium Selenide has been extensively used in optoelectronics industry and it is expected that 2D layered structure of Copper Indium Selenide will be a key component of future optoelectronics devices based on 2D materials. Here we report fast photo detection in few layers of Copper Indium Selenide (CuIn7Se11) phototransistor. Few-layers of CuIn7Se11 flakes were exfoliated from crystals grown using chemical vapor transport technique. Our photo response characterization indicates responsivity of 104 mA/W with external quantum efficiency exceeding 103. We have found response time of few μs which is one of the fastest response among photodetectors based on 2D materials. We also found specific detectivity of 1012 Jones which is an order higher than conventional photodetectors. A comparison between response times of various layered group III-VI materials will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.
Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha
2015-01-01
Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113
Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P.; Liyanage, Geethika K.; Ellingson, Randy J.; Heben, Michael J.; Marsillac, Sylvain; Collins, Robert W.; Podraza, Nikolas J.
2018-01-01
Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1−xGax)2Se3 (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control. PMID:29337931
CO2 Acquisition Membrane (CAM) Project
NASA Technical Reports Server (NTRS)
Mason, Larry W.
2003-01-01
The CO2 Acquisition Membrane (CAM) project was performed to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes developed in this project are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP). These membrane materials may be used in a variety of ISRU systems, for example as the atmospheric inlet filter for an ISPP process to enhance the concentration of CO2 for use as a reactant gas, to passively separate argon and nitrogen trace gases from CO2 for habitat pressurization, to provide a system for removal of CO2 from breathing gases in a closed environment, or within a process stream to selectively separate CO2 from other gaseous components. The membranes identified and developed for CAM were evaluated for use in candidate ISRU processes and other gas separation applications, and will help to lay the foundation for future unmanned sample return and human space missions. CAM is a cooperative project split among three institutions: Lockheed Martin Astronautics (LMA), the Colorado School of Mines (CSM), and Marshall Space Flight Center (MSFC).
Blended polybenzimidazole and melamine-co-formaldehyde thermosets
Klaehn, John R.; Orme, Christopher J.; Peterson, Eric S.
2016-05-11
Polybenzimidazole [PBI; poly-2,2’(m-phenylene)-5,5’-bibenzimidazole] is known to have excellent high temperature stability (up to 450 ºC) and superb H 2/CO 2 selectivity compared to most high performance (HP) polymers. But, PBI has issues in thin-film formation compared to other HP polymers, due to challenging processing techniques. In this work, new blended thermosets were made with PBI and poly(melamine co-formaldehyde) [PMF] to produce stable thin-films after thermal processing at 220-250 ºC. PBI film formation is difficult, and the film tends to fracture and fissure due to loss of processing aids and stabilizers (salt/acid additives) that are found in PBI solutions above10 wtmore » %. The PBI-PMF blended thermosets we report do not have stabilizers, and can be made into dense thin-films. It is remarkable that these thermally processed PBI-PMF films were stable in deionized water for extended periods, whereas many PBI films that contain additives are not. The PBI-PMF films were analyzed using pure and mixed gas permeability measurement techniques. At 250 °C, the data show H 2/CO 2 gas selectivities greater than 13. Also, from the gas permeation data, the energy of activation (Ep) of a mixed gas stream for PBI-PMF shows that hydrogen permeates more easily than the other gases, while the permeabilities for the larger kinetic diameter gases are greatly diminished. The FT-IR spectra show that the PBI-PMF films have changed from parent PBI after thermal processing, and PMF dominates the spectra even in minor percent compositions. Altogether, the reported PBI-PMF thermoset films show good stability which can be used for high temperature gas separation.« less
Blended polybenzimidazole and melamine-co-formaldehyde thermosets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaehn, John R.; Orme, Christopher J.; Peterson, Eric S.
Polybenzimidazole [PBI; poly-2,2’(m-phenylene)-5,5’-bibenzimidazole] is known to have excellent high temperature stability (up to 450 ºC) and superb H 2/CO 2 selectivity compared to most high performance (HP) polymers. But, PBI has issues in thin-film formation compared to other HP polymers, due to challenging processing techniques. In this work, new blended thermosets were made with PBI and poly(melamine co-formaldehyde) [PMF] to produce stable thin-films after thermal processing at 220-250 ºC. PBI film formation is difficult, and the film tends to fracture and fissure due to loss of processing aids and stabilizers (salt/acid additives) that are found in PBI solutions above10 wtmore » %. The PBI-PMF blended thermosets we report do not have stabilizers, and can be made into dense thin-films. It is remarkable that these thermally processed PBI-PMF films were stable in deionized water for extended periods, whereas many PBI films that contain additives are not. The PBI-PMF films were analyzed using pure and mixed gas permeability measurement techniques. At 250 °C, the data show H 2/CO 2 gas selectivities greater than 13. Also, from the gas permeation data, the energy of activation (Ep) of a mixed gas stream for PBI-PMF shows that hydrogen permeates more easily than the other gases, while the permeabilities for the larger kinetic diameter gases are greatly diminished. The FT-IR spectra show that the PBI-PMF films have changed from parent PBI after thermal processing, and PMF dominates the spectra even in minor percent compositions. Altogether, the reported PBI-PMF thermoset films show good stability which can be used for high temperature gas separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, C.; Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires; Guller, F.
The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO{sub 3} appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO{sub 3} thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We findmore » significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.« less
Bremsstrahlung of nitrogen and noble gases in single-bubble sonoluminescence
NASA Astrophysics Data System (ADS)
Xu, Ning; Wang, Long; Hu, Xiwei
2000-03-01
A hydrodynamic model, discussing neutral gases as well as plasmas, is applied to simulate single-bubble sonoluminescence. In this model, thermal conduction and various inelastic impact processes such as dissociation, ionization, and recombination are considered. Bremsstrahlung is assumed as the mechanism of the picosecond light pulse in sonoluminescence. Diatomic nitrogen and noble gas bubbles are studied. The results show that the sonoluminescing bubbles are completely optically thin for bremsstrahlung. The calculated spectra agree with previous observations, and can explain the observed differences in spectra of different gases.
NASA Astrophysics Data System (ADS)
Tabata, Akimori; Komura, Yusuke; Hoshide, Yoshiki; Narita, Tomoki; Kondo, Akihiro
2008-01-01
Silicon carbide (SiC) thin films were prepared by hot-wire chemical vapor deposition from SiH4/CH4/H2 gases, and the influence of substrate temperature, Ts (104 < Ts < 434 °C), on the properties of the SiC thin films was investigated. X-ray diffraction patterns and Raman scattering spectra revealed that nanocrystalline cubic SiC (nc-3C-SiC) films grew at Ts above 187 °C, while completely amorphous films grew at Ts = 104 °C. Fourier transform infrared absorption spectra revealed that the crystallinity of the nc-3C-SiC was improved with increasing Ts up to 282 °C and remained almost unchanged with a further increase in Ts from 282 to 434 °C. The spin density was reduced monotonically with increasing Ts.
NASA Technical Reports Server (NTRS)
Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius
2003-01-01
Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.
Method for introduction of gases into microspheres
Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan
1981-01-01
A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.
High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C
Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae
2016-01-01
We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites. PMID:26972476
Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae
2016-03-14
We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.
NASA Astrophysics Data System (ADS)
Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou
2018-03-01
In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.
2013-01-01
Inorganic/organic heterojunction solar cells (HSCs) have attracted increasing attention as a cost-effective alternative to conventional solar cells. This work presents an HSC by in situ growth of CuInS2(CIS) layer as the photoabsorption material on nanoporous TiO2 film with the use of poly(3-hexylthiophene) (P3HT) as hole-transport material. The in situ growth of CIS nanocrystals has been realized by solvothermally treating nanoporous TiO2 film in ethanol solution containing InCl3 · 4H2O, CuSO4 · 5H2O, and thioacetamide with a constant concentration ratio of 1:1:2. InCl3 concentration plays a significant role in controlling the surface morphology of CIS layer. When InCl3 concentration is 0.1 M, there is a layer of CIS flower-shaped superstructures on TiO2 film, and CIS superstructures are in fact composed of ultrathin nanoplates as ‘petals’ with plenty of nanopores. In addition, the nanopores of TiO2 film are filled by CIS nanocrystals, as confirmed using scanning electron microscopy image and by energy dispersive spectroscopy line scan analysis. Subsequently, HSC with a structure of FTO/TiO2/CIS/P3HT/PEDOT:PSS/Au has been fabricated, and it yields a power conversion efficiency of 1.4%. Further improvement of the efficiency can be expected by the optimization of the morphology and thickness of CIS layer and the device structure. PMID:23947562
NASA Astrophysics Data System (ADS)
Gatilova, Lina; Bouchoule, Sophie; Patriarche, Gilles; Guilet, Stephane
2011-08-01
We discuss the possibility of obtaining high-aspect-ratio etching of InP materials in Cl2- and HBr-based inductively coupled plasmas (ICP) with the addition of Si-containing gases (SiH4 or SiCl4). A vertical and smooth etching profile is demonstrated in SiCl4/H2 plasma. The effect of adding of a small amount of SiH4 to a previously optimised Cl2/H2 chemistry is presented, and new SiH4/Cl2 and SiH4/HBr chemistries are proposed. Ex-situ energy-dispersive X-ray spectroscopy coupled to transmission electron microscopy (EDX-TEM) is used to analyze the composition of the thin passivation layer deposited on the etched sidewalls. We show that it consists of a Si-rich silicon oxide (Si/O˜1) in Cl2/H2/SiH4 chemistry, and is changed to nano-crystalline (nc-) Si in SiH4/Cl2 chemistry depending on the SiH4 percentage. Moreover, we show that deep anisotropic etching of InP independent of the electrode coverplate material can be obtained via a SiOx passivation mechanism with the addition of Si-containing gases.
Photoluminescence of CuInS2 nanocrystals: effect of surface modification
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2011-09-01
We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb
The respiratory tract and the environment.
Brain, J D
1977-01-01
The primary determinants of pulmonary disease are environmental. The same thinness and delicacy of the air-blood barrier which allows rapid exchange of oxygen and carbon dioxide also reduce its effectiveness as a barrier to inhaled allergens, carcinogens, toxic particles, and noxious gases, and micro-organisms. Adults breath 10,000 to 20,000 liters of air daily. This volume of air contains potentially hazardous contaminating particles and gases. Future research should explore the diverse physiological mechanisms which prevent the accumulation and deleterious action of inhaled particles and gases. Since most pulmonary diseases are either initiated by or at least aggravated by the inhalagion of particles and gases, the role of environmental factors in the development of respiratory disease is an area worthy of continued support. PMID:598343
Nano-crystalline porous tin oxide film for carbon monoxide sensing
NASA Technical Reports Server (NTRS)
Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)
2000-01-01
A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.
Polycrystalline-thin-film thermophotovoltaic cells
NASA Astrophysics Data System (ADS)
Dhere, Neelkanth G.
1996-02-01
Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto-electronic (infrared detectors, lasers, and optical communications) technologies. Low bandgaps and larger fluences employed in TPV cells result in very high current densities which make it difficult to collect the current effectively. Techniques for laser and mechanical scribing, integral interconnection, and multi-junction tandem structures which have been fairly well developed for thin-film PV solar cells could be further refined for enhancing the voltages from TPV modules. Thin-film TPV cells may be deposited on metals or back-surface reflectors. Spectral control elements such as indium-tin oxide or tin oxide may be deposited directly on the TPV convertor. It would be possible to reduce the cost of TPV technologies based on single-crystal materials being developed at present to the range of US 2-5 per watt so as to be competitive in small to medium size commercial applications. However, a further cost reduction to the range of US ¢ 35- 1 per watt to reach the more competitive large-scale residential, consumer, and hybrid-electric car markets would be possible only with the polycrystalline-thin film TPV cells.
Yan, Lili; Li, Zhichun; Sun, Mingxing; Shen, Guoqing; Li, Liang
2016-08-10
Semiconductor quantum dots (QDs) are suitable light absorbers for photocatalysis because of their unique properties. However, QDs generally suffer from poor photochemical stability against air, limiting their applications in photocatalysis. In this study, a stable solar-light-driven QDs-containing photocatalytic film was developed to facilitate photocatalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D). Highly stable CuInS2/ZnS:Al core/shell QDs (CIS/ZnS:Al QDs) were synthesized by doping Al into the ZnS shell and controlling ZnS:Al shell thickness; the CIS/ZnS:Al QDs were subsequently combined with TiO2 to form a CIS/ZnS:Al-TiO2 photocatalyst. The optimized ZnS:Al shell thickness for 1,3-D photodegradation was approximately 1.3 nm, which guaranteed and balanced the good photocatalytic activity and stability of the CIS/ZnS:Al-TiO2 photocatalyst. The photodegradation efficiency of 1,3-D can be maintained up to more than 80% after five cycles during recycling experiment. When CIS/ZnS:Al-TiO2 was deposited as photocatalytic film on a flexible polyethylene terephthalate substrate, over 99% of cis-1,3-D and 98% of trans-1,3-D were depleted as they passed through the film during 15 h of irradiation under natural solar light. This study demonstrated that the stable CIS/ZnS:Al-TiO2 photocatalyst both in powder and film form is a promising agent for photodegradation and emission reduction of soil fumigants.
Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells
NASA Astrophysics Data System (ADS)
Sancho-Martínez, Diego; Schmid, Martina
2017-11-01
Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10 × to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µm2 to 1 mm2). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grau, Mario, E-mail: mario.grau@hs-rm.de; Völklein, Friedemann; Meier, Andreas
A method for measuring the thermal accommodation coefficient α for surface-/gas interfaces is presented. It allows the determination of α for thin films produced by a variety of deposition technologies, such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition (ALD). The setup is based on two microelectromechanical systems (MEMS) Pirani sensors facing each other in a defined positioning. Because these MEMS sensors show a very high sensitivity in their individual molecular flow regimes, it is possible to measure the accommodation coefficients of gases without the disturbing influence of the transition regime. This paper presents the analytical backgroundmore » and the actual measurement principle. The results for air and nitrogen molecules on sputtered Au and Pt surfaces are presented.« less
Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films
Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc
2014-01-01
Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386
1988-04-01
Continue on reverse if necessary and identify by block number) Cluster beams offer a means of depositing high-quality thin films at low...either directly inclustered vapors of nonvolatile materials or Indirectly by bombarding the film duringdeposition with clusters of inert gases. When a...electron volt energy per atom. The suprathermal energy of thej depositing atoms is thought to produce unique thin films (either in quality, or in the ability
Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Bradley M.; Stuckelberger, Michael; Guthrey, Harvey
Statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilar behavior and variabilitymore » throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In(1-x)Gax)Se2Cu(In(1-x)Gax)Se2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. These results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells.« less
NASA Astrophysics Data System (ADS)
Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel
2016-05-01
Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).
Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases
Kusior, Anna; Trenczek-Zajac, Anita
2016-01-01
2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521
NASA Astrophysics Data System (ADS)
Mondal, Gopinath; Santra, Ananyakumari; Jana, Sumanta; Pramanik, Nimai Chand; Mondal, Anup; Bera, Pulakesh
2018-04-01
Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] ( 1) and/or [CuI(mdpa)2][CuICl2] ( 2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)-S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals. [Figure not available: see fulltext.
Iron doped LiCoPO4 thin films for lithium-ion microbatteries obtained by ns pulsed laser deposition
NASA Astrophysics Data System (ADS)
Smaldone, A.; Brutti, S.; De Bonis, A.; Ciarfaglia, N.; Santagata, A.; Teghil, R.
2018-07-01
Well crystallized and homogeneous iron doped LiCoPO4 (LCfP) thin films have been grown by ns Pulsed Laser Ablation, at ambient temperature without any substrate heating or post-annealing treatments. The films have been deposited in vacuum and in the presence of buffer gases (O2, Ar) and it has been found that their crystallinity, structure and morphology depend on pressure conditions. The films have been studied by Scanning Electron Microscopy and X Ray Diffraction, while their first steps of growth have been characterized by Transmission Electron Microscopy. A study of the plasma produced by the laser ablation in the different pressure conditions has been carried out with the aim of elucidate the mechanisms involved in the films deposition. LCfP thin films have been also tested as microelectrodes in lithium cells in galvanostatic condition for analyzing the reversibility of the lithium-ion battery.
A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases
NASA Astrophysics Data System (ADS)
Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.
2006-09-01
Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.
Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity
NASA Astrophysics Data System (ADS)
Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.
2012-11-01
Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.
Xu, Xueqing; Wan, Qingcui; Luan, Chunyan; Mei, Fengjiao; Zhao, Qian; An, Ping; Liang, Zhurong; Xu, Gang; Zapien, Juan Antonio
2013-11-13
Tetragonal CuInS2 (CIS) has been successfully deposited onto mesoporous TiO2 films by in-sequence growth of InxS and CuyS via a successive ionic layer absorption and reaction (SILAR) process and postdeposition annealing in sulfur ambiance. X-ray diffraction and Raman measurements showed that the obtained tetragonal CIS consisted of a chalcopyrite phase and Cu-Au ordering, which related with the antisite defect states. For a fixed Cu-S deposition cycle, an interface layer of β-In2S3 formed at the TiO2/CIS interface with suitable excess deposition of In-S. In the meantime, the content of the Cu-Au ordering phase decreased to a reasonable level. These facts resulted in the retardance of electron recombination in the cells, which is proposed to be dominated by electron transfer from the conduction band of TiO2 to the unoccupied defect states in CIS via exponentially distributed surface states. As a result, a relatively high efficiency of ~0.92% (V(oc) = 0.35 V, J(sc) = 8.49 mA cm(-2), and FF = 0.31) has been obtained. Last, but not least, with an overloading of the sensitizers, a decrease in the interface area between the sensitized TiO2 and electrolytes resulted in deceleration of hole extraction from CIS to the electrolytes, leading to a decrease in the fill factor of the solar cells. It is indicated that the unoccupied states in CIS with energy levels below EF0 of the TiO2 films play an important role in the interface electron recombination at low potentials and has a great influence on the fill factor of the solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Poplawsky, Jonathan D.; Tong, Ho Ming
K incorporation within grain boundaries, grain interiors, and interfaces has been studied within CuInSe 2 solar cells to better understand the beneficial or detrimental role of K distribution among these regions in chalcopyrite–based solar cells. Solar cells have been fabricated with intentional K introduction into specific regions of the device including the CuInSe 2/CdS interface (CuInSe 2/KInSe 2/CdS) and the grain interiors (Cu 0.93K 0.07InSe 2/CdS). A control CuInSe 2/CdS device was also studied to separate effects of K originating from the soda–lime glass substrate from those of intentionally introduced K. The experiment was designed to understand K effects inmore » Cu(In,Ga)Se 2 solar cells while mitigating complications from multiple elements in the 3 + site. The distribution of all elements within these samples has been directly observed with sub–nm resolution via atom probe tomography. In addition, electron beam–induced current measurements have been performed to correlate the atom probe tomography compositional profiles to the nanoscale carrier collection properties. The experiments show that a large decrease in the Cu/In ratio at the CdS interface can be achieved by forming KInSe 2 at the absorber surface, which drastically improves the device efficiency. The results presented here show a direct link between K concentration, Cu depletion, and In accumulation, such that the Cu/In ratio significantly reduces with K incorporation. In conclusion, the findings help clarify the mechanism behind K–induced efficiency enhancement.« less
Muzzillo, Christopher P.; Poplawsky, Jonathan D.; Tong, Ho Ming; ...
2018-06-06
K incorporation within grain boundaries, grain interiors, and interfaces has been studied within CuInSe 2 solar cells to better understand the beneficial or detrimental role of K distribution among these regions in chalcopyrite–based solar cells. Solar cells have been fabricated with intentional K introduction into specific regions of the device including the CuInSe 2/CdS interface (CuInSe 2/KInSe 2/CdS) and the grain interiors (Cu 0.93K 0.07InSe 2/CdS). A control CuInSe 2/CdS device was also studied to separate effects of K originating from the soda–lime glass substrate from those of intentionally introduced K. The experiment was designed to understand K effects inmore » Cu(In,Ga)Se 2 solar cells while mitigating complications from multiple elements in the 3 + site. The distribution of all elements within these samples has been directly observed with sub–nm resolution via atom probe tomography. In addition, electron beam–induced current measurements have been performed to correlate the atom probe tomography compositional profiles to the nanoscale carrier collection properties. The experiments show that a large decrease in the Cu/In ratio at the CdS interface can be achieved by forming KInSe 2 at the absorber surface, which drastically improves the device efficiency. The results presented here show a direct link between K concentration, Cu depletion, and In accumulation, such that the Cu/In ratio significantly reduces with K incorporation. In conclusion, the findings help clarify the mechanism behind K–induced efficiency enhancement.« less
Effect of composition on properties of In2O3-Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Demin, I. E.; Kozlov, A. G.
2017-06-01
The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.
Ion-Gated Gas Separation through Porous Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng
Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less
Ion-Gated Gas Separation through Porous Graphene
Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng; ...
2017-02-10
Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less
The effect of Na on Cu-K-In-Se thin film growth
NASA Astrophysics Data System (ADS)
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
2018-04-01
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ∼ 0.85 and K/(K + Cu) ∼ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu1-xKxInSe2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe2 + KInSe2 mixed-phase films. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S)2 absorbers to optimize both initial and long-term photovoltaic power generation.
The effect of Na on Cu-K-In-Se thin film growth
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
2018-02-27
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ~ 0.85 and K/(K + Cu) ~ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO 2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu 1-xK xInSe 2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe 2 + KInSe 2 mixed-phase films.more » Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe 2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe 2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe 2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S) 2 absorbers to optimize both initial and long-term photovoltaic power generation.« less
The effect of Na on Cu-K-In-Se thin film growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ~ 0.85 and K/(K + Cu) ~ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO 2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu 1-xK xInSe 2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe 2 + KInSe 2 mixed-phase films.more » Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe 2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe 2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe 2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S) 2 absorbers to optimize both initial and long-term photovoltaic power generation.« less
Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing
Presmanes, Lionel; Thimont, Yohann; el Younsi, Imane; Chapelle, Audrey; Blanc, Frédéric; Talhi, Chabane; Bonningue, Corine; Barnabé, Antoine; Menini, Philippe; Tailhades, Philippe
2017-01-01
P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde. PMID:28621738
Characterization of diamond thin films and related materials
NASA Astrophysics Data System (ADS)
McKindra, Travis Kyle
Thin carbon films including sputtered deposited graphite and CO 2 laser-assisted combustion-flame deposited graphite and diamond thin films were characterized using optical and electron microscopy, X-ray diffraction and micro-Raman spectroscopy. Amorphous carbon thin films were deposited by DC magnetron sputtering using Ar/O2 gases. The film morphology changed with the oxygen content. The deposition rate decreased as the amount of oxygen increased due to oxygen reacting with the growing film. The use of oxygen in the working gas enhanced the crystalline nature of the films. Graphite was deposited on WC substrates by a CO2 laser-assisted O2/C2H2 combustion-flame method. Two distinct microstructural areas were observed; an inner core of dense material surrounded by an outer shell of lamellar-like material. The deposits were crystalline regardless of the laser power and deposition times of a few minutes. Diamond films were deposited by a CO2 laser-assisted O 2/C2H2/C2H4 combustion-flame method with the laser focused parallel to the substrate surface. The laser enhanced diamond growth was most pronounced when deposited with a 10.532 microm CO2 laser wavelength tuned to the CH2-wagging vibrational mode of the C2H4 molecule. Nucleation of diamond thin films deposited with and without using a CO 2 laser-assisted combustion-flame process was investigated. With no laser there was nucleation of a sub-layer of grains followed by irregular grain growth. An untuned laser wavelength yielded nucleation of a sub-layer then columnar grain growth. The 10.532 microm tuned laser wavelength caused growth of columnar grains.
Influence of bias voltage on structural and optical properties of TiN{sub x} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Omveer, E-mail: poonia.omveer@gmail.com; Dahiya, Raj P.; Deenbandhu Chhotu Ram University of Science and Technology, Murthal – 131039
In the present work, Ti thin films were deposited on Si substrate using DC sputtering technique. Indigenous hot cathode arc discharge plasma system was used for nitriding over these samples, where the plasma parameters and work piece can be controlled independently. A mixture of H{sub 2} and N{sub 2} gases (in the ratio of 80:20) was supplied into the plasma chamber. The effect of bias voltage on the crystal structure, morphology and optical properties was investigated by employing various physical techniques such as X-ray Diffraction, Atomic Force Microscopy and UV-Vis spectrometry. It was found that bias voltage affects largely themore » crystal structure and band gap which in turn is responsible for the modifications in optical properties of the deposited films.« less
Experimental and numerical modeling of rarefied gas flows through orifices and short tubes
NASA Astrophysics Data System (ADS)
Gimelshein, S. F.; Markelov, G. N.; Lilly, T. C.; Selden, N. P.; Ketsdever, A. D.
2005-05-01
Flow through circular orifices with thickness-to-diameter ratios varying from 0.015 to 1.2 is studied experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to over 700. Good agreement between experimental and numerical results is observed for mass flow and thrust corrected for the experimental facility background pressure. For thick-to-thin orifice ratios of mass flow and thrust vs pressure, a minimum is established. The thick orifice propulsion efficiency is much higher than that of a thin orifice. The effects of edge roundness and surface specularity on a thick orifice specific impulse were found to be relatively small.
T-Burner Testing of Metallized Solid Propellants
1974-10-01
The heat exchanger reduces the temperature of the combustion products and, therefore, serves to decrease the pressure build up in the overall system by...transducer (4-5). The high temperature gases will not affect the flush mounted Kistler unit for duratiens of several seconds, with only a thin film of sili...Assume that the average speeds of the particles and gases are the same, and that the local value of p p/pg = C at the edge of the combustion zone is
Physics and chemistry of complex oxide etching and redeposition control
NASA Astrophysics Data System (ADS)
Margot, Joëlle
2012-10-01
Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.
NASA Astrophysics Data System (ADS)
Oishi, Y.; Kamei, A.; Murakami, K.; Dupuy, E.; Yokota, Y.; Hiraki, K.; Ninomiya, K.; Saito, M.; Yoshida, Y.; Morino, I.; Nakajima, T. Y.; Yokota, T.; Matsunaga, T.
2013-12-01
Greenhouse gases Observing SATellite (GOSAT) was launched in 2009 to measure the global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The presence of clouds in the instantaneous field-of-view (IFOV) of the FTS leads to incorrect estimates of the CO2 or CH4 concentration. To deal with this problem, the FTS data which are suspected to be cloud-contaminated must be identified and rejected. As a result, there are very few remaining FTS data in the region of tropical rainforest such as the Amazon. In the meanwhile the feasibility studies of GOSAT-2 started for more precise monitoring of atmospheric greenhouse gases than GOSAT in 2011. To improve the accuracy of estimates of the column-averaged dry air mole fraction of atmospheric CO2 (XCO2), we need to understand the present situation about cloud screening in the rain forest regions and to examine the cloud-contaminated data whose processing might be possible with improvement of instruments or algorithms. In this study we evaluated the impact of thin clouds on estimates of the XCO2 using an atmospheric radiative transfer code, which can simulate the spectrum at the top of the atmosphere under thin cloud conditions. First, we decided the input parameters, among which relative position of the sun and satellite to observation point, surface reflectance using cloud-free GOSAT data products in the Amazon, FTS L1B data products (radiance spectral data), FTS L2 data products (CO2 column abundance data), and CAI L3 data products (clear-sky reflectance data). The evaluation was performed by comparing depths of the CO2 absorption lines in output radiation spectra with varying CO2 concentrations and cloud conditions, cloud type, cloud optical depth, and cloud top altitude. We will present our latest results.
NASA Astrophysics Data System (ADS)
Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon
2018-03-01
We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.
NASA Astrophysics Data System (ADS)
Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon
2018-05-01
We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.
DiMeo, Jr., Frank; Baum, Thomas H.
2003-07-22
The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
Capturing Gases in Carbon Honeycomb
NASA Astrophysics Data System (ADS)
Krainyukova, Nina V.
2017-04-01
In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.
Effect of oxygen vacancies and strain on the phonon spectrum of HfO2 thin films
NASA Astrophysics Data System (ADS)
Gao, Lingyuan; Yalon, Eilam; Chew, Annabel R.; Deshmukh, Sanchit; Salleo, Alberto; Pop, Eric; Demkov, Alexander A.
2017-06-01
The effect of strain and oxygen deficiency on the Raman spectrum of monoclinic HfO2 is investigated theoretically using first-principles calculations. 1% in-plane compressive strain applied to a and c axes is found to blue shift the phonon frequencies, while 1% tensile strain does the opposite. The simulations are compared, and good agreement is found with the experimental results of Raman frequencies greater than 110 cm-1 for 50 nm HfO2 thin films. Several Raman modes measured below 110 cm-1 and previously assigned to HfO2 are found to be rotational modes of gases present in air ambient (nitrogen and oxygen). However, localized vibrational modes introduced by threefold-coordinated oxygen (O3) vacancies are identified at 96.4 cm-1 computationally. These results are important for a deeper understanding of vibrational modes in HfO2, which has technological applications in transistors and particularly in resistive random-access memory whose operation relies on oxygen-deficient HfOx.
The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaduman, Irmak; Barin, Özlem; Acar, Selim
2015-11-07
In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less
2018-01-01
ZnS shelling of I–III–VI2 nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I–III–VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials. PMID:29657360
Catalytic igniters and their use to ignite lean hydrogen-air mixtures
McLean, William J.; Thorne, Lawrence R.; Volponi, Joanne V.
1988-01-01
A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.
Solution-Based Fabrication of Polycrystalline Si Thin-Film Transistors from Recycled Polysilanes.
Sberna, Paolo M; Trifunovic, Miki; Ishihara, Ryoichi
2017-07-03
Currently, research has been focusing on printing and laser crystallization of cyclosilanes, bringing to life polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with outstanding properties. However, the synthesis of these Si-based inks is generally complex and expensive. Here, we prove that a polysilane ink, obtained as a byproduct of silicon gases and derivatives, can be used successfully for the synthesis of poly-Si by laser annealing, at room temperature, and for n- and p-channel TFTs. The devices, fabricated according to CMOS compatible processes at 350 °C, showed field effect mobilities up to 8 and 2 cm 2 /(V s) for n- and p-type TFTs, respectively. The presented method combines a low-cost coating technique with the usage of recycled material, opening a route to a convenient and sustainable production of large-area, flexible, and even disposable/single-use electronics.
Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin
2015-05-15
A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural changes of a-CNx thin films induced by thermal annealing
NASA Astrophysics Data System (ADS)
Aziz, Siti Aisyah Abd; Awang, Rozidawati
2018-04-01
In this work, amorphous carbon nitride (a-CNx) thin films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique at different RF powers of 60, 70, 80, 90 and 100 W for 30 min. These films were prepared using a mixture of acetylene (C2H2) at 20 sccm and nitrogen (N2) gases at 50 sccm. The films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The chemical bondings of the film were analyzed by Fourier Transform Infra-red Spectroscopy (FTIR) while surface morphology and film roughness were determined by Atomic Force Microscopy (AFM). The FTIR analysis reveals that annealing resulted in the loss of C-H and C-N bonds and formation of graphitic sp2C cluster with the dissociation of N and C in the films. AFM indicates that the film surface becomes less rough which effectually enhances structural modifications and the rearrangement of the microstructure of the films after annealing.
Separation of gases through gas enrichment membrane composites
Swedo, R.J.; Kurek, P.R.
1988-07-19
Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.
Separation of gases through gas enrichment membrane composites
Swedo, Raymond J.; Kurek, Paul R.
1988-01-01
Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.
ERIC Educational Resources Information Center
Gerrard, Donald L.
1984-01-01
Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…
Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai
2016-04-01
Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.
Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai
2016-01-01
Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356
Nguyen, Van Toan; Nguyen, Viet Chien; Nguyen, Van Duy; Hoang, Si Hong; Hugo, Nguyen; Nguyen, Duc Hoa; Nguyen, Van Hieu
2016-01-15
Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films
NASA Astrophysics Data System (ADS)
Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.
2013-10-01
This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.
Baeumer, Christoph; Xu, Chencheng; Gunkel, Felix; Raab, Nicolas; Heinen, Ronja Anika; Koehl, Annemarie; Dittmann, Regina
2015-01-01
Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle dependent X-ray photoelectron intensity ratios provides a unique tool to determine both termination and stoichiometry simultaneously in a straightforward experiment. Fitting the experimental angle dependence with a simple analytical model directly yields both values. The model is calibrated through the determination of the termination of SrTiO3 single crystals after systematic pulsed laser deposition of sub-monolayer thin films of SrO. We then use the model to demonstrate that during homoepitaxial SrTiO3 growth, excess Sr cations are consumed in a self-organized surface termination conversion before cation defects are incorporated into the film. We show that this termination conversion results in insulating properties of interfaces between polar perovskites and SrTiO3 thin films. These insights about oxide thin film growth can be utilized for interface engineering of oxide heterostructures. In particular, they suggest a recipe for obtaining two-dimensional electron gases at thin film interfaces: SrTiO3 should be deposited slightly Ti-rich to conserve the TiO2-termination. PMID:26189436
Modeling of a diode-pumped thin-disk cesium vapor laser
NASA Astrophysics Data System (ADS)
An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-03-01
A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.
Selective molecular sieving through porous graphene.
Koenig, Steven P; Wang, Luda; Pellegrino, John; Bunch, J Scott
2012-11-01
Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.
NASA Technical Reports Server (NTRS)
Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.
2009-01-01
Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.
Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films
NASA Astrophysics Data System (ADS)
Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu
2015-12-01
Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.
Chemical Changes in Layered Ferroelectric Semiconductors Induced by Helium Ion Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex; Burch, Matthew J.; Hysmith, Holland E.
Transitioning to multi-material systems as either interfaced 2D materials or 3D heterostructures can lead to the next generation multi-functional device architectures. Combined direct physical and chemical nanoscale control of these systems offers a new way to tailor material and device functionality as functional structures reach their physical limit. Transition metal thiophosphate (TPS), Cu 1-xIn 1+x/3P 2S 6, that have ferroelectric polarization behavior as layered crystals at room temperature and above make them attractive candidates for direct material sculpting of both chemical and functional properties. The bulk material exhibits stable ferroelectric polarization corroborated by domain structures, rewritable polarization, and hysteresis loops.more » Our previous studies have demonstrated that ferroic order persists on the surface and that spinoidal decomposition of ferroelectric and paraelectric phases occurs in non-stoichiometric Cu/In ratio formulations. Here, we elucidate the chemical changes induced through helium ion irradiation in the TPS family library with varying Cu/In ratio formulations using correlated AFM and ToF-SIMS imaging. We correlate nano- and micro- structures that scale, in area and volume, to the total dose of the helium ion beam, as well as the overall copper concentration in the sample. Furthermore, our ToF-SIMS results show that ion irradiation leads to oxygen penetration as a function of Cu concentration, and proceeds along the Cu domains to the stopping distance of the helium ions in the TPS material. These results opens up new opportunities to understand and implement ferroicly coupled van der Waal devices into an existing framework of 2D heterostructures by locally tuning material chemistry and functionality.« less
Chemical Changes in Layered Ferroelectric Semiconductors Induced by Helium Ion Beam
Belianinov, Alex; Burch, Matthew J.; Hysmith, Holland E.; ...
2017-11-30
Transitioning to multi-material systems as either interfaced 2D materials or 3D heterostructures can lead to the next generation multi-functional device architectures. Combined direct physical and chemical nanoscale control of these systems offers a new way to tailor material and device functionality as functional structures reach their physical limit. Transition metal thiophosphate (TPS), Cu 1-xIn 1+x/3P 2S 6, that have ferroelectric polarization behavior as layered crystals at room temperature and above make them attractive candidates for direct material sculpting of both chemical and functional properties. The bulk material exhibits stable ferroelectric polarization corroborated by domain structures, rewritable polarization, and hysteresis loops.more » Our previous studies have demonstrated that ferroic order persists on the surface and that spinoidal decomposition of ferroelectric and paraelectric phases occurs in non-stoichiometric Cu/In ratio formulations. Here, we elucidate the chemical changes induced through helium ion irradiation in the TPS family library with varying Cu/In ratio formulations using correlated AFM and ToF-SIMS imaging. We correlate nano- and micro- structures that scale, in area and volume, to the total dose of the helium ion beam, as well as the overall copper concentration in the sample. Furthermore, our ToF-SIMS results show that ion irradiation leads to oxygen penetration as a function of Cu concentration, and proceeds along the Cu domains to the stopping distance of the helium ions in the TPS material. These results opens up new opportunities to understand and implement ferroicly coupled van der Waal devices into an existing framework of 2D heterostructures by locally tuning material chemistry and functionality.« less
Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana
In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less
Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules
Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana; ...
2017-01-20
In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less
Controlled decomposition and oxidation: A treatment method for gaseous process effluents
NASA Technical Reports Server (NTRS)
Mckinley, Roger J. B., Sr.
1990-01-01
The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.
2004-01-01
Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
2016-04-16
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
Use of thin plastic films at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Lark, R. F.; Hoggatt, J. T.; Wiedekamp, K. E.; Shdo, J. G.
1972-01-01
Commercially available plastic film materials that remain flexible at cryogenic temperatures and resist failures caused by folds and wrinkles created during expulsion were investigated for use in expulsion bladders for liquefied gases. Compatible adhesive systems, fabrication techniques, and results of impact and dynamic loading tests are summarized.
Tang, Xiling; Remmel, Kurtis; Lan, Xinwei; Deng, Jiangdong; Xiao, Hai; Dong, Junhang
2009-09-15
Small size fiber optic devices integrated with chemically sensitive photonic materials are emerging as a new class of high-performance optical chemical sensor that have the potential to meet many analytical challenges in future clean energy systems and environmental management. Here, we report the integration of a proton conducting perovskite oxide thin film with a long-period fiber grating (LPFG) device for high-temperature in situ measurement of bulk hydrogen in fossil- and biomass-derived syngas. The perovskite-type Sr(Ce(0.8)Zr(0.1))Y(0.1)O(2.95) (SCZY) nanocrystalline thin film is coated on the 125 microm diameter LPFG by a facile polymeric precursor route. This fiber optic sensor (FOS) operates by monitoring the LPFG resonant wavelength (lambda(R)), which is a function of the refractive index of the perovskite oxide overcoat. At high temperature, the types and population of the ionic and electronic defects in the SCZY structure depend on the surrounding hydrogen partial pressure. Thus, varying the H(2) concentration changes the SCZY film refractive index and light absorbing characteristics that in turn shifts the lambda(R) of the LPFG. The SCZY-coated LPFG sensor has been demonstrated for bulk hydrogen measurement at 500 degrees C for its sensitivity, stability/reversibility, and H(2)-selectivity over other relevant small gases including CO, CH(4), CO(2), H(2)O, and H(2)S, etc.
NASA Technical Reports Server (NTRS)
Poppa, H.
1976-01-01
Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.
Tc depression and superconductor-insulator transition in molybdenum nitride thin films
NASA Astrophysics Data System (ADS)
Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.
2018-03-01
We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.
Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xufan; Lin, Ming-Wei; Lin, Junhao
Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less
Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; ...
2016-04-01
Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less
NASA Astrophysics Data System (ADS)
Döge, Stefan; Hingerl, Jürgen
2018-03-01
The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.
Method for localized deposition of noble metal catalysts with control of morphology
Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.
1998-01-01
A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.
Total absorption cross sections of several gases of aeronomic interest at 584 A.
NASA Technical Reports Server (NTRS)
Starr, W. L.; Loewenstein, M.
1972-01-01
Total photoabsorption cross sections have been measured at 584.3 A for N2, O2, Ar, CO2, CO, NO, N2O, NH3, CH4, H2, and H2S. A monochromator was used to isolate the He I 584 line produced in a helium resonance lamp, and thin aluminum filters were used as absorption cell windows, thereby eliminating possible errors associated with the use of undispersed radiation or windowless cells. Sources of error are examined, and limits of uncertainty are given. Previous relevant cross-sectional measurements and possible error sources are reviewed. Wall adsorption as a source of error in cross-sectional measurements has not previously been considered and is discussed briefly.
Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae
2017-04-19
In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.
Carbide derived carbon from MAX-phases and their separation applications
NASA Astrophysics Data System (ADS)
Hoffman, Elizabeth N.
Improved sorbents with increased selectivity and permeability are needed to meet growing energy and environmental needs. New forms of carbon based sorbents have been discovered recently, including carbons produced by etching metals from metal carbides, known as carbide derived carbons (CDCs). A common method for the synthesis of CDC is by chlorination at elevated temperatures. The goal of this work is to synthesize CDC from ternary carbides and to explore the links between the initial carbide chemistry and structure with the resulting CDCs properties, including porosity. CDC was produced from MAX-phase carbides, in particular Ti3SiC 2, Ti3AlC2, Ti2AlC, and Ta2AlC. Additionally, CDC was produced from Ta-based binary carbides, TaC and Ta 2C, and one carbo-nitride Ti2AlC0.5N0.5. The CDC structure was characterized using XRD, Raman microspectroscopy, and HRTEM. Porosity characterization was performed using sorption analysis with both Ar and N2 as adsorbates. It was determined the microporosity of CDC is related to the density of the initial carbide. The layered structure of the MAX-phase carbides lent toward the formation of larger mesopores within the resulting CDCs, while the amount of mesopores was dependent on the chemistry of the carbide. Furthermore, CDC produced from carbides with extremely high theoretical porosity resulted in small specific surface areas due to a collapse of the carbon structure. To expand the potential applications for CDC beyond powder and bulk forms, CDC membranes were produced from a thin film of TiC deposited by magnetron sputtering onto porous ceramic substrates. The TiC thin film was subsequently chlorinated to produce a bilayer membrane with CDC as the active layer. Both gases and liquids are capable of passing the membrane. The membrane separates based on selective adsorption, rather than a size separation molecular sieving effect. Two applications for CDC produced from MAX-phases were investigated: protein adsorption and gas separation. Sorbents capable of adsorbing large protein molecules efficiently are desirable for many medical applications, including the treatment of sepsis. Primarily mesoporous Ti2AlC-CDC and Ti3AlC2-CDC were proven to adsorb a significant amount of proteins compared to two current carbon adsorbents. When tested for gas separation, CDC was capable of selectively adsorbing gases including SF6, CO2, CH4, and H2. However, the gases were not separated based on their size, but rather on their interaction with the CDC surface.
One-year operation of TANSO-FTS on GOSAT and follow-on mission feasibility
NASA Astrophysics Data System (ADS)
Shiomi, Kei; Nakajima, Masakatsu; Kuze, Akihiko; Takeshima, Toshiaki; Kawakami, Shuji; Suto, Hiroshi
2017-11-01
The Greenhouse gases Observing SATellite (GOSAT) was developed to contribute to monitoring of carbon dioxide and methane from space [1]. The mission objectives are global greenhouse gas measurements from space with precision of 1 % for CO2 and 2 % for CH4 in seasonal mean. The GOSAT carries Thermal And Near infrared Sensor for carbon Observation (TANSO) for precise measurement of greenhouse gases. Main instrument is Fourier Transfer Spectrometer (TANSO-FTS) to observe atmospheric absorption spectra of CO2 and CH4 with high spectral resolution of 0.2 cm-1, broad wavelength coverage of 0.76 - 14.3 microns, wide swath of 790 km and frequent revisit of 3 days. Cloud and Aerosol Imager (TANSO-CAI) is simultaneously on board for cloud detection and correction of optical thin cirrus and aerosol interference within the FTS instantaneous field of view. The GOSAT satellite was launched by H2A-15 rocket on January 23, 2009. The Level 1B products of calibrated spectra were released from September 2009 in public. The Level 2 products of CO2 and CH4 column densities were released from February 2010 [2]. The normal observation data is acquired over one year regularly from April 2009. The mission lifetime is 5 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, C.; Blissett, C. D.; Diehl, G.
2008-07-15
Electron impact emission spectroscopy (EIES) has been proven to be a critical tool for film composition control during codeposition processes for the fabrication of multicomponent thin film materials including the high-efficiency copper-indium-gallium-diselenide photovoltaic cells. This technique is highly specific to atomic species because the emission spectrum of each element is unique, and the typical width of atomic emission lines is very narrow. Noninterfering emission lines can generally be allocated to different atomic species. However, the electron impact emission spectra of many molecular species are often broadband in nature. When the optical emission from an EIES sensor is measured by usingmore » a wavelength selection device with a modest resolution, such as an optical filter or monochromator, the emissions from common residual gases may interfere with that from the vapor flux and cause erroneous flux measurement. The interference is most pronounced when measuring low flux density with the presence of gases such as in reactive deposition processes. This problem is solved by using a novel EIES sensor that has two electron impact excitation sources in separate compartments but with one common port for optical output. The vapor flux is allowed to pass through one compartment only. Using a tristate excitation scheme and appropriate signal processing technique, the interfering signals from residual gases can be completely eliminated from the output signal of the EIES monitor for process control. Data obtained from Cu and Ga evaporations with the presence of common residual gases such as CO{sub 2} and H{sub 2}O are shown to demonstrate the improvement in sensor performance. The new EIES sensor is capable of eliminating the effect of interfering residual gases with pressure as high as in the upper 10{sup -5} Torr range.« less
Wada, Takao; Ueda, Noriaki
2013-01-01
The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843
Modulated infrared radiant source
NASA Technical Reports Server (NTRS)
Stewart, W. F.; Edwards, S. F.; Vann, D. S.; Mccormick, R. F.
1981-01-01
A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest.
Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.
Chaisitsak, Sutichai
2011-01-01
This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.
Stubenrauch, Cosima; Kashchiev, Dimo; Strey, Reinhard
2004-12-01
The thickness h of foam films can be measured as a function of the disjoining pressure Pi using a thin film pressure balance. Experimental Pi-h curves of foam films stabilized with nonionic surfactants measured at various concentrations resemble the p-V(m) isotherms of real gases measured at various temperatures (p is the pressure and V(m) is the molar volume of the gas). This observation led us to adopt the van der Waals approach for describing real gases to thin foam films, where the thickness h takes the role of V(m) and the disjoining pressure Pi replaces the ordinary pressure p. Our analysis results in a phase diagram for a thin foam film with spinodal, binodal as well as a critical point. The thicker common black film corresponds to the gas phase and the compact Newton black film for which the two surfaces are in direct contact corresponds to the dense liquid. We show that the tuning parameter for the phase behavior of the film is the surface charge density, which means that Pi-h curves should not be referred to as isotherms. In addition to the equilibrium properties the driving force for the phase transition from a common black film to a Newton black film or vice versa is calculated. We discuss how this transition can be controlled experimentally.
A mass transfer model of ethanol emission from thin layers of corn silage
USDA-ARS?s Scientific Manuscript database
Dairies may be important emission sources for volatile organic compounds (VOCs). Reactive organic gases (ROG) emissions from dairy farms are the second largest source responsible for ozone formation in the California’s San Joaquin Valley. Animal feed was found to be a major ROG emission source on da...
Fabrication and evaluation of polymeric early-warning fire-alarm devices. [combustion products
NASA Technical Reports Server (NTRS)
Senturia, S. D.
1975-01-01
The electrical resistivities were investigated of some polymers known to be enhanced by the presence of certain gases. This was done to make a device capable of providing early warning to fire through its response with the gases produced in the early phases of combustion. Eight polymers were investigated: poly(phenyl acetylene), poly(p-aminophenyl acetylene), poly(p-nitrophenyl acetylene), poly(p-formamidophenyl acetylene), poly(ethynyl ferrocene), poly(ethynyl carborane), poly(ethynyl pyridine), and the polymer made from 1,2,3,6 tetramethyl pyridazine. A total of 40 usable thin-film sandwich devices and a total of 70 usable interdigitated-electrode lock-and-key devices were fabricated. The sandwich devices were used for measurements of contact linearity, polymer conductivity, and polymer dielectric constant. The lock-and-key devices were used to determine the response of the polymers to a spectrum of gases that included ammonia, carbon nonoxide, carbon dioxide, sulfur dioxide, ethylene, acrolein, water vapor, and normal laboratory air. Strongest responses were to water vapor, ammonia, and acrolein, and depending on the polymer, weaker responses to carbon dioxide, sulfur dioxide, and carbon monoxide were observed. A quantitative theory of device operation, capable of accounting for observed device leakage current and sensitivity, was developed. A prototype detection/alarm system was designed and built for use in demonstrating sensor performance.
Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.
Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E
2015-12-09
Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and approaches that of the gas phase. The high sorption capacity and reversible dilation characteristics of the presented materials provide new directions for applications including gas sensors and gas separation membranes.
Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers.
Wang, Zefang; Chiu, Yi-Hsin; Honz, Kevin; Mak, Kin Fai; Shan, Jie
2018-01-10
van der Waals heterostructures formed by stacking two-dimensional atomic crystals are a unique platform for exploring new phenomena and functionalities. Interlayer excitons, bound states of spatially separated electron-hole pairs in van der Waals heterostructures, have demonstrated potential for rich valley physics and optoelectronics applications and been proposed to facilitate high-temperature superfluidity. Here, we demonstrate highly tunable interlayer excitons by an out-of-plane electric field in homobilayers of transition metal dichalcogenides. Continuous tuning of the exciton dipole from negative to positive orientation has been achieved, which is not possible in heterobilayers due to the presence of large built-in interfacial electric fields. A large linear field-induced redshift up to ∼100 meV has been observed in the exciton resonance energy. The Stark effect is accompanied by an enhancement of the exciton recombination lifetime by more than two orders of magnitude to >20 ns. The long recombination lifetime has allowed the creation of an interlayer exciton gas with density as large as 1.2 × 10 11 cm -2 by moderate continuous-wave optical pumping. Our results have paved the way for the realization of degenerate exciton gases in atomically thin semiconductors.
Elastic and optical properties of Cu2ZnSn(SexS1 - x)4 alloys: density functional calculations
NASA Astrophysics Data System (ADS)
Camps, I.; Coutinho, J.; Mir, M.; da Cunha, A. F.; Rayson, M. J.; Briddon, P. R.
2012-11-01
Cu2ZnSn(S1 - xSex)4 (CZT(S, Se)) is emerging as a very credible alternative to CuIn1 - xGaxSe2 (CIGS) as the absorber layer for thin film solar cells. The former compound has the important advantage of using abundant Zn and Sn instead of the expensive In and Ga. A better understanding of the properties of CZT(S, Se) is being sought through experimental and theoretical means. Thus far, however, very little is known about the fundamental properties of the CZT(S, Se) alloys. In this work, theoretical studies on the structural, elastic, electronic and optical properties of CZT(S, Se) alloys through first-principles calculations are reported. We use a density functional code (aimpro), along with the Padé parametrization for the local density approximation to the exchange correlation potential. For the alloying calculations we employed 64 atom supercells (approximately cubic) with a 2 × 2 × 2 k-point sampling set. These supercells possess a total of 32 chalcogen species and the CZTSexS1 - x alloys are described by using the ordered alloy approximation. Accordingly, to create a perfectly diluted alloying host, the species type of the 32 chalcogen sites is selected randomly with uniform probability x and 1 - x for Se and S, respectively. Properties of alloys (structural, elastic, electronic and optical) are obtained by averaging the results of ten supercell configurations generated for each composition. For each configuration, lattice vectors and atomic positions were allowed to relax (although enforcing the tetragonal lattice type) and the Murnaghan equation of state was fitted to the total energy data. The results presented here permit a better understanding of the properties of the CZT(S, Se) alloys which in turn result in the design of more efficient solar cells.
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
ELECTRON MICROSCOPIC OBSERVATION OF SPECIMENS UNDER CONTROLLED GAS PRESSURE
Heide, Hans Gunther
1962-01-01
A technique for encasing specimens in a thin gas layer during their observation in the Siemens Elmiskop I is described. All gases can be employed at pressures up to one atmosphere. Destruction of specimens can occur in the beam; all organic specimens are particularly liable to decompose. The conditions under which this can be avoided are given. A useful application of the technique allows one to prevent specimens from drying out, as they normally do in vacuum. A further application uses the controlled removal of carbon for thinning organic layers and for selective etching of organic materials. PMID:13905967
Babcock, W.C.; Friesen, D.T.
1988-11-01
Novel semipermeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.
Babcock, Walter C.; Friesen, Dwayne T.
1988-01-01
Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.
Silk Fibroin as Edible Coating for Perishable Food Preservation
NASA Astrophysics Data System (ADS)
Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.
2016-05-01
The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.
Silk Fibroin as Edible Coating for Perishable Food Preservation
Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.
2016-01-01
The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492
NASA Astrophysics Data System (ADS)
Loubat, Anaïs; Eypert, Céline; Mollica, Fabien; Bouttemy, Muriel; Naghavi, Negar; Lincot, Daniel; Etcheberry, Arnaud
2017-11-01
CIGS (Cu(In1-x,Gax)Se2) based devices are very efficient for photovoltaic conversion. A non-destructive optical study of CIGS is an important challenge as for evaluation of the material quality, and for device modeling. Spectroscopic Ellipsometry (SE) is well adapted for a quantitative characterization only if the handicaps of the roughness limitation, the oxidized surface, or the compositional gradient are minimized. For this SE study, ungraded and thin CIGS samples are prepared with GGI (x) ratio (=[Ga]/([Ga] + [In])) ranging from 0.15 to 0.60. Thanks to chemical engineering based on acidic bromine solution etching and/or HCl de-oxidation, the SE experiments are performed on flattened surfaces, and also, on as grown de-oxidized samples. Using assumptions based on XPS, AFM and SEM complementary characterizations, we give proof of oxide free flattening surfaces and chemical homogeneity in depth. Using these observations, the SE data are modeled on the basis of a three layer model using an Adachi/Tauc-Lorentz formula for the CIGS dispersion. The optical gap values are determined in good agreement with the x ratio measured by the other characterization techniques. SE is able to well estimate the thickness and roughness variations on each sample. Furthermore, the CIGS optical constant extracted on such reference flat surfaces are then applied to the as grown-de-oxidized surfaces, enabling to describe the SE data obtained on rougher surfaces. A complete consistency of the proposed model is shown as well as the capability of SE to be sensitive to the chemistry of the surface.
NASA Astrophysics Data System (ADS)
Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.
2015-02-01
A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.
Striped Electrodes for Solid-Electrolyte Cells
NASA Technical Reports Server (NTRS)
Richter, R.
1983-01-01
Striped thick-film platinum electrodes help insure lower overall cell resistance by permitting free flow of gases in gaps between stripes. Thickfilm stripes are also easier to fabricate than porous thin-film electrodes that cover entire surface. Possible applications for improved cells include oxygen production from carbon dioxide, extraction of oxygen from air, small fluidic pumping, sewage treatment, and fuel cells.
Tapered fibers embedded in silica aerogel.
Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A
2009-09-15
We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.
Surface modification of paper on a continuous atmospheric-pressure-plasma system
NASA Astrophysics Data System (ADS)
Cruz-Barba, Luis Emilio
Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.
Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors
Chaisitsak, Sutichai
2011-01-01
This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007
Solder extrusion pressure bonding process and bonded products produced thereby
Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.
1992-01-01
Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.
Solder extrusion pressure bonding process and bonded products produced thereby
NASA Astrophysics Data System (ADS)
Beavis, L. C.; Karnowsky, M. M.; Yost, F. G.
1990-04-01
The production of soldered joints are highly reliable and capable of surviving 10,000 thermal cycles between about -40 and 110 C. The process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.
Numerical study of electronic impact and radiation in sonoluminescence
NASA Astrophysics Data System (ADS)
Xu, Ning; Wang, Long; Hu, Xiwei
1998-02-01
A hydrodynamic simulation of pure argon single-bubble sonoluminescence including electron collisional ionization, recombination, and radiative energy loss has been performed. We find that near the moment that the bubble reaches its minimum radius the atoms inside a very thin layer around the origin of the bubble are strongly ionized, and the light emission occurs nearly simultaneously. Therefore we conclude that multiple ionization and recombination, which mainly occur in the thin layer of plasma, play a dramatically important role in the noble gas sonoluminescence. We also find that the temperature and the intensity of luminescence are not so high as those predicted by previous models, which consider only neutral gases.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul
2016-02-01
Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.
Germanium layers grown by zone thermal crystallization from a discrete liquid source
NASA Astrophysics Data System (ADS)
Yatsenko, A. N.; Chebotarev, S. N.; Lozovskii, V. N.; Mohamed, A. A. A.; Erimeev, G. A.; Goncharova, L. M.; Varnavskaya, A. A.
2017-11-01
It is proposed and investigated a method for growing thin uniform germanium layers onto large silicon substrates. The technique uses the hexagonally arranged local sources filled with liquid germanium. Germanium evaporates on very close substrate and in these conditions the residual gases vapor pressure highly reduces. It is shown that to achieve uniformity of the deposited layer better than 97% the critical thickness of the vacuum zone must be equal to l cr = 1.2 mm for a hexagonal arranged system of round local sources with the radius of r = 0.75 mm and the distance between the sources of h = 0.5 mm.
Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process
NASA Astrophysics Data System (ADS)
Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun
2009-03-01
During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, J.J.; Halpern, B.L.
1994-10-18
A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, Jerome J.; Halpern, Bret L.
1994-01-01
A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.
MEMS-based thin-film fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2003-10-28
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
NASA Astrophysics Data System (ADS)
Qi, Meng; Xiao, Jianrong; Gong, Chenyang; Jiang, Aihua; Chen, Yong
2018-01-01
Low concentrations (<1 at%) of hafnium doped into diamond-like thin films (Hf-DLC) were deposited on 316L stainless steel and silicon (1 0 0) substrates by magnetron sputtering to attain superior mechanical and tribological properties. Ar and CH4 were used as source gases. The microstructure, chemical composition, and morphology of the Hf-DLC thin films in various concentrations were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Results showed that Hf species transferred from the particulate microstructure to Hf carbide phases, and the surface roughness increased monotonically with increasing Hf concentration. Moreover, the hardness and elastic modulus exhibited high values when the doped Hf concentration was 0.42 at%. Similarly, the tribological behaviors and wear life of Hf-DLC thin films had a low friction coefficient and excellent wear resistance at 0.42 at% Hf concentration. Therefore, 0.42 at% Hf is an optimal doping concentration to improve the mechanical and tribological properties of DLC thin films. Generally, the use of low-concentration Hf doping into DLC thin films is novel, and the present results provide guidance for the selection of suitable and effective concentration to optimize Hf-DLC thin films with superior performance.
NASA Astrophysics Data System (ADS)
Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong
2017-11-01
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.
Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite
NASA Astrophysics Data System (ADS)
Jyoti, Kanaujiya, Neha; Varma, G. D.
2018-05-01
Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.
NASA Astrophysics Data System (ADS)
Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi
2018-01-01
The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.
Premixed Flame Propagation in an Optically Thick Gas
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Ronney, Paul D.
1993-01-01
Flame propagation in both the optically thin and the optically thick regime of radiative transport was studied experimentally using particle-laden gas mixtures. Data on flame shapes, propagation rates, peak pressure, maximum rate of pressure rise, and thermal decay in the burned gases are consistent with the hypothesis that, at low particle loadings, the particles act to increase the radiative loss from the gases, whereas at higher loadings, reabsorption of emitted radiation becomes significant. The reabsorption acts to decrease the net radiative loss and augment conductive heat transport. It is speculated that, in sufficiently large systems, in which the absorption length is much smaller than the system size, flammability limits might not exist at microgravity conditions because emitted radiation would not constitute a loss mechanism.
Making Single-Source Precursors of Ternary Semiconductors
NASA Technical Reports Server (NTRS)
Hepp, Aloysius; Banger, Kulbindre K.
2007-01-01
A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. A closely related class of single-source precursors of these semiconductors, and their synthesis routes, were reported in "Improved Single-Source Precursors for Solar-Cell Absorbers" (LEW-17445-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 56. The present synthesis route is better suited to commercialization because it is simpler and involves the use of commercially available agents, yet offers the flexibility needed for synthesis of a variety of precursors. A single-source precursor of the type of interest here is denoted by the general formula L2M'(mu-ER)2M(ER)2, where L signifies a Lewis base; M signifies Al, In, or Ga; M' signifies Ag or Cu; R signifies an alkyl, aryl, silyl, or perfluorocarbon group; E signifies O, S, Se, or Te; and mu signifies a bridging ligand. This compound can be synthesized in a "one-pot" procedure from ingredients that are readily available from almost any chemical supplier. In a demonstration, the following synthesis was performed: Under anaerobic conditions, InCl3 was reacted with sodium ethanethiolate in methanol in a 1:4 molar ratio to afford the ionic stable intermediate compound Na+[In(SEt)4]- (where Et signifies ethyl group). After approximately 15 minutes, a heterogeneous solution of CuCl and the Lewis base PPh3 (where Ph signifies phenyl) in a 1:2 ratio in a mixture of CH3CN and CH2Cl2 was added directly to the freshly prepared Na+[In(SEt)4]-. After 24 hours, the reaction was essentially complete. The methanolic solution was concentrated, then the product was extracted with CH2Cl2, then the product was washed with dry ether and pentane. The product in its final form was a creamy white solid. Spectroscopic and elemental analysis confirmed that the product was (PPh3)2Cu(mu-SEt)2In(mu-SEt)2, which is known to be a precursor of the ternary semiconductor CuInS2.
NASA Astrophysics Data System (ADS)
Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.
2013-05-01
Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic system had a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
NASA Astrophysics Data System (ADS)
Theil, Jeremy Alfred
The motivation of this thesis is to discuss the major issues of remote plasma enhanced chemical vapor deposition (remote PECVD) that affect the properties Si-based thin films. In order to define the issues required for process optimization, the behavior of remote PECVD process must be understood. The remote PECVD process is defined as having four segments: (1) plasma generation, (2) excited species extraction, (3) excited species/downstream gas mixing, and (4) surface reaction. The double Langmuir probe technique is employed to examine plasma parameters under 13.56 MHz and 2.54 GHz excitation. Optical emission spectroscopy is used to determine changes in the excited states of radiating species in the plasma afterglow. Mass spectrometry is used to determine the excitation and consumption of process gases within the reactor during film growth. Various analytical techniques such as infrared absorption spectroscopy, (ir), high resolution transmission electron microscopy, (HRTEM), and reflected high energy electron diffraction, (RHEED), are used to ascertain film properties. The results of the Langmuir probe show that plasma coupling is frequency dependent and that the capacitive coupling mode is characterized by orders of magnitude higher electron densities in the reactor than inductive coupling. These differences can be manifested in the degree to which a hydrogenated amorphous silicon, a-Si:H, component co-deposition reaction affects film stoichiometry. Mass spectrometry shows that there is an additional excitation source in the downstream glow. In addition the growth of microcrystalline silicon, muc-Si, is correlated with the decrease in the production of disilane and heavier Si-containing species. Chloronium, H_2 Cl^{+}, a super acid ion is identified for the first time in a CVD reactor. It forms from plasma fragmentation of SiH_2 Cl_2, and H_2 . Addition of impurity gases was shown not to affect the electron temperature of the plasma. By products of deposition reactions can affect film properties by post -deposition reactions with the film. In the case of SiO _2 film growth, residual H _2O is shown to create OH groups within the film by reacting with distorted Si-O-Si bonding groups.
CO2 Acquisition Membrane (CAM)
NASA Technical Reports Server (NTRS)
Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus
2003-01-01
The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport mechanisms. The Membrane Test Facility (MTF) has been developed to measure membrane permeance over a wide range of temperature and pressure. The facility uses two volume compartments separated by the membrane that are instrumented to measure temperature, delta pressure across the membrane, and gas composition. A thermal shroud supports and encloses the membrane, and provides temperature control. Methods were developed to determine membrane permeance using the first order decay of the pressure difference between the sealed compartments, using the total pressure for pure gases, and partial pressure of each species in gas mixtures. The technique provides an end-to-end measurement of gas permeance that includes concentration polarization effects. Experiments have shown that in addition to membrane permeance properties, the geometry and design of associated structures play an important role in how membrane systems will function on Mars.
Ormerod, J G; Nesbakken, T; Beale, S I
1990-01-01
The green sulfur bacterium Chlorobium vibrioforme contains two types of bacteriochlorophyll (Bchl). The minor pigment, Bchl a, is associated primarily with the cell membrane and its reaction centers; and the major light-harvesting antenna pigment, Bchl d, is found primarily in the chlorosomes, which are attached to the inner surface of the cell membrane. Anesthetic gases, such as N2O, ethylene, and acetylene, were found to inhibit the synthesis of Bchl d, but not of Bchl a, thus allowing the cells to grow at high light intensities with a greatly diminished content of antenna pigment. Chlorosomes were absent or sparse in inhibited cells. Porphyrins accumulated in the inhibited cells. The major one was identified as the Bchl precursor magnesium-protoporphyrin IX monomethyl ester (Mg-PPME) by comparative absorption and fluorescence spectroscopy and thin-layer chromatography of the porphyrin and its derivatives with those of authentic protoporphyrin IX. Small amounts of Mg-PPME were present in control cells, but the addition of inhibitor caused a rapid increase in the Mg-PPME concentration, accompanying the inhibition of Bchl d synthesis. Cells grown in the presence of ethephon (as a source of ethylene) and allowed to stand in dim light for long periods accumulated large amounts of PPME and other porphyrins and excreted or released porphyrins, which accumulated as a brown precipitate in the culture. Inhibition of Bchl d synthesis was relieved upon removal of the inhibitor. These results suggest that the gases act at a step in pigment biosynthesis that affects the utilization of Mg-PPME for isocyclic ring formation. Synthesis of Bchl d and Bchl a may be differentially affected by the gases because of compartmentation of their biosynthetic apparatus or because competition for precursors favors Bchl a synthesis. An ethephon-resistant mutant strain was isolated by selection for growth in dim, long-wavelength light. The mutant cells were also resistant to acetylene, but not to N2O. The ability to reversibly generate viable Chlorobium cells that lack antenna pigments may be useful in photosynthesis research. The ethephon- and acetylene-resistant strain may be useful in the study of the enzymes and genes that are involved in the biosynthetic step that the gases affect. Images FIG. 2 PMID:2307651
NASA Astrophysics Data System (ADS)
Pires, Jose Miguel Alves Correia
Nos ultimos anos tem-se assistido a um aumento dos investimentos na investigacao de novos materiais para aplicacao em sensores. Apesar de ja existir um bom numero de dispositivos explorados comercialmente, muitas vezes, quer devido aos elevados custos de producao, quer devido a uma crescente exigencia do ponto de vista das caracteristicas de funcionamento, continua a ser necessario procurar novos materiais ou novas formas de producao que permitam baixar os custos e melhorar o desempenho dos dispositivos. No campo dos sensores de gases tem-se verificado continuos avancos nos ultimos anos. Continua todavia a ser necessario conhecer melhor, tanto os processos de producao dos materiais, como os mecanismos que regulam a sensibilidade dos dispositivos aos gases, de modo a orientar adequadamente a investigacao dos novos materiais, nomeadamente no que se refere a optimizacao dos parâmetros que nao satisfazem ainda os requisitos do mercado. Um dos materiais que tem mostrado melhores qualidades para aplicacao em sensores de gases de tipo resistivo e o dioxido de estanho. Este material tem sido produzido sob diversas formas e usando diferentes tecnicas, como sejam: sol-gel [1], pulverizacao catodica (sputtering) por magnetrao [2-4], sinterizacao de pos [5, 6], ablacao laser [7] ou RGTO [8]. Os resultados obtidos revelam que as caracteristicas dos dispositivos sao muito dependentes das tecnicas usadas na sua producao. A deposicao usando sputtering reactivo por magnetrao e uma tecnica que permite obter filmes finos de oxido de estanho com diferentes caracteristicas, quer do ponto de vista da estrutura, quer da composicao, e por isso, tambem, com diferentes sensibilidades aos gases. No âmbito deste trabalho, foram produzidos filmes de SnO2 usando sputtering DC reactivo com diferentes condicoes de deposicao. Os substratos usados foram lâminas de vidro e o alvo foi estanho com 99.9% de pureza. Foi estudada a influencia da atmosfera de deposicao, da pressao parcial do O2, da temperatura do substrato e da potencia da descarga na estrutura do material depositado. Durante a deposicao, alem dos parâmetros ja referidos, foram tambem registados a pressao de base antes da entrada dos gases de sputtering, os fluxos de oxigenio e argon durante a deposicao, a distância alvo-substrato, o tempo de deposicao, a corrente e a tensao aplicadas ao magnetrao. Foram feitas algumas experiencias usando uma fonte RF, para comparacao. (Abstract shortened by ProQuest.).
Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sukhwinder, E-mail: ss7667@gmail.com; Saini, G. S. S.; Tripathi, S. K.
2016-05-06
The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrheniusmore » plotsare used to find the thermal activation energy.« less
Solder extrusion pressure bonding process and bonded products produced thereby
Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.
1992-06-16
Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.
Preparation of titanium dioxide films by sol-gel route for gas sensors
NASA Astrophysics Data System (ADS)
Schiopu, Vasilica; Matei, Alina; Cernica, Ileana; Podaru, Cecilia
2009-01-01
Semiconductor oxides such as SnO2, TiO2, WO3, ZnO2 etc. have been shown to be useful as gas sensor materials for monitoring various pollutant gases like H2S, NOx, NH3 etc. In this work, we would like to present the preparation of titanium dioxide films for gas sensor application, via the sol-gel technique. The coating solution was prepared by using titanium isopropoxide precursor, which was hydrolyzed with distilled water under the catalytic effect of different acids (HNO3, HCl or CH3COOH). Titanium dioxide films have been deposited using spin coating method and then synthesized at different temperatures. Fourier transform infrared spectroscopy observation has been used to analyze the sol-gel process. The morphology and the structure of the thin films were analyzed.
Detection techniques for tenuous planetary atmospheres
NASA Technical Reports Server (NTRS)
Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.
1974-01-01
The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.
Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas
2017-01-01
Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.
Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan
2011-12-01
Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.
From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2003-12-01
The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.
Blowing Carbon Nanotubes to Carbon Nanobulbs
NASA Astrophysics Data System (ADS)
Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.
2004-09-01
We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.
Optical monitoring of gases with cholesteric liquid crystals.
Han, Yang; Pacheco, Katherine; Bastiaansen, Cees W M; Broer, Dirk J; Sijbesma, Rint P
2010-03-10
A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The concept is demonstrated for monitoring carbon dioxide via reversible carbamate formation and for oxygen using the irreversible oxidation of a chiral dithiol to a disulfide. Monitoring of CO(2) was achieved by doping a commercial cholesteric liquid crystalline mixture (E7) with 1.6% mol of the 1:1 complex of an optically pure diamine with a TADDOL derivative. Upon exposure to carbon dioxide, the reflection band of a thin film of the mixture shifted from 637 to 495 nm as a consequence of dissociation of the complex after carbamate formation of the diamine. An O(2) monitor was obtained by doping E7 with a chiral binaphthyl dithiol derivative and a nonresponsive codopant. The reflection band of the oxygen monitor film changed from 542 to 600 nm, due to the conformational change accompanying oxidation of the dithiol to disulfide. These monitoring mechanisms hold promise for application in smart packaging, where carbon dioxide and oxygen are of special interest because of their roles in food preservation.
Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering
NASA Astrophysics Data System (ADS)
Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong
2012-02-01
Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.
NASA Astrophysics Data System (ADS)
Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.
2015-11-01
The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.
Physical Vapor Deposition of Thin Films
NASA Astrophysics Data System (ADS)
Mahan, John E.
2000-01-01
A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam
An Introduction to Atomic Layer Deposition with Thermal Applications
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2015-01-01
Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.
NASA Technical Reports Server (NTRS)
Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.
1976-01-01
Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.
Study of sensing properties of SnO2 prepared by spray-pyrolysis deposition towards ethanol gas
NASA Astrophysics Data System (ADS)
Saadaldin, Nasser M.; Hussain, Nabiha; AlZouabi, Abla
2018-05-01
Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, in this study, thin films of (SnO2) were deposited by using the thermal spray method (SPD) on quartz at 450°C substrate temperature using tin chloride SnCl2.2H2O, (1.0M). A gas sensor was constructed with the prepared SnO2, used to detect ethanol gas and some other gases. The films were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The grain size was calculated the results showed nanostructure polycrystalline and crystallize in a tetragonal, S.G:P42/m nm, reaching grain Size approximately 27nm. The sensing properties of the films were studied towards ethanol at different concentrations ranging within (1-200 ppm,) the results showed that the sensitivity of the film increases with the concentration of ethanol, the best operating temperature reached about 300 °C, We studied the sensing properties of the films towards Ethanol alcohol gas, The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, high selectivity and sensitivity of the film towards ethanol gas was found compared to other tested toxic gases such as methanol gas, acetone and methylbenzene. Yet an upto-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking.
Zhong, Haizheng; Bai, Zelong; Zou, Bingsuo
2012-11-01
In the past 5 years, colloidal I-III-VI nanocrystals such as CuInS2, CuInSe2, and AgInS2 have been intensively investigated for the potential to replace commonly available colloidal nanocrystals containing toxic elements in light-emitting and solar-harvesting applications. Many researchers from different disciplines are working on developing new synthetic protocols, performing spectroscopic studies to understand the luminescence mechanisms, and exploring various applications. To achieve enhanced performance, it is very desirable to obtain high-quality materials with tunable luminescence properties. In this Perspective, we highlight the current progress on tuning the luminescence properties of I-III-VI nanocrystals, especially focusing on the advances in the synthesis, spectroscopic properties, as well as the primary applications in light-emitting devices and bioimaging techniques. Finally, we outline the challenges concerning luminescent I-III-VI NCs and list a few important research tasks in this field.
21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood gases (PCO2, PO2) and blood pH test system... Test Systems § 862.1120 Blood gases (PCO2, PO2) and blood pH test system. (a) Identification. A blood gases (PCO2, PO2) and blood pH test system is a device intended to measure certain gases in blood, serum...
Gas Sensing Properties of ZnO-SnO2 Nanostructures.
Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen
2015-02-01
One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Venkata Saravanan, K.; Raju, K. C. James
2014-03-01
The surface chemical states of RF-magnetron sputtered Ba0.5Sr0.5TiO3 (BST5) thin films deposited at different oxygen mixing percentage (OMP) was examined by x-ray photoelectron spectroscopy. The O1s XPS spectra indicate the existence of three kinds of oxygen species (dissociated oxygen ion O2 -, adsorbed oxide ion O- and lattice oxide ion O2-) on the films’ surface, which strongly depends on OMP. The presence of oxygen species other than lattice oxygen ion makes the films’ surface highly reactivity to atmospheric gases, resulting in the formation of undesired surface layers. The XPS results confirm the formation of surface nitrates for the films deposited under oxygen deficient atmosphere (OMP ≦̸ 25%), whereas the films deposited in oxygen rich atmosphere (OMP ≧̸ 75%) show the presence of metal-hydroxide. The influence of a surface dead layer on the tunable dielectric properties of BST5 films have been studied in detail and are reported. Furthermore, our observations indicate that an optimum ratio of Ar:O2 is essential for achieving desired material and dielectric properties in BST5 thin films. The films deposited at 50% OMP have the highest dielectric tunability of ~65% (@280 kV cm-1), with good ɛ r-E curve symmetry of 98% and low tan δ of 0.018. The figure of merit for these films is about 35, which is promising for frequency agile device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakhri, M.; Goerrn, P.; Riedl, T.
2011-09-19
Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organicmore » light emitting diode displays.« less
Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P; Liyanage, Geethika K; Ellingson, Randy J; Heben, Michael J; Marsillac, Sylvain; Collins, Robert W; Podraza, Nikolas J
2018-01-16
Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In 1- x Ga x )₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε₁ - iε₂, spectra. Here, RTSE has been used to obtain the (ε₁, ε₂) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents ( x ) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε₁, ε₂) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x . From the resulting database of polynomial coefficients, the (ε₁, ε₂) spectra can be generated for any composition of IGS from the single parameter, x . The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε₁, ε₂) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control.
Bio-green synthesis of Fe doped SnO2 nanoparticle thin film
NASA Astrophysics Data System (ADS)
Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.
2017-05-01
Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.
NASA Astrophysics Data System (ADS)
Maeda, Tsuyoshi; Yu, Ying; Chen, Qing; Ueda, Kenta; Wada, Takahiro
2017-04-01
We synthesized Cu-poor Cu-Ga-S samples such, as CuGaS2 and CuGa5S8 with the composition of (1 - x)Cu2S-(x)Ga2S3 with 0.5 ≤ x ≤ 1.0, by a mechanochemical process and sequential heating. The crystal structure changes from tetragonal chalcopyrite-type CuGaS2 (0.5 ≤ x ≤ 0.55) to tetragonal stannite-type CuGa5S8 (x = 0.8). For samples with 0.60 ≤ x ≤ 0.75, the diffraction peaks were identified to be those of a mixed phase of the chalcopyrite- and stannite-type structures. The band-gap energies of Cu-poor Cu-Ga-S samples increase in a stepwise manner with increasing x. The band-gap energy of CuGa5S8 (x = 0.8) with the tetragonal stannite-type structure is approximately 2.66 eV, which is wider than that of chalcopyrite-type CuGaS2 (2.45 eV). The energy levels of valence band maxima (VBMs) were estimated from the ionization energies measured by photoemission yield spectroscopy (PYS). The energy levels of the VBM and conduction band minimum (CBM) of the Cu-poor Cu-Ga-S samples decrease significantly with increasing x (decreasing Cu/Ga ratio). The energy level of the VBM of CuGaS2 (-5.8 eV) is considerably deeper than those of CuInSe2 (-5.2 eV) and CuInS2 (-5.5 eV). The VBM of stannite-type CuGa5S8 with x = 0.8 (-6.4 eV) is much deeper than that of chalcopyrite-type CuGaS2 (-5.8 eV) and stannite-type CuIn3Se5 (-5.6 eV). In order to understand the band structures of chalcopyrite-type CuGaS2 and stannite-type CuGa5S8, we performed first-principles calculations using the Heyd-Scuseria-Ernzerhof (HSE06), nonlocal screened hybrid density functional method. The theoretical band-gap energy of stannite-type CuGa5S8 (2.2 eV) is wider than that of chalcopyrite-type CuGaS2 (2.0 eV). Both the theoretical and experimental band gaps of stannite-type CuGa5S8 are about 0.2 eV wider than those of chalcopyrite-type CuGaS2.
Microscopic observation of laser glazed yttria-stabilized zirconia coatings
NASA Astrophysics Data System (ADS)
Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.
2010-08-01
Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.
Highly-Stable Li₄Ti₅O12 Anodes Obtained by Atomic-Layer-Deposited Al₂O₃.
Yoon, Jae Kook; Nam, Seunghoon; Shim, Hyung Cheoul; Park, Kunwoo; Yoon, Taeho; Park, Hyung Sang; Hyun, Seungmin
2018-05-16
LTO (Li₄Ti₅O 12 ) has been highlighted as anode material for next-generation lithium ion secondary batteries due to advantages such as a high rate capability, excellent cyclic performance, and safety. However, the generation of gases from undesired reactions between the electrode surface and the electrolyte has restricted the application of LTO as a negative electrode in Li-ion batteries in electric vehicles (EVs) and energy storage systems (ESS). As the generation of gases from LTO tends to be accelerated at high temperatures (40⁻60 °C), the thermal stability of LTO should be maintained during battery discharge, especially in EVs. To overcome these technical limitations, a thin layer of Al₂O₃ (~2 nm thickness) was deposited on the LTO electrode surface by atomic layer deposition (ALD), and an electrochemical charge-discharge cycle test was performed at 60 °C. The capacity retention after 500 cycles clearly shows that Al₂O₃-coated LTO outperforms the uncoated one, with a discharge capacity retention of ~98%. TEM and XPS analyses indicate that the surface reactions of Al₂O₃-coated LTO are suppressed, while uncoated LTO undergoes the (111) to (222) phase transformation, as previously reported in the literature.
Goff, F.; Janik, C.J.
2002-01-01
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300??C) consist of roughly 98.5 mo1% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ??13C-CO2 values (-3 to -5???) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ???1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982-1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987-1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone). Published by Elsevier Science B.V.
Bound exciton and free exciton states in GaSe thin slab.
Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng
2016-09-22
The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.
Nonequilibrium gas absorption in rotating permeable media
NASA Astrophysics Data System (ADS)
Baev, V. K.; Bazhaikin, A. N.
2016-08-01
The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.
NASA Astrophysics Data System (ADS)
Kim, TaeWan; Mun, Jihun; Park, Hyeji; Joung, DaeHwa; Diware, Mangesh; Won, Chegal; Park, Jonghoo; Jeong, Soo-Hwan; Kang, Sang-Woo
2017-05-01
Semiconducting two-dimensional (2D) materials, particularly extremely thin molybdenum disulfide (MoS2) films, are attracting considerable attention from academia and industry owing to their distinctive optical and electrical properties. Here, we present the direct growth of a MoS2 monolayer with unprecedented spatial and structural uniformity across an entire 8 inch SiO2/Si wafer. The influences of growth pressure, ambient gases (Ar, H2), and S/Mo molar flow ratio on the MoS2 layered growth were explored by considering the domain size, nucleation sites, morphology, and impurity incorporation. Monolayer MoS2-based field effect transistors achieve an electron mobility of 0.47 cm2 V-1 s-1 and on/off current ratio of 5.4 × 104. This work demonstrates the potential for reliable wafer-scale production of 2D MoS2 for practical applications in next-generation electronic and optical devices.
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-06
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
NASA Astrophysics Data System (ADS)
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-01
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
Pd-Ni-MWCNT nanocomposite thin films: preparation and structure
NASA Astrophysics Data System (ADS)
Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil
2017-08-01
The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.
Climatology analysis of cirrus cloud in ARM site: South Great Plain
NASA Astrophysics Data System (ADS)
Olayinka, K.
2017-12-01
Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)
Huang, Yu-Chih; Yang, Po-Yu; Huang, Hau-Yuan; Wang, Shui-Jinn; Cheng, Huang-Chung
2012-07-01
The influence of the thermal annealing on the amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) under different ambient gases has been systematically addressed. The chemical bonding states and transfer characteristics of a-IGZO TFTs show evident dependence on the annealing ambient gas. For the a-IGZO TFTs in the oxygen ambient annealing at 250 degrees C for 30 mins exhibited a maximum field effect mobility (max muFE) of 9.36 cm2/V x s, on/off current ratio of 6.12 x 10(10), and a subthreshold slope (SS) of 0.21 V/decade. Respectively, the as-deposited ones without annealing possess a max muFE of 6.61 cm2/V x s, on/off current ratio of 4.58 x 10(8), and a SS of 0.46 V/decade. In contrast, the a-IGZO TFTs annealed at 250 degrees C for 30 mins in the nitrogen ambient would be degraded to have a max muFE of 0.18 cm2/V x s, on/off current ratio of 2.22 x 10(4), and a SS of 7.37 V/decade, corresponding. It is attributed to the content of the oxygen vacancies, according the x-ray photoelectron spectroscopy (XPS) analyze of the three different samples.
Optical Physics of Cu(In,Ga)Se2 Solar Cells and Their Layer Components
NASA Astrophysics Data System (ADS)
Ibdah, Abedl-Rahman
Polycrystalline Cu(In1-xGax)Se 2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (epsilon1, epsilon 2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (epsilon 1, epsilon2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm x 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (epsilon1, epsilon2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.
Triton Hopper: Exploring Neptune's Captured Kuiper Belt Object
NASA Technical Reports Server (NTRS)
Oleson, Steve; Landis, Geoffrey
2018-01-01
Neptune's moon Triton is a fascinating object, a dynamic moon with an atmosphere, and geysers. Triton is unique in the outer solar system in that it is most likely a captured Kuiper belt object (KBO), a leftover building block of the solar system. When Voyager flew by it was the coldest body yet found in our solar system (33 degrees Kelvin) and had volcanic activity, geysers, and a thin atmosphere. It is covered in ices made from nitrogen, water, and carbon-dioxide, and shows surface deposits of tholins, organic compounds that may be precursor chemicals to the origin of life. Exploring Triton will be a challenge well beyond anything done in previous missions; but the unique environment of Triton also allows some new possibilities for mobility. We developed a conceptual design of a Triton Hopping probe that both analyzes the surface and collects it for use to propel its hops. The Hopper would land near the South Pole in 2040 where geysers have been detected. Depending the details of propulsion chosen the Hopper should be able to jump over 300 kilometers in 60 hops or less, exploring the surface and thin atmosphere on its way. This craft will autonomously carry out detailed scientific investigations on the surface, below the surface (drilling) and in the upper atmosphere to provide unprecedented knowledge of a KBO-turned moon and expanding NASA's existing capabilities in deep space planetary exploration to include Hoppers using different ices for propellant. Triton is roughly 2700 kilometers in diameter with a surface of mostly frozen nitrogen, mostly water ice crust and core of metal and rock. Its gravity is half that of Earth's Moon and its atmosphere is 170,000th of Earth's or 0.3 of Mars.The mission concept studied investigated the full surface and atmospheric phenomenon: chemical composition of surface and near subsurface materials, the thin atmosphere, volcanic and geyser activity. Measurements of all these aspects of Triton's unique environment can only be made through focused in-situ exploration with a well-instrumented craft. And this craft will be provided revolutionary mobility, nearly global, using in-situ ices as propellants. While other concepts have looked at gathering gases at Mars to propel a hopper, long periods of time are needed to gather the thin CO2 atmosphere. Several gases, mainly nitrogen are on the surface in a readily dense ice form and just need to be picked up, vaporized and used for propellant.
Ambient effect on thermal stability of amorphous InGaZnO thin film transistors
NASA Astrophysics Data System (ADS)
Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan
2016-12-01
The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.
RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition
NASA Astrophysics Data System (ADS)
Chopade, S. S.; Barve, S. A.; Thulasi Raman, K. H.; Chand, N.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Lodha, G. S.; Rao, G. M.; Patil, D. S.
2013-11-01
Yttrium oxide (Y2O3) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 °C. The films have been deposited under influence of varying RF self-bias (-50 V to -175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2O3 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y2O3. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y2O3 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y2O3 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness.
Polarization fatigue of organic ferroelectric capacitors
Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.
2014-01-01
The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542
Ultrasonic thermometry using pulse techniques.
NASA Technical Reports Server (NTRS)
Lynnworth, L. C.; Carnevale, E. H.
1972-01-01
Ultrasonic pulse techniques have been developed which, when applied to inert gases, provide temperature measurements up to 8000 K. The response time can be less than 1 msec. This is a significant feature in studying shock-heated or combusting gases. Using a momentary contact coupling technique, temperature has been measured inside steel from 300 to 1500 K. Thin-wire sensors have been used above 2000 K in nuclear and industrial applications where conditions preclude the use of thermocouples, resistance devices, or optical pyrometers. At 2500 K, temperature sensitivity of 0.1% is obtained in Re wire sensors 5 cm long by timing five round trips with an electronic instrument that resolves the time interval between selected echoes to 0.1 microsec. Sensors have been operated at rotational speeds over 2000 rpm and in noisy environments. Temperature profiling of up to ten regions using only a single guided path or beam has also been accomplished.
USDA-ARS?s Scientific Manuscript database
Greenhouse gases (GHGs) are gases that trap heat in the atmosphere. These gases include carbon dioxide (CO2), methane (CH3), nitrous oxide (N2O), and fluorinated gases. Some of these gases occur naturally and some are created by human activities which can increase their concentrations. The most comm...
HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE
NASA Technical Reports Server (NTRS)
2002-01-01
Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA
Diffusion of cis-3-methyl-2-pent-2-enyl-cyclopent-2-enone (1); carbon dioxide (2)
NASA Astrophysics Data System (ADS)
Winkelmann, J.
This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cis-3-methyl-2-pent-2-enyl-cyclopent-2-enone; (2) carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C.; Wang, Shicong
2015-03-15
Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atomsmore » that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.« less
Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.
1998-11-10
A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.
Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.
1998-01-01
A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2012-12-01
Saturn's moon Enceladus appear to have liquid water under its thin icy surface that has venting water and complex hydrocarbons. Jupiter's moon Europa is locked under a very thick layer of surface ice. Because Saturn's moon Titan contains abundant hydrocarbon gasses and liquids and both Saturn and Jupiter contain abundant hydrocarbon gases, it is likely that Europa also may have significant quantities of hydrocarbon gases in their water-ice systems. Both of these moons have the potential for life. We have begun to explore the impact that gas hydrate, which is a crystalline material composed of water and gas molecules, has on the availability of liquid water on a planet's surface: what conditions need to be present to initiate hydrate formation from a primordial selection of gases, salts, and water, how isolated hydrate systems evolve under the condition of mass transfer from ex-hydrate stability conditions to pro-hydrate stability conditions, the timespan of conditions that hydrate formation can host liquid solutions in an otherwise cooling regime; and the impact that additional chemistry, such as primitive chemosynthesis, may have on the sequestered hydrocarbon gases in hydrate. The analog for gas hydrate on these moons is the Permafrost hydrate system of Earth. Gas hydrate and water ice are stable in a compound cryosphere with ice extending downward from cold surface conditions to about the 273 K isotherm. Hydrate, depending on the mixture of gases in it, is stable from some depth below the surface to some isotherm that could be considerably in excess of 273 K. Salinity may strongly affect stability conditions. In order to estimate the thickness of the gas hydrate stability zone and its effect on 'planetary' heat flow, we model heat production as a function of mass flow. Variables are gravity, ice thickness, temperature of the surrounding medium (space, ice, and water), the thickness of the "ocean", the and the thermophysical properties of the gas being transferred. The model is constrained by the molecular diffusion rate of gas approaching the hydrate phase boundary. The heat produced or consumed by the hydrate system will affect the ice system and phase boundary. Fick's law can be used to model steady state diffusion. Flux is related to the diffusivity of the component and as a function of concentration and the distance over which the reactions take place. Initial model calculations indicate that in some cases, methane (ΔH = -56 kJ/mol for small molecules (CH4, N2, CO2, H2S) may affect the water-ice energy balance sufficiently to contribute to the maintenance of a deep ocean below ice. The effect of the presence of higher density hydrocarbons (ΔH = -72 kJ/mol for ethane and -126 kJ/mol for propane) accentuate the thermal transfer effect but may diffuse too slowly to be a thermal forcing agent in the hydrate system.
Results of investigating gases from inclusions in lunar glasses
NASA Technical Reports Server (NTRS)
Dolgov, Y. A.; Shugurova, N. A.
1974-01-01
Common gases from inclusions in glass fragments and spherules of lunar surface material returned by the Luna 16 automatic station were investigated by the adsorption volumometric method. Inclusions from eight particles were analyzed. A gas mixture from the inclusions had two- (CO2 and H2), three- (CO2, H2 and N2 + inert gases), and (H2S, SO2, and NH3), H2,N2 + inert gases, and four component (H2S, SO2, and NH3), CO2, H2, and N2 + inert gases, compositions. Hydrogen in all analyses was 10 to 95 volume percent. Diffusional exchange with the terrestrial atmosphere was absent. An unexpectedly high density of gases in the vacuoles was obtained. The initial volume of the bubbles when the vacuoles were breached even rose 2.5 times and decreased in the limits of 2.3 to 54.5 times. Various possibilities for the formation in the lunar surface material of glass fragments and spherules are discussed.
Enzymatically active high-flux selectively gas-permeable membranes
Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey
2016-01-26
An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.
23RD International Conference on Phenomena in Ionized Gases, Volume 5
1998-12-01
eNm.f, generated within the plasma is given by section with a 5-cm diameter. The magnetic field was Vof = wh Bt p i vn provided by an iron- core ...cylindrical tungsten probes, of 0.038cm. as impurities can be centrifuged as reported by diameter, insulated by thin glass tube except their tips Bonnevier...Norfolk, VA 213529 1. Discharge modes discharge begins, at several hundred Torr, to change from a hollow cathode discharge into what we Experimental
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Surface plasmon resonance (SPR) technique is an easy and reliable method for detecting very low concentration of toxic gases at room temperature using a gas sensitive thin film layer. In the present work, a room temperature operated NH3 gas sensor has been developed using a laboratory assembled SPR measurement setup utilising a p-polarized He-Ne laser and prism coupling technique. A semiconducting gas sensitive tin oxide (SnO2) layer has been deposited under varying growth conditions (i.e., by varying deposition pressure) over the gold coated prism (BK-7) to excite the surface plasmon modes in Kretschmann configuration. The SPR reflectance curves for prism/Au/SnO2/air system for SnO2 thin films prepared at different sputtering pressure were measured, and the SnO2 film deposited at 10 mT pressure is found to exhibit a sharp SPR reflectance curve with minimum reflectance (0.32) at the resonance angle of 44.7° which is further used for sensing NH3 gas of different concentration at room temperature. The SPR reflectance curve shows a significant shift in resonance angle from 45.05° to 58.55° on interacting with NH3. The prepared sensor is found to give high sensing response (0.11) with high selectivity towards very low concentration of NH3 (0.5 ppm) and quick response time at room temperature.
Diffusion of 4-methyl-pent-3-en-2-one (1); air (2)
NASA Astrophysics Data System (ADS)
Winkelmann, J.
This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 4-methyl-pent-3-en-2-one; (2) air
Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, T.M.
1993-02-01
Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO[sub 2]. The CO[sub 2]-poor gases are typical of Type II volcanic gases (GERLACH and GRAEBER, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO[sub 2]-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical datamore » shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032[degrees]C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the F[sub o[sub 2
2015-11-24
ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint
2015-12-14
ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint region
Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition
NASA Technical Reports Server (NTRS)
Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.
2005-01-01
Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.
Quantum Dots Investigated for Solar Cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.
2001-01-01
The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in their fluorescence (see the photograph).
Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals
NASA Astrophysics Data System (ADS)
Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping
2018-06-01
Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.
VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES
Milleron, N.
1962-06-12
S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)
NASA Astrophysics Data System (ADS)
Ohteki, Yusuke; Sugiyama, Mutsumi
2018-07-01
A high-transparency ZnO thin film of high carrier concentration was grown by conventional RF sputtering, where the carrier concentration was continuously varied from 1016 to 1019 cm‑3 by controlling the amounts of O2 and H2 sputtering gases. To prevent the formation of a Schottky junction at the contact with In–Zn–O, and to improve the fill factor of a visible-light-transparent solar cell, a Ag-paste/NiO/ZnO/ZnO:H/IZO p–n diode structure with the carrier concentration of the ZnO:H layer of 1019 cm‑3 was fabricated. It is possible to reduce the depletion width and inverse the rectification action around ZnO/IZO by controlling the carrier concentration of the ZnO layer while maintaining the high transparency.
1989-08-25
Range : 168,694 km (105,000 mi.) Voyager 2 discovered detached limb hazes in the atmosphere of Triton in Pictures that arrived at Earth between 3:30 am and 5:30 am. The principal layer seen here begins about three km (2 miles) above the surface, and is about 3 km thick. Fainter upward extension of the haze has been seen to an altitude of at least 14 km (9 mi.). The haze must be comoposed of tiny particles in order to be supported in Trition's thin atmosphere. Composition of the haze is currently unknown, but may be either condensed atmospheric gases or complex orgainc molecules produced by irradiation of the methane in Triton's atmosphere. The vaguely linear mottling on the surface may be shadows of other haze striations. Other features of the haze layer should be appaarent in images of Triton taken at higher phase angles (including crescent phase). The image shows features as small as 2 km (1.2 mi) wide.
Optical Properties and Aging of Gasochromic WO3
NASA Astrophysics Data System (ADS)
Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene
2009-03-01
WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors. .
Optical Properties and Aging of Gasochromic WO3
NASA Astrophysics Data System (ADS)
Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene
2008-10-01
WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors.
Non-CO2 Greenhouse Gases: International Emissions and Projections
EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.
NASA Astrophysics Data System (ADS)
Kashubin, S.
2013-12-01
Integrated geological and geophysical studies of the Earth's crust and upper mantle (the Russian project 'Arctic-2012') were carried out in 2012 in the Mendeleev Rise, central Arctic. The set of studies included wide-angle seismic observations along the line crossing the Mendeleev Rise in its southern part. The DSS seismic survey was aimed at the determination of the Mendeleev Rise crust type. A high-power air gun (120 liters or 7320 cu.in) and ocean stations with multi-component recording (X, Y, Z geophone components and a hydrophone) were used for the DSS. The line was studied using a dense system of observation: bottom station spacing was from 10 to 20 km, excitation point spacing (seismic traces interval) was 315 m. Observation data were obtained in 27 location points of bottom stations, the distance between the first and the last stations was 480 km, the length of the excitation line was 740 km. In DSS wave fields, in the first and later arrivals, there are refracted and reflected waves associated with boundaries in the sedimentary cover, with the top of the basement, and with boundaries in the consolidated crust, including its bottom (Moho discontinuity). The waves could be traced for offsets up to 170-240 km. The DSS line coincides with the near-vertical CMP line worked out with the use of a 4500-m-long seismic streamer and with a 50 m shot point interval that allowed essential detalization of the upper part of the section and taking it into account in the construction of a deep crust model. The deep velocity model was constructed using ray-trace modeling of compressional, shear, and converted waves with the use of the SeisWide program. Estimates were obtained for Vp/Vs velocity ratios, which played an important role in determining the type of crust. The results of the interpretation show that the Mendeleev Rise section corresponds to sections of a thin continental crust of shelf seas and a thinned continental crust of submarine ridges and rises.
Facile synthesis of layered V2O5/ZnV2O6 heterostructures with enhanced sensing performance
NASA Astrophysics Data System (ADS)
Xiao, Bingxin; Huang, Hao; Yu, Xiantong; Song, Jun; Qu, Junle
2018-07-01
A low-cost and environment-friendly hydrothermal approach was used for the synthesis of layered V2O5/ZnV2O6 hybrid nanobelts. Characterization results indicate that the V2O5/ZnV2O6 nanobelts are composed of several thin layers. Additionally, it is illustrated that the chemical formation process of V2O5/ZnV2O6 occurred in the solution. The synthesized V2O5/ZnV2O6 heterostructures were subjected to detailed ethanol sensing tests. Results demonstrate that V2O5/ZnV2O6 based sensor shows about 4.3 of response to 100 ppm of ethanol gases, reveals relatively high sensitivity at relatively low optimal operating temperature of 240 °C, as well as relatively good selectivity and stability. The performance of the sensor is better than most of reported vanadium based sensing devices. Thus this work offers a new insight into the rational regulation of vanadium based sensing devices.
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Non-CO2 greenhouse gases and climate change.
Montzka, S A; Dlugokencky, E J; Butler, J H
2011-08-03
Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.
Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots
Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou
2014-01-01
CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207
Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force
NASA Astrophysics Data System (ADS)
Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka
2017-10-01
The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).
Hydrogen Peroxide Enhances Removal of NOx from Flue Gases
NASA Technical Reports Server (NTRS)
Collins, Michelle M.
2005-01-01
Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...
2017-10-14
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Contact metamorphism of black shales: global carbon cycle and climate perturbations
NASA Astrophysics Data System (ADS)
Aarnes, I.; Svensen, H.; Polteau, S.; Connolly, J. A. D.; Planke, S.
2009-04-01
There is an increasing interest in improving the understanding of past climate changes, as it can lead to a better understanding of future challenges related to global warming and anthropogenic release of greenhouse gases. The formation of Large Igneous Provinces (LIPs) and sill intrusions in volcanic basins correlate with global warming events and mass extinctions, e.g. the Karoo Basin, South Africa (~183 Ma), the Møre and Vøring Basins offshore Norway (~55 Ma), and the Tunguska Basin, Siberia (~252 Ma). The proxy records from these events suggest that rapid release of large amounts of isotopically 13C-depleted greenhouse gases (CO2 and methane) to the atmosphere. Organic matter stored in sedimentary rocks (e.g. black shale) represents a major carbon source. Large volumes of greenhouse gases may form by contact metamorphism of organic-rich sediments around sill intrusions associated with LIPs. The organic-rich Ecca Group forms the base of the Karoo sedimentary succession and contains thousands of degassing pipe structures rooted in contact aureoles around sill intrusions. Numerical and analogue modelling show that these piercement structures form during violent eruptions releasing the overpressure driven by dehydration and devolatilization metamorphic reactions. In this study we evaluate the aureole processes numerically in order to constrain the amount of gases formed in contact aureoles around sill intrusions, and the isotopic composition of those gases. The total organic carbon (TOC) in the shale and the intrusion thickness are the most important parameters controlling the amount of carbon gas that can trigger pipe formation and release into the atmosphere. . We model thermal cracking using a general kinetic approach, while dehydration reactions are modeled under the assumption of thermodynamic equilibrium. The theoretical approach is tested against borehole data from the Karoo Basin in South Africa (geochemical analyses, Rock-Eval pyrolysis, TOC, vitrinite reflectance and stable isotopes). Decreasing TOC content and increasing vitrinite reflectance with decreasing distance to the intrusive contact are signatures of thermogenic hydrocarbon formation. During high temperature metamorphism, formation of carbon gases is preferred over liquid hydrocarbons. However, only limited isotopic fractionation is occurring in the released carbon gases during increasing temperature. Increasing veining towards the contact of a 10 meter sill suggests that hydrocarbon formation in organic-rich aureoles leads to pressure buildup and fracturing of the aureole, even with small volumes. Our numerical model also shows that sill thicknesses in the order of 100 m are necessary to produce the pressure buildup in the contact aureole and subsequent venting. In addition, mineral dehydration and thermal stresses contribute to pore fluid pressure increase. We use our numerical model to predict the amount of fluids produced as response to thin (~10 meter) and thick (~100 meter) sills. The model provides us with important estimates of rate and duration of gas formation. The time-scale of subsurface gas formation is well within the time scale indicated by the proxy data. Results from isotope compositions demonstrate that the 2.8t/m2 of organic carbon escapes the contact aureole during devolatilization processes involving the generation of light carbon gases. The calculated isotopic composition of the carbon released is similar whether using the batch devolatilization or the Rayleigh distillation model, and ranges from the background values to 1-2 permil lighter values with decreasing distance from the contact. The extrapolation of our results to the portion of the sedimentary basin intruded by magma suggests that contact metamorphism of organic-rich sediments triggered a potential release of between 2000 to 10000 Gt of isotopically light carbon gas to the atmosphere. In conclusion, the amount and composition of methane that can be produced and vented from contact aureoles in the Karoo Basin during the Toarcian is within the same order of magnitude as required to explain global carbon isotope excursion and hence global warming.
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2016-04-01
Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.
Diffusion of pent-1-ene (1); air (2)
NASA Astrophysics Data System (ADS)
Winkelmann, J.
This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) pent-1-ene; (2) air
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 3A1800”, the service pressure is 12410 kPa (1800 psig). (j) Refrigerant gas or Dispersant gas. The terms Refrigerant gas and Dispersant gas apply to all nonpoisonous refrigerant gases; dispersant gases... °F), used only as a refrigerant, dispersant, or blowing agent. (k) For Division 2.2 gases, the...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 3A1800”, the service pressure is 12410 kPa (1800 psig). (j) Refrigerant gas or Dispersant gas. The terms Refrigerant gas and Dispersant gas apply to all nonpoisonous refrigerant gases; dispersant gases... °F), used only as a refrigerant, dispersant, or blowing agent. (k) For Division 2.2 gases, the...
49 CFR 173.222 - Dangerous goods in equipment, machinery or apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... substantially impair the protective properties of the cushioning material. (3) Receptacles for gases, their... Division 2.2 gases. For transportation by aircraft, Division 2.2 gases with subsidiary risks and... paragraphs (c)(1) through (c)(3) of this section. (d) Except for transportation by aircraft, when a package...
49 CFR 173.222 - Dangerous goods in equipment, machinery or apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... substantially impair the protective properties of the cushioning material. (3) Receptacles for gases, their... Division 2.2 gases. For transportation by aircraft, Division 2.2 gases with subsidiary risks and... paragraphs (c)(1) through (c)(3) of this section. (d) Except for transportation by aircraft, when a package...
49 CFR 173.222 - Dangerous goods in equipment, machinery or apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... substantially impair the protective properties of the cushioning material. (3) Receptacles for gases, their... Division 2.2 gases. For transportation by aircraft, Division 2.2 gases with subsidiary risks and... paragraphs (c)(1) through (c)(3) of this section. (d) Except for transportation by aircraft, when a package...
Gassing in Li4Ti5O12-based batteries and its remedy
He, Yan-Bing; Li, Baohua; Liu, Ming; Zhang, Chen; Lv, Wei; Yang, Cheng; Li, Jia; Du, Hongda; Zhang, Biao; Yang, Quan-Hong; Kim, Jang-Kyo; Kang, Feiyu
2012-01-01
Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li4Ti5O12 (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H2, CO2 and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO2. A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs. PMID:23209873
Effect of blade-surface-roughness on the pumping performance of a turbomolecular pump
NASA Astrophysics Data System (ADS)
Sawada, T.; Yabuki, M.; Sugiyama, W.; Watanabe, M.
2005-11-01
Turbomolecular pumps (TMPs) are widely used in the semiconductor and other thin film industries. Some semiconductor processes form corrosive gases such as HCl or HF as byproducts. The elements of a TMP are sometimes coated with ceramic (SiO2) film for the purpose of preventing corrosion of the TMP. The blades coated with SiO2 have relatively rough surfaces. The effect of the surface roughness of the blades on the pumping performance has been studied experimentally and theoretically. Experimental results for TMPs with two rotor disks and one stator disk show that the TMP coated with SiO2 film gives about 11% to 13% higher maximum-compression ratio than the noncoated TMP when the blade speed ratio is 0.47. The theory based on the conic peak/dimple-surface-roughness model that has been proposed by the authors explains the change in the compression ratio with the surface roughness shown in the experiment.
Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.
Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong
2018-06-04
In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.
Tutsch, U; Wolf, B; Wessel, S; Postulka, L; Tsui, Y; Jeschke, H O; Opahle, I; Saha-Dasgupta, T; Valentí, R; Brühl, A; Remović-Langer, K; Kretz, T; Lerner, H-W; Wagner, M; Lang, M
2014-10-27
Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex-antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.
Nanocrystalline films for gas-reactive applications
Eastman, Jeffrey A.; Thompson, Loren J.
2004-02-17
A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.
Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Zahnle, K.; Barlow, N. G.
2018-01-01
Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.
Cook, Amanda M; Mattioda, Andrew L; Ricco, Antonio J; Quinn, Richard C; Elsaesser, Andreas; Ehrenfreund, Pascale; Ricca, Alessandra; Jones, Nykola C; Hoffmann, Søren V
2014-02-01
We report results from the exposure of the metalloporphyrin iron tetraphenylporphyrin chloride (FeTPPCl) to the outer space environment, measured in situ aboard the Organism/Organic Exposure to Orbital Stresses nanosatellite. FeTPPCl was exposed for a period of 17 months (3700 h of direct solar exposure), which included broad-spectrum solar radiation (∼122 nm to the near infrared). Motivated by the potential role of metalloporphyrins as molecular biomarkers, the exposure of thin-film samples of FeTPPCl to the space environment in low-Earth orbit was monitored in situ via ultraviolet/visible spectroscopy and reported telemetrically. The space data were complemented by laboratory exposure experiments that used a high-fidelity solar simulator covering the spectral range of the spaceflight measurements. We found that thin-film samples of FeTPPCl that were in contact with a humid headspace gas (0.8-2.3% relative humidity) were particularly susceptible to destruction upon irradiation, degrading up to 10 times faster than identical thin films in contact with dry headspace gases; this degradation may also be related to the presence of oxides of nitrogen in those cells. In the companion terrestrial experiments, simulated solar exposure of FeTPPCl films in contact with either Ar or CO2:O2:Ar (10:0.01:1000) headspace gas resulted in growth of a band in the films' infrared spectra at 1961 cm(-1). We concluded that the most likely carriers of this band are allene (C3H4) and chloropropadiene (C3H3Cl), putative molecular fragments of the destruction of the porphyrin ring. The thin films studied in space and in solar simulator-based experiments show qualitatively similar spectral evolution as a function of contacting gaseous species but display significant differences in the time dependence of those changes. The relevance of our findings to planetary science, biomarker research, and the photostability of organic materials in astrobiologically relevant environments is discussed.
Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet; ...
2018-03-01
A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet
A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less
NASA Astrophysics Data System (ADS)
Prasad, Ravindra; Samria, N. K.
1989-01-01
The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.
A method of producing high quality oxide and related films on surfaces
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Strongin, Myron; Gao, Yongli
1991-01-01
Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.
Pulsed energy synthesis and doping of silicon carbide
Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.
1995-06-20
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Pulsed energy synthesis and doping of silicon carbide
Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.
1995-01-01
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt
Gerlach, T.M.
1993-01-01
Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO2. The CO2-poor gases are typical of Type II volcanic gases (gerlach and Graeber, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO2-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032??C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the fO2 buffering process occurs by transfer of oxygen from the major species in the gas phase (H2O, CO2, SO2) to the lava during cooling and that the transfer of oxygen also controls the fugacities of several minor and trace species (H2, CO, H2S, S2, Cl2, F2), in addition to O2 during cooling. Gas/lava exchanges of other components are apparently insignificant and exert little influence, compared to oxygen exchange, during cooling. Oxygen transfer during cooling is variable, presumably reflecting short-term fluctuations in gas flow rates. Higher flow rates restrict the time available for gas/lava oxygen transfer and result in gases with higher equilibrium temperatures. Lower flow rates favor fO2-constrained equilibration by oxygen transfer down to lower temperatures. Thus, the chemical equilibrium preserved in these gases is a heterogeneous equilibrium constrained by oxygen fugacity, and the equilibrium temperatures implied by the compositions of the gases reflect the temperatures at which gas/lava oxygen exchange ceased. This conclusion challenges the common assumption that volcanic gases are released from lava in a state of chemical equilibrium and then continue equilibrating homogeneously with falling temperature until reaction rates are unable to keep pace with cooling. No evidence is found, moreover, that certain gas species are kinetically more responsive and able to equilibrate down to lower temperatures than those of the last gas/lava oxygen exchange. Homogeneous reaction rates in the gas phase are apparently slow compared to the time it took for the gases to move from the last site of gas/lava equilibration to the site of collection. An earlier set of data for higher temperature CO2-rich Type I volcanic gases, which come from sustained summit lava lake eruptions supplied by magma that experienced substantially shorter periods of crustal storage, shows fO2 buffering by oxygen transfer up to 1185??C. Oxygen fugacity measurements in drill holes into ponded lava flows suggest that buffering by oxygen transfer may control the fO2 of residual gases down to several hundred degrees below the solidus in the early stages of cooling. Although the details of the fO2 buffering mechanisms for oxygen transfer are unknown, the fact that fO2 buffering is effective from molten to subsolidus conditions suggests that the reaction mechanisms must change with cooling as the reactants change from predominantly melt, to melt plus crystals, to glass plus crystals. Mass balance calculations suggest that redox reactions between the gas and ferrous/ferric iron in the lava are plausible mechanisms for the oxygen transfer and that the fO2 of the gases is buffered by sliding ferrous/ferric equilibria in the erupting lavas. Contrary to expectations based on models predicting the oxidation of basalt by H2 and CO escape during crustal storage, CO2-rich Type I gases and CO2-poor Type II gases have identical oxygen fugacities despite greatly different crustal storage and degassing histories. Volcanic gas data give a tightly co
Synthesis of CuInSe2 nanocrystals using a continuous hot-injection microreactor
NASA Astrophysics Data System (ADS)
Jin, Hyung Dae; Chang, Chih-Hung
2012-10-01
A very rapid and simple synthesis of CuInSe2 nanocrystals (NCs) was successfully performed using a continuous hot-injection microreactor with a high throughput per reactor volume. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times along with the formation of Cu2Se and In2Se3. Binary syntheses were performed and the results show a much faster formation rate of Cu2Se than In2Se3. The rate limiting step in the formation of CuInSe2 is forming the In2Se3 intermediate. Rapid synthesis of stoichiometric CuInSe2 NCs using a continuous-flow microreactor was accomplished by properly adjusting the Cu/In precursor ratio. Tuning the ratio of coordinating solvents can cause size differences from 2.6 to 4.1 nm, bandgaps from 1.1 to 1.3 eV, and different production yields of NCs. The highest production yield as determined by weight was achieved up to 660 mg/h using a microreactor with a small volume of 3.2 cm3.
NASA Technical Reports Server (NTRS)
Russell, Richard
2005-01-01
Conclusions: The hot gases, having flooded the wing interior, quickly heated the upper and lower wing surfaces allowing the aluminum honeycomb facesheets and the wing tiles to debond. The thin-wall aluminum truss tubes would soon collapse and the aerodynamic and structural integrity of the left wing would be effectively destroyed. The forensic evidence is consistent with the observed External Tank foam impact 81 seconds into launch. This is the most probable cause of the damage to the Reinforced Carbon-Carbon. (RCC) leading edge.
Efficient solar cells by space processing
NASA Technical Reports Server (NTRS)
Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.
1979-01-01
Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.
NASA Technical Reports Server (NTRS)
Ju, Yiguang; Masuya, Goro; Ronney, Paul D.
1998-01-01
Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.
Slowing of Femtosecond Laser-Generated Nanoparticles in a Background Gas
Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.
2014-11-25
The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.
The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less
Crustal evolution of Eocene paleo arc around Ogasawara region obtained by seismic reflection survey
NASA Astrophysics Data System (ADS)
Yamashita, M.; Takahashi, N.; Kodaira, S.; Miura, S.; Ishizuka, O.; Tatsumi, Y.
2011-12-01
The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. The existence of two paleo arc which consists of Oligocene and Eocene paleo age is known in IBM forearc region by geological and geophysical studies. The Ogasawara ridge is also known to locate the initial structure of arc evolution from geologic sampling of research submersible. In this region, IODP drilling site: IBM-2 is proposed in order to understand the temporal and spatial change in arc crust composition from 50 to 40Ma magmatism. Site IBM-2 consists of two offset drilling holes (BON-1, BON-2). BON-1 designed to first encounter forearc basalt and will reach the sheeted dykes. BON-2 will start in boninites and finish in fore arc basalts. The purpose of these drilling is sampling the full volcanic stratigraphy from gabbro to boninite. There is no seismic data around BON-1 and BON-2, therefore it is need to conduct the multi-channel seismic reflection survey. Japan Agency for Marine-Earth Science and Technology carried out multi-channel seismic reflection survey and wide-angle reflection survey using 7,800 cu.in. air gun, 5 km streamer with 444 ch hydrophones and 40 OBSs in March 2011. We obtained two seismic reflection profiles of lines KT06 and KT07 along the paleo arc around Ogasawara ridge. Line KT06 located the north side of Ogasawara ridge. Line KT07 located the trench side of Ogasawara ridge. Lines KT06 is also deployed the OBSs every 5 km interval. Thin sediments are covered with basement in both survey lines. There are some sediment filled in depression topography. The low-frequency reflection from the top of subducting Pacific plate is recognized in line KT06. The continuity of this reflection is not clear due to the complicated bathymetry. The displacement of basement in northern side of Ogasawara ridge is identified along the lineament of bathymetry in Line 06. This structure is estimated to relate the deformation in the Ogasawara Trough and lineament of paleo arc. We will discuss the relationship this lineament and deformation with regard to activity such as post volcanism.
A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers
Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin
2015-01-01
C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989
A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.
Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin
2015-06-09
C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.
Ejecta transport, breakup and conversion
Buttler, William Tillman; Lamoreaux, Steven Keith; Schulze, Roland K.; ...
2017-04-26
Here, we report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2, will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He. To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in Hmore » 2 and He was imaged with visible and infrared (IR) cameras. Because Ce + H 2 → CeH 2 + ΔH, where ΔH is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature TR between the Ce–H 2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH 2. As a result, the experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.« less
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander
2013-08-01
Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La0.4Ca0.6MnO3 plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O2 background gas at different pressures. It has been observed that the O2 background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O2 background gas causes the generation of positive diatomic oxide species of LaO+, CaO+ and MnO+. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O2 background compared to vacuum, while the amount of O2- increases strongly.
CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate.
Datta, Shuvo Jit; Khumnoon, Chutharat; Lee, Zhen Hao; Moon, Won Kyung; Docao, Son; Nguyen, Thanh Huu; Hwang, In Chul; Moon, Dohyun; Oleynikov, Peter; Terasaki, Osamu; Yoon, Kyung Byung
2015-10-16
Capturing CO2 from humid flue gases and atmosphere with porous materials remains costly because prior dehydration of the gases is required. A large number of microporous materials with physical adsorption capacity have been developed as CO2-capturing materials. However, most of them suffer from CO2 sorption capacity reduction or structure decomposition that is caused by co-adsorbed H2O when exposed to humid flue gases and atmosphere. We report a highly stable microporous coppersilicate. It has H2O-specific and CO2-specific adsorption sites but does not have H2O/CO2-sharing sites. Therefore, it readily adsorbs both H2O and CO2 from the humid flue gases and atmosphere, but the adsorbing H2O does not interfere with the adsorption of CO2. It is also highly stable after adsorption of H2O and CO2 because it was synthesized hydrothermally. Copyright © 2015, American Association for the Advancement of Science.
Atmospheric Carbon Dioxide Record from Mauna Loa (1958-2008)
Keeling, R. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Piper, S. C. [Scripps Institution of Oceanography, University of California, La Jolla, California; Bollenbacher, A. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Walker, J. S. [Scripps Institution of Oceanography, University of California, La Jolla, California
2009-02-01
Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5 L/min. Every 30 minutes, the flow is replaced by a stream of calibrating gas or "working reference gas". In December 1983, CO2-in-N2 calibration gases were replaced with the currently used CO2-in-air calibration gases. These calibration gases and other reference gases are compared periodically to determine the instrument sensitivity and to check for possible contamination in the air-handling system. These reference gases are themselves calibrated against specific standard gases whose CO2 concentrations are determined manometrically. Greater details about the sampling methods at Mauna Loa are given in Keeling et al. (1982) and Keeling et al. (2002).
Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy
NASA Astrophysics Data System (ADS)
Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.
2018-03-01
A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.
NASA Astrophysics Data System (ADS)
Burruss, R. C.; Laughrey, C. D.
2006-05-01
The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the Precambrian gases have extremely light hydrogen isotopic compositions of CH4 (δ2H < -300‰) and are depleted in CH4 (Canada gases C1/C2+ < 10, S. Africa gases C1/C2+ < 60) compared to gases in lower Paleozoic reservoirs of the Appalachian basin (δ2H (CH4) > -150‰, C1/C2+ up to 220). New isotopic studies of gas accumulations, gases in fluid inclusions, and of sedimentary organic matter in the Appalachian basin are in progress to constrain the possible contribution of abiogenic hydrocarbon generation to gas accumulations in this basin.
NASA Technical Reports Server (NTRS)
Zahnle, Kevin
1992-01-01
There is a widespread suspicion that Mars thin atmosphere is in some way attributable to the planet's size. Another possibility is that the atmosphere was never degassed or outgassed in the first place. I prefer escape. Hydrodynamic escape (vigorous thermal escape) and impact erosion (expulsion of atmosphere by impacts) are two processes that should have been operative early. Although in principle hydrodynamic escape could have shrunk Mars atmosphere a hundredfold while leaving the composition of the remnant atmosphere nearly unaltered, very high escape fluxes are required. The implicated escape mechanism must have been efficient, nearly non-fractionating, and vastly more potent for Mars than for Earth or Venus. Impact erosion is an appealing candidate. Noble gases are the obvious first test. Noble gases are the most volatile elements and so are the most likely to have been affected by impact erosion and the easiest to address quantitatively. Xenon in particular imposes three constraints on how Mars lost its atmosphere: (1) the very low abundance of nonradiogenic Xe abundance of nonradiogenic Xe compared to Earth, Venus, and likely meteoritic sources; (2) its nonradiogenic isotopes distinct from likely meteoritic sources; and (3) the relatively high absolute abundance of radiogenic daughter of the extinct radionuclide I-129 (half-life 17 Myr). In impact erosion, the first two become constraints on the composition, mass distribution, and orbital elements of the impactors. The third requires that Mars lost its nonradiogenic Xe early, probably before it was 100 Myr old. Impact erosion can explain Mars by any of three stories. (1) Mars in unlikely. In a sort of planetary brinkmanship, impact erosion almost removed the entire atmosphere but was arrested just in time. (2) Martian noble gases are cometary and cometary Xe is as isotopically mass fractionated as Martian and terrestrial Xe. This is most easily accomplished if a relatively thick geochemically controlled CO2 atmosphere protected trace atmophiles against escape. (3) Mars was indeed stripped of its early atmosphere but a small remnant was safely stored in the regolith, later released as a byproduct of water mobilization.
Diffusion of cis-5,8,11,14,17-eicosapentaenoic acid (1); carbon dioxide (2)
NASA Astrophysics Data System (ADS)
Winkelmann, J.
This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cis-5,8,11,14,17-eicosapentaenoic acid; (2) carbon dioxide
NASA Astrophysics Data System (ADS)
Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.
2018-06-01
Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.
Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.
Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping
2018-06-22
Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.
Wafer-level hermetic vacuum packaging by bonding with a copper-tin thin film sealing ring
NASA Astrophysics Data System (ADS)
Akashi, Teruhisa; Funabashi, Hirofumi; Takagi, Hideki; Omura, Yoshiteru; Hata, Yoshiyuki
2018-04-01
A wafer-level hermetic vacuum packaging technology intended for use with MEMS devices was developed based on a copper-tin (CuSn) thin film sealing ring. To allow hermetic packaging, the shear strength of the CuSn thin film bond was improved by optimizing the pretreatment conditions. As a result, an average shear strength of 72.3 MPa was obtained and a cavity that had been hermetically sealed using wafer-level packaging (WLP) maintained its vacuum for 1.84 years. The total pressures in the cavities and the partial pressures of residual gases were directly determined with an ultra-low outgassing residual gas analyzer (RGA) system. Hermeticity was evaluated based on helium leak rates, which were calculated from helium pressures determined with the RGA system. The resulting data showed that a vacuum cavity following 1.84 years storage had a total pressure of 83.1 Pa, contained argon as the main residual gas and exhibited a helium leak rate as low as 1.67 × 10-17 Pa · m3 s-1, corresponding to an air leak rate of 6.19 × 10-18 Pa · m3 s-1. The RGA data demonstrate that WLP using a CuSn thin film sealing ring permits ultra-high hermeticity in conjunction with long-term vacuum packaging that is applicable to MEMS devices.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming
2016-02-01
Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
NASA Astrophysics Data System (ADS)
Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.
2015-11-01
Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
Thermogravimetric and kinetic study of Pinyon pine in the various gases.
Kim, Seung-Soo; Shenoy, Alok; Agblevor, Foster A
2014-03-01
As a renewable resource, Pinyon pine can be converted into bio-oil, gas, and char through pyrolysis. It is known that recycling of the non-condensable gases, which are produced by fast pyrolysis, can increase liquid yield and decrease char yield. In this study, pyrolysis characteristics and kinetics of Pinyon pine were investigated in TGA using simulated non-condensable gases (N2, H2/N2, H2/CO2, and He/CO/H2). The apparent activation energy of Pinyon pine increased from 43.9 to 160.3kJ mol(-1) with increasing pyrolysis conversion from 5% to 95% in pure nitrogen, and reaction order was 1.35. When hydrogen (H2) and carbon monoxide (CO) mixtures were used as simulated gases, the maximum degradation temperature and activation energy decreased by 4-11°C and 6.1-10.2kJ/mol, respectively. The results show that recycling of non-condensable gases could positively influence the fast pyrolysis of biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
2016-04-01
Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. Themore » proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Tadahiro; PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ueda, Kouta
We have developed an improved, windowed type environmental-cell (E-cell) transmission electron microscope (TEM) for in situ observation of gas-solid interactions, such as catalytic reactions at atmospheric pressure. Our E-cell TEM includes a compact E-cell specimen holder with mechanical stability, resulting in smoother introduction of the desired gases compared with previous E-cell TEMs. In addition, the gas control unit was simplified by omitting the pressure control function of the TEM pre-evacuation chamber. This simplification was due to the successful development of remarkably tough thin carbon films as the window material. These films, with a thickness of <10 nm, were found tomore » withstand pressure differences >2 atm. Appropriate arrangement of the specimen position inside the E-cell provided quantitatively analyzable TEM images, with no disturbances caused by the windowed films. As an application, we used this E-cell TEM to observe the dynamic shape change in a catalytic gold nanoparticle supported on TiO{sub 2} during the oxidation of CO gas.« less
Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less
Source gases: Concentrations, emissions, and trends
NASA Technical Reports Server (NTRS)
Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.
1991-01-01
Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.
Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals
NASA Astrophysics Data System (ADS)
Bourg, I. C.; Gadikota, G.; Dazas, B.
2016-12-01
Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Tellurium nano-structure based NO gas sensor.
Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K
2009-09-01
Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material.
Shock-wave structure for a polyatomic gas with large bulk viscosity
NASA Astrophysics Data System (ADS)
Kosuge, Shingo; Aoki, Kazuo
2018-02-01
The structure of a standing plane shock wave in a polyatomic gas is investigated on the basis of kinetic theory, with special interest in gases with large bulk viscosities, such as CO2 gas. The ellipsoidal statistical model for a polyatomic gas is employed. First, the shock structure is computed numerically for various upstream Mach numbers and for various (large) values of the ratio of the bulk viscosity to the shear viscosity, and different types of profiles, such as the double-layer structure consisting of a thin upstream layer with a steep change and a much thicker downstream layer with a mild change, are obtained. Then, an asymptotic analysis for large values of the ratio is carried out, and an analytical solution that describes the different types of profiles obtained by the numerical analysis, such as the double-layer structure, correctly is obtained.
Design and fabrication of zeolite macro- and micromembranes
NASA Astrophysics Data System (ADS)
Chau, Lik Hang Joseph
2001-07-01
The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.
Theoretical Assessment of Compressibility Factor of Gases by Using Second Virial Coefficient
NASA Astrophysics Data System (ADS)
Mamedov, Bahtiyar A.; Somuncu, Elif; Askerov, Iskender M.
2018-01-01
We present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard-Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.
Probe Measures Fouling As In Heat Exchangers
NASA Technical Reports Server (NTRS)
Marner, Wilbur J.; Macdavid, Kenton S.
1990-01-01
Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.
Severe accident skyshine radiation analysis by MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eurajoki, T.
1994-12-31
If a severe accident with a considerable core damage occurs at a nuclear power plant whose containment top is remarkably thin compared with the walls, the radiation transported through the top and scattered in air may cause high dose rates at the power plant area. Noble gases and other fission products released to the containment act as sources. The dose rates caused by skyshine have been calculated by MCNP3A for the Loviisa nuclear power plant (two-unit, 445-MW VVER) for the outside area and inside some buildings, taking the attenuation in the roofs of the buildings into account.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
Origins of geothermal gases at Yellowstone
Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.
2015-01-01
Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added principally through boiling of the meteoric-water-derived geothermal liquid found in the upper few kilometers. We also briefly explore the pathways by which Cl, F, and S, move through the crust.
An astrophysical view of Earth-based metabolic biosignature gases.
Seager, Sara; Schrenk, Matthew; Bains, William
2012-01-01
Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of Earth-based microbial metabolism that are useful to the astrophysical search for biosignature gases on exoplanets, including a list of primary and secondary metabolism gas byproducts. Beyond the canonical, unique-to-life biosignature gases on Earth (O(2), O(3), and N(2)O), the list of metabolic byproducts includes gases that might be associated with biosignature gases in appropriate exoplanetary environments. This review aims to serve as a starting point for future astrophysical biosignature gas research.
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...
40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...
Soot climate forcing via snow and ice albedos.
Hansen, James; Nazarenko, Larissa
2004-01-13
Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m(2) in the Northern Hemisphere. The "efficacy" of this forcing is approximately 2, i.e., for a given forcing it is twice as effective as CO(2) in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future.
Thermal conductivity measurement of fluids using the 3ω method
NASA Astrophysics Data System (ADS)
Lee, Seung-Min
2009-02-01
We have developed a procedure to measure the thermal conductivity of dielectric liquids and gases using a steady state ac hot wire method in which a thin metal wire is used as a heater and thermometer. The temperature response of the heater wire was measured in a four-probe geometry using an electronic circuit developed for the conventional 3ω method. The measurements have been performed in the frequency range from 1 mHz to 1 kHz. We devised a method to transform the raw data into well-known linear logarithmic frequency dependence plot. After the transformation, an optimal frequency region of the thermal conductivity data was clearly determined as has been done with the data from thin metal film heater. The method was tested with air, water, ethanol, mono-, and tetraethylene glycol. Volumetric heat capacity of the fluids was also calculated with uncertainty and the capability as a probe for metal-liquid thermal boundary conductance was discussed.
Gas Sensing Properties of bis-Phthalocyanine Thin Film
NASA Astrophysics Data System (ADS)
Dumludag, Fatih; Kilic, Pinar; Odabas, Zafer; Altindal, Ahmet; Bekaroglu, Ozer
2010-01-01
In this study, response of the cofacial bis- phthalocyanine film to vapor of Volatile Organic Compounds (VOCs) was investigated. Test gases were vapors of acetone, toluene, ethanol and ammonia. Measurements were carried out between the temperatures of 293 K-423 K. Bis-phthalocyanine was dissolved in chloroform. Thin film of bis-phthalocyanine was deposited by spraying method on glass substrate patterned with Interdigital Transducer (IDT). During the measurements 0.5 volts were applied to the IDT. Response characteristics of the film were determined by means of change in dc conductivity as a function of gas concentration and temperature. Gas concentrations were controlled by mass flow controller. Dry nitrogen was used as carrier gas. Vapor pressure of the VOCs was calculated using Antoine equation. Response characteristics of the film were determined in a wide range of gas concentration (0.25%-18%). The film showed good sensitivity to the VOCs vapors in the measurement range. The responses of the film were reversible. All the measurement system was computerized.
Plasma deposition of amorphous silicon carbide thin films irradiated with neutrons
NASA Astrophysics Data System (ADS)
Huran, J.; Bohacek, P.; Kucera, M.; Kleinova, A.; Sasinkova, V.; IEE SAS, Bratislava, Slovakia Team; Polymer Institute, SAS, Bratislava, Slovakia Team; Institute of Chemistry, SAS, Bratislava, Slovakia Team
2015-09-01
Amorphous silicon carbide and N-doped silicon carbide thin films were deposited on P-type Si(100) wafer by plasma enhanced chemical vapor deposition (PECVD) technology using silane, methane, ammonium and argon gases. The concentration of elements in the films was determined by RBS and ERDA method. Chemical compositions were analyzed by FTIR spectroscopy. Photoluminescence properties were studied by photoluminescence spectroscopy (PL). Irradiation of samples with various neutron fluencies was performed at room temperature. The films contain silicon, carbon, hydrogen, nitrogen and small amount of oxygen. From the IR spectra, the films contained Si-C, Si-H, C-H, Si-N, N-H and Si-O bonds. No significance effect on the IR spectra after neutron irradiation was observed. PL spectroscopy results of films showed decreasing PL intensity after neutron irradiation and PL intensity decreased with increased neutron fluencies. The measured current of the prepared structures increased after irradiation with neutrons and rise up with neutron fluencies.
Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Ishii, Daisuke; Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko
2013-01-01
Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible “nano-suit” barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a “biomimetic” free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications. PMID:23589878
Boundary layers at a dynamic interface: air-sea exchange of heat and mass
NASA Astrophysics Data System (ADS)
Szeri, Andrew
2017-11-01
Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.
Structural and optical properties of the ZnS/GaSe heterojunctions
NASA Astrophysics Data System (ADS)
Alharbi, S. R.; Abdallaha, Maisam M. A.; Qasrawi, A. F.
2017-11-01
In the current work, the ZnS/GaSe thin film heterojunction interfaces are experimentally designed and characterized by means of x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy and optical spectroscopy techniques. The heterojunction is observed to exhibit physical nature of formation with an induced crystallization of GaSe by the ZnS substrate. For this heterojunction, the hot probe technique suggested the formation of a p-ZnS/n-GaSe interface. In addition, the designed energy band diagram of the heterojunction which was actualized with the help of the optical spectrophotometric data analysis revealed a respective conduction and valence band offsets of 0.67 and 0.73 eV. On the other hand, the dielectric dispersion analysis and modeling which was studied in the frequency range of 270-1000 THz, have shown that the interfacing of the ZnS with GaSe strongly affects the properties of ZnS as it reduces the number of free carriers, shifts down the plasmon frequency, increases the charge carrier scattering time and results in higher values of drift mobility at Terahertz frequencies.
Fabrication of silicon films from patterned protruded seeds
NASA Astrophysics Data System (ADS)
Zeng, Huang; Zhang, Wei; Li, Jizhou; Wang, Cong; Yang, Hui; Chen, Yigang; Chen, Xiaoyuan; Liu, Dongfang
2017-05-01
Thin, flexible silicon crystals are starting up applications such as light-weighted flexible solar cells, SOI, flexible IC chips, 3D ICs imagers and 3D CMOS imagers on the demand of high performance with low cost. Kerfless wafering technology by direct conversion of source gases into mono-crystalline wafers on reusable substrates is highly cost-effective and feedstock-effective route to cheap wafers with the thickness down to several microns. Here we show a prototype for direct conversion of silicon source gases to wafers by using the substrate with protruded seeds. A reliable and controllable method of wafer-scaled preparation of protruded seed patterns has been developed by filling liquid wax into a rod array as the mask for the selective removal of oxide layer on the rod head. Selectively epitaxial growth is performed on the protruded seeds, and the voidless film is formed by the merging of neighboring seeds through growing. And structured hollows are formed between the grown film and the substrate, which would offer the transferability of the grown film and the reusability of the protruded seeds.
Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole
NASA Astrophysics Data System (ADS)
Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei
2017-03-01
The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.
Advanced Global Atmospheric Gases Experiment (AGAGE)
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
2001-01-01
AGAGE comprises continuous high frequency in-situ gas chromatographic FID/ECD measurements of two biogenic/anthropogenic gases (CH4, N2O) and five anthropogenic gases (CFCl3, CF2Cl2, CH3CCl3, CF2ClCFCl2, CCl4) which are carried out at five globally distributed sites (Ireland, California, Barbados, Samoa, Tasmania). Also, high frequency in-situ gas-chromatographic mass spectrometric measurements of about 30 species including chlorofluorocarbon replacements and many natural halocarbons are made at two sites (Ireland, Tasmania), and will soon begin at the other three sites. Finally, high frequency in-situ gas chromatographic HgO-RD measurements of CO and H2 are performed at two sites (Ireland, Tasmania). The goal is quantitative determination of the sources, sinks, and circulation of these environmentally important gases.
[Changes in blood gases with temperature: implications for clinical practice].
Tremey, B; Vigué, B
2004-05-01
To understand changes in blood gases results with core temperature. Analysis from two case reports. Hypothermia induces a decrease in PaCO(2) with a related increase in pH, thus a physiologic alkalosis. Decrease in PaCO(2) is due to an increase of gas solubility and a decrease of peripheral consumption that can be estimated from comparison between corrected and non-corrected for temperature blood gases. For O(2), variations of temperature induce variations of solubility but also of haemoglobin affinity for O(2). During hyperthermia, haemoglobin affinity for O(2) is decreased with a decreased SvO(2) for a same PvO(2). SvO(2) ischemic or therapeutic thresholds are thus modified with core temperature. Blood gases cannot be understood without patient core temperature. Physiologic variations of PaCO(2) and pH must probably be tolerated. Ischemic threshold should be estimated on PvO(2), not only on PvO(2).
Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang
2013-08-30
The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oulachgar, El Hassane
As the semiconductors industry is moving toward nanodevices, there is growing need to develop new materials and thin films deposition processes which could enable strict control of the atomic composition and structure of thin film materials in order to achieve precise control on their electrical and optical properties. The accurate control of thin film characteristics will become increasingly important as the miniaturization of semiconductor devices continue. There is no doubt that chemical synthesis of new materials and their self assembly will play a major role in the design and fabrication of next generation semiconductor devices. The objective of this work is to investigate the chemical vapor deposition (CVD) process of thin film using a polymeric precursor as a source material. This process offers many advantages including low deposition cost, hazard free working environment, and most importantly the ability to customize the polymer source material through polymer synthesis and polymer functionalization. The combination between polymer synthesis and CVD process will enable the design of new generation of complex thin film materials with a wide range of improved chemical, mechanical, electrical and optical properties which cannot be easily achieved through conventional CVD processes based on gases and small molecule precursors. In this thesis we mainly focused on polysilanes polymers and more specifically poly(dimethylsilanes). The interest in these polymers is motivated by their distinctive electronic and photonic properties which are attributed to the delocalization of the sigma-electron along the Si-Si backbone chain. These characteristics make polysilane polymers very promising in a broad range of applications as a dielectric, a semiconductor and a conductor. The polymer-based CVD process could be eventually extended to other polymer source materials such as polygermanes, as well as and a variety of other inorganic and hybrid organic-inorganic polymers. This work has demonstrated that a polysilane polymeric source can be used to deposit a wide range of thin film materials exhibiting similar properties with conventional ceramic materials such as silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC) silicon dioxide (SiO2) and silicon nitride (Si3N4). The strict control of the deposition process allows precise control of the electrical, optical and chemical properties of polymer-based thin films within a broad range. This work has also demonstrated for the first time that poly(dimethylsilmaes) polymers deposited by CVD can be used to effectively passivate both silicon and gallium arsenide MOS devices. This finding makes polymer-based thin films obtained by CVD very promising for the development of high-kappa dielectric materials for next generation high-mobility CMOS technology. Keywords. Thin films, Polymers, Vapor Phase Deposition, CVD, Nanodielectrics, Organosilanes, Polysilanes, GaAs Passivation, MOSFET, Silicon Oxynitride, Integrated Waveguide, Silicon Carbide, Compound Semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subohi, Oroosa, E-mail: oroosa@gmail.com; Shastri, Lokesh; Kumar, G.S.
2014-01-01
Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies showmore » that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.« less