Science.gov

Sample records for cultured hepg2 cells

  1. XPD Functions as a Tumor Suppressor and Dysregulates Autophagy in Cultured HepG2 Cells.

    PubMed

    Zheng, Jian-Feng; Li, Lin-Lin; Lu, Juan; Yan, Kun; Guo, Wu-Hua; Zhang, Ji-Xiang

    2015-05-29

    Recent clinical studies have linked polymorphisms in the xeroderma pigmentosum group D (XPD) gene, a key repair gene involved in nucleotide excision repair, to increased risk of hepatocellular carcinoma (HCC). However, the cellular effects of XPD expression in cultured HCC cells remain largely uncharacterized. Therefore, the aim of this study was to characterize the in vitro cellular effects of XPD expression on the HCC cell line HepG2. HepG2 cells were transfected as follows to create four experimental groups: pEGFP-N2/XPD plasmid (XPD) group, EGFP-N2 plasmid (N2) control group, lipofectamine™ 2000 (lipid) control group, and non-transfected (CON) control group. An MTT cell proliferation assay, Annexin V-APC apoptosis assay, colony formation assay, scratch wound migration assay, Transwell migration assay, and Western blotting of the autophagic proteins LC3 and p62 were conducted. XPD expression significantly inhibited HepG2 cell proliferation (p<0.05), significantly promoted HepG2 cell apoptosis (p<0.05), significantly inhibited HepG2 colony formation (p<0.05), significantly decreased HepG2 cells' migratory ability (p<0.05), and significantly lowered HepG2 cells' invasive capacity (p<0.05). Western blotting showed that XPD expression significantly increased LC3 expression (p<0.05) and significantly reduced p62 expression (p<0.05). XPD expression serves as a tumor suppressor and dysregulates autophagic protein degradation in HepG2 cells in vitro. Further in vivo pre-clinical studies and clinical trials are needed to validate XPD's potential as a tumor-suppressive gene therapy.

  2. Comparative analysis of 3D culture methods on human HepG2 cells.

    PubMed

    Luckert, Claudia; Schulz, Christina; Lehmann, Nadja; Thomas, Maria; Hofmann, Ute; Hammad, Seddik; Hengstler, Jan G; Braeuning, Albert; Lampen, Alfonso; Hessel, Stefanie

    2017-01-01

    Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.

  3. Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture.

    PubMed

    Sahu, Saura C; Amankwa-Sakyi, Margaret; O'Donnell, Michael W; Sprando, Robert L

    2012-09-01

    Usnic acid, a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken for metabolism and toxicity evaluations of usnic acid in human hepatoblastoma HepG2 cells in culture. The cells were treated with the vehicle control and usnic acid at concentrations of 0-100 µm for 24 h at 37 °C in 5% CO2 . Following the treatment period, the cells were evaluated by biochemical and toxicogenomic endpoints of toxicity that included cytochrome P450 activity, cytotoxicity, oxidative stress, mitochondrial dysfunction and changes in pathway focused gene expression profiles. Usnic acid exposure resulted in increased P450 activity, cytotoxicity, oxidative stress and mitochondrial dysfunction in HepG2 cells. The pathway-focused gene expression analysis resulted in significantly altered expression of six genes out of a total of 84 genes examined. Of the six altered genes, three genes were up-regulated and three genes down-regulated. A marked up-regulation of one gene CCL21 associated with inflammation, one gene CCNC associated with proliferation and carcinogenesis and one gene UGT1A4 associated with metabolism as well as DNA damage and repair were observed in the usnic acid-treated cells compared with the vehicle control. Also a marked down-regulation of one gene CSF2 associated with inflammation and two genes (CYP7A1 and CYP2E1) associated with oxidative metabolic stress were observed in the usnic acid-treated cells compared with the control. The biomarkers used in this study demonstrate the toxicity of usnic acid in human hepatoblastoma HepG2 cells, suggesting an oxidative mechanism of action. Published 2011. This article is a US Government work and is in the public domain in the USA.

  4. MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures.

    PubMed

    Sun, Xu-Yong; Nong, Jiang; Qin, Ke; Lu, Hong; Moniri, Mani R; Dai, Long-Jun; Warnock, Garth L

    2011-11-01

    Mesenchymal stem cells (MSCs) have attracted great interest in cancer therapy since the discovery of their tumor tropism. This study was performed to investigate the effects of TNF-related apoptosis-inducing ligand (TRAIL)-engineered MSCs on hepatocellular carcinoma (HCC) cells (HepG2) under different culture conditions. MSCs engineered with non-secreting TRAIL (MSC(TRAIL-GFP)) (GFP, green fluorescence protein) and secreting TRAIL (MSC(stTRAIL)) were used for the direct co-cultures, and conditioned media (CM) from corresponding cultures were applied to HepG2 as indirect co-cultures. Immunoblotting, ELISA and FACS analysis were used to detect the expression of TRAIL and TRAIL receptors. Cell death was assessed using live/dead assay. Death receptor (DR) 5 was identified on the HepG2 cells. The expression of TRAIL was confirmed in the cell lysates (MSC(TRAIL-GFP) >MSC(stTRAIL)) and the conditioned media (MSC(stTRAIL) >MSC(TRAIL-GFP)). Higher cell death was observed in high MSC/HepG2 ratio co-cultures. HepG2 cell death was proportionally related to CM from MSC(TRAIL-GFP) and MSC(stTRAIL). MSCs exhibit intrinsic inhibition of HepG2 which is potentiated by TRAIL-transfection.

  5. Immobilization of native type I collagen on polypropylene fabrics as a substrate for HepG2 cell culture.

    PubMed

    Peng, Gongze; Li, Saina; Peng, Qing; Li, Yang; Weng, Jun; Jia, Zhidong; Kang, Jiyao; Lei, Xiongxin; Zhang, Guifeng; Gao, Yi

    2017-07-01

    Background/aims The critical part of a bio-artificial liver device is establishment of a bioreactor filled with liver cells. However, it is still unclear how to maintain benign cell function while achieving the sufficient cell quantity. In the current study, we aim to establish a novel carrier for the culture of HepG2 cells, a liver cell line, by modifying polypropylene nonwoven fabrics with native type I collagen. Methods "Piranha" solution, KH-550 and glutaraldehyde subsequently were used to bridge native type I collagen and polypropylene nonwoven fabrics. The type I collagen-coupled polypropylene nonwoven fabric was characterized by XPS, SEM, ATR-FTIR and water contact angle measurement. Furthermore, the biocompatibility between HepG2 cells and fiber film is evaluated by the ability of cell proliferation, albumin secretion, as well as urea synthesis. Results The coating of collagen onto polypropylene fabrics was more efficient using the chemical covalent binding method than direct immersion, which was validated by the presence of collagen-related elements and chemical bond. The adding of collagen in polypropylene fabrics promoted hydrophilicity and HepG2 cell adherence. Additionally, enhanced cell proliferation, increased albumin secretion and urea synthesis were observed in HepG2 cells growing on collagen-coated polypropylene fabrics. Conclusions The collagen coated polypropylene nonwoven fabrics, acting as a feasible substrate for HepG2 cell culture, may be used as a promising liver cell carrier for artificial liver reactor.

  6. Role of metabolism by the human intestinal microflora in arbutin-induced cytotoxicity in HepG2 cell cultures.

    PubMed

    Khanal, Tilak; Kim, Hyung Gyun; Hwang, Yong Pil; Kong, Min Jeong; Kang, Mi Jeong; Yeo, Hee Kyung; Kim, Dong Hyun; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-09-23

    A possible role for metabolism by the human intestinal microflora in arbutin-induced cytotoxicity was investigated using human hepatoma HepG2 cells. When the cytotoxic effects of arbutin and hydroquinone (HQ), a deglycosylated metabolite of arbutin, were compared, HQ was more toxic than arbutin. Incubation of arbutin with a human fecal preparation could produce HQ. Following incubation of arbutin with a human fecal preparation for metabolic activation, the reaction mixture was filter-sterilized to test its toxic effects on HepG2 cells. The mixture induced cytotoxicity in HepG2 cells in a concentration-dependent manner. In addition, the mixture considerably inhibited expression of Bcl-2 together with an increase in Bax expression. Likewise, activation stimulated cleavage of caspase-3 and production of reactive oxygen species in HepG2 cell cultures. Furthermore, induction of apoptosis by the intestinal microflora reaction mixture was confirmed by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling assay. Taken together, these findings suggest that the human intestinal microflora is capable of metabolizing arbutin to HQ, which can induce apoptosis in mammalian cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  8. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report.

    PubMed

    Khaoustov, V I; Risin, D; Pellis, N R; Yoffe, B

    2001-02-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  9. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  10. Protective role of metabolism by intestinal microflora in butyl paraben-induced toxicity in HepG2 cell cultures.

    PubMed

    Khanal, Tilak; Kim, Hyung Gyun; Jin, Sun Woo; Shim, Eol; Han, Hwa Jeong; Noh, Keumhan; Park, Sunkyoung; Lee, Dae Hun; Kang, Wonku; Yeo, Hee Kyung; Kim, Dong Hyun; Jeong, Tae Cheon; Jeong, Hye Gwang

    2012-09-03

    Parabens are alkyl esters of p-hydroxybenzoic acid (BA), including methyl paraben (MP), ethyl paraben, propyl paraben (PP), and butyl paraben (BP). In the present study, possible role of metabolism by fecalase in BP-induced cytotoxicity was investigated in HepG2 cell cultures. As an intestinal bacterial metabolic system, a human fecalase prepared from human fecal specimen was employed. Among the parabens tested, cytotoxicity of BP was most severe. BA, the de-esterified metabolite, did not induce cytotoxicity when compared to other parabens. When BP was incubated with fecalase, it rapidly disappeared, in association with reduced cytotoxicity in HepG2 cells. In addition, BP incubated with fecalase significantly caused an increase in Bcl-2 expression together with a decrease in Bax expression and cleaved caspase-3. Moreover, anti-apoptotic effect by the incubation of BP with fecalase was also confirmed by the TUNEL assay. Furthermore, BP induced a sustained activation of the phosphorylation of JNK only when it was treated alone. Meanwhile, BP-induced cell death was reversed by the pre-incubation of BP with either fecalase or SP600125. Taken together, the findings suggested that metabolism of BP by human fecalase might have protective effects against BP-induced toxicity in HepG2 cells.

  11. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model

    PubMed Central

    Chiew, Geraldine Giap Ying; Fu, Afu; Perng Low, Kar; Qian Luo, Kathy

    2015-01-01

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy. PMID:26053957

  12. Evaluation of three-dimensional cultured HepG2 cells in a nano culture plate system: an in vitro human model of acetaminophen hepatotoxicity.

    PubMed

    Aritomi, Kohei; Ishitsuka, Yoichi; Tomishima, Yoshiro; Shimizu, Daisuke; Abe, Nazuki; Shuto, Tsuyoshi; Irikura, Mitsuru; Kai, Hirofumi; Irie, Tetsumi

    2014-01-01

    Overdoses of acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) cause severe liver injury, yet there is no common or high throughput in vitro human APAP model. This study examined the characteristics and usefulness of HepG2 cells grown in a nano culture plate (NCP) system, a three-dimensional culture method, as an in vitro human model for APAP-induced hepatotoxicity. The NCP-cultured HepG2 cells showed higher expression of mRNA and protein levels of cytochrome P450 2E1, which metabolizes APAP to a toxic metabolite, APAP-cysteine adduct formation, and higher sensitivity against APAP-induced cell injury compared with conventionally cultured cells. We demonstrated that treatment of APAP in NCP-cultured HepG2 cells shows key mechanistic features of APAP-induced hepatotoxicity, such as decreases in intracellular glutathione and mitochondrial membrane potential, activation of JNK, and cellular injury; and pharmacological agents, such as Cyclosporine A (a mitochondrial permeability transition inhibitor) and SP600125 (a JNK inhibitor), prevented cell injury induced by APAP exposure. In addition, the antidote of APAP-induced hepatotoxicity, N-acetylcysteine, could attenuate cellular injury induced by APAP in NCP-cultured HepG2 cells. We suggest that cellular injury induced by APAP treatment using an NCP-HepG2 system is a useful human model to study mechanisms and screen drug candidates of APAP-induced hepatotoxicity.

  13. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.

    PubMed

    Sahu, Saura C; Zheng, Jiwen; Graham, Lesley; Chen, Lynn; Ihrie, John; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in

  14. HepG2 cells develop signs of riboflavin deficiency within four days of culture in riboflavin-deficient medium*

    PubMed Central

    Werner, Ricarda; Manthey, Karoline C.; Griffin, Jacob B.; Zempleni, Janos

    2006-01-01

    Flavin mononucleotide and flavin adenine dinucleotide are essential coenzymes in redox reactions. For example, flavin adenine dinucleotide is a coenzyme for both glutathione reductase and enzymes that mediate the oxidative folding of secretory proteins. Here we investigated short-term effects of moderately riboflavin-deficient culture medium on flavin-related responses in HepG2 hepatocarcinoma cells. Cells were cultured in riboflavin-deficient (3.1 nmol/L) medium for up to six days; controls were cultured in riboflavin-sufficient (532 nmol/L) medium. The activity of glutathione reductase decreased by 98% within four days of riboflavin-deficient culture. Transport rates of riboflavin increased in response to riboflavin depletion, whereas expression of enzymes mediating flavocoenzyme synthesis (flavokinase and flavin adenine dinucleotide synthetase) decreased in response to depletion. The oxidative folding and synthesis of plasminogen and apolipoprotein B-100, respectively, was impaired within four days of culture in riboflavin-deficient medium; this is consistent with impaired processing of secretory proteins in riboflavin-deficient cells. Riboflavin depletion was associated with increased DNA-binding activities of transcription factors with affinity for endoplasmic reticulum stress elements and NF-κB consensus elements, suggesting cell stress. Moreover, the abundance of the stress-induced protein GADD153 was greater in riboflavin-deficient cells compared with controls. Riboflavin deficiency was associated with decreased rates of cell proliferation caused by arrest in G1 phase of the cell cycle. These studies are consistent with the hypothesis that HepG2 cells have a great demand for riboflavin, and that cell stress develops rapidly if riboflavin supply is marginally low. PMID:16081269

  15. HepG2 cells develop signs of riboflavin deficiency within 4 days of culture in riboflavin-deficient medium.

    PubMed

    Werner, Ricarda; Manthey, Karoline C; Griffin, Jacob B; Zempleni, Janos

    2005-10-01

    Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential coenzymes in redox reactions. For example, FAD is a coenzyme for both glutathione reductase and enzymes that mediate the oxidative folding of secretory proteins. Here we investigated short-term effects of moderately riboflavin-deficient culture medium on flavin-related responses in HepG2 hepatocarcinoma cells. Cells were cultured in riboflavin-deficient (3.1 nmol/l) medium for up to 6 days; controls were cultured in riboflavin-sufficient (532 nmol/l) medium. The activity of glutathione reductase decreased by 98% within 4 days of riboflavin-deficient culture. Transport rates of riboflavin increased in response to riboflavin depletion, whereas expression of enzymes mediating flavocoenzyme synthesis (flavokinase and FAD synthetase) decreased in response to depletion. The oxidative folding and synthesis of plasminogen and apolipoprotein B-100 was impaired within 4 days of culture in riboflavin-deficient medium; this is consistent with impaired processing of secretory proteins in riboflavin-deficient cells. Riboflavin depletion was associated with increased DNA-binding activities of transcription factors with affinity for endoplasmic reticulum stress elements and nuclear factor kappaB (NF-kappaB) consensus elements, suggesting cell stress. Moreover, the abundance of the stress-induced protein GADD153 was greater in riboflavin-deficient cells compared with controls. Riboflavin deficiency was associated with decreased rates of cell proliferation caused by arrest in G1 phase of the cell cycle. These studies are consistent with the hypothesis that HepG2 cells have a great demand for riboflavin and that cell stress develops rapidly if riboflavin supply is marginally low.

  16. Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line.

    PubMed

    Faedmaleki, Firouz; H Shirazi, Farshad; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2014-01-01

    Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming more and more widespread in medicine. In this study we investigated the cytotoxic effects of AgNPs on liver primary cells of mice, as well as the human liver HepG2 cell. Cell viability was examined with MTT assay after HepG2 cells exposure to AgNPs at 1, 2, 3, 4, 5, 7.5, 10 ppm compared to mice primary liver cells at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration-dependent decrease of cell viability in both cells. IC50 value of 2.764 ppm (µg/mL) was calculated in HepG2 cell line and IC50 value of 121.7 ppm (µg/mL) was calculated in primary liver cells of mice. The results of this experiment indicated that silver nanoparticles had cytotoxic effects on HepG2 cell line and primary liver cells of mice. The results illustrated that nano-silver had 44 times stronger inhibitory effect on the growth of cancerous cells (HepG2 cell line) compared to the normal cells (primary liver cells of mice). which might further justify AgNPs as a cytotoxic agents and a potential anticancer candidate which needs further studies in this regard.

  17. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media.

    PubMed

    Prasad, Raju Y; Simmons, Steven O; Killius, Micaela G; Zucker, Robert M; Kligerman, Andrew D; Blackman, Carl F; Fry, Rebecca C; Demarini, David M

    2014-05-01

    We showed previously that exposure of human lung cells (BEAS-2B) to TiO2 nanoparticles (nano-TiO2 ) produced micronuclei (MN) only when the final concentration of protein in the cell-culture medium was at least 1%. Nanoparticles localize in the liver; thus, we exposed human liver cells (HepG2) to nano-TiO2 and found the same requirement for MN induction. Nano-TiO2 also formed small agglomerates in medium containing as little as 1% protein and caused cellular interaction as measured by side scatter by flow cytometry and DNA damage (comet assay) in HepG2 cells. Nano-TiO2 also increased the activity of the inflammatory factor NFkB but not of AP1 in a reporter-gene HepG2 cell line. Suspension of nano-TiO2 in medium containing 0.1% protein was sufficient for induction of MN by the nanoparticles in either BEAS-2B or HepG2 cells as long the final concentration of protein in the cell-culture medium was at least 1%. Copyright © 2014 Wiley Periodicals, Inc.

  18. Alcohol dehydrogenase and cytochrome P450 2E1 can be induced by long-term exposure to ethanol in cultured liver HEP-G2 cells.

    PubMed

    Balusikova, Kamila; Kovar, Jan

    2013-09-01

    It has been shown in previous studies that liver HEP-G2 cells (human hepatocellular carcinoma) lose their ability to express active alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Although both are ethanol-inducible enzymes, short-term exposure to ethanol does not cause any changes in expression or activity in cultured HEP-G2 cells. Therefore, we tested the effect of long-term exposure to ethanol on the expression and activity of both ADH and CYP2E1 in these cells. The expression of ADH and CYP2E1 was assessed at the mRNA and/or protein level using real-time PCR and Western blot analysis. Specific colorimetric assays were used for the measurement of ADH and CYP2E1 enzymatic activities. Caco-2 cells (active CYP2E1 and inactive ADH) were used as control cells. Significantly increased protein expression of ADH (about 2.5-fold) as well as CYP2E1 (about 1.6-fold) was found in HEP-G2 cells after long-term (12 mo) exposure to ethanol. The activity of ADH and CYP2E1 was also significantly increased from 12 ± 3 and 6 ± 1 nmol/h/mg of total protein to 191 ± 9 and 57 ± 9 nmol/h/mg of total protein, respectively. We suggest that the loss of activity of ethanol-metabolizing enzymes in cultured HEP-G2 cells is reversible and can be induced by prolonged exposure to ethanol. We are therefore able to reactivate HEP-G2 cells metabolic functions concerning ethanol oxidation just by modification of in vitro culture conditions without necessity of transfection with its side effect - enzyme overexpression.

  19. Caffeine dose-dependently induces thermogenesis but restores ATP in HepG2 cells in culture.

    PubMed

    Riedel, Annett; Pignitter, Marc; Hochkogler, Christina M; Rohm, Barbara; Walker, Jessica; Bytof, Gerhard; Lantz, Ingo; Somoza, Veronika

    2012-09-01

    Caffeine has been hypothesised as a thermogenic agent that might help to maintain a healthy body weight. Since very little is known about its actions on cellular energy metabolism, we investigated the effect of caffeine on mitochondrial oxidative phosphorylation, cellular energy supply and thermogenesis in HepG2 cells, and studied its action on fatty acid uptake and lipid accumulation in 3T3-L1 adipocytes at concentrations ranging from 30-1500 μM. In HepG2 cells, caffeine induced a depolarisation of the inner mitochondrial membrane, a feature of mitochondrial thermogenesis, both directly and after 24 h incubation. Increased concentrations of uncoupling protein-2 (UCP-2) also indicated a thermogenic activity of caffeine. Energy generating pathways, such as mitochondrial respiration, fatty acid oxidation and anaerobic lactate production, were attenuated by caffeine treatment. Nevertheless, HepG2 cells demonstrated a higher energy charge potential after exposure to caffeine that might result from energy restoration through attenuation of energy consuming pathways, as typically found in hibernating animals. In 3T3-L1 cells, in contrast, caffeine increased fatty acid uptake, but did not affect lipid accumulation. We provide evidence that caffeine stimulates thermogenesis but concomitantly causes energy restoration that may compensate enhanced energy expenditure.

  20. Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells

    PubMed Central

    Zhao, Mei; Ralat, Maria A.; da Silva, Vanessa; Garrett, Timothy J.; Melnyk, Stephan; James, S. Jill

    2013-01-01

    Vitamin B-6 deficiency has been reported to alter n-6 and n-3 fatty acid profiles in plasma and tissue lipids; however, the mechanisms underlying such metabolic changes remain unclear. The objective of this study was to determine the effects of vitamin B-6 restriction on fatty acid profiles and fatty acid synthesis in HepG2 cells. Cells were cultured for 6 wk in media with four different vitamin B-6 concentrations (10, 20, 50, and 2,000 nM added pyridoxal, representing deficient, marginal, adequate, and supraphysiological conditions) that induced a range of steady-state cellular concentrations of pyridoxal phosphate. Total cellular lipid content was greatest in the deficient (10 nM pyridoxal) medium. The percentage of arachidonic acid and the ratio of arachidonic acid to linoleic acid in the total lipid fraction were ∼15% lower in vitamin B-6-restricted cells, which suggests that vitamin B-6 restriction affects n-6 fatty acid interconversions. Metabolic flux studies indicated significantly lower fractional synthesis rate of oleic acid and arachidonic acid at 10, 20, and 50 nM pyridoxal, whereas that of eicosapentaenoic acid was lower in the cells cultured in 10 nM pyridoxal. Additionally, relative mRNA expressions of Δ5 and Δ6 desaturases were 40–50% lower in vitamin B-6-restricted cells. Overall, these findings suggest that vitamin B-6 restriction alters unsaturated fatty acid synthesis, particularly n-6 and n-3 polyunsaturated fatty acid synthesis. These results and observations of changes in human plasma fatty acid profiles caused by vitamin B-6 restriction suggest a mechanism by which vitamin B-6 inadequacy influences the cardiovascular risk. PMID:23211517

  1. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures

    PubMed Central

    Meissen, John K.; Hirahatake, Kristin M.; Adams, Sean H.; Fiehn, Oliver

    2014-01-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation. PMID:26190955

  2. Transfer of Free Polymannose-type Oligosaccharides from the Cytosol to Lysosomes in Cultured Human Hepatocellular Carcinoma HEPG2 Cells

    PubMed Central

    Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.

    1997-01-01

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702

  3. Modulation of lipid metabolism by deep-sea water in cultured human liver (HepG2) cells.

    PubMed

    He, Shan; Hao, Jiejie; Peng, Weibing; Qiu, Peiju; Li, Chunxia; Guan, Huashi

    2014-04-01

    It has been found that deep-sea water was associated with lower serum lipid in animal model studies. Herein, we investigated whether DSW exerted a hypolipidemic activity and further elucidated how DSW modulated lipid metabolism in HepG2 cells. Preliminary animal studies showed that DSW exhibited potency to decrease serum total cholesterol, triglycerides, and LDL cholesterol, and increase HDL cholesterol, and the hepatic lipid contents were also significantly lower in the DSW group. When DSW was added to HepG2 cells, it decreased the lipid contents of hepatocyte through the activation of AMP-activated protein kinase, thus inhibiting the synthesis of cholesterol and fatty acid. Besides, LDL receptor was upregulated by activation of sterol regulatory element-binding protein-2. In addition, the levels of apolipoprotein AI and cholesterol 7-alpha-hydroxylase were also raised. Our investigation provided mechanisms by which DSW modulated lipid metabolism and indicated that DSW was worthy of further investigation and could be developed as functional drinking water in the prevention and treatment of hypolipidemic and other lifestyle-related diseases.

  4. [Observation of radiobiological characteristics in a HepG2 cell line with mitochondrial DNA deletion].

    PubMed

    Sun, Hengwen; Pan, Yi; Zeng, Zijun; Fang, Liangyi; Zhang, Hongdan; Xie, Songxi; Li, Weixiong; Xu, Jiabin

    2015-06-01

    To study the radiobiological characteristics of a HepG2 cell line with mitochondrial DNA (mtDNA) deletion. HepG2 cells were cultured in a medium containing ethidium bromide, acetylformic acid and uracil. The HepG2 cell line with mtDNA deletion (ρ(0)HepG2 cells) were acquired after 30 subcultures by limited dilution cloning. The cell survival was then observed in the absence of acetylformic acid and uracil, and the total mtDNA deletion in the cells was confirmed by PCR. The radiosensitivity of HepG2 and ρ(0)HepG2 cells was evaluated by exposure to gradient doses of 6 MV X ray irradiation. The cell apoptosis was assessed following a 2 Gy X-ray exposure with Hochest33342 staining, and the invasiveness of ρ(0)HepG2 cells was measured by Transwell assay. HepG2 cells could survive 30 subcultures in the presence of ethidium bromide, and massive cell death occurred after removal of acetylformic acid and uracil from the medium. PCR confirmed total mtDNA deletion from ρ(0)HepG2 cells, whose α/β value was significantly lower than that of HepG2 cells. ρ(0)Hep-G2 cells showed an obviously lowered cell apoptosis rate following X-ray exposure with enhanced cell invasiveness. HepG2 cells can be induced by ethidium bromide into ρ(0)HepG2 cells with an increased radiation resistance, anti-apoptosis ability and cell invasiveness.

  5. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells.

    PubMed

    Harris, Angela J; Dial, Stacey L; Casciano, Daniel A

    2004-05-18

    Toxicogenomics is a relatively new discipline of toxicology. Microarrays and bioinformatics tools are being used successfully to understand the effects of toxicants on in vivo and in vitro model systems, and to gain a better understanding of the relevance of in vitro models commonly used in toxicological studies. In this study, cDNA filter arrays were used to determine the basal expression patterns of human cultured primary hepatocytes from different male donors; compare the gene expression profile of HepG2 to that of primary hepatocytes; and analyze the effects of three genotoxic hepatocarcinogens; aflatoxin B(1) (AFB(1)), 2-acetylaminofluorene (2AAF), and dimethylnitrosamine (DMN), as well as one non-gentoxic hepatotoxin, acetaminophen (APAP) on gene expression in both in vitro systems. Real-time PCR was used to verify differential gene expression for selected genes. Of the approximately 31,000 genes screened, 3-6% were expressed in primary hepatocytes cultured on matrigel for 16 h. Of these genes, 867 were expressed in cultured hepatocytes from all donors. HepG2 cells expressed about 98% of the genes detectable in cultured primary hepatocytes, however, 31% of the HepG2 transcriptome was unique to the cell line. A number of these genes are expressed in human liver but expression is apparently lost during culture. There was considerable variability in the response to chemical carcinogen exposure in primary hepatocytes from different donors. The transcription factors, E2F1 and ID1 mRNA were increased three-fold and six-fold (P < 0.05, P < 0.01), respectively, in AFB(1) treated primary human hepatocytes but were not altered in HepG2. ID1 expression was also increased by dimethylnitrosamine, acetylaminofluorene and acetaminophen in both primary hepatocytes and HepG2. Identification of genes that are expressed in primary hepatocytes from most donors, as well as those genes with variable expression, will aid in understanding the variability in human reactions to drugs

  6. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    SciTech Connect

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  7. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system.

    PubMed

    González-Arias, Cyndia A; Marín, Sonia; Rojas-García, Aurora E; Sanchis, Vicente; Ramos, Antonio J

    2017-09-06

    Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Very low density lipoprotein-mediated signal transduction and plasminogen activator inhibitor type 1 in cultured HepG2 cells.

    PubMed

    Banfi, C; Mussoni, L; Risé, P; Cattaneo, M G; Vicentini, L; Battaini, F; Galli, C; Tremoli, E

    1999-07-23

    In normal subjects and in patients with cardiovascular disease, plasma triglycerides are positively correlated with plasminogen activator inhibitor type 1 (PAI-1) levels. Moreover, in vitro studies indicate that VLDLs induce PAI-1 synthesis in cultured cells, ie, endothelial and HepG2 cells. However, the signaling pathways involved in the effect of VLDL on PAI-1 synthesis have not yet been investigated. We report that VLDLs induce a signaling cascade that leads to an enhanced secretion of PAI-1 by HepG2 cells. In myo-[(3)H]inositol-labeled HepG2 cells, VLDL (100 microg/mL) caused a time-dependent increase in [(3)H]inositol phosphates, the temporal sequence being tris>bis>monophosphate. VLDL brought about a time-dependent stimulation of membrane-associated protein kinase C (PKC) activity and arachidonate release. Finally, VLDL stimulated mitogen-activated protein (MAP) kinase, and this effect was reduced by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), which suggests that PKC plays a pivotal role in MAP kinase phosphorylation. VLDL-induced PAI-1 secretion was completely prevented by U73122, a specific inhibitor of phosphatidylinositol-specific phospholipase C, by H7 or by PKC downregulation, and by mepacrine (all P<0.01 versus VLDL-treated cells). 3,4,5-Trimethoxybenzoic acid 8-(diethylamino)-octyl ester, which prevents Ca2+ release from intracellular stores, inhibited VLDL-induced PAI-1 secretion by 60% (P<0.05), and the MAP kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 completely suppressed both basal and VLDL-induced PAI-1 secretion. These data demonstrate that VLDL-induced PAI-1 biosynthesis results from a principal signaling pathway involving PKC-mediated MAP kinase activation.

  9. Transmission of HCV to a chimpanzee using virus particles produced in an RNA-transfected HepG2 cell culture.

    PubMed

    Dash, S; Kalkeri, G; McClure, H M; Garry, R F; Clejan, S; Thung, S N; Murthy, K K

    2001-10-01

    It was demonstrated previously that HepG2 cells produce negative strand RNA and virus-like particles after transfection with RNA transcribed from a full-length hepatitis C virus (HCV) cDNA clone [Dash et al. (1997) American Journal of Pathology, 151:363-373]. To determine in vivo infectivity of these in vitro synthesized viral particles, a chimpanzee was inoculated intravenously with HCV derived from HepG2 cells. The infected chimpanzee was examined serially for elevation of liver enzymes, for the presence of HCV RNA in the serum by reverse transcription nested polymerase chain reaction (RT-PCR), anti-HCV antibodies in the serum, and inflammation in the liver. The chimpanzee developed elevated levels of liver enzymes after the second week, but the levels fluctuated over a 10-week period. HCV RNA was detected in the serum of the chimpanzee at the second, seventh and ninth weeks after inoculation, and remained positive up to 25 weeks. Liver biopsies at Weeks 18 and 19 revealed of mild inflammation. Nucleotide sequence analysis of HCV recovered from the infected chimpanzee at the second and ninth weeks showed 100% sequence homology with the clone used for transfection studies. Serum anti-HCV antibodies were not detected by EIA during the 25 weeks follow-up period. These results suggest that intravenous administration of the virus-like particles derived from RNA-transfected HepG2 cells are infectious, and therefore, the pMO9.6-T7 clone is an infectious clone. These results provide new information that in vitro synthesized HCV particles produced from full-length HCV clone can cause infection in a chimpanzee. This study will facilitate the use of innovative approaches to the study of assembly of HCV particles and mechanisms of virus infectivity in cell culture.

  10. Inactivation of hepatitis B virus in plasma by hospital in-use chemical disinfectants assessed by a modified HepG2 cell culture.

    PubMed

    Payan, C; Cottin, J; Lemarie, C; Ramont, C

    2001-04-01

    Because of the difficulties of the chimpanzee model and the genetic differences using the duck model, we developed a cell culture method to measure human hepatitis B virus (HBV) inactivation in vitro. Pooled HBV-infected human plasma that had been exposed to a disinfectant was left in contact for three days with a cell culture of the human hepatoma cell line, HepG2, with 4% polyethyleneglycol and 3 mM sodium butyrate. The mean log10 of the viral titre of unexposed plasma was 4.87 infectious units per mL. Our results showed that 1% glutaraldehyde, sodium hypochlorite at 4700 ppm free chlorine and an iodophor-detergent disinfectant containing 3.6% povidone-iodine reduced viral titres by factors exceeding 10(3)-10(4). However, sodium hypochlorite at 1000 ppm free chlorine had minimal activity and povidone-iodine at 9, 5 and 3.6% had no measurable activity (less than 10-fold reduction). This is the first study using a cell culture model to assess disinfectant activity against HBV. It demonstrates more rapidly than the chimpanzee model that glutaraldehyde and sodium hypochlorite, using standard concentrations and exposure times compatible with clinical practice, were highly active against HBV. However, unexpectedly for an enveloped virus, we found no antiviral activity for iodine in the absence of detergent. Copyright 2001 The Hospital Infection Society.

  11. Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Ferruzza, Simonetta; Ranaldi, Giulia; Sambuy, Yula; Arnoldi, Anna

    2016-01-01

    Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. PMID:27455315

  12. TGF-β1 promotes human hepatic carcinoma HepG2 cells invasion by upregulating autophagy.

    PubMed

    Ma, C-L; Qiao, S; Li, Y-C; Wang, X-F; Sun, R-J; Zhang, X; Qian, R-K; Song, S-D

    2017-06-01

    To study the role of TGF-β1 in autophagy and invasion ability of human hepatic carcinoma HepG2 cells. Cultured HepG2 cells were treated with different concentrations of TGF-β1 for 24 h. The protein expression levels of autophagy relative marker LC3 and Beclin1 were detected by Western blot. The effect of TGF-β1 on invasion ability of HepG2 cells was detected with transwell method. The results demonstrated that TGF-β1 was able to activate autophagy of HepG2 cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) could reverse TGF-β1 induced autophagy process. Also, TGF-β1 significantly promotes the invasion ability of HepG2 cells; however, this process could effectively reverse by autophagy inhibitor 3-MA. TGF-β1 enhances HepG2 cells invasion by upregulating autophagy.

  13. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells.

    PubMed

    da Silva, Vanessa R; Ralat, Maria A; Quinlivan, Eoin P; DeRatt, Barbara N; Garrett, Timothy J; Chi, Yueh-Yun; Frederik Nijhout, H; Reed, Michael C; Gregory, Jesse F

    2014-07-01

    Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency. Copyright © 2014 the American Physiological Society.

  14. Hepatitis B virus infection and replication in a new cell culture system established by fusing HepG2 cells with primary human hepatocytes.

    PubMed

    Sai, Lin-Tao; Yao, Yong-Yuan; Guan, Yan-Yan; Shao, Li-Hua; Ma, Rui-Ping; Ma, Li-Xian

    2016-08-01

    Hepatitis B virus (HBV) infection is strictly species and tissue specific, therefore none of the cell models established previously can reproduce the natural infection process of HBV in vitro. The aim of this study was to establish a new cell line that is susceptible to HBV and can support the replication of HBV. A hybrid cell line was established by fusing primary human hepatocytes with HepG2 cells. The hybrid cells were incubated with HBV-positive serum for 12 hours. HBV DNA was detected by quantitative fluorescence polymerase chain reaction (QF-PCR). HBsAg (surface antigen) and HBeAg (extracellular form of core antigen) were observed by electrochemiluminescence (ECL). HBcAg (core antigen) was detected by the indirect immunofluorescence technique. HBV covalently closed circular DNA (cccDNA) was analyzed by Southern blot hybridization and quantified using real-time PCR. A new cell line was established and named HepCHLine-7. The extracellular HBV DNA was observed from Day 2 and the levels ranged from 9.80 (± 0.32) × 10(2) copies/mL to 3.12 (± 0.03) × 10(4) copies/mL. Intracellular HBV DNA was detected at Day 2 after infection and the levels ranged from 7.92 (± 1.08) × 10(3) copies/mL to 5.63 (± 0.11) × 10(5) copies/mL. HBsAg in the culture medium was detected from Day 4 to Day 20. HBeAg secretion was positive from Day 5 to Day 20. HBcAg constantly showed positive signals in approximately 20% (± 0.82%) of hybrid cells. Intracellular HBV cccDNA could be detected as early as 2 days postinfection and the highest level was 15.76 (± 0.26) copies/cell. HepCHLine-7 cells were susceptible to HBV and supported the replication of HBV. They are therefore suitable for studying the complete life cycle of HBV. Copyright © 2014. Published by Elsevier B.V.

  15. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.

  16. Developmental Stage-Specific Embryonic Induction of HepG2 Cell Differentiation.

    PubMed

    Li, Yanning; Zong, Yanhong; Xiao, Zhigang; Zhu, Mengxuan; Xiao, Hui; Qi, Jinsheng; Liu, Kun; Wang, Hui

    2016-04-01

    Although hepatocellular carcinoma cells can sometimes undergo differentiation in an embryonic microenvironment, the mechanism is poorly understood. The developmental stage-specific embryonic induction of tumor cell differentiation was investigated. Both chick and mouse liver extracts and hepatoblast-enriched cells at different developmental stages were used to treat human hepatoma HepG2 cells, and the effects on the induction of differentiation were evaluated. The nuclear factors controlling differentiation, hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and upstream stimulatory factor-1 (USF-1), and the oncogene Myc and alpha-fetoprotein (AFP) were measured. HNF-4α RNA interference was used to verify the role of HNF-4α. Embryonic induction effects were further tested in vivo by injecting HepG2 tumor cells into immunodeficient nude mice. The 9-11-days chick liver extracts and 13.5-14.5-days mouse hepatoblast-enriched cells could inhibit proliferation and induce differentiation of HepG2 cells, leading to either death or maturation to hepatocytes. The maturation of surviving HepG2 cells was confirmed by increases in the expressions of HNF-4α, HNF-1α, HNF-6, and USF-1, and decreases in Myc and AFP. The embryonic induction of HepG2 cell maturation could be attenuated by HNF-4α RNA interference. Furthermore, the 13.5-days mouse hepatoblast culture completely eliminated HepG2 tumors with inhibited Myc and induced HNF-4α, confirming this embryonic induction effect in vivo. This study demonstrated that developmental stage-specific embryonic induction of HepG2 cell differentiation might help in understanding embryonic differentiation and oncogenesis.

  17. Acquisition of susceptibility to hepatitis C virus replication in HepG2 cells by fusion with primary human hepatocytes: establishment of a quantitative assay for hepatitis C virus infectivity in a cell culture system.

    PubMed

    Ito, T; Yasui, K; Mukaigawa, J; Katsume, A; Kohara, M; Mitamura, K

    2001-09-01

    Hepatitis C virus (HCV) replicates in human and chimpanzee hepatocytes. To characterize the nature of HCV and evaluate antiviral agents, the development of an HCV replication system in a cell culture is essential. We developed a cell line derived from human hepatocytes by fusing them with a hepatoblastoma cell line, HepG2, and obtained several clones. When we tested the clones for their ability to support HCV replication by nested RT-PCR, we found 1 clone (IMY-N9) that was more susceptible to HCV replication than HepG2. The negative-strand HCV RNA was detected in IMY-N9 by strand-specific RT-PCR, and viral RNA was identified in culture supernatant during the culture. Then we monitored HCV RNA titers in IMY-N9 and HepG2, respectively, by real-time detection PCR throughout the culture. A significant increase in the HCV RNA titer was observed only in IMY-N9. Serial passages of HCV culture supernatant were shown in the culture system. Furthermore, we tested several infectious materials for viral infectivity by monitoring HCV RNA titers and/or 50% tissue culture infectious dose (TCID50) of HCV on IMY-N9. In each material, HCV showed various growth patterns and a different TCID50 even though the PCR titer in each material was identical. The results showed that HCV in each material served various growth patterns and different TCID50 even though PCR titer in each material was identical. This cell line is useful for estimating viral activity and for studying cellular factors that may be necessary to HCV replication in human hepatocytes.

  18. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-07-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL).

  19. Effects of 1,2,4,6-tetra-O-galloyl-β-D-glucose from P. emblica on HBsAg and HBeAg secretion in HepG2.2.15 cell culture.

    PubMed

    Xiang, Yang-Fei; Ju, Huai-Qiang; Li, Shen; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei

    2010-10-01

    A polyphenolic compound, 1,2,4,6-tetra-O-galloyl-β-D-glucose (1246TGG), was isolated from the traditional Chinese medicine Phyllanthus emblica L. (Euphorbiaceae) and assayed for its potential as an anti-hepatitis B virus (HBV) agent. The cytotoxicity of 1246TGG on HepG2.2.15 as well as HepG2 cells was determined by observing cytopathic effects, and the effects of 1246TGG on secretion of HBsAg and HBeAg in HepG2.2.15 cells were assayed by enzyme immunoassay. Results indicates that treatment with 1246TGG (6.25 μg/mL, 3.13 μg/mL), reduced both HBsAg and HBeAg levels in culture supernatant, yet the inhibitory effects tend to decline with the assay time. This study provides a basis for further investigation of the anti-HBV activity and possible mechanism of action of 1246TGG.

  20. Effects of PRELI in Oxidative-Stressed HepG2 Cells.

    PubMed

    Kim, Bo Yong; Cho, Min Ho; Kim, Kyung Joo; Cho, Kyung Jin; Kim, Suhng Wook; Kim, Hyun Sook; Jung, Woon-Won; Lee, Boo Hyung; Lee, Bong Hee; Lee, Seung Gwan

    2015-01-01

    Protein of relevant evolutionary and lymphoid interest (PRELI) is known for preventing apoptosis by mediating intramitochondrial transport of phosphatidic acid. However, the role of PRELI remains unclear. This study has demonstrated functions of PRELI through PRELI-knockdown in hepatocellular carcinoma (HepG2) cells exposed to oxidative stress by hydrogen peroxide. Results show that PRELI has three functions in HepG2 cells with regard to oxidative stress. First, PRELI affects expressional regulation of SOD-1 and caspase-3 genes in HepG2 cells. PRELI knockdown HepG2 cells have shown up-regulation of caspase-3 and down-regulation of SOD-1. Second, PRELI suppresses mitochondrial apoptosis in HepG2 cells. Fluorescence intensity related to mitochondrial apoptosis in PRELI-knockdown HepG2 cells increased more than two-fold compared to normal HepG2 cells. Third, PRELI suppresses senescence of HepG2 cells with oxidative stress. PRELI knockdown HepG2 cells showed higher levels of senescence than normal HepG2 cells. These results suggest that PRELI is a crucial protein in the suppression of apoptosis in HepG2 cells in response to oxidative stress. © 2015 by the Association of Clinical Scientists, Inc.

  1. Condition medium of HepG-2 cells induces the transdifferentiation of human umbilical cord mesenchymal stem cells into cancerous mesenchymal stem cells

    PubMed Central

    Yang, Juan; Miao, Yinglei; Chang, Yefei; Zhang, Fan; Wang, Yubo; Zheng, Sheng

    2016-01-01

    This study aimed to investigate the transdifferentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) into cancer-associated mesenchymal stem cells (CA-MSCs) after incubation with condition medium (CM) from liver cancer HepG-2 cells, and the biobehaviors (proliferation and migration) of these CA-MSCs were further evaluated. The supernatant of HepG-2 cells was collected and mixed with equal volume of low glucose DMEM. The resultant medium was used to treat hUCMSCs for 48 h. The expression of CA-MSCs related proteins and miR-221 was detected in cells. The supernatant of induced hUCMSCs was mixed with equal volume of high glucose DMEM, and the resultant medium was used treat HepG-2 cells for 48 h and the proliferation and migration of HepG-2 cells were evaluated. Moreover, HepG-2 cells were co-cultured with hUCMSCs and then the proliferation and migration of HepG-2 cells were assessed. After incubation with the supernatant from HepG-2 cells, hUCMSCs showed significantly elevated expression of vimentin, fibroblast activation protein (FAP) and miR-221. The supernatant of induced hUCMSCs was able to significantly increase the proliferation and migration of HepG-2 cells. Following co-culture, the proliferation and migration of HepG-2 cells increased dramatically. These findings suggest that the supernatant of HepG-2 cells is able to induce the phenotype of CA-MSCs and the supernatant of CA-MSCs may promote the proliferation and migration of HepG-2 cells. These findings provide experimental evidence for the cellular remodeling in tumor microenvironment and the safety of clinical use of hUCMSCs. PMID:27648133

  2. Inferring Toxicological Responses of HepG2 Cells from ...

    EPA Pesticide Factsheets

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  3. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines.

    PubMed

    Louisa, Melva; Suyatna, Frans D; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.

  4. Effects of sargentgloryvine stem extracts on HepG-2 cells in vitro and in vivo.

    PubMed

    Wang, Ming-Hua; Long, Min; Zhu, Bao-Yi; Yang, Shu-Hui; Ren, Ji-Hong; Zhang, Hui-Zhong

    2011-06-21

    To observe the effects of sargentgloryvine stem extracts (SSE) on the hepatoma cell line HepG-2 in vitro and in vivo and determine its mechanisms of action. Cultured HepG-2 cells treated with SSE were analysed by 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-Diphenyltetrazolium bromide and clone formation assay. The cell cycle and apoptosis analysis were conducted by flow cytometric, TdT-Mediated dUTP Nick End Labeling and acridine orange/ethidium bromide staining methods, and protein expression was examined by both reverse transcriptase-polymerase chain reaction and Western blotting. The pathological changes of the tumor cells were observed by haematoxylin and eosin staining. Tumor growth inhibition and side effects were determined in a xenograft mouse model. SSE treatment could not only inhibit HepG-2 cell proliferation in a dose- and time-dependent manner but also induce apoptosis and cell cycle arrest at the S phase. The number of colonies formed by SSE-treated tumor cells was fewer than that of the controls (P < 0.05). SSE induced caspase-dependent apoptosis accompanied by a significant decrease in Bcl-xl and Mcl-1 and elevation of Bak expression (P < 0.05). Tumor necrosis factor α in the xenograft tumor tissue and the liver functions of SSE-treated mice showed no significant changes at week 8 compared with the control group (P > 0.05). Systemic administration of SSE could inhibit the HepG-2 xenograft tumor growth with no obvious toxic side effects on normal tissues. SSE can induce apoptosis of HepG-2 cells in vitro and in vivo through decreasing expression of Bcl-xl and Mcl-1 and increasing expression of Bax.

  5. [Experimental study on the immune response of fusion tumor vaccine of HepG2 and dendritic cells in vitro].

    PubMed

    Pang, Y B; Cui, B Y; He, J; Huang, X P; Liang, W; Li, L Q; Luo, X L

    2017-02-21

    Objective: To estimate the immune response of HepG2/dendritic cell (DC) fusion cells vaccines against HepG2 cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors by Ficoll-Hypaque density-gradient centrifugation.Then DC were obtain from PBMCs by culturing in medium containing granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 5 days.DC and HepG2 fusion cells were induced by polythyleneglycol (PEG). The fusion cells were examined under fluorescence microscope by labeling DCs and HepG2 with green and red fluorescein, respectively, and then the fusion rates were analyzed by flow cytometry.The capacity of fusion cells to secrete interleukin (IL)-12 and stimulate the proliferation of T lymphocyte was assessed by ELISA and Flow cytometry, respectively.ELISPOT was used to assess the interferon gamma (IFN-γ) produced by cytotoxicity T lymphocyte (CTL), and the specific killing ability of fusion cells induce-CTL targeting HepG2 was estimated. Results: The fusion rate of HepG2/DC was 54.5%, and the fusion cells expressed a higher levels of DC mature marker CD80 and costimulatory molecules CD83, CD86 and MHC-Ⅰ, MHC-Ⅱ molecules HLA-ABC and HLA-DR than those in immature DCs (P<0.01). HepG2/DC showed a greater capacity to secrete high level of IL-12 (P<0.05) and activate proliferation of lymphocytes in vitro, as compared with DCs alone and DCs mix HepG2 (P<0.01). The HepG2/DC -activated CTL generated higher IFN-γ level and had a specific killing ability against HepG2 cells at the effecter/target ratio 30∶1 (31.4%±2.4%) and 100∶1 (57.6%±7.3%) (P<0.01). Conclusions: HepG2/DC fusion cells could efficiently stimulate T lymphocytes to generate specific CTL targeting HepG2 cells.It might be a promising strategy of immunotherapy for HCC.

  6. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  7. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells.

    PubMed

    Zhou, Jin; Li, L U; Fang, L I; Xie, Hua; Yao, Wenxiu; Zhou, Xiang; Xiong, Zhujuan; Wang, L I; Li, Zhixi; Luo, Feng

    2016-07-01

    Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo.

  8. [Establishment of a model for evaluating hypolipidemic effect in HepG2 cells].

    PubMed

    Niu, Yucun; Lü, Na; Li, Ying; Zhao, Dan; Sun, Changhao

    2010-03-01

    To establish a model of evaluating hypolipidemic effect in vitro. Adding cholesterol to the culture medium for HepG2 cells to induce a hypercholesterolemia model. The content of cellular cholesterol and the expression of protein regulating cholesterol metabolism in HepG2 cells were determined. The validation of the model was identified by lovastatin, a widely used cholesterol-lowering drug. Free fatty acid was added to the culture medium for HepG2 cells to induce a hypertriglyceridemia model. The content of cellular triglyceride and the absorption rate of free fatty acid were determined. The validation of the model was identified by fenofibrate, a triglyceride-lowering drug. Cellular cholesterol content was increased and the expression of HMG-CoA redutase, SREBP-2 and LDLR were decreased after adding cholesterol and 25-hydrocholesterol to the culture medium. Cellular cholesterol was decreased and the expression of SREBP-2 and LDLR were up-regulated by Lovastatin. The absorption of oleic acid in cells was up to 40% after adding oleic acid (50 micromol) to the culture medium for 6 h. The absorption of free fatty acid was increased but the content of cellular triglyceride was not increased in cells by Fenofibrate. This model might be an effective method for screening and assessing functional factors for lowing plasma lipids.

  9. Sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway.

    PubMed

    Tao, Ran; Sun, Wen-Yi; Yu, De-Hai; Qiu, Wei; Yan, Wei-Qun; Ding, Yan-Hua; Wang, Guang-Yi; Li, Hai-Jun

    2017-08-01

    The function of sodium cantharidinate on inducing hepatocellular carcinoma cell apoptosis was investigated for the first time. Sodium cantharidinate inhibits HepG2 cell growth mainly by LC3 autophagy pathway. MTT results show that sodium cantharidinate effectively inhibits the proliferation of HepG2 cells in a dose- and time-dependent manner and induce cell apoptosis by caspase-3 activity. The further western blotting and FACS detection show that sodium cantharidinate initiates HepG2 cell autophagy program by LC3 pathway. Autophagy-specific inhibitor 3-MA reduce sodium cantharidinate-induced caspase-3 activity and HepG2 cell apoptosis. Silence of the LC3 gene in HepG2 cell lines also reduce sodium cantharidinate-induced cell apoptosis. Collectively, our data indicate that sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway. Sodium cantharidinate has potential for development as a new drug for treatment of human HCC.

  10. Decorin protects human hepatoma HepG2 cells against oxygen-glucose deprivation via modulating autophagy.

    PubMed

    Ju, Wenbo; Li, Shubo; Wang, Zhaohui; Liu, Yanfeng; Wang, Dawei

    2015-01-01

    This study is to investigate the effects of decorin (DCN) on human hepatoma HepG2 cells under oxygen-glucose deprivation (OGD) condition. HepG2 cells were cultured under OGD condition. CCK-8 assay was used to assess the cell survival, and flow cytometry was performed to detect the apoptosis. Protein expression levels were detected with Western blot analysis. Transfection was performed with liposome, and cells were screened with G418. The cell survival rates were significantly decreased in the OGD groups. When treated with autophagy inhibitor 3-MA, the survival rates were further declined in these cells. Moreover, flow cytometry indicated that apoptosis occurred in the HepG2 cells under OGD condition, and the apoptosis rates were significantly increased by the 3-MA treatment. Western blot analysis showed that, the expression levels of DCN were significantly elevated in OGD-preconditioned HepG2 cells. Meanwhile, the expression level of Beclin1 and the LC3BI/LC3BII ratio were significantly increased, while the expression level of P62 was significantly decreased, in HepG2 cells under OGD condition. Over-expression of DCN significantly increased the expression level of Beclin1 and the LC3BI/LC3BII ratio, while no significant changes were observed in the P62 expression level, in HepG2 cells. Under the OGD condition, the apoptosis rate was also significantly decreased in DCN-transfected HepG2 cells. DCN protects HepG2 cells against OGD-induced injury, via regulating autophagy. These results might contribute to a better understanding of the roles of DCN and autophagy in hepatocellular carcinoma, and the potential treatment for the disease.

  11. Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Granado Serrano, Ana Belén; Izquierdo-Pulido, María; Bravo, Laura; Goya, Luis

    2008-09-10

    Cocoa is a rich source of flavanols and procyanidin oligomers with antioxidative properties, providing protection against oxidation and nitration. The present study investigated the potential protective effect of a polyphenolic extract from cocoa on cell viability and antioxidant defenses of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Pretreatment of cells with 0.05-50 microg/mL of cocoa polyphenolic extract (CPE) for 2 or 20 h completely prevented cell damage and enhanced activity of antioxidant enzymes induced by a treatment with t-BOOH. Moreover, lower levels of GSH caused by t-BOOH in HepG2 cells were partly recovered by a pretreatment with CPE. Increased reactive oxygen species (ROS) induced by t-BOOH was dose-dependently prevented when cells were pretreated for 2 or 20 h with CPE. These results show that treatment of HepG2 in culture with CPE (within the physiological range of concentrations) confers a significant protection against oxidation to the cells.

  12. HCMV Activates the IL-6-JAK-STAT3 Axis in HepG2 Cells and Primary Human Hepatocytes

    PubMed Central

    Kumar, Amit; Tripathy, Manoj K.; Herbein, Georges

    2013-01-01

    Objectives There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells. Methods Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively. Results Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures. Conclusion HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma. PMID:23555719

  13. Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells.

    PubMed

    Yasuda, Akiko; Natsume, Midori; Osakabe, Naomi; Kawahata, Keiko; Koga, Jinichiro

    2011-02-23

    Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.

  14. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells.

    PubMed

    Rajendran, Kumar; Karunagaran, Vithiya; Mahanty, Biswanath; Sen, Shampa

    2015-03-01

    Iron oxide nanoparticles were gaining significant importance in a variety of applications due to its paramagnetic properties and biocompatibility. Various chemical methods were employed for hematite nanoparticle synthesis which require special equipment or a complex production process. In this study, protein capped crystalline hexagonal hematite (α-Fe2O3) nanoparticles were synthesized by green approach using culture supernatant of a newly isolated bacterium, Bacillus cereus SVK1 at ambient conditions. The synthesized nanoparticles were characterized by electron microscopy, X-ray diffraction, UV-visible spectroscopy and Fourier transform infrared spectroscopic analysis. Nanoparticles were evaluated for its possible anticancer activity against HepG2 liver cancer cells by MTT assay. Hematite nanoparticles with an average diameter of 30.2 nm, exhibited a significant cytotoxicity toward HepG2 cells in a concentration-dependent manner (CTC50=704 ng/ml). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells.

    PubMed

    Desquiret, Valérie; Loiseau, Dominique; Jacques, Caroline; Douay, Olivier; Malthièry, Yves; Ritz, Patrick; Roussel, Damien

    2006-01-01

    Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.

  16. Riboflavin deficiency induces a significant change in proteomic profiles in HepG2 cells

    PubMed Central

    Xin, Zhonghao; Pu, Lingling; Gao, Weina; Wang, Yawen; Wei, Jingyu; Shi, Tala; Yao, Zhanxin; Guo, Changjiang

    2017-01-01

    Riboflavin deficiency is widespread in many regions over the world, especially in underdeveloped countries. In this study, we investigated the effects of riboflavin deficiency on protein expression profiles in HepG2 cells in order to provide molecular information for the abnormalities induced by riboflavin deficiency. HepG2 cells were cultured in media containing different concentrations of riboflavin. Changes of cell viability and apoptosis were assessed. A comparative proteomic analysis was performed using a label-free shotgun method with LC–MS/MS to investigate the global changes of proteomic profiles in response to riboflavin deficiency. Immunoblotting test was used to validate the results of proteomic approach. The cell viability and apoptosis tests showed that riboflavin was vital in maintaining the cytoactivity of HepG2 cells. The label-free proteomic analysis revealed that a total of 37 proteins showing differential expression (±2 fold, p < 0.05) were identified after riboflavin deficiency. Bioinformatics analysis indicated that the riboflavin deficiency caused an up-regulation of Parkinson’s disease pathway, steroid catabolism, endoplasmic reticulum stress and apoptotic process, while the fatty acid metabolism, tricarboxylic citrate cycle, oxidative phosphorylation and iron metabolism were down-regulated. These findings provide a molecular basis for the elucidation of the effects caused by riboflavin deficiency. PMID:28367977

  17. Riboflavin deficiency induces a significant change in proteomic profiles in HepG2 cells.

    PubMed

    Xin, Zhonghao; Pu, Lingling; Gao, Weina; Wang, Yawen; Wei, Jingyu; Shi, Tala; Yao, Zhanxin; Guo, Changjiang

    2017-04-03

    Riboflavin deficiency is widespread in many regions over the world, especially in underdeveloped countries. In this study, we investigated the effects of riboflavin deficiency on protein expression profiles in HepG2 cells in order to provide molecular information for the abnormalities induced by riboflavin deficiency. HepG2 cells were cultured in media containing different concentrations of riboflavin. Changes of cell viability and apoptosis were assessed. A comparative proteomic analysis was performed using a label-free shotgun method with LC-MS/MS to investigate the global changes of proteomic profiles in response to riboflavin deficiency. Immunoblotting test was used to validate the results of proteomic approach. The cell viability and apoptosis tests showed that riboflavin was vital in maintaining the cytoactivity of HepG2 cells. The label-free proteomic analysis revealed that a total of 37 proteins showing differential expression (±2 fold, p < 0.05) were identified after riboflavin deficiency. Bioinformatics analysis indicated that the riboflavin deficiency caused an up-regulation of Parkinson's disease pathway, steroid catabolism, endoplasmic reticulum stress and apoptotic process, while the fatty acid metabolism, tricarboxylic citrate cycle, oxidative phosphorylation and iron metabolism were down-regulated. These findings provide a molecular basis for the elucidation of the effects caused by riboflavin deficiency.

  18. Selectivity of biopolymer membranes using HepG2 cells.

    PubMed

    Lü, Dongyuan; Gao, Yuxin; Luo, Chunhua; Lü, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-03-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor.

  19. Selenoprotein Genes Exhibit Differential Expression Patterns Between Hepatoma HepG2 and Normal Hepatocytes LO2 Cell Lines.

    PubMed

    Zhao, Hua; Tang, Jiayong; Xu, Jingyang; Cao, Lei; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Wang, Kangning

    2015-10-01

    The purpose of this study was to compare messenger RNA (mRNA) expression of selenoprotein genes between hepatoma HepG2 and normal hepatocytes LO2 cell lines. Liver HepG2 and LO2 cells were cultured in 12-well plates under the same condition until cells grew to complete confluence, and then cells were harvested for total RNA and protein extraction. The qPCRs were performed to compare gene expression of 14 selenoprotein genes and 5 cancer signaling-related genes. Enzyme activities were also assayed. The results showed that human hepatoma HepG2 cells grew faster than normal hepatocytes LO2 cells. Among the genes investigated, 10 selenoprotein genes (Gpx1, Gpx3, Gpx4, Selx, Sepp, Sepw1, Sepn1, Selt, Seli, Selh) and 3 cancer signaling-related genes (Bcl-2A, caspase-3, and P38) were upregulated (P < 0.05), while Selo and Bcl-2B were downregulated (P < 0.05) in hepatoma HepG2 cells compared to LO2 cells. Significant correlations were found between selenoprotein genes and the cancer signaling-related genes Caspase3, P53, Bc1-2A, and Bc1-2B. Our results revealed that selenoprotein genes were aberrantly expressed in hepatoma HepG2 cells compared to normal liver LO2 cells, which indicated that those selenoprotein genes may play important roles in the occurrence and development of liver carcinogenesis.

  20. Protective effects of quercetin on nicotine induced oxidative stress in 'HepG2 cells'.

    PubMed

    Yarahmadi, Amir; Zal, Fatemeh; Bolouki, Ayeh

    2017-10-01

    Nicotine is a natural component of tobacco plants and is responsible for the addictive properties of tobacco. Nicotine has been recognized to result in oxidative stress by inducing the generation of reactive oxygen species (ROS). The purpose of this work was to estimate the hepatotoxicity effect of nicotine on viability and on antioxidant defense system in cultures of HepG2 cell line and the other hand, ameliorative effect of quercetin (Q) as an antioxidant was analyzed. Nicotine induced concentration dependent loss in HepG2 cell line viability. The results indicated that nicotine decreased activity of superoxide dismutase (SOD) and glutathione reductase (GR) and increased activities of catalase (CAT) and glutathione peroxidase (GPx) and glutathione (GSH) content in the HepG2 cells. Q significantly increased activity of SOD, GR and GSH content and decreased activity of GPX in nicotine + Q groups. Our data demonstrate that Q plays a protective role against the imbalance elicited by nicotine between the production of free radicals and antioxidant defense systems, and suggest that administration of this antioxidant may find clinical application where cellular damage is a consequence of ROS.

  1. Effects of nitric oxide on the biological behavior of HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhou, Lei; Zhang, Heng; Wu, Jie

    2016-05-01

    Many studies have found the function of nitric oxide (NO) in cancer as a pro-neoplastic vs. an anti-neoplastic effector, but the role of NO in hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the effects of nitric oxide (NO) on the biological behavior of the human hepatocellular carcinoma cell line HepG2. HepG2 cell was cultured in vitro and treated with or without sodium nitroprusside (SNP), a NO donor. Subsequently, we evaluated the effects of NO in cell proliferation, cell cycle, apoptosis, migration and invasion by MTT assay, flow cytometry, wound healing assay and Matrigel invasion assay. We demonstrate that NO significantly inhibited HepG2 cell proliferation by inducing G0/G1 phase arrest in a dose-dependent manner. In addition, compared to the control group, cells treated with SNP showed obviously higher apoptosis ratios in a dose-dependent manner. Furthermore, we revealed that NO effectively inhibited the ability of migration and invasion of HepG2 cells. Taken together, our results suggested that NO has an important role in the regulation of biological behavior in HepG2 cells and the potential for use in the prevention and treatment of HCC.

  2. Protective Effects of Vitamin C and NAC on the Toxicity of Rifampin on Hepg2 Cells.

    PubMed

    Vahdati-Mashhadian, Nasser; Jafari, Mahmoud Reza; Sharghi, Nasim; Sanati, Toktam

    2013-01-01

    Rifampin, an antibiotic widely used for the treatment of mycobacterial infections, produces hepatic, renal and bone marrow toxicity in human and animals. In this study, the protective effects of vitamin C and n-acetylcysteine (NAC) on the toxicity of rifampin on HepG2 cells were investigated. Human hepatoma cells (HepG2) were cultured in 96-well M of rifampin in the presence of microplate and exposed to 10, 20, 50 and 100 vitamin C (0.1 mg/mL) and NAC (0.2 mg/mL). Protective effect of the two drugs against rifampin toxicity was assessed by MTT assay. Results show that both vitamin C and NAC significantly inhibited HepG2 cellular damage due to rifampin, and vitamin C was relatively more potent than NAC. Rifampin is metabolized by the liver and its toxic metabolites are responsible for the drug›s hepatic toxicity. Based on our results, it seems that reactive metabolites are the main agents responsible for rifampin hepatotoxicity. The importance of this finding is that if vitamin C or NAC do not affect the antibacterial activity of rifampin, they could be used as preventive agents in rifampin users.

  3. Protective Effects of Vitamin C and NAC on the Toxicity of Rifampin on Hepg2 Cells

    PubMed Central

    Vahdati-Mashhadian, Nasser; Jafari, Mahmoud Reza; Sharghi, Nasim; Sanati, Toktam

    2013-01-01

    Rifampin, an antibiotic widely used for the treatment of mycobacterial infections, produces hepatic, renal and bone marrow toxicity in human and animals. In this study, the protective effects of vitamin C and n-acetylcysteine (NAC) on the toxicity of rifampin on HepG2 cells were investigated. Human hepatoma cells (HepG2) were cultured in 96-well M of rifampin in the presence of microplate and exposed to 10, 20, 50 and 100 vitamin C (0.1 mg/mL) and NAC (0.2 mg/mL). Protective effect of the two drugs against rifampin toxicity was assessed by MTT assay. Results show that both vitamin C and NAC significantly inhibited HepG2 cellular damage due to rifampin, and vitamin C was relatively more potent than NAC. Rifampin is metabolized by the liver and its toxic metabolites are responsible for the drug›s hepatic toxicity. Based on our results, it seems that reactive metabolites are the main agents responsible for rifampin hepatotoxicity. The importance of this finding is that if vitamin C or NAC do not affect the antibacterial activity of rifampin, they could be used as preventive agents in rifampin users. PMID:24250582

  4. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    SciTech Connect

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S. . E-mail: bkaphali@utmb.edu

    2006-10-15

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs

  5. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film.

    PubMed

    Yamazaki, Hidekazu; Gotou, Shun; Ito, Koju; Kohashi, Souichi; Goto, Yuki; Yoshiura, Yukiko; Sakai, Yusuke; Yabu, Hiroshi; Shimomura, Masatsugu; Nakazawa, Kohji

    2014-10-01

    Microwell chip culture is a promising technique for the generation of homogenous spheroids. We investigated the relationship between the structure of the bottom surface of microwell chip and the properties of HepG2 spheroid. We developed a microwell chip, the bottom surface of which consisted of a honeycomb-patterned polymer film (honeycomb film) that had a regular porous structure (HF chip). The chip comprised 270 circular microwells; each microwell was 600 μm in diameter and 600 μm in depth. At the center of the honeycomb film, an area, 200 μm in diameter, was modified with collagen to facilitate cell adhesion. With the exception of the collagen-coated area, the entire microwell was modified with polyethylene glycol to eliminate cell adhesion. HepG2 cells formed uniform spheroids when cultured in the microwells of HF chip. Furthermore, the cells passed through the porous structure of honeycomb film and formed spheroids at its opposite side. The spheroid growth of HepG2 cells cultured in HF chip was greater than that when the cells were culture in a microwell chip, the bottom surface of which was made of poly-methylmethacrylate (PMMA chip). The albumin secretion activity of HepG2 spheroids in HF chip was equal to that in PMMA chip. These results indicate that the microwell bottom with a porous structure enhances the cell growth and maintains well the spheroid function. Thus, HF chip is a promising platform for spheroid cell culture. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2).

    PubMed

    Brandt, Anna Paula; Gozzi, Gustavo Jabor; Pires, Amanda do Rocio Andrade; Martinez, Glaucia Regina; Dos Santos Canuto, André Vinícius; Echevarria, Aurea; Di Pietro, Attilio; Cadena, Sílvia Maria Suter Correia

    2016-08-25

    Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Silencing of Wnt10B reduces viability of heptocellular carcinoma HepG2 cells

    PubMed Central

    Wu, Guohui; Fan, Xiaoli; Sun, Li

    2015-01-01

    Dysregulation of Wnt-mediated β-catenin signaling is associated with carcinogenesis and progression of hepatocellular carcinoma (HCC). Our previous studies showed that the Wnt10B gene, a member of Wnt gene family, over-activated in HCC tissues and cells. Here we demonstrate that stable silencing of Wnt10B reduces the viability of HCC cells in culture. HepG2, a human HCC cell line, was cultured in vitro and Wnt10B gene in the cells stably silenced, as showed in Western blotting analysis, by the shRNA interference with lentivirus plasmid transfection. Compared to the control (HepG2 cells without Wnt10B silencing), the Wnt10B-silencing cells showed significant reductions in proliferation, colony formation, migration and invasion. Furthermore, serum deprivation-induced apoptotic death, assessed by Hoechst 33342 staining and fluorescent microscopy, increased significantly in the Wnt10B-silencing cells. FACScan analysis indicated an arrest of the cell cycle in the Wnt10B-silencing HCC cells, with significant increases in the number of cells in G0-G1 and S phases. Thus, we hypothesize that Wnt10B plays an oncogenic role in HCC and is a potential therapeutic target. PMID:26269753

  8. [PCR analysis of the absolute number of copies of human chromosome 18 transcripts in liver and HepG2 cells].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Tikhonova, O V; Radko, S P; Kurbatov, L K; Vakhrushev, I V; Zgoda, V G; Ponomarenko, E A; Lisitsa, A V; Archakov, A I

    2017-03-01

    Using reverse transcription in conjunction with the quantitative real-time PCR or digital droplet PCR, the transcriptome profiling of human chromosome 18 has been carried out in liver hepatocytes and hepatoblastoma cells (HepG2 cell line) in terms of the absolute number of each transcript per cell. The transcript abundance varies within the range of 0.006 to 9635 and 0.011 to 4819 copies per cell for HepG2 cell line and hepatocytes, respectively. The expression profiles for genes of chromosome 18 in hepatocytes and HepG2 cells were found to significantly correlate: the Spearman's correlation coefficient was equal to 0.81. The distribution of frequency of transcripts over their abundance was bimodal for HepG2 cells and unimodal for liver hepatocytes. Bioinformatic analysis of the differential gene expression has revealed that genes of chromosome 18, overexpressed in HepG2 cells compared to hepatocytes, are associated with cell division and cell adhesion processes. It is assumed that the enhanced expression of those genes in HepG2 cells is related to the proliferation activity of cultured cells. The differences in transcriptome profiles have to be taken into account when modelling liver hepatocytes with cultured HepG2 cells.

  9. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK–STAT signaling pathway

    PubMed Central

    Zhu, X; Xie, C; Li, Y-m; Huang, Z-l; Zhao, Q-y; Hu, Z-x; Wang, P-p; Gu, Y-r; Gao, Z-l; Peng, L

    2016-01-01

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK–STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK–STAT signaling pathway. PMID:27253403

  10. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK-STAT signaling pathway.

    PubMed

    Zhu, X; Xie, C; Li, Y-M; Huang, Z-L; Zhao, Q-Y; Hu, Z-X; Wang, P-P; Gu, Y-R; Gao, Z-L; Peng, L

    2016-06-02

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK-STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK-STAT signaling pathway.

  11. Stable overexpression of pregnane X receptor in HepG2 cells increases its potential for bioartificial liver application.

    PubMed

    Nibourg, Geert A A; Huisman, Maarten T; van der Hoeven, Tessa V; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2010-09-01

    To bridge patients with acute liver failure to transplantation or liver regeneration, a bioartificial liver (BAL) is urgently needed. A BAL consists of an extracorporeal bioreactor loaded with a bioactive mass that would preferably be of human origin and display high hepatic functionality, including detoxification. The human hepatoma cell line HepG2 exhibits many hepatic functions, but its detoxification function is low. In this study, we investigated whether stable overexpression of pregnane X receptor (PXR), a master regulator of diverse detoxification functions in the liver [eg, cytochrome P450 3A (CYP3A) activity], would increase the potential of HepG2 for BAL application. Stable overexpression was achieved by lentiviral expression of the human PXR gene, which yielded cell line cBAL119. In monolayer cultures of cBAL119 cells, PXR transcript levels increased 29-fold versus HepG2 cells. Upon activation of PXR by rifampicin, the messenger RNA levels of CYP3A4, CYP3A5, and CYP3A7 increased 49- to 213-fold versus HepG2 cells. According to reporter gene assays with different inducers, the highest increase in CYP3A4 promoter activity (131-fold) was observed upon induction with rifampicin. Inside BALs, the proliferation rates, as measured by the DNA content, were comparable between the 2 cell lines. The rate of testosterone 6beta-hydroxylation, a measure of CYP3A function inside BALs, increased 4-fold in cBAL119 BALs versus HepG2 BALs. Other functions, such as apolipoprotein A1 synthesis, urea synthesis, glucose consumption, and lactate production, remained unchanged or increased. Thus, stable PXR overexpression markedly increases the potential of HepG2 for BAL application. (c) 2010 AASLD.

  12. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  13. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  14. β3-Adrenoceptor activation upregulates apolipoprotein A-I expression in HepG2 cells, which might further promote cholesterol efflux from macrophage foam cells

    PubMed Central

    Gao, Xia-qing; Li, Yan-fang; Jiang, Zhi-li

    2017-01-01

    Objective The aim of this study was to explore the effects of β3-adrenoceptor (β3-AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. Materials and methods HepG2 cells were cultured and treated with the β3-AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β3-AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. Results β3-AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β3-AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Conclusion Activation of β3-AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression. PMID:28424539

  15. β3-Adrenoceptor activation upregulates apolipoprotein A-I expression in HepG2 cells, which might further promote cholesterol efflux from macrophage foam cells.

    PubMed

    Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li

    2017-01-01

    The aim of this study was to explore the effects of β3-adrenoceptor (β3-AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β3-AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β3-AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining (3)H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β3-AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β3-AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β3-AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.

  16. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    PubMed

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect. Copyright © 2015. Published by Elsevier Ltd.

  17. Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability.

    PubMed

    Liu, Jia; Zhang, Wei; Jing, Hao; Popovich, David G

    2010-04-01

    Bog bilberry (Vaccinium uliginosum L.) is a blue-pigmented edible berry related to bilberry (Vaccinium myrtillus L.) and the common blueberry (Vaccinium corymbosum). The objective of this study was to investigate the effect of a bog bilberry anthocyanin extract (BBAE) on cell growth, membrane permeability, and cell cycle of 2 malignant cancer cell lines, Caco-2 and Hep-G2, and a nonmalignant murine 3T3-L1 cell line. BBAE contained 3 identified anthocyanins. The most abundant anthocyanin was cyanidin-3-glucoside (140.9 +/- 2.6 microg/mg of dry weight), followed by malvidin-3-glucoside (10.3 +/- 0.3 microg/mg) and malvidin-3-galactoside (8.1 +/- 0.4 microg/mg). Hep-G2 LC50 was calculated to be 0.563 +/- 0.04 mg/mL, Caco-2 LC50 was 0.390 +/- 0.30 mg/mL and 0.214 +/- 0.02 mg/mL for 3T3-L1 cells. LDH release, a marker of membrane permeability, was significantly increased in Hep-G2 cells and Caco-2 cells after 48 and 72 h compared to 24 h. The increase was 21% at 48 h and 57% at 72 h in Caco-2 cells and 66% and 139% in Hep-G2 cells compared to 24 h. However, 3T3-L1 cells showed an unexpected significant lower LDH activity (P < or = 0.05) after 72 h of exposure corresponding to a 21% reduction in LDH release. BBAE treatment increased sub-G1 in all 3 cell lines without influencing cells in the G2/M phase. BBAE treatment reduced the growth and increased the accumulation of sub-G1 cells in 2 malignant and 1 nonmalignant cell line; however, the effect on membrane permeability differs considerably between the malignant and nonmalignant cells and may in part be due to differences in cellular membrane composition.

  18. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  19. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    SciTech Connect

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  20. Polyphyllin I (PPI) increased the sensitivity of hepatocellular carcinoma HepG2 cells to chemotherapy

    PubMed Central

    Han, Wenhao; Hou, Guoxin; Liu, Lei

    2015-01-01

    In this study the antitumor effects of polyphyllin I (PPI) were investigated in hepatocellular carcinoma HepG2 cells. Our data showed that PPI treatment exerted dose-dependent cytotoxicity on HepG2 cells as previously reported. Furthermore, PPI could sensitize HepG2 cells to cisplastin treatment in concentration-dependent manner. The molecular mechanisms of PPI actions involved nuclear factor-κB (NF-κB) and its downstream gene products. PPI treatment dose-dependently could decrease the constitutive phosphorylation of NF-κB subunit p65 protein and its downstream target genes expression, such as Bcl-2, c-Myc and VEGF. PPI could also inhibit cisplatin-evoked increase of p65 protein phosphorylation and its downstream genes expression, which could be further decreased by combination with NF-κB specific inhibitor, PDTC. The cytotoxicity and chemosensitization effects of PPI on HepG2 cells were greatly potentiated by concomitant treatment with PDTC. Taken together, our data confirmed the cytotoxicity of PPI on hepatocellular carcinoma HepG2 cells and provided new findings about PPI sensitizing HepG2 cells to chemotherapy. Moreover, our data also indicated the involvement of NF-κB signaling pathway in PPIactions for the first time. PMID:26884988

  1. Investigation of testosterone, androstenone, and estradiol metabolism in HepG2 cells and primary culture pig hepatocytes and their effects on 17βHSD7 gene expression.

    PubMed

    Chen, Gang; Li, Sicong; Dong, Xinxing; Bai, Ying; Chen, Ailiang; Yang, Shuming; Fang, Meiying; Zamaratskaia, Galia; Doran, Olena

    2012-01-01

    Steroid metabolism is important in various species. The accumulation of androgen metabolite, androstenone, in pig adipose tissue is negatively associated with pork flavor, odour and makes the meat unfit for human consumption. The 17β-hydroxysteroid dehydrogenase type 7 (17βHSD7) expressed abundantly in porcine liver, and it was previously suggested to be associated with androstenone levels. Understanding the enzymes and metabolic pathways responsible for androstenone as well as other steroids metabolism is important for improving the meat quality. At the same time, metabolism of steroids is known to be species- and tissue-specific. Therefore it is important to investigate between-species variations in the hepatic steroid metabolism and to elucidate the role of 17βHSD7 in this process. Here we used an effective methodological approach, liquid chromatography coupled with mass spectrometry, to investigate species-specific metabolism of androstenone, testosterone and beta-estradiol in HepG2 cell line, and pig cultured hepatocytes. Species- and concentration-depended effect of steroids on 17βHSD7 gene expression was also investigated. It was demonstrated that the investigated steroids can regulate the 17βHSD7 gene expression in HepG2 and primary cultured porcine hepatocytes in a concentration-dependent and species-dependent pattern. Investigation of steroid metabolites demonstrated that androstenone formed a 3'-hydroxy compound 3β-hydroxy-5α-androst-16-ene. Testosterone was metabolized to 4-androstene-3,17-dione. Estrone was found as the metabolite for β-estradiol. Inhibition study with 17βHSD inhibitor apigenin showed that apigenin didn't affect androstenone metabolism. Apigenin at high concentration (50 µM) tends to inhibit testosterone metabolism but this inhibition effect was negligible. Beta-estradiol metabolism was notably inhibited with apigenin at high concentration. The study also established that the level of testosterone and β-estradiol metabolites

  2. [Evaluation of the infectivity of dengue 1 strains in the HepG2 and Vero cell lines].

    PubMed

    Aguilar Barroso, Alicia; Amin Blanco, Nevis; Morier Díaz, Luis; Pérez Hernández, Ela María

    2005-01-01

    Viral infectivity of Hawaii, 3 Peri and Riberao Pretto dengue 1 strains was evaluated in Vero and HepG2 cell lines by indirect immunofluorescence techniques. Dengue virus cellular tropism in vitro is diverse. They may replicate themselves in a great variety of cellular cultures, whose sensibility to viral infection is variable. The greatest percentage of infected cells in the HepG2 cell line was obtained with the highest multiplicities of infection (0.04 for Hawaii and Riberao Pretto strains and 0.01 for 3 Perú). The highest percentage of infected HepG2 and Vero cells for the studied strains and the greatest titer in the viral overnadant was obtained on the 5th day. Vero cell line was more sensitive to viral infection, since for the same multiplicity values it was detected a higher number of fluorescent cells and a better viral titre in the line of this overnadant than in the HepG2. The best result was obtained with the Hawaii strain that allowed to confirm faster the infection of the studied cellular lines.

  3. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells.

    PubMed

    Fan, Sairong; Zhang, Junfeng; Nie, Wenjian; Zhou, Wenyuan; Jin, Liqin; Chen, Xiaoming; Lu, Jianxin

    2017-04-01

    Sargassum fusiforme (Harv.) Setchel, a kind of brown algae, has been applied as a therapeutic for thousands of years. This study was designed to investigate the antitumor effects of the polysaccharide (SFPS) from S. fusiform in liver cancer. The mice inoculated with HepG2 cells were orally administrated with SFPS at the doses of 100, 200 and 400 mg/kg body weight for 28 days. The products from peritoneal macrophages and serum in HepG2-bearing mice were measured. The effect of SFPS-induced cell apoptosis was measured by flow cytometry. Meanwhile, the expression levels of Bax and Bcl-2 were detected. Furthermore, the cytotoxicity of SFPS was evaluated by CCK-8 assay. Results showed that SFPS significantly inhibited growth of human HepG2 cell-transplanted tumor in nude mice, and remarkably increased serum TNF-α, IL-1, NO and IgM levels in HepG2-bearing mice. SFPS also promoted the cytokines (IL-1 and TNF-α) secreted by peritoneal macrophages in HepG2-bearing mice. SFPS exerted a stimulatory effect on apoptosis of HepG2 cells, increased the expression of Bax, and decreased the expression of Bcl-2. The results indicated that SFPS has anti-tumor and immunomodulatory activities at the high concentration, and it could be used as a potential chemopreventative and/or adjuvant chemotherapeutic agent in liver cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells.

    PubMed

    Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-10-01

    Alpha-1 antitrypsin (A1AT) deficiency is associated with emphysema and liver disease. Only plasma-derived A1AT protein is available for augmentation therapy. Recombinant A1AT (recA1AT) protein expressed in various types of available hosts are either non-glycosylated or aberrantly glycosylated resulting into reduced stability and biological activity. To overcome these limitations, we have used the human liver HepG2 cell line to produce recA1AT protein. HepG2 cells were transfected by A1AT cDNA and cell populations were generated that stably overexpressed A1AT protein. Real-time RT-PCR and rocket immunoelectrophoresis of cell culture supernatants indicated that the transfection resulted more than two-fold increase in A1AT production compared to that of control parental cells. Immunoblot analysis showed that both plasma and HepG2-produced A1AT proteins have identical molecular weight in either glycosylated or deglycosylated form. Partial digestion with PNGase F indicated that the three N-glycosylation sites of recA1AT, like the native A1AT protein in plasma, are occupied. Recombinant A1AT also like the native A1AT was thermostable and could efficiently inhibit trypsin proteolytic activity against BSA and BAPNA chromogenic substrate. The recombinant HepG2 cells cultured in media containing B27 serum free supplement released recA1AT at the same level as in the serum containing media. RecA1AT production in HepG2 cells grown under serum free condition at a large scale could provide a reliable source of the native protein suitable for therapeutic use in human.

  5. GRK2 negatively regulates IGF-1R signaling pathway and cyclins' expression in HepG2 cells.

    PubMed

    Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Bodzin, Adam S; Koch, Walter J; Doria, Cataldo

    2013-09-01

    G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin-like growth factor 1 receptor (IGF-1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF-1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF-1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF-1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF-1R signaling pathway and cyclins' expression.

  6. Role of ALA sensitivity in HepG2 cell in the presence of diode laser

    NASA Astrophysics Data System (ADS)

    Fakhar-E-Alam, M.; Atif, M.; Alsalhi, M. S.; Siddique, M.; Kishwar, S.; Qadir, M. I.; Willander, M.

    2011-05-01

    5-aminolevulinic acid (ALA) being an amazing second generation photosensitizer was studied as photodamaging drug on hepatocellular carcinoma (HepG2) cells. The mentioned photosensitizer is converted to PpIX in HepG2 cells in vitro, inducing haem in the cell causing generation of singlet oxygen leading to cell apoptosis. Cell uptake of 5-ALA was evaluated with different concentrations (ranging from 0-800 μg/ml) for 0-49 h incubation period. ALA administered in HepG2 cells is converted into Protoporphyrin IX (PpIX) which has a short half life and constitute a good hematoporphyrin derivative (HPD). Cytotoxicity of ALA in dark and cellular viability without ALA in the presence of light was studied, showing minimal toxic effects in dark with no photodamaging effect on mentioned cells in absence of ALA were observed. The optimal uptake of photosensitizer (5-ALA) in HepG2 cells was investigated by means of spectrophotometeric measurements, cellular viability was determined by means of neutral red assay (NRA). It was observed that with different concentrations (0-800 μg/ml) of ALA or light doses (0-160 J/cm2), there were no significant effect on cellular viability when studied independently. The novel of photocytotoxic study indicates that light dose of 120 J/cm2 produces convincing Photodynamic therapy (PDT) results for HepG2 cells incubated with 262 μg/ml of 5-ALA deducting that HepG2 cell line is sensitive to ALA mediated PDT. Finally morphological changes in HePG2 cells were determined before and after ALA-mediated PDT by confocal microscopy.

  7. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties.

    PubMed

    Wilkening, Stefan; Stahl, Frank; Bader, Augustinus

    2003-08-01

    Cultures of primary hepatocytes and hepatoma cell line HepG2 are frequently used in in vitro models for human biotransformation studies. In this study, we characterized and compared the capacity of these model systems to indicate the presence of different classes of promutagens. Genotoxic sensitivity, enzyme activity, and gene expression were monitored in response to treatment with food promutagens benzo[a]pyrene, dimethylnitrosamine (DMN), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). DNA damage could be detected reliably with the comet assay in primary human hepatocytes, which were maintained in sandwich culture. All three promutagens caused DNA damage in primary cells, but in HepG2 no genotoxic effects of DMN and PhIP could be detected. We supposed that the lack of specific enzymes accounts for their inability to process these promutagens. Therefore, we quantified the expression of a broad range of genes coding for drug-metabolizing enzymes with real-time reverse transcription-polymerase chain reaction. The genes code for cytochromes p450 and, in addition, for a series of important phase II enzymes. The expression level of these genes in human hepatocytes was similar to those previously reported for human liver samples. On the other hand, expression levels in HepG2 differed significantly from that in human. Activity and expression, especially of phase I enzymes, were demonstrated to be extremely low in HepG2 cells. Up-regulation of specific genes by test substances was similar in both cell types. In conclusion, human hepatocytes are the preferred model for biotransformation in human liver, whereas HepG2 cells may be useful to study regulation of drug-metabolizing enzymes.

  8. Inhibition of aldose reductase ameliorates ethanol‑induced steatosis in HepG2 cells.

    PubMed

    Qiu, Longxin; Cai, Chengchao; Zhao, Xiangqian; Fang, Yan; Tang, Weibiao; Guo, Chang

    2017-05-01

    Aldose reductase (AR) expression is increased in liver tissue of patients with ethanol‑induced liver disease. However, the exact role of AR in the development of ethanol‑induced liver disease has yet to be elucidated. The present study aimed to determine the effect of an AR inhibitor on ethanol‑induced steatosis in HepG2 cells and to identify possible underlying molecular mechanisms. Steatosis was induced in HepG2 cells by stimulating cells with 100 mM absolute ethanol for 48 h. Oil Red O staining was used to detect the lipid droplet accumulation in cells. Western blot analyses were used to determine protein expression levels and reverse transcription‑quantitative polymerase chain reaction was used to analyze mRNA expression levels. The results showed that AR protein expression was elevated in HepG2 cells stimulated with ethanol. HepG2 cells exhibited marked improvement of ethanol‑induced lipid accumulation following treatment with the AR inhibitor zopolrestat. Phosphorylation levels of 5' adenosine monophosphate‑activated protein kinase (AMPK) were markedly higher, whereas the mRNA expression levels of sterol‑regulatory element‑binding protein (SREBP)‑1c and fatty acid synthase (FAS) were significantly lower in zopolrestat‑treated and ethanol‑stimulated HepG2 cells compared with in untreated ethanol‑stimulated HepG2 cells. In addition, zopolrestat inhibited the ethanol‑induced expression of tumor necrosis factor (TNF)‑α. These results suggested that zopolrestat attenuated ethanol‑induced steatosis by activating AMPK and subsequently inhibiting the expression of SREBP‑1c and FAS, and by suppressing the expression of TNF‑α in HepG2 cells.

  9. Altered cellular metabolism of HepG2 cells caused by microcystin-LR.

    PubMed

    Ma, Junguo; Feng, Yiyi; Jiang, Siyu; Li, Xiaoyu

    2017-06-01

    This study aimed to evaluate the possible effects of microcystin-LR (MC-LR) exposure on the metabolism and drug resistance of human hepatocellular carcinoma (HepG2) cells. For this purpose, we first conducted an experiment to make sure that MC-LR could penetrate the HepG2 cell membrane effectively. The transcriptional levels of phase I (such as CYP2E1, CYP3A4, and CYP26B1) and phase II (such as EPHX1, SULTs, and GSTM) enzymes and export pump genes (such as MRP1 and MDR1) were altered by MC-LR-exposure for 24 h, indicating that MC-LR treatment may destabilize the metabolism of HepG2 cells. Further research showed that the CYP inducers omeprazole, ethanol, and rifampicin inhibited cell viability, in particular, ethanol, a CYP2E1 inducer, induced ROS generation, lipid peroxidation, and apoptosis in HepG2 cells treated with MC-LR. The CYP2E1 inhibitor chlormethiazole inhibited ROS generation, mitochondrial membrane potential loss, caspase-3 activity, and cytotoxicity caused by MC-LR. Meanwhile, the results also showed that co-incubation with the ROS scavenger l-ascorbic acid and MC-LR decreased ROS levels and effectively prevented apoptosis. These findings provide an interesting mechanistic explanation of cellular metabolism associated with MC-LR, i.e., MC-LR-exposure exerted toxicity on HepG2 cells and induced apoptosis of HepG2 cells via promoting CYP2E1 expression and inducing excessive ROS in HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. HepG2 and human healthy hepatocyte in vitro culture and co-culture in PCL electrospun platforms.

    PubMed

    Fasolino, Ines; Guarino, Vincenzo; Marrese, Marica; Cirillo, Valentina; Vallifuoco, Marianna; Tamma, Maria Luisa; Vassallo, Valentina; Bracco, Adele; Calise, Fulvio; Ambrosio, Luigi

    2017-09-13

    The discovery of new drugs to treat pathological cells in the case of aggressive liver primary cancer is imposing the identification of high-throughput screening systems to predict the in vivo response of new therapeutic molecules, in order to reduce current use of animals and drug testing costs. Recently, micro/nanostructured scaffolds have been adopted to reproduce the hepatic microenvironment due to their higher similarity to the biological niche with respect to the traditional two-dimensional culture plate, so providing novel in vitro models for reliably understanding molecular mechanisms related to cancer cells activity. Herein, we propose the study of electrospun scaffolds made of polycaprolactone (PCL) as in vitro model that can mimic the morphological organization of native extracellular matrix (ECM) and the co-culture of hepatic cell lines - i.e., HepG2, Human Healthy Hepatocytes (HHH). The micro- and nano-scale morphological features of fibers with diameter equal to (3.22 ± 0.42) µm and surface roughness of (17.84 ± 4.43) nm - allow the reproduction of the in vivo scenario influencing the adhesion and proliferation rate of the cultured cells. A much lower proliferation rate is observed for the HepG2 cells compared to the HHH cells, when cultured on the fibrous scaffolds over a time course of 4 weeks. Moreover, results on oxidative stress mechanisms indicate an antioxidant effect of fibers mainly in the case of co-colture, thus suggesting a promising use as new in vitro models to explore alternative therapeutic strategies in hepatocarcinoma treatment. © 2017 IOP Publishing Ltd.

  11. Influence of diquat on growth and death of HepG2 cells using quartz crystal and micro CCD camera.

    PubMed

    Kang, Hyen-Wook; Lee, Dong-Yun; Muramatsu, Hiroshi; Lee, Burm-Jong; Kwon, Young-Soo

    2011-05-01

    Diquat is widely used agent which produces toxicity in human and implicated as an environmental toxicity. HepG2 cell was cultured onto an indium tin oxide (ITO) surface of quartz crystal modified a collagen film. In this paper, we investigated the physical properties and the morphological change of the HepG2 cells cultured onto the ITO electrode of the quartz crystal sensor with micro CCD camera. The resonance responses of the quartz crystal and the morphological change were directly monitored. After seeding the cells and diquat injection into the chamber, the resonance frequency and the resonance resistance were obtained with real time morphologies. From the resonance characteristics and the series of morphologies, we could know the diquat to be death and weakening of the cells.

  12. Cytotoxic effects of etephon and maleic hydrazide in Vero, Hep2, HepG2 cells.

    PubMed

    Yurdakok, Begum; Baydan, Emine; Okur, Hamza; Gurcan, Ismayil Safa

    2014-10-01

    The toxicity of etephon and maleic hydrazide, used as plant growth regulators in agriculture, were reported as low in mammals in previous studies. However, in vitro cytotoxicity studies in mammalian cells are currently missing to understand their toxicity at molecular level. In the current study, the cytotoxicity of these compounds, were studied in Vero (African green monkey kidney epithelium), HepG2 (human hepatocellular carcinoma), Hep2 (human epidermoid cancer) cells by MTT ((3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromure) and LDH (lactate dehydrogenase) assays. Maleic hydrazide had lower IC50 values for all cell lines compared to ethephon. Least cytotoxic effect treated by ethephon were observed in Vero, followed by HepG2 and Hep2. Similarly maleic hydrazide also showed least cytotoxicity on Vero cells, followed by Hep2 and HepG2 cells (p < 0.05). IC50 values in general were found to be highest in Vero cells, followed by HepG2 and Hep2 cells (p < 0.05). LDH and MTT assays showed correllation and had close relation except HepG2-maleic hydrazide application with the correlation coefficient for all >0.868 (p < 0.05). This study is expected to be a basis to understand the cytotoxic effects of ethephon and maleic hydrazide in mammal cells to be supplemented by further studies.

  13. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells

    PubMed Central

    Jiang, Chun-Ping; Ding, Hui; Shi, Da-Hua; Wang, Yu-Rong; Li, Er-Guang; Wu, Jun-Hua

    2012-01-01

    AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit. RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i

  14. [Hepatitis B virus X promotes HepG2 cell cycle progression and growth via downregulation expression of p16 protein].

    PubMed

    Mai, Li; Yang, Lin; Kuang, Jian-yu; Zhu, Jian-yun; Kang, Yan-hong; Zhang, Fu-cheng; Xie, Qi-feng; Gao, Zhi-liang

    2013-08-01

    To investigate the effects and related mechanisms of hepatitis B virus X (HBx) protein on cell cycle and growth in hepatocellular carcinoma. A human hepatocyte HepG2 cell line stably expressing a green fluorescent protein (GFP)-tagged HBx (HepG2/GFP-HBx cells) was used for the experiment, and HepG2 parental and HepG2/GFP cells was used as the controls. Effect of HBx on cell growth was evaluated by the MTT cell proliferation assay and on cell cycle progression by flow cytometry analysis of cells with or without treatment with 5-aza-2'-deoxycytidine (5-Aza-CdR; 5 pmol/L). Effect of HBx expression on promoter methylation status of the p16INK4A tumor-suppressor gene was detected by methylation-specific polymerase chain reaction and on p16 protein level was analyzed with western blotting. The HepG2/GFP-HBx cells showed significantly higher cell proliferation at 72 hrs of culture (3.225+/-0.038 A490) than either control (HepG2: 2.012+/-0.022 A490, t = -46.86, P less than 0.001; HepG2/GFP: 2.038+/-0.029 A490, t = 42.51, P less than 0.001). The HepG2/GFP-HBx cells also showed significantly lower proportion of cells in the G0/G1 phase (16.45%+/-0.45%) than either control (HepG2: 44.81%+/-1.36%, t = -34.202, P less than 0.001; HepG2/GFP: 42.76%+/-1.58%, t = -28.88, P less than 0.001). However, 5-Aza-CdR treatment did lead to a significant amount of HepG2/GFP-HBx cells being arrested in the G0/G1 phase (33.25%+/-0.79%, t = 31.85, P less than 0.001). The p16INK4A promoter was methylated in the HepG2/GFP-HBx cells, and became demethylation after treatment with 5-Aza-CdR. However, no methylation of p16INK4A promoter was observed in both HepG2 and HepG2/GFP cells. The p16 protein level was significantly lower in the HepG2/GFP-HBx (vs. HepG2 and HepG2/GFP cells) and this level increased after treatment with 5-Aza-CdR. HBx protein promotes hepatocellular carcinoma cell cycle progression and growth by shortening the G0/G1 phase, and the underlying mechanism may involve inducing p16

  15. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization.

    PubMed

    Chen, Yu-Fu; Wu, Hung-Wei; Hong, Yong-Han; Lee, Hsin-Ying

    2014-11-15

    This paper presents a 40-GHz RF biosensor that involves using a microwave coplanar waveguide (CPW) transmission line for the dielectric characterization of cancer cells (Hepatoma G2, HepG2). In the past, conventional resonator-based biosensors were designed to operate at a specific resonant peak; however, the dielectric sensitivity of the cells was restricted to a narrow bandwidth. To provide a very wide bandwidth (1-40 GHz), biosensors were based on a microwave CPW transmission line. The proposed biosensor can rapidly measure two frequency-dependent cell-based dielectric parameters of HepG2 cells, microwave attenuation (α(f)cell) and the dielectric constant (εr(f)cell), while removing the microwave parasitic effects (including the cultured medium and substrate materials). The proposed biosensor can be applied in postoperative cancer diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells.

    PubMed

    Al-Qubaisi, Mothanna; Rozita, Rosli; Yeap, Swee-Keong; Omar, Abdul-Rahman; Ali, Abdul-Manaf; Alitheen, Noorjahan B

    2011-04-06

    Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC₅₀ = 4.6 (±0.23) µM in the MTT assay; IC₅₀ = 5.20 (±0.01) µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC₅₀ = 35.0 (±0.09) µM for MTT assay; IC₅₀ = 32.5 (±0.04) µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC₅₀ after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.

  17. Butyrylcholinesterase expression is regulated by fatty acids in HepG2 cells.

    PubMed

    Gok, Muslum; Zeybek, N Dilara; Bodur, Ebru

    2016-11-25

    Butyrylcholinesterase (BChE) is mostly associated with the detoxification of xenobiotics. In this study to analyze the involvement of BChE in lipid metabolism, linoleic acid (LA) and α-linolenic acid (ALA) were applied to HepG2 cells along with expression of wild type human BChE. After 48 h of these treatments WST-1 cell proliferation assay, FACS analysis, RT-PCR, Oil Red O staining and activity assays were performed. Application of high concentrations of LA to HepG2 cells without BChE transfection lead to detachment of the cells. The IC50 value LA was found as 149.3 μM whereas the IC50 value for ALA could not be calculated. Hence, in order to display minimal effects on cell viability, 5 μM was chosen as appropriate concentration for LA and ALA application to HepG2 cells. Transfection of wild-type BChE plasmid to HepG2 cells yielded increased BChE expression. Application of 5 μM ALA after BChE transfection to HepG2 cells resulted in increased expression of BChE. Although with this low concentration the number of apoptotic cells was decreased with ALA treatments, LA application did not cause a similar result with the same dose. Moreover ghost cell like property was observed in LA-treated cells. Application of ALA, on the other hand, led to an overall increase in cell numbers, BChE expression and activity. Our results indicate that BChE expression might be regulated by ALA in HepG2 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Liver stage antigen 3 Plasmodium falciparum peptides specifically interacting with HepG2 cells.

    PubMed

    García, Javier E; Curtidor, Hernando; López, Ramses; Rodríguez, Luis; Vera, Ricardo; Valbuena, John; Rosas, Jaiver; Ocampo, Marisol; Puentes, Alvaro; Forero, Martha; Patarroyo, Manuel A; Patarroyo, Manuel Elkin

    2004-09-01

    Binding assays were carried out with 20 amino acid long peptides covering the complete 200-kDa Liver stage antigen (LSA) 3 protein sequence to identify its HepG2 cell binding regions. Seventeen HepG2 cell high-activity binding peptides (HABPs) were identified in the LSA-3 protein. Seven HABPs were found in the nonrepeat (NRA) region A; five of these formed a 100 amino acid long HepG2 cell binding region located between residues 21Ile and 120Thr. Six HABPs were found in the R2 region and another four in the NRB2 region. LSA-3 protein HABPS bound saturably to HepG2 cells having nanomolar affinity constants and bound specifically to 31, 44, and 70 kDa HepG2 cell membrane proteins. Some of them were located in antigenic and immunogenic LSA-3 protein regions. Immunofluorescence and immunoblotting assays using goat sera immunized with LSA-3 protein peptides recognized P. falciparum (FCB-2 strain) erythrocyte stage proteins (58, 68, 72, 81, 86, 160, and 175 kDa). This reactivity was due mainly to the VEESVAEN motif present in some erythrocyte stage proteins. However, our results suggest that antibodies against LSA-3 regions had a crossed reaction with another 86-kDa protein, and that this crossed reaction was due to a motif present in the NRA region.

  19. The effects of Stichopus japonicus acid mucopolysaccharide on the apoptosis of the human hepatocellular carcinoma cell line HepG2.

    PubMed

    Lu, Yun; Zhang, Bing-Yuan; Dong, Qian; Wang, Bao-Lei; Sun, Xi-Bao

    2010-02-01

    In this study, the effects of Stichopus japonicus acid mucopolysaccharide (SJAMP) on the apoptosis of the human hepatocellular carcinoma cell line HepG2 were examined. The underlying mechanism was investigated by determining the effect of SJAMP on the expression of Bcl-2 and nm23-H1 genes in HepG2 cells. In vitro cultured HepG2 cells were treated with different concentrations of SJAMP. The dimethylthiazol (MTT) assay was used to determine the inhibition of cell proliferation. Expression of Bcl-2 and nm23-H1 genes was determined by Western blot analysis. The results showed that SJAMP inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner, SJAMP induced apoptosis in HepG2 cells, and SJAMP decreased the expression of Bcl-2 and increased the expression of nm23-H1. We conclude that SJAMP inhibits the proliferation of HepG2 cells by inducing apoptosis. These results provide a theoretical basis for the utilization of SJAMP as a potential antitumor component for the treatment of hepatocellular carcinoma.

  20. The Antiapoptosis Effect of Glycyrrhizate on HepG2 Cells Induced by Hydrogen Peroxide

    PubMed Central

    Su, Miao; Yu, Tengfei; Zhang, Hong; Wu, Yan; Wang, Xiaoqin

    2016-01-01

    This study demonstrated that glycyrrhizate (GAS) could protect HEPG2 cells against damage and apoptosis induced by H2O2 (1600 μM, 4 h). Cell viability assay revealed that GAS was noncytotoxity at concentration 125 µg/mL, and GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) protected HepG2 cells against H2O2-induced cytotoxicity. H2O2 induced the HepG2 cells apoptosis, obvious morphologic changes were observed after Hochest 33258 staining, and more apoptotic cells were counted in flow cytometry assay compared to that of the natural group. Pretreatment GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) prior to H2O2 reverses the morphologic changes and reduced the apoptotic cells in HepG2 cells. GAS reduced the release of MDA, increased the activities of superoxide dismutase, and diminished the release of ALT and AST during oxidative stress in HepG2 cells. After Elisa kit detecting, GAS inhibited the caspase activity induced by H2O2, GAS decreased the level of caspase-3 and caspase-9 from mitochondria in dose-dependent manner. Western blot results showed that pretreatment GAS upregulated the expression of Bcl-2 and decreased the expression of Bax. These results reveal that GAS has the cytoprotection in HepG2 cells during ROS exposure by inhibiting the caspase activity in the mitochondria and influencing apoptogenic factors of the expression of Bax and Bcl-2. PMID:27891207

  1. Intermedilysin is essential for the invasion of hepatoma HepG2 cells by Streptococcus intermedius.

    PubMed

    Sukeno, Akiko; Nagamune, Hideaki; Whiley, Robert A; Jafar, Syed I; Aduse-Opoku, Joseph; Ohkura, Kazuto; Maeda, Takuya; Hirota, Katsuhiko; Miyake, Yoichiro; Kourai, Hiroki

    2005-01-01

    Streptococcus intermedius causes endogenous infections leading to abscesses. This species produces intermedilysin (ILY), a human-specific cytolysin. Because of the significant correlation between higher ILY production levels by S. intermedius and deep-seated abscesses, we constructed ily knockout mutant UNS38 B3 and complementation strain UNS38 B3R1 in order to investigate the role of ILY in deep-seated infections. Strain UNS38 reduced the viability of human liver cell line HepG2 at infection but not of rat liver cell line BRL3A. Isogenic mutant strain UNS38 B3 was not cytotoxic in either cell line. Quantification of S. intermedius revealed that in infected HepG2 cells UNS38 but not UNS38 B3 increased intracellularly concomitantly with increasing cell damage. This difference between UNS38 and UNS38 B3 was not observed with UNS38 B3R1. Invasion and proliferation in BRL3A cells was not observed. Masking UNS38 or UNS38 B3R1 with ILY antibody drastically decreased adherence and invasion of HepG2. Moreover, coating strain UNS38 B3 with ILY partially restored adherence to HepG2 but without subsequent bacterial growth. At 1 day post-infection, many intact UNS38 were detected in the damaged phagosomes of HepG2 with bacterial proliferation observed in the cytoplasm of dead HepG2 after an additional 2 day incubation. These results indicate that surface-bound ILY on S. intermedius is an important factor for invasion of human cells by this bacterium and that secretion of ILY within host cells is essential for subsequent host cell death. These data strongly implicate ILY as an important factor in the pathogenesis of abscesses in vivo by this streptococcus.

  2. The Mechanism by Which Amentoflavone Improves Insulin Resistance in HepG2 Cells.

    PubMed

    Zheng, Xiaoke; Ke, Yingying; Feng, Aozi; Yuan, Peipei; Zhou, Jing; Yu, Yang; Wang, Xiaolan; Feng, Weisheng

    2016-05-13

    The aim of this study was to explore the mechanism by which amentoflavone (AME) improves insulin resistance in a human hepatocellular liver carcinoma cell line (HepG2). A model of insulin resistant cells was established in HepG2 by treatment with high glucose and insulin. The glucose oxidase method was used to detect the glucose consumption in each group. To determine the mechanism by which AME improves insulin resistance in HepG2 cells, enzyme-linked immunosorbent assay (ELISA) and western blotting were used to detect the expression of phosphatidyl inositol 3-kinase (PI3K), Akt, and pAkt; the activity of the enzymes involved in glucose metabolism; and the levels of inflammatory cytokines. Insulin resistance was successfully induced in HepG2 cells. After treatment with AME, the glucose consumption increased significantly in HepG2 cells compared with the model group (MG). The expression of PI3K, Akt, and pAkt and the activity of 6-phosphofructokinas (PFK-1), glucokinase (GCK), and pyruvate kinase (PK) increased, while the activity of glycogen synthase kinase-3 (GSK-3), phosphoenolpyruvate carboxylase kinase (PEPCK), and glucose-6-phosphatase (G-6-Pase) as well as the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and C reactive protein (CRP) decreased. The mechanism by which treatment with AME improves insulin resistance in HepG2 cells may involve the PI3K-Akt signaling pathway, the processes of glucose oxygenolysis, glycogen synthesis, gluconeogenesis and inflammatory cytokine expression.

  3. Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis.

    PubMed

    McMillian, M K; Grant, E R; Zhong, Z; Parker, J B; Li, L; Zivin, R A; Burczynski, M E; Johnson, M D

    2001-01-01

    Nile Red is a fluorescent dye used extensively to study fat accumulation in many types of cells; unfortunately protocols that work well for most cells are not effective for studying drug-induced lipid accumulation in cultured liver cells and hepatocyte-derived cell lines. Using human hepatoma (HepG2) cells, we have developed a simple Nile Red binding assay as a screen for steatosis-inducing compounds. Increases in Nile Red binding in response to known hepatotoxic compounds were observed after incubating treated cells with 1 microM Nile Red for several hours, washing away free Nile Red, and then allowing redistribution, and/or clearance of the lipid-indicator dye. Several compounds known to cause hepatic fat accumulation in vivo were examined and most robustly increased Nile Red binding in HepG2 cells. These include estrogen and other steroids, ethionine, cyclosporin A, and valproic acid. Required concentrations for increased Nile Red binding were generally three-fold or more lower than the cytotoxic concentration determined by a resazurin reduction assay in the same cells. Qualitatively similar Nile Red binding results were obtained when primary canine or rat hepatocytes were used. Morphological differences in Nile Red staining were observed by confocal fluorescence microscopy in HepG2 cells after treatment with different compounds and likely reflect distinct toxicological mechanisms.

  4. Demonstration of the presence of the "deleted" MIR122 gene in HepG2 cells.

    PubMed

    Hamad, Ibrahim A Y; Fei, Yue; Kalea, Anastasia Z; Yin, Dan; Smith, Andrew J P; Palmen, Jutta; Humphries, Steve E; Talmud, Philippa J; Walker, Ann P

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells.

  5. Nanoceria Attenuated High Glucose-Induced Oxidative Damage in HepG2 Cells

    PubMed Central

    Shokrzadeh, Mohammad; Abdi, Hakimeh; Asadollah-Pour, Azin; Shaki, Fatemeh

    2016-01-01

    Objective Hyperglycemia, a common metabolic disorder in diabetes, can lead to oxidative damage. The use of antioxidants can benefit the control and prevention of diabetes side effects. This study aims to evaluate the effect of nanoceria particles, as an antioxidant, on glucose induced cytotoxicity, reactive oxygen species (ROS), lipid peroxidation (LPO) and glutathione (GSH) content in a human hepatocellular liver carcinoma cell line (HepG2) cell line. Materials and Methods In this experimental study, we divided HepG2 cells into these groups: i. Cells treated with 5 mM D-glucose (control), ii. Cells treated with 45 mM D- mannitol+5 mM D-glucose (osmotic control), iii. Cells treated with 50 mM D-glucose (high glucose), and iv. Cells treated with 50 mM D-glucose+nanoceria. Cell viability, ROS formation, LPO and GSH were measured and analyzed statistically. Results High glucose (50 mM) treatment caused significant cell death and increased oxidative stress markers in HepG2 cells. Interestingly, nanoceria at a concentration of 50 mM significantly decreased the high glucose-induced cytotoxicity, ROS formation and LPO. This concentration of nanoceria increased the GSH content in HepG2 cells (P<0.05). Conclusion The antioxidant feature of nanoceria particles makes it an attractive candidate for attenuation of hyperglycemia oxidative damage in different organs. PMID:27054124

  6. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    PubMed

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  7. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    PubMed Central

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses. PMID:15583326

  8. Alcohol Dehydrogenase 5 Is a Source of Formate for De Novo Purine Biosynthesis in HepG2 Cells.

    PubMed

    Bae, Sajin; Chon, James; Field, Martha S; Stover, Patrick J

    2017-04-01

    Background: Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism.Objective: This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells.Methods:ADH5 knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [(14)C]-formate to [(3)H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [(14)C]-deoxyuridine to [(3)H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis.Results: The [(14)C]-formate-to-[(3)H]-hypoxanthine ratio was greater in ADH5 knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; P < 0.001) and folate sufficiency (+22%; P = 0.02). These data indicate that ADH5 deficiency increases the use of exogenous formate for de novo purine biosynthesis. The [(14)C]-deoxyuridine-to-[(3)H]-thymidine ratio did not differ between ADH5 knockout and wild-type cells, indicating that ADH5 deficiency does not affect de novo dTMP synthesis capacity relative to salvage synthesis. Under folate deficiency, ALDH2 knockdown cells exhibited a 37% lower ratio of [(14)C]-formate to [(3)H]-hypoxanthine (P < 0.001) compared with wild-type HepG2 cells, indicating decreased use of exogenous formate, or

  9. Hepatitis C Virus Genotype 4 Replication in the Hepatocellular Carcinoma Cell Line HepG2/C3A

    PubMed Central

    Shier, Medhat K.; El-Wetidy, Mohammad S.; Ali, Hebatallah H.; Al-Qattan, Mohammad M.

    2016-01-01

    Background/Aims: The lack of a reliable cell culture system allowing persistent in vitro hepatitis C virus (HCV) propagation is still restraining the search for novel antiviral strategies. HepG2 cells transfection with HCV allows for viral replication. However, the replication is weak presumably because of HepG2 lack of miRNA-122, which is essential for viral replication. Other agents such as polyethylene glycol (PEG) and dimethyl sulfoxide (DMSO) have been shown to increase the efficiency of infection with other viruses. This study included comparison of HCV genotype 4 5′UTR and core RNA levels and HCV core protein expression at different time intervals in the absence or presence of PEG and/or DMSO postinfection. Materials and Methods: We used serum with native HCV particles in infecting HepG2 cells in vitro. HCV replication was assessed by reverse transcriptase polymerase chain reaction for detection of HCV RNA and immunofluorescence and flow cytometry for detection of HCV core protein. Results: HCV 5′UTR and core RNA expression was evident at different time intervals after viral infection, especially after cells were treated with PEG. HCV core protein was also evident at different time intervals using both immunofluorescence and flow cytometry. PEG, not DMSO, has increased the HCV core protein expression in the treated cells, similar to its effect on viral RNA expression. Conclusions: These expression profiles suggest that the current model of cultured HepG2 cells allows the study of HCV genotype 4 replication and different stages of the viral life cycle. PMID:27184644

  10. Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system.

    PubMed

    Zuchowska, Agnieszka; Kwapiszewska, Karina; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2017-04-01

    Cell-on-a-chip systems have become promising devices to study the effectiveness of new anticancer drugs recently. Several microdevices for liver cancer culture and evaluation of the drug cytotoxicity have been reported. However, there are still no proven reports about high-throughput and simple methods for the evaluation of drug cytotoxicity on liver cancer cells. The paper presents the results of the effects of the anticancer drug (5-fluorouracil, 5-FU) on the HepG2 spheroids as a model of liver cancer. The experiments were based on the long-term 3D spheroid culture in the microfluidic system and monitoring of the effect of 5-FU at two selected concentrations (0.5 mM and 1.0 mM). Our investigations have shown that the initial size of the spheroids has influence on the drug effect. With the increase of the spheroids diameter, the drug resistance (for the two tested 5-FU concentrations) decreases. This phenomenon was observed both through cells metabolism analysis, as well as changes in spheroids sizes. In our research, we have shown that the lower 5-FU (0.5 mM) concentration causes higher decrease in HepG2 spheroids viability. Moreover, due to the microsystem construction, we observe the drug resistance effect (10th day of culture) regardless of the initial size of the created spheroids and the drug concentration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells.

    PubMed

    Ahamed, Maqusood; Alhadlaq, Hisham A; Ahmad, Javed; Siddiqui, Maqsood A; Khan, Shams T; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2015-06-01

    Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level.

  12. [Inhibitory Effect of the Excretory/Scretory Proteins of Trichinella spiralis on Proliferation of Human Hepatocellular Carcinoma HepG2 Cell line].

    PubMed

    Liu, Ying-jie; Xu, Jing; Huang, Hong-ying; Xu, Guo-qiang

    2015-08-01

    Human hepatocellular carcinoma HepG2 Cell line were cultured with different concentrations of excretory/secretory proteins from Trichinella spiralis, and MTT assay was used to evaluate the cell inhibition rate. After co-cultured with 300 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were observed under a fluorescence microscope with AO and EB staining. When co-cultured with 75 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were quantified by flow cytometry using Annexin V-FITC/PI stain, and the expression of cleaved-caspase 9 was detected by immunofluorescence assay. The proliferation of HepG2 cells was inhibited significantly by excretory/secretory proteins in a dosage dependant manner. Under fluorescence microscope, some HepG2 cells presented typical apoptotic morphologic changes and the cleaved-caspase 9 protein expression was higher than that of the control. The early and late apoptotic cells and necrotic ones occupied 17.9%, 7.3%, and 6.6%, respectively.

  13. Curcumin and (-)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells.

    PubMed

    Shan, Xiaoyun; Li, Yuan; Meng, Xulian; Wang, Pengqi; Jiang, Pan; Feng, Qing

    2014-04-01

    Acrylamide, a proven rodent carcinogen, is present in carbohydrate-rich food heated at high temperatures. It can be metabolized into glycidamide mainly by cytochrome P450 2E1 (CYP2E1). The fact that acrylamide is a potential carcinogen to human-beings draws public attention recently. This study aimed to elucidate the effect of acrylamide at low doses on proliferation of HepG2 cells, and to test whether the two well-studied chemopreventive agents, curcumin and (-)-epigallocatechin-3-gallate (EGCG), would have antagonistic effects against acrylamide. The results showed that lower concentration of acrylamide (⩽100μM) significantly increased the proliferation of HepG2 cells, but not of the other cancer cells (MDA-231, HeLa, A549, and PC-3). Only in HepG2 cells, low concentration of acrylamide was able to induce CYP2E1 expression significantly. Knockdown of CYP2E1 restrained acrylamide to increase viability of HepG2 cells. In addition, acrylamide raised expression of epidermal growth factor receptor (EGFR), cyclin D1 and nuclear factor-κB (NF-κB), which contributed to cell proliferation. Both curcumin and EGCG effectively reduced acrylamide-induced proliferation, as well as protein expression of CYP2E1, EGFR, cyclin D1 and NF-κB. All these results suggest that low concentration of acrylamide may contribute to progression of hepatocellular carcinoma (HCC). Curcumin or EGCG could prevent acrylamide triggering this effect.

  14. Anti-proliferative and cytoskeleton-disruptive effects of icariin on HepG2 cells.

    PubMed

    Wang, Zhi-Min; Song, Nan; Ren, Yan-Ling

    2015-11-01

    Several biological properties of icariin have been identified, including its anticancer effect. However, the potential mechanisms underlying the effect of icariin on HepG2 hepatocellular carcinoma cells remain to be elucidated. The aim of the present study was to examine the effects of icariin on the proliferation and cytoskeleton of HepG2 cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyltetrazolium bromide assay was used to assess the antiproliferative effects of icariin and to determine the optimal concentration and treatment schedule of icariin on the HepG2 cells. Cell cycle analysis was performed using fluorescence activated cell sorting, the protein expression of B‑cell lymphoma (Bcl)‑2 was determined using immunohistochemical and western blot analyses, and F‑actin in the cells was examined using confocal microscopy. The chemotherapeutic drug, oxaliplatin, was used as a positive control. The results demonstrated that the optimal concentration of icarrin to produce an antiproliferative effect on HepG2 cells was 10‑5 mol/l, and the optimal treatment duration was 72 h. The icariin group had a significantly higher proportion of cells in the G0/G1 phase, compared with the control group, treated with high glucose Dulbecco's modified Eagles medium with 10% fetal bovine serum (P<0.05). The proportion of HepG2 cells in the S phase was significantly lower in the oxaliplatin (24.19%; P<0.05) and icariin (21.07%; P<0.01) groups, compared with the control group (28.62%). Icariin markedly decreased the expression of Bcl‑2, compared with the control (P<0.01), and disrupted the polymerization of F‑actin filaments in the HepG2 cells. Therefore, the present study demonstrated that, at an optimum concentration of 10‑5 mol/l, icariin inhibited the proliferation of the HepG2 cells, promoted apoptosis by decreasing the expression of Bcl‑2, and disrupted the actin cytoskeleton.

  15. Inhibition of Aurora A Kinase by Alisertib Induces Autophagy and Cell Cycle Arrest and Increases Chemosensitivity in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Zhu, Qiaohua; Yu, Xinfa; Zhou, Zhi-Wei; Zhou, Chengyu; Chen, Xiao-Wu; Zhou, Shu-Feng

    2017-01-01

    Aurora A kinase represent a feasible target in cancer therapy. To evaluate the proteomic response of human liver carcinoma cells to alisertib (ALS) and identify the molecular targets of ALS, we examined the effects of ALS on the proliferation, cell cycle, autophagy, apoptosis, and chemosensitivity in HepG2 cells. The stable-isotope labeling by amino acids in cell culture (SILAC) based quantitative proteomic study was performed to evaluate the proteomic response to ALS. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. Our SILAC proteomic study showed that ALS regulated the expression of 914 proteins, with 407 molecules being up-regulated and 507 molecules being down-regulated in HepG2 cells. Ingenuity pathway analysis (IPA) and KEGG pathway analysis identified 146 and 32 signaling pathways were regulated by ALS, respectively, which were associated with cell survival, programmed cell death, and nutrition-energy metabolism. Subsequently, the verification experiments showed that ALS remarkably arrested HepG2 cells in G2/M phase and led to an accumulation of aneuploidy via regulating the expression of key cell cycle regulators. ALS induced a marked autophagy in a concentration- and time-dependent manner via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Autophagy inhibition promoted the pro-apoptotic effect of ALS, indicating a cyto-protective role of ALS-induced autophagy. ALS increased the chemosensitivity of HepG2 cells to cisplatin and doxorubicin. Taken together, ALS induces autophagy and cell cycle arrest in HepG2 cells via PI3K/Akt/mTOR-mediated pathway. Autophagy inhibition may promote the anticancer effect of ALS and sensitize the chemotherapy in HepG2 cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  17. Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.

  18. Cytotoxic and antimigratory effects of Cratoxy formosum extract against HepG2 liver cancer cells.

    PubMed

    Buranrat, Benjaporn; Mairuae, Nootchanat; Kanchanarach, Watchara

    2017-04-01

    The aim of the present study was to investigate the molecular mechanisms underlying Cratoxylum formosum (CF) Dyer-induced cancer cell death and antimigratory effects in HepG2 liver cancer cells. The cytotoxic, antiproliferative and antimigratory effects of CF leaf extract on human liver cancer HepG2 cell lines were evaluated using sulforhodamine B, colony formation, and wound healing assays. In addition, apoptosis induction mechanisms were investigated via reactive oxygen species (ROS) formation, caspase 3 activities, and mitochondrial membrane potential (ΔΨm) disruption. Gene expression and apoptosis-associated protein levels were measured by reverse transcription-quantitative polymerase chain reaction and western blotting. CF induced HepG2 cell death in a time- and dose-dependent manner with half maximal inhibitory concentration values of 219.03±9.96 and 124.90±6.86 µg/ml at 24 and 48 h, respectively. Treatment with CF caused a significant and dose-dependent decrease in colony forming ability and cell migration. Furthermore, the present study demonstrated that CF induced ROS formation, increased caspase 3 activities, decreased the ΔΨm, and caused HepG2 apoptosis. CF marginally decreased the expression level of the cell cycle regulatory protein, ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) and the downstream protein, cyclin dependent kinase 6. Additionally, CF significantly enhanced p21 levels, reduced cyclin D1 protein levels and triggered cancer cell death. CF leaf extracts induced cell death, stimulated apoptosis and inhibited migration in HepG2 cells. Thus, CF may be useful for developing an anticancer drug candidate for the treatment of liver cancer.

  19. [3D evaluation model for drug hepatotoxicity testing on HepG2 cells and its application in drug safety evaluation].

    PubMed

    Li, Dan-Dan; Tang, Xiang-Lin; Tan, Hong-Ling; Liang, Qian-de; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Gao, Yue

    2016-04-01

    3D in vitro toxicity testing model was developed by magnetic levitation method for culture of the human hepatoma cell line HepG2 and applied to evaluate the drug hepatotoxicity. After formation of stable 3D structure for HepG2 cells, their glycogen storage capacity under 2D and 3D culture conditions were detected by immunohistochemistry technology, and the mRNA expression levels of phase Ⅰ and Ⅱ drug metabolism enzymes, drug transporters, nuclear receptors and liver-specific marker albumin(ALB) were compared between 2D and 3D culture conditions by using RT-PCR method. Immunohistochemistry results showed that HepG2 cells had abundant glycogen storage capacity under 3D culture conditions, which was similar to human liver tissues. The mRNA expression levels of major drug metabolism enzymes, drug transporters, nuclear receptors and ALB in HepG2 cells under 3D culture conditions were up-regulated as compared with 2D culture conditions. For drug hepatotoxicity evaluation, the typical hepatotoxic drug acetaminophen(APAP), and most reported drugs Polygonum multiflorum Thunb.(Chinese name He-shou-wu) and Psoraleae corylifolia L.(Chinese name Bu-gu-zhi) were selected for single dose and repeated dose(7 d) exposure. In the repeated dose exposure test, 3D HepG2 cells showed higher sensitivity. This established 3D HepG2 cells model with magnetic levitation 3D culture techniques was more close to the human liver tissues both in morphology and functions, so it was a better 3D hepatotoxicity evaluation model. Copyright© by the Chinese Pharmaceutical Association.

  20. Mangiferin: A xanthone attenuates mercury chloride induced cytotoxicity and genotoxicity in HepG2 cells.

    PubMed

    Kaivalya, Mudholkar; Nageshwar Rao, B N; Satish Rao, B S

    2011-01-01

    Mangiferin (MGN), a dietary C-glucosylxanthone present in Mangifera indica, is known to possess a spectrum of beneficial pharmacological properties. This study demonstrates antigenotoxic potential of MGN against mercuric chloride (HgCl2)-induced genotoxicity in HepG2 cell line. Treatment of HepG2 cells with various concentrations of HgCl2 for 3 h caused a dose-dependent increase in micronuclei frequency and elevation in DNA strand breaks (olive tail moment and tail DNA). Pretreatment with MGN significantly (p < 0.01) inhibited HgCl2 -induced (20 µM for 30 h) DNA damage. An optimal antigenotoxic effect of MGN, both in micronuclei and comet assay, was observed at a concentration of 50 µM. Furthermore, HepG2 cells treated with various concentrations of HgCl2 resulted in a dose-dependent increase in the dichlorofluorescein fluorescence, indicating an increase in the generation of reactive oxygen species (ROS). However, MGN by itself failed to generate ROS at a concentration of 50 µM, whereas it could significantly decrease HgCl2 -induced ROS. Our study clearly demonstrates that MGN pretreatment reduced the HgCl2-induced DNA damage in HepG2 cells, thus demonstrating the genoprotective potential of MGN, which is mediated mainly by the inhibition of oxidative stress.

  1. Hyperglycemia and anthocyanin inhibit quercetin metabolism in HepG2 cells

    USDA-ARS?s Scientific Manuscript database

    A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells...

  2. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells

    PubMed Central

    2012-01-01

    Background Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C). However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM), a constituent of HDL, was affected by dihydrotestosterone (DHT). Methods HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC), phorbol-12-myristate-13-acetate (PMA), blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Results Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI) were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. Conclusions DHT directly and selectively down-regulated the level of ApoM mRNA and the secretion of ApoM by protein

  3. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells.

    PubMed

    Yi-zhou, Ye; Bing, Cao; Ming-qiu, Li; Wei, Wang; Ru-xing, Wang; Jun, Rui; Liu-yan, Wei; Zhao-hui, Jing; Yong, Ji; Guo qing, Jiao; Jian, Zou

    2012-12-05

    Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C). However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM), a constituent of HDL, was affected by dihydrotestosterone (DHT). HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC), phorbol-12-myristate-13-acetate (PMA), blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI) were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. DHT directly and selectively down-regulated the level of ApoM mRNA and the secretion of ApoM by protein kinase C but independently of the

  4. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.

    PubMed

    Pereira da Silva, Ana Paula; El-Bacha, Tatiana; Kyaw, Nattascha; dos Santos, Reinaldo Sousa; da-Silva, Wagner Seixas; Almeida, Fabio C L; Da Poian, Andrea T; Galina, Antonio

    2009-02-01

    3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.

  5. Effect of Human Hepatocellular Carcinoma HepG2 Cell-derived Exosome on the Differentiation of Mesenchymal Stem Cells and Their Interaction.

    PubMed

    Luo, Fei; Sun, Zhao; Han, Qin; Xue, Chunling; Bai, Chunmei

    2017-06-20

    Objective To investigate the effect of human hepatocellular carcinoma HepG2 cell-derived Exosome on the differentiation of mesenchymal stem cells(MSC)into cancer-associated myofibroblasts(CAF)and the impacts of CAF on liver cancer cell proliferation,migration,and invasion. Methods The protein expression of HepG2 cell-derived Exosome was detected by Western blotting. MSCs were separated from human adipose tissue and cultured with HepG2 cell-derived Exosome(100 ng/nl)to initiate differentiation. The expressions of mesenchymal markers and several interleukins were also detected by Western blotting. HepG2 cells were co-cultured with the conditioned media(CM),in which HepG2 Exosome induced the differentiation of MSC into CAF. The expressions of epithelial and mesenchymal markers were detected by real-time polymerase chain reaction(PCR)and Western blotting. Cell proliferation was assessed using MTS assay. Transwell chambers were used in the in vitro migration and invasion assay. Results HepG2 cell-derived particles expressed CD63,70 kilodalton heat shock proteins,and 90 kilodalton heat shock proteins. With the treatment of HepG2 cell-derived Exosome,the expressions of mesenchymal marker α-smooth muscle actin,fibroblast activation protein α,interleukin(IL)-6,IL-8,and IL-1β were up-regulated,while vascular endothelial growth factor had no significant change. The conditioned media which HepG2 Exosome induced MSC differentiation CAF(CAF-CM)could significantly promote HepG2 cells proliferation(1.075±0.104),compared to BSA control(0.874±0.066,P=0.023)and MSC-CM(0.649±0.034,P=0.0005). CAF-CM could significantly enhance cell migration [(42.5±9.1) cells vs.(18.5±3.1) cells,P=0.001] and invasion [(29.0±3.5) cells vs.(13.1±3.7) cells,P=0.009] compared to its control group. Moreover the conditioned medium which HepG2 Exosome induced MSC to differentiate into CAF could also promote the expressions of mesenchyme-related genes Smad interacting protein 1(P=0.040),

  6. Optimization of Albumin Secretion and Metabolic Activity of Cytochrome P450 1A1 of Human Hepatoblastoma HepG2 Cells in Multicellular Spheroids by Controlling Spheroid Size.

    PubMed

    Nishikawa, Tomoko; Tanaka, Yutaro; Nishikawa, Makiya; Ogino, Yuka; Kusamori, Kosuke; Mizuno, Narumi; Mizukami, Yuya; Shimizu, Kazunori; Konishi, Satoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2017-01-01

    Multicellular spheroids are useful as three-dimensional cell culture systems and for cell-based therapies. Their successful application requires an understanding of the consequences of spheroid size for cellular functions. In the present study, we prepared multicellular spheroids of different sizes using the human hepatoblastoma HepG2 cells, as hepatocytes are frequently used for in vitro drug screening and cell-based therapy. Precise polydimethylsiloxane-based microwells with widths of 360, 450, 560, and 770 µm were fabricated using a micromolding technique. Incubation of HepG2 cells in cell culture plates containing the microwells resulted in the formation of HepG2 spheroids with average diameters of 195, 320, 493, and 548 µm. The cell number per spheroid positively correlated with its diameter, and the viability of HepG2 cells was 94% or above for all samples. The smallest HepG2 spheroids showed the highest albumin secretion. On the other hand, the metabolic activity of 7-ethoxyresorufin, a fluorometric substrate for CYP1A1, increased with increasing spheroid size. These results indicate that controlling spheroid size is important when preparing HepG2 spheroids and that the size of HepG2 spheroids greatly influences the cellular function of HepG2 cells in the spheroids.

  7. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake.

  8. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation.

    PubMed

    Wang, Hang; Yang, Miqing; Lin, Ling; Ren, Hongzhen; Lin, Chaotong; Lin, Suling; Shen, Guoying; Ji, Binfeng; Meng, Chun

    2016-02-01

    The presence of cancer stem cells (CSCs) is currently regarded as one of the main culprits of tumor formation and therapy failure. It is known that chronic inflammation is associated with CSCs, but it is not clear yet how inflammation affects the development of CSCs. In the present study we aimed to examine the relationship between cancer cell stimulation mediated by immune cells and the acquisition of a CSC-like phenotype. Cancer cells derived from single hepatocarcinoma HepG2 cells were treated with mouse splenic B cells (MSBCs) and mouse peritoneal macrophage cells (MPMCs), respectively. The stem cell-like characteristics of the resulting HepG2 cells (MSBC-HepG2 and MPMC-HepG2) were evaluated using different assays, including biomarker assays, in vitro tumoroid and colony forming assays, in vivo tumor forming assays and signal transduction pathway activation assays. Various stemness characteristics of HepG2 cells, including self-renewal, proliferation, chemoresistance and tumorigenicity were evaluated. The expression levels of stemness-related genes and its encoded proteins in the MSBC-HepG2 and MPMC-HepG2 cells were assessed using RT-PCR and FACS analyses. We found that MSBC-HepG2 and MPMC-HepG2 cells possess hepatic CSC properties, including persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and over-expression of CSC-related genes and proteins (i.e., EpCAM, ALDH, CD133 and CD44), compared to the parental cells. We also found that 1x10(3) MSBC-HepG2 and MPMC-HepG2 cells were able to form tumors in NOD/SCID mice and that the Notch and SHH signaling pathways were highly activated in MSBC-HepG2 cells. We conclude that the immune system may have a double-edge effect on cancer development. On one hand, immune cells such as B lymphocytes and macrophages may recognize, attack and eliminate cancer cells, whereas on the other hand, they may promote a subset of cancer cells to acquire stem cell-like characteristics.

  9. Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells.

    PubMed

    Ghassemi-Barghi, Nasrin; Varshosaz, Jaleh; Etebari, Mahmoud; Jafarian Dehkordi, Abbas

    2016-10-01

    Busulfan is one of the most effective chemotherapeutic agents used for the treatment of chronic myeloid leukemia. Busulfan is involved in secondary malignancy due to its genotoxic potential in normal tissues. As an alkylating agent busulfan can cause DNA damage by cross-linking DNAs and DNA and proteins, induces senescence in normal cells via transient depletion of intracellular glutathione (GSH) and subsequently by a continuous increase in reactive oxygen species (ROS) production. Erythropoietin, a glycoprotein widely used against drug induced anemia in cancerous patients and regulates hematopoiesis, has been shown to exert an important cyto-protective effect in many tissues. Recombinant human erythropoietin has been demonstrated to directly limit cell injury and ROS generation during oxidative stress. Furthermore, rhEPO decreased levels of pro-apoptotic factor (Bax) and also increased expression of the anti-apoptotic factor Bcl2. According to EPO's short half-life and requirements for the frequently administration, finding the new strategies to attenuate its side effects is important. The aim of this study was to explore whether rhEPO loading chitosan-tripolyphosphate nanoparticles protects against busulfan-induced genotoxicity in HepG2 cells. For this purpose cells were incubated with busulfan alone, regular rhEPO alone and regular rhEPO and CS-TPP-EPO nanoparticles along with busulfan in pre and co-treatment condition. Our results showed that busulfan induced a noticeable genotoxic effects in HepG2 cells (p<0.0001). Both regular rhEPO and CS-TPP-EPO nanoparticles reduced the effects of busulfan significantly (p<0.0001) by reduction of the level of DNA damage via blocking ROS generation, and enhancement intracellular glutathione levels. CS-TPP-EPO nanoparticles were more effective than regular rhEPO in both pre and co-treatment conditions. In conclusion, our results show that administration of rhEPO and CS-TPP-EPO nanoparticles especially in the pre

  10. PLTP secreted by HepG2 cells resembles the high-activity PLTP form in human plasma.

    PubMed

    Siggins, Sarah; Jauhiainen, Matti; Olkkonen, Vesa M; Tenhunen, Jukka; Ehnholm, Christian

    2003-09-01

    Plasma phospholipid transfer protein (PLTP) is an important regulator of plasma HDL levels and HDL particle distribution. PLTP is present in plasma in two forms, one with high and the other with low phospholipid transfer activity. We have used the human hepatoma cell line, HepG2, as a model to study PLTP secreted from hepatic cells. PLTP activity was secreted by the cells into serum-free culture medium as a function of time. However, modification of a previously established ELISA assay to include a denaturing sample pretreatment with the anionic detergent sodium dodecyl sulphate was required for the detection of the secreted PLTP protein. The HepG2 PLTP could be enriched by Heparin-Sepharose affinity chromatography and eluted in size-exclusion chromatography at a position corresponding to the size of 160 kDa. PLTP coeluted with apolipoprotein E (apoE) but not with apoB-100 or apoA-I. A portion of PLTP was retained by an anti-apoE immunoaffinity column together with apoE, suggesting an interaction between these two proteins. Furthermore, antibodies against apoE but not those against apoB-100 or apoA-I were capable of inhibiting PLTP activity. These results show that the HepG2-derived PLTP resembles in several aspects the high-activity form of PLTP found in human plasma.

  11. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    EPA Science Inventory

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  12. Modification of the apolipoprotein B gene in HepG2 cells by gene targeting.

    PubMed Central

    Farese, R V; Flynn, L M; Young, S G

    1992-01-01

    The HepG2 cell line has been used extensively to study the synthesis and secretion of apolipoprotein (apo) B. In this study, we tested whether gene-targeting techniques can be used to inactivate one of the apo B alleles in HepG2 cells by homologous recombination using a transfected gene-targeting vector. Our vector contained exons 1-7 of the apo B gene, in which exon 2 was interrupted by a promoterless neomycin resistance (neo(r)) gene. The recombination of this vector with the cognate gene would inactivate an apo B allele and enable the apo B promoter to activate the transcription of the neo(r) gene. To detect the rare homologous recombinant clone, we developed a novel solid phase RIA that uses the apo B-specific monoclonal antibody MB19 to analyze the apo B secreted by G418-resistant (G418r) clones. Antibody MB19 detects a two-allele genetic polymorphism in apo B by binding to the apo B allotypes MB19(1) and MB19(2) with high and low affinity, respectively. HepG2 cells normally secrete both the apo B MB19 allotypes. Using the MB19 immunoassay, we identified a G418r HepG2 clone that had lost the ability to secrete the MB19(1) allotype. The inactivation of an apo B allele of this clone was confirmed by the polymerase chain reaction amplification of an 865-bp fragment unique to the targeted apo B allele and by Southern blotting of genomic DNA. This study demonstrates that gene-targeting techniques can be used to modify the apo B gene in HepG2 cells and demonstrates the usefulness of a novel solid phase RIA system for detecting apo B gene targeting events in this cell line. Images PMID:1321843

  13. Modification of the apolipoprotein B gene in HepG2 cells by gene targeting.

    PubMed

    Farese, R V; Flynn, L M; Young, S G

    1992-07-01

    The HepG2 cell line has been used extensively to study the synthesis and secretion of apolipoprotein (apo) B. In this study, we tested whether gene-targeting techniques can be used to inactivate one of the apo B alleles in HepG2 cells by homologous recombination using a transfected gene-targeting vector. Our vector contained exons 1-7 of the apo B gene, in which exon 2 was interrupted by a promoterless neomycin resistance (neo(r)) gene. The recombination of this vector with the cognate gene would inactivate an apo B allele and enable the apo B promoter to activate the transcription of the neo(r) gene. To detect the rare homologous recombinant clone, we developed a novel solid phase RIA that uses the apo B-specific monoclonal antibody MB19 to analyze the apo B secreted by G418-resistant (G418r) clones. Antibody MB19 detects a two-allele genetic polymorphism in apo B by binding to the apo B allotypes MB19(1) and MB19(2) with high and low affinity, respectively. HepG2 cells normally secrete both the apo B MB19 allotypes. Using the MB19 immunoassay, we identified a G418r HepG2 clone that had lost the ability to secrete the MB19(1) allotype. The inactivation of an apo B allele of this clone was confirmed by the polymerase chain reaction amplification of an 865-bp fragment unique to the targeted apo B allele and by Southern blotting of genomic DNA. This study demonstrates that gene-targeting techniques can be used to modify the apo B gene in HepG2 cells and demonstrates the usefulness of a novel solid phase RIA system for detecting apo B gene targeting events in this cell line.

  14. NaHCO3 enhances the antitumor activities of cytokine-induced killer cells against hepatocellular carcinoma HepG2 cells.

    PubMed

    Yuan, Ya Hong; Zhou, Chun Fang; Yuan, Jiang; Liu, Li; Guo, Xing Rong; Wang, Xiao Li; Ding, Yan; Wang, Xiao Nan; Li, Dong Sheng; Tu, Han Jun

    2016-11-01

    The extracellular pH is lower inside solid tumors than in normal tissue. The acidic environment inhibits the cytotoxicity of lymphocytes in vitro and promotes tumor cell invasion. In the present study, both in vitro and in vivo experiments were conducted to investigate how NaHCO3 would affect the antitumor activities of cytokine-induced killer (CIK) cells against hepatocellular carcinoma (HCC) cells. For the in vitro experiments, HepG2 cells were cultured at pH 6.5 and 7.4 in the presence of CIK cells or CIK cell-conditioned medium (CMCIK). For the in vivo experiments, nude mice were xenografted with HepG2-luc cells and divided into four groups: i) CIK cells injection plus NaHCO3 feeding; ii) CIK cells injection plus drinking water feeding; iii) normal saline injection plus NaHCO3 feeding; and iv) normal saline injection plus drinking water feeding. The results indicated that the viability and growth rate of HepG2 cells were remarkably suppressed when co-cultured with CIK cells or CMCIK at pH 7.4 compared with those of HepG2 cells cultured under the same conditions but at pH 6.5. In the xenograft study, a marked synergistic antitumor effect of the combined therapy was observed. NaHCO3 feeding augmented the infiltration of cluster of differentiation 3-positive T lymphocytes into the tumor mass. Taken together, these data strongly suggest that the antitumor activities of CIK cells against HepG2 cells were negatively affected by the acidic environment inside the tumors, and neutralizing the pH (for example, via NaHCO3 administration), could therefore reduce or eliminate this influence. In addition, it should be recommended that oncologists routinely prescribe soda water to their patients, particularly during CIK cell therapy.

  15. Effects of TLR4 gene silencing on the proliferation and apotosis of hepatocarcinoma HEPG2 cells.

    PubMed

    Liu, Yating; Li, Tao; Xu, Yuanhong; Xu, Enjun; Zhou, Min; Wang, Baolong; Shen, Jilong

    2016-05-01

    Toll-like receptors (TLRs) are key factors in the innate immune system and initiate an inflammatory response to foreign pathogens, such as bacteria, fungi and viruses. TLR4-mediated signaling has been implicated in tumor cell proliferation and apoptosis in numerous cancers. The present study aimed to investigate the biological effect of TLR4 on the proliferation and apoptosis of human liver cancer cells and the mechanisms responsible for the regulation of cellular responses following TLR4 gene knockdown. Three TLR4 small interfering (si)RNA constructs, consisting of TLR4-siRNA-1, TLR4-siRNA-2 and TLR4-siRNA-3, were transiently transfected into HepG2 cells using Lipofectamine 2000. TLR4 knockdown was confirmed using reverse transcription-polymerase chain reaction and western blotting. The effect of the TLR4 siRNA on tumor cell proliferation was monitored by methyl thiazolyl tetrazolium assay and cell apoptosis was observed by flow cytometry. The expression of TLR4-associated proteins, consisting of myeloid differentiation primary response 88 (MyD88), Toll-interleukin-1R-domain-containing adapter-inducing interferon-β (TRIF), interferon regulatory factor-3 (IRF3), nuclear factor (NF)-κB, NF-κB inhibitor α (IκBα), phosphorylated IκBα (p-IκBα), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), was detected by western blot analysis. TLR4-siRNA-1 had the strongest knockdown effect and inhibited TLR4 messenger RNA and protein expression. TLR4 knockdown with TLR4-siRNA-1 reduced cell proliferation and promoted cell apoptosis. MyD88, TRIF, IRF3, IκBα, JNK and ERK were markedly suppressed in the cells transfected with TLR4 siRNA. However, nuclear expression of NF-κB and p-IκBα increased in HepG2 cells with TLR4 gene knockdown. The present study revealed that TLR4-mediated signaling plays a key role in the proliferation and apoptosis of cultured hepatocarcinoma cells. Therefore, RNA interference-directed targeting of TLR4 may raise

  16. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    PubMed Central

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-01-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  17. Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line.

    PubMed

    Al-Oqail, Mai M; Siddiqui, Maqsood A; Al-Sheddi, Ebtesam S; Saquib, Quaiser; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2016-05-10

    Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 μg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 μg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. The exposure of cells to 10-1000 μg/ml of extract for 24 h, revealed the concentrations 250-1000 μg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.

  18. Pentoxifylline induces apoptosis of HepG2 cells by reducing reactive oxygen species production and activating the MAPK signaling.

    PubMed

    Wang, Yan; Dong, Lei; Li, Jing; Luo, Miaosha; Shang, Boxin

    2017-08-15

    Pentoxifylline (PTX) is a methylxanthine derivative and has potent anti-tumor activity. This study aimed at investigating the anti-HCC effects of PTX and associated molecular mechanisms. The effects of varying doses of PTX on viability, cell cycle and apoptosis of HepG2 cells were determined by MTT and flow cytometry, respectively. The effects of PTX on the production of reactive oxygen species (ROS), expression of pro- and anti-apoptotic regulators and activation of the MAPK signaling in HepG2 cells were analyzed by flow cytometry and Western blot assays. The effects of PTX on the growth of implanted HepG2 cells and their apoptosis in mice were examined. Our results indicated that PTX inhibited proliferation of HepG2 cells and induced HepG2 cell cycle arrest at G0/G1 phase and apoptosis in a dose- and time-dependent manner. Treatment with PTX reduced levels of ROS and Bcl-XL expression, but increased caspase 3 and caspase 9 expression and JNK and ERK1/2 phosphorylation in HepG2 cells. Pre-treatment with n-acetyl-l-cysteine (NAC), a ROS scavenger, enhanced PTX-mediated cell cycle arrest, apoptosis and the JNK and ERK MAPK activation, while pre-treatment with SP600125 or PD98509 attenuated PTX-mediated effects in HepG2 cells. Treatment with PTX inhibited the growth of implanted HCC and promoted HCC apoptosis in mice. Our data demonstrate that PTX inhibits proliferation of HepG2 cells and induces HepG2 cell apoptosis by attenuating ROS production and enhancing the MAPK activation in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A bioassay using the human hepatoblastoma cell line HepG2 for detecting phototoxicity of furocoumarins.

    PubMed

    Colombain, M; Goll, V; Muyard, F; Girard, C; Bévalot, F; Richert, L

    2001-10-01

    We successfully evaluated the human hepatoblastoma cell line HepG2 as a model to assess phototoxicity of coumarins. Five natural furocoumarins were tested and their phototoxic activities, obtained by measuring cell viability in the presence of UV using the MTT test, were as follows: xanthotoxin (8-MOP) > heraclenol = trichoclin = imperatorin > peucedanin, both in growing and confluent cell cultures. This easy-to-perform, miniaturised, quantitative and sensitive method could therefore be used as a primary screening test for phototoxicity of a large number of compounds and plant extracts.

  20. The toxicity of extracts of plant parts of Moringa stenopetala in HEPG2 cells in vitro.

    PubMed

    Mekonnen, Negussu; Houghton, Peter; Timbrell, John

    2005-10-01

    The cytotoxicity of extracts from a widely used species of plant, Moringa stenopetala, was assessed in HEPG2 cells, by measuring the leakage of lactate dehydrogenase (LDH) and cell viability. The functional integrity of extract-exposed cells was determined by measuring intracellular levels of ATP and glutathione (GSH). The ethanol extracts of leaves and seeds increased significantly (p < 0.01) LDH leakage in a dose- and time-dependent manner. The water extract of leaves and the ethanol extract of the root did not increase LDH leakage. A highly significant (p < 0.001) decrease in HEPG2 viability was found after incubating the cells with the highest concentration (500 microg/mL) of the ethanol leaf and seed extracts. At a concentration of 500 microg/mL, the water extract of leaves increased (p < 0.01), while the ethanol extract of the same plant part decreased (p < 0.01), ATP levels. The root and seed extracts had no significant effect on ATP levels. The ethanol leaf extract decreased GSH levels at a concentration of 500 microg/mL (p < 0.01), as did the ethanol extract of the seeds at 250 microg/mL and 500 microg/mL (p < 0.05). The water extract of the leaves did not alter GSH or LDH levels or affect cell viability, suggesting that it may be non-toxic, and is consistent with its use as a vegetable. The data obtained from the studies with the ethanol extract of the leaves and seeds from Moringa stenopetala show that they contain toxic substances that are extractable with organic solvents or are formed during the process of extraction with these solvents. The significant depletion of ATP and GSH only occurred at concentrations of extract that caused leakage of LDH. Further investigation with this plant in order to identify the constituents extracted and their individual toxic effects both in vivo and in vitro is warranted. This study also illustrates the utility of cell culture for screening plant extracts for potential toxicity.

  1. The protective effects of carvacrol and thymol against paracetamol-induced toxicity on human hepatocellular carcinoma cell lines (HepG2).

    PubMed

    Palabiyik, S S; Karakus, E; Halici, Z; Cadirci, E; Bayir, Y; Ayaz, G; Cinar, I

    2016-12-01

    Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol. © The Author(s) 2016.

  2. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  3. Time-course regulation of survival pathways by epicatechin on HepG2 cells.

    PubMed

    Granado-Serrano, Ana Belén; Angeles Martín, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2009-02-01

    Polyphenols, such as epicatechin, have been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin of survival/proliferation pathways in HepG2 cells. Treatment of HepG2 cells with 10 micromol/L epicatechin did not result in any cell damage up to 18 h, as evaluated by the lactate dehydrogenase assay. Moreover, the enhanced cell death evoked by an oxidative stress induced with tert-butyl hydroperoxide was prevented in the cells pretreated 4 or 18 h with epicatechin. Epicatechin-induced survival was a rapid event that was accompanied by early and sustained activation of major survival signaling proteins, such as AKT/phosphatidylinositol 3-kinase and extracellular-regulated kinase (activated from 5 min to 18 h), as well as protein kinase C (PKC)-alpha (30 min to 18 h), in concert with unaltered c-jun N-amino terminal kinase levels and early inactivation of key death-related signals like PKC-delta (5 min to 18 h). Additionally, reactive oxygen species generation was transiently reduced when cells were treated with 10 micromol/L epicatechin (15-240 min). These data suggest that epicatechin induces cellular survival through a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, the ultimate effect on HepG2 cells being regulated by the balance among these signals.

  4. Prevention of phosphine-induced cytotoxicity by nutrients in HepG2 cells

    PubMed Central

    Rashedinia, Marzieh; Jamshidzadeh, Akram; Mehrabadi, Abbas Rezaiean; Niknahad, Hossein

    2016-01-01

    Background & objectives: Phosphides used as an insecticide and rodenticide, produce phosphine (PH3) which causes accidental and intentional poisoning cases and deaths. There is no specific treatment or antidote available for PH3 poisoning. It is suggested that PH3-induced toxicity is associated with adenosine triphosphate (ATP) depletion; therefore, in this study the effect of some nutrients was evaluated on PH3 cytotoxicity in a cell culture model. Methods: PH3 was generated from reaction of zinc phosphide (10 mM) with water in the closed culture medium of HepG2 cells, and cytotoxicity was measured after one and three hours of incubation. ATP, glutathione (GSH) and lipid peroxidation were also assessed at one or three hours post-incubation. ATP suppliers including dihydroxyacetone, glyceraldehyde and fructose were added to the culture medium 10 min before PH3 generation to prevent or reduce phosphine-induced cytotoxicity. Results: Phosphine caused about 30 and 66 per cent cell death at one and three hours of incubation, respectively. ATP content of the cells was depleted to 14.7 per cent of control at one hour of incubation. ATP suppliers were able to prevent cytotoxicity and ATP depletion induced by PH3. Dihydroxyacetone, α-ketoglutarate, fructose and mannitol restored the ATP content of the cells from 14.7 per cent to about 40, 34, 32 and 30 per cent, respectively. Lipid peroxidation and GSH depletion were not significantly induced by zinc phosphide in this study. Interpretation & conclusions: The results supported the hypothesis that phosphine-induced cytotoxicity was due to decrease of ATP levels. ATP suppliers could prevent its toxicity by generating ATP through glycolysis. α-keto compounds such as dihydroxyacetone and α-ketoglutarate may bind to phosphine and restore mitochondrial respiration. PMID:28256464

  5. Prevention of phosphine-induced cytotoxicity by nutrients in HepG2 cells.

    PubMed

    Rashedinia, Marzieh; Jamshidzadeh, Akram; Mehrabadi, Abbas Rezaiean; Niknahad, Hossein

    2016-10-01

    Phosphides used as an insecticide and rodenticide, produce phosphine (PH3) which causes accidental and intentional poisoning cases and deaths. There is no specific treatment or antidote available for PH3poisoning. It is suggested that PH3-induced toxicity is associated with adenosine triphosphate (ATP) depletion; therefore, in this study the effect of some nutrients was evaluated on PH3cytotoxicity in a cell culture model. PH3was generated from reaction of zinc phosphide (10 mM) with water in the closed culture medium of HepG2 cells, and cytotoxicity was measured after one and three hours of incubation. ATP, glutathione (GSH) and lipid peroxidation were also assessed at one or three hours post-incubation. ATP suppliers including dihydroxyacetone, glyceraldehyde and fructose were added to the culture medium 10 min before PH3generation to prevent or reduce phosphine-induced cytotoxicity. Phosphine caused about 30 and 66 per cent cell death at one and three hours of incubation, respectively. ATP content of the cells was depleted to 14.7 per cent of control at one hour of incubation. ATP suppliers were able to prevent cytotoxicity and ATP depletion induced by PH3. Dihydroxyacetone, α-ketoglutarate, fructose and mannitol restored the ATP content of the cells from 14.7 per cent to about 40 , 34 , 32 and 30 per cent, respectively. Lipid peroxidation and GSH depletion were not significantly induced by zinc phosphide in this study. The results supported the hypothesis that phosphine-induced cytotoxicity was due to decrease of ATP levels. ATP suppliers could prevent its toxicity by generating ATP through glycolysis. α-keto compounds such as dihydroxyacetone and α-ketoglutarate may bind to phosphine and restore mitochondrial respiration.

  6. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  7. Cytotoxicity evaluation of symmetrically branched glycerol trimer in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Miyamoto, Licht; Watanabe, Masashi; Kono, Mai; Matsushita, Tsuyoshi; Hattori, Hatsuhiko; Ishizawa, Keisuke; Nemoto, Hisao; Tsuchiya, Koichiro

    2012-01-01

    An appropriate balance between lipophilicity and hydrophilicity is necessary for pharmaceuticals to achieve fine Absorption, Distribution, Metabolism and Excretion (ADME) properties including absorption and distribution, in particular. We have designed and proposed symmetrically branched oligoglycerols (BGL) as an alternative approach to improve the lipophilic-hydrophilic balance. We have previously shown that stability in circulation and water-solubility of such molecules as proteins, liposomes and hydrophobic compounds are much improved by conjugation to BGL. Albeit these successful applications of BGL, little was known whether BGL could be used in safety. Thus we conducted evaluation of the cytotoxicity of a representative BGL, symmetrically branched glycerol trimer (BGL003) in the cultured cells to clarify its biological safeness. Here we demonstrate that water-solubility of an extremely hydrophobic agent, fenofibrate was more than 2,000-fold improved just by conjugated with BGL003. BGL003 did not exhibit any significant cytotoxicity in human hepatocarcinoma HepG2 cells. Thus BGL003 should be safe and suitable strategy to endow hydrophobic molecules with much hydrophilicity.

  8. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol

    PubMed Central

    Zhu, Chunyan; Xie, Ping; Zhao, Fei; Zhang, Lingqiang; An, Wei; Zhan, Yutao

    2014-01-01

    The role of cholesterol in the pathogenesis of non-alcoholic steatohepatitis (NASH) remains unclear. It is known that apoptosis of hepatocytes is an important characteristics of NASH. The objective of this study was to investigate the effects of cholesterol on steatotic HepG2 cell apoptosis and the possible mechanism in vitro. In this study, HepG2 cells were divided into three groups: (1) normal group, (2) steatosis group and (3) cholesterol group. HepG2 cells were treated with oleic acid to establish a steatosis study model. Steatosis was assessed by Oil Red O staining and triglyceride content assay. Cell apoptosis was measured using an apoptosis kit. The expression levels of apoptosis-related proteins (P53, Bcl-2, Bax, caspase-3, cyclin A, cyclin B1 and cyclin E) were determined by western blot analyses. We found that a hepatocyte steatosis model was successfully established by oleic acid (200 μmol/L) induction. The cholesterol (50 mg/L) group had similar amount of lipid droplets and triglyceride content as steatosis group (P > 0.5). However, the apoptosis rate (P < 0.01) of the cholesterol group was significantly higher than that of the normal group or the steatosis group, and the protein expressions of Bax and caspase-3, but not P53, Bcl-2, cyclin A, cyclin B1 and cyclin E, were also increased in the cholesterol group. Those results suggested that cholesterol markedly promoted apoptosis of steatosis HepG2 cells in vitro, likely through the up-regulation of Bax and caspase-3 expression. This study contributes to explain the effect of cholesterol on NASH pathogenesis. PMID:25400762

  9. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells.

    PubMed

    Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun

    2015-07-15

    Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Lovastatin prevents bleomycin-induced DNA damage to HepG2 cells

    PubMed Central

    Nasiri, Marjan; Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Moradi, Shahla

    2016-01-01

    Lovastatin as a member of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is used as a lipid-lowering agent. It can also inhibit the formation of hydrogen peroxide and superoxide anion and finally leads to decline in oxidative stress processes. Here, we evaluated whether lovastatin can increase DNA damage resistance of HepG2 cells against genotoxicity of the anticancer drug bleomycin (BLM). HepG2 cells were incubated with different concentrations of lovastatin (0.1, 0.5, 1, 5 µM) before exposure to BLM (0.5 µg/mL for one h). The genotoxic dose of BLM and lovastatin was separately determined and comet assay was used to evaluate the genotoxicity. After trapping cells in agarose coated lames, they were lysed and the electrophoresis was done in alkaline pH, then colored and monitored by florescent microscope. The results of this study indicated that lovastatin in doses lower than 5 µM has genoprotective effect and in doses higher than 50 µM is genotoxic. In conclusion, lovastatin is able to protect genotoxic effects of BLM in HepG2 cells. Further studies are needed to elucidate the mechanism(s) involved in this process. PMID:28003840

  11. Inhibition of HBV Replication in HepG2.2.15 Cells by Human Peripheral Blood Mononuclear Cell-Derived Dendritic Cells.

    PubMed

    Liu, Tao; Song, Hong-Li; Zheng, Wei-Ping; Shen, Zhong-Yang

    2015-01-01

    Anti-HBV therapy is essential for patients awaiting liver transplantation. This study aimed to explore the effects of dendritic cells (DCs) derived from the peripheral blood of hepatitis B patients on the replication of HBV in vivo and to evaluate the biosafety of DCs in clinical therapy. Peripheral blood mononuclear cells (PBMCs) were isolated from HBV-infected patients and maturation-promoting factors and both HBsAg and HBcAg were used to induce DC maturation. Mature DCs and lymphocytes were co-cultured with human hepatocyte cell HL-7702 or HBV-producing human hepatocellular carcinoma cell HepG2.2.15. We found that mature lymphocytes exposed to DCs in vitro did not influence morphology or activities of HL-7702 and HepG2.2.15 cells. Liver function indexes and endotoxin levels in the cell supernatants did not change in these co-cultures. Additionally, supernatant and intracellular HBV DNA levels were reduced when HepG2.2.15 cells were co-cultured with mature lymphocytes that had been cultured with DCs, and HBV covalently closed circular DNA (cccDNA) levels in HepG2.2.15 cells also decreased. Importantly, DC-mediated immunotherapy had no mutagenic effect on HBV genomic DNA by gene sequencing of the P, S, X, and C regions of HBV genomic DNA. We conclude that PBMC-derived DCs from HBV-infected patients act on autologous lymphocytes to suppress HBV replication and these DC clusters showed favorable biosafety.

  12. Selenocystine against methyl mercury cytotoxicity in HepG2 cells.

    PubMed

    Wang, Han; Chen, Beibei; He, Man; Yu, Xiaoxiao; Hu, Bin

    2017-12-01

    Methyl mercury (MeHg) is a highly toxic substance and the effect of selenium against MeHg toxicity is a hot topic. Until now, no related works have been reported from the view of the point of elemental speciation which is promising to study the mechanism at the molecular level. In this work, to reveal the effect of selenocystine (SeCys2) against MeHg cytotoxicity in HepG2 cells, a comprehensive analytical platform for speciation study of mercury and selenium in MeHg incubated or MeHg and SeCys2 co-incubated HepG2 cells was developed by integrating liquid chromatography (LC) - inductively coupled plasma mass spectrometry (ICP-MS) hyphenated techniques and chip-based pretreatment method. Interesting phenomenon was found that the co-incubation of MeHg with SeCys2 promoted the uptake of MeHg in HepG2 cells, but reduced the cytotoxicity of MeHg. Results obtained by ICP-MS based hyphenated techniques revealed a possible pathway for the incorporation and excretion of mercury species with the coexistence of SeCys2. The formation of MeHg and SeCys2 aggregation promotes the uptake of MeHg; majority of MeHg transforms into small molecular complexes (MeHg-glutathione (GSH) and MeHg-cysteine (Cys)) in HepG2 cells; and MeHg-GSH is the elimination species which results in reducing the cytotoxicity of MeHg.

  13. Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells.

    PubMed

    Cuello, Susana; Goya, Luis; Madrid, Yolanda; Campuzano, Susana; Pedrero, Maria; Bravo, Laura; Cámara, Carmen; Ramos, Sonia

    2010-05-01

    Methylmercury (MeHg) has been suggested to exert cytotoxicity through multiple mechanisms, but the precise biochemical machinery has not been fully defined. This study was aimed at investigating the time-course (0-24h) effect of 2mg/L MeHg on cell death in human HepG2 cells. MeHg decreased cell viability in a time-dependent manner, which was concomitant with increased LDH leakage, reduced GSH levels, CAT activity and altered activity of the antioxidant enzymes GPx and GR at the longest times of incubation (16 and 24h). Activity of the detoxifying enzyme GST was also early enhanced (2h). Caspase-3 activity reached a maximum value at 8h and continued increased up to 24h. This feature was preceded by an enhancement in the caspase-9 activity (2h), whereas caspase-8 activity remained unchanged. MeHg early diminished Bcl-x(L)/Bcl-x(S) ratio and increased levels of the pro-apoptotic Bax and Bad. Moreover, MeHg-induced cytotoxicity was completely inhibited by the antioxidants (GSH and NAC) and notably by the mitochondrial complex I inhibitor rotenone, but not by the NADH oxidase inhibitor DPI. In summary, MeHg induced an oxidative stress responsible for apoptosis in HepG2 cells through direct activation of the caspase cascade and altered the cellular antioxidant and detoxificant enzymatic system to later provoke necrosis at later stages. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Long-chain carboxychromanols are the major metabolites of tocopherols and tocotrienols in A549 lung epithelial cells but not HepG2 cells.

    PubMed

    You, Cha-Sook; Sontag, Timothy J; Swanson, Joy E; Parker, Robert S

    2005-02-01

    Human lung type II cell derived A549 epithelial cancer cells and HepG2 hepatocytes constitutively express cytochrome P4504F2, a P450 we previously identified as a tocopherol-omega-hydroxylase. To determine if A549 cells would metabolize tocochromanols via the omega-hydroxylase pathway, we compared the metabolism of tocopherols (alpha-, gamma-, delta-TOH) and tocotrienols (alpha-, gamma-, delta-T3) in these 2 cell lines. Cultures were incubated with alpha-, gamma-, or delta-TOH, or the analogous T3s, and synthesis of their metabolites quantitated by GC-MS. A549 cells metabolized all tocochromanols 2-3 times more extensively than HepG2 cells (P < 0.001) except alpha-TOH, a difference not related to cell uptake of substrate but rather was reflective of greater microsomal TOH-omega-hydroxylase enzyme activity. Notably, 9'-carboxychromanols were the major metabolites of all gamma- and delta-TOHs and T3s in A549 cultures, whereas 3'- and 5'-carboxychromanols predominated in HepG2 cultures. Accumulation of 9'-carboxychromanols in A549 cultures was due to their inefficient conversion to 7'-carboxychromanols relative to HepG2 cells. Sesamin inhibited tocochromanol metabolism in both cells types, and neither cell type exhibited evidence of alternative (sesamin-insensitive) pathways of metabolism. TOH-omega-hydroxylase activity was undetectable in rat primary lung type II cells, suggesting that expression of activity was associated with transformation of normal type II cells to cancer cells. Long-chain carboxychromanol metabolites of gamma-TOH and other forms of vitamin E can be biosynthesized in A549 cultures for assessment of their biological activity, including their potential inhibition of synthesis of inflammatory mediators.

  15. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells.

    PubMed

    Medina-Díaz, Irma Martha; Ponce-Ruiz, Néstor; Ramírez-Chávez, Bryana; Rojas-García, Aurora Elizabeth; Barrón-Vivanco, Briscia S; Elizondo, Guillermo; Bernal-Hernández, Yael Y

    2017-02-01

    Paraoxonase 1 (PON1) is a calcium-dependent esterase synthesized primarily in the liver and secreted into the plasma where it is associated with high-density lipoproteins (HDL). PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs) such as methyl parathion and chlorpyrifos. Thus, PON1 activity and expression levels are important for determining susceptibility against OPs poisoning. Some studies have demonstrated that OPs can modulate gene expression through interactions with nuclear receptors. In this study, we evaluated the effects of methyl parathion and chlorpyrifos on the modulation of PON1 in Human Hepatocellular Carcinoma (HepG2) cells by real-time PCR, PON1 activity assay, and western blot. The results showed that the treatments with methyl parathion and chlorpyrifos decreased PON1 mRNA and immunoreactive protein and increased inflammatory cytokines in HepG2 cells. The effects of methyl parathion and chlorpyrifos on the downregulation of PON1 gene expression in HepG2 cells may provide evidence of OPs cytotoxicity related to oxidative stress and an inflammatory response. A decrease in the expression of the PON1 gene may increase the susceptibility to OPs intoxication and the risk of diseases related to inflammation and oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 490-500, 2017.

  16. Cholesterol-lowing effect of taurine in HepG2 cell.

    PubMed

    Guo, Junxia; Gao, Ya; Cao, Xuelian; Zhang, Jing; Chen, Wen

    2017-03-16

    A number of studies indicate that taurine promotes cholesterol conversion to bile acids by upregulating CYP7A1 gene expression. Few in vitro studies are concerned the concentration change of cholesterol and its product of bile acids, and the molecular mechanism of CYP7A1 induction by taurine. The levels of intracellular total cholesterol (TC), free cholesterol (FC), cholesterol ester (EC), total bile acids (TBA) and medium TBA were determined after HepG2 cells were cultured for 24/48 h in DMEM supplemented with taurine at the final concentrations of 1/10/20 mM respectively. The protein expressions of CYP7A1, MEK1/2, c-Jun, p-c-Jun and HNF-4α were detected. Taurine significantly reduced cellular TC and FC in dose -and time-dependent ways, and obviously increased intracellular/medium TBA and CYP7A1 expressions. There was no change in c-Jun expression, but the protein expressions of MEK1/2 and p-c-Jun were increased at 24 h and inhibited at 48 h by 20 mM taurine while HNF4α was induced after both of the 24 h and 48 h treatment. Taurine could enhance CYP7A1 expression by inducing HNF4α and inhibiting MEK1/2 and p-c-Jun expressions to promote intracellular cholesterol metabolism.

  17. Does Resveratrol Improve Insulin Signalling in HepG2 Cells?

    PubMed

    Norouzzadeh, Marjan; Amiri, Fatemehsadat; Saboor-Yaraghi, Ali Akbar; Shemirani, Farnoosh; Kalikias, Yas; Sharifi, Loghman; Seyyedsalehi, Monireh Sadat; Mahmoudi, Maryam

    2017-04-01

    Diabetes mellitus is a common metabolic disorder with high global prevalence. It is characterized by a decrease in insulin secretion or a decrease in insulin sensitivity or both. The aim of the present study was to investigate the effects of resveratrol treatment on the expression of the genes involved in insulin signalling cascade, such as Forkhead box protein O1 (FoxO1), 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and mammalian target of rapamycin (mTOR). HepG2 cells were cultured in serum-free medium with high concentrations of glucose and insulin and then were treated with resveratrol (5, 10 and 20 µM) for 24 and 48 hours. Complementary deoxyribonucleic acids (cDNAs) were synthesized followed by RNA extraction. Real-time quantitative reverse transcription polymerase chain reaction was used to analyze the expression of FoxO1, PDPK1 and mTOR. Resveratrol increased the expression of PDPK1, mTOR and FoxO1. No significant difference was seen among differing dosages of resveratrol, but treatments for 48 hours exerted the greatest effectiveness. Our results were consistent with other studies showing the beneficial effects of resveratrol on diabetes. However, considering the effects of resveratrol in increasing FoxO1 and gluconeogenic gene expression, long-term usage of resveratrol should be investigated in greater depth in future studies. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  18. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    DOE PAGES

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; ...

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than thosemore » in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.« less

  19. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    PubMed Central

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L.; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C.; Yliperttula, Marjo

    2015-01-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures. PMID:26323570

  20. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    SciTech Connect

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L.; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C.; Yliperttula, Marjo

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.

  1. Effect of coffee melanoidin on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide.

    PubMed

    Goya, Luis; Delgado-Andrade, Cristina; Rufián-Henares, José A; Bravo, Laura; Morales, Francisco J

    2007-05-01

    Soluble high-molecular weight fraction (named melanoidin) from coffee brew was isolated by ultrafiltration, subsequently digested by simulating a gastric plus pancreatic digestive condition and partly characterized by CZE, gel-filtration and browning. The objective of the present study was to investigate the potential protective effect of the coffee melanoidin submitted to gastrointestinal digestion on cell viability (lactate dehydrogenase leakage) and redox status of cultured human hepatoma HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of antioxidant enzymes glutathione peroxidase (GPx) and reductase (GR) were used as markers of cellular oxidative status. Pretreatment of cultured HepG2 cells with 0.5-10 microg/mL digested coffee melanoidin (DCM) for 2 or 20 h completely prevented the increase in cell damage and GR and partly prevented the decrease of GSH and the increase of MDA and GPx evoked by t-BOOH in HepG2 cells. In contrast, increased ROS generation induced by t-BOOH was not prevented when cells were pretreated with DCM. The results show that treatment of HepG2 cells with concentrations of DCM within the expected physiological range confers the cells a significant protection against an oxidative insult.

  2. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2.

    PubMed

    Mavri-Damelin, Demetra; Eaton, Simon; Damelin, Leonard H; Rees, Myrddin; Hodgson, Humphrey J F; Selden, Clare

    2007-01-01

    A possible cell source for a bio-artificial liver is the human hepatblastoma-derived cell line HepG2 as it confers many hepatocyte functions, however, the urea cycle is not maintained resulting in the lack of ammonia detoxification via this cycle. We investigated urea cycle activity in HepG2 cells at both a molecular and biochemical level to determine the causes for the lack of urea cycle expression, and subsequently addressed reinstatement of the cycle by gene transfer. Metabolic labelling studies showed that urea production from 15N-ammonium chloride was not detectable in HepG2 conditioned medium, nor could 14C-labelled urea cycle intermediates be detected. Gene expression data from HepG2 cells revealed that although expression of three urea cycle genes Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase was evident, Ornithine Transcarbamylase and Arginase I expression were completely absent. These results were confirmed by Western blot for arginase I, where no protein was detected. Radiolabelled enzyme assays showed that Ornithine Transcarbamylase functional activity was missing but that Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase were functionally expressed at levels comparable to cultured primary human hepatocytes. To restore the urea cycle, HepG2 cells were transfected with full length Ornithine Transcarbamylase and Arginase I cDNA constructs under a CMV promoter. Co-transfected HepG2 cells displayed complete urea cycle activity, producing both labelled urea and urea cycle intermediates. This strategy could provide a cell source capable of urea synthesis, and hence ammonia detoxificatory function, which would be useful in a bio-artificial liver.

  3. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins

    PubMed Central

    GAO, FENG; JIAN, LIUMENG; ZAFAR, MOHAMMAD ISHRAQ; DU, WEN; CAI, QIN; SHAFQAT, RAJA ADEEL; LU, FURONG

    2015-01-01

    Previous studies have indicated that 4-hydroxy-isoleucine (4-HIL) improves insulin resistance, however, the underlying mechanisms remain to be elucidated. In the present study, the molecular mechanisms underlying how 4-HIL improves insulin resistance in hepatocytes were examined. HepG2 cells were co-cultured with insulin and a high glucose concentration to obtain insulin-resistant (IR) HepG2 cells. Insulin sensitivity was determined by measuring the glucose uptake rate. The IR HepG2 cells were treated with different concentrations of 4-HIL to determine its effect on IR Hep2 cells. The levels of tumor necrosis factor-α (TNF-α) were measured by an enzyme-linked immunosorbent assay and protein levels of TNF-α converting enzyme (TACE)/tissue inhibitor of metalloproteinase 3 (TIMP3), insulin receptor substrate (IRS)-1, IRS-2, phosphorylated (p)-IRS-1 (Ser307) and glucose transporter type 4 (GLUT4) were measured by western blot analysis. The results of the present study demonstrated that insulin-induced glucose uptake was reduced in IR HepG2 cells; however, this reduction was reversed by 4-HIL in a dose-dependent manner. 4-HIL achieved this effect by downregulating the expression of TNF-α and TACE, and upregulating the expression of TIMP3 in IR HepG2 cells. In addition, 4-HIL increased the expression of the insulin transduction regulators IRS-1 and GLUT4, and decreased the expression of p-IRS-1 (Ser307), without affecting the expression of IRS-2. The present study suggests that 4-HIL improved insulin resistance in HepG2 cells by the following mechanisms: 4-HIL reduced TNF-α levels by affecting the protein expression of the TACE/TIMP3 system and 4-HIL stimulated the expression of IRS-1 and GLUT4, but inhibited the expression of p-IRS-1 (Ser307). PMID:26352439

  4. Induction of Apoptosis by Berberine in Hepatocellular Carcinoma HepG2 Cells via Downregulation of NF-κB.

    PubMed

    Li, Min; Zhang, Mao; Zhang, Zhi-Lang; Liu, Ning; Han, Xiao-Yu; Liu, Qin-Cheng; Deng, Wei-Jun; Liao, Cai-Xian

    2017-01-26

    Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.

  5. [Biological function and molecular mechanism of URI in HepG2 cells].

    PubMed

    Zhou, Wei; Zhong, Yanyu; Wang, Hongmin; Yang, Sijun; Wei, Wenxiang

    2014-11-01

    To explore the effect and molecular mechanism of the unconventional prefoldin RPB5 interactor (URI) in hepatocellular carcinoma HepG2 cells. The cDNA sequence and shRNA of URI were obtained and sub-cloned into eukaryotic expression vectors. Then those vectors were transfected into HepG2 cells to obtain stable transfection cell line. The cell proliferation and anchor-independent growth in URI-overexpressing and knockdown HepG2 cells were determined by CCK-8 and soft agar colony assay. Flow cytometry was applied to detect the cell cycle and apoptosis of γ-ray irradiated cells. Apoptosis related genes were detected by Western blot. The pCDNA3.1-URI and pGPU6-URIi eukaryotic expression vectors were constructed successfully and corresponding stable transfection cell lines were obtained. Cell proliferation rates of the HepG2, pCDNA3.1-URI-HepG2 and pGPU6-URIi-HepG2 cells were (588.78 ± 32.12)%, (959.33 ± 58.8)% and (393.93 ± 39.7)%, respectively (P < 0.05). The number of cell clones of HepG2, pCDNA3.1-URI-HepG2 and pGPU6-URIi-HepG2 cells were 43 ± 7, 85 ± 5 and 20 ± 4 (P < 0.05), respectively. After γ-ray irradiation, the URI-overexpressing cell line showed a significantly lower apoptosis rate and G(2)/M phase arrest than those in the URI-depleted cell line (P < 0.05). In the HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 0.92 ± 0.03, 1.11 ± 0.13 and 0.82 ± 0.01 (P < 0.05). In the pCDNA3.1-URI-HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 1.79 ± 0.12, 0.48 ± 0.01 and 2.20 ± 0.30 (P < 0.05), respectively. In the pGPU6-URIi-HepG2 cells, the relative protein expression levels of URI, Bax and Bcl-2 were 0.50 ± 0.04, 1.52 ± 0.20 and 0.38 ± 0.01 (P < 0.05), respectively. The expression of Bax was down-regulated and Bcl-2 was up-regulated in the URI-overexpressing cell line. However, on the contrary, expression of Bax was up-regulated and Bcl-2 was down-regulated in the URI-depleted cell line. URI

  6. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma-mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml(-1) concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml(-1) both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation.

  7. Investigation of quercetin-induced HepG2 cell apoptosis-associated cellular biophysical alterations by atomic force microscopy.

    PubMed

    Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye

    2016-01-01

    Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs.

  8. Cytotoxic effect of oxaloacetate on HepG2-human hepatic carcinoma cells via apoptosis and ROS accumulation.

    PubMed

    Jiao, Y; Ji, L; Kuang, Y; Yang, Q

    2017-01-01

    Oxaloacetate (OA) is one of the intermediates of the Krebs cycle. In addition to its role in energy production, OA may have other effects on the cell. We report here that OA could have a cell type dependent cytotoxic effect on the human hepatic carcinoma cell line HepG2 through induction of apoptosis and reactive oxygen species (ROS) accumulation. In our study, OA decreased the viability and colony formation of HepG2 cells and induced cell death. Caspase-3 activity was increased, the pro-apoptotic protein Bax was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated in OA-treated HepG2 cells indicating that apoptosis through the intrinsic pathway was involved in the cell death. The ROS level in OA-treated HepG2 cells was increased. The anti-oxidant N-acetylcysteine (NAC) and glutathione (GSH) prevented the OA-induced decrease in cell but did not alter the enhanced apoptotic Bax/Bcl-2 mRNA ratio. These results suggest that the OA-induced apoptosis of HepG2 cell is not driven by oxidative damage and at least two distinct mechanisms, one mediated by ROS and one involving apoptosis, result in the cytotoxic effects of OA on HepG2 cells. These studies expand the biological functional repertoire of OA and provide a mechanism by which hepatocellular carcinoma may be targeted by OA.

  9. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene.

    PubMed

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-12

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.

  10. Autophagy in anti-apoptotic effect of augmenter of liver regeneration in HepG2 cells

    PubMed Central

    Shi, Hong-Bo; Sun, Hai-Qing; Shi, Hong-Lin; Ren, Feng; Chen, Yu; Chen, De-Xi; Lou, Jin-Li; Duan, Zhong-Ping

    2015-01-01

    AIM: To investigate the role of autophagy in the anti-apoptotic effect of augmenter of liver regeneration (ALR). METHODS: Autophagy was induced through serum deprivation. An ALR-expressing plasmid was transfected into HepG2 cells, and autophagic flux was determined using fluorescence microscopy, electron microscopy, Western blot and quantitative polymerase chain reaction (qPCR) assays. After ALR-expressing plasmid transfection, an autophagy inhibitor [3-methyladenine (3-MA)] was added to HepG2 cells, and apoptosis was observed using fluorescence microscopy and flow cytometry. RESULTS: Autophagy was activated in HepG2 cells, peaking at 24 h after serum deprivation. Microtubule-associated protein light chain three-II levels were higher in HepG2 cells treated with ALR than in control cells, fluorescence microscopy, electron microscopy and qPCR studies showed the similar trend, and p62 levels showed the opposite trend, which indicated that ALR may play an important role in increasing autophagy flux. The numbers of apoptotic cells were substantially higher in HepG2 cells treated with both ALR and 3-MA than in cells treated with ALR alone. Therefore, the protective effect of ALR was significantly attenuated or abolished when autophagy was inhibited, indicating that the anti-apoptotic effect of ALR may be related to autophagy. CONCLUSION: ALR protects cells from apoptosis partly through increased autophagy in HepG2 cells and may be valuable as a new therapeutic treatment for liver disease. PMID:25954098

  11. Autophagy in anti-apoptotic effect of augmenter of liver regeneration in HepG2 cells.

    PubMed

    Shi, Hong-Bo; Sun, Hai-Qing; Shi, Hong-Lin; Ren, Feng; Chen, Yu; Chen, De-Xi; Lou, Jin-Li; Duan, Zhong-Ping

    2015-05-07

    To investigate the role of autophagy in the anti-apoptotic effect of augmenter of liver regeneration (ALR). Autophagy was induced through serum deprivation. An ALR-expressing plasmid was transfected into HepG2 cells, and autophagic flux was determined using fluorescence microscopy, electron microscopy, Western blot and quantitative polymerase chain reaction (qPCR) assays. After ALR-expressing plasmid transfection, an autophagy inhibitor [3-methyladenine (3-MA)] was added to HepG2 cells, and apoptosis was observed using fluorescence microscopy and flow cytometry. Autophagy was activated in HepG2 cells, peaking at 24 h after serum deprivation. Microtubule-associated protein light chain three-II levels were higher in HepG2 cells treated with ALR than in control cells, fluorescence microscopy, electron microscopy and qPCR studies showed the similar trend, and p62 levels showed the opposite trend, which indicated that ALR may play an important role in increasing autophagy flux. The numbers of apoptotic cells were substantially higher in HepG2 cells treated with both ALR and 3-MA than in cells treated with ALR alone. Therefore, the protective effect of ALR was significantly attenuated or abolished when autophagy was inhibited, indicating that the anti-apoptotic effect of ALR may be related to autophagy. ALR protects cells from apoptosis partly through increased autophagy in HepG2 cells and may be valuable as a new therapeutic treatment for liver disease.

  12. Growth inhibition effect of HMME-mediated PDT on hepatocellular carcinoma HepG2 cells.

    PubMed

    Liu, Lifeng; Song, Yuanjian; Ma, Limin; Zang, Lixin; Tao, Lili; Zhang, Zhiguo; Han, Jiwu

    2014-09-01

    Photodynamic therapy (PDT) is considered a promising new strategy for liver cancer treatment. Three elements of PDT--optical output power, irradiation time, and photosensitizer concentration--play important roles in promoting cell death. This research aimed to characterize the effects of hematoporphyrin monomethyl ether (HMME)-based PDT on hepatocellular carcinoma cells HepG2 and thus elucidate the relationship between cell death and the three elements mentioned earlier. Furthermore, in this study, we present a parameter that represents the cumulative effects of these elements. The accumulation of HMME in HepG2 cells was observed by fluorescence microscopy. The absorption spectrum of HMME was detected using fluorescence spectral analysis. The viability of the treated cells was determined using the MTT assay, and cell apoptosis was evaluated using flow cytometry. We found that the fluorescence intensity was positively correlated with the incubation time for up to 2 h. The cell growth inhibition rate was significantly high and gradually increased with increasing concentrations of HMME or increasing light intensity, which was calculated as optical output power × irradiation time. Further analysis revealed an e-exponential decay of the cell survival rate to the product of the HMME concentration and the light intensity. We defined the product as parameter B (B = optical output power × irradiation time × HMME concentration). Similarly, the rate of cell apoptosis showed roughly e-exponential growth to parameter B. In conclusion, HMME-mediated PDT can significantly kill HepG2 cells, and the killing effect was related to the cumulative effects of the optical output power, the irradiation time, and the HMME concentration. Therefore, the newly defined parameter B, as a comprehensive physical quantity, may be of great significance for the regulation of light and photosensitizer according to patient-specific conditions in clinical practice.

  13. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    PubMed

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  14. Glutathione and thioredoxin type 1 cooperatively denitrosate HepG2 cells-derived cytosolic S-nitrosoproteins

    PubMed Central

    Stoyanovsky, Detcho A.; Scott, Melanie J.; Billiar, Timothy R.

    2013-01-01

    In this study, we present experimental evidence that glutathione acts in concert with human thioredoxin type 1 in the denitrosation of cytosolic S-nitrosoproteins (PSNOs) from HepG2 cells. PMID:23743503

  15. Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

    PubMed

    Cuello, Susana; Ramos, Sonia; Mateos, Raquel; Martín, M Angeles; Madrid, Yolanda; Cámara, Carmen; Bravo, Laura; Goya, Luis

    2007-12-01

    Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status--concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)--were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.

  16. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Wang, Jianji

    2015-10-01

    The present study aimed to determine the cytotoxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the biochemical and molecular mechanism of [C8mim]Br-cytotoxicity. For this purpose, cell viability, oxidative stress, apoptosis, caspase activity, and apoptosis-related gene expression in HepG2 cells following [C8mim]Br-exposure were evaluated. The results showed that viability of HepG2 cells was decreased by [C8mim]Br-exposure in a concentration-dependent pattern. Moreover, biochemical assays reveal that [C8mim]Br-exposure can induce apoptosis, cause overproduction of reactive oxygen species (ROS), inhibit superoxide dismutase and catalase, reduce glutathione content, and increase the cellular malondialdehyde level of HepG2 cells. The transcriptions of p53 and bax were markedly up-regulated while bcl-2 was significantly down-regulated in HepG2 cells after [C8mim]Br-exposure, suggesting that p53 and bcl-2 family may be involved in the cytotoxicity and apoptosis of HepG2 cells caused by [C8mim]Br. In addition, we also found that caspase-3, caspase-8, and caspase-9 were significantly activated in HepG2 cells following [C8mim]Br-exposure. Our results suggest that ROS may be a key early signal of [C8mim]Br-induced apoptosis and caspases play a key role in the initiation and execution of apoptosis of HepG2 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Berberine relieves insulin resistance via the cholinergic anti-inflammatory pathway in HepG2 cells.

    PubMed

    Li, Fen; Zhao, Yun-bin; Wang, Ding-kun; Zou, Xin; Fang, Ke; Wang, Kai-fu

    2016-02-01

    Berberine (BBR) is an isoquinoline alkaloid extracted from Rhizoma coptidis and has been used for treating type 2 diabetes mellitus (T2DM) in China. The development of T2DM is often associated with insulin resistance and impaired glucose uptake in peripheral tissues. In this study, we examined whether BBR attenuated glucose uptake dysfunction through the cholinergic anti-inflammatory pathway in HepG2 cells. Cellular glucose uptake, quantified by the 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-2-deoxy-D-glucose (2-NBDG), was inhibited by 21% after HepG2 cells were incubated with insulin (10(-6) mol/L) for 36 h. Meanwhile, the expression of alpha7 nicotinic acetylcholine receptor (α7nAChR) protein was reduced without the change of acetylcholinesterase (AChE) activity. The level of interleukin-6 (IL-6) in the culture supernatant, the ratio of phosphorylated I-kappa-B kinase-β (IKκβ) Ser181/IKKβ and the expression of nuclear factor-kappa B (NF-κB) p65 protein were also increased. However, the treatment with BBR enhanced the glucose uptake, increased the expression of α7nAChR protein and inhibited AChE activity. These changes were also accompanied with the decrease of the ratio of pIKKβ Ser181/IKKβ, NF-κB p65 expression and IL-6 level. Taken together, these results suggest that BBR could enhance glucose uptake, and relieve insulin resistance and inflammation in HepG2 cells. The mechanism may be related to the cholinergic anti-inflammatory pathway and the inhibition of AChE activity.

  18. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.

    PubMed

    Ji, Y B; Gao, S Y; Ji, C F; Zou, X

    2008-01-17

    The nightshade (Solanum nigrum Linn.) has been widely used in Chinese traditional medicine as a remedy for the treatment of digestive system cancer. The anti-tumor activity of solanine, a steroid alkaloid isolated from the nightshade has been demonstrated. To observe the effect of anti-tumor and mechanism of solanine. The MTT assay was used to evaluate the IC(50) on the three digestive system tumor cell lines. The effect on the morphology was observed with a laser confocal microscopy; the rate of apoptosis and the cell cycle were measured using flow cytometry (FCM); the expression of Bcl-2 protein was measured by Western blot. The results show that the IC(50) for HepG(2), SGC-7901, and LS-174 were 14.47, >50, and >50 microg/ml, respectively; the morphology of cells in the negative control was normal; for the treated groups, typical signs for apoptosis were found. The rate of apoptosis in HepG(2) cells induced by solanine was found to be 6.0, 14.4, 17.3, 18.9, and 32.2%, respectively. Observation of the cell cycle showed that cells in the G(2)/M phases disappeared while the number of cells in the S phase increased significantly for treated groups. Western blot showed that solanine decreased the expression of Bcl-2 protein. Therefore, the target of solanine in inducing apoptosis in HepG(2) cells seems to be mediated by the inhibition in the expression of Bcl-2 protein.

  19. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    PubMed Central

    Zakaria, Yusmazura; Rahmat, Asmah; Pihie, Azimahtol Hawariah Lope; Abdullah, Noor Rain; Houghton, Peter J

    2009-01-01

    Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2. PMID:19508737

  20. DNA damage and metallothionein synthesis in human hepatoma cells (HepG2) exposed to cadmium.

    PubMed

    Fatur, T; Tusek, M; Falnoga, I; Scancar, J; Lah, T T; Filipic, M

    2002-08-01

    Cadmium is an important heavy metal environmental toxicant, which is classified as a human carcinogen. The comet assay was used to evaluate the levels of DNA damage in a metabolically competent HepG2 cell line after treatment with low, non-cytotoxic and physiologically relevant concentrations of cadmium, alone and in combination with the dietary mutagen 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) and with the environmental mutagen benzo[a]pyrene (B(a)P). After exposure of the cells to 10, 100 and 1000 nM CdCl(2), a dose- and time-dependent increase of DNA damage was detected. Maximal damage was found after 12 h of treatment, but declined with further incubation with CdCl(2). The increased synthesis of metallothioneins on exposure to CdCl(2) up to 12 h suggests that they are responsible for the adaptation of HepG2 cells to the DNA damaging effects of CdCl(2). Co-treatment of the cells with CdCl(2) (10-1000 nM) and IQ (300 microM) induced a dose-dependent increase of DNA damage compared to cells treated with IQ alone. Co-genotoxic activity was also observed by increased formation of micronuclei in cells exposed to IQ and 1000 nM CdCl(2); at this concentration, CdCl(2) alone also induced micronuclei in HepG2 cells. Our results support the hypothesis that direct and indirect mechanisms are involved in cadmium-induced DNA damage.

  1. DNA fragmentation is not associated with apoptosis in zerumbone-induced HepG2 cells.

    PubMed

    Kamalidehghan, Behnam; Ahmadipour, Fatemeh; Noordin, Mohamed Ibrahim

    2012-01-01

    Zerumbone is a cytotoxic compound isolated from the herbal plant, Zingiber zerumbet Smith, which exhibits antitumor activity [1-2], anti-inflammatory effects and possesses anti-proliferative potentials in a variety of cell lines [3-4]. DNA fragmentation indicates an early event of apoptosis leading to cell death due to the absence of new cellular proteins synthesizing for cell survival. Previous studies indicated that the cleavage of double-stranded DNA in apoptotic DNA degradation occurs via the activation of endogenous Ca2+/Mg2+-dependent endonuclease that specifically cleaves between nucleosomes to produce DNA fragments that are multiples of ~180 base pairs [5]. In order to investigate DNA fragmentation, we treated HepG2 cells with zerumbone (IC50: 3.45 ± 0.026 µg/mL) in both dose-dependent (2, 4, 6 and 8 µg/mL) and time-dependent manner (4, 8, 12, 16, 24, 48 and 72 h). The assay was performed using the Suicide Track™ DNA Ladder Isolation Kit (Calbio-chem, CA, USA), according to the manufacturer's instructions. DNA was analyzed using 1.5% agarose gel electrophoresis, observed under UV illumination and visualized using a gel documentation system (UVP Biospectrum HR410, USA). To furthur confirm the induction of apoptosis, the protein of zerumbone-induced HepG2 cells using Western-blotting indicated a low and high expression of Bcl2 and Bax proteins, respectively. In conclusion, these results indicate that no DNA fragmentation in the human hepatocellular liver carcinoma (HepG2) cells was observed even in the presence of caspase-3 during apoptosis. Therefore, we hypothesize that not all compounds necessairly indicate fragmentation of condensed chromatin into several discrete mass in cell lines as in vitro condition.

  2. Differential effect of manool--a diterpene from Salvia officinalis, on genotoxicity induced by methyl methanesulfonate in V79 and HepG2 cells.

    PubMed

    Nicolella, Heloiza Diniz; de Oliveira, Pollyanna Francielli; Munari, Carla Carolina; Costa, Gizela Faleiros Dias; Moreira, Monique Rodrigues; Veneziani, Rodrigo Cassio Sola; Tavares, Denise Crispim

    2014-10-01

    Salvia officinalis (sage) is a perennial woody subshrub native to the Mediterranean region that is commonly used as a condiment and as an anti-inflammatory, antioxidant and antimicrobial agent due to its biological activities. Manool is the most abundant micro-metabolite found in Salvia officinalis essential oils and extracts. We therefore decided to evaluate the cytotoxic, genotoxic and antigenotoxic potential of manool in Chinese hamster lung fibroblasts (V79) and human hepatoma cells (HepG2). Cytotoxicity was assessed by the colony-forming assay in V79 cells and toxic effects were observed at concentrations of up to 8.0 μg/mL. The micronucleus test was used to evaluate the genotoxicity and antigenotoxicity of manool in V79 and HepG2 cells at concentrations of 0.5-6.0 μg/mL and 0.5-8.0 μg/mL, respectively. For evaluation of antigenotoxicity, the concentrations of manool were combined with methyl methanesulfonate (MMS, 44 μg/mL). The results showed a significant increase in the frequency of micronuclei in cultures of both cell lines treated with the highest concentration tested, demonstrating a genotoxic effect. On the other hand, manool exhibited a protective effect against chromosome damage induced by MMS in HepG2 cells, but not in V79 cells. These data suggest that some manool metabolite may be responsible for the antigenotoxic effect observed in HepG2 cells.

  3. Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells.

    PubMed

    Cunha de Padua, Monique Meyenberg; Suter Correia Cadena, Silvia Maria; de Oliveira Petkowicz, Carmen Lucia; Martinez, Glaucia Regina; Rodrigues Noleto, Guilhermina

    2017-08-01

    This study evaluated the effects of native galactomannan from Schizolobium amazonicum seeds and its sulfated forms on certain metabolic parameters of HepG2 cells. Aqueous extraction from S. amazonicum seeds furnished galactomannan with 3.2:1 Man:Gal ratio (SAGM) and molar mass of 4.34×10(5)g/mol. The SAGM fraction was subjected to sulfation using chlorosulfonic acid to obtain SAGMS1 and SAGMS2 with DS of 0.4 and 0.6, respectively. Cytotoxicity of SAGM, SAGMS1, and SAGMS2 was evaluated in human hepatocellular carcinoma cells (HepG2). After 72h, SAGM decreased the viability of HepG2 cells by 50% at 250μg/mL, while SAGMS1 reduced it by 30% at the same concentration. SAGM, SAGMS1, and SAGMS2 promoted a reduction in oxygen consumption and an increase in lactate production in non-permeabilized HepG2 cells after 72h of treatment. These results suggest that SAGM, SAGMS1, and SAGMS2 could be recognized by HepG2 cells and might trigger alterations that impair its survival. These effects could be implicated in the modification of the oxidative phosphorylation process in HepG2 cells and activation of the glycolytic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation.

    PubMed

    Sahu, Saura C; Roy, Shambhu; Zheng, Jiwen; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    As a consequence of the increased use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics to prevent fungal and bacterial growth, there is a need for validated rapid screening methods to assess the safety of nanoparticle exposure. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential genotoxicity of 20-nm nanosilver. The average silver nanoparticle size as determined by transmission electron microscopy (TEM) was 20.4 nm. Dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The silver concentration in a 20-nm nanosilver solution determined by the inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Analysis by ICP-MS and TEM demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Genotoxicity was determined by the cytochalasin B-blocked micronucleus assay with acridine orange staining and fluorescence microscopy. Concentration- and time-dependent increases in the frequency of binucleated cells with micronuclei induced by the nanosilver was observed in the concentration range of 0.5 to 15 µg ml(-1) in both HepG2 and Caco2 cells compared with the control. Our results indicated that HepG2 cells were more sensitive than Caco2 cells in terms of micronuclei formation induced by nanosilver exposure. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, represent potential screening models for prediction of genotoxicity of silver nanoparticles by in vitro micronucleus assay.

  5. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells.

    PubMed

    Li, Xiang-Zhou; Zhang, Sheng

    2016-01-01

    Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.

  6. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    PubMed Central

    Li, Xiang-Zhou

    2016-01-01

    Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme. PMID:27656239

  7. Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity.

    PubMed

    de Oliveira Fernandes, Thaís; de Ávila, Renato Ivan; de Moura, Soraia Santana; de Almeida Ribeiro, Gerlon; Naves, Maria Margareth Veloso; Valadares, Marize Campos

    2015-01-01

    Campomanesia adamantium (Myrtaceae) is an antioxidant compounds-rich Brazilian fruit popularly known as gabiroba. In view of this, it was evaluated the hepatoprotective effects of pulp (GPE) or peel/seed (GPSE) hydroalcoholic extracts of gabiroba on injured liver-derived HepG2 cells by CCl4 (4 mM). The results showed the presence of total phenolic in GPSE was (60%) higher when compared to GPE, associated with interesting antioxidant activity using DPPH• assay. Additionally, HPLC chromatograms and thin layer chromatography of GPE and GPSE showed the presence of flavonoids. Pretreatment of HepG2 cells with GPE or GPSE (both at 800-1000 μg/mL) significantly (p < 0.0001) protected against cytotoxicity induced by CCl4. Additionally, the cells treated with both extracts (both at 1000 μg/mL) showed normal morphology (general and nuclear) contrasting with apoptotic characteristics in the cells only exposed to CCl4. In these experiments, GPSE also was more effective than GPE. In addition, CCl4 induced a marked increase in AST (p < 0.05) and ALT (p < 0.0001) levels, while GPE or GPSE significantly (p < 0.0001) reduced these levels, reaching values found in the control group. In conclusion, the results suggest that gabiroba fruits exert hepatoprotective effects on HepG2 cells against the CCl4-induced toxicity, probably, at least in part, associated with the presence of antioxidant compounds, especially flavonoids.

  8. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells.

    PubMed

    Peng, Lu; He, Man; Chen, Beibei; Qiao, Yu; Hu, Bin

    2015-10-27

    Toxicity of quantum dots (QDs) has been a hot research concern in the past decade, and there is a lot of challenge in this field. The physicochemical characteristics of QDs can affect their toxicity, while little is known about the specific chemical form of QDs in living cells after incubation so far. In this work, speciation of four CdSe/ZnS QDs in HepG2 cells was carried out from the metallomics' point of view for the first time by using size exclusion chromatography (SEC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the signal of Cd, two kinds of chemical forms, named as QD-1 and QD-2, were observed in HepG2 cells incubated with CdSe/ZnS QDs. QD-1 was demonstrated to be a kind of QD-like nanoparticles, confirmed by chromatographic retention time, transmission electron microscopy (TEM) characterization, and fluorescence detection. QD-2 was demonstrated to be cadmium-metallothioneins complex (Cd-MTs) by reversed phase liquid chromatography (RPLC) synchronously coupled with ICP-MS and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis. Meanwhile, speciation of QDs in HepG2 cells incubated with different conditions was analyzed. With the variation of QDs incubation concentration/time, and elimination time, the species of QD-1 and QD-2 were also observed without other obvious species, and both the amount of QD-1 and QD-2 increased with incubation concentration and time. The obtained results provide valuable information and a strategy for the study of existing chemical form of QDs, greatly benefiting the understanding of QDs toxicity in living cells.

  9. Bis(hydroxyphenyl)methane-bisphenol F-metabolism by the HepG2 human hepatoma cell line and cryopreserved human hepatocytes.

    PubMed

    Dumont, Coralie; Perdu, Elisabeth; de Sousa, Georges; Debrauwer, Laurent; Rahmani, Roger; Cravedi, Jean-Pierre; Chagnon, Marie-Christine

    2011-10-01

    Bisphenol F (BPF) is present in the environment and as a contaminant of food. Humans may, therefore, be exposed to BPF, and an assessment of this risk is required. BPF has been shown to have genotoxic and endocrine-disruptor properties in a human hepatoma cell line (HepG2), which is a model system for studies of xenobiotic toxicity. In this study, we investigated the ability of HepG2 cells to biotransform BPF, because metabolism may affect the observed effects of BPF, and we compared this metabolic capacity with that of human hepatocytes. Cells were incubated for 24 hours with [(3)H]-BPF. The culture medium was then concentrated and its metabolites were isolated by high-performance liquid chromatography and identified by mass spectrometry. BPF was largely metabolized into the corresponding sulfate by the HepG2 cell line. BPF was metabolized into both sulfate and glucuronide by human hepatocytes, but with differences between individuals. The metabolism of BPF in both HepG2 cells and human hepatocytes suggests the existence of a detoxification pathway. Thus, these two cell models differ in metabolic capacity. It is, therefore, very important, when assessing the toxic effects of substances in vitro, to determine, in parallel, the biotransformation capacities of the model used to extrapolate in vivo.

  10. Lipid rafts are essential for peroxisome biogenesis in HepG2 cells.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; Hoekstra, Mark; Pellicoro, Antonella; van den Heuvel, Fiona A J; Heegsma, Janette; van Ijzendoorn, Sven C D; Holzinger, Andreas; Imanaka, Tsuneo; Moshage, Han; Faber, Klaas Nico

    2010-08-01

    Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.

  11. Induction of phenolsulfotransferase expression by phenolic acids in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Huang, Shang-Ming; Yen, Gow-Chin

    2005-06-15

    Phenolic acids are antioxidant phenolic compounds, widespread in plant foods, which contribute significant biological and pharmacological properties; some have demonstrated a remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of antioxidant phenolic acids on phenolsulfotransferase activity have not yet been described. In the present study, the human hepatoma cell line, HepG2, was used as a model to investigate the effect of antioxidant phenolic acids on enzymatic activity and expression of one of the major phase II sulfate conjugation enzymes, P-form phenolsulfotransferase (PST-P). The results showed that gallic acid, gentisic acid, p-hydroxybenzoic acid, and p-coumaric acid increased PST-P activity, in a dose-dependent manner. A maximum of 4- and 5-fold induction of PST-P activity was observed for both gallic acid and gentisic acid; however, they showed an adverse effect on cell growth at higher concentrations. A 2- or 2.5-fold increase of PST-P activity was found with either p-coumaric or p-hydroxybenzoic acid treatment, whereas no significant effect was found for ferulic acid treatment. PST-P induction, by gallic acid, was further confirmed, using reverse transcription PCR and Western blotting techniques to measure mRNA expression and protein translation. A significant correlation (r = 0.74, p < 0.01) between the expressions of PST-P mRNA and the corresponding PST-P activity was observed. Thus, gallic acid increased PST-P protein expression in HepG2 cells, in a dose- and time-dependent manner. The results demonstrated that certain antioxidant phenolic acids could induce PST-P activity in HepG2 cells, by promoting PST-P mRNA and protein expression, suggesting a novel mechanism by which phenolic acids may be implicated in phase II sulfate conjugation.

  12. Lead enhances fluoride influence on apoptotic processes in the HepG2 liver cell line.

    PubMed

    Gutowska, Izabela; Baranowska-Bosiacka, Irena; Siwiec, Ewa; Szczuko, Małgorzata; Kolasa, Agnieszka; Kondarewicz, Anna; Rybicka, Marta; Dunaj-Stańczyk, Małgorzata; Wiernicki, Ireneusz; Chlubek, Dariusz; Stachowska, Ewa

    2016-03-01

    Chronic long-term exposure to high levels of fluoride leads to fluorosis, manifested by skeletal fluorosis and damage to internal organs, including kidneys, liver, parathyroid glands, and brain. Excess fluoride can also cause DNA damage, trigger apoptosis, and change cell cycle. The effect of fluoride may be exacerbated by lead (Pb), a potent inhibitor of many enzymes and a factor causing apoptosis, still present in the environment in excessive amounts. Therefore, in this study, we investigated the effects of sodium fluoride (NaF) and/or lead acetate (PbAc) on development of apoptosis, cell vitality, and proliferation in the liver cell line HepG2. We examined hepatocytes from the liver cell line HepG2, incubated for 48 h with NaF, PbAc, and their mixture (NaF + PbAc), and used for measuring apoptosis, index of proliferation, and vitality of cells. Incubation of the hepatocytes with NaF or PbAc increased apoptosis, more when fluoride and Pb were used simultaneously. Vitality of the cells depended on the compound used and its concentration. Proliferation slightly increased and then decreased in a high fluoride environment; it decreased significantly after addition of Pb in a dose-dependent manner. When used together, fluoride inhibited the decreasing effect of Pb on cell proliferation. © The Author(s) 2013.

  13. Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Izquierdo-Pulido, María; Bravo, Laura; Goya, Luis

    2010-04-01

    Flavanols, such as epicatechin (EC), constitute an important part of the human diet; they can be found in green tea, grapes and cocoa and possess different biological activities such as antioxidant, anti-inflammatory and anticarcinogenic. This study investigated the potential chemo-protective effect of EC against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on human HepG2 cells. Cell viability by lactate dehydrogenase assay and markers of oxidative status: reduced glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. Pretreatment of cells with EC for 20 h prevented the enhanced cell damage and GPx and GR activities as well as the decrease in GSH induced by t-BOOH. The increased ROS generation induced by t-BOOH was also partly prevented by a pretreatment for 20 h with EC. In addition, pretreatment of cells with EC for 20 h recovered the t-BOOH-induced MDA concentration to control values. A pretreatment for 2 h with EC did not reduce cell damage but partly recovered GSH, reduced ROS levels and muffled the increase of GPx and GR after exposure to t-BOOH. Treatment of HepG2 cells with concentrations of EC in the micromolar range confers a significant protection against oxidative stress.

  14. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway.

  15. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Ternon, Eva; Thomas, Olivier P.; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities. PMID:26225985

  16. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  17. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction.

    PubMed

    Roel, María; Rubiolo, Juan A; Ternon, Eva; Thomas, Olivier P; Vieytes, Mercedes R; Botana, Luis M

    2015-07-27

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.

  18. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Rufián-Henares, José Angel; Morales, Francisco José; Bravo, Laura; Goya, Luis

    2009-08-26

    Soluble melanoidins from biscuits were enzymatically solubilized and isolated by sequential ultrafiltration and separated by molecular mass in three different fractions, below 3 kDa, between 3 and 10 kDa, and over 10 kDa; the latter was subsequently digested by simulating gastric plus pancreatic digestive conditions. The four fractions were investigated for their protective effect against an oxidative challenge in HepG2 cells. Pretreatment of cells for 20 h with 0.5-10 microg/mL of any of the four fractions prevented the increased cell damage evoked by the challenge but, except for the intermediate size fraction, did not suppress the increased reactive oxygen species. Antioxidant defenses were rapidly restored after the challenge, and the increase of the oxidative stress biomarker malondialdehyde was prevented by the pretreatment with all but the undigested high molecular mass fraction. The results show that treatment of HepG2 cells with concentrations of biscuit melanoidins within the expected physiological range confers on the cells a significant protection against an oxidative challenge.

  19. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    PubMed

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  20. Organophosphate pesticides increase the expression of alpha glutathione S-transferase in HepG2 cells.

    PubMed

    Medina-Díaz, I M; Rubio-Ortíz, M; Martínez-Guzmán, M C; Dávalos-Ibarra, R L; Rojas-García, A E; Robledo-Marenco, M L; Barrón-Vivanco, B S; Girón-Pérez, M I; Elizondo, G

    2011-12-01

    Chlorpyrifos and methyl parathion are among the most widely used insecticides in the world. Human populations are constantly exposed to low doses of both due to their extensive use and presence in food and drinking water. Glutathione S-transferase (GST) catalyzes the conjugation of glutathione on electrophilic substrates and is an important line of defense in the protection of cellular components from reactive species. GST alpha1 (GSTA1) is the predominant isoform of GST expressed in the human liver; thus, determining the effect of insecticides on GSTA1 transcription is very important. In the present study, we analyzed the effects of methyl parathion and chlorpyrifos on GSTA1 gene expression in HepG2 cells using real time PCR, and activity and immunoreactive protein assays. The results demonstrated that exposure to methyl parathion and chlorpyrifos increased the level of GSTA1 mRNA, GSTA1 immunoreactive protein and GST activity relative to a control. These results demonstrated that these insecticides can increase the expression of GSTA1. In conclusion, HepG2 cell cultures treated with methyl parathion and chlorpyrifos could be a useful model for studying the function of GSTA1 and its role in the metabolism of xenobiotics in the liver.

  1. [Extracellular Y-box binding protein-1 promotes proliferation and metastasis of HepG2 cells through Notch3 receptor].

    PubMed

    Shi, J; Li, P; Zou, L; Chen, P; Zhang, L P

    2016-03-20

    To clarify whether HepG2 cells actively secrete Y-box binding protein-1 (YB-1) under stress conditions, and to investigate the pathological significance and mechanism of action of extracellular YB-1. HepG2 cells were stimulated and treated by gradient concentrations of lipopolysaccharide (LPS) and adriamycin, the supernatant of the culture solution was collected by centrifugation, and the established chemiluminescence immunoassay (CLIA) was used for real-time quantitative determination of YB-1 level in the supernatant. The co-immunoprecipitation assay was used to detect whether extracellular YB-1 specifically bound to Notch3 receptor, and Western blot was used to measure the expression of Notch-NICD. The gradient concentrations of recombinant YB-1 were co-cultured with HepG2 cells, and MTT and migration assays were used to analyze the proliferation and invasion/metastasis of HepG2 cells. One-way analysis of variance was used for comparison of data between multiple groups. The results of CLIA confirmed that the level of extracellular YB-1 in the supernatant was significantly higher than that in the control group (F= 10.54,P< 0.001), and the secretory expression of YB-1 reached its peak after 4 hours of stimulation (LPS: 8 ng/ml; adriamycin: 10 ng/ml). The results of co-immunoprecipitation assay and Western blot showed that extracellular YB-1 specifically bound to Notch3 receptor and upregulated the expression of the Notch3 receptor. MTT and migration assays showed that extracellular YB-1 significantly promoted the proliferation and invasion/metastasis of HepG2 cells (F= 9.405,P< 0.001). Under the stress conditions induced by chemotherapeutics, HepG2 cells can actively secrete YB-1 via non-classical pathways. Extracellular YB-1 can specifically bind to Notch3 receptor and further up-regulate its expression, and then promote the proliferation and invasion/metastasis of HepG2 cells. This study lays a foundation for further clarifying the pathogenesis of hepatocellular

  2. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection

    PubMed Central

    Israelow, Benjamin; Narbus, Christopher M.; Sourisseau, Marion; Evans, Matthew J.

    2014-01-01

    Hepatitis C virus (HCV) exposure leads to persistent life-long infections characterized by chronic inflammation often developing into cirrhosis and hepatocellular carcinoma. The mechanism by which HCV remains in the liver while inducing an inflammatory and antiviral response remains unclear. While the innate immune response to HCV in patients seem to be quite active, HCV has been shown in cell culture to employ a diverse array of innate immune antagonists, suggesting that current model systems to study interactions between HCV and the innate immune system are not representative of what is happening in vivo. We recently showed that hepatoma-derived HepG2 cells support the entire HCV life cycle if the liver-specific microRNA miR-122 is expressed along with the entry factor CD81 (HepG2-HFL cells). We found that there was a striking difference in these cells’ ability to sustain HCV infection and spread when compared to Huh-7 and Huh-7.5 cells. Additionally, HepG2-HFL cells produced a more robust antiviral response when challenged with other RNA viruses and viral mimetics than Huh-7 and Huh-7.5 cells. HCV infection elicited a potent IFN-λ (lambda), ISG, and cytokine response in HepG2-HFL cells, but not in Huh-7 cells, suggesting that HepG2-HFL cells more faithfully recapitulate the innate immune response to HCV infection in vivo. Using this new model, we found that blocking the RIG-I like receptor pathway or the IFN-λ signaling pathway, promoted HCV infection and spread in HepG2-HFL cells. Conclusion HepG2-HFL cells represent a promising new system to study the interaction between HCV and the innate immune system, solidifying the importance of IFN-λ in hepatic response to HCV infection and revealing non-redundant roles of RIG-I and MDA5 in HCV recognition and repression of infection. PMID:24833036

  3. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    PubMed Central

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-01-01

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells. PMID:26016500

  4. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells.

    PubMed

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-05-26

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.

  5. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells

    PubMed Central

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  6. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells.

    PubMed

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-03-29

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources.

  7. Insulin resistance reduces sensitivity to Cis-platinum and promotes adhesion, migration and invasion in HepG2 cells.

    PubMed

    Li, Lin-Jing; Li, Guang-Di; Wei, Hu-Lai; Chen, Jing; Liu, Yu-Mei; Li, Fei; Xie, Bei; Wang, Bei; Li, Cai-Li

    2014-01-01

    The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the instability of HepG2/ IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

  8. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

    PubMed Central

    Choi, Yoon-Hee; Lee, Hyun Sook; Chung, Cha-Kwon

    2017-01-01

    BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes. PMID:28386382

  9. Study of the efficacy of photofrin®-Mediated PDT on human hepatocellular carcinoma (HepG2) cell line

    NASA Astrophysics Data System (ADS)

    Atif, M.; Fakhar-e-Alam, M.; Zaidi, S. S. Z.; Suleman, R.

    2011-06-01

    The present study evaluates the effects of photodynamic therapy (PDT) with Photofrin® using human liver cancer cells (HepG2) as an experimental model. We optimized the different PDT parameters, e.g. (time of incubation, optimal dose of light and drug concentration), cytotoxicity, phototoxicity, and cellular viability of the HepG2 cells has also been investigated in this experimental work. The effect of light on the viability of cells without the photosensitizer was examined firstly, HepG2 cell line was irradiated with red light (a diode laser, λ = 635 nm). The toxicity of the photosensitizer in the absence of light in current cell line was investigated secondly, Photofrin® has been used as photosensitizing agent. Optimal dose of light along with suitable concentration of Photofrin® were traced into HepG2 cell line, by means of spectrophotometric measurement. Cells viability was determined by means of neutral red assay (NRA). Finally, it was observed that no toxic effects with the absence of light, and no significant photodamage effect on the cells without the presence of photosensitizer were found, when studied independently. Our results showed that light doses of 100 J/cm2 gives effective PDT outcome for HepG2 cell line at photosensitizer concentration of 100 μg/ml.

  10. Silencing clusterin gene transcription on effects of multidrug resistance reversing of human hepatoma HepG2/ADM cells.

    PubMed

    Zheng, Wenjie; Sai, Wenli; Yao, Min; Gu, Hongbin; Yao, Yao; Qian, Qi; Yao, Dengfu

    2015-05-01

    Abnormal clusterin (CLU) expression is associated with multidrug resistance (MDR) of hepatocellular carcinoma (HCC). In the present study, the CLU expression was analyzed in human hepatoma cells and chemoresistant counterpart HepG2/ADM cells. Compared with L02 cells, the overexpression of cellular CLU was identified in HepG2, HepG2/ADM, SMMC7721, Hep3B ,and PLC cells and relatively lower expression in Bel-7404, SNU-739, and MHCC97H cells. Specific short hairpin RNAs (shRNAs) to silence CLU gene transcription were designed, and the most effective sequences were screened. After the HepG2/ADM cells transfected with shRNA-1, the inhibition of CLU expression was 73.68 % at messenger RNA (mRNA) level by real-time quantitative RT-PCR with obvious enhancement in cell chemosensitivity, increasing apoptosis induced by doxorubicin using fluorescence kit, and Rh-123 retention qualified with flow cytometry. Knockdown CLU also significantly decreased the drug efflux pump activity through the depression of MDR1/P-glycoprotein (q = 11.739, P < 0.001). Moreover, silencing CLU led to downregulation of β-catenin (q = 13.544, P = 0.001), suggesting that downregulation of CLU might be a key point to reverse multidrug resistance of HepG2/ADM cells.

  11. Cytotoxicity of mequindox and its metabolites in HepG2 cells in vitro and murine hepatocytes in vivo.

    PubMed

    Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan

    2016-02-01

    Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100 μg/ml) or its major metabolites (0, 40, 100, 250 or 500 μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500 mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N → O groups could contribute to DNA damage in murine hepatocytes in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

    PubMed

    Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa

    2017-02-01

    Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.

  13. An 'activatable' aptamer-based fluorescence probe for the detection of HepG2 cells.

    PubMed

    Lai, Zongqiang; Tan, Juntao; Wan, Ruirong; Tan, Jie; Zhang, Zhenghua; Hu, Zixi; Li, Jieping; Yang, Wei; Wang, Yiwei; Jiang, Yafeng; He, Jian; Yang, Nuo; Lu, Xiaoling; Zhao, Yongxiang

    2017-05-01

    It is significant to develop a probe with sensitivity and specificity for the detection of cancer cells. The present study aimed to develop an 'activatable' aptamer-based fluorescence probe (AAFP) to detect cancer cells and frozen cancer tissue. This AAFP consisted of two fragments: aptamer TLS11a that targets HepG2 cells, and two short extending complementary DNA sequences with a 5'- and 3'-terminus that make the aptamer in hairpin structure a capable quencher to fluorophore. The ability of the AAFP to bind specifically to cancer cells was assessed using flow cytometry, fluorescence spectroscopy and fluorescence microscopy. Its ability to bind to frozen cancer tissue was assessed using fluorescence microscopy. As a result, in the absence of cancer cells, AAFP showed minimal fluorescence, reflecting auto-quenching. In the presence of cancer cells, however, AAFP showed a strong fluorescent signal. Therefore, this AAFP may be a promising tool for sensitive and specific detection of cancer.

  14. Dichlorodiphenyldichloroethylene exposure reduces r-GCS via suppressed Nrf2 in HepG2 cells.

    PubMed

    Jin, Xiaoting; Song, Li; Li, Zhuoyu; Newton, Ian P; Zhao, Meirong; Liu, Weiping

    2016-03-01

    p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), the major isomer of persistent 1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane metabolite, is highly associated with the risk of liver cancer. γ-glutamyl-cysteine synthetase (γ-GCS), which is the rate-limiting enzyme of glutathione (GSH) biosynthesis and an important scavenger of reactive oxygen species (ROS), is considered as a potential therapeutic target for many cancers. However, the association between the body burden of p,p'-DDE and γ-GCS has not been fully established. Here, we indicated that low doses of p,p'-DDE exposure promoted the proliferation and decreased γ-GCS activity of HepG2 cells in a dose- and time-dependent manner. In addition, p,p'-DDE elevated ROS content and attenuated glutathione peroxidase activity. This was accompanied with inhibitions of NF-E2-related factor 2 (Nrf2) at the mRNA and protein levels. ROS inhibitor supplement could significantly reverse these effects. Moreover, the addition of the proteasome inhibitor, MG132, strongly reversed the p,p'-DDE-reduced Nrf2 expression and γ-GCS activity. Consistently, GSH content was in line with the alteration of γ-GCS. Collectively, the results indicate that p,p'-DDE treatment downregulates γ-GCS activity in HepG2 cells by inducing ROS-mediated Nrf2 loss. © 2014 Wiley Periodicals, Inc.

  15. Basic apoptotic and necrotic cell death in human liver carcinoma (HepG2 ) cells induced by synthetic azamacrocycle.

    PubMed

    Yedjou, Clement G; Saeed, Musabbir A; Hossain, Md Alamgir; Dorsey, Waneene; Yu, Hongtao; Tchounwou, Paul B

    2014-06-01

    Treatment of diseases with synthetic materials has been an aspiration of mankind since the dawn of human development. In this research, three complex compounds of azamacrocycle (TD1, TD2, and TD3) were synthesized, and experiments were conducted to determine whether their toxicity to human liver carcinoma (HepG2 ) cells is associated with apoptotic and/or necrotic cell death. Cell survival was determined by MTT assay. Apoptosis and necrosis were measured by annexin V FITC/PI assay using the flow cytometry and by propidium iodide (PI) assay using the cellometer vision. HepG2 cells were treated with different concentrations of azamacrocycles for 48 h. Results from MTT assay indicated that all the three azamacrocycles significantly (p < 0.05) reduce cell viability in a dose-dependent manner, showing 48 h-LD50 values of about 37.97, 33.60, and 19.29 μM, for TD3, TD1 and TD2, respectively. Among the three compounds tested, TD2 showed the most pronounced cytotoxic activity against HepG2 cells, being about twofold more potent than TD3. The order of toxicity was TD2 > TD1 > TD3. Because TD2 exerted the most cytotoxic activity against HepG2 cells, it was used in the subsequent apoptosis and necrosis-related experiments. The flow cytometry assessment showed a strong dose-response relationship with regard to TD2 exposure and annexin V/PI positive cells. PI assay data indicated that TD2 exposure increased the proportion of fluorescence positive cells. Overall, our results indicate that azamacrocycle toxicity to HepG2 cells is associated with apoptotic and necrotic cell death resulting from phosphatidylserine externalization and loss of membrane integrity. Copyright © 2012 Wiley Periodicals, Inc.

  16. Endoplasmic reticulum stress mediates sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zou, Xiang; Qu, Zhongyuan; Fang, Yueni; Shi, Xin; Ji, Yubin

    2017-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent, which effectively inhibits proliferation of HepG2 human hepatocellular carcinoma cells via mitochondria‑mediated apoptosis. Endoplasmic reticulum stress is considered the most important cause of cell apoptosis; therefore, the present study aimed to determine whether the endoplasmic reticulum pathway was involved in SFN-induced apoptosis of HepG2 cells. An MTT assay was used to detect the inhibitory effects of SFN on HepG2 cells. Fluorescence microscopy was used to observe the morphological changes in apoptotic cells, and western blot analysis was conducted to detect the expression of binding immunoglobulin protein (Bip)/glucose-regulated protein 78 (GRP78), X‑box binding protein‑1 (XBP‑1) and BH3 interacting domain death agonist (Bid). Furthermore, flow cytometry was used to determine the apoptotic rate of HepG2 cells, and the protein expression of C/EBP homologous protein (CHOP)/growth arrest‑ and DNA damage‑inducible gene 153 (GADD153) and caspase-12 in HepG2 cells. The results indicated that SFN significantly inhibited the proliferation of HepG2 cells; the half maximal inhibitory concentration values were 32.03±0.96, 20.90±1.96 and 13.87±0.44 µmol/l, following treatment with SFN for 24, 48 and 72 h, respectively. Following 48 h of SFN treatment (10, 20 and 40 µmol/l), the apoptotic rates of HepG2 cells were 31.8, 61.3 and 77.1%, respectively. Furthermore, after 48 h of exposure to SFN, the cells presented typical morphological alterations of apoptosis, as detected under fluorescence microscopy. Treatment with SFN for 48 h also significantly upregulated the protein expression levels of Bip/GRP78, XBP‑1, caspase‑12, CHOP/GADD153 and Bid in HepG2 cells. In conclusion, endoplasmic reticulum stress may be considered the most important mechanism underlying SFN-induced apoptosis in HepG2 cells.

  17. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Zheng, Jiwen; Ihrie, John

    2016-04-01

    Exposure to nanosilver found in food- and cosmetics-related consumer products is of public concern because of the lack of information about its safety. In this study, two widely used in vitro cell culture models, human liver HepG2 and colon Caco2 cells, and the flow cytometric micronucleus (FCMN) assay were evaluated as tools for rapid predictive screening of the potential genotoxicity of nanosilver. Recently, we reported the genotoxicity of 20 nm nanosilver using these systems. In the current study presented here, we tested the hypothesis that the nanoparticle size and cell types were critical determinants of its genotoxicity. To test this hypothesis, we used the FCMN assay to evaluate the genotoxic potential of 50 nm nanosilver of the same shape, composition, surface charge and obtained from the same commercial source using the same experimental conditions and in vitro models (HepG2 and Caco2) as previously tested for the 20 nm silver. Results of our study show that up to the concentrations tested in these cultured cell test systems, the smaller (20 nm) nanoparticle is genotoxic to both the cell types by inducing micronucleus (MN). However, the larger (50 nm) nanosilver induces MN only in HepG2 cells, but not in Caco2 cells. Also in this study, we evaluated the contribution of ionic silver to the genotoxic potential of nanosilver using silver acetate as the representative ionic silver. The MN frequencies in HepG2 and Caco2 cells exposed to the ionic silver in the concentration range tested are not statistically significant from the control values except at the top concentrations for both the cell types. Therefore, our results indicate that the ionic silver may not contribute to the MN-forming ability of nanosilver in HepG2 and Caco2 cells. Also our results suggest that the HepG2 and Caco2 cell cultures and the FCMN assay are useful tools for rapid predictive screening of a genotoxic potential of food- and cosmetics-related chemicals including nanosilver.

  18. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells.

    PubMed

    Melušová, Martina; Jantová, Soňa; Horváthová, Eva

    2014-12-01

    Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods - flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in cell

  19. Expression of programmed cell death1 in T follicular helper cells is regulated by prostaglandin E2 secreted by HBV-infected HepG2.2.1.5 cells.

    PubMed

    Sui, Zhefeng; Shi, Ying; Gao, Zhiling; Yang, Deguang; Wang, Zhihao

    2017-06-01

    The present study aimed to investigate the distribution of T follicular helper (Tfh)-cell subsets in patients with hepatitis B virus (HBV) and determine the underlying mechanism of HBV regulation of Tfh cells. The frequency of peripheral blood Tfh subsets was analyzed using flow cytometry. The expression level of programmed cell death‑1 (PD‑1) and prostaglandin E2 (PGE2) was quantified using reverse transcription‑quantitative polymerase chain reaction and western blotting. The PGE2 level in culture supernatant was detected using enzyme‑linked immunosorbent assay. A Transwell chamber was used to co‑culture Tfh cells with HepG2 and HepG2.2.1.5. The percentage of inducible T‑cell costimulator (ICOS)+ and total Tfh cells was high at the immune activation (IA) group; however, it was reduced in the immune tolerance (IT), responders with HBsAg seroconversion (RP) and healthy control (HC) groups. The percentage of PD‑1+ Tfh cells was significantly higher in IA and IT compared with RP and HC. The ratio of PD‑1+/total Tfh cells was positively correlated with the load of HBV DNA; therefore, this ratio may act as an indicator for HBV replication. The expression level of PD‑1 in Tfh cells was higher in the HepG2.2.1.5 co‑cultured group compared with the HepG2 group, this may be due to the high PGE2 expression level in HBV‑infected HepG2.2.1.5 cells. The findings of the present study revealed an imbalanced distribution of PD‑1+ Tfh cells in patients with HBV at different immune phases. Additionally, HBV may upregulate the expression of PD‑1 in Tfh cells by promoting HepG2.2.1.5 to secret PGE2. Identifying the effect of HBV on Tfh‑cell subsets is crucial for improving immuno-based therapy for HBV.

  20. MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.

    PubMed

    Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-06-01

    Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Effects of phenyl saligenin phosphate on cell viability and transglutaminase activity in N2a neuroblastoma and HepG2 hepatoma cell lines.

    PubMed

    Harris, W; Muñoz, D; Bonner, P L R; Hargreaves, A J

    2009-12-01

    The main aim of this study was to determine whether sub-lethal concentrations of the organophosphate compound phenyl saligenin phosphate (PSP) could disrupt the activity of the Ca(2+)-activated enzyme tissue transglutaminase (TGase 2) from cultured cell lines of neuronal (N2a) and hepatic (HepG2) origin. The results indicated that PSP added directly to cytosol extracts from healthy cells was able to inhibit TGase 2 activity by 40-60% of control levels at sub-lethal concentrations (0.1 microM) that were approximately 100-fold lower than their IC(50) values in cytotoxicity assays. Following 24h exposure of N2a cells to 0.3 and 3 microM PSP in situ, a similar reduction in activity was observed in subsequent assays of TGase 2 activity. However, significantly increased activity was observed following in situ exposure of HepG2 cells to PSP (ca. 4-fold at 3 microM). Western blotting analysis indicated slightly reduced levels of TGase 2 in N2a cells compared to the control, whereas an increase was observed in the level of TGase 2 in HepG2 cells. We suggest that TGase 2 represents a potential target of organophosphate toxicity and that its response may vary in different cellular environments, possibly affected by its expression pattern.

  2. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    PubMed

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  3. The role of alkaline phosphatase in intracellular lipid accumulation in the human hepatocarcinoma cell line, HepG2.

    PubMed

    Chirambo, George M; van Niekerk, Chantal; Crowther, Nigel J

    2017-04-01

    Inhibition of tissue non-specific alkaline phosphatase (TNALP) decreases intracellular lipid accumulation in human preadipocytes and the murine preadipocyte cell line, 3T3-L1. Therefore, the current study was performed to determine if TNALP is required for intracellular lipid deposition in the human hepatocyte cell line, HepG2. Intracellular lipid accumulation, TNALP activity and peroxisome proliferator activated receptor (PPAR) γ gene expression were measured in HepG2 and 3T3-L1 cells in the presence and absence of the TNALP inhibitors levamisole and histidine. Sub-cellular TNALP activity was localized using cytochemical analysis. Both PPARγ gene expression and TNALP activity increased during intracellular lipid accumulation in HepG2 and 3T3-L1 cells. Inhibition of TNALP blocked intracellular lipid accumulation but did not alter expression of the PPARγ gene. In HepG2 cells, TNALP co-localized with adipophilin on the lipid droplet membrane. These data suggest a role for TNALP in lipid droplet formation, possibly downstream from PPARγ, within HepG2 and 3T3-L1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of taurine on the proliferation and apoptosis of human hepatocellular carcinoma HepG2 cells.

    PubMed

    Tu, Shuo; Zhang, Xiali; Luo, Daya; Liu, Zhuoqi; Yang, Xiaohong; Wan, Huifang; Yu, Lehan; Li, Hua; Wan, Fusheng

    2015-07-01

    The aim of the present study was to observe the effect and molecular mechanism of taurine (Tau) on the cell proliferation and apoptosis of human hepatocellular carcinoma (HHCC) HepG2 cells. HHCC HepG2 cells were used as target cells, and the cell survival rate was assessed using a multi-time-step method. The p53 upregulated modulator of apoptosis (PUMA) gene was transiently transfected by lipofection and subsequently silenced with specific small interfering (si)RNA. The cell apoptosis rate was detected by flow cytometry, and protein expression levels were analyzed with western blotting. Addition of 20-160 mM Tau was shown to have a significant inhibitory effect on cell proliferation, while promoting the induction of HHCC HepG2 cell apoptosis (P<0.05). Transfection of the PUMA gene significantly enhanced the ability of Tau to inhibit proliferation and induce apoptosis of HepG2 cells. In addition, transfection of the PUMA gene increased the protein expression of B-cell lymphoma-2-associated X and reduced the expression of B-cell lymphoma-2 (P<0.05). Silencing the PUMA gene with specific siRNA was demonstrated to significantly reduce the ability of Tau to inhibit proliferation and induce the apoptosis of HHCC HepG2 cells (P<0.01). Therefore, the PUMA gene was shown to have an important role in mechanism underlying the effect that Tau exerts on cell proliferation and apoptosis in HHCC HepG2 cells.

  5. [Anti-proliferation Effect of Taraxacum mongolicum Extract in HepG2 Cells and Its Mechanism].

    PubMed

    Guo, Jun-bin; Ye, Hai-hong; Chen, Jian-feng

    2015-10-01

    To study the anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. The total proteins of HepG2 cells treated with Taraxacum mongolicum extract were. extracted and mitochondria-mediated apoptosis-related proteins (Survivin, Mcl-1, BCL-xL, BCL-2, Smac, BAX, Bad, Cytochrome c and Caspase-3/7/9) were detected by Western blot. Taraxacum mongolicum extract obviously inhibited the proliferation of HepG2 cells and the expression of anti-apoptotic proteins (Survivin, BCL-xL and BCL-2), increased the expression of pro-apoptotic proteins (Smac and Caspase-3/7/9), and promoted the release of Cytochrome c from mitochondria to cytoplasm in HepG2 cells. The effects were in a dose-independent mode. Taraxacum mongolicum extract can inhibit the proliferation of HepG2 cells and the anti-proliferation mechanism is related to mitochondria-mediated apoptosis.

  6. Nobiletin, a polymethoxyflavone in citrus fruits, reduces TAFI expression in HepG2 cells through transcriptional inhibition.

    PubMed

    Takada, Kimihiko; Seike, Toru; Sasaki, Tomoyuki; Masuda, Yutaka; Ito, Akira; Ishii, Hidemi

    2013-06-01

    Thrombin-activatable fibrinolysis inhibitor (TAFI, carboxypeptidase B2) is a 58-kDa plasma glycoprotein secreted by hepatocytes as an inactive form. TAFI is activated by the thrombin-thrombomodulin complex, and activated TAFI (TAFIa) plays an important role in regulating the balance between coagulation and fibrinolysis through inhibition of fibrinolysis. It has been suggested that high levels of TAFI in circulating plasma increase the risks of cardiovascular death and acute phase in ischaemic stroke. However, the mechanisms of regulating TAFI expression have been unclear. The present study investigated the effects of nobiletin (a polymethoxy flavonoid contained in the rind of citrus fruits) on TAFI gene (CPB2) and TAFI antigen expression in cultured human hepatoma HepG2 cells. Nobiletin decreased the release of TAFI antigen from HepG2 cells into conditioned medium in parallel with decreased levels of CPB2 mRNA and antigen. The half-life time of CPB2 mRNA in nobiletin-treated cells was unchanged compared to that of untreated control cells. Using nobiletin-treated cells that were transfected with a luciferase CPB2 promoter reporter plasmid, activity decreased to half of that in untreated control cells. A series of luciferase reporter constructs containing 5´-flanking region deletions of the human CPB2 gene showed that the sequences from -150 bp to -50 bp were essential for transcription of CPB2 and contained an AP-1 binding sequence at ~ -119 bp to - 99 bp in the CPB2 promoter. The amount of complexed nuclear protein and sequences from ~ -119 bp to -99 bp was decreased in nobiletin-treated cells. ChIP assays showed that c-Jun bound to the ~ -119 bp to -99 bp region of the CPB2 promoter and that the amount of the immunocomplex decreased after nobiletin treatment. Therefore, nobiletin-induced repression of CPB2 transcription might involve AP-1 inhibition and/or prevention of AP-1 binding in a specific region on the CPB2 gene in HepG2 cells.

  7. High-throughput Immunoblotting Identifies Biotin-dependent Signaling Proteins in HepG2 Hepatocarcinoma Cells1

    PubMed Central

    Rodriguez-Melendez, Rocio; Griffin, Jacob B.; Sarath, Gautam; Zempleni, Janos

    2005-01-01

    Biotin affects the abundance of mRNA coding for approximately 10% of genes expressed in human-derived hepatocarcinoma (HepG2) cells. Here, we determined whether effects of biotin on gene expression are associated with changes in the abundance of distinct proteins in cell signaling and structure. HepG2 cells were cultured in media containing the following concentrations of biotin: 0.025 nmol/L (denoted “deficient”), 0.25 nmol/L (“physiological” = control), and 10 nmol/L (“pharmacological”) for 10 d before harvesting. The abundance of 1,009 proteins from whole cell extracts was quantified by using high-throughput immunoblots. The abundance of 44 proteins changed by at least 25% in biotin-deficient and biotin-supplemented cells compared with physiological controls. One-third of these proteins participate in cell signaling. Specifically, proteins associated with receptor tyrosine kinase-mediated signaling were identified as targets of biotin; the abundance of these proteins was greater in biotin-deficient cells compared with controls. This was associated with increased DNA-binding activities of transcription factors Fos and Jun, and increased expression of a reporter gene driven by AP1-binding elements in biotin-deficient cells compared with physiological controls. The abundance of selected signaling proteins was not paralleled by the abundance of mRNA, suggesting that biotin affects expression of these genes at a posttranscriptional step. Additional clusters of biotin-responsive proteins were identified that play roles in cytoskeleton homeostasis, nuclear structure and transport, and neuroscience. This study is consistent with the existence of clusters of biotin-responsive proteins in distinct biological processes, including signaling by Fos/Jun; the latter might mediate pro-inflammatory and anti-apoptotic effects of biotin deficiency. PMID:15987846

  8. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702

  9. Comparative Effects of Fructose and Glucose on Lipogenic Gene Expression and Intermediary Metabolism in HepG2 Liver Cells

    PubMed Central

    Fiehn, Oliver; Adams, Sean H.

    2011-01-01

    Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74–126% increase in FAS (P<0.05) and 49–95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor

  10. Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells.

    PubMed

    Hirahatake, Kristin M; Meissen, John K; Fiehn, Oliver; Adams, Sean H

    2011-01-01

    Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74-126% increase in FAS (P<0.05) and 49-95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor

  11. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell(TM) assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  12. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    PubMed

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide.

    PubMed

    Vidyashankar, S; K Mitra, S; Nandakumar, Krishna S

    2010-01-01

    Oxidative stress induced by toxicants is known to cause various complications in the liver. Herbal drug such as Liv.52 is found to have hepatoprotective effect. However, the biochemical mechanism involved in the Liv.52 mediated protection against toxicity is not well elucidated using suitable in vitro models. Hence, in the present study, the hepatoprotective effect of Liv.52 against oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was evaluated in order to relate in vitro antioxidant activity with cytoprotective effects. Cytotoxicity was measured by MTT assay. Antioxidant effect of Liv.52 was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing antioxidant power (FRAP) assay, and lipid peroxidation and measurement of non-enzymic and antioxidant enzymes in HepG2 cells exposed to t-BHP over a period of 24 h. The results obtained indicate that t-BHP induced cell damage in HepG2 cells as shown by significant increase in lipid peroxidation as well as decreased levels of reduced glutathione (GSH). Liv.52 significantly decreased toxicity induced by t-BHP in HepG2 cells. Liv.52 was also significantly decreased lipid peroxidation and prevented GSH depletion in HepG2 cells induced by t-BHP. Therefore, Liv.52 appeared to be important for cell survival when exposed to t-BHP. The protective effect of Liv.52 against cell death evoked by t-BHP was probably achieved by preventing intracellular GSH depletion and lipid peroxidation. The results showed protective effect of Liv.52 against oxidative damage induced in HepG2 cells. Hence, taken together, these findings derived from the present study suggest the beneficial effect of Liv.52 in regulating oxidative stress induced in liver by toxicants.

  14. Transferrin-cisplatin specifically deliver cisplatin to HepG2 cells in vitro and enhance cisplatin cytotoxicity.

    PubMed

    Luo, Lian-Zhong; Jin, Hong-Wei; Huang, He-Qing

    2012-12-21

    Cisplatin is a major broad-spectrum chemotherapeutic agent, however, its dose-dependent side effects limit the administration of large doses. Presently, developing a drug targeted delivery system is suggested as one of the most promising approaches to minimize the side effects of cisplatin. Here, we found that each human serum transferrin (HTf) has the potential to bind with over 22 cisplatins, and the complex of apo-HTf-cisplatin can specifically deliver cisplatin to HepG2 cells (human hepatocellular liver carcinoma cell line) in vitro, and facilitate HepG2 cells to apoptosis. Moreover, proteomics methods revealed that the abundances of 23 proteins in HepG2 cells were remarkably altered in response to cisplatin/apo-HTf-cisplatin exposure, and Realtime-PCR revealed that a number of important genes related to chemotherapeutic cytotoxicity and chemotherapeutic resistance are differentially transcribed between the HepG2 cells of cisplatin exposed and HTf-cisplatin exposed. The pathway analysis of the differentially expressed proteins and gene transcriptions indicated that those regulated proteins and gene transcriptions are involved in apoptosis regulation, transcription, cell cycle control, protein biosynthesis, energy metabolism, signal transduction, protein binding and other functions. It indicated that the cisplatin toxicity in HepG2 cell is diverse, the transport process has an effect on the cisplatin cytotoxicity, and the mechanism of the apoptosis of HepG2 cells induced by apo-HTf-cisplatin is different from that of cisplatin. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Inhibitory effect of FSLLRY-NH2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells.

    PubMed

    Lee, Yeon Joo; Kim, Su Jin; Kwon, Kyoung Wan; Lee, Won Mo; Im, Wi Joon; Sohn, Uy Dong

    2017-07-01

    Proteinase activated receptor 2 (PAR2), which is localized in the GI tract, the respiratory system, and the kidney tubules is a G protein-coupled receptor associated with inflammation, metabolism, and disease. The aim of this study was to explore the role of PAR2 in hydrogen peroxide (H2O2)-induced HepG2 cells by using FSLLRY-NH2 a PAR2 antagonist. H2O2 treatment resulted in induction of PAR2 in esophageal, gastric, and liver cells, with the most robust response being in HepG2 cells. Furthermore, this effect was dose-dependent in HepG2 cells. Treatment with H2O2 at concentrations above 400 μM for 24 h also reduced HepG2 cell viability. H2O2 treatment increased both the protein and mRNA levels of IL-1β, IL-8, and TNF-α, as well as those of SAPK/JNK. The increased levels of these pro-inflammatory genes and SAPK/JNK induced by H2O2 were attenuated in a dose-dependent manner when cells were co-treated with H2O2 and FSLLRY-NH2. In summary, the PAR2 antagonist peptide, FSLLRY-NH2, reduces the level of the pro-inflammatory genes IL-8, IL-1β, and TNF-α induced by H2O2, through the SAPK/JNK pathways in HepG2 cells. These data suggest that a PAR2 antagonist could be an anti-inflammatory agent in HepG2 cells.

  16. Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells.

    PubMed

    Guerrero, Ligia; Margalef, Maria; Pons, Zara; Quiñones, Mar; Arola, Lluis; Arola-Arnal, Anna; Muguerza, Begoña

    2013-12-01

    The regular consumption of flavonoids has been associated with reduced mortality and a decreased risk of cardiovascular diseases. The proanthocyanidins found in plasma are very different from the original flavonoids in food sources. The use of physiologically appropriate conjugates of proanthocyanidins is essential for the in vitro analysis of flavonoid bioactivity. In this study, the effect of different proanthocyanidin-rich extracts, which were obtained from cocoa (CCX), French maritime pine bark (Pycnogenol extract, PYC) and grape seed (GSPE), on lipid homeostasis was evaluated. Hepatic human cells (HepG2 cells) were treated with 25 mg/L of CCX, PYC or GSPE. We also performed in vitro experiments to assess the effect on lipid synthesis that is induced by the bioactive GSPE proanthocyanidins using the physiological metabolites that are present in the serum of GSPE-administered rats. For this, Wistar rats were administered 1 g/kg of GSPE, and serum was collected after 2 h. The semipurified serum of GSPE-administered rats was fully characterized by liquid chromatography tandem triple quadrupole mass spectrometry (LC-QqQ/MS(2)). The lipids studied in the analyses were free cholesterol (FC), cholesterol ester (CE) and triglycerides (TG). All three proanthocyanidin-rich extracts induced a remarkable decrease in the de novo lipid synthesis in HepG2 cells. Moreover, GSPE rat serum metabolites reduced the total percentage of CE, FC and particularly TG; this reduction was significantly higher than that observed in the cells directly treated with GSPE. In conclusion, the bioactivity of the physiological metabolites that are present in the serum of rats after their ingestion of a proanthocyanidin-rich extract was demonstrated in Hep G2 cells. © 2013.

  17. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2011-07-01

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  18. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accumulation in HepG2 cells.

    PubMed

    Kim, Jeong-Hwan; Kang, Seong-Il; Shin, Hye-Sun; Yoon, Seon-A; Kang, Seung-Woo; Ko, Hee-Chul; Kim, Se-Jae

    2013-01-01

    In this study, we examined the effects of Jeju dwarf bamboo (Sasa quelpaertensis Nakai) extract (JBE) and p-coumaric acid (CA) on oleic acid (OA)-induced lipid accumulation in HepG2 cells. JBE and CA increased the phosphorylation of AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) and the expression of carnitine palmitoyl transferase 1a (CPT1a) in OA-treated HepG2 cells. Additionally, these compounds decreased sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and OA-induced lipid accumulation, suggesting that JBE and CA modulate lipid metabolism in HepG2 cells via the AMPK activation pathway.

  19. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13.

    PubMed

    Bojang, Pasano; Anderton, Mark J; Roberts, Ruth A; Ramos, Kenneth S

    2014-08-01

    Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.

  20. Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.

    PubMed

    Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan

    2011-02-01

    Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins.

  1. Altered gene expression in HepG2 cells exposed to a methanolic coal dust extract.

    PubMed

    Guerrero-Castilla, Angelica; Olivero-Verbel, Jesus

    2014-11-01

    Exposure to coal dust has been associated with different chronic diseases and mortality risk. This airborne pollutant is produced during coal mining and transport activities, generating environmental and human toxicity. The aim of this study was to determine the effects of a coal dust methanolic extract on HepG2, a human liver hepatocellular carcinoma cell line. Cells were exposed to 5-100ppm methanolic coal extract for 12h, using DMSO as control. MTT and comet assays were used for the evaluation of cytotoxicity and genotoxicity, respectively. Real time PCR was utilized to quantify relative expression of genes related to oxidative stress, xenobiotic metabolism and DNA damage. Coal extract concentrations did not induce significant changes in HepG2 cell viability after 12h exposure; however, 50 and 100ppm of the coal extract produced a significant increase in genetic damage index with respect to negative control. Compared to vehicle control, mRNA CYP1A1 (up to 163-fold), NQO1 (up to 4.7-fold), and GADD45B (up to 4.7-fold) were up regulated, whereas PRDX1, SOD, CAT, GPX1, XPA, ERCC1 and APEX1 remained unaltered. This expression profile suggests that cells exposed to coal dust extract shows aryl hydrocarbon receptor-mediated alterations, changes in cellular oxidative status, and genotoxic effects. These findings share some similarities with those observed in liver of mice captured near coal mining areas, and add evidence that living around these industrial operations may be negatively impacting the biota and human health.

  2. RNA-Seq gene expression profiling of HepG2 cells: the influence of experimental factors and comparison with liver tissue.

    PubMed

    Tyakht, Alexander V; Ilina, Elena N; Alexeev, Dmitry G; Ischenko, Dmitry S; Gorbachev, Alexey Y; Semashko, Tatiana A; Larin, Andrei K; Selezneva, Oksana V; Kostryukova, Elena S; Karalkin, Pavel A; Vakhrushev, Igor V; Kurbatov, Leonid K; Archakov, Alexander I; Govorun, Vadim M

    2014-12-15

    Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies.

  3. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    PubMed

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Synergistic complex from plants Solanaceae exhibits cytotoxicity for the human hepatocellular carcinoma cell line HepG2.

    PubMed

    Schwarzlin, Romina; Pušenjak, Nika; Makuc, Damjan; Križman, Mitja; Vovk, Irena; Plavec, Janez; Švajger, Urban

    2016-10-18

    It had been demonstrated that sugars from various plants can act as potent agents, which induce apoptosis of cancer cells. Using HPLC, we fractionated a mixture of two plant extracts from the plant family Solanaceae, namely Capsicum chinense and the plant family Amaryllidaceae namely Allium sativum. We evaluated the effect of different fractions on apoptosis of HepG2 cell line. The most effective fraction was further studied to determine its molecular composition using mass spectrometry (MS) and NMR. We further evaluated the effect of determined molecular composition found in the selected fraction by using a mixture of commercially available substances, which were found in the fraction and tested its pro-apoptotic effect on HepG2 cells. To get some insight into potential apoptotic mechanisms we studied caspase-3 activity and mitochondrial integrity in treated cells. Out of 93 fractions obtained by HPLC from the plant extract we found HPLC fraction 10 (10 min elution) was the most effective. MS and NMR studies revealed high presence of cellobiose together with vitamin C, sulphur (S) and trace amounts of selenium (Se). HPLC fraction 10 triggered apoptosis of HepG2 within 3 h in the 0.01-1.0 mg/mL concentration range. Furthermore, a mixture of pure cellobiose, vitamin C, S and Se (complex cellobiose/C/S/Se) had a very similar capacity in inducing apoptosis of HepG2 cells compared to HPLC fraction 10. Complex cellobiose/C/S/Se was capable of inducing caspase-3 activity and led to loss of mitochondrial integrity. The capacity of cellobiose alone to induce apoptosis of HepG2 was approximately 1000-fold lower compared to complex cellobiose/C/S/Se. In this study we present the highly synergistic effect of a unique complex consisting of cellobiose, vitamin C, sulphur and selenium on triggering the apoptosis of human hepatocellular carcinoma (HepG2) cell line.

  5. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes.

    PubMed

    Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min

    2015-05-01

    The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P<0.05), but not by hyperthermia plus 50 μg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.

  6. Demonstration of the Presence of the “Deleted” MIR122 Gene in HepG2 Cells

    PubMed Central

    Hamad, Ibrahim A. Y.; Fei, Yue; Kalea, Anastasia Z.; Yin, Dan; Smith, Andrew J. P.; Palmen, Jutta; Humphries, Steve E.; Talmud, Philippa J.; Walker, Ann P.

    2015-01-01

    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells. PMID:25811611

  7. SiC nanoparticles cyto- and genotoxicity to Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Barillet, Sabrina; Jugan, Mary-Line; Simon-Deckers, Angélique; Leconte, Yann; Herlin-Boime, Nathalie; Mayne-l'Hermite, Martine; Reynaud, Cécile; Carrière, Marie

    2009-05-01

    While emerging nanotechnologies have seen significant development in recent years, knowledge on exposure levels as well as data on toxicity of nanoparticles are still quite limited. Indeed, there is a general agreement that development of nanotechnologies may lead to considerable dissemination of nanoparticles in the environment. Nevertheless, questions relative to toxicity versus innocuousness of such materials still remain. Our present study has thus been carried out with the purpose of assessing some aspects of toxicological capacities of three kinds of nano-sized particles: TiO2 and SiC nanoparticles, as well as multi-walled carbon nanotubes (CNT). In order to address the question of their potential toxicity toward living cells, we chose several cellular models. Assuming inhalation as the most probable exposure scenario, we used A549 alveolar epithelial cells as a model for mammalian primary target organ (lung). Furthermore, we considered that nanoparticles that would deposit into the pulmonary system may be translocated to the circulatory system. Thus, we decided to study the effect of nanoparticles on potentially secondary target organs: liver (WIF-B9, Can-10, HepG2) and kidneys (NRK-52E, LLC-PK1). Herein, we will focus our attention on results obtained on the HepG2 cell line exposed to SiC nanoparticles. Scarce literature exists on SiC nanotoxicology. According to the authors that have already carried out studies on this particular nanoparticle, it would seem that SiC nanoparticles do not induce cytotoxicity. That is one of the reasons of the potential use of these nanoparticles as biological labels [1]. We thus were interested in acquiring more data on biological effects induced by SiC nanoparticles. Furthermore, one of the particular aspects of the present study lies in the fact that we tried to specify the influence of physico-chemical characteristics of nanoparticles on toxicological endpoints (cytotoxicity and genotoxicity).

  8. Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells

    PubMed Central

    Caro, Andres A.; Commissariat, Ava; Dunn, Caroline; Kim, Hyunjoo; García, Salvador Lorente; Smith, Allen; Strang, Harrison; Stuppy, Jake; Desrochers, Linda P.; Goodwin, Thomas E.

    2015-01-01

    Background Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies. Methods Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N′-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated. Results Autoxidation of Fe2+ in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe2+ chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe2+ chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress. Conclusions SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe2+) and antioxidant (activating Nrf2 signaling) effects. General significance Activation by SIH iron chelators of a hormetic antioxidant response contributes to its antioxidant properties and modulates the anti- and pro-oxidant balance. PMID:26275495

  9. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  10. Cytotoxicity of thiazolidinedione-, oxazolidinedione- and pyrrolidinedione-ring containing compounds in HepG2 cells.

    PubMed

    Keil, Alyssa M; Frederick, Douglas M; Jacinto, Erina Y; Kennedy, Erica L; Zauhar, Randy J; West, Nathan M; Tchao, Ruy; Harvison, Peter J

    2015-10-01

    Liver damage occurred in some patients who took troglitazone (TGZ) for type II diabetes. The 2,4-thiazolidinedione (TZD) ring in TGZ's structure has been implicated in its hepatotoxicity. To further examine the potential role of a TZD ring in toxicity we used HepG2 cells to evaluate two series of compounds containing different cyclic imides. N-phenyl analogues comprised 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT); 3-(3,5-dichlorophenyl)-2,4-oxazolidinedione (DCPO) and N-(3,5-dichlorophenyl)succinimide (NDPS). Benzylic compounds, which closely resemble TGZ, included 5-(3,5-dichlorophenylmethyl)-2,4-thiazolidinedione (DCPMT); 5-(4-methoxyphenylmethyl)-2,4-thiazolidinedione (MPMT); 5-(4-methoxyphenylmethylene)-2,4-thiazolidinedione (MPMT-I); 5-(4-methoxyphenylmethyl)-2,4-oxazolidinedione (MPMO); 3-(4-methoxyphenylmethyl)succinimide (MPMS) and 3-(4-methoxyphenylmethylene)succinimide (MPMS-I). Cytotoxicity was assessed using the MTS assay after incubating the compounds (0-250μM) with HepG2 cells for 24h. Only certain TZD derivatives (TGZ, DCPT, DCPMT and MPMT-I) markedly decreased cell viability, whereas MPMT had low toxicity. In contrast, analogues without a TZD ring (DCPO, NDPS, MPMO, MPMS and MPMS-I) were not cytotoxic. These findings suggest that a TZD ring may be an important determinant of toxicity, although different structural features, chemical stability, cellular uptake or metabolism, etc., may also be involved. A simple clustering approach, using chemical fingerprints, assigned each compound to one of three classes (each containing one active compound and close homologues), and provided a framework for rationalizing the activity in terms of structure.

  11. Evaluating the extent of LINE-1 mobility following exposure to heavy metals in HepG2 cells.

    PubMed

    Karimi, Abbas; Madjd, Zahra; Habibi, Laleh; Akrami, Seyed Mohammad

    2014-07-01

    The long interspersed elements-1 (LINE1 or L1 retrotransposon) constitute 17% of the human genome and retain mobility properties within the genome. At present, 80-100 human L1 elements are thought to be active in the genome. The mobilization of these active elements may be influenced upon exposure to the heavy metals. In the present study, we evaluated the association of aluminum, lead, and copper exposure with L1 retrotransposition in human hepatocellular carcinoma (HepG2) cell line. An in vitro retrotransposition assay using an enhanced green fluorescent protein (EGFP)-tagged L1RP cassette was established to track EGFP shining as the mark of retrotransposition. Following determination of noncytotoxic concentrations of these metals, pL1RP-EGFP-transfected HepG2 cells were subjected to long-term treatment. Flow cytometry analysis of cells treated with various concentrations of these metals along with quantitative real-time PCR was used to quantify L1 retrotransposition frequencies. Aluminum significantly increased L1 retrotransposition frequency, while no significant association was found concerning lead exposure and L1 retrotransposition. Copper treatment downregulated L1 retrotransposition as a result of EGFP-tagged L1RP expression. Our findings suggest that aluminum might have the potential to cause genomic instability by the enhancement of L1 mobilization. Thus, the risk of induced L1 retrotransposition should be considered during drug safety evaluation and risk assessments of exposure to toxic environmental agents. Further studies are needed for a more robust assay to evaluate any associations between long-term lead exposure and L1 mobility in cell culture assay.

  12. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2.

    PubMed

    Kang, Seok-Jin; Lee, Hyuk-Mi; Park, Young-Il; Yi, Hee; Lee, Hunjoo; So, ByungJae; Song, Jae-Young; Kang, Hwan-Goo

    2016-10-01

    Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.

  13. Curdlan sulphate modulates protein synthesis and enhances NF-κB and C/EBP binding activity in HepG2 cells

    PubMed Central

    Rokita, H.

    1997-01-01

    In human hepatoma HepG2 cell line curdlan sulphate enhances basal and interleukin-6-stimulated fibrinogen and antichymotrypsin (ACT) synthesis, slightly increases basal ceruloplasmin production and exerts only minor effects on alpha-1-proteinase inhibitor and transferrin. Curdlan sulphate may, at least in part, affect protein synthesis at a pretranslational level, as the expression of ACT mRNA was found to be increased, whereas intracellular enzyme, manganese superoxide dismutase mRNA level was decreased in the cell culture treated with curdlan sulphate. Gel mobility shift analysis revealed that curdlan sulphate increases the DNA binding activity of NF-κB and C/EBP, suggesting that these transcription factors may participate in the regulatory effects of curdlan sulphate in HepG2 cells. PMID:18472835

  14. Classification of hepatotoxicants using HepG2 cells: A proof of principle study.

    PubMed

    Van den Hof, Wim F P M; Coonen, Maarten L J; van Herwijnen, Marcel; Brauers, Karen; Wodzig, Will K W H; van Delft, Joost H M; Kleinjans, Jos C S

    2014-03-17

    With the number of new drug candidates increasing every year, there is a need for high-throughput human toxicity screenings. As the liver is the most important organ in drug metabolism and thus capable of generating relatively high levels of toxic metabolites, it is important to find a reliable strategy to screen for drug-induced hepatotoxicity. Microarray-based transcriptomics is a well-established technique in toxicogenomics research and is an ideal approach to screen for drug-induced injury at an early stage. The aim of this study was to prove the principle of classifying known hepatotoxicants and nonhepatotoxicants using their distinctive gene expression profiles in vitro in HepG2 cells. Furthermore, we undertook to subclassify the hepatotoxic compounds by investigating the subclass of cholestatic compounds. Prediction analysis for microarrays was used for classification of hepatotoxicants and nonhepatotoxicants, which resulted in an accuracy of 92% on the training set and 91% on the validation set, using 36 genes. A second model was set up with the goal of finding classifiers for cholestasis, resulting in 12 genes that appeared capable of correctly classifying 8 of the 9 cholestatic compounds, resulting in an accuracy of 93%. We were able to prove the principle that transcriptomic analyses of HepG2 cells can indeed be used to classify chemical entities for hepatotoxicity. Genes selected for classification of hepatotoxicity and cholestasis indicate that endoplasmic reticulum stress and the unfolded protein response may be important cellular effects of drug-induced liver injury. However, the number of compounds in both the training set and the validation set should be increased to improve the reliability of the prediction.

  15. HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved.

    PubMed

    Tolosa, Laia; Gómez-Lechón, M José; Pérez-Cataldo, Gabriela; Castell, José V; Donato, M Teresa

    2013-06-01

    Use of the HepG2 cell line to assess hepatotoxicity induced by bioactivable compounds is hampered by their low cytochrome P450 expression. To overcome this limitation, we have used adenoviral transfection to develop upgraded HepG2 cells (ADV-HepG2) expressing the major P450 enzymes involved in drug metabolism (CYP1A2, CYP2D6, CYP2C9, CYP2C19, and CYP3A4) at levels comparable to those of human hepatocytes. The potential utility of this new cell model for the in vitro screening of bioactivable drugs was assessed using a high-content screening assay that we recently developed to simultaneously measure multiple parameters indicative of cell injury. To this end, ADV-HepG2 and HepG2 cells, cultured in 96-well plates, were exposed for 24 h to a wide range of concentrations of 12 bioactivable and 3 non-bioactivable compounds. The cell viability and parameters associated with nuclear morphology, mitochondrial function, intracellular calcium concentration, and oxidative stress indicative of prelethal cytotoxicity and representative of different mechanisms of toxicity were evaluated. Bioactivable compounds showed lower IC(50) values in ADV-HepG2 cells than in HepG2 cells. Moreover, significant differences in the other parameters analyzed were observed between both cell models, while similar effects were observed for non-bioactivable compounds (negative controls). The changes in cell parameters detected in our assay for a given compound are in good agreement with the previously reported toxicity mechanism. Overall, our results indicate that this assay may be a suitable new in vitro approach for early screening of compounds to identify bioactivable hepatotoxins and the mechanism(s) involved in their toxicity.

  16. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.

    PubMed

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2015-02-01

    Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits

  17. [Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line].

    PubMed

    Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi

    2008-08-01

    To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.

  18. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells.

    PubMed

    Arnal, N; de Alaniz, M J T; Marra, C A

    2013-03-01

    We investigated the effect of copper (Cu) overload (20-160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.

  19. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins.

    PubMed

    Gao, Feng; Jian, Liumeng; Zafar, Mohammad Ishraq; Du, Wen; Cai, Qin; Shafqat, Raja Adeel; Lu, Furong

    2015-11-01

    Previous studies have indicated that 4‑hydroxyisoleucine (4‑HIL) improves insulin resistance, however, the underlying mechanisms remain to be elucidated. In the present study, the molecular mechanisms underlying how 4‑HIL improves insulin resistance in hepatocytes were examined. HepG2 cells were co‑cultured with insulin and a high glucose concentration to obtain insulin‑resistant (IR) HepG2 cells. Insulin sensitivity was determined by measuring the glucose uptake rate. The IR HepG2 cells were treated with different concentrations of 4‑HIL to determine its effect on IR Hep2 cells. The levels of tumor necrosis factor‑α (TNF‑α) were measured by an enzyme‑linked immunosorbent assay and protein levels of TNF‑α converting enzyme (TACE)/tissue inhibitor of metalloproteinase 3 (TIMP3), insulin receptor substrate (IRS)‑1, IRS‑2, phosphorylated (p)‑IRS‑1 (Ser307) and glucose transporter type 4 (GLUT4) were measured by western blot analysis. The results of the present study demonstrated that insulin‑induced glucose uptake was reduced in IR HepG2 cells; however, this reduction was reversed by 4‑HIL in a dose‑dependent manner. 4‑HIL achieved this effect by downregulating the expression of TNF‑α and TACE, and upregulating the expression of TIMP3 in IR HepG2 cells. In addition, 4‑HIL increased the expression of the insulin transduction regulators IRS‑1 and GLUT4, and decreased the expression of p‑IRS‑1 (Ser307), without affecting the expression of IRS‑2. The present study suggests that 4‑HIL improved insulin resistance in HepG2 cells by the following mechanisms: 4‑HIL reduced TNF‑α levels by affecting the protein expression of the TACE/TIMP3 system and 4‑HIL stimulated the expression of IRS‑1 and GLUT4, but inhibited the expression of p‑IRS‑1 (Ser307).

  20. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells

    PubMed Central

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-01-01

    AIM: To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. METHODS: Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91phox, p67phox, p47phox, p40phox, and p22phox were evaluated by Western blot. RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0

  1. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins

    PubMed Central

    GAO, BIN; SHEN, LEI; HE, KE-WU; XIAO, WEI-HUA

    2015-01-01

    The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer. PMID:26648274

  2. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells.

    PubMed

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-07-07

    To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2',7'-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91(phox), p67(phox), p47(phox), p40(phox), and p22(phox) were evaluated by Western blot. Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0.05), and insulin

  3. Flavonoids of Korean Citrus aurantium L. Induce Apoptosis via Intrinsic Pathway in Human Hepatoblastoma HepG2 Cells.

    PubMed

    Lee, Seung Hwan; Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won-Sup; Kim, Eun-Hee; Park, Hyeon Soo; Kim, Gon Sup

    2015-12-01

    Korean Citrus aurantium L. has long been used as a medicinal herb for its anti-inflammatory, antioxidant, and anticancer properties. The present study investigates the anticancer role of flavonoids extracted from C. aurantium on human hepatoblastoma cell, HepG2. The Citrus flavonoids inhibit the proliferation of HepG2 cells in a dose-dependent manner. This result was consistent with the in vivo xenograft results. Apoptosis was detected by cell morphology, cell cycle analysis, and immunoblot. Flavonoids decreased the level of pAkt and other downstream targets of phosphoinositide-3-kinase/Akt pathway - P-4EBP1 and P-p70S6K. The expressions of cleaved caspase 3, Bax, and Bak were increased, while those of Bcl-2 and Bcl-xL were decreased with an increase in the expression of Bax/Bcl-xL ratio in treated cells. Loss of mitochondrial membrane potential was also observed in flavonoid-treated HepG2 cells. It was also observed that the P-p38 protein level was increased both dose and time dependently in flavonoid-treated cells. Collectively, these results suggest that flavonoid extracted from Citrus inhibits HepG2 cell proliferation by inducing apoptosis via an intrinsic pathway. These findings suggest that flavonoids extracted from C. aurantium L. are potential chemotherapeutic agents against liver cancer.

  4. Inferring Toxicological Responses of HepG2 Cells from ToxCast High Content Imaging Data (SOT)

    EPA Science Inventory

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 differe...

  5. Effects of AFP gene silencing on Survivin mRNA expression inhibition in HepG2 cells.

    PubMed

    Fang, Z L; Fang, N; Han, X N; Huang, G; Fu, X J; Xie, G S; Wang, N R; Xiong, J P

    2015-04-10

    We investigated the effects of alpha-fetoprotein (AFP) gene silencing on Survivin expression in HepG2 cells. Small interfering RNA technology was used to downregulate AFP expression in HepG2 cells. An enzyme-linked immunosorbent assay was used to measure AFP concentration in the supernatant before and after transfection. An MTT assay was used to detect cell proliferation activity before and after transfection. We performed flow cytometric analysis to detect the cell apoptosis rate, and reverse transcription-polymerase chain reaction to detect Survivin mRNA levels before and after transfection. Forty-eight hours after transfection, AFP concentration in the supernatant of the experimental group significantly decreased, hepatocellular carcinoma cell growth was inhibited by 43.1%, and the apoptosis rate increased by 24.3%. Survivin mRNA expression was reduced by 78.0% in HepG2 cells. These indicators in the control group and in the blank group did not change significantly. Silencing of AFP expression in HepG2 cells can effectively inhibit the growth of hepatoma cells and promote apoptosis, which may be useful for reducing intracellular Survivin mRNA levels.

  6. Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs).

    PubMed

    Paesano, Laura; Perotti, Alessio; Buschini, Annamaria; Carubbi, Cecilia; Marmiroli, Marta; Maestri, Elena; Iannotta, Salvatore; Marmiroli, Nelson

    2017-04-01

    The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

  7. [The expression of AQP9 in HepG2 cells affects cell biological behaviors and sensitivity to As2O3].

    PubMed

    Tang, Jie; Wang, Chuan; Jiang, Zheng

    2015-06-01

    To investigate the effect of aquaporin 9 (AQP9) expression level on the apoptosis and biological behaviors of HepG2 cells induced by arsenic trioxide (As2O3). The effects of different concentration As2O3 on the cell proliferation were measured by MTT assay, and IC50 was calculated. The recombinant plasmids pEGFP-N1-AQP9 and pshRNA-AQP9 were transfected into HepG2 cells. The expression of AQP9 mRNA and protein were detected by reverse transcription PCR and Western blotting, respectively. Then As2O3 was added to plasmid-transfected cells and untreated HepG2 cells. Cell proliferation was detected by MTT assay, cell cycle and apoptosis rate were determined by flow cytometry, and cell invasion and migration ability were examined by Transwell(TM) (Boyden Chamber) assay. The activity of caspase-3 was detected by microplate reader. The recombinant plasmids remarkably influenced the expression of AQP9. Compared with the group treated with As2O3 alone (control group), the cell proliferation, invasion and migration of HepG2 cells transfected with pEGFP-N1-AQP9 were attenuated significantly, while the cells transfected with pshRNA-AQP9 increased. The increasing population of apoptotic cells, augmented caspase 3 activity and highest percentage of cells stagnating at G0/G1 phase were observed in HepG2 cells transfected with pEGFP-N1-AQP9 as compared with the control HepG2 cells; in contrast, the HepG2 cells transfected with pshRNA-AQP9 presented with lower caspase 3 activity and stronger invasion and migration ability than the control HepG2 cells did. The alterations in the expression of AQP9 could affect the biological behaviors of HepG2 cells, but also their sensitivity to As2O3.

  8. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells

    PubMed Central

    MENG, XUE-QIN; ZHANG, WEI; ZHANG, FENG; YIN, SHENG-YONG; XIE, HAI-YANG; ZHOU, LIN; ZHENG, SHU-SEN

    2016-01-01

    The aim of the present study was to investigate the effect of solanine on promoting human hepatocellular carcinoma HepG2 cells to produce reactive oxygen species (ROS), and the molecular mechanisms leading to tumor cell apoptosis. Solanine was administered to HepG2 cells in vitro. A selection of probes targeting various cellular localizations of ROS were used to detect ROS expression using flow cytometry. The expression levels of apoptosis-associated proteins, including apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin binding protein 2 (TBP-2), and proliferation-associated proteins, including histone deacetylase 1 (HDAC1), were detected using western blotting. The percentage of cells undergoing apoptosis was measured using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, and cell morphology was examined using Wright's stain followed by inverted microscopy analysis. ROS detection probes 2′,7′-dichlorofluorescin diacetate and dihydrorhodamine 123 identified that abundant ROS, including hydroxyl radical (OH−) and hydrogen peroxide (H2O2), were produced in the cytoplasm and mitochondria of the solanine-treated HepG2 cells compared with the control cells (P<0.05). Superoxide anion specific probes dihydroethidium and MitoSOX™ demonstrated that there were no significant alterations in the HepG2 cells following solanine treatment compared with the control cells (P>0.05). Western blotting results revealed that solanine upregulated the expression levels of ASK1 and TBP-2 and enhanced their kinase activities, whereas solanine decreased the expression level of the proliferation-associated protein, HDAC1. The cell apoptotic rate was significantly increased (P<0.0001) in the solanine-treated HepG2 cells compared with the control cells. (P<0.05). Overall, the study indicated that solanine induces HepG2 cells to produce ROS, mainly OH− and H2O2, in a mitochondria-dependent and -independent manner. In addition, solanine stimulates the expression

  9. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells.

    PubMed

    Meng, Xue-Qin; Zhang, Wei; Zhang, Feng; Yin, Sheng-Yong; Xie, Hai-Yang; Zhou, Lin; Zheng, Shu-Sen

    2016-03-01

    The aim of the present study was to investigate the effect of solanine on promoting human hepatocellular carcinoma HepG2 cells to produce reactive oxygen species (ROS), and the molecular mechanisms leading to tumor cell apoptosis. Solanine was administered to HepG2 cells in vitro. A selection of probes targeting various cellular localizations of ROS were used to detect ROS expression using flow cytometry. The expression levels of apoptosis-associated proteins, including apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin binding protein 2 (TBP-2), and proliferation-associated proteins, including histone deacetylase 1 (HDAC1), were detected using western blotting. The percentage of cells undergoing apoptosis was measured using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, and cell morphology was examined using Wright's stain followed by inverted microscopy analysis. ROS detection probes 2',7'-dichlorofluorescin diacetate and dihydrorhodamine 123 identified that abundant ROS, including hydroxyl radical (OH(-)) and hydrogen peroxide (H2O2), were produced in the cytoplasm and mitochondria of the solanine-treated HepG2 cells compared with the control cells (P<0.05). Superoxide anion specific probes dihydroethidium and MitoSOX™ demonstrated that there were no significant alterations in the HepG2 cells following solanine treatment compared with the control cells (P>0.05). Western blotting results revealed that solanine upregulated the expression levels of ASK1 and TBP-2 and enhanced their kinase activities, whereas solanine decreased the expression level of the proliferation-associated protein, HDAC1. The cell apoptotic rate was significantly increased (P<0.0001) in the solanine-treated HepG2 cells compared with the control cells. (P<0.05). Overall, the study indicated that solanine induces HepG2 cells to produce ROS, mainly OH(-) and H2O2, in a mitochondria-dependent and -independent manner. In addition, solanine stimulates the expression of

  10. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    PubMed Central

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  11. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis.

    PubMed

    Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing

    Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer.

  12. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line.

    PubMed

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as "mundu" belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.

  13. Effects of matrine on HepG2 cell proliferation and expression of tumor relevant proteins in vitro.

    PubMed

    Qin, Xue-Gong; Hua, Zhang; Shuang, Wang; Wang, Yan-Hong; Cui, Yu-Dong

    2010-03-01

    Matrine, one of the main active components extracted from dry roots of Sophora flavescens Ait (Leguminosae), has been reported to have anticancer effects on a number of cancer cell lines, but the anticancer mechanism of matrine remains elusive. This study shows that matrine also displays anticancer activity on human hepatocellular carcinoma (HepG2) cells. In this work, the optimal cultivation condition for HepG2 cells was determined using the combinatorial orthogonal test design [L18 (21 x 37)]. Exposure of HepG2 cells to matrine resulted in inhibition of proliferation in both a time- and dose-dependent manner, as measured by morphology observation, hematoxylin and eosin (H&E) staining, and MTT assay (p<0.05). Further immunohistochemical analyses revealed that the expression of alpha fetal protein (AFP), proliferating cell nuclear antigen (PCNA), C-myc and Bcl-2 was down-regulated significantly, but the expression of Bax was up-regulated higher than untreated cells. The results demonstrated that matrine inhibited HepG2 cells proliferation primarily via up-regulating or down-regulating expression of the tumor relevant proteins.

  14. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis

    PubMed Central

    Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing

    2016-01-01

    Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465

  15. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells

    PubMed Central

    Wang, Yonggang; Aker, Winfred G.; Hwang, Huey-min; Yedjou, Clement G.; Yu, Hongtao; Tchounwou, Paul B.

    2011-01-01

    Nanoparticles (NPs), including nano metal oxides, are being used in diverse applications such as medicine, clothing, cosmetics and food. In order to promote the safe development of nanotechnology, it is essential to assess the potential adverse health consequences associated with human exposure. The liver is a target site for NP toxicity, due to NP accumulation within it after ingestion, inhalation or absorption. The toxicity of nano-ZnO, TiO2, CuO and Co3O4 was investigated using a primary culture of channel catfish hepatocytes and human HepG2 cells as in vitro model systems for assessing the impact of metal oxide NPs on human and environmental health. Some mechanisms of nanotoxicity were determined by using phase contrast inverted microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, reactive oxygen species (ROS) assays, and flow cytometric assays. Nano-CuO and ZnO showed significant toxicity in both HepG2 cells and catfish primary hepatocytes. The results demonstrate that HepG2 cells are more sensitive than catfish primary hepatocytes to the toxicity of metal oxide NPs. The overall ranking of the toxicity of metal oxides to the test cells is as follows: TiO2 < Co3O4< ZnO < CuO. The toxicity is due not only to ROS-induced cell death, but also damages to cell and mitochondrial membranes. PMID:21851965

  16. Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation

    SciTech Connect

    Osabe, Makoto; Sugatani, Junko Takemura, Akiko; Yamazaki, Yasuhiro; Ikari, Akira; Kitamura, Naomi; Negishi, Masahiko; Miwa, Masao

    2008-05-16

    Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2 cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation.

  17. Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation.

    PubMed

    Osabe, Makoto; Sugatani, Junko; Takemura, Akiko; Yamazaki, Yasuhiro; Ikari, Akira; Kitamura, Naomi; Negishi, Masahiko; Miwa, Masao

    2008-05-16

    Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2 cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation.

  18. Quantification of the uptake of silver nanoparticles and ions to HepG2 cells.

    PubMed

    Yu, Su-juan; Chao, Jing-bo; Sun, Jia; Yin, Yong-guang; Liu, Jing-fu; Jiang, Gui-bin

    2013-04-02

    The toxic mechanism of silver nanoparticles (AgNPs) is still debating, partially because of the common co-occurrence and the lack of methods for separation of AgNPs and Ag(+) in biological matrices. For the first time, Triton-X 114-based cloud point extraction (CPE) was proposed to separate AgNPs and Ag(+) in the cell lysates of exposed HepG2 cells. Cell lysates were subjected to CPE after adding Na2S2O3, which facilitated the transfer of AgNPs into the nether Triton X-114-rich phase by salt effect and the preserve of Ag(+) in the upper aqueous phase through the formation of hydrophilic complex. Then the AgNP and Ag(+) contents in the exposed cells were determined by ICP-MS after microwave digestion of the two phases, respectively. Under the optimized conditions, over 67% of AgNPs in cell lysates were extracted into the Triton X-114-rich phase while 94% of Ag(+) remained in the aqueous phase, and the limits of detection for AgNPs and Ag(+) were 2.94 μg/L and 2.40 μg/L, respectively. This developed analytical method was applied to quantify the uptake of AgNPs to the HepG2 cells. After exposure to 10 mg/L AgNPs for 24 h, about 67.8 ng Ag were assimilated per 10(4) cells, in which about 10.3% silver existed as Ag(+). Compared to the pristine AgNPs (with 5.2% Ag(+)) for exposure, the higher ratio of Ag(+) to AgNPs in the exposed cells (10.3% Ag(+)) suggests the transformation of AgNPs into Ag(+) in the cells and/or the higher uptake rate of Ag(+) than that of AgNPs. Given that the toxicity of Ag(+) is much higher than that of AgNPs, the substantial content of Ag(+) in the exposed cells suggests that the contribution of Ag(+) should be taken into account in evaluating the toxicity of AgNPs to organisms, and previous results obtained by regarding the total Ag content in organisms as AgNPs should be reconsidered.

  19. [Role of reactive oxygen species in sodium selenite induced DNA damage in HepG2 cells].

    PubMed

    Zou, Yun-Feng; Niu, Pi-Ye; Gong, Zhi-Yong; Yuan, Jing

    2006-05-01

    To investigate the mechanisms of sodium selenite induced DNA damage in HepG2 cells. HepG2 cells were treated with the designed concentrations of sodium selenite and the selenite (10 micromol/L) added simultaneously with GSH (10 mmol) and NAC (5 mmol). Then the cell viability was detected by MTT, and the flurescent intensity of reactive oxygen species (ROS) was determined by flow cytometry, and DNA damage was detected by commet assay. The level of ROS was increased after HepG2 was treated with 5, 10, 20 micromol/L sodium selenite for one hour, and the cell viability was decreased after 12 hours, and the DNA damage was enhanced. Compared with the control group, the difference was statistically significant (P < 0.05) . GSH and NAC effectively inhibited the ROS increased and cell viability decreased and DNA damage weakened. ROS may be the important reason that sodium selenite induced HepG2 cells DNA damage.

  20. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells

    PubMed Central

    Nakamura, Kazuaki; Aizawa, Kazuko; Aung, Kyaw Htet; Yamauchi, Junji; Tanoue, Akito

    2017-01-01

    Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes. PMID:28112215

  1. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

  2. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2).

    PubMed

    Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L

    2017-09-27

    Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.

  3. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2).

    PubMed

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Bravo, Laura; Goya, Luis

    2005-01-01

    The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.

  4. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells.

    PubMed

    Villanueva-Paz, Marina; Cordero, Mario D; Pavón, Ana Delgado; Vega, Beatriz Castejón; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; Alcocer-Gomez, Elizabet; de Lavera, Isabel; Garrido-Maraver, Juan; Carrascosa, José; Zaderenko, Ana Paula; Muntané, Jordi; de Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2016-07-01

    Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.

  5. NOX1 supports the metabolic remodeling of HepG2 cells.

    PubMed

    Bertram, Katharina; Valcu, Cristina-Maria; Weitnauer, Michael; Linne, Uwe; Görlach, Agnes

    2015-01-01

    NADPH oxidases are important sources of reactive oxygen species (ROS) which act as signaling molecules in the regulation of protein expression, cell proliferation, differentiation, migration and cell death. The NOX1 subunit is over-expressed in several cancers and NOX1 derived ROS have been repeatedly linked with tumorigenesis and tumor progression although underlying pathways are ill defined. We engineered NOX1-depleted HepG2 hepatoblastoma cells and employed differential display 2DE experiments in order to investigate changes in NOX1-dependent protein expression profiles. A total of 17 protein functions were identified to be dysregulated in NOX1-depleted cells. The proteomic results support a connection between NOX1 and the Warburg effect and a role for NOX in the regulation of glucose and glutamine metabolism as well as of lipid, protein and nucleotide synthesis in hepatic tumor cells. Metabolic remodeling is a common feature of tumor cells and understanding the underlying mechanisms is essential for the development of new cancer treatments. Our results reveal a manifold involvement of NOX1 in the metabolic remodeling of hepatoblastoma cells towards a sustained production of building blocks required to maintain a high proliferative rate, thus rendering NOX1 a potential target for cancer therapy.

  6. NOX1 Supports the Metabolic Remodeling of HepG2 Cells

    PubMed Central

    Weitnauer, Michael; Linne, Uwe; Görlach, Agnes

    2015-01-01

    NADPH oxidases are important sources of reactive oxygen species (ROS) which act as signaling molecules in the regulation of protein expression, cell proliferation, differentiation, migration and cell death. The NOX1 subunit is over-expressed in several cancers and NOX1 derived ROS have been repeatedly linked with tumorigenesis and tumor progression although underlying pathways are ill defined. We engineered NOX1-depleted HepG2 hepatoblastoma cells and employed differential display 2DE experiments in order to investigate changes in NOX1-dependent protein expression profiles. A total of 17 protein functions were identified to be dysregulated in NOX1-depleted cells. The proteomic results support a connection between NOX1 and the Warburg effect and a role for NOX in the regulation of glucose and glutamine metabolism as well as of lipid, protein and nucleotide synthesis in hepatic tumor cells. Metabolic remodeling is a common feature of tumor cells and understanding the underlying mechanisms is essential for the development of new cancer treatments. Our results reveal a manifold involvement of NOX1 in the metabolic remodeling of hepatoblastoma cells towards a sustained production of building blocks required to maintain a high proliferative rate, thus rendering NOX1 a potential target for cancer therapy. PMID:25806803

  7. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells

    PubMed Central

    Villanueva-Paz, Marina; Cordero, Mario D.; Pavón, Ana Delgado; Vega, Beatriz Castejón; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; Alcocer-Gomez, Elizabet; de Lavera, Isabel; Garrido-Maraver, Juan; Carrascosa, José; Zaderenko, Ana Paula; Muntané, Jordi; de Miguel, Manuel; Sánchez-Alcázar, José Antonio

    2016-01-01

    Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments. PMID:27738496

  8. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells.

    PubMed

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-08-06

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases.

  9. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells

    PubMed Central

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-01-01

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases. PMID:26258792

  10. ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells.

    PubMed

    Yu, Ge; Li, Huan; Yang, Shuanghui; Wen, Jianguo; Niu, Junqi; Zu, Youli

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5'-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.

  11. Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-D-glucans on HepG2 cells.

    PubMed

    Pires, Amanda do Rocio Andrade; Ruthes, Andrea Caroline; Cadena, Silvia Maria Suter Correia; Acco, Alexandra; Gorin, Philip Albert James; Iacomini, Marcello

    2013-07-01

    The cytotoxic activity of β-D-glucans isolated from Agaricus bisporus and Lactarius rufus fruiting bodies was evaluated on human hepatocellular carcinoma cells (HepG2). NMR and methylation analysis suggest that these β-d-glucans were composed of a linear (1→6)-linked and a branched (1→3), (1→6)-linked backbone, respectively. They both decreased cell viability at concentrations of up to 100 μg mL(-1), as shown by MTT assay. The amount of LDH released and the analysis of cell morphology corroborated these values and also showed that the β-D-glucan of L. rufus was more cytotoxic to HepG2 cells than that of A. bisporus. The treatment of HepG2 cells with L. rufus and A. bisporus β-D-glucans at a dose of 200 μg mL(-1) for 24h promoted an increase of cytochrome c release and a decrease of ATP content, suggesting that these polysaccharides could promote cell death by apoptosis. Both β-D-glucans were tested against murine primary hepatocytes at a dose of 200 μg mL(-1). The results suggest that the L. rufus β-d-glucan was as cytotoxic for hepatocytes as for HepG2 cells, whereas the A. bisporus β-D-glucan, under the same conditions, was cytotoxic only for HepG2 cells, suggesting cell selectivity. These results open new possibilities for use of mushroom β-D-glucans in cancer therapy.

  12. ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells

    PubMed Central

    Yu, Ge; Li, Huan; Yang, Shuanghui; Wen, Jianguo; Niu, Junqi; Zu, Youli

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5′-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells. PMID:26808385

  13. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  14. [CXCR3 monoclonal antibody inhibits the proliferation and migration of MCF-7 cells and HepG2 cells in vitro].

    PubMed

    Zhu, Yuqiang; Wang, Zhiyao; Zhu, Ying; Wang, Jing; Cai, Lei; Shen, Hui; Kong, Yong; Qiu, Yuhua

    2015-11-01

    To study the effects of chemokine (C-X-C motif) receptor 3 (CXCR3) monoclonal antibody (mAb) on the proliferation and migration of MCF-7 and HepG2 cells in vitro. Ascites of CXCR3 mAb was prepared at first. MCF-7 and HepG2 cells with high expressions of CXCR3 were screened by flow cytometry. MTT assay was used to detect the effects of CXCR3 mAb on the proliferation of MCF-7 and HepG2 cells in vitro in the absence/presence of interferon-inducible T-cell alpha chemoattractant (I-TAC). Transwell™ assay was performed to investigate the effects of CXCR3 mAb on the migration of MCF-7 and HepG2 cells in vitro in the absence/presence of I-TAC. The expression rate of CXCR3 on MCF-7 and HepG2 cells were 83.5% and 96.2%, respectively. 50 mg/mL CXCR3 mAb significantly inhibited the proliferation and migration of MCF-7 and HepG2 cells, and also inhibited the promoting effect of I-TAC on the proliferation and migration of MCF-7 and HepG2 cells in vitro. CXCR3 mAb can significantly inhibit the proliferation and migration of the tumor cells highly expressing CXCR3 in vitro.

  15. An autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity.

    PubMed

    Pereira, Lilian Cristina; Duarte, Filipe Valente; Varela, Ana Teresa Inácio Ferreira; Rolo, Anabela Pinto; Palmeira, Carlos Manuel Marques; Dorta, Daniel Junqueira

    2017-02-01

    To reduce flammability and meet regulatory requirements, Brominated Flame Retardants (BFRs) are added to a wide variety of consumer products including furniture, textiles, electronics, and construction materials. Exposure to polybrominated phenyl ethers (PBDEs) adversely affects the human health. Bearing in mind that (i) PBDEs are potentially toxic, (ii) the mechanism of PBDE toxicity is unclear, and (iii) the importance of the autophagy to the field of toxicology is overlooked, this study investigates whether an autophagic process is activated in HepG2 cells (human hepatoblastoma cell line) to mediate BDE-100-induced toxicity. HepG2 cells were exposed with BDE-100 at three concentrations (0.1, 5, and 25μM), selected from preliminary toxicity tests, for 24 and 48h. To assess autophagy, immunocytochemistry was performed after exposure of HepG2 cells to BDE-100. Labeling of HepG2 cells with 100nM LysoTracker Red DND-99 aided examination of lysosome distribution. Proteins that are key to the autophagic process (p62 and LC3) were evaluated by western blotting. DNA was isolated and quantified to assess mitochondrial DNA copy number by qPCR on the basis of the number of DNA copies of a mitochondrial encoded gene normalized against a nuclear encoded gene. Conversion of LC3-I to LC3-II increased in HepG2 cells. Pre-addition of 100nM wortmannin decreased the amount of LC3 in the punctuate form and increased nuclear fragmentation (apoptotic feature). HepG2 cells exposed to BDE-100 presented increased staining with the lysosomal dye and had larger LC3 and p62 content after pre-treatment with ammonium chloride. The mitochondrial DNA copy number decreased, which probably constituted an attempt of the cell to manage mitochondrial damage by selective mitochondrial degradation (mitophagy). In conclusion, an autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique

    PubMed Central

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-01

    Background/Aims Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. Methods A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. Results The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. Conclusions The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver. PMID:27559001

  17. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.

    PubMed

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-15

    Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liverspecific markers was quantified on days 1, 7, 14, and 21. The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.

  18. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells

    EPA Science Inventory

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...

  19. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    EPA Science Inventory

    To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of Ce02 (0.3, 3 and 30 µg/mL). The two Ce02 nanopartices had dry primary particle sizes of 8 nanometers {(M) ...

  20. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells

    EPA Science Inventory

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...

  1. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells

    EPA Science Inventory

    To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of Ce02 (0.3, 3 and 30 µg/mL). The two Ce02 nanopartices had dry primary particle sizes of 8 nanometers {(M) ...

  2. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  3. Tamarindus indica extract alters release of alpha enolase, apolipoprotein A-I, transthyretin and Rab GDP dissociation inhibitor beta from HepG2 cells.

    PubMed

    Chong, Ursula Rho Wan; Abdul-Rahman, Puteri Shafinaz; Abdul-Aziz, Azlina; Hashim, Onn Haji; Junit, Sarni Mat

    2012-01-01

    The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125). Five of the spots were subsequently identified as alpha enolase (ENO1), transthyretin (TTR), apolipoprotein A-I (ApoA-I; two isoforms), and rab GDP dissociation inhibitor beta (GDI-2). A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol.

  4. Cytotoxicity of various chemicals and mycotoxins in fresh primary duck embryonic fibroblasts: a comparison to HepG2 cells.

    PubMed

    Chen, Xi; Murdoch, Rhonda; Shafer, Daniel J; Ajuwon, Kolapo M; Applegate, Todd J

    2016-11-01

    To screen cost-effectively the overall toxicity of a sample, particularly in the case of food and feed ingredient quality control, a sensitive bioassay is necessary. With the wide variety of cytotoxicity assays, performance comparison between assays using different cells has become of interest. Fresh primary duck embryonic fibroblasts (DEF) were hypothesized to be a sensitive tool for in vitro cytotoxicity screening; cell viability of DEF in response to various cytotoxins was determined and compared with response of HepG2 cells. The IC50 values by the alamar blue assay in the DEF cells had a high correlation (R(2)  = 0.96) with those obtained in HepG2 cells. Within the same toxin, primary DEF yielded significantly lower IC50 values than that obtained from HepG2 cells using the MTT and alamar blue assay. Additionally, primary DEF responded to all mycotoxins tested using the alamar blue assay, while HepG2 was less sensitive, particularly at short exposure times. The estimated IC50 for aflatoxin B1 , fumonisins B1 and deoxynivalenol in DEF after 72 h incubation were 3.69, 4.19 and 1.26 μg ml(-1) , respectively. Results from the current study suggest that primary DEF are more sensitive to cytotoxins and mycotoxins compared to HepG2, and thus may have great potential as an effective tool for cytotoxicity assessment. The question remains whether in vitro IC50 values can accurately predict in vivo toxicity; however, the current study accentuates the need for further attention to identify sensitive cell models for in vitro cytotoxicity screening and subsequent exploration of species-specific prediction models for in vivo toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway

    SciTech Connect

    Zhu, Binbin; Zhao, Li; Zhu, Litao; Wang, Hu; Sha, Yunying; Yao, Jing; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2012-03-15

    Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells. The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.

  6. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    PubMed

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth.

  7. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  8. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    PubMed

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  9. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  10. Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells

    PubMed Central

    Du, Yichen; Esfandi, Ramak; Willmore, William G.; Tsopmo, Apollinaire

    2016-01-01

    The purpose of this study was to determine, for the first time, antioxidant activities of seven peptides (P1–P7) derived from hydrolysis of oat proteins in a cellular model. In the oxygen radical absorbance capacity (ORAC) assay, it was found that P2 had the highest radical scavenging activity (0.67 ± 0.02 µM Trolox equivalent (TE)/µM peptide) followed by P5, P3, P6, P4, P1, and P7 whose activities were between 0.14–0.61 µM TE/µM). In the hepatic HepG2 cells, none of the peptides was cytotoxic at 20–300 µM. In addition to having the highest ORAC value, P2 was also the most protective (29% increase in cell viability) against 2,2′-azobis(2-methylpropionamidine) dihydrochloride -induced oxidative stress. P1, P6, and P7 protected at a lesser extent, with an 8%–21% increase viability of cells. The protection of cells was attributed to several factors including reduced production of intracellular reactive oxygen species, increased cellular glutathione, and increased activities of three main endogenous antioxidant enzymes. PMID:27775607

  11. Macelignan protects HepG2 cells against tert-butylhydroperoxide-induced oxidative damage.

    PubMed

    Sohn, Jong Hee; Han, Kyu Lee; Choo, Jeong Han; Hwang, Jae-Kwan

    2007-01-01

    In this study, we investigated the protective effect of macelignan, isolated from Myristica fragrans Houtt. (nutmeg) against tert-butylhydroperoxide (t-BHP)-induced cytotoxicity in a human hepatoma cell line, HepG2. The tetrazolium dye colorimetric test (MTT test) and lactate dehydrogenase (LDH) assay were used to monitor cell viability and necrosis, respectively. Lipid peroxidation [malondialdehyde (MDA) formation] was estimated by the fluorometric method. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA), and DNA damage was detected using single cell gel electrophoresis (comet assay). The results showed that macelignan significantly reduced the cell growth inhibition and necrosis caused by t-BHP. Furthermore, macelignan ameliorated lipid peroxidation as demonstrated by a reduction in MDA formation in a dose-dependent manner. It was also found that macelignan reduced intracellular ROS formation and DNA damaging effect caused by t-BHP. These results strongly suggest that macelignan has significant protective ability against oxidative damage caused by reactive intermediates.

  12. Riboflavin deficiency impairs oxidative folding and secretion of apolipoprotein B-100 in HepG2 cells, triggering stress response systems.

    PubMed

    Manthey, Karoline C; Chew, Yap Ching; Zempleni, Janos

    2005-05-01

    Secretory proteins such as apolipoprotein B-100 (apoB) undergo oxidative folding (formation of disulfide bonds) in the endoplasmic reticulum (ER) before secretion. Oxidative folding depends on flavoproteins in eukaryotes. Here, human liver (HepG2) cells were used to model effects of riboflavin concentrations in culture media on folding and secretion of apoB. Cells were cultured in media containing 3.1, 12.6, and 300 nmol/L of riboflavin, representing moderately deficient, physiological, and pharmacological plasma concentrations in humans, respectively. When cells were cultured in riboflavin-deficient medium, secretion of apoB decreased by >80% compared with controls cultured in physiological medium. The nuclear translocation of the transcription factor ATF-6 increased by >180% in riboflavin-deficient cells compared with physiological controls; this is consistent with ER stress. Nuclear translocation of ATF-6 was associated with activation of the unfolded protein response. Expression of stress-response genes coding for ubiquitin-activating enzyme 1, growth arrest and DNA damage inducible gene, and glucose regulated protein of 78 kDa was greater in riboflavin-deficient cells compared with other treatment groups. Finally, phosphorylation of the eukaryotic initiation factor (eukaryotic initiation factor 2alpha) increased in riboflavin-deficient cells, consistent with decreased translational activity. We conclude 1) that riboflavin deficiency causes ER stress and activation of unfolded protein response in HepG2 cells, and 2) that riboflavin deficiency decreases protein secretion in HepG2 cells. Decreased secretion of apoB in riboflavin-deficient cells might interfere with lipid homeostasis in vivo.

  13. Inhibition of MEK/ERK activation attenuates autophagy and potentiates pemetrexed-induced activity against HepG2 hepatocellular carcinoma cells.

    PubMed

    Tong, Yongxi; Huang, Haijun; Pan, Hongying

    2015-01-02

    Identification of efficient chemo-therapeutic/chemo-preventive agents for treatment of hepatocellular carcinoma (HCC) is important. In this study, we examined the activity of pemetrexed, an anti-folate chemotherapy drug, against HepG2 human HCC cells. Pemetrexed treatment in vitro exerted weak but significant cytotoxic activity against HepG2 cells. When analyzing the possible pemetrexed-resistance factors, we indentified that pemetrexed treatment in HepG2 cells induced cyto-protective autophagy activation, evidenced by GFP-light chain 3B (LC3B) puncta formation, p62 downregulation and Beclin-1/LC3B-II upregulation. Correspondingly, autophagy inhibitors, including bafliomycin A1, 3-methyladenine and chloroquine, enhanced pemetrexed-induced cytotoxicity against HepG2 cells. Further, RNAi-mediated knockdown of Beclin-1 in HepG2 cells also increased pemetrexed sensitivity. Pemetrexed activated MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling in HepG2 cells, which was required for autophagy induction. Pharmacological inhibition of MEK/ERK activation attenuated pemetrexed-induced autophagy, enhanced HepG2 cell death and apoptosis. In summary, pemetrexed activates MEK/ERK-dependent cyto-protective autophagy, and inhibition of this pathway potentiates pemetrexed's activity in HepG2 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo.

    PubMed

    Zhou, Jin; Fang, Li; Liao, Jiaxu; Li, Lin; Yao, Wenxiu; Xiong, Zhujuan; Zhou, Xiang

    2017-01-01

    Quercetin, a natural polyphenolic flavonoid compound, can inhibit the growth of several malignant cancers. However, the mechanism still remains unclear. Our previous findings have suggested that quercetin can significantly inhibit HepG2 cell proliferation and induce cell apoptosis in vitro. It can also affect cell cycle distribution and significantly decrease cyclin D1 expression. In this study, we investigated the anti-cancer effect of quercetin on HepG2 tumor-bearing nude mice and its effect on cyclin D1 expression in the tumor tissue. First, the nude murine tumor model was established by subcutaneous inoculation of HepG2 cells, then quercetin was administered intraperitoneally, and the mice injected with saline solution were used as controls. The daily behavior of the tumor-bearing mice was observed and differences in tumor growth and survival rate were monitored. The expression of cyclin D1 in isolated tumor sections was evaluated by immunohistochemistry. We found that HepG2 tumor became palpable in the mice one-week post-inoculation. Tumors in the control group grew rapidly and the daily behavior of the mice changed significantly, including listlessness, poor feeding and ataxia. The mice in quercetin-treated group showed delayed tumor growth, no significant changes in daily behavior, and the survival rate was significantly improved. Finally, we observed increased tumor necrosis and a lighter cyclin D1 staining with reduced staining areas. Our findings thus suggest that quercetin can significantly inhibit HepG2 cell proliferation, and this effect may be achieved through the regulation of cyclin D1 expression.

  15. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo

    PubMed Central

    Li, Lin; Yao, Wenxiu; Xiong, Zhujuan; Zhou, Xiang

    2017-01-01

    Quercetin, a natural polyphenolic flavonoid compound, can inhibit the growth of several malignant cancers. However, the mechanism still remains unclear. Our previous findings have suggested that quercetin can significantly inhibit HepG2 cell proliferation and induce cell apoptosis in vitro. It can also affect cell cycle distribution and significantly decrease cyclin D1 expression. In this study, we investigated the anti-cancer effect of quercetin on HepG2 tumor-bearing nude mice and its effect on cyclin D1 expression in the tumor tissue. First, the nude murine tumor model was established by subcutaneous inoculation of HepG2 cells, then quercetin was administered intraperitoneally, and the mice injected with saline solution were used as controls. The daily behavior of the tumor-bearing mice was observed and differences in tumor growth and survival rate were monitored. The expression of cyclin D1 in isolated tumor sections was evaluated by immunohistochemistry. We found that HepG2 tumor became palpable in the mice one-week post-inoculation. Tumors in the control group grew rapidly and the daily behavior of the mice changed significantly, including listlessness, poor feeding and ataxia. The mice in quercetin-treated group showed delayed tumor growth, no significant changes in daily behavior, and the survival rate was significantly improved. Finally, we observed increased tumor necrosis and a lighter cyclin D1 staining with reduced staining areas. Our findings thus suggest that quercetin can significantly inhibit HepG2 cell proliferation, and this effect may be achieved through the regulation of cyclin D1 expression. PMID:28264020

  16. HMGB1 release by human liver L02 and HepG2 cells induced by lipopolysaccharide.

    PubMed

    Huang, Ze-Bing; Dai, Xia-Hong; Xiao, Mei-Fang; Zhou, Rong-Rong; Zhao, Shu-Shan; Zhang, Bao-Xin; Yi, Pan-Pan; Chen, Ruo-Chan; Li, Wen-Ting; Yaser, Ai-Madhagi; Huang, Yan; Fan, Xue-Gong

    2013-07-01

    Liver cells release the high mobility group box-1 (HMGB1) protein when exposed to lipopolysaccharides (LPSs). However, the timing and levels of protein released remain unclear. The present study aimed to characterize the secretion of the late pro-inflammatory cytokine HMGB1 by liver L02 and HepG2 cells. The human mononuclear macrophage cell line U937 was used as a control. Various concentrations of LPS were added to human U937, L02 and HepG2 cells for different durations, and the cells were analyzed at different time-points following this addition. Reverse transcription polymerase chain reaction (RT-PCR) was used to measure cellular HMGB1 mRNA levels, western blotting was performed to detect HMGB1 in cellular supernatants and the translocation of HMGB1 from the nucleus to the cytosol was examined using immunofluorescence staining. L02 and HepG2 cells exhibited higher HMGB1 mRNA levels compared with the control U937 cells 20 and 24 h following continuous exposure to LPS. U937 cells exhibited higher HMGB1 mRNA levels compared with the corresponding L02 and HepG2 cells 16 h following LPS exposure. The phase of HMGB1 protein detected in the cellular supernatants of L02 and HepG2 cells (16 h) was later than that of U937 cells (8 h). For the three cell lines, HMGB1 levels demonstrated a time dependency; however, the protein level was the highest in U937 cells. In the three cell lines, translocation of HMGB1 from the nucleus to the cytosol occurred; however, the phases of HMGB1 translocation in L02 and HepG2 cells occurred later than in U937 cells. LPS-induced secretion of the late pro‑inflammatory cytokine HMGB1 by liver cells is characterized by a late phase of release and smaller quantity, and the process of HMGB1 secretion appears to be associated with HMGB1 translocation.

  17. Phosphoramidate protides of five flavones and their antiproliferative activity against HepG2 and L-O2 cell lines.

    PubMed

    Li, Yue-Qing; Yang, Fei; Wang, Liu; Cao, Zhi; Han, Tian-Jiao; Duan, Zhe-Ang; Li, Zhen; Zhao, Wei-Jie

    2016-04-13

    A series of flavone-7-phosphoramidate derivatives were synthesized and tested for their antiproliferative activity in vitro against human hepatoma cell line HepG2 and human normal hepatic cell line L-O2. Compound 8d, 16d and 17d, incorporating the amino acid alanine, exhibited high inhibitory activity on HepG2 cell line with IC50 values of 9.0 μmol/L, 5.5 μmol/L and 6.6 μmol/L. The introduction of acyl groups played a pivotal role in the selective inhibition toward human hepatoma HepG2 cells, except for compound 8a, 9a and 16b. Compound 8d, 16d and 17d could significantly induce G2/M arrest in HepG2 cells. Specially, Compound 16d could lead early apoptosis in HepG2 cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Cytotoxicity and induction of protective mechanisms in HepG2 cells exposed to cadmium.

    PubMed

    Urani, C; Melchioretto, P; Canevali, C; Crosta, G F

    2005-10-01

    Cadmium is a widespread industrial pollutant. The primary route of exposure occurs via contaminated drinking water or food supplies, and tobacco. Its chronic introduction and ingestion lead to bio-magnification in target organs, as the liver. The aim of this paper is to determine Cd cytotoxic concentrations in the human hepatoma cell line HepG2. Further aims are the study of the activation and involvement of protection mechanisms against Cd hepatotoxicity. Cd was accumulated within the cells, as measured by ICP-AES. Metallothioneins (MT-1 and -2), a family of metal-binding proteins, were induced in a dose-dependent way after treatment with concentrations below the IC(50) value (mean value 22 microM). The over-expression of MT by Zn pre-treatment was able to defend against Cd cytotoxicity. Heat shock protein 70 kDa (hsp70) was induced at high non-cytotoxic concentrations (5, 10 microM) probably as a consequence of proteotoxicity, but its over-expression by a sub-lethal heat shock was not able to protect the cells from Cd cytotoxic concentrations (20, 50, 100 microM).

  19. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells.

    PubMed

    Shan, Guoqiang; Ye, Minqiang; Zhu, Benzhan; Zhu, Lingyan

    2013-11-01

    Chlorinated phenols and perfluoroalkyl acids (PFAAs) are two kinds of pollutants which are widely present in the environment. Considering liver is the primary toxic target organ for these two groups of chemicals, it is interesting to evaluate the possible joint effects of them on liver. In this work, the combined toxicity of pentachlorophenol (PCP) and perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) were investigated using HepG2 cells. The results indicated that PFOS and PFOA could strengthen PCP's hepatotoxicity. Further studies showed that rather than intensify the oxidative stress or promote the biotransformation of PCP, PFOS (or PFOA) might lead to strengthening of the oxidative phosphorylation uncoupling of PCP. By measuring the intracellular PCP concentration and the cell membrane properties, it was suggested that PFOS and PFOA could disrupt the plasma membrane and increase the membrane permeability. Thus, more cellular accessibility of PCP was induced when they were co-exposed to PCP and PFOS (or PFOA), leading to increased cytotoxicity. Further research is warranted to better understand the combined toxicity of PFAAs and other environmental pollutants. Copyright © 2013. Published by Elsevier Ltd.

  20. Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line.

    PubMed

    Lordan, Sinéad; Kennedy, James E; Higginbotham, Clement L

    2011-01-01

    The term 'nanoclay' generically refers to the natural clay mineral, montmorillonite, with silica and alumina as the dominant constituents. The incorporation of nanoclays into polymeric systems dramatically enhances their barrier properties as well as their thermal and mechanical resistance. Consequently, nanoclays are employed in a wide range of industrial applications with recent studies reporting potential use in the modulation of drug release. With the increase in manufacturing of nanoclay-containing products, information on the toxicological and health effects of nanoclay exposure is warranted. Thus, the objective of the present study was to evaluate the cytotoxicity of two different nanoclays: the unmodified nanoclay, Cloisite Na+ ®, and the organically modified nanoclay, Cloisite 93A®, in human hepatoma HepG2 cells. Following 24 h exposure the nanoclays significantly decreased cell viability. Cloisite Na+ induced intracellular reactive oxygen species (ROS) formation which coincided with increased cell membrane damage, whilst ROS generation did not play a role in Cloisite 93A-induced cell death. Neither of the nanoclays induced caspase-3/7 activation. Moreover, in the cell culture medium the nanoclays aggregated differently and this appeared to have an effect on their mechanisms of toxicity. Taken together, our data demonstrate that nanoclays are highly cytotoxic and as a result pose a possible risk to human health. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Insulin resistance contributes to multidrug resistance in HepG2 cells via activation of the PERK signaling pathway and upregulation of Bcl-2 and P-gp.

    PubMed

    Liu, Xinyue; Li, Linjing; Li, Jing; Cheng, Yan; Chen, Jing; Shen, Minghui; Zhang, Shangdi; Wei, Hulai

    2016-05-01

    Liver tumorigenesis frequently causes insulin resistance which may be used as an independent risk factor for evaluation of survival and post-surgery relapse of liver cancer patients. In the present study, HepG2/IR, an insulin resistant HepG2 cell line, was established by exposing HepG2 cells to 0.5 µmol/l of insulin for 72 h, and comparison of HepG2/IR with the parental HepG2 cells indicated that the HepG2/IR cells showed significantly enhanced resistance to the most frequently used chemotherapeutics for solid tumors, such as cisplatin, 5-fluorouracil, vincristine and mitomycin. Flow cytometric analysis of cisplatin-treated HepG2/IR cells showed a significantly decreased hypodiploid peak and a significantly downregulated expression level of pro-apoptotic protein caspase-3 compared with the parental HepG2 cells. Our data further showed swollen endoplasmic reticulum (ER) in the cisplatin-treated HepG2/IR cells with significantly increased levels of glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like ER kinase (p-PERK) and P-glycoprotein (P-gp). There was also an upregulated expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) whereas no significant change was observed for CCAAT-enhancer-binding protein homologous protein (CHOP), which is known to be induced by ER stress and to mediate apoptosis. Our results demonstrated that insulin resistance in HepG2 cells promoted a protective unfolded protein response and upregulated the expression of ER chaperone protein GRP78, which resulted in the phosphorylation of PERK kinase to activate the PERK-mediated ER stress signal transduction pathway and the upregulation of Bcl-2 and P-gp, leading to the inhibition of the caspase-3-dependent apoptosis pathway and to the survival of liver tumor cells.

  2. Ursolic acid sensitizes cisplatin-resistant HepG2/DDP cells to cisplatin via inhibiting Nrf2/ARE pathway

    PubMed Central

    Wu, Shouhai; Zhang, Tianpeng; Du, Jingsheng

    2016-01-01

    Background Combinations of adjuvant sensitizers with anticancer drugs is a promising new strategy to reverse chemoresistance. Ursolic acid (UA) is one of the natural pentacyclic triterpene compounds known to have many pharmacological characteristics such as anti-inflammatory and anticancer properties. This study investigates whether UA can sensitize hepatocellular carcinoma cells to cisplatin. Materials and methods Cells were transfected with nuclear factor erythroid-2-related factor 2 (Nrf2) small interfering RNA and Nrf2 complementary DNA by using Lipofectin 2000. The cytotoxicity of cells was investigated by Cell Counting Kit 8 assay. Cell apoptosis, cell cycle, reactive oxygen species, and mitochondrial membrane potential were detected by flow cytometry fluorescence-activated cell sorting. The protein level of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and heme oxygenase-1 (HO-1) was detected by Western blot analysis. Results The results showed that the reverse index was 2.9- and 9.69-fold by UA of 1.125 μg/mL and 2.25 μg/mL, respectively, for cisplatin to HepG2/DDP cells. UA–cisplatin combination induced cell apoptosis and reactive oxygen species, blocked the cell cycle in G0/G1 phase, and reduced the mitochondrial membrane potential. Mechanistically, UA–cisplatin dramatically decreased the expression of Nrf2 and its downstream genes. The sensibilization of UA–cisplatin combination was diminished in Nrf2 small interfering RNA-transfected HepG2/DDP cells, as well as in Nrf2 complementary DNA-transfected HepG2/DDP cells. Conclusion The results confirmed the sensibilization of UA on HepG2/DDP cells to cisplatin, which was possibly mediated via the Nrf2/antioxidant response element pathway. PMID:27822011

  3. Evaluation of anti-hepatocarcinoma capacity of puerarin nanosuspensions against human HepG2 cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Zhang, Zhen; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Puerarin (Pue), a major active ingredient in the traditional Chinese medicine Gegen, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Pue nanosuspension (Pue-NS) composed of Pue and poloxamer 188 was prepared by high pressure homogenization technique. The in vitro anti-hepatocarcinoma effects of Pue-NS relative to efficacy of bulk Pue were evaluated. The particle size and zeta potential of Pue-NS were 218.5 nm and -18.8 mV, respectively. MTT assay showed that Pue-NS effectively inhibited the proliferation of HepG2 cells, and the corresponding IC50 values of Pue-NS and bulk Pue were 3.39 and 5.73 μg/ml. These results suggest that the delivery of Pue-NS is a promising approach for treating tumors.

  4. Crosstalk between microRNA-122 and FOX family genes in HepG2 cells.

    PubMed

    Kumar, Subodh; Batra, Ankita; Kanthaje, Shruthi; Ghosh, Sujata; Chakraborti, Anuradha

    2017-02-01

    MicroRNA-122 (miR-122) is liver specific and plays an important role in physiology as well as diseases including hepatocellular carcinoma (HCC). Downregulation of miR-122 in HCC modulates apoptosis. Similarly, the putative targets of miR-122, the forkhead box (FOX) family genes also play an important role in the regulation of apoptosis. Hence, an interplay between miR-122 and FOX family genes has been explored in this study. Initially, an augmentation of apoptosis was noticed in HepG2 cells after transfection with miR-122. Further, the predicted miR-122 targets, the FOX family genes ( FOXM1b, FOXP1, and FOXO4) were selected via in silico analysis based on their role in apoptosis. We checked the expression of all these genes at transcript level after the transfection of miR-122 and found that the relative expression of FOXP1 and FOXM1b was significantly downregulated (p < 0.005) and that of FOXO4 was upregulated (p < 0.005). Thus, the finding indicates deregulation of these FOX genes as a result of miR-122 augmentation might be involved in the modulation of apoptosis.

  5. Human hepatitis B virus X protein induces apoptosis in HepG2 cells: Role of BH3 domain

    SciTech Connect

    Lu, Y.W.; Chen, W.N. . E-mail: WNChen@ntu.edu.sg

    2005-12-23

    The smallest protein of hepatitis B virus, HBX, has been implicated in the development of liver diseases by interfering with normal cellular processes. Its role in cell proliferation has been unclear as both pro-apoptotic and anti-apoptotic activities have been reported. We showed molecular evidence that HBX induced apoptosis in HepG2 cells. A Bcl-2 Homology Domain 3 was identified in HBX, which interacted with anti-apoptotic but not pro-apoptotic members of the Bcl-2 family of proteins. HBX induced apoptosis when transfected into HepG2 cells, as demonstrated by both flow cytometry and caspase-3 activity. However, HBX protein may not be stable in apoptotic cells triggered by its own expression as only its mRNA or the fusion protein with the glutathione-S-transferase was detected in transfected cells. Our results suggested that HBX behaved as a pro-apoptotic protein and was able to induce apoptosis.

  6. Tat-DJ-1 enhances cell survival by inhibition of oxidative stress, NF-κB and MAPK activation in HepG2 cells.

    PubMed

    Jo, Hyo Sang; Yeo, Eun Ji; Shin, Min Jea; Choi, Yeon Joo; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Eum, Won Sik; Choi, Soo Young

    2017-04-01

    To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein. By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells. Oxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.

  7. Effect of sevoflurane on human hepatocellular carcinoma HepG2 cells under conditions of high glucose and insulin.

    PubMed

    Nishiwada, Tadashi; Kawaraguchi, Yoshitaka; Uemura, Keiko; Sugimoto, Hiroshi; Kawaguchi, Masahiko

    2015-10-01

    Diabetes mellitus is associated with morbidity and progression of some cancers, such as hepatocellular carcinoma. It has been reported that sevoflurane, a volatile anesthetic agent commonly used in cancer surgery, can lead to lower overall survival rates than those observed when propofol is used to treat cancer patients, and sevoflurane increases cancer cell proliferation in in vitro studies. It has been also reported that glucose levels in rats anesthetized with sevoflurane were higher than those in rats anesthetized with propofol. We investigated the effect of sevoflurane, under conditions of high glucose and insulin, on cell proliferation in the human hepatocellular carcinoma cell line, HepG2. First, we exposed HepG2 cells to sevoflurane at 1 or 2 % concentration for 6 h in various glucose concentrations and then evaluated cell proliferation using the MTT assay. Subsequently, to mimic diabetic conditions observed during surgery, HepG2 cells were exposed to sevoflurane at 1 or 2 % concentration in high glucose concentrations at various concentrations of insulin for 6 h. One-percent sevoflurane exposure enhanced cell proliferation under conditions of high glucose, treated with 0.05 mg/l insulin. Our study implies that sevoflurane may affect cell proliferation in human hepatocellular carcinoma cells in a physiological situation mimicking that of diabetes.

  8. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells

    PubMed Central

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    Objective To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. Methods The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. Results miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (P<0.01). MTT assay showed that the growth of HepG2 cells in the miR-20a mimics group was significantly inhibited, and optical density values during the 36–96 hour time period were dramatically decreased compared to the blank group (P<0.01). Apoptosis rates of the miR-20a mimics group were higher than those of the blank and NC groups (both P<0.01). The number of HCC cells after transfection by miR-20a mimics in the G1 and S phases were 15.88% and 7.89%, respectively, which were lower than in the blank and NC groups (both P<0.05). Transwell assay showed that in the miR-20a mimics group the number of cell migration and invasion were 0.459 and 0.501 times that of the blank group (both P<0.01), and the migration and inhibition rates were 54.1% and 51.4%, respectively. After closing target gene CCND1 in HepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (P<0.05); and compared to the si-NC group, the migration and inhibition rates

  9. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells.

    PubMed

    Chen, Guang Shun; Zhou, Ning; Li, Jie-Qun; Li, Ting; Zhang, Zhong-Qiang; Si, Zhong-Zhou

    2016-01-01

    To study microRNA (miR)-20a expression in hepatocellular carcinoma (HCC) and its effects on the proliferation, migration, and invasion of HepG2. The real-time polymerase chain reaction was used to detect the expression of miR-20a in HCC tissue and normal tissue, as well as in HCC cell lines and normal liver cells. miR-20a mimic and miR negative control (NC) were transfected into HepG2 cells. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay was used to detect cell proliferation. Annexin fluorescein isothiocyanate/propidium iodide assay was run to examine the early apoptosis of cells. Transwell chamber assay was carried out to investigate the cell invasion and migration abilities. miR-20a was lowly expressed both in HCC tissues and HCC cell lines. After transfection of exogenous miR-20 mimics, miR-20a expression in HepG2 cells was significantly increased by 61.29% compared to the blank group (P<0.01). MTT assay showed that the growth of HepG2 cells in the miR-20a mimics group was significantly inhibited, and optical density values during the 36-96 hour time period were dramatically decreased compared to the blank group (P<0.01). Apoptosis rates of the miR-20a mimics group were higher than those of the blank and NC groups (both P<0.01). The number of HCC cells after transfection by miR-20a mimics in the G1 and S phases were 15.88% and 7.89%, respectively, which were lower than in the blank and NC groups (both P<0.05). Transwell assay showed that in the miR-20a mimics group the number of cell migration and invasion were 0.459 and 0.501 times that of the blank group (both P<0.01), and the migration and inhibition rates were 54.1% and 51.4%, respectively. After closing target gene CCND1 in HepG2 cells, the number of cell migration and invasion in the small interfering (si)-CCND1 group were 0.444 and 0.435 times that of the si-NC group (P<0.05); and compared to the si-NC group, the migration and inhibition rates were 55.6% and 56

  10. A comparison of apoptosis and necrosis induced by hepatotoxins in HepG2 cells.

    PubMed

    O'Brien, T; Babcock, G; Cornelius, J; Dingeldein, M; Talaska, G; Warshawsky, D; Mitchell, K

    2000-05-01

    7H-Dibenzo[c,g]carbazole (DBC), an N-heterocyclic aromatic hydrocarbon, is cytotoxic and carcinogenic in rodent liver. While DBC leads to necrotic lesions in the liver, the induction of apoptosis by DBC has not been investigated. The focus of this study was to determine the degree to which apoptosis and necrosis contributed to DBC cytotoxicity in a human hepatoma cell line (HepG2). To determine if these effects were unique to DBC, the results were compared to another hepatotoxin, aflatoxin B(1) (AFB(1)). DBC produced a distinct biphasic LDH release curve within 24 h of exposure. During the same time period lower concentrations of DBC (<10 microM) induced the formation of DBC-DNA adducts and increased p53 protein levels followed by apoptotic cell death. However, increasing the concentration of DBC to 80 microM led to lower DNA adduct and p53 protein levels. At this concentration, intracellular ATP levels were rapidly depleted followed by cell swelling and loss of membrane integrity consistent with necrotic cell death. In contrast to DBC, a biphasic LDH release curve was not observed for AFB(1). Instead, AFB(1) induced a concentration-dependent increase in apoptosis that reached two- to threefold higher levels than DBC. These results suggest that differences exist in the extent and type of cell death induced by DBC and AFB(1) at equimolar concentrations. Apoptosis and necrosis result from low and high concentrations of DBC, respectively, and may be dependent upon intracellular ATP levels. Copyright 2000 Academic Press.

  11. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria.

    PubMed

    Zhao, Peng; Dou, Yannong; Chen, Li; Li, Linhu; Wei, Zhifeng; Yu, Juntao; Wu, Xin; Dai, Yue; Xia, Yufeng

    2015-07-01

    (E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, was previously shown to reduce the viability of HepG2 cells and tumor growth of HepG2 xenograft mouse model. It induces the death of HepG2 cells by a way irrelevant to apoptosis and necrosis. To shed light on the cytotoxic mechanisms of SC-III3, the present study addresses whether and how it can induce autophagic cell death. When HepG2 cells were incubated with various concentrations of SC-III3, autophagic vacuoles could be observed by transmission electron microscopy and monodansylcadaverine staining. Increased expressions of LC3-II to LC3-I and Beclin-1, required for autophagosome formation, were accompanied. These characteristics integrally indicated that SC-III3 could initiate autophagy in HepG2 cells. N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, but it did not affect SC-III3-induced autophagy, suggesting that ROS was not involved in SC-III3-mediated autophagy in HepG2 cells. SC-III3 significantly depressed mitochondrial function, as evidenced by disruption of mitochondrial transmembrane potential and loss of the mitochondrial cristae structure, as well as decrease of Cox-I, Cox-III, Cox-IV, and ATP levels. The autophagy and activation of AMPK-TSC2-mTOR-p70s6k pathways induced by SC-III3 in HepG2 cells could be efficiently blocked by pre-treatments of compound C (an inhibitor of AMPK). Moreover, addition of extracellular ATP to the cell culture media could reverse SC-III3-caused activation of AMPK-TSC2-mTOR-p70s6k pathway, autophagy and cell viability decrease in HepG2 cells. Collectively, SC-III3 leads to autophagy through inducing mitochondrial dysfunction, depleting ATP, and activating AMPK-mTOR pathway, which thus reflects the cytotoxic effect of SC-III3 in HepG2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Quercetin Induces Antiproliferative Activity Against Human Hepatocellular Carcinoma (HepG2) Cells by Suppressing Specificity Protein 1 (Sp1).

    PubMed

    Lee, Ra Ham; Cho, Jin Hyoung; Jeon, Young-Joo; Bang, Woong; Cho, Jung-Jae; Choi, Nag-Jin; Seo, Kang Seok; Shim, Jung-Hyun; Chae, Jung-Il

    2015-02-01

    Preclinical Research Quercetin, found in red onions and red apple skin can induce apoptosis insome malignant cells. However, the apoptotic effect of quercetin in hepatocellular carcinoma HepG2 cells via regulation of specificity protein 1 (Sp1) has not been studied. Here, we demonstrated that quercetin decreased cell growth and induce apoptosis in HepG2 cells via suppression of Sp1 using 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V, and Western blot analysis, an effect that was dose- and time-dependent manner. Treatment of HepG2 cells with quercetin reduced cell growth and induced apoptosis, followed by regulation of Sp1 and Sp1 regulatory protein. Taken together, the results suggest that quercetin can induce apoptotic cell death by regulating cell cycle and suppressing antiapoptotic proteins. Therefore, quercetin may be useful for cancer prevention. Drug Dev Res 76 : 9-16, 2015. © 2015 Wiley Periodicals, Inc.

  13. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line.

    PubMed

    Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin

    2012-02-01

    Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.

  14. Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress

    PubMed Central

    QIN, YU; WANG, HUAN; LIU, ZHENG-YUN; LIU, JIE; WU, JIN-ZHU

    2015-01-01

    Realgar (As4S4) has been used in traditional Chinese medicines for treatment of malignancies. However, the poor water solubility of realgar limits its clinical application. To overcome this problem, realgar quantum dots (RQDs; 5.48±1.09 nm) were prepared by a photoluminescence method. The mean particle size was characterized by high-resolution transmission electron microscopy and scanning electron microscopy. Our recent studies revealed that the RQDs were effective against tumor growth in tumor-bearing mice without producing apparent toxicity. The present study investigated their anticancer effects and mechanisms in human hepatocellular carcinoma (HepG2) cells. The HepG2 cells and human normal liver (L02) cells were used to determine the cytotoxicity of RQDs. The portion of apoptotic and dead cells were measured by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Apoptosis-related proteins and genes were examined by western blot analysis and reverse transcription-quantitative polymerase chain reaction, and the mitochondrial membrane potential was assayed by confocal microscope with JC-1 as a probe. RQDs exhibited cytotoxicity in a concentration-dependent manner and HepG2 cells were more sensitive compared with normal L02 cells. At 15 µg/ml, 20% of the cells were apoptotic, while 60% of the cells were necrotic at 30 µg/ml. The anti-apoptosis protein Bcl-2 was dose-dependently decreased, while pro-apoptotic protein Bax was increased. There was a loss of mitochondrial membrane potential and expression of the stress genes C/EBP-homologous protein 10 and glucose-regulated protein 78 was increased by RQDs. RQDs were effective in the inhibition of HepG2 cell proliferation and this effect was due to induction of apoptosis and necrosis through endoplasmic reticulum stress. PMID:26405541

  15. Knockdown of Decoy Receptor 3 Impairs Growth and Invasiveness of Hepatocellular Carcinoma Cell Line of HepG2

    PubMed Central

    Zhou, Xiao-Na; Li, Guang-Ming; Xu, Ying-Chen; Zhao, Tuan-Jie; Wu, Ji-Xiang

    2016-01-01

    Background: Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis. The receptor is overexpressed in hepatocellular carcinoma (HCC), and it is associated with the growth and metastatic spread of tumors. DcR3 holds promises as a new target for the treatment of HCC, but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3. The present work, therefore, examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2. Methods: HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3. After the knockdown of DcR3 was confirmed, cell proliferation, clone formation, ability of migrating across transwell membrane, and wound healing were assessed in vitro. Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied. Comparisons between multiple groups were done using one-way analysis of variance (ANOVA), while pairwise comparisons were performed using Student's t test. P < 0.05 was regarded statistically significant. Results: DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2. Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05). The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05). In addition, the messenger RNA levels of MMP 9, VEGF-C, and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05). Conclusions: Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2. Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC. PMID:27779171

  16. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    SciTech Connect

    Ahmad, Javed; Ahamed, Maqusood; Akhtar, Mohd Javed; Alrokayan, Salman A.; Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  17. Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation.

    PubMed

    Noureini, Sakineh Kazemi; Wink, Michael

    2012-01-01

    Crocin, the main pigment of Crocus sativus L., has been shown to have antiproliferative effects on cancer cells, but the involved mechanisms are only poor understood. This study focused on probable effect of crocin on the immortality of hepatic cancer cells. Cytotoxicity of crocin (IC50 3 mg/ml) in hepatocarcinoma HepG2 cells was determined after 48 h by neutral red uptake assay and MTT test. Immortality was investigated through quantification of relative telomerase activity with a quantitative real-time PCR-based telomerase repeat amplification protocol (qTRAP). Telomerase activity in 0.5 μg protein extract of HepG2 cells treated with 3 mg/ml crocin was reduced to about 51% as compared to untreated control cells. Two mechanisms of inhibition, i.e. interaction of crocin with telomeric quadruplex sequences and down regulation of hTERT expression, were examined using FRET analysis to measure melting temperature of a synthetic telomeric oligonucleotide in the presence of crocin and quantitative real-time RT-PCR, respectively. No significant changes were observed in the Tm telomeric oligonucleotides, while the relative expression level of the catalytic subunit of telomerase (hTERT) gene showed a 60% decrease as compared to untreated control cells. In conclusion, telomerase activity of HepG2 cells decreases after treatment with crocin, which is probably caused by down-regulation of the expression of the catalytic subunit of the enzyme.

  18. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity

    SciTech Connect

    Hu Yang; Yang Yong; You Qidong . E-mail: qdyou@cpu.edu.cn; Liu Wei; Gu Hongyan; Zhao Li; Zhang Kun; Wang Wei; Wang Xiaotang; Guo Qinglong . E-mail: qinglongguo@hotmail.com

    2006-12-15

    We previously reported that wogonin, a flavonoid compound, was a potent apoptosis inducer of human hepatoma SMMC-7721 cells and murine sarcoma S180 cells. In the present study, the effect of oroxylin A, one wogonin structurally related flavonoid isolated from Scutellariae radix, on human hepatocellular carcinoma cell line HepG2 was examined and molecular mechanisms were also investigated. Oroxylin A inhibited HepG2 cell proliferation in a concentration- and time-dependent manner measured by MTT-assay. Treatment with an apoptosis-inducing concentration of oroxylin A caused typical morphological changes and apoptotic blebbing in HepG2 cells. DNA fragmentation assay was used to examine later apoptosis induced by oroxylin A. FACScan analysis revealed a dramatic increase in the number of apoptotic and G{sub 2}/M phase arrest cells after oroxylin A treatment. The pro-apoptotic activity of oroxylin A was attributed to its ability to modulate the concerted expression of Bcl-2, Bax, and pro-caspase-3 proteins. The expression of Bcl-2 protein and pro-caspase-3 protein was dramatically decreased after treatment with oroxylin A. These results demonstrated that oroxylin A could effectively induce programmed cell death and suggested that it could be a promising antitumor drug.

  19. Mangiferin, a Dietary Xanthone Protects Against Mercury-Induced Toxicity in HepG2 Cells

    PubMed Central

    Agarwala, Sobhika; Rao, B. Nageshwar; Mudholkar, Kaivalya; Bhuwania, Ridhirama; Rao, B. S. Satish

    2012-01-01

    Mercury is one of the noxious heavy metal environmental toxicants and is a cause of concern for human exposure. Mangiferin (MGN), a glucosylxanthone found in Mangifera indica, reported to have a wide range of pharmacological properties. The objective of this study was to evaluate the cytoprotective potential of MGN, against mercury chloride (HgCl2) induced toxicity in HepG2 cell line. The cytoprotective effect of MGN on HgCl2 induced toxicity was assessed by colony formation assay, while antiapoptotic effect by fluorescence microscopy, flow cytometric DNA analysis, and DNA fragmentation pattern assays. Further, the cytoprotective effect of MGN against HgCl2 toxicity was assessed by using biochemical parameters like reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) by spectrophotometrically, mitochondrial membrane potential by flowcytometry and the changes in reactive oxygen species levels by DCFH-DA spectrofluoremetric analysis. A significant increase in the surviving fraction was observed with 50 µM of MGN administered two hours prior to various concentrations of HgCl2. Further, pretreatment of MGN significantly decreased the percentage of HgCl2 induced apoptotic cells. Similarly, the levels of ROS generated by the HgCl2 treatment were inhibited significantly (P < 0.01) by MGN. MGN also significantly (P < 0.01) inhibited the HgCl2 induced decrease in GSH, GST, SOD, and CAT levels at all the post incubation intervals. Our study demonstrated the cytoprotective potential of MGN, which may be attributed to quenching of the ROS generated in the cells due to oxidative stress induced by HgCl2, restoration of mitochondrial membrane potential and normalization of cellular antioxidant levels. PMID:20629087

  20. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells.

    PubMed

    Alur, İhsan; Dodurga, Yavuz; Seçme, Mücahit; Elmas, Levent; Bağcı, Gülseren; Gökşin, İbrahim; Avcı, Çığır Biray

    2016-07-10

    Recent researches have demonstrated improved survival in oncologic patients treated with low molecular weight heparins (LMWHs) which are anticoagulant drugs. We evaluated "second generation" LMWH bemiparin and its in vitro anti-tumor effects on HepG2 hepatocellular carcinoma and MIA PaCa-2 cancer cells. The aim of the study is to investigate anti-cancer mechanism of bemiparin in HepG2 and Mia-Paca-2 cancer cells. Cytotoxic effects of bemiparin were determined by XTT assay. IC50 dose of bemiparin was found to be 200 IU/mL in the 48th hour in the MiaPaCa-2 cell line and 50 IU/mL in the 48th hour in the HepG2 cell line. CCND1 (cyclin D1), CDK4, CDK6, p21, p16, p53, caspase-3, caspase-9, caspase-8, Bcl-2, BID, DR4, DR5, FADD, TRADD, Bax, gene mRNA expressions were evaluated by Real-time PCR. Real-time PCR analysis showed that CCND1 expression was reduced in HepG2 dose the group cells when compared with the control group cells and p53, caspase-3, caspase p21, caspase-8 and expressions were increased in the dose group cells when compared with the control group cells. CCND1, CDK4 and CDK6 expressions were reduced in MIA PaCa-2 dose group cells when compared with the control group cells and p53 expression was increased in the dose group cells when compared with the control group cells. Other expressions of genes were found statistically insignificant both of cell lines. It was found that bemiparin in HepG2 and MIA PaCa-2 cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, and colony formation assay, respectively. In conclusion, it is thought that bemiparin indicates anti-tumor activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Alantolactone Induces Apoptosis in HepG2 Cells through GSH Depletion, Inhibition of STAT3 Activation, and Mitochondrial Dysfunction

    PubMed Central

    Khan, Muhammad; Li, Ting; Ahmad Khan, Muhammad Khalil; Rasul, Azhar; Nawaz, Faisal; Sun, Meiyan; Zheng, Yongchen; Ma, Tonghui

    2013-01-01

    Signal transducer and activator of transcription 3 (STAT3) constitutively expresses in human liver cancer cells and has been implicated in apoptosis resistance and tumorigenesis. Alantolactone, a sesquiterpene lactone, has been shown to possess anticancer activities in various cancer cell lines. In our previous report, we showed that alantolactone induced apoptosis in U87 glioblastoma cells via GSH depletion and ROS generation. However, the molecular mechanism of GSH depletion remained unexplored. The present study was conducted to envisage the molecular mechanism of alantolactone-induced apoptosis in HepG2 cells by focusing on the molecular mechanism of GSH depletion and its effect on STAT3 activation. We found that alantolactone induced apoptosis in HepG2 cells in a dose-dependent manner. This alantolactone-induced apoptosis was found to be associated with GSH depletion, inhibition of STAT3 activation, ROS generation, mitochondrial transmembrane potential dissipation, and increased Bax/Bcl-2 ratio and caspase-3 activation. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine (NAC). The data demonstrate clearly that intracellular GSH plays a central role in alantolactone-induced apoptosis in HepG2 cells. Thus, alantolactone may become a lead chemotherapeutic candidate for the treatment of liver cancer. PMID:23533997

  2. N-acetyl-cysteine protects against DNA damage associated with lead toxicity in HepG2 cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Christine K; Haile, Samuel; Edwards, Falicia; Tchounwou, Paul B

    2010-01-01

    Lead toxicity has been associated with its ability to interact and damage DNA. However, its molecular mechanisms of action are not fully understood. In vitro studies in our laboratory indicated that lead nitrate (PbNO3) induces cytotoxicity and oxidative stress to human liver carcinoma (HepG2) cells in a dose-dependent manner. In this research, we hypothesized that n-acetyl-cysteine (NAC), a known antioxidant compound, affords protection against lead-induced cell death associated with genotoxic damage. To test this hypothesis, HepG2 cells were treated either with a physiologic dose of NAC, NAC plus PbNO3, or PbNO3 alone, followed by incubation in humidified 5% CO2 incubator at 37 degrees C for 48 hr. The cell viability was determined by trypan blue exclusion test. The degree of DNA damage was detected by micro gel electrophoresis (comet) assay. Our results showed that lead exposure induces a substantial cytotoxicity as well as a significant genotoxicity to HepG2 cells. However, co-treatment with a physiologic dose (500 microM) of NAC slightly increases cell viability, and significantly reduced (P < .05) the degree of DNA damage. Hence, NAC treatment may be a promising therapeutic candidate for chemoprevention against lead toxicity, based on its ability to scavenge free radicals.

  3. Simvastatin, an HMG-CoA reductase inhibitor, induces the synthesis and secretion of apolipoprotein AI in HepG2 cells and primary hamster hepatocytes.

    PubMed

    Bonn, Victoria; Cheung, Raphael C; Chen, Biao; Taghibiglou, Changiz; Van Iderstine, Stephen C; Adeli, Khosrow

    2002-07-01

    Clinical studies have recently suggested that statin treatment may beneficially elevate plasma concentrations of high density lipoprotein (HDL)-cholesterol in patients with hyperlipidemia. Here, we have investigated the effect of a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase on the synthesis and secretion of apolipoprotein AI (apoAI) in two model systems, HepG2 cells and primary hamster hepatocytes. Cultured cells were incubated with different doses of simvastatin (0.1-10 microM) for a period of 18 h. A dose-dependent increase in synthesis and secretion of apoAI was observed in both cell types. There was a significant increase in the synthesis of apoAI in HepG2 cells (44.3+/-12.1%), and hamster hepatocytes (212+/-2%) after treatment with 10 microM of the statin. The increase in apoAI synthesis appeared to result in a higher level of apoAI secreted into the culture media in both cell types (49.2+/-7.8% in HepG2, 197+/-0.2% in hamster hepatocytes). ApoAI mRNA levels were also significantly increased in both cell types in response to statin treatment. Control experiments with transferrin confirmed specificity of the effect on apoAI secretion. Analysis of a density fraction containing HDL particles in culture media revealed an increase in HDL-associated apoAI of 94.3+/-2.1% in HepG2 cells and 27.0+/-0.03% in hamster hepatocytes following 10 microM simvastatin-treatment. Comparative studies of simvastatin and lovastatin indicated a differential ability to induce apoAI synthesis and secretion, with simvastatin having a more significant effect. Thus, acute statin treatment of cultured hepatocytes (transformed as well as primary) resulted in a significant upregulation of apoAI mRNA and apoAI synthesis, causing oversecretion of apoAI and HDL extracellularly. The stimulatory effect on apoAI synthesis and secretion may thus explain the clinical observation of an elevated plasma HDL-cholesterol level in hyperlipidemic patients treated with

  4. Transcriptional down regulation of hTERT and senescence induction in HepG2 cells by chelidonine

    PubMed Central

    Kazemi Noureini, Sakineh; Wink, Michael

    2009-01-01

    AIM: To investigate the potential effects of chelidonine, the main alkaloid of Chelidonium majus, on telomerase activity and its regulation in HepG2 cells. METHODS: Cytotoxicity of chelidonine for HepG2 cells was determined by neutral red assay. A modified polymerase chain reaction (PCR)-based telomerase repeat amplification protocol was used to estimate relative telomerase activity in chelidonine-treated cells in comparison with the untreated control cells. Relative expression level of the catalytic subunit of telomerase (hTERT) gene and P-glycoprotein (pgp) were estimated using semi-quantitative real-time reverse transcription-PCR (RT-PCR). Cell senescence in treated cells was demonstrated using a β-galactosidase test. RESULTS: Cytotoxicity of chelidonine in HepG2 cells was not dose-dependent and tended to reach plateau immediately after the living cells were reduced in number to slightly higher than 50%. However, 12 μmol/L concentration of chelidonine was considered as LD50, where the maximal attainable effects were realized. Real-time RT-PCR data showed that the expression of pgp increased three-fold in chelidonine treated HepG2 cells in comparison with the untreated controls. Morphologically, treated HepG2 cells showed apoptotic features after 24 h and a small fraction of cells appeared with single blister cell death. The relative expression level of Bcl-2 dropped to less than 50% of control cells at a sub-apoptotic concentration of chelidonine and subsequently increased to higher than 120% at LD50. Telomerase activity was reduced considerably after administration of very low doses of chelidonine, whereas higher concentrations of chelidonine did not remarkably enhance the effect. Real-time RT-PCR experiments indicated a drastic decrease in expression level of hTERT subunit of telomerase under treatment with chelidonine. Repeated treatment of cells with very low doses of chelidonine caused a decline in growth rate by 4 wk and many of the cells appeared to be

  5. Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.

    PubMed

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-09-02

    Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas.

  6. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2012-01-25

    Dietary flavonoid quercetin has been suggested as a cancer chemopreventive agent, but the mechanisms of action remain unclear. This study investigated the influence of quercetin on p38-MAPK and the potential regulation of the nuclear transcription factor erythroid-2p45-related factor (Nrf2) and the cellular antioxidant/detoxifying defense system related to glutathione (GSH) by p38 in HepG2 cells. Incubation of HepG2 cells with quercetin at a range of concentrations (5-50μM) for 4 or 18h induced a differential effect on the modulation of p38 and Nrf2 in HepG2 cells, 50μM quercetin showed the highest activation of p38 at 4h of treatment and values of p38 similar to those of control cells after 18 h of incubation, together with the inhibition of Nrf2 at both incubation times. Quercetin (50μM) induced a time-dependent activation of p38, which was in concert with a transient stimulation of Nrf2 to provoke its inhibition afterward. Quercetin also increased GSH content, mRNA levels of glutamylcysteine-synthetase (GCS) and expression and/or activity of glutathione-peroxidase, glutathione-reductase and GCS after 4h of incubation, and glutathione-S-transferase after 18h of exposure. Further studies with the p38 specific inhibitor SB203580 showed that the p38 blockage restored the inhibited Nrf2 transcription factor and the enzymatic expression and activity of antioxidant/detoxificant enzymes after 4h exposure. In conclusion, p38-MAPK is involved in the mechanisms of the cell response to quercetin through the modulation of Nrf2 and glutathione-related enzymes in HepG2 cells.

  7. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  8. The role of oxidative stress in citreoviridin-induced DNA damage in human liver-derived HepG2 cells.

    PubMed

    Bai, Yuntao; Jiang, Li-Ping; Liu, Xiao-Fang; Wang, Dong; Yang, Guang; Geng, Cheng-Yan; Li, Qiujuan; Zhong, Lai-Fu; Sun, Qinghua; Chen, Min

    2015-05-01

    We hypothesize that citreoviridin (CIT) induces DNA damage in human liver-derived HepG2 cells through an oxidative stress mechanism and that N-acetyl-l-cysteine (NAC) protects against CIT-induced DNA damage in HepG2 cells. CIT-induced DNA damage in HepG2 cells was evaluated by alkaline single-cell gel electrophoresis assay. To elucidate the genotoxicity mechanisms, the level of oxidative DNA damage was tested by immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG); the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH) were examined; mitochondrial membrane potential and lysosomal membranes' permeability were detected; furthermore, protective effects of NAC on CIT-induced ROS formation and CIT-induced DNA damage were evaluated in HepG2 cells. A significant dose-dependent increment in DNA migration was observed at tested concentrations (2.50-10.00 µM) of CIT. The levels of ROS, 8-OHdG formation were increased by CIT, and significant depletion of GSH in HepG2 cells was induced by CIT. Destabilization of lysosome and mitochondria was also observed in cells treated with CIT. In addition, NAC significantly decreased CIT-induced ROS formation and CIT-induced DNA damage in HepG2 cells. The data indicate that CIT induces DNA damage in HepG2 cells, most likely through oxidative stress mechanisms; that NAC protects against DNA damage induced by CIT in HepG2 cells; and that depolarization of mitochondria and lysosomal protease leakage may play a role in CIT-induced DNA damage in HepG2 cells. © 2014 The Authors. Published by Wiley Periodicals Inc.

  9. Decorin inhibits the proliferation of HepG2 cells by elevating the expression of transforming growth factor-β receptor II.

    PubMed

    Liu, Yanfeng; Wang, Xuesong; Wang, Zhaohui; Ju, Wenbo; Wang, Dawei

    2016-10-01

    The aim of the present study was to investigate the effects of decorin (DCN) on the proliferation of human hepatoma HepG2 cells and the involvement of transforming growth factor-β (TGF-β) signaling pathway. A vector containing DCN was transfected into HepG2 cells with the use of Lipofectamine 2000. Cell proliferation was assessed with an MTT assay, and western blot analysis was used to detect the protein expression of TGF-β receptor I (TGF-βRI), phosphorylated TGF-βRI, p15 and TGF-βRII. In addition, small interfering RNA (siRNA) silencing was performed to knock down the target gene. The results indicated that, compared with the control group, cell proliferation was significantly decreased in HepG2 cells transfected with DCN. In addition, DCN transfection significantly increased the phosphorylation level of TGF-βRI in HepG2 cells. The expression of the downstream factor p15 was also significantly elevated in the DCN-transfected HepG2 cells. Furthermore, DCN transfection significantly elevated the expression level of TGF-βRII in HepG2 cells. By contrast, the silencing of TGF-βRII significantly decreased the phosphorylation of TGF-βRI in DCN-transfected HepG2 cells. In addition, TGF-βRII silencing abolished the effects of DCN on the proliferation of HepG2 cells. In conclusion, DCN elevated the expression level of TGF-βRII, increased the phosphorylation level of TGF-βRI, enhanced the expression of p15, and finally inhibited the proliferation of HepG2 cells. These findings may contribute to the understanding of the role of DCN in the pathogenesis of hepatic carcinoma and assist in the disease treatment.

  10. A comparative toxicity evaluation of Escherichia coli-targeted ssDNA and chlorine in HepG2 cells.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2014-01-01

    In this study, a comparative assessment of the effectiveness of ssDNA and chlorine as disinfectants for treating water contaminated with Escherichia coli (E. coli) was investigated on the basis of cytotoxicity and genotoxicity. The gene targets addressed for the ssDNA based inhibition method were marA (multiple antibiotic resistance) and groL (essential gene Hsp60) in E. coli. Based on the maximum log reduction in E. coli cell numbers when compared to no ssDNA control, groL-1 was chosen as the optimized ssDNA for gene silencing-based inactivation. For toxicity assessment, HepG2 cells were exposed to extracts corresponding to concentrations of 0.2, 1, 5, 25 and 50 mL water/mL medium of chlorine doped water and 1, 10, 100, 300 nM of ssDNA. Compared with ssDNA, HepG2 cells exposed to extracts of chlorine doped water for 24 h showed higher cytotoxicity, caspase 3/7 levels, DNA damage, micronuclei frequency, and decreased cell viability. Water doped with chlorine was found to be more toxic than that by ssDNA when exposed to HepG2 cells. The results of this study provide a scientific basis for comparative evaluation of new and conventional disinfection methods by taking into consideration the outcome of cytotoxicity and genotoxicity assessments.

  11. Chenodeoxycholic acid increases the induction of CYP1A1 in HepG2 and H4IIE cells

    PubMed Central

    IBRAHIM, ZEIN SHABAN

    2015-01-01

    Bile acids are considered to promote carcinogenesis. Cytochrome P450 1A1 (CYP1A1) plays a critical role in the biotransformation of drugs and procarcinogens. This study aimed to investigate the ability of bile acids to modulate CYP1A1 expression. Treatment of HepG2 cells with chenodeoxycholic acid (CDCA) and Sudan III (S.III) upregulated CYP1A1 transcriptional activity in HepG2 cells and CYP1A1 mRNA expression in H4IIE cells. Pretreatment of the HepG2 and H4IIE cells with CDCA upregulated the S.III-induced CYP1A transcriptional activity and mRNA expression. The CDCA-induced enhancement of CYP1A1 was not abolished by the p38 inhibitor SB203580. However, exposure of the cells to the mitogen-activated protein kinase kinase (MEK)1/2 inhibitor PD98059 suppressed the CDCA-induced enhancement of CYP1A1. These results show the ability of CDCA to upregulate CYP1A1 transcription and expression, which may explain the hepatocarcinogenesis-inducing effect of cholestasis. The CDCA-induced upregulation of CYP1A1 most probably proceeded through MEK1/2 activation, indicating that this may be a therapeutic target to prevent the cancer-promoting effects of excessive amounts of bile acids. PMID:26640583

  12. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells

    PubMed Central

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage. PMID:26839752

  13. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells.

    PubMed

    Zhang, Yuxia; Chen, Tong; Yuan, Pei; Tian, Rui; Hu, Wenjing; Tang, Yalan; Jia, Yuntao; Zhang, Liangke

    2015-11-20

    Self-assembled pectin nanoparticles was prepared and evaluated for delivering the hydrophobic drug, honokiol (HK), to HepG2 cells. These hydrophobic drug-loaded nanoparticles were developed without using any surfactant and organic solvent. Hydroxypropyl-β-cyclodextrin (HCD) was used to fabricate an inclusion complex with HK (HKHCD) to increase the solubility of the drug and thus facilitate its encapsulation and dispersion in the pectin nanoparticles. Investigation of the in vitro release indicated that the drug-loaded nanoparticles exhibited a higher drug release rate than free honokiol and an effective sustained-release. Cytotoxicity, cell apoptosis and cellular uptake studies further confirmed that the pectin nanoparticles with galactose residues generated higher cytotoxicity than free honokiol on HepG2 cells which highly expressed asialoglycoprotein receptors (ASGR). Nevertheless, these findings were not observed in ASGR-negative A549 cells under similar condition. Therefore, pectin nanoparticles demonstrated a specific active targeting ability to ASGR-positive HepG2 cells and could be used as a potential drug carrier for treatment of liver-related tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3.

    PubMed

    Roshan, Sadia; Liu, Yun-yi; Banafa, Amal; Chen, Hui-jie; Li, Ke-xiu; Yang, Guang-xiao; He, Guang-yuan; Chen, Ming-jie

    2014-06-01

    Fucoidan is one of the main bioactive components of polysaccharides. The current study was focused on the anti-tumor effects of fucoidan on human heptoma cell line HepG2 and the possible mechanisms. Fucoidan treatment resulted in cell cycle arrest and apoptosis of HepG2 cells in a dose-dependent manner detected by MTT assay, flow cytometry and fluorescent microscopy. The results of flow cytometric analysis revealed that fucoidan induced G2/M arrest in the cell cycle progression. Hoechst 33258 and Annexin V/PI staining results showed that the apoptotic cell number was increased, which was associated with a dose-dependent up-regulation of Bax and down-regulation of Bcl-2 and p-Stat3. In parallel, the up-regulation of p53 and the increase in reactive oxygen species were also observed, which may play important roles in the inhibition of HepG2 growth by fucoidan. In the meantime, Cyclin B1 and CDK1 were down-regulated by fucoidan treatment. Down-regulation of p-Stat3 by fucoidan resulted in apoptosis and an increase in ROS in response to fucoidan exposure. We therefore concluded that fucoidan induces apoptosis through the down-regulation of p-Stat3. These results suggest that fucoidan may be used as a novel anti-cancer agent for hepatocarcinoma.

  15. A polysaccharide from Andrographis paniculata induces mitochondrial-mediated apoptosis in human hepatoma cell line (HepG2).

    PubMed

    Zou, Yanmei; Xiong, Hua; Xiong, Huihua; Lu, Tao; Zhu, Feng; Luo, Zhiyong; Yuan, Xianglin; Wang, Yihua

    2015-07-01

    In the present study, we investigated the effects and action mechanisms of a purified polysaccharide (APWP) from Andrographis paniculata, on human hepatocellular carcinoma (HCC) HepG2 cells. The results showed that APWP was able to suppress the proliferation of HepG2 cells via inducing apoptosis. Western blot analysis revealed that dose-dependent increase in proapoptotic Bax protein and no change in antiapoptotic Bcl-2 protein in APWP-treated cells. Furthermore, exposure of tumor cells to APWP resulted in a loss of mitochondrial membrane potential (MMP) and the release of cytochrome c from the mitochondria to the cytosol. Besides, caspase-9 and caspase-3 were activated while caspase-8 was not affected in HepG2 cells followed by APWP treatment. All these results point clearly to the involvement of mitochondria-mediated signaling pathway in APWP-induced apoptosis and strongly suggest that APWP seems to be safe and effective in the prevention and treatment of HCC.

  16. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells.

    PubMed

    Kong, Kin Weng; Mat-Junit, Sarni; Aminudin, Norhaniza; Hassan, Fouad Abdulrahman; Ismail, Amin; Abdul Aziz, Azlina

    2016-01-01

    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage.

  17. Lipid Accumulation in HepG2 Cells Is Attenuated by Strawberry Extract through AMPK Activation.

    PubMed

    Forbes-Hernández, Tamara Y; Giampieri, Francesca; Gasparrini, Massimiliano; Afrin, Sadia; Mazzoni, Luca; Cordero, Mario D; Mezzetti, Bruno; Quiles, José L; Battino, Maurizio

    2017-06-16

    Regulation of lipid metabolism is essential for treatment and prevention of several chronic diseases such as obesity, diabetes, and cardiovascular diseases, which are responsible for most deaths worldwide. It has been demonstrated that the AMP-activated protein kinase (AMPK) has a direct impact on lipid metabolism by modulating several downstream-signaling components. The main objective of the present work was to evaluate the in vitro effect of a methanolic strawberry extract on AMPK and its possible repercussion on lipid metabolism in human hepatocellular carcinoma cells (HepG2). For such purpose, the lipid profile and the expression of proteins metabolically related to AMPK were determined on cells lysates. The results demonstrated that strawberry methanolic extract decreased total cholesterol, low-density lipoprotein (LDL)-cholesterol, and triglycerides levels (up to 0.50-, 0.30-, and 0.40-fold, respectively) while it stimulated the p-AMPK/AMPK expression (up to 3.06-fold), compared to the control. AMPK stimulation led to the phosphorylation and consequent inactivation of acetyl coenzyme A carboxylase (ACC) and inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the major regulators of fatty acids and cholesterol synthesis, respectively. Strawberry treatment also entailed a 4.34-, 2.37-, and 2.47-fold overexpression of LDL receptor, sirtuin 1 (Sirt1), and the peroxisome proliferator activated receptor gamma coactivator 1-alpha (PGC-1α), respectively, compared to control. The observed results were counteracted by treatment with compound C, an AMPK pharmacological inhibitor, confirming that multiple effects of strawberries on lipid metabolism are mediated by the activation of this protein.

  18. Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines).

    PubMed

    Severino, Patrícia; Andreani, Tatiana; Jäger, Alessandro; Chaud, Marco V; Santana, Maria Helena A; Silva, Amélia M; Souto, Eliana B

    2014-06-23

    Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-05

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of Nano-CeO2 with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells

    PubMed Central

    Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming

    2015-01-01

    Cerium oxide nanoparticles (nano-CeO2) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO2 with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO2 at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO2 were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO2 were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO2 entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO2 with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell’s ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO2, the rod-like nano-CeO2 has lowest toxicity to HepG2 cells owing to its larger specific surface areas. PMID:26404340

  1. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line

    PubMed Central

    2011-01-01

    Background Six plants from Thailand were evaluated for their cytotoxicity and apoptosis induction in human hepatocarcinoma (HepG2) as compared to normal African green monkey kidney epithelial cell lines. Methods Ethanol-water crude extracts of the six plants were tested with neutral red assay for their cytotoxicity after 24 hours of exposure to the cells. Apoptotic induction was tested in the HepG2 cells with diamidino-2-phenylindole staining. DNA fragmentation, indicative of apoptosis, was analyzed with agarose gel electrophoresis. Alkylation, indicative of DNA damage, was also evaluated in vitro by 4-(4'-nitrobenzyl) pyridine assay. Results The extract of Pinus kesiya showed the highest selectivity (selectivity index = 9.6) and potent cytotoxicity in the HepG2 cell line, with an IC50 value of 52.0 ± 5.8 μg/ml (mean ± standard deviation). Extract of Catimbium speciosum exerted cytotoxicity with an IC50 value of 55.7 ± 8.1 μg/ml. Crude extracts from Glochidion daltonii, Cladogynos orientalis, Acorus tatarinowii and Amomum villosum exhibited cytotoxicity with IC50 values ranging 100-500 μg/ml. All crude extracts showed different alkylating abilities in vitro. Extracts of P. kesiya, C. speciosum and C. orientalis caused nuclei morphological changes and DNA laddering. Conclusion The extracts of C. speciosum, C. orientalis and P. kesiya induced apoptosis. Among the three plants, P. kesiya possessed the most robust anticancer activity, with specific selectivity against HepG2 cells. PMID:22041055

  2. Anticancer effect of 20(S)-ginsenoside Rh2 on HepG2 liver carcinoma cells: Activating GSK-3β and degrading β-catenin.

    PubMed

    Shi, Qingqiang; Shi, Xueping; Zuo, Gei; Xiong, Wei; Li, Haixing; Guo, Pei; Wang, Fen; Chen, Yi; Li, Jing; Chen, Di-Long

    2016-10-01

    20(S)-ginsenoside Rh2 [(S)Rh2] possesses potential to prevent cancer in vitro as well as in vivo, but the underlying mechanism is still unknown. First, we infected HepG2 cells with lentivirus which carries β‑catenin. We detected the pharmacological effects of (S)Rh2 on HepG2 and HepG2‑β‑catenin cells and found that the IC50 of (S)Rh2 exposure on HepG2-β-catenin cells was higher than HepG2 cells. Flow cytometry (FCM) indicated that (S)Rh2 could be arrested in G0/G1 phase and induce early apoptosis in HepG2 and HepG2‑β‑catenin cells. Second, ELISA kit was used to check the activity of glycogen synthase kinase‑3β (GSK‑3β), which was upregulated by (S)Rh2. GSK‑3β inhibitor BIO, was used to verify that (S)Rh2 activated GSK‑3β. PCR and western blotting results indicated that (S)Rh2 could degrade the expression of β‑catenin, which combined with TCF in the nucleus and activate transcription of Wnt target genes, such as Bax, Bcl‑2, cyclin D1, MMP3, which were checked by chromatin immunoprecipitation (ChIP), PCR and western blotting. The results showed that the expression of Bax mRNA and proteins increased, while the cyclin D1, Bcl‑2, MMP3 mRNA and proteins were downregulated in HepG2 and HepG2‑β‑catenin cells which was induced by (S)Rh2. By contrast, with the HepG2-β-catenin + (S)Rh2 group, the expression of other mRNA and proteins in HepG2 + (S)Rh2 group changed significantly. In vivo, experiments were performed using a nude mouse xenograft model to investigate the (S)Rh2 effect. So these results suggested that (S)Rh2 could suppress proliferation, promote apoptosis and inhibit metastasis of HepG2, decrease weight of tumor by downregulating β‑catenin through activating GSK‑3β and the pharmacological effect of (S)Rh2 on HepG2 cells might be weakened by overexpression of β‑catenin.

  3. Synthesis of Functionalized Fluorescent Silver Nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells.

    NASA Astrophysics Data System (ADS)

    Santos, Hugo; Oliveira, Elisabete; Garcia-Pardo, Javier; Diniz, Mário; Lorenzo, Julia; Rodriguez-González, Benito; Capelo, José Luis; Lodeiro, Carlos

    2013-12-01

    Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT) and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand.

  4. Organic extracts of coke oven emissions can induce genetic damage in metabolically competent HepG2 cells.

    PubMed

    Xin, Lili; Wang, Jianshu; Guo, Sifan; Wu, Yanhu; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Xiao, Wei; Wu, Tangchun; Guo, Huan

    2014-05-01

    Coke oven emissions (COEs) containing various carcinogenic polycyclic aromatic hydrocarbons (PAHs) represent the coal-burning pollution in the air. Organic pollutants in the aerosol and particulate matter of COEs were collected from the bottom, side, and top of a coke oven. The Comet assay and cytokinesis-block micronucleus cytome assay were conducted to analyze the genetic damage of extractable organic matter (EOM) of COEs on HepG2 cells. All the three EOMs could induce significant dose-dependent increases in Olive tail moment, tail DNA, and tail length, micronuclei, nucleoplasmic bridges, and nuclear buds frequencies, which were mostly positively correlated with the total PAHs concentration in each EOM. In conclusion, EOMs of COEs in the three typical working places of coke oven can induce DNA strand breaks and genomic instability in the metabolically competent HepG2 cells. The PAHs in EOMs may be important causative agents for the genotoxic effects of COEs.

  5. Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells.

    PubMed

    Niu, Zhidan; Zhang, Wenya; Gu, Xueyan; Zhang, Xiaoning; Qi, Yongmei; Zhang, Yingmei

    2016-07-01

    Mitochondrial damage can trigger mitophagy and eventually suppress proliferation. However, the effect of mitophagy on proliferation remains unclear. In this study, HepG2 cells were used to assess mitophagy and proliferation arrest in response to As2O3 exposure. The stimulatory effect of As2O3 on mitophagy was investigated by assessing morphology (mitophagosome and mitolysosome) and relevant proteins (PINK1, LC3 II/I, and COX IV). Additionally, the relationship of mitophagy and proliferation was explored through the use of mitophagy inhibitors (CsA, Mdivi-1). Interestingly, the inhibition of mitophagy rescued proliferation arrest by restoring COX-2 protein level and countered the elimination of mitochondria-located COX-2 and up-regulated the COX-2 mRNA level. Taken together, our findings indicated that mitophagy can be induced and can inhibit proliferation by reducing COX-2 in HepG2 cells during As2O3 treatment.

  6. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells.

    PubMed

    Liu, Xin; Hao, Jie-Jie; Zhang, Li-Juan; Zhao, Xia; He, Xiao-Xi; Li, Miao-Miao; Zhao, Xiao-Liang; Wu, Jian-Dong; Qiu, Pei-Ju; Yu, Guang-Li

    2014-10-06

    Low molecular weight and sulfated low molecular weight guluronate (LMG and SLMG) were prepared and hypolipidemic effects were studied in a human hepatocellular carcinoma HepG2 cell line. Both compounds decreased total cholesterol (TC) and triglycerides (TG) and inhibited 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity in HepG2 cells. In general, SLMG had greater effects than LMG. Activation of sterol regulatory element-binding protein 2 (SREBP-2), low density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and AMPK's downstream targets were evidenced by increased phosphorylation of AMPK, HMGCR, and acetyl-CoA-carboxylase (ACC), which decreased HMGRC and ACC activity. We further demonstrated that activated AMPK was linked to down-regulated SREBP-1 and up-regulated cholesterol 7α-hydroxylase (CYP7A1). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Peganum harmala L. differentially modulates cytochrome P450 gene expression in human hepatoma HepG2 cells.

    PubMed

    El Gendy, Mohamed A M; El-Kadi, Ayman O S

    2009-12-01

    Peganum harmala L. (Zygophyllaceae) is a common plant in Middle East and it is still used traditionally to treat several diseases. The effect of P. harmala extract on the expression of different cytochrome P450's (CYP) involved in drug metabolism was examined in human HepG2 cells. Therefore, HepG2 cells were incubated with increasing concentrations of plant extract and the CYP gene expression was determined by real-time PCR. Our results showed that P. harmala extract significantly increased the expression of CYP1A2, 2C19, and 3A4 whereas; CYP 2B6, 2D6 and 2E1 was significantly decreased. We concluded that care should be taken when P. harmala is co-administered with other drugs.

  8. Protective Effect of Pinus koraiensis Needle Water Extract Against Oxidative Stress in HepG2 Cells and Obese Mice

    PubMed Central

    Won, Sae Bom; Jung, Ga-young; Kim, Juhae; Chung, Young Shin; Hong, Eun Kyung

    2013-01-01

    Abstract Needles of pine species are rich in polyphenols, which may exert beneficial effects on human health. The present study was conducted to evaluate the in vitro and in vivo antioxidant effects of Pinus koraiensis needle water extracts (PKW). HepG2 cells were pretreated with various concentrations of PKW (from 10−3 to 1 mg/mL) and oxidative stress was induced by tert-butyl hydroperoxide (t-BOOH). In the animal model, male ICR mice were fed a high-fat diet for 6 weeks to induce obesity, and then mice were continually fed a high-fat diet with or without orally administered PKW (400 mg/kg body weight) for 5 weeks. Pretreatment with PKW prevented significant increases in cytotoxicity and catalase activity induced by t-BOOH in HepG2 cells. Similarly, the catalase protein expression levels elevated by t-BOOH were abrogated in cells pretreated with PKW. In mice fed a high-fat diet, PKW significantly increased hepatic activities of catalase and glutathione reductase and lower lipid peroxidation levels were observed in the liver and kidney of mice with PKW supplementation. The present study demonstrates that PKW protects against oxidative stress in HepG2 cells treated with t-BOOH and in mice fed a high-fat diet. PMID:23822143

  9. Role of mitochondrial permeability transition in human hepatocellular carcinoma Hep-G2 cell death induced by rhein.

    PubMed

    Du, Qiong; Bian, Xiao-Lan; Xu, Xiao-Le; Zhu, Bin; Yu, Bo; Zhai, Qing

    2013-12-01

    Rhein, a compound found as a glucoside in the root of rhubarb, is currently a subject of interest for its antitumor properties. The apoptosis of tumor cell lines induced by rhein was observed, and the involvement of mitochondria was established; however, the role of mitochondrial permeability transition (MPT) remains unknown. Here we report that MPT plays an important role in the apoptosis of human hepatocellular carcinoma Hep-G2 cells induced by rhein. After adding rhein to the isolated hepatic mitochondria, swelling effects and the leakage of Ca(2+) were observed. These alterations were suppressed by cyclosporin A (CsA), an MPT inhibitor. Furthermore, in Hep-G2 cells, the decrease of ATP production, the loss of mitochondrial transmembrane potential (MTP), the release of cytochrome c (Cyto c), and the activation of caspase 3 were also observed. These toxic effects of rhein can also be attenuated by CsA as well. Moreover, TUNEL assay confirmed that in the presence of CsA, rhein-induced apoptosis was largely inhibited. These results suggest that MPT plays a critical role in the pathogenesis of Hep-G2 cell injury induced by rhein, and imply that MPT may contribute to the anti-cancer activity of rhein. © 2013.

  10. A polysaccharide from Grifola frondosa relieves insulin resistance of HepG2 cell by Akt-GSK-3 pathway.

    PubMed

    Ma, Xiaolei; Zhou, Fuchuan; Chen, Yuanyuan; Zhang, Yuanyuan; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2014-07-01

    Grifola frondosa is an important fungal research resource. However, there was little report about hyperglycemic activity of Grifola frondosa polysaccharide on insulin resistance in vitro. In this study, the hypoglycemic activity of a polysaccharide obtained from Grifola frondosa (GFP) on HepG2 cell and hpyerglycemic mechanism were investigated. The purity of the isolated polysaccharides was examined by HPLC. In this research, it was found that GFP enhanced the absorption of glucose of HepG2 cells in a dose dependent manner at 24 h of 30 ugmL⁻¹. GC-MS and FT-IR spectroscopy analysis results showed that glucose and galactose were the dominant monosaccharides in GFP and the major component of GFP was β-pyranoside. Western-blotting results showed that the HepG2 cell model treated with GFP activated the insulin receptor protein (IRS) in the cell membrane and increased phosphorylated-AktSer473 expression, which had an inhibition of glycogen synthase kinase (GSK-3). The down-regulation of GSK-3 stimulated synthesis of intracellular glycogen. The results above suggested that the GFP increased the metabolism of glucose and stimulated synthesis of intracellular glycogen through the Akt/GSK-3 pathway.

  11. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis.

    PubMed

    Zhou, Cunshan; Qian, Lichun; Ma, Haile; Yu, Xiaojie; Zhang, Youzuo; Qu, Wenjuan; Zhang, Xiaoxu; Xia, Wei

    2012-09-01

    The growth inhibition and induction of apoptosis brought by amygdalin and activated with β-D-glucosidase were tested for cytoactivity in HepG2 cells. The MTT viability assay showed that all samples had effects on HepG2 proliferation in dose and time response manners. IC50 of stand-alone amygdalin and activation with β-D-glucosidase on the proliferation of HepG2 cells for 48 h were 458.10 mg/mL and 3.2 mg/mL, respectively. Moreover, apoptotic cells were determined by AO/EB (acridine orange/ethidium bromide) fluorescent staining method and Annexin V-FITC/PI staining flow cytometry cell cycle analysis. With increasing of amygdalin concentration and the incubation time, the apoptotic rate was heightened. Compared with the control, there was significant difference (p<0.01). Together, these findings indicate that amygdalin had no strong anti-HepG2 activity; however the ingredients of amygdalin activated with β-D-glucosidase had a higher and efficient anti-HepG2 activity. It was therefore suggested that this combination strategy may be applicable for treating tumors with a higher activity.

  12. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    PubMed Central

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  13. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells.

    PubMed

    Krause, Gabriele Catyana; Lima, Kelly Goulart; Dias, Henrique Bregolin; da Silva, Elisa Feller Gonçalves; Haute, Gabriela Viegas; Basso, Bruno Souza; Gassen, Rodrigo Benedetti; Marczak, Elisa Simon; Nunes, Rafaela Sole Bach; de Oliveira, Jarbas Rodrigues

    2017-08-15

    It has been reported that glucagon-like peptide-1 (GLP-1) agents have been associated with both the increased risk of cancer and inhibition of tumor growth and metastases. The aim of this study is to evaluate the effect of liraglutide on hepatocellular carcinoma cells - HepG2. Cytometry was used to evaluate mechanism related to decreased cell proliferation. Nuclear staining and morphometric analysis were also used to verify the process that was taking place after treatment with liraglutide, and in order to better understand the mechanism, TGF-β1 was performed. HepG2 cells decreased proliferation after liraglutide treatment without altering oxidative stress levels. Liraglutide was able to induce autophagy and senescence through the increase of TGF-β1 which possibly explains the growth decrease. We have demonstrated that liraglutide has an antiproliferative effect in HepG2 cells inducing autophagy and senescence by the increase of TGF-β1. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters.

    PubMed

    Kou, Shuming; Han, Bing; Wang, Yue; Huang, Tao; He, Kai; Han, Yulong; Zhou, Xia; Ye, Xiaoli; Li, Xuegang

    2016-04-15

    Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. HNF-4alpha Negatively Regulates Hepcidin Expression Through BMPR1A in HepG2 Cells.

    PubMed

    Shi, Wencai; Wang, Heyang; Zheng, Xuan; Jiang, Xin; Xu, Zheng; Shen, Hui; Li, Min

    2016-09-23

    Hepcidin synthesis is reported to be inadequate according to the body iron store in patients with non-alcoholic fatty liver disease (NAFLD) undergoing hepatic iron overload (HIO). However, the underlying mechanisms remain unclear. We hypothesize that hepatocyte nuclear factor-4α (HNF-4α) may negatively regulate hepcidin expression and contribute to hepcidin deficiency in NAFLD patients. The effect of HNF-4α on hepcidin expression was observed by transfecting specific HNF-4α small interfering RNA (siRNA) or plasmids into HepG2 cells. Both direct and indirect mechanisms involved in the regulation of HNF-4α on hepcidin were detected by real-time PCR, Western blotting, chromatin immunoprecipitation (chIP), and reporter genes. It was found that HNF-4α suppressed hepcidin messenger RNA (mRNA) and protein expressions in HepG2 cells, and this suppressive effect was independent of the potential HNF-4α response elements. Phosphorylation of SMAD1 but not STAT3 was inactivated by HNF-4α, and the SMAD4 response element was found essential to HNF-4α-induced hepcidin reduction. Neither inhibitory SMADs, SMAD6, and SMAD7 nor BMPR ligands, BMP2, BMP4, BMP6, and BMP7 were regulated by HNF-4α in HepG2 cells. BMPR1A, but not BMPR1B, BMPR2, ActR2A, ActR2B, or HJV, was decreased by HNF-4α, and HNF4α-knockdown-induced stimulation of hepcidin could be entirely blocked when BMPR1A was interfered with at the same time. In conclusion, the present study suggests that HNF-4α has a suppressive effect on hepcidin expression by inactivating the BMP pathway, specifically via BMPR1A, in HepG2 cells.

  16. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    PubMed

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  17. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells.

    PubMed

    Marabini, Laura; Frigerio, Silvia; Chiesara, Enzo; Radice, Sonia

    2006-01-01

    It is well known that water disinfection through chlorination causes the formation of a mixture of disinfection by-products (DBPs), many of which are genotoxic and carcinogenic. To demonstrate the formation of such compounds, a pilot water plant supplied with water from Lake Trasimeno was set up at the waterworks of Castiglione del Lago (PG, Italy). The disinfectants, continuously added to pre-filtered lake water flowing into three different basins, were sodium hypochlorite, chlorine dioxide and peracetic acid, an alternative disinfectant used until now for disinfecting waste waters, but not yet studied for a possible use in drinking water treatment. The aim of this study was to evaluate the formation during the disinfection processes of some toxic compounds that could explain the genotoxic effects of drinking waters. Differently treated waters were concentrated by solid-phase adsorption on silica C(18) columns and toxicity was assessed in a line of human hepatoma cells (HepG2), a metabolically competent cellular line very useful for human risk evaluation. The seasonal variability of the physical-chemical water characteristics (AOX, UV 254 nm, potential formation of THM, pH and temperature) made indispensable experimentation with water samples taken during the various seasons. Autumn waters cause greater toxicity compared to those of other seasons, in particular dilution of the concentrate at 0.5l equivalent of disinfected waters with chlorine dioxide and peracetic acid causes a 55% reduction in cellular vitality while the cellular vitality is over 80% with the all other water concentrates. Moreover it is very interesting underline that non-cytotoxic quantities of the autumnal water concentrates cause, after 2h treatment, a decrease in GSH and a statistically significant increase in oxygen radicals, while after prolonged treatment (24h) cause a GSH increase, without variations in the oxygen radical content. This phenomenon could be interpreted as the cellular

  18. Isolation, Purification, Characterization and Effect upon HepG2 Cells of Anemaran from Rhizome Anemarrhena.

    PubMed

    Jiang, Qian-Qian; Zhao, Yun-Ping; Gao, Wen-Yuan; Li, Xia; Huang, Lu-Qi; Xiao, Pei-Gen

    2013-01-01

    The rhizome of Anemarrhena asphodeloides is used as food and traditional Chinese medicine for its hypoglycemic effect. The aim of this study was to investigate the isolation, purification and hypoglycemic activity of Anemaran as the active component. The influence factors (isolation duration, ratio of residuals to water and extracting times) during the isolation process were evaluated. The optimal conditions for NA and AA were extraction temperature 90ºC and 100ºC, duration 1h and 1.5 h, extraction time 3 and 3, and the solid-liquor ratio 1:20 and 1:15, respectively. Neutral and acid Anemaran (NA and AA) were isolated from the rhizome of Anemarrhena asphodeloides. Five fractions of NA-1, NA-2, NA-3, AA-1 and AA-2 were obtained after crude neutral and acid Anemaran purified through DEAE- 52 cellulose anion-exchange column. The characterizations of Anemaran and its different fractions were both analyzed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron micrographs (SEM). Structural properties of different fractions were examined by FT-IR. Strong characteristic absorption peaks were observed at around 1744 cm(-1)and 1650 cm(-1) caused by the C=O group of uronic acids, and the band between 1440 cm(-1) and 1395 cm(-1) associated with the stretching vibration of C-O of galacturonic acid. Neither the crude neutral, nor the acid anemaran significantly inhibited the growth of HepG2 cells in-vitro, which indicated the low cytotoxicity of the anemaran. Furthermore, both neutral and acid anemaran showed hypoglycemic effect. The hypoglycemic effect of neutral anemaran was much higher than that of acid anemaran.

  19. 3,3'-OH curcumin causes apoptosis in HepG2 cells through ROS-mediated pathway.

    PubMed

    Liu, Guo-Yun; Sun, Yong-Zheng; Zhou, Na; Du, Xiu-Mei; Yang, Jie; Guo, Shang-Jing

    2016-04-13

    In this paper, we synthesized a series of curcumin analogs and evaluated their cytotoxicity against HepG2 cells. The results exhibited that the hydroxyl group at 3,3'-position play an essential role in enhancing their anti-proliferation activity. More importantly, 3,3'-hydroxy curcumin (1b) caused apoptosis in HepG2 cells with the ROS generation, which may be mainly composed of hydroxyl radicals (HO) and H2O2. The more cytotoxic activity and ROS-generating ability of 1b may be due to the more stable in (RPMI)-1640 medium and more massive uptake than curcumin. Then the generation of ROS can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 3,3'-hydroxy curcumin (1b) may cause HepG2 cells apoptosis through ROS-mediated pathway, but also offer an important information for design of curcumin analog.

  20. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging.

    PubMed

    Cao, Jun; Liu, Yong; Jia, Li; Jiang, Li-Ping; Geng, Cheng-Yan; Yao, Xiao-Feng; Kong, Ying; Jiang, Bao-Na; Zhong, Lai-Fu

    2008-12-24

    Acrylamide (AA), a proven rodent carcinogen, has recently been discovered in foods heated at high temperatures. This finding raises public health concerns. In our previous study, we found that AA caused DNA fragments and increase of reactive oxygen species (ROS) formation and induced genotoxicity and weak cytotoxicity in HepG2 cells. Presently, curcumin, a natural antioxidant compound present in turmeric was evaluated for its protective effects. The results showed that curcumin at the concentration of 2.5 microg/mL significantly reduced AA-induced ROS production, DNA fragments, micronuclei formation, and cytotoxicity in HepG2 cells. The effect of PEG-catalase on protecting against AA-induced cytotoxicity suggests that AA-induced cytotoxicity is directly dependent on hydrogen peroxide production. These data suggest that curcumin could attenuate the cytotoxicity and genotoxicity induced by AA in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of curcumin may be a plausible way to prevent AA-mediated genotoxicity.

  1. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  2. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    PubMed Central

    Tong, Xiao-pei; Ma, Yan-xia; Quan, Dan-ni; Zhang, Ling

    2017-01-01

    In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2. PMID:28286534

  3. EGCG Ameliorates Insulin Resistance and Mitochondrial Dysfunction in HepG2 Cells: Involvement of Bmal1.

    PubMed

    Mi, Yashi; Qi, Guoyuan; Gao, Yuqi; Li, Runnan; Wang, Yiwen; Li, Xingyu; Huang, Shuxian; Liu, Xuebo

    2017-09-04

    Normal physiological processes require a robust biological timer called the circadian clock. Dysregulation of circadian rhythms contributes to a variety of metabolic syndrome, including obesity and insulin resistance. EGCG has been demonstrated to possess antioxidant, anti-inflammatory, and cardioprotective bioactivities. The objective of this study was to explore whether circadian clock is involved in the protective effect of EGCG against insulin resistance. The results demonstrated that EGCG reverses the relatively shallow daily oscillations of circadian clock genes transcription and protein expression induced by glucosamine in HepG2 cells. EGCG also alleviates insulin resistance by enhancing tyrosine phosphorylated levels of IRS-1, stimulating the translocation of GLUT2, and activating PI3K/AKT as well as AMPK signaling pathways in a Bmal1-dependent manner both in HepG2 cells and primary hepatocytes. Glucosamine-stimulated excessive secretions of ROS and depletions of mitochondrial membrane potential were notably attenuated in EGCG co-treated HepG2 cells, which consistent with the recovery in expression of mitochondrial respiration complexes. The results demonstrated that EGCG possesses a Bmal1-dependent efficacy against insulin resistance conditions by strengthening the insulin signaling and eliminating oxidative stress, suggesting that EGCG may serve as a promising natural nutraceutical for the regulation of metabolic disorders relevant to circadian clocks. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells.

    PubMed

    Tong, Xiao-Pei; Ma, Yan-Xia; Quan, Dan-Ni; Zhang, Ling; Yan, Miao; Fan, Xin-Rong

    2017-01-01

    In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2.

  5. Phellinus linteus mushroom protects against tacrine-induced mitochondrial impairment and oxidative stress in HepG2 cells.

    PubMed

    Gao, Chunpeng; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Yao, Xiaofeng; Cao, Jun

    2013-06-15

    Tacrine (THA) was the first drug licensed for the treatment of Alzheimer's disease. Unfortunately, reversible hepatotoxicity is evident in about 30% of patients and limits its clinical use. The intracellular mechanisms have not yet been elucidated. Phellinus linteus (PL) is a mushroom that has long been used as a folk medicine. In our previous study, we found that PL could decrease the reactive oxygen species (ROS) formation in HepG2 cells. Presently, protective effects of PL on tacrine-induced ROS formation and mitochondria dysfunction were evaluated. The results showed that PL significantly reduced tacrine-induced ROS production, disruption of ΔΨm, 8-OHdG formation in mitochondrial DNA, and cytotoxicity in HepG2 cells. These data suggest that PL could attenuate the cytotoxicity and mitochondria dysfunction induced by tacrine in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of PL may be a plausible way to prevent tacrine-induced hepatotoxicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Mulberry leaf phenolics ameliorate hyperglycemia-induced oxidative stress and stabilize mitochondrial membrane potential in HepG2 cells.

    PubMed

    Zou, Yu-Xiao; Shen, Wei-Zhi; Liao, Sen-Tai; Liu, Fan; Zheng, Shan-Qing; Blumberg, Jeffrey B; Chen, C-Y Oliver

    2014-12-01

    To investigate the effect of phenolics in mulberry leaves (mulberry leaf phenolics; MLP) on hyperglycemia-induced oxidative stress and mitochondrial membrane potential (ΔΨm) in HepG2 cells; we treated HepG2 with glucose [5.5 (N-Glc) or 50 mmol/L (Hi-Glc)] with or without MLP at 10 or 100 µmol/L gallic acid equivalents and assessed level of reactive oxidant species (ROS), ΔΨm, malondialdehyde (MDA) and nuclear factor-kappaB (NF-κB) activation. Hi-Glc-induced oxidative damage was demonstrated by a series of increase in superoxides (560%, 0.5 h), MDA (400%, 24 h), NF-κB activation (474%, 4 h) and a wild fluctuation of ΔΨm relative to the control cells (p ≤ 0.05). MLP treatments ameliorate Hi-Glc-induced negative effects by a 40% reduction in ROS production, 34-44% reduction in MDA production, over 35% inhibition of NF-κB activation, as well as exert protective effect on HepG2 cells from change in ΔΨm. Our data show that MLP in vitro can protect hepatoctyes from hyperglycemia-induced oxidative damages.

  7. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.

    PubMed

    Zhang, Jian; Meruvu, Sunitha; Bedi, Yudhishtar Singh; Chau, Jason; Arguelles, Andrix; Rucker, Robert; Choudhury, Mahua

    2015-09-01

    Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function.

  8. De novo LINE-1 Retrotransposition in HepG2 Cells Preferentially Targets Gene Poor Regions of Chromosome 13

    PubMed Central

    Bojang, Pasano; Anderton, Mark; Roberts, Ruth; Ramos, Kenneth S.

    2014-01-01

    Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80–100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1RP in cultured human HepG2 cells. While expression of synthetic L1RP was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition. PMID:25043885

  9. Hep-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase.

    PubMed

    Shaw, M K; Newton, R S; Sliskovic, D R; Roth, B D; Ferguson, E; Krause, B R

    1990-07-31

    CI-981, a novel synthetic inhibitor of HMG-CoA reductase, was previously reported to be highly liver-selective using an ex vivo approach. In order to determine liver-selectivity at the cellular level, CI-981 was evaluated in cell culture and compared to lovastatin, pravastatin, fluvastatin and BMY-21950. Using human cell lines, none of the compounds tested showed liver-selectivity, i.e. strong inhibition of cholesterol synthesis in Hep-G2 cells (liver model) but weak inhibition in human fibroblasts (peripheral cell model). In contrast, all drugs tested produced equal and potent inhibition of sterol synthesis in primary cultures of rat hepatocytes, and CI-981, pravastatin and BMY-21950 were more than 100-fold more potent in rat hepatocytes compared to human fibroblasts. Since all compounds were also equally potent at inhibiting sterol synthesis in a rat subcellular system and in vivo, the data suggest that the use of Hep-G2 cells may not be the cell system of choice in which to study inhibition of hepatic cholesterogenesis or to demonstrate liver selectivity of inhibitors of HMG-CoA reductase.

  10. DNA damage caused by inorganic particulate matter on Raji and HepG2 cell lines exposed to ultraviolet radiation.

    PubMed

    Xiao, Michael; Helsing, Albert V; Lynch, Philip M; El-Naggar, Atif; Alegre, Melissa M; Robison, Richard A; O'Neill, Kim L

    2014-09-01

    Epidemiological studies have correlated exposure to ultraviolet-irradiated particulate matter with cardiovascular, respiratory, and lung diseases. This study investigated the DNA damage induced by two major inorganic particulate matter compounds found in diesel exhaust, ammonium nitrate and ammonium sulfate, on Burkitt's lymphoma (Raji) and hepatocellular carcinoma (HepG2) cell lines. We found a dose-dependent positive correlation of accumulated DNA damage at concentrations of ammonium nitrate (25 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml, 400 μg/ml) with ultraviolet exposure (250 J/m(2), 400 J/m(2), 600 J/m(2), 850 J/m(2)), as measured by the comet assay in both cell lines. There was a significant difference between the treated ammonium nitrate samples and negative control samples in Raji and HepG2 cells (p<0.001). Apoptosis was shown in Raji and HepG2 cells when exposed to high concentrations of ammonium nitrate (200 μg/ml and 400 μg/ml) for 1h in samples without ultraviolet exposure, as assessed by the comet assay. However, the level of apoptosis greatly diminished after ultraviolet exposure at these concentrations. Over a 24h period, at intervals of 1, 4, 8, 12, 18, and 24h, we also observed that ammonium nitrate decreased viability in Raji and HepG2 cell lines and inhibited cell growth. Ammonium sulfate-induced DNA damage was minimal in both cell lines, but there remained a significant difference (p<0.05) between the ultraviolet radiation treated and negative control samples. These results indicate that the inorganic particulate compound, ammonium nitrate, induced DNA strand breaks at all concentrations, and indications of apoptosis at high concentrations in Raji and HepG2 cells, with ultraviolet radiation preventing apoptosis at high concentrations. We hypothesize that ultraviolet radiation may inhibit an essential cellular mechanism, possibly involving p53, thereby explaining this phenomenon. Further studies are necessary to characterize the roles of

  11. [Effects of up-regulation of cathepsin S by HBx gene on HepG2 cell].

    PubMed

    Zhang, Z; Guo, P; Sun, X; Xiao, Y; Xu, J; Fang, Z S; Wu, S Y; Huang, H

    2017-08-08

    Objective: To explore the expression of cathepsin S (Cat S) and Hepatitis B virus X protein (HBx) in HBeAg(-) and HBeAg(+ ) hepatocellular carcinoma (HCC), and discuss the effects of Cat S and HBx interaction on HepG2 cell. Methods: Seventy HCC tissue specimens were collected from the surgical resection which were confirmed by pathology in the Fifth Affiliated Hospital of Guangxi Medical University. The tissue samples were separated into two groups: HBeAg(-) group and HBeAg(+ ) group according to the serology of HBeAg. The expression of Cat S and HBx in the para-carcinoma tissue and the HCC tissue was determined by immunohistochemical staining. The recombinant plasmid of pcDNA3.1-HBx and empty plasmid were constructed and transfected transiently into HepG2 cell. Cells were harvested, and Western blot assay was performed to detectthe protein expression of Cat S and HBx. The cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay, wound healing assay and transwell migration assay. Results: Immunohistochemical staining showed that Cat S expression was up-regulated in HBeAg(+ ) HCC cancer tissues, compared with HBeAg(-)HCC cancer tissues (52.67%±0.33% vs 41.23%±0.52%, P<0.05). HBx expression was up-regulated in HBeAg(+ ) HCC cancer tissues (92.89%), but not in HBeAg(-)HCC cancer tissues. Compared with HepG2 control group, cells in HepG2-HBx group had significantly higher protein level of Cat S and HBx, more obvious proliferation and migration (21.98%±1.69% vs 58.23%±1.47%) and invasion (24.12%±1.15%vs 64.25%±1.42%) (all P<0.05). Conclusions: The expression of HBx and Cat S had a linear positive correlation in liver tissues, and increased expression of HBx can promote the cell proliferation of HepG2-HBx cell line.

  12. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    SciTech Connect

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  13. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells.

    PubMed

    Jiang, Baoping; Le, Liang; Zhai, Wei; Wan, Wenting; Hu, Keping; Yong, Peng; He, Chunnian; Xu, Lijia; Xiao, Peigen

    2016-08-15

    Our previous study has shown that Coreopsis tinctoria increases insulin sensitivity and regulates hepatic metabolism in high-fat diet (HFD)-induced insulin resistance rats. However, it is unclear whether or not marein, a major compound of C. tinctoria, could improve insulin resistance. Here we investigate the effect and mechanism of action of marein on improving insulin resistance in HepG2 cells. We investigated the protective effects of marein in high glucose-induced human liver carcinoma cell HepG2. In kinase inhibitor studies, genistein, LY294002, STO-609 and compound C were added to HepG2 cells 1h before the addition of marein. Transfection with siRNA was used to knock down LKB1, and 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG), an effective tracer, was used to detect glucose uptake. The results showed for the first time that marein significantly stimulates the phosphorylation of AMP-activated protein kinase (AMPK) and the Akt substrate of 160kDa (AS160) and enhanced the translocation of glucose transporter 1 (GLUT1) to the plasma membrane. Further study indicated that genistein (an insulin receptor tyrosine kinase inhibitor) altered the effect of marein on glucose uptake, and both LY294002 (a phosphatidylinositol 3-kinase inhibitor) and compound C (an AMP-activated protein kinase inhibitor) significantly decreased marein-stimulated 2-NBDG uptake. Additionally, marein-stimulated glucose uptake was blocked in the presence of STO-609, a CaMKK inhibitor; however, marein-stimulated AMPK phosphorylation was not blocked by LKB1 siRNA in HepG2 cells. Marein also inhibited the phosphorylation of insulin receptor substrate (IRS-1) at Ser 612, but inhibited GSK-3β phosphorylation and increased glycogen synthesis. Moreover, marein significantly decreased the expression levels of FoxO1, G6Pase and PEPCK. Consequently, marein improved insulin resistance induced by high glucose in HepG2 cells through CaMKK/AMPK/GLUT1 to promote glucose uptake

  14. Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells.

    PubMed

    Rodríguez, C; Cabrero, A; Roglans, N; Adzet, T; Sánchez, R M; Vázquez, M; Ciudad, C J; Laguna, J C

    2001-02-01

    We studied whether two typical effects of fibrates, induction of stearoyl-CoA desaturase (EC 1.14.99.5) and peroxisome proliferation, are related. The effect of bezafibrate on the activity and mRNA of stearoyl-CoA desaturase and acyl-CoA oxidase in the liver and epididymal white adipose tissue of male Sprague-Dawley rats was determined. The same parameters were measured in HepG2 cells, a cell line resistant to peroxisome proliferation, following incubation with ciprofibrate. Bezafibrate increased the hepatic mRNA levels (14.5-fold on day 7) and activity (9.3-fold on day 15) of acyl-CoA oxidase. Stearoyl-CoA desaturase mRNA levels were transiently increased (2.7-fold on day 7), while its activity remained increased at the end of the treatment (2.4-fold). In white adipose tissue, bezafibrate increased the mRNA (5-fold) and activity (1.9-fold) of acyl-CoA oxidase, while stearoyl-CoA desaturase was not modified. Ciprofibrate addition to HepG2 cells cultured in 7% fetal bovine serum (FBS) only increased the stearoyl-CoA desaturase mRNA (1.9-fold). When cells were cultured in 0.5% FBS, ciprofibrate increased acyl-CoA oxidase mRNA (2.2-fold), while the increase in stearoyl-CoA desaturase mRNA was identical (1.9-fold). Further, its activity was also increased (1.5-fold). Incubation of HepG2 cells in the presence of cycloheximide did not alter the capacity of ciprofibrate to induce stearoyl-CoA desaturase mRNA, whereas the presence of actinomycin abolished the induction. In addition, preincubation of HepG2 cells with ciprofibrate increased the rate of stearoyl-CoA desaturase mRNA degradation. The results presented in this study suggest that fibrates induce stearoyl-CoA desaturase activity and mRNA levels independently of peroxisome proliferation.

  15. Differential expression of genes in HepG2 cells caused by UC001kfo RNAi as shown by RNA-seq.

    PubMed

    Pan, Yan-Feng; Su, Tong; Chen, Li-Dan; Qin, Tao

    2017-08-01

    The differential expression of genes in HepG2 cells caused by UC001kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-shUC001kfo lentivirus particles. The expression of UC001kfo mRNA in the HepG2-shUC001kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lncRNA UC001kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different mRNAs. The results showed that mRNAs were differentially expressed between the HepG2-shUC001kfo cell line and the HepG2 cell line. The UC001kfo mRNA was significantly down-regulated in the stable cell line HepG2-shUC001kfo (P<0.001). Additionally, we found 19 signaling pathways or functional classifications encompassing 30 genes that played a role in cancer characteristics, cell adhesion, invasion and migration. The results also showed that the expression of many genes associated with cancer cell invasion and metastasis was decreased with the down-regulation of the lncRNA UC001kfo. LncRNA UC001kfo may play a role in regulating cancer cell invasion and metastasis. It was suggested that mRNAs were differentially expressed in the HepG2 cell line after the down-regulation of lncRNA-UC001kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed mRNAs may participate in cell invasion and metastasis.

  16. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity.

    PubMed

    Wahab, Rizwan; Siddiqui, Maqsood A; Saquib, Quaiser; Dwivedi, Sourabh; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Shin, Hyung-Shik

    2014-05-01

    Liver and breast cancer are the most traumatic diseases because they affect the major organs of the body. Nanomedicine recently emerged as a better option for the treatment of these deadly diseases. As a result, many nanoparticles have been used to treat cancer cell lines. Of the various nanoparticles, zinc oxide exhibits biocompatibility. Therefore, the aim of the present study was to investigate the activity of zinc oxide nanoparticles (ZnO-NPs) against HepG2 and MCF-7 cells. The NPs (∼13±2 nm) were prepared via a non-protonated chemical route and were well-characterized through standard techniques. The study showed that treatment with NPs is notably effective against the proliferation of HepG2 and MCF-7 cancer cells in a dose-dependent manner. The MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, a tetrazole) assays revealed the concentration-dependent cytotoxic effects of NPs in range of 2.5-100 μg/ml. HepG2 and MCF-7 cells were exposed to ZnO-NPs and exhibited a significant reduction in their cell viability (95% and 96%; p<0.05) in response to a very low concentration (25 μg/ml) of the ZnO-NPs; this finding was confirmed with FACS (fluorescence-activated cell sorting) data. The reduction in cell viability in response to NP treatment induces cytotoxicity in the cultured cells. The quantitative RT-PCR (real-time polymerase chain reaction) results demonstrate that the exposure of HepG2 cells to ZnO-NPs results in significant upregulation of the mRNA expression level of Bax, p53, and caspase-3 and the down regulation of the anti-apoptotic gene Bcl-2. The NPs were also tested against five pathogenic bacteria through the disk diffusion method, and their antibacterial activities were compared with that of ZnO salt.

  17. Sorafenib-irinotecan sequential therapy augmented the anti-tumor efficacy of monotherapy in hepatocellular carcinoma cells HepG2.

    PubMed

    Wang, Z; Zhao, Z; Wu, T; Song, L; Zhang, Y

    2015-01-01

    The current study aimed to evaluate the efficacy of sorafenib-based combined therapy against hepatocellular carcinoma (HCC). HepG2 cells were exposed to sorafenib, irinotecan, and oxaliplatin and then subjected to MTT assay to determine chemosensitivity. Flow cytometry was used to examine cell cycle distribution and cell apoptosis. Levels of cleaved caspase-8, -3, and PARP were determined by Western blot. Real-time PCR and Western blot were used to determine p53 expression, respectively. The efficacy of combined therapy were verified in nude mice bearing HepG2 xenografts. HepG2 cells used in the current study were sensitive to sorafenib, irinotecan, and oxaliplatin. Sorafenib arrested cell cycle in S phase and the peak effect appeared at 30 h post treatment. Sorafenib exposure for 30 h followed by irinotecan exposure for 48 h synergistically induced cell apoptosis in HepG2 cells. On the other hand, sorafenib-oxaliplatin sequential exposure for the same time only acted an additive effect in soliciting cell apoptosis. Sorafenib and irinotecan sequential treatment significantly increased the levels of cleaved caspase-8, -3, and PARP in HepG2 cells. Sorafenib suppressed p53 expression at both mRNA and protein levels, which might contribute to cell cycle arrest and sensitize tumor cells to irinotecan. Sorafenib and irinotecan sequential therapy was obviously superior to monotherapy in suppressing the growth of HepG2 xenografts. Sorafenib-irinotecan sequential treatment augmented the efficacy of either drug used alone in soliciting HepG2 cells apoptosis in vitro and in suppressing the growth of HepG2 xenografts in vivo. hepatocellular carcinoma, irinotecan, sorafenib, synergistic effect.

  18. The effects of garlic-derived sulfur compounds on cell proliferation, caspase 3 activity, thiol levels and anaerobic sulfur metabolism in human hepatoblastoma HepG2 cells.

    PubMed

    Iciek, Małgorzata; Kwiecień, Inga; Chwatko, Grażyna; Sokołowska-Jeżewicz, Maria; Kowalczyk-Pachel, Danuta; Rokita, Hanna

    2012-04-01

    The aim of the present studies was to determine whether the mechanism of biological action of garlic-derived sulfur compounds in human hepatoma (HepG2) cells can be dependent on the presence of labile sulfane sulfur in their molecules. We investigated the effect of allyl sulfides from garlic: monosulfide, disulfide and trisulfide on cell proliferation and viability, caspase 3 activity and hydrogen peroxide (H(2)O(2)) production in HepG2 cells. In parallel, we also examined the influence of the previously mentioned compounds on the levels of thiols, glutathione, cysteine and cysteinyl-glycine, and on the level of sulfane sulfur and the activity of its metabolic enzymes: rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionase. Among the compounds under study, diallyl trisulfide (DATS), a sulfane sulfur-containing compound, showed the highest biological activity in HepG2 cells. This compound increased the H(2)O(2) formation, lowered the thiol level and produced the strongest inhibition of cell proliferation and the greatest induction of caspase 3 activity in HepG2 cells. DATS did not affect the activity of sulfurtransferases and lowered sulfane sulfur level in HepG2 cells. It appears that sulfane sulfur containing DATS can be bioreduced in cancer cells to hydroperthiol that leads to H(2)O(2) generation, thereby influencing transmission of signals regulating cell proliferation and apoptosis. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells.

    PubMed

    Laafi, Jihane; Homedan, Chadi; Jacques, Caroline; Gueguen, Naig; Schmitt, Caroline; Puy, Hervé; Reynier, Pascal; Carmen Martinez, Maria; Malthièry, Yves

    2014-11-01

    Heme biosynthesis begins in the mitochondrion with the formation of delta-aminolevulinic acid (ALA). In acute intermittent porphyria, hereditary tyrosinemia type I and lead poisoning patients, ALA is accumulated in plasma and in organs, especially the liver. These diseases are also associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma. Many studies suggest that this damage may originate from ALA-induced oxidative stress following its accumulation. Using the MnSOD as an oxidative stress marker, we showed here that ALA treatment of cultured cells induced ROS production, increasing with ALA concentration. The mitochondrial energetic function of ALA-treated HepG2 cells was further explored. Mitochondrial respiration and ATP content were reduced compared to control cells. For the 300 μM treatment, ALA induced a mitochondrial mass decrease and a mitochondrial network imbalance although neither necrosis nor apoptosis were observed. The up regulation of PGC-1, Tfam and ND5 genes was also found; these genes encode mitochondrial proteins involved in mitochondrial biogenesis activation and OXPHOS function. We propose that ALA may constitute an internal bioenergetic signal, which initiates a coordinated upregulation of respiratory genes, which ultimately drives mitochondrial metabolic adaptation within cells. The addition of an antioxidant, Manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), resulted in improvement of maximal respiratory chain capacity with 300 μM ALA. Our results suggest that mitochondria, an ALA-production site, are more sensitive to pro-oxidant effect of ALA, and may be directly involved in pathophysiology of patients with inherited or acquired porphyria. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  20. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.

    PubMed

    Kloskowski, Tomasz; Gurtowska, Natalia; Nowak, Monika; Joachimiak, Romana; Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Ciprofloxacin is a chemotherapeutic agent mainly used in the treatment of the pulmonary and urinary tract infections but is also known for its anticancer properties. The aim of these study was to check the anticancer effect of ciprofloxacin on selected five cell lines. Human non-small cell lung cancer line A549, human hepatocellular carcinoma line HepG2, human and mouse melanoma lines (A375.S2 and B16) and rat glioblastoma line C6 were used for evaluation of cytotoxic properties of ciprofloxacin (in concentration range: 10-1000 microg/mL). Viability was established using trypan blue assay and MTT. Ciprofloxacin induced morphological changes and decreased viability of A549 cells in a concentration and time dependent manner. In case of A375.S2 and B16 cell lines, cytotoxicyty of ciprofloxacin was observed but we were not able to eradicate all cells from A375.S2 and B16 cultures. HepG2 line was sensitive to ciprofloxacin, but this effect was independent from concentration and incubation time. The C6 cells were insensitive to ciprofloxacin. Our results showed that ciprofloxacin can be potentially used for the experimental adjunctive therapy of lung cancer.

  1. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells

    PubMed Central

    Md Zamri, Nur Diyana; Imam, Mustapha Umar; Abd Ghafar, Siti Aisyah; Ismail, Maznah

    2014-01-01

    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH•) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH• scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH•. The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes. PMID:25431609

  2. Mono-2-ethylhexyl phthalate induced loss of mitochondrial membrane potential and activation of Caspase3 in HepG2 cells.

    PubMed

    Chen, Xi; Wang, Jianshu; Qin, Qizhi; Jiang, Ying; Yang, Guangtao; Rao, Kaimin; Wang, Qian; Xiong, Wei; Yuan, Jing

    2012-05-01

    L02 and HepG2 cells were exposed to mono-(2-ethylhexyl) phthalate (MEHP) at concentrations of 6.25-100μM. After 48h treatment, MEHP decreased HepG2 cell viability in a concentration-dependent manner and L02 cell viability in the 50 and 100μM groups (p<0.01). Furthermore, at 24 and 48h after treatment, MEHP decreased the glutathione levels of HepG2 cells in all treatment groups and in the ΔΨ(m) in L02 and HepG2 cells with MEHP≥25μM (p<0.05 or p<0.01). At 24h after treatment, MEHP induced activation of caspase3 in all treated HepG2 and L02 cells (p<0.05 or p<0.01) except the 100μM MEHP treatment group. The increase in the Bax to Bcl-2 ratio suggests that Bcl-2 family involved in the control of MEHP-induced apoptosis in these two cell types. The data suggest that MEHP could induce apoptosis of HepG2 cells through mitochondria- and caspase3-dependent pathways.

  3. Antihyperglycemia and Antihyperlipidemia Effect of Protoberberine Alkaloids From Rhizoma Coptidis in HepG2 Cell and Diabetic KK-Ay Mice.

    PubMed

    Ma, Hang; Hu, Yinran; Zou, Zongyao; Feng, Min; Ye, Xiaoli; Li, Xuegang

    2016-06-01

    Preclinical Research Rhizoma Coptidis (RC), the root of Coptis chinensis Franch, a species in the genus Coptis (family Ranunculaceae), has been commonly prescribed for the treatment of diabetes in Chinese traditional herbal medicine applications. The present study is focused on the assessment of the antihyperglycemia and antidiabetic hyperlipidemia effect of five protoberberine alkaloids, berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI), and jatrorrhizine (JAT), separated from R. Coptidis in hepatocellular carcinoma HepG2 cells and diabetic KK-Ay mice. Protoberberine alkaloids are effective in modulating hyperglycemia and hyperlipidemia. After adding BBR and COP to culture medium, glucose consumption of HepG2 cells was increased. In KK-Ay mice assays, suppressed fasting blood glucose level and ameliorated glucose tolerance were observed after BBR/COP administration. After treated with berberine and coptisine, in the same dose of 5 µg/mL, the glucose consumption of HepG2 cells were promoted and, respectively, reached 96.1% and 17.6%. Body weight, food consumption, water intake, and urinary output of KK-Ay mice were reduced after treated with EPI. Serum total cholesterol and triglyceride of mice were decreased after treated with palmatine and jatrorrhizine. Serum high-density lipoprotein cholesterol of mice was increased after palmatine, jatrorrhizine, and berberine administrated. Moreover, hepatomegaly was attenuated in JTR-treated mice. Suggested that these protoberberine alkaloids from R. Coptidis have potential curative effect for diabetes. Drug Dev Res 77 : 163-170, 2016.   © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products.

    PubMed

    Juan-García, Ana; Juan, Cristina; Manyes, Lara; Ruiz, María-José

    2016-08-01

    Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied.

  5. Simvastatin inhibits the core promoter of the TXNRD1 gene and lowers cellular TrxR activity in HepG2 cells.

    PubMed

    Ekström, Lena; Johansson, Maria; Monostory, Katalin; Rundlöf, Anna-Klara; Arnér, Elias S J; Björkhem-Bergman, Linda

    2013-01-04

    Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing redox-active enzyme that is thought to be important during carcinogenesis. We have recently shown that treatment with statins, HMGCoA reductase inhibitors, reduces the levels of TrxR1 in liver of both rat and human. The reduced TrxR1 levels were correlated with inhibited hepatocarcinogenesis in a rat model. The aim of the present study was to investigate if statins affect the activity of the human TXNRD1 core promoter, which guides expression of TrxR1, and if the effects by statins on TrxR1 expression in liver could be reproduced in a cellular model system. We found that simvastatin and fluvastatin decreased cellular TrxR activity in cultured human liver-derived HepG2 cells with approximately 40% (p<0.05). Simvastatin, but not fluvastatin or atorvastatin, also reduced the TXNRD1 promoter activity in HepG2 cells by 20% (p<0.01). In line with this result, TrxR1 mRNA levels decreased with about 25% in non-transfected HepG2 cells upon treatment with simvastatin (p<0.01). Concomitant treatment with mevalonate could not reverse these effects of simvastatin, indicating that other mechanisms than HMGCoA reductase inhibition was involved. Also, simvastatin did not inhibit sulforaphane-derived stimulation of the TXNRD1 core promoter activity, suggesting that the inhibition by simvastatin was specific for basal and not Nrf2-activated TrxR1 expression. In contrast to simvastatin, the two other statins tested, atorvastatin or fluvastatin, did not influence the TrxR1 mRNA levels. Thus, our results reveal a simvastatin-specific reduction of cellular TrxR1 levels that at least in part involves direct inhibitory effects on the basal activity of the core promoter guiding TrxR1 expression.

  6. Induction of intercellular adhesion molecule-1 (CD54) on human hepatoma cell line HepG2: influence of cytokines and hepatitis B virus-DNA transfection.

    PubMed Central

    Volpes, R; van den Oord, J J; Desmet, V J; Yap, S H

    1992-01-01

    Human hepatocyte expression of intercellular adhesion molecule-1 (ICAM-1) (CD54) was studied in vitro by exposing the well differentiated human hepatoblastoma cell line HepG2 to various cytokines. In addition, hepatitis B virus (HBV)-DNA transfected HepG2 cells were also analysed. Expression of ICAM-1 on HepG2 cells was then revealed with an immunohistochemical procedure. Untreated HepG2 cells were unreactive, but showed strong cytoplasmic ICAM-1 immunoreactivity after treatment with interferon-gamma (IFN-gamma). This induction was completely inhibited by addition of a neutralizing antibody directed to IFN-gamma. IL-1, IL-6, tumour necrosis factor-alpha (TNF-alpha) and IFN-alpha, used alone or in combination, did not induce ICAM-1 expression, neither did they inhibit the IFN-gamma-induced expression of this adhesion molecule on HepG2 cells. Untreated hepatitis B virus-DNA transfected HepG2 cells expressed membranous ICAM-1. These results indicate that IFN-gamma is the main cytokine trigger for ICAM-1 expression on HepG2 cells, suggesting that in areas of liver inflammation this adhesion molecule is up-regulated on hepatocytes by locally released IFN-gamma. In addition, expression of ICAM-1 by hepatitis B virus-DNA transfected HepG2 cells suggests other, still unknown, triggering mechanisms in the induction of such adhesion molecules, for instance gene activation by viral genome, or autocrine virus-induced hepatocellular cytokine production. Images Fig. 1 Fig. 2 PMID:1346374

  7. The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

    PubMed Central

    Kim, Han Sang; Kim, Su-Jin; Bae, Jinhyung; Wang, Yiyi; Park, Sun Young; Min, Young Sil; Je, Hyun Dong

    2016-01-01

    Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival. PMID:27847436

  8. Effects of 3-methylcholanthrene and aspirin co-administration on ALDH3A1 in HepG2 cells.

    PubMed

    Sotiropoulou, M; Pappas, P; Marselos, M

    2001-01-30

    The effects of two different protocols of 3-methylcholanthrene (3MC) and aspirin co-administration were studied in a well-established human hepatoma cell line (HepG2). During this work, we have performed toxicity tests for cell viability/cell proliferation as well as studies on the expression of ALDH3A1 after exposure of HepG2 cells to 3MC or/and aspirin. For the evaluation of toxic concentrations of 3MC and aspirin, the WST-1 test was used. WST-1 is a reliable cytotoxicity test which is based on the cleavage of the tetrazolium salt WST-1 to formazan by mitochondrial enzymes of living cells. A broad range of drug concentrations for either 3MC (0.25-50.0 microM) or aspirin (0.05-10.0 mM) were used for cell exposure, in several periods of time. The expression of ALDH3A1 in HepG2 cells showed typical time- and dose-response curves of induction after application of 3MC (1-5 days, 1.5-5.0 microM, respectively). When cells were firstly exposed to 3MC (2.5 and 5.0 microM) and then to aspirin (0.25 mM), the induced ALDH3A1 activity was further enhanced in a statistically significant way (P<0.05). On the contrary, when aspirin application was preceded 3MC exposuring a statistically significant decrease in ALDH3A1 inducibility was observed, as compared with the application of 3MC alone.

  9. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity.

    PubMed

    Zheng, Lu; Liang, Ping; Zhou, JianBo; Huang, XiaoBing; Wen, Yu; Wang, Zheng; Li, Jing

    2012-02-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG(2) cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG(2) cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG(2) cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G(1) phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+)BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms.

  10. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2) Cells

    PubMed Central

    Sutton, Dwayne J.; Tchounwou, Paul B.

    2006-01-01

    Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2) cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0.05%, 23.32 ± 0.03%, and 34.51 ± 0.01% for 0, 1, 2, and 3 μg/mL of mercury respectively

  11. The target gene carrying validity to HePG2 cells with the brush-like glutathione modified chitosan compound.

    PubMed

    Li, Congxin; Zhou, Dezhong; Hu, Yuling; Zhou, Hao; Chen, Jiatong; Zhang, Zhengpu; Guo, Tianying

    2012-06-05

    The grafting modified chitosan with L-glutathione (GSH) end capped PEG brush-like poly [poly(ethylene glycol) methacrylate] (PMPEG), CS-PMPEG-GSH, as the pDNA condensed vector material could result in a much higher transfection efficiency and lower cytotoxity for NIH3T3 cells. In this work, we have further examined the morphology stabilities of CS-PMPEG-GSH/pDNA vectors at different medium pH values and in the presence of serum protein in detail. And then the targeted characters for HepG2 cells have been probed by tracing the cell uptake behavior and transfection efficiency.

  12. Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage.

    PubMed

    Lima, Cristovao F; Valentao, Patricia C R; Andrade, Paula B; Seabra, Rosa M; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2007-04-25

    Common sage (Salvia officinalis L., Lamiaceae) is an aromatic and medicinal plant well known for its antioxidant properties. Some in vivo studies have shown the biological antioxidant effects of sage. However, the intracellular antioxidant mechanisms of action are still poorly understood. In this study, we evaluated the cytoprotective effects of two sage extracts (a water and a methanolic extract) against tert-butyl hydroperoxide (t-BHP)-induced toxicity in HepG2 cells. The most abundant phenolic compounds present in the extracts were rosmarinic acid and luteolin-7-glucoside. Both extracts, when co-incubated with the toxicant, protected significantly HepG2 cells against cell death. The methanolic extract, with a higher content of phenolic compounds than the water extract, conferred better protection in this in vitro model of oxidative stress with liver cells. Both extracts, tested in a concentration that protects 80% against cell death (IC(80)), significantly prevented t-BHP-induced lipid peroxidation and GSH depletion, but not DNA damage assessed by the comet assay. The ability of sage extracts to reduce t-BHP-induced GSH depletion by 62% was probably the most relevant contributor to the observed cytoprotection. A good correlation between the above cellular effects of sage and the effects of their main phenolic compounds was found. When incubated alone for 5h, sage extracts induced an increase in basal GSH levels of HepG2 cells, which indicates an improvement of the antioxidant potential of the cells. Compounds present in sage extracts other than phenolics may also contribute to this latter effect. Based in these results, it would be of interest to investigate whether sage has protective effects in suitable in vivo models of liver diseases, where it is known that oxidative stress is involved.

  13. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways.

  14. A Novel Anti-Hepatitis C Virus and Antiproliferative Agent Alters Metabolic Networks in HepG2 and Hep3B Cells

    PubMed Central

    Keogh, Adrian; Şenkardeş, Sevil; Idle, Jeffrey R.; Küçükgüzel, Ş. Güniz; Beyoğlu, Diren

    2017-01-01

    A series of novel diflunisal hydrazide-hydrazones has been reported together with their anti-hepatitis C virus and antiproliferative activities in a number of human hepatoma cell lines. However, the mechanisms underlying the efficacy of these agents remain unclear. It was chosen to investigate the lead diflunisal hydrazide-hydrazone, 2′,4′-difluoro-4-hydroxy-N′- [(pyridin-2-yl)methylidene]biphenyl-3-carbohydrazide (compound 3b), in two cultured human hepatoma cell lines—HepG2 and Hep3B—using a metabolomic protocol aimed at uncovering any effects of this agent on cellular metabolism. One sub-therapeutic concentration (2.5 μM) and one close to the IC50 for antimitotic effect (10 μM), after 72 h in cell culture, were chosen for both compound 3b and its inactive parent compound diflusinal as a control. A GCMS-based metabolomic investigation was performed on cell lysates after culture for 24 h. The intracellular levels of a total of 42 metabolites were found to be statistically significantly altered in either HepG2 or Hep3B cells, only eight of which were affected in both cell lines. It was concluded that compound 3b affected the following pathways—purine and pyrimidine catabolism, the glutathione cycle, and energy metabolism through glycolysis and the pentose phosphate pathway. Although the metabolomic findings occurred after 24 h in culture, significant cytotoxicity of compound 3b to both HepG2 and Hep3B cells at 10 μM were reported not to occur until 72 h in culture. These observations show that metabolomics can provide mechanistic insights into the efficacy of novel drug candidates prior to the appearance of their pharmacological effect. PMID:28574427

  15. Black Soybean Seed Coat Extract Prevents Hydrogen Peroxide-Mediated Cell Death via Extracellular Signal-Related Kinase Signalling in HepG2 Cells.

    PubMed

    Hashimoto, Naoto; Oki, Tomoyuki; Sasaki, Kazunori; Suda, Ikuo; Okuno, Shigenori

    2015-01-01

    Oxidative stress reduces cell viability and contributes to disease processes. Flavonoids including anthocyanins and proanthocyanidins reportedly induce intracellular antioxidant defence systems. Thus, in this study, we examined the antioxidant effects of a commercial extract from black soybean seed coats (BE), which are rich in anthocyanin and proanthocyanidin, and investigated the associated intracellular mechanisms in HepG2 cells. HepG2 cells treated with hydrogen peroxide (HPO) showed 60% viability, whereas pretreatment with BE-containing media for 2 h ameliorated HPO-mediated cell death by up to 90%. Pretreatment with BE for 2 h partially blocked HPO-mediated activation of ERK in HepG2 cells, and that for 1 h led to a 20% increase in intracellular total protein phosphatase (PP) activity, which is known to deactivate protein kinases. These results indicate that BE prevents HPO-mediated cell damage by inhibiting ERK signalling, potentially via PPs.

  16. Synthesis, characterization and anticancer effect of the ruthenium (II) polypyridyl complexes on HepG2 cells.

    PubMed

    Wan, Dan; Lai, Shang-Hai; Yang, Hui-Hui; Tang, Bing; Zhang, Cheng; Yin, Hui; Zeng, Chuan-Chuan; Liu, Yun-Jun

    2016-12-01

    As one of the major cell regulated center, mitochondria are closely associated with cell proliferation, apoptosis of tumor cell. In this work, four new ruthenium (II) polypyridyl complexes [Ru(bpy)2(FTTP)](ClO4)2 (1) (FTTP=11-(3-fluoro-naphthalen-2-yloxy)-4,5,9,14-tetraaza-benzo[b]triphenylene, bpy=2,2'-bipyridine), [Ru(phen)2(FTTP)](ClO4)2 (2) (phen=1,10-phenanthroline), [Ru(bpy)2(PTTP)](ClO4)2 (3) (PTTP=2-phenoxy-1,4,8,9-tetraazatriphenylene) and [Ru(phen)2(PTTP)](ClO4)2 (4) were synthesized and characterized by elemental analysis, ESI-MS, (1)H NMR and (13)C NMR. The cytotoxic activity, ability of inhibiting cell invasion, cell cycle arrest and apoptosis-inducing mechanism of these Ru(II) complexes have been investigated in detail by MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide) method, invasion assay, comet assay as well as western blotting techniques. Notably, complexes 1-4 displayed high cytotoxic activity against liver carcinoma HepG2 cells and the IC50 values of complexes 1-4 against HepG2 cells are 10.4±1.2, 9.3±0.6, 29.1±1.5 and 5.6±1.2μM, respectively. The comet assay showed that the complexes can induce DNA damage. The acridine orange (AO) and ethidium bromide (EB) staining method indicated that the complexes can cause apoptosis in HepG2 cells. Further studies showed that complexes 1-4 caused cell cycle arrest at G0/G1 phase and induced HepG2 cells apoptosis through a ROS-mediated mitochondrial dysfunction pathway, which involved an increase in the levels of reactive oxygen species (ROS), a decrease in the mitochondrial membrane potential, activation of caspases and Bcl-2 family proteins.

  17. Study of levan productivity from Bacillus subtilis Natto by surface response methodology and its antitumor activity against HepG2 cells using metabolomic approach.

    PubMed

    Cabral de Melo, Fernando Cesar Bazani; Borsato, Dionísio; de Macedo Júnior, Fernando César; Mantovani, Mario Sérgio; Luiz, Rodrigo Cabral; Colabone-Celligoi, Maria Antonia-Pedrine

    2015-11-01

    Levan productivity of Bacillus subtilis Natto was evaluated in submerged culture varying the pH, temperature and culture time, using factorial design and response surface methodology. The characterization of levan molecular weight was performed by HPSEC and its antitumor activity against HepG2 cells using metabolomic approach was also evaluated. At first, the variables investigated, as well as their interactions, demonstrated significant effect. Further, a second design using the same variables at different levels was developed. Thus, according to the model, an optimized value corresponding to 5.82 g.L⁻¹.h⁻¹ was achieved at pH 8, 39.5°C in 21 hours, the highest value reported so far. After analysis by HPSEC, two molecular weights were obtained corresponding to 72.37 and 4146 kDa. The levan promoted an increase of acetate, alanine, lactate and phosphocreatine in HepG2 cells suggesting an alteration in the bioenergetics pathways and cellular homeostasis by intracellular accumulation of lactate, justifying its antitumor activity.

  18. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia.

  19. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells.

    PubMed

    Lima, Kelly Goulart; Krause, Gabriele Catyana; Schuster, Aline Daniele; Catarina, Anderson Velasque; Basso, Bruno Souza; De Mesquita, Fernanda Cristina; Pedrazza, Leonardo; Marczak, Elisa Simon; Martha, Bianca Andrade; Nunes, Fernanda Bordignon; Chiela, Eduardo Cremonese Filippi; Jaeger, Natália; Thomé, Marcos Paulo; Haute, Gabriela Viegas; Dias, Henrique Bregolin; Donadio, Márcio Vinícius Fagundes; De Oliveira, Jarbas Rodrigues

    2016-12-01

    Hepatocellular carcinoma is the most prevalent primary liver tumor and is among the top ten cancer that affect the world population. Its development is related, in most cases, to the existence of chronic liver injury, such as in cirrhosis. The knowledge about the correlation between chronic inflammation and cancer has driven new researches with anti-inflammatory agents that have potential for the development of antitumor drugs. Gallic acid is a phenolic acid found in many natural products and have shown anti-inflammatory, anti-tumor, anti-mutagenic and antioxidant actions. The purpose of this study was to investigate the effect of gallic acid on acute and chronic cell proliferation and inflammatory parameters of hepatocellular carcinoma cells (HepG2), as well as to investigate the mechanisms involved. Results showed that the gallic acid decreased the proliferation of HepG2 cells in a dose-dependent manner (Trypan blue exclusion assay), without causing necrosis (LDH assay). We observed a significant increase in the percentage of small and regular nuclei (Nuclear Morphometric Analysis assay), a significant induction of apoptosis by Annexin V-FITC and PI assay and no interference with the cell cycle using the FITC BrdU Flow Kit. We observed a significant reduction in the levels of IL-8 and increased levels of IL-10 and IL-12 (Cytometric Bead Array Human Inflammation Assay). Furthermore, gallic acid caused no cancer cells regrowth at a long term (Cumulative Population Doubling assay). According to these results, gallic acid showed a strong potential as an anti-tumor agent in hepatocellular carcinoma cells.

  20. Galangin Induces Autophagy via Deacetylation of LC3 by SIRT1 in HepG2 Cells.

    PubMed

    Li, Xv; Wang, Yajun; Xiong, Yuzhen; Wu, Jun; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Zhang, Haitao

    2016-07-27

    Galangin suppresses proliferation and induces apoptosis and autophagy in hepatocellular carcinoma (HCC) cells, but the precise mechanism is not clear. In this study, we demonstrated that galangin induced autophagy, enhanced the binding of SIRT1-LC3 and reduced the acetylation of endogenous LC3 in HepG2 cells. But this autophagy was inhibited by inactivation of SIRT1 meanwhile, galangin failed to reduce the acetylation of endogenous LC3 after SIRT1 was knocked-down. Collectively, these findings demonstrate a new mechanism by which galangin induces autophagy via the deacetylation of endogenous LC3 by SIRT1.

  1. Galangin Induces Autophagy via Deacetylation of LC3 by SIRT1 in HepG2 Cells

    PubMed Central

    Li, Xv; Wang, Yajun; Xiong, Yuzhen; Wu, Jun; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Zhang, Haitao

    2016-01-01

    Galangin suppresses proliferation and induces apoptosis and autophagy in hepatocellular carcinoma (HCC) cells, but the precise mechanism is not clear. In this study, we demonstrated that galangin induced autophagy, enhanced the binding of SIRT1-LC3 and reduced the acetylation of endogenous LC3 in HepG2 cells. But this autophagy was inhibited by inactivation of SIRT1 meanwhile, galangin failed to reduce the acetylation of endogenous LC3 after SIRT1 was knocked-down. Collectively, these findings demonstrate a new mechanism by which galangin induces autophagy via the deacetylation of endogenous LC3 by SIRT1. PMID:27460655

  2. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect.

    PubMed

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Mason, Ronald P

    2015-01-01

    Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.

  3. Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells.

    PubMed

    Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien; Durantel, David

    2013-05-01

    In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apo