DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfield, R.C.; Cox, R.C.; McCarthy, D.M.
Cumene is manufactured by the alkylation of benzene with propylene and is used almost exclusively as a feedstock for phenol production via the cumene oxidation route. Monsanto's interest in cumene process development dates back to the 60's and 70's when it was a major U.S. producer of both cumene and phenol. Lummus Crest's interest in cumene relates to its position in phenol technology. Interestingly, however, the new Monsanto/Lummus Crest process is more a result of Monsanto and Lummus Crest's research in ethylbenezene/styrene than in cumene.
Evaluation of Cancer and Non-cancer Effects of Cumene ...
Cumene, also known as isopropyl benzene, is a volatile liquid. Cumene, readily absorbed via inhalation is distributed in several tissues, metabolized extensively by cytochrome P-450 isozymes within hepatic and extra-hepatic tissues and excreted through urine. No epidemiological cancer studies for humans are available, however, chronic inhalation exposure studies in rat and mouse have shown increased nasal lesions including atrophy, basal cell hyperplasia, atypical hyperplasia and hyperplasia of the olfactory epithelium glands. In addition, increased incidences of renal tubular adenoma or carcinoma that are related to a2u-globin-induced nephropathy were observed in male rats. Alveolar/bronchiolar adenomas and carcinomas of the lung are observed in male and female mice exposed to cumene. Although no multi-generational reproductive toxicity is available for cumene, cumene-exposed rats appeared to stay in estrus cycle longer than the controls. Short-term acute exposures of animals at high concentrations seem to induce transient reversible neurotoxic effects. Overall, inhalation exposure to cumene induced dose-related increased in the occurances of tumors at various sites. These cancer and non-cancer data in rats and mice as well as genotoxicity data provides consistence evidence for carcinogenic effects of cumene. This poster will be presented at the Society of Toxicology Meeting in San Diego California. The goal of this presentation is systematic evaluation of bot
Report on carcinogens monograph on cumene.
2013-09-01
The National Toxicology Program conducted a cancer evaluation on cumene for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for cumene in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to cumene. This monograph provides an assessment of the available scientific information on cumene, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that cumene be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found that cumene exposure caused lung tumors in male and female mice and liver tumors in female mice. Several proposed mechanisms of carcinogenesis support the relevance to humans of the lung and liver tumors observed in experimental animals. Specifically, there is evidence that humans and experimental animals metabolize cumene through similar metabolic pathways. In addition, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumors in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers.
Process for the preparation of cumene
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1991-01-01
Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered.
Process for the preparation of cumene
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1991-10-08
Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 500 C, using as the catalyst a molecular sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered. 2 figures.
Evaulation of cancer and non-cancer effects of cumene ...
Cumene, also known as isopropyl benzene, is a volatile liquid. We have systematically reviewed published literature to evaluate cancer and noncancer effects of cumene. Cumene, readily absorbed via inhalation is distributed in several tissues, metabolized extensively by cytochrome P-450 isozymes within hepatic and extra-hepatic tissues and excreted through urine. Although, there are no epidemiological cancer studies for humans, chronic inhalation exposure studies in rat and mouse have shown increased nasal lesions including atrophy, basal cell hyperplasia, atypical hyperplasia and hyperplasia of the olfactory epithelium glands. To present the information at the Society of Toxicology Meeting.
Mobil/Badger to market zeolite-based cumene technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
1993-02-24
Badger (Cambridge, MA) and Mobil (Fairfax, VA) are ready to jointly license a new cumene technology that they say achieves higher yields and product purity than existing processes. The zeolite-based technology is scheduled to be introduced at next month's DeWitt Petrochemical Review in Houston. The Mobil/Badger technology aims to challenge the dominant position of UOP's (Des Plaines, IL) solid phosphoric acid (SPA) catalyst process - which accounts for 80%-90% of the world's cumene production. In addition, Monsanto/Kellogg's aluminum chloride-based technology has gained significant momentum since its introduction in the 1980s. And late last year, ABB Lummus Crest (Bloomfield, NJ) alsomore » began marketing a zeolite-based cumene technology. While all the technologies make cumene via the alkylation of benzene with propylene, the Mobil/Badger process uses a zeolite-containing catalyst designed by Mobil to selectively catalyze the benzene/propylene reaction, avoiding unwanted propylene oligomerization. Because the olefin reactions are so fast, says Frank A. Demers, Badger's v.p./technology development and marketing, other zeolite technologies are forced to use complex reactor arrangements to stop the propylene-propylene reactions. However, he says, Mobil has designed a catalyst that wants to react benzene with propylene to make cumene.'« less
Catalytic reactive separation system for energy-efficient production of cumene
Buelna, Genoveva [Nuevo Laredo, MX; Nenoff, Tina M [Albuquerque, NM
2009-07-28
The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.
Yoshihara, S; Neal, R A
1977-01-01
The metabolism of parathion by a reconstituted mixed-function oxidase enzyme system (rat liver cytochrome P-450, NADPH-cytochrome c reductase, dilauroyl phosphatidylcholine, deoxycholate, and NADPH) or a cumene hydroperoxide system (cytochrome P-450, dilauroyl phosphatidylcholine, and cumene hydroperoxide) have been compared. The products formed on incubation of parathion with both systems were paraoxon, diethyl phosphorothioic acid, diethyl phosphoric acid, p-nitrophenol, and atomic sulfur. The apparent KM values for parathion for formation of paraoxon and diethyl phosphorothioic acid with the cumene hydroperoxide system were 55 and 39 X 10(-6) M, respectively. These KM values are not significantly different. When the reconstituted system was used, apparent KM values of 2.8 x 10(-6) M for formation of paraoxon and 3.9 x 10(-6) M for The formation of diethyl phosphorothioic acid and diethyl phosphoric acid were determined. These KM values are also not significantly different. covalent binding of the sulfur atom, released in the metabolism of parathion to paraoxon, to the proteins of the reconstituted system and to cytochrome P-450 of the cumene hydroperoxide system was also examined. With both the reconstituted system and the cumene hydroperoxide system approximately 65% of the sulfur released became bound to the proteins of these enzyme systems. The binding of the sulfur atome resulted in a progressive inhibition of the metabolism of parathion by these two systems.
Shahi, Amrita; Rai, B N; Singh, R S
2016-09-01
A laboratory-scale biofilter study was performed to treat cumene-inoculated mixed culture of bacterial community and loofa sponge (Luffa cylindrica) as support media for a period of 120 days in five distinct phases. The removal efficiency was obtained in the range of 40-85 % with maximum elimination capacity of 700 g m(-3) h(-1) at the inlet load of 1167 g m(-3) h(-1). The result demonstrated that loofa sponge is good support media for the removal of cumene at higher loading rates. Loofa sponge was characterized via chemical analysis and analytical techniques such as XRD; FTIR; XPS; and CHN, and the result obtained confirms its suitability as biofilter media. The SEM results of loofa with inoculum shows the formation of a biofilm layer on the surface of loofa. The GC-MS analysis of leachate confirms the presence of different organic compounds such as acetaldehyde and 4-hydroxy-2-oxopentanoic acids which are stable metabolites during cumene biodegradation. About 12.69 % of carbon present in inlet cumene was converted to biomass.
Integrated Risk Information System (IRIS)
Cumene ; CASRN 98 - 82 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects ) a
The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Chen, Edward C. M.; Sjoberg, Stephen L.
1980-01-01
Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)
Glass Transition Temperature and Density Scaling in Cumene at Very High Pressure.
Ransom, T C; Oliver, W F
2017-07-14
We present a new method that allows direct measurements of the glass transition temperature T_{g} at pressures up to 4.55 GPa in the glass-forming liquid cumene (isopropylbenzene). This new method uses a diamond anvil cell and can measure T_{g} at pressures of 10 GPa or greater. Measuring T_{g} at the glass→liquid transition involves monitoring the disappearance of pressure gradients initially present in the glass, but also takes advantage of the large increase in the volume expansion coefficient α_{p} at T_{g} as the supercooled or superpressed liquid is entered. Accurate T_{g}(P) values in cumene allow us to show that density scaling holds along this isochronous line up to pressures much higher than any previous study, corresponding to a density increase of 29%. Our results for cumene over this huge compression range yield ρ^{γ}/T=C, where C is a constant and where γ=4.77±0.02 for this nonassociated glass-forming system. Finally, high-pressure cumene viscosity data from the literature taken at much lower pressures and at several different temperatures, corresponding to a large dynamic range of nearly 13 orders of magnitude, are shown to superimpose on a plot of η vs ρ^{γ}/T for the same value of γ.
Mobil-Badger technologies for benzene reduction in gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goelzer, A.R.; Ram, S.; Hernandez, A.
1993-01-01
Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less
Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited.
Bryant, Jasmine R; Matsuo, Takashi; Mayer, James M
2004-02-23
cis-[RuIV(bpy)2(py)(O)]2+ oxidizes cumene (2-phenylpropane) in acetonitrile solution primarily to cumyl alcohol (2-phenyl-2-propanol), alpha-methylstyrene, and acetophenone. Contrary to a prior report, the rate of the reaction is not accelerated by added nucleophiles. There is thus no evidence for the hydride transfer mechanism originally proposed. Instead, the results are consistent with a mechanism of initial hydrogen atom transfer from cumene to the ruthenium oxo group. This is indicated by the correlation of rate with C-H bond strength and by the various products observed. The formation of acetophenone, with one carbon less than cumene, is suggested to occur via a multistep pathway involving decarbonylation of the acyl radical from 2-phenylpropanal. An alternative mechanism involving beta-scission of cumyloxyl radical is deemed unlikely because of the difficulty of generating alkoxyl radicals under anaerobic conditions and the lack of rearranged products in the oxidation of triphenylmethane by cis-[RuIV(bpy)2(py)(O)]2+.
Hydrocracking of cumene over Ni/Al 2O 3 as influenced by CeO 2 doping and γ-irradiation
NASA Astrophysics Data System (ADS)
El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.
2004-01-01
Cumene hydrocracking was carried out over pure and doped Ni/Al 2O 3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO 2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO 2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity. The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C 1-C 3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.
Production of Phenol from Benzene via Cumene
ERIC Educational Resources Information Center
Daniels, D. J.; And Others
1976-01-01
Describes an undergraduate chemistry laboratory experiment involving the production of phenol from benzene with the intermediate production of isopropylbenzene and isopropylbenzene hydroperoxide. (SL)
40 CFR 419.31 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical Subcategory § 419.31 Specialized... apply. (b) The term petrochemical operations shall mean the production of second-generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemicals and...
40 CFR 419.31 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical Subcategory § 419.31 Specialized... apply. (b) The term petrochemical operations shall mean the production of second-generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemicals and...
Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.
Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro
2015-01-01
Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.
Corrales, Jone; Kristofco, Lauren A; Steele, W Baylor; Saari, Gavin N; Kostal, Jakub; Williams, E Spencer; Mills, Margaret; Gallagher, Evan P; Kavanagh, Terrance J; Simcox, Nancy; Shen, Longzhu Q; Melnikov, Fjodor; Zimmerman, Julie B; Voutchkova-Kostal, Adelina M; Anastas, Paul T; Brooks, Bryan W
2017-04-17
Sustainable molecular design of less hazardous chemicals presents a potentially transformative approach to protect public health and the environment. Relationships between molecular descriptors and toxicity thresholds previously identified the octanol-water distribution coefficient, log D, and the HOMO-LUMO energy gap, ΔE, as two useful properties in the identification of reduced aquatic toxicity. To determine whether these two property-based guidelines are applicable to sublethal oxidative stress (OS) responses, two common aquatic in vivo models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), were employed to examine traditional biochemical biomarkers (lipid peroxidation, DNA damage, and total glutathione) and antioxidant gene activation following exposure to eight structurally diverse industrial chemicals (bisphenol A, cumene hydroperoxide, dinoseb, hydroquinone, indene, perfluorooctanoic acid, R-(-)-carvone, and tert-butyl hydroperoxide). Bisphenol A, cumene hydroperoxide, dinoseb, and hydroquinone were consistent inducers of OS. Glutathione was the most consistently affected biomarker, suggesting its utility as a sensitivity response to support the design of less hazardous chemicals. Antioxidant gene expression (changes in nrf2, gclc, gst, and sod) was most significantly (p < 0.05) altered by R-(-)-carvone, cumene hydroperoxide, and bisphenol A. Results from the present study indicate that metabolism of parent chemicals and the role of their metabolites in molecular initiating events should be considered during the design of less hazardous chemicals. Current empirical and computational findings identify the need for future derivation of sustainable molecular design guidelines for electrophilic reactive chemicals (e.g., SN2 nucleophilic substitution and Michael addition reactivity) to reduce OS related adverse outcomes in vivo.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2011 CFR
2011-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2012 CFR
2012-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2014 CFR
2014-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2013 CFR
2013-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
40 CFR Table 2 to Subpart Jj of... - List of Volatile Hazardous Air Pollutants
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Cresol 95487 m-Cresol 108394 p-Cresol 106445 Cumene 98828 2,4-D (2,4-Dichlorophenoxyacetic acid, including salts and esters) 94757 DDE (1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene) 72559 Diazomethane... 53963 Acrolein 107028 Acrylamide 79061 Acrylic acid 79107 Acrylonitrile 107131 Allyl chloride 107051 4...
Inhibition of DES-induced DNA adducts by diallyl sulfide: implications in liver cancer prevention.
Green, Mario; Thomas, Ronald; Gued, Lisa; Sadrud-Din, Sakeenah
2003-01-01
Diethylstilbesterol (DES) is known to cause cancer in humans and animals. Diallyl sulfide (DAS), a component of garlic, has been shown to prevent various types of cancer, presumably via metabolic modulation. Previously, we have demonstrated that DAS prevents the oxidation and reduction of DES in vitro. We hypothesize that DAS will inhibit the metabolism of DES in vivo thus preventing the formation of DES-induced DNA adducts. To test this hypothesis, five groups of five male Sprague-Dawley rats were treated as follows: the control received 0.5 ml of corn oil daily for four days. The second group received 50 mg/kg DAS daily for four days. The third group received 50 mg/kg DAS daily for four days followed by 150 mg/kg DES on day five. The fourth group received 400 mg/kg DAS on day five followed by 150 mg/kg DES. The fifth group received 150 mg/kg DES on day five. All of the rats were sacrificed on day five, 4 h after DES treatment. DNA was isolated from the liver and analyzed by 32P-post-labeling for DNA adducts. The in vitro study was performed utilizing four reactions described as follows: the control reaction contained 200 microg DNA, microsomes (346 microg protein/ml), and 10 mM DES; no oxidation co-factor (cumen hydroperoxide) was added. The second reaction, a complete oxidation system, contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, and 10 mM DES. The third reaction contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, 50 mM DAS, and 10 mM DES. The fourth reaction contained 200 microg DNA, microsomes (346 microg protein/ml), 30 mM cumen hydroperoxide, 100 mM DAS, and 10 mM DES. All of the in vitro reactions were buffered with 100 mM KPO4 pH 7.4 and incubated for 30 min at 37 degrees C. DNA was extracted and analyzed by 32P-post-labeling. We found that DAS inhibited the formation of DES-induced DNA adducts in a dose-dependent fashion. We have shown that DES-induced DNA adducts were inhibited in rats that received DAS pre-treatment and co-treatment with DES. These results suggest that DAS directly inhibits the metabolism of DES thus preventing the formation of DNA adducts. In addition to directly inhibiting the metabolism of DES, DAS appears to alter the expression of the metabolic machinery such that DES-induced adducts are inhibited. The inhibition of DES-induced DNA adducts by DAS may prevent the initiation of estrogen-induced cancer.
Willmore, William G; Storey, Kenneth B
2005-07-01
Glutathione S-transferases (GSTs) play critical roles in detoxification, response to oxidative stress, regeneration of S-thiolated proteins, and catalysis of reactions in nondetoxification metabolic pathways. Liver GSTs were purified from the anoxia-tolerant turtle, Trachemys scripta elegans. Purification separated a homodimeric (subunit relative molecular mass =34 kDa) and a heterodimeric (subunit relative molecular mass = 32.6 and 36.8 kDa) form of GST. The enzymes were purified 23-69-fold and 156-174-fold for homodimeric and heterodimeric GSTs, respectively. Kinetic data gathered using a variety of substrates and inhibitors suggested that both homodimeric and heterodimeric GSTs were of the alpha class although they showed significant differences in substrate affinities and responses to inhibitors. For example, homodimeric GST showed activity with known alpha class substrates, cumene hydroperoxide and p-nitrobenzylchloride, whereas heterodimeric GST showed no activity with cumene hydroperoxide. The specific activity of liver GSTs with chlorodinitrobenzene (CDNB) as the substrate was reduced by 2.6- and 8.7-fold for homodimeric and heterodimeric GSTs isolated from liver of anoxic turtles as compared with aerobic controls, suggesting an anoxia-responsive stable modification of the protein that may alter its function during natural anaerobiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souda, Ryutaro
2010-12-07
Mobility of molecules in confined geometry has been studied extensively, but the origins of finite size effects on reduction of the glass transition temperature, T{sub g}, are controversial especially for supported thin films. We investigate uptake of probe molecules in vapor-deposited thin films of cumene, 3-methylpentane, and heavy water using secondary ion mass spectrometry and discuss roles of individual molecular motion during structural relaxation and glass-liquid transition. The surface mobility is found to be enhanced for low-density glasses in the sub-T{sub g} region because of the diffusion of molecules on pore walls, resulting in densification of a film via poremore » collapse. Even for high-density glasses without pores, self-diffusion commences prior to the film morphology change at T{sub g}, which is thought to be related to decoupling between translational diffusivity and viscosity. The diffusivity of deeply supercooled liquid tends to be enhanced when it is confined in pores of amorphous solid water. The diffusivity of molecules is further enhanced at temperatures higher than 1.2-1.3 T{sub g} irrespective of the confinement.« less
Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.
Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C
2009-12-01
To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
..., precision optics, and metals, as a solvent vehicle in industries that use aerosolized adhesives (e.g., foam....nih.gov/go/37895 . Meeting and Registration: The meeting is open to the public with time set aside for..., first-served basis. The lines will be open from 1:00 p.m. until approximately 5:00 p.m. EDT on March 21...
Lubricant Evaluation and Performance
1989-04-01
sample is first diluted with a solution of bis[(dimethylamino)dithiobenzil] nickel (BDN). When cumene hydroperoxide is added to the oil/BDN solution...ANALYSIS Additive A used in polyphenyl ethers is among a group of metal containing compounds including phenyl nitrosalicyamine adducts of nickel and...1963. 6. Stemniski, J.R., Wilson, G.R., Smith J.O. and McHugh , K.L., "Antioxidants for High Temperature Lubricants," ASLE Trans., 7, p 43 (1964). 7
Dermal Exposure to Cumene Hydroperoxide: Assessing its Toxic Relevance and Oxidant Potential
Rider, Cynthia V.; Chan, Po; Herbert, Ron A.; Kissling, Grace E.; Fomby, Laurene M.; Hejtmancik, Milton R.; Witt, Kristine; Waidyanatha, Suramya; Travlos, Greg; Kadiiska, Maria B.
2016-01-01
Cumene hydroperoxide (CHP) is a high production volume chemical that is used to generate phenol and acetone. Dermal exposure to CHP was hypothesized to result in systemic tissue toxicity, production of free radicals and consequent decrease of plasma antioxidant levels. To evaluate the hypothesis and characterize the toxicity of CHP, male and female B6C3F1/N mice and F344/N rats were exposed to varying doses of CHP applied topically for 14 or 90 days. No significant changes in survival or body weight of mice and rats were observed following 14 days of exposure. However, 90 days of CHP exposure at the high dose (12 mg/kg) triggered a significant decrease (−15%) in the body weight of the male rat group only. Irritation of the skin was observed at the site of application and was characterized by inflammation and epidermal hyperplasia. In treated animals, histology of liver tissue, free radical generation, and antioxidant levels in blood plasma were not significantly changed as compared to the corresponding controls. Consistent with the lack of systemic damage, no increase in micronucleated erythrocytes was seen in peripheral blood. In conclusion, topical CHP application caused skin damage only at the application site and did not cause systemic tissue impairment. PMID:26985019
Liquid scintillators for optical fiber applications
Franks, Larry A.; Lutz, Stephen S.
1982-01-01
A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.
Environmental Assessment for Kirtland Air Force Base Perimeter Fencing
2004-07-01
Xylene, Styrene, Toluene, Methyl ethyl ketone, 1,3-Butadiene, Phenol, Propionaldehyde, n-Hexane, Chlorobenzene, Cumene, 1,1,2-Trichloroethane, 2,2,4...piñon-juniper community ranges in elevation from 6,300 to 7,700 feet. This dominant plant community is composed of Colorado piñon pine ( Pinus edulis...Kirtland AFB Perimeter Fencing EA 3-21 Final - July 2004 Ponderosa pine ( Pinus ponderosa) forests occur in the upper elevations, usually above 7,700 feet
Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji
2016-11-22
The intramolecular oxidation of ROCH 3 to ROCH 2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe III TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH 2 PyCH 2 O- linker (Py=pyridine-3,5-diyl). The O=Fe IV TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe IV TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe II TPPS (t 1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH 3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe IV TPPS from ROCH 3 yields HO-Fe III TPPS and ROCH 2 . . This was followed by radical coupling to afford Fe II TPPS and ROCH 2 OH. The hemiacetal (ROCH 2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD
Code of Federal Regulations, 2014 CFR
2014-07-01
...(chloromethyl)ether b 0.999 75-25-2 Bromoform 0.998 106-99-0 1,3-Butadiene 1.000 75-15-0 Carbon disulfide 1.000....000 98-82-8 Cumene 1.000 94-75-7 2,4-D, salts and esters 0.167 334-88-3 Diazomethane c 0.999 132-64-9...-41-4 Ethyl benzene 1.000 75-00-3 Ethyl chloride (Chloroethane) 1.000 106-93-4 Ethylene dibromide...
Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena
2018-02-01
The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.
Panner Selvam, M K; Henkel, R; Sharma, R; Agarwal, A
2018-03-01
Oxidation-reduction potential describes the balance between the oxidants and antioxidants in fluids including semen. Various artificial culture media are used in andrology and IVF laboratories for sperm preparation and to support the development of fertilized oocytes under in vitro conditions. The composition and conditions of these media are vital for optimal functioning of the gametes. Currently, there are no data on the status of redox potential of sperm processing and assisted reproduction media. The purpose of this study was to compare the oxidation-reduction potential values of the different media and to calibrate the oxidation-reduction potential values of the sperm wash medium using oxidative stress inducer cumene hydroperoxide and antioxidant ascorbic acid. Redox potential was measured in 10 different media ranging from sperm wash media, freezing media and assisted reproductive technology one-step medium to sequential media. Oxidation-reduction potential values of the sequential culture medium and one-step culture medium were lower and significantly different (p < 0.05) from the sperm wash media. Calibration of the sperm wash media using the oxidant cumene hydroperoxide and antioxidant ascorbic acid demonstrated that oxidation-reduction potential and the concentration of oxidant or antioxidant are logarithmically dependent. This study highlights the importance of calibrating the oxidation-reduction potential levels of the sperm wash media in order to utilize it as a reference value to identify the physiological range of oxidation-reduction potential that does not have any adverse effect on normal physiological sperm function. © 2017 American Society of Andrology and European Academy of Andrology.
Higuchi, Masako; Yamamoto, Yuji; Poole, Leslie B.; Shimada, Mamoru; Sato, Yutaka; Takahashi, Nobuhiro; Kamio, Yoshiyuki
1999-01-01
We have previously identified two distinct NADH oxidases corresponding to H2O2-forming oxidase (Nox-1) and H2O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD+ but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H2O2, implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency. PMID:10498705
The role of plasmalogen in the oxidative stability of neutral lipids and phospholipids.
Wang, Guang; Wang, Tong
2010-02-24
The role of ethanolamine plasmalogen extracted from bovine brain (BBEP) in maintaining oxidative stability of bulk soybean oil and liposome made with egg phospholipids (PL) was studied. In a purified soybean oil (PSO), the addition of 200 and 1000 ppm of BBEP promoted lipid oxidation at rates of 0.037 and 0.071 (all rates in ln (PV) h(-1), and PV stands for peroxide value), whereas soy lecithin (SL) added in the same amount showed a trend similar to the PSO blank, which had an oxidation rate of 0.025. The PSO with BBEP was susceptible to cupric ion catalyzed oxidation, in that the oil was oxidized much more quickly than the PSO with SL and cupric ion. In commercial soybean oil (CSO) with the presence of tocopherols, SL at 1000 ppm acted synergistically as an antioxidant with the natural tocopherols, but addition of BBEP accelerated lipid oxidation, as evidenced by the oxidative stability index (OSI) test. In the egg PL liposome, the BBEP caused a fast breakdown of the lipid hydroperoxides and consequently promoted more thiobarbituric acid reactive substance (TBARS) formation. The PL oxidation in the presence of copper in the liposome was not affected by the BBEP, which indicates that the hypothesis of ethanolamine plasmalogen (EthPm) chelating cupric ion as the antioxidation mechanism was not supported. The addition of cumene hydroperoxide to the egg PL liposome promoted lipid oxidation, as indicated by a fast development of PV and TBARS. However, the result with cumene hydroperoxide failed to differentiate the effect of BBEP and SL and their concentration on lipid oxidation. On the basis of the observations from this study, we conclude that EthPm is not an antioxidant but rather a pro-oxidant in a bulk lipid system, and it has no significant antioxidant effect for PL oxidation in the liposome.
Yücel, G; Yeşilkaya, A; Aksu, T A; Yeğin, A; Alicigüzel, Y
1997-01-01
Erythrocytes and hemolysates from 10 normal and 10 glucose-6-phosphate dehydrogenase-deficient individuals were incubated with cumene hydroperoxide, and free radical-induced lipid peroxidation was monitored by chemiluminescence. Chemiluminescence intensities in erythrocytes of normal and deficient subjects were similar in the presence or absence of glucose-6-phosphate dehydrogenase substrates. Hemolysates of normal and deficient subjects also showed similar chemiluminescence in the absence of substrates. However, with the addition of substrates to the incubation medium, deficient hemolysates reached maximum chemiluminescence intensity within a shorter period, and maximum values were higher than in normal hemolysates. We believe this offers a new means of detection of glucose-6-phosphate dehydrogenase-deficient patients.
Refiners have several options for reducing gasoline benzene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.
1993-09-13
Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less
Eyanagi, R; Hisanari, Y; Shigematsu, H
1991-06-01
1. p-Aminophenol, a minor metabolite of phenacetin, is a potent nephrotoxic agent. 2. We have examined the binding of p-aminophenol to glutathione (GSH), a model amino acid, in the presence of horseradish peroxidase, which catalyses one electron oxidation. 3. The reaction product was purified by preparative h.p.l.c., and its structure was determined by FAB mass spectrometry and 1H-n.m.r. to be a p-aminophenol-GSH conjugate. The conjugate was formed between the ortho carbon of the amino group of p-aminophenol and the SH group of GSH. 4. It was confirmed by h.p.l.c. and 1H-n.m.r. that formation of the conjugate was catalysed in vitro by rat liver microsomes and cumene hydroperoxide.
Alkylation of organic aromatic compounds
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1993-01-01
Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.
Alkylation of organic aromatic compounds
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1993-01-05
Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.
Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan
2010-07-01
The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.
Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan
2010-01-01
The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723
Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).
Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J
2005-01-01
Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.
Schliemann, Sibylle; Schmidt, Christina; Elsner, Peter
2014-01-01
The objective of our study was to investigate the tandem irritation potential of two organic solvents with concurrent exposure to the hydrophilic detergent irritant sodium lauryl sulphate (SLS). A tandem repeated irritation test was performed with two undiluted organic solvents, cumene (C) and octane (O), with either alternating application with SLS 0.5% or twice daily application of each irritant alone in 27 volunteers on the skin of the back. The cumulative irritation induced over 4 days was quantified using visual scoring and non-invasive bioengineering measurements (skin colour reflectance, skin hydration and transepidermal water loss). Repeated application of C/SLS and O/SLS induced more decline of stratum corneum hydration and higher degrees of clinical irritation and erythema compared to each irritant alone. Our results demonstrate a further example of additive harmful skin effects induced by particular skin irritants and indicate that exposure to organic solvents together with detergents may increase the risk of acquiring occupational contact dermatitis. © 2014 S. Karger AG, Basel.
Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.
Liu, Yu; Pinnavaia, Thomas J
2003-03-05
Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores.
Conformational change of cytochrome P450 1A2 induced by phospholipids and detergents.
Yun, C H; Song, M; Kim, H
1997-08-08
Recently, it was reported that the activity of rabbit P450 1A2 is markedly increased at elevated salt concentration (Yun, C-H., Song, M., Ahn, T., and Kim, H. (1996) J. Biol. Chem. 271, 31312-31316). The activity increase of P450 1A2 coincides with the raised alpha-helix content and decreased beta-sheet content. The presence of phospholipid magnified this effect. Here, possible structural change of rabbit P450 1A2 accompanying the phospholipid-induced increase in its enzyme activity was investigated by circular dichroism, fluorescence spectroscopy, and absorption spectroscopy. Studies with the reconstituted system supported by cumene hydroperoxide or NADPH showed that the P450 1A2 activities were found to be dependent on the head group and hydrocarbon chain length of phospholipid. Phosphatidylcholines having short hydrocarbon chains with a carbon number of 8-12 were very efficient for reconstitution of the P450-catalyzed reactions supported by both cumene hydroperoxide and NADPH. It was found that the phospholipid increased the alpha-helix content and lowered the beta-sheet content of P450. Intrinsic fluorescence intensity is also increased in the presence of phospholipid. The low spin iron configuration of P450 1A2 shifted toward the high spin configuration by most of the phospholipids in the endoplasmic reticulum. Some synthetic phospholipids having short hydrocarbon chains with a carbon number of 10-12 caused a shift in the spin equilibrium of P450 1A2 toward low spin. The effect of detergents on the activity and conformation of P450 1A2 was also studied. It was found that the addition of detergents to P450 1A2 solution increased the enzyme activity of P450 1A2. Detergents also increased the alpha-helix content and lowered the beta-sheet content of P450 1A2. Intrinsic fluorescence emissions also increased with the presence of detergents. Octyl glucoside and deoxycholate caused a shift toward high spin. On the other hand, cholate caused a shift toward low spin. It was found that the activity increase of rabbit P450 1A2 coincides with the conformational change including raised alpha-helix content. It is proposed that the interaction with the phospholipid molecules surrounding P450 1A2 in the endoplasmic reticulum is important for a functional conformation of P450 1A2 in a monooxygenase system including NADPH-P450 reductase.
s-core network decomposition: A generalization of k-core analysis to weighted networks
NASA Astrophysics Data System (ADS)
Eidsaa, Marius; Almaas, Eivind
2013-12-01
A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.
Modeling of rotating disc contactor (RDC) column
NASA Astrophysics Data System (ADS)
Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar
2014-12-01
Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.
Mifune, Masaki; Kamiguchi, Hidenori; Tai, Taka-Aki; Kuremoto, Seigo; Yamamoto, Makiko; Tsukamoto, Ikuko; Saito, Madoka; Kitamura, Youji; Saito, Yutaka
2007-01-15
To reveal an enzyme-like catalytic activity of metal-octabromo-tetrakis(sulfophenyl)porphines (M-OBPSs), their peroxidease-like catalytic activity on linoleate hydroperoxide (LOOH) were evaluated on the basis of dye-formation in the coloring reaction between N,N-diethylaniline and 4-aminoantipyrine that yields a quinoid-type dye. Among M-OBPSs tested, Mn(3+)-OBPS allowed to produce the largest amount of dye. The optimal conditions of the coloring reaction catalyzed by Mn(3+)-OBPS for the determination of LOOH were determined. A good linear calibration curve was obtained in the concentration range of 0.025-0.4mumole LOOH with good reproducibility (coefficient of variance=1.23%), suggesting that Mn(3+)-OBPS is a good artificial mimesis of the peroxidase for LOOH. In addition, Mn(3+)-OBPS was highly specific for LOOH even in the presence of cumene hydroxyperoxide or hydrogen peroxide. It was revealed that the peroxidase-like activity of Mn(3+)-OBTP is attributable to the redox cycle of Mn(3+)<-->Mn(4+).
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
NASA Astrophysics Data System (ADS)
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448
Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting
2016-05-01
To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.
Wada, Mitsuhiro; Inoue, Keiyu; Thara, Ayuko; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka
2003-02-14
A HPLC method was developed for the simultaneous determination of organic peroxides and hydrogen peroxide with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Organic peroxides [i.e., benzoyl peroxide (BP), tert.-butyl hydroperoxide (BHP), tert.-butyl perbenzoate (BPB), cumene hydroperoxide (CHP)] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined by PO-CL detection. The conditions for UV irradiation and PO-CL detection were optimized by a flow injection analysis (FIA) system. Generation of hydrogen peroxide from peroxides with on-line UV irradiation also was confirmed by the FIA system by incorporating an enzyme column reactor immobilized with catalase. The separation of four organic peroxides and hydrogen peroxide by HPLC was accomplished isocratically on an ODS column within 30 min. The detection limits (signal-to-noise ratio=3) were 1.1 microM for hydrogen peroxide, 6.8 microM for BP, 31.3 microM for BHP, 7.5 microM for BPB and 1.3 microM for CHP. The proposed method was applied to the determination of BP in wheat flour.
Inducers of Glycinebetaine Synthesis in Barley1
Jagendorf, André T.; Takabe, Tetsuko
2001-01-01
Glycinebetaine is an osmoprotectant accumulated by barley (Hordeum vulgare) plants in response to high levels of NaCl, drought, and cold stress. Using barley seedlings in hydroponic culture, we characterized additional inducers of glycinebetaine accumulation. These included other inorganic salts (KCl, MgCl2, LiCl, and Na2SO4), oxidants (H2O2 and cumene hydroperoxide), and organic compounds (abscisic acid, polymixin B, n-butanol, salicylic acid, and aspirin). Stress symptoms brought on by high NaCl and other inducers, and not necessarily correlated with glycinebetaine accumulation, include wilting, loss of chlorophyll, and increase in thiobarbituric acid reacting substances. For NaCl, Ca2+ ions at 10 to 20 mm decrease these stress symptoms without diminishing, or even increasing, glycinebetaine induction. Abscisic acid induces glycinebetaine accumulation without causing any of the stress symptoms. NaCl, KCl, and H2O2 (but not other inducers) induce glycinebetaine at concentrations below those needed for the other stress symptoms. Mg2+ at 10 to 20 mm induces both stress symptoms and glycinebetaine, but only at low (0.2 mm) Ca2+. Although illumination is needed for optimal induction, a significant increase in the leaf glycinebetaine level is found in complete darkness, also. PMID:11743126
Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses
Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat
2015-01-01
Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265
Development of fabric-based chemical gas sensors for use as wearable electronic noses.
Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat
2015-01-16
Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.
Gaber, Ahmed
2014-01-01
Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1–8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H2O2 or 600 mM NaCl. PMID:24217216
Gaber, Ahmed
2014-01-01
Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1-8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H 2O 2 or 600 mM NaCl.
Jayadevan, Janisha; Alex, Rosamma; Gopalakrishnapanicker, Unnikrishnan
2018-02-01
Natural rubber latex was initially deproteinised (DNRL) and then subjected to physicochemical modifications to make high functional membranes for drug delivery applications. Initially, DNRL was prepared by incubating with urea, sodiumdodecylsulphate and acetone followed by centrifugation. The deproteinisation was confirmed by CHN analysis. The DNRL was then chemically modified by grafting (dimethylaminoethyl methacrylate) onto NR particles by using a redox initiator system viz; cumene hydroperoxide/tetraethylenepentamine, followed by dialysis for purification. The grafting was confirmed by dynamic light scattering, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The grafted system was blended with a hydrophilic adhesive polymer PVA and casted into membranes. The membranes after blending showed enhanced mechanical properties with a threshold concentration of PVA. The moisture uptake, swelling and water contact angle experiments indicated an increased hydrophilicity with an increased PVA content in the blend membranes. The grafted DNRL possessed significant antibacterial property which has been found to be retained in the blended form. A notable decrease in cytotoxicity was observed for the modified DNRL membranes than the bare DNRL membranes. The in-vitro drug release studies using rhodamine B as a model drug, confirmed the utility of the prepared membranes to function as a drug delivery matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry.
McAvey, Kevin M; Guan, Bing; Fortier, Chanel A; Tarr, Matthew A; Cole, Richard B
2011-04-01
Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2,5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism. © American Society for Mass Spectrometry, 2011
Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R
2015-03-28
Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Hagaman, Edward; Ma, Zhen
2010-01-01
The introduction of mesoporous silicas in the 1990s has offered new opportunities for the engineering of ordered catalytic nanoreactors, but the acid properties of mesoporous silicas are rather poor. Herein, mesoporous silica (SBA-15) surfaces were functionalized by zirconium phosphate via two methods recently developed in our group. Zr(OPr){sub 4} and POCl{sub 3} were used as appropriate precursors in both methods. The main difference between these methods lies in whether Zr(OPr){sub 4} is grafted onto SBA-15 first and POCl{sub 3} second (method 1) or the grafting process takes place in one pot, with SBA-15, Zr(OPr){sub 4}, and POCl{sub 3} altogether (methodmore » 2). More zirconium phosphate could be grafted by repeating the above procedures. The materials were characterized by ICP-OES, XRD, N{sub 2} adsorption-desorption, TEM, {sup 31}P and {sup 29}Si MAS NMR, and NH{sub 3}-TPD, and their applications in catalytic isopropanol dehydration, cumene cracking, and metal-ion adsorption were demonstrated. Aluminum phosphate-modified SBA-15 samples could be obtained via these two methods as well. This work enriches the family of metal phosphate-functionalized mesoporous silicas as new solid acid catalysts.« less
Villaverde, Marcela S; Hanzel, Cecilia E; Verstraeten, Sandra V
2004-09-01
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 microM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+ per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl(3+)-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.
Shehu, Dayyabu; Alias, Zazali
2018-05-19
Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise
2012-05-01
Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.
Chen, Ya-Qin; Liu, Xin-Guang; Zhao, Wei; Cui, Hongjing; Ruan, Jie; Yuan, Yuan; Tu, Zhiguang
2017-01-01
Yeast MET18 , a subunit of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery which is responsible for the maturation of Fe/S proteins, has been reported to participate in the oxidative stress response. However, the underlying molecular mechanisms remain unclear. In this study, we constructed a MET18/met18Δ heterozygous mutant yeast strain and found that MET18 deficiency in yeast cells impaired oxidative stress resistance as evidenced by increased sensitivity to hydrogen peroxide (H 2 O 2 ) and cumene hydroperoxide (CHP). Mechanistically, the mRNA levels of catalase A (CTA1) and catalase T (CTT1) as well as the total catalase activity were significantly reduced in MET18 -deficient cells. In contrast, overexpression of CTT1 or CTA1 in MET18 -deficient cells significantly increased the intracellular catalase activity and enhanced the resistance ability against H 2 O 2 and CHP. In addition, MET18 deficiency diminished the replicative capacity of yeast cells as evidenced by the shortened replicative lifespan, which can be restored by CTT1 overexpression, but not by CTA1 , in the MET18 -deficient cells. These results suggest that MET18 , in a catalase-dependent manner, plays an essential role in enhancing the resistance of yeast cells to oxidative stress and increasing the replicative capacity of yeast cells.
Zhao, Wei; Cui, Hongjing
2017-01-01
Yeast MET18, a subunit of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery which is responsible for the maturation of Fe/S proteins, has been reported to participate in the oxidative stress response. However, the underlying molecular mechanisms remain unclear. In this study, we constructed a MET18/met18Δ heterozygous mutant yeast strain and found that MET18 deficiency in yeast cells impaired oxidative stress resistance as evidenced by increased sensitivity to hydrogen peroxide (H2O2) and cumene hydroperoxide (CHP). Mechanistically, the mRNA levels of catalase A (CTA1) and catalase T (CTT1) as well as the total catalase activity were significantly reduced in MET18-deficient cells. In contrast, overexpression of CTT1 or CTA1 in MET18-deficient cells significantly increased the intracellular catalase activity and enhanced the resistance ability against H2O2 and CHP. In addition, MET18 deficiency diminished the replicative capacity of yeast cells as evidenced by the shortened replicative lifespan, which can be restored by CTT1 overexpression, but not by CTA1, in the MET18-deficient cells. These results suggest that MET18, in a catalase-dependent manner, plays an essential role in enhancing the resistance of yeast cells to oxidative stress and increasing the replicative capacity of yeast cells. PMID:28828388
Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin
2013-11-08
Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.
Butruk, Beata; Trzaskowski, Maciej; Ciach, Tomasz
2012-08-01
In this paper the authors present a simple method of coating polyurethane (PU) surface with poly(vinyl pirrolidone) (PVP) hydrogel. The hydrogel-coated materials were designed for use in biomedical applications, especially in blood-contacting devices. The coating is formed due to free radical macromolecular grafting-crosslinking. Polymer surface was first immersed in an organic solution containing radical source: cumene hydroperoxide (CHP) with an addition of a branching and anchoring agent: ethylene glycol dimethylacrylate (EGDMA). In the second step, the substrate was immersed in a water solution containing given concentration of PVP and Fe(2+). The novelty of the process consists in the fact that free radicals are formed mostly at the polymer/solution interface, what assures high grafting efficiency together with the formation of covalent bonds between polymer substrate and modifying layer. The process was optimized for reagents concentrations. The coating properties: thickness and the swelling ratio were strongly influenced by CHP, Fe(2+), PVP and EGMDA concentrations. The chemical composition of the surface analyzed with FTIR-ATR spectroscopy confirmed the presence of PVP coating. In vitro biocompatibility tests with L929 fibroblasts confirmed non-cytotoxicity of the coatings. Hydrogel coating significantly improved polyurethane hemocompatibility. Studies with human whole blood revealed that both, the platelet consumption and the level of platelet activation were as low as for negative control. Copyright © 2012 Elsevier B.V. All rights reserved.
Saien, Javad; Daneshamoz, Sana
2018-03-01
The influence of ultrasonic waves on liquid-liquid extraction of circulating drops and in the presence of magnetite nanoparticles was investigated. Experiments were conducted in a column equipped with an ultrasound transducer. The frequency and intensity of received waves, measured by the hydrophone standard method, were 35.40 kHz and 0.37 mW/cm 2 , respectively. The recommended chemical system of cumene-isobutyric acid-water was used in which mass transfer resistance lies in the aqueous phase. Nanoparticles, within concentration range of (0.0003-0.0030) wt%, were added to the aqueous continuous phase. The presence of nanoparticles and ultrasonic waves provided no sensible change in drop size (within 2.49-4.17 mm) and measured terminal velocities were close to Grace model. However, presence of nanoparticles, caused mass transfer to decrease. This undesired effect was significantly diminished by using ultrasonic waves so that mass transfer coefficient increased from (73.0-178.2) to (130.2-240.2) µm/s, providing a 55.6% average enhancement. It is presumably due to disturbing the accumulated nanoparticles around the drops. The current innovative study highlights the fact that using ultrasonic waves is an interesting way to improve liquid-liquid extraction in the presence and absence of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Chechushkov, Anton; Zaitseva, Natalia; Vorontsova, Elena; Kozhin, Petr; Menshchikova, Elena; Shkurupiy, Vyacheslav
2016-12-01
Linear dextrans are often proposed as drug delivery systems with milder adverse effects and lower effective drug concentrations. Linear dextrans are polysaccharides that can potentially be used to load macrophages with drugs to transport them to a site of inflammation. Recently, it was reported that dextrans may exert a protective effect vis-à-vis drug cytotoxicity and during wound healing. The aim of the current work was to evaluate molecular mechanisms of action of dextrans that may be relevant to the cytoprotective effects. We determined the effect of treatment with 40- or 70-kDa dextran on production of reactive oxygen species, lipid peroxidation, and lysosomal pH in the J774 macrophage cell line. In addition, induction of Keap1/Nrf2/ARE and autophagic activity were evaluated. Dextrans of both molecular weights protected the cells from oxidative stress induced by cumene hydroperoxide and from lysosomal stress induced by ammonium chloride. The effect was associated with induction of the Keap1/Nrf2/ARE signaling pathway. Furthermore, dextran stimulated autophagy in a dose-dependent manner but inhibited the autophagosome-lysosome fusion in a time-dependent manner. This study shows possible cytoprotective effects of dextran under oxidative stress, and these findings may be used for the development of novel (dextran-based) drug delivery approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Gawlik, Małgorzata; Czajka, Aneta
2007-01-01
The present study was undertaken to investigate the effect of aqueous tea extracts on lipid peroxidation and alpha and gamma tocopherols concentration in the oxidative damage of human red blood cells (RBC). RBC was taken as the model for study of the oxidative damage was induced by cumene hydroperoxide (cumOOH). The antioxidative property of leaf green tea, leaf and granulate of black tea and white tea at levels 1, 2, 4 g/150 mL of water were evaluated. The correlation was observed between reducing power of tea extract and formation of malondialdehyde--MDA (an indicator of lipid peroxidation) in oxidative damage of RBC. All tea extracts at level of 4 g/150 mL of water significantly decreased concentration of MDA. The extract of green tea in comparison to black and white tea extracts at the same levels seems to be a better protective agent against oxidative stress. The antioxidant synergism between components extracted from leaves of green tea and endogenous alpha tocopherol in the oxidative damage of red blood cells was observed. The consumption of alpha tocopherol in oxidative damage of RBC was the lowest after treatment with the highest dose of green tea extract. All tea extracts did not protect against decrease of gamma tocopherol in human erythrocytes treated with cumOOH.
Amorati, Riccardo; Zotova, Julija; Baschieri, Andrea; Valgimigli, Luca
2015-11-06
Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.
NASA Astrophysics Data System (ADS)
Zhou, Shouming; Rivera-Rios, Jean C.; Keutsch, Frank N.; Abbatt, Jonathan P. D.
2018-05-01
Molecules with hydroperoxide functional groups are of extreme importance to both the atmospheric and biological chemistry fields. In this work, an analytical method is presented for the identification of organic hydroperoxides and peroxy acids (ROOH) by direct infusion of liquid samples into a positive-ion atmospheric pressure chemical ionization-tandem mass spectrometer ((+)-APCI-MS/MS). Under collisional dissociation conditions, a characteristic neutral loss of 51 Da (arising from loss of H2O2+NH3) from ammonium adducts of the molecular ions ([M + NH4]+) is observed for ROOH standards (i.e. cumene hydroperoxide, isoprene-4-hydroxy-3-hydroperoxide (ISOPOOH), tert-butyl hydroperoxide, 2-butanone peroxide and peracetic acid), as well as the ROOH formed from the reactions of H2O2 with aldehydes (i.e. acetaldehyde, hexanal, glyoxal and methylglyoxal). This new ROOH detection method was applied to methanol extracts of secondary organic aerosol (SOA) material generated from ozonolysis of α-pinene, indicating a number of ROOH molecules in the SOA material. While the full-scan mass spectrum of SOA demonstrates the presence of monomers (m/z = 80-250), dimers (m/z = 250-450) and trimers (m/z = 450-600), the neutral loss scan shows that the ROOH products all have masses less than 300 Da, indicating that ROOH molecules may not contribute significantly to the SOA oligomeric content. We anticipate this method could also be applied to biological systems with considerable value.
Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide.
Matsui, T; Ozaki, S i; Liong, E; Phillips, G N; Watanabe, Y
1999-01-29
To clarify how the location of distal histidine affects the activation process of H2O2 by heme proteins, we have characterized reactions with H2O2 for the L29H/H64L and F43H/H64L mutants of sperm whale myoglobin (Mb), designed to locate the histidine farther from the heme iron. Whereas the L29H/H64L double substitution retarded the reaction with H2O2, an 11-fold rate increase versus wild-type Mb was observed for the F43H/H64L mutant. The Vmax values for 1-electron oxidations by the myoglobins correlate well with the varied reactivities with H2O2. The functions of the distal histidine as a general acid-base catalyst were examined based on the reactions with cumene hydroperoxide and cyanide, and only the histidine in F43H/H64L Mb was suggested to facilitate heterolysis of the peroxide bond. The x-ray crystal structures of the mutants confirmed that the distal histidines in F43H/H64L Mb and peroxidase are similar in distance from the heme iron, whereas the distal histidine in L29H/H64L Mb is located too far to enhance heterolysis. Our results indicate that the proper positioning of the distal histidine is essential for the activation of H2O2 by heme enzymes.
Benekos, Kostantinos; Kissoudis, Christos; Nianiou-Obeidat, Irini; Labrou, Nikolaos; Madesis, Panagiotis; Kalamaki, Mary; Makris, Antonis; Tsaftaris, Athanasios
2010-10-01
Plant glutathione transferases (GSTs) superfamily consists of multifunctional enzymes and forms a major part of the plants herbicide detoxification enzyme network. The tau class GST isoenzyme GmGSTU4 from soybean, exhibits catalytic activity towards the diphenyl ether herbicide fluorodifen and is active as glutathione-dependent peroxidase (GPOX). Transgenic tobacco plants of Basmas cultivar were generated via Agrobacterium transformation. The aim was to evaluate in planta, GmGSTU4's role in detoxifying the diphenyl ether herbicides fluorodifen and oxyfluorfen and the chloroacetanilides alachlor and metolachlor. Transgenic tobacco plants were verified by PCR and Southern blot hybridization and expression of GmGSTU4 was determined by RT-PCR. Leaf extracts from transgenic plants showed moderate increase in GST activity towards CDNB and a significant increase towards fluorodifen and alachlor, and at the same time an increased GPOX activity towards cumene hydroperoxide. GmGSTU4 overexpressing plants when treated with 200 μM fluorodifen or oxyfluorfen exhibited reduced relative electrolyte leakage compared to wild type plants. Moreover all GmGSTU4 overexpressing lines exhibited significantly increased tolerance towards alachlor when grown in vitro at 7.5 mg/L alachlor compared to wild type plants. No significant increased tolerance was observed to metolachlor. These results confirm the contribution of this particular GmGSTU4 isoenzyme from soybean in the detoxification of fluorodifen and alachlor, and provide the basis towards the development of transgenic plants with improved phytoremediation capabilities for future use in environmental cleanup of herbicides. Copyright © 2010 Elsevier B.V. All rights reserved.
Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza
2017-10-01
Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.
Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti
2011-01-01
Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation. PMID:21569462
A new automated colorimetric method for measuring total oxidant status.
Erel, Ozcan
2005-12-01
To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, P<0.001 for all). In addition, the new assay presented a typical sigmoidal reaction pattern in copper-induced lipoprotein autoxidation. The novel assay is linear up to 200 micromol H2O2 Equiv./L and its precision value is lower than 3%. The lower detection limit is 1.13 micromol H2O2 Equiv./L. The reagents are stable for at least 6 months on the automated analyzer. Serum TOS level was significantly higher in patients with osteoarthritis (21.23+/-3.11 micromol H2O2 Equiv./L) than in healthy subjects (14.19+/-3.16 micromol H2O2 Equiv./L, P<0.001) and the results showed a significant negative correlation with total antioxidant capacity (TAC) (r=-0.66 P<0.01). This easy, stable, reliable, sensitive, inexpensive and fully automated method that is described can be used to measure total oxidant status.
Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares; da Silva Neto, José Freire
2017-08-01
A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR , and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes ( ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR -diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. Copyright © 2017 American Society for Microbiology.
Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares
2017-01-01
ABSTRACT A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR, and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes (ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR-diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. PMID:28507067
Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R
2018-06-01
The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.
Formation of hydroxyl radicals from photolysis of secondary organic aerosol material
NASA Astrophysics Data System (ADS)
Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.
2015-07-01
This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.
Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study
Patel, Yesha S.; Mehra, Sarika
2017-01-01
Prolonged chemotherapy as well as rapid development of antimicrobial resistance are two of the major concerns for treatment of mycobacterial infections. To enhance the effectiveness of current drug regimens, search for compounds having synergistic interaction with anti-mycobacterial drugs has become indispensable. Here, we have investigated the intervention by oxidative stress, a major factor in mycobacterial pathogenesis, in combination with rifampicin (RIF), a first-line drug used against Mycobacterium tuberculosis. We have observed that a sub-inhibitory concentration of cumene hydroperoxide (CHP), a hydrophobic oxidant, synergistically reduced the minimum inhibitory concentration of RIF by fourfold, with a Fractional Inhibitory Concentration Index (FICI) of 0.45. Also, this interaction was found to be robust and synergistic against different strains of M. smegmatis as well as on M. bovis BCG, with FICI ranging from 0.3 to 0.6. Various physiological, biochemical and molecular parameters were explored to understand the mechanism of synergy. It was observed that increased membrane permeability owing to the presence of the oxidant, led to higher uptake of the drug. Moreover, downregulation of the hydroperoxide reductases by RIF, a transcriptional inhibitor, prevented quenching of the reactive oxygen species produced in the presence of CHP. The lipid soluble reactive species triggered autocatalytic lipid peroxidation (LPO), observed here as extensive membrane damage eventually leading to growth inhibition. Furthermore, it was seen that in combination with hydrogen peroxide (H2O2), the effect was only additive, establishing LPO as a key aspect leading toward synergism. To conclude, this work suggests that targeting the bacterial membrane by a radical species can have a significant impact on the treatment of tuberculosis. PMID:29163385
Rodrigues, Clarissa Perdomo; Zonetti, Priscila da Costa; Appel, Lucia Gorenstin
2017-04-04
Acetone is an important solvent and widely used in the synthesis of drugs and polymers. Currently, acetone is mainly generated by the Cumene Process, which employs benzene and propylene as fossil raw materials. Phenol is a co-product of this synthesis. However, this ketone can be generated from ethanol (a renewable feedstock) in one-step. The aim of this work is to describe the influence of physical-chemical properties of three different catalysts on each step of this reaction. Furthermore, contribute to improve the description of the mechanism of this synthesis. The acetone synthesis from ethanol was studied employing Cu/ZnO/Al 2 O 3 , Ce 0.75 Zr 0.25 O 2 and ZrO 2 . It was verified that the acidity of the catalysts needs fine-tuning in order to promote the oxygenate species adsorption and avoid the dehydration of ethanol. The higher the reducibility and the H 2 O dissociation activity of the catalysts are, the higher the selectivity to acetone is. In relation to the oxides, these properties are associated with the presence of O vacancies. The H 2 generation, which occurs during the TPSR, indicates the redox character of this synthesis. The main steps of the acetone synthesis from ethanol are the generation of acetaldehyde, the oxidation of this aldehyde to acetate species (which reduces the catalyst), the H 2 O dissociation, the oxidation of the catalyst producing H 2 , and, finally, the ketonization reaction. These pieces of information will support the development of active catalysts for not only the acetone synthesis from ethanol, but also the isobutene and propylene syntheses in which this ketone is an intermediate. Graphical abstract Acetone from ethanol.
Xiao, Li; Miwa, Nobuhiko
2017-04-01
The aim of the present study is to investigate protective effects of hydrogen-rich water (HW) against reactive oxygen species (ROS)-induced cellular harmful events and cell death in human gingival fibroblasts (HGF) and three-dimensional (3D-) gingival tissue equivalents. HW was prepared with a magnesium stick in 600-mL double distilled water (DDW) overnight. Dissolved hydrogen was about 1460 ± 50 μg/L versus approximately 1600 μg/L for the saturated hydrogen. Under cell-free conditions, HW, dose-dependently, significantly scavenged peroxyl radicals (ROO·) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Extract from HW-treated HGF cells scavenged ROO· more markedly than that from DDW-treated cells, suggesting that HW can increase the intracellular antioxidant capacity. Hydrogen peroxide dose-dependently increased the intracellular ROS generation, which was significantly repressed by HW, both in the cytoplasm and nuclei. LIVE/DEAD staining and our original cell viability dye-extraction assay showed that HW significantly protected HGF cells from hydrogen peroxide-induced cell death. Hydrogen peroxide also diminished the contents of intracellular glutathione, which were appreciably relieved by HW-pretreatment. Additionally, HW noticeably prevented cumene hydroperoxide-induced generation of cellular ROS in epidermis parts of 3D-gingival equivalents. The in vitro scratch assay showed that HW was able to diminish physical injury-induced ROS generation and promote wound healing in HGF cell monolayer sheets. In summary, HW was able to increase intracellular antioxidative capacity and to protect cells and tissue from oxidative damage. Thus, HW might be used for prevention/treatment of oxidative stress-related diseases.
Jarupatrakorn, Jonggol; Don Tilley, T
2002-07-17
A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.
Calmes, Benoit; Morel-Rouhier, Mélanie; Bataillé-Simoneau, Nelly; Gelhaye, Eric; Guillemette, Thomas; Simoneau, Philippe
2015-06-18
Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.
Monserrat, J M; Seixas, A L R; Ferreira-Cravo, M; Bürguer-Mendonça, M; Garcia, S C; Kaufmann, C G; Ventura-Lima, J
2017-06-01
Nanomaterials (NM) exhibit unique properties due their size and relative area, but the mechanisms and effects in the living organisms are yet to be unfold in their totality. Potential toxicity mechanisms concerning NM as carbon nanotubes include oxidative stress generation. Several fluorimetric and colorimetric methods have been systematically used to measure NM toxicity, and controversial results have been reported. One of the problems can be related to the interference effects induced by NM, leading to artifacts that can lead to misleading conclusions. In present study, it was performed in vitro assays with two aquatic species: the zebrafish Danio rerio and the polychaete Laeonereis acuta to evaluate the potential interference capacity of single-wall carbon nanotubes (SWCNT) in a fluorometric method (TBARS assay) to measure lipid peroxidation. Obtained results indicated that gills and brain of zebrafish presented a lowered fluorescence only at extremely high concentrations (50 and 500mg/L). Determinations in anterior, middle, and posterior body regions of L. acuta showed a quite different pattern: high fluorescence at low SWCNT concentrations (0.5mg/L) and lowering at the highest (500mg/L). To eliminate matrix effect of biological samples, tests employing the standard for TBARS assay, 1,3,3-tetramethoxipropane, were run and the results showed again higher fluorescence values at low concentrations (0.5-5mg SWCNT/L), a technique artifact that could lead to misleading conclusions since higher fluorescence values implicate higher TBARS concentration, implying oxidative stress. Using the colorimetric FOX assay with cumene hydroperoxide as standard presented remarkable better results since no artifacts were observed in the same SWCNT concentration range that employed with the TBARS technique. Copyright © 2017 Elsevier Inc. All rights reserved.
Stress Response and Virulence Functions of the Acinetobacter baumannii NfuA Fe-S Scaffold Protein
Zimbler, Daniel L.; Park, Thomas M.; Arivett, Brock A.; Penwell, William F.; Greer, Samuel M.; Woodruff, Tessa M.; Tierney, David L.
2012-01-01
To successfully establish an infection, Acinetobacter baumannii must overcome the iron starvation and oxidative stress imposed by the human host. Although previous studies have shown that ATCC 19606T cells acquire iron via the acinetobactin-mediated siderophore system, little is known about intracellular iron metabolism and its relation to oxidative stress in this pathogen. Screening of an insertion library resulted in the isolation of the ATCC 19606T derivative 1644, which was unable to grow in iron-chelated media. Rescue cloning and DNA sequencing showed that the insertion inactivated a gene coding for an NfuA Fe-S cluster protein ortholog, without any effect on the expression of the acinetobactin system. The nfuA mutant was also more sensitive to hydrogen peroxide and cumene hydroperoxide than the parental strain. The iron chelation- and oxidative-stress-deficient responses of this mutant were corrected when complemented with either the ATCC 19606T parental allele or the Escherichia coli MG1655 nfuA ortholog. Furthermore, electron paramagnetic resonance (EPR) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses showed that the ATCC 19606T NfuA ortholog has iron-binding properties compatible with the formation of [Fe-S] cluster protein. Ex vivo and in vivo assays using human epithelial cells and Galleria mellonella, respectively, showed that NfuA is critical for bacterial growth independent of their capacity to acquire iron or the presence of excess of free iron. Taken together, these observations indicate that the A. baumannii NfuA ortholog plays a role in intracellular iron utilization and protection from oxidative-stress responses that this pathogen could encounter during the infection of the human host. PMID:22467784
Rezaei-Sadabady, Rogaie; Eidi, Akram; Zarghami, Nosratollah; Barzegar, Abolfazl
2016-01-01
Quercetin (3,5,7,3',4'-pentahydroxyflavone) is a natural bio-flavonoid originating from fruits, vegetables, seeds, berries, and tea. The antioxidant activity of quercetin and its protective effects against cardiovascular disorders, anti-cancer, anti-inflammatory, and anti-viral activities have been extensively documented; however, the clinical request of quercetin in cancer treatment is significantly limited due to its very poor delivery features. In order to increase the hydrophilicity and drug delivery capability, we encapsulated quercetin into liposomes. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be used as an effective antioxidant for ROS protection within the polar cytoplasm, and the nano-sized quercetin encapsulated by liposomes enhanced the cellular uptake (cancer cell human MCF_7). Quercetin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of quercetin in polar solvents by a comparative study using reduction of ferric iron in aqueous medium, intracellular ROS/toxicity assays, and reducing DPPH assays. Cell viability and ROS assays demonstrated that quercetin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and deadly belongings of cumene hydroperoxide. The purpose of this study was to determine whether a liposomal formulation of quercetin can suggestively improve its solubility and bioavailability and can be a possible request in the treatment of tumor. The authors encapsulated quercetin in a liposomal delivery system. They studied the in vitro effects of this compound on proliferation using human MCF-7 carcinoma cells. The activity of liposomal quercetin was equal to or better than that of free quercetin at equimolar concentrations. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be a potential application in the treatment of tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.
2009-06-15
Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2{sup -/-} MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 {mu}mol/l sulforaphane was very substantially lower in Nrf2{sup -/-} MEFs than in wild-type cells, and the rebound leading to a {approx} 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2{sup +/+} MEFs were treated with sulforaphane was not observed in Nrf2{sup -/-}more » fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 {mu}mol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, {alpha},{beta}-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2{sup +/+} MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2{sup -/-} MEFs were typically {approx} 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 {mu}mol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2{sup +/+} MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.« less
Gajewska, Beata; Kaźmierczak, Beata; Kuźma-Kozakiewicz, Magdalena; Jamrozik, Zygmunt; Barańczyk-Kuźma, Anna
2015-01-01
Glutathione S-transferase pi (GSTP1) is a crucial enzyme in detoxification of electrophilic compounds and organic peroxides. Together with Se-dependent glutathione peroxidase (Se-GSHPx) it protects cells against oxidative stress which may be a primary factor implicated in motor neuron disease (MND) pathogenesis. We investigated GSTP1 polymorphisms and their relationship with GST and Se-GSTPx activities in a cohort of Polish patients with MND. Results were correlated with clinical phenotypes. The frequency of genetic variants for GSTP1 exon 5 (I105V) and exon 6 (A114V) was studied in 104 patients and 100 healthy controls using real-time polymerase chain reaction. GST transferase activity was determined in serum with 1-chloro-2,4-dinitrobenzene, its peroxidase activity with cumene hydroperoxide, and Se-GSHPx activity with hydrogen peroxide. There were no differences in the prevalence of GSTP1 polymorphism I105V and A114V between MND and controls, however the occurrence of CT variant in codon 114 was associated with a higher risk for MND. GSTP1 polymorphisms were less frequent in classic ALS than in progressive bulbar palsy. In classic ALS C* (heterozygous I /V and A /V) all studied activities were significantly lower than in classic ALS A* (homozygous I /I and A/A). GST peroxidase activity and Se-GSHPx activity were lower in classic ALS C* than in control C*, but in classic ALS A* Se-GSHPx activity was significantly higher than in control A*. It can be concluded that the presence of GSTP1 A114V but not I105V variant increases the risk of MND, and combined GSTP1 polymorphisms in codon 105 and 114 may result in lower protection of MND patients against the toxicity of electrophilic compounds, organic and inorganic hydroperoxides.
Shahein, Yasser Ezzat; El Sayed El-Hakim, Amr; Abouelella, Amira Mohamed Kamal; Hamed, Ragaa Reda; Allam, Shaimaa Abdul-Moez; Farid, Nevin Mahmoud
2008-03-25
A full-length cDNA of a glutathione S-transferase (GST) was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. The 672 bp cloned fragment was sequenced and showed an open reading frame encoding a protein of 223 amino acids. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the sequence is closely related to the mammalian mu-class GST. The cloned gene was expressed in E. coli under T7 promotor of pET-30b vector, and purified under native conditions. The purified enzyme appeared as a single band on 12% SDS-PAGE and has a molecular weight of 30.8 kDa including the histidine tag of the vector. The purified enzyme was assayed upon the chromogenic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the recombinant enzyme showed high level of activity even in the presence of the beta-galactosidase region on its 5' end and showed maximum activity at pH 7.5. The Km values for CDNB and GSH were 0.57 and 0.79 mM, respectively. The over expressed rBaGST showed high activity toward CDNB (121 units/mg protein) and less toward DCNB (29.3 units/mg protein). rBaGST exhibited peroxidatic activity on cumene hydroperoxide sharing this property with GSTs belonging to the GST alpha class. I50 values for cibacron blue and bromosulfophthalein were 0.22 and 8.45 microM, respectively, sharing this property with the mammalian GSTmu class. Immunoblotting revealed the presence of the GST molecule in B. annulatus protein extracts; whole tick, larvae, gut, salivary gland and ovary. Homologues to the GSTmu were also detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. while in Ornithodoros moubata, GSTmu homologue could not be detected.
Synthesis and antioxidant activity of peptide-based ebselen analogues.
Satheeshkumar, Kandhan; Mugesh, Govindasamy
2011-04-18
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.
Reed, C J; Lock, E A; De Matteis, F
1988-01-01
1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver. PMID:3263118
Effect of vitamin E on 24(S)-hydroxycholesterol-induced necroptosis-like cell death and apoptosis.
Nakazawa, Takaya; Miyanoki, Yuta; Urano, Yasuomi; Uehara, Madoka; Saito, Yoshiro; Noguchi, Noriko
2017-05-01
24(S)-Hydroxycholesterol (24S-OHC) has diverse physiological and pathological functions. In particular, cytotoxic effects of 24S-OHC in neuronal cells are important in development of neurodegenerative diseases. 24S-OHC induces necroptosis-like cell death in SH-SY5Y cells expressing little caspase-8. In the present study, 24S-OHC was found to induce apoptosis as determined by caspase-3 activation in all-trans-retinoic acid (atRA)-treated SH-SY5Y cells in which expression of caspase-8 was induced. 24S-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3) in SH-SY5Y cells regardless of whether cells were treated with atRA. In contrast, cumene hydroperoxide (CumOOH)-induced cell death was significantly inhibited by α-Toc and α-Toc3. In atRA-treated SH-SY5Y cells, generation of reactive oxygen species (ROS) was induced by stimulation with CumOOH but was not induced by stimulation with 24S-OHC. These results suggest that inhibition of 24S-OHC-induced cell death by α-Toc cannot be explained by its radical scavenging antioxidant activity. Esterification of 24S-OHC followed by lipid droplet (LD) formation due to acyl-CoA:cholesterol acyltransferase 1 (ACAT1) are key events in 24S-OHC-induced cell death in atRA-treated SH-SY5Y cells as demonstrated by inhibition of cell death by ACAT1 inhibitor. LD number was not changed by treatment with either α-Toc or α-Toc3. The different physical properties of α-Toc and α-Toc3 may account for their different inhibitory effects on 24S-OHC-induced cell death. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Mills, Dominic C; Wren, Brendan W; Dorrell, Nick
2015-01-01
The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; McCormick, Robert L; Burke, Stephen
A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recentlymore » through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.« less
Rossi, Miriam; Caruso, Francesco; Kwok, Lorraine; Lee, Grace; Caruso, Alessio; Gionfra, Fabio; Candelotti, Elena; Belli, Stuart L; Molasky, Nora; Raley-Susman, Kathleen M; Leone, Stefano; Filipský, Tomáš; Tofani, Daniela; Pedersen, Jens; Incerpi, Sandra
2017-01-01
We report the results of in vivo studies in Caenorhabditis elegans nematodes in which addition of extra virgin olive oil (EVOO) to their diet significantly increased their life span with respect to the control group. Furthermore, when nematodes were exposed to the pesticide paraquat, they started to die after two days, but after the addition of EVOO to their diet, both survival percentage and lifespans of paraquat-exposed nematodes increased. Since paraquat is associated with superoxide radical production, a test for scavenging this radical was performed using cyclovoltammetry and the EVOO efficiently scavenged the superoxide. Thus, a linear correlation (y = -0.0838x +19.73, regression factor = 0.99348) was observed for superoxide presence (y) in the voltaic cell as a function of aliquot (x) additions of EVOO, 10 μL each. The originally generated supoeroxide was approximately halved after 10 aliquots (100 μL total). The superoxide scavenging ability was analyzed, theoretically, using Density Functional Theory for tyrosol and hydroxytyrosol, two components of EVOO and was also confirmed experimentally for the galvinoxyl radical, using Electron Paramagnetic Resonance (EPR) spectroscopy. The galvinoxyl signal disappeared after adding 1 μL of EVOO to the EPR cell in 10 minutes. In addition, EVOO significantly decreased the proliferation of human leukemic THP-1 cells, while it kept the proliferation at about normal levels in rat L6 myoblasts, a non-tumoral skeletal muscle cell line. The protection due to EVOO was also assessed in L6 cells and THP-1 exposed to the radical generator cumene hydroperoxide, in which cell viability was reduced. Also in this case the oxidative stress was ameliorated by EVOO, in line with results obtained with tetrazolium dye reduction assays, cell cycle analysis and reactive oxygen species measurements. We ascribe these beneficial effects to EVOO antioxidant properties and our results are in agreement with a clear health benefit of EVOO use in the Mediterranean diet.
Reed, James R.; Cawley, George F.; Backes, Wayne L.
2013-01-01
The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771
p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations
Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning
2013-01-01
Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918
Rossi, Miriam; Kwok, Lorraine; Lee, Grace; Caruso, Alessio; Gionfra, Fabio; Candelotti, Elena; Belli, Stuart L.; Molasky, Nora; Raley-Susman, Kathleen M.; Leone, Stefano; Filipský, Tomáš; Tofani, Daniela; Pedersen, Jens; Incerpi, Sandra
2017-01-01
We report the results of in vivo studies in Caenorhabditis elegans nematodes in which addition of extra virgin olive oil (EVOO) to their diet significantly increased their life span with respect to the control group. Furthermore, when nematodes were exposed to the pesticide paraquat, they started to die after two days, but after the addition of EVOO to their diet, both survival percentage and lifespans of paraquat-exposed nematodes increased. Since paraquat is associated with superoxide radical production, a test for scavenging this radical was performed using cyclovoltammetry and the EVOO efficiently scavenged the superoxide. Thus, a linear correlation (y = -0.0838x +19.73, regression factor = 0.99348) was observed for superoxide presence (y) in the voltaic cell as a function of aliquot (x) additions of EVOO, 10 μL each. The originally generated supoeroxide was approximately halved after 10 aliquots (100 μL total). The superoxide scavenging ability was analyzed, theoretically, using Density Functional Theory for tyrosol and hydroxytyrosol, two components of EVOO and was also confirmed experimentally for the galvinoxyl radical, using Electron Paramagnetic Resonance (EPR) spectroscopy. The galvinoxyl signal disappeared after adding 1 μL of EVOO to the EPR cell in 10 minutes. In addition, EVOO significantly decreased the proliferation of human leukemic THP-1 cells, while it kept the proliferation at about normal levels in rat L6 myoblasts, a non-tumoral skeletal muscle cell line. The protection due to EVOO was also assessed in L6 cells and THP-1 exposed to the radical generator cumene hydroperoxide, in which cell viability was reduced. Also in this case the oxidative stress was ameliorated by EVOO, in line with results obtained with tetrazolium dye reduction assays, cell cycle analysis and reactive oxygen species measurements. We ascribe these beneficial effects to EVOO antioxidant properties and our results are in agreement with a clear health benefit of EVOO use in the Mediterranean diet. PMID:29283995
Berntsen, Hanne Friis; Bjørklund, Cesilie Granum; Audinot, Jean-Nicolas; Hofer, Tim; Verhaegen, Steven; Lentzen, Esther; Gutleb, Arno Christian; Ropstad, Erik
2017-12-01
The toxicity of long chained perfluoroalkyl acids (PFAAs) has previously been reported to be related to the length of the perfluorinated carbon chain and functional group attached. In the present study, we compared the cytotoxicity of six PFAAs, using primary cultures of rat cerebellar granule neurons (CGNs). Two perfluoroalkyl sulfonic acids (PFSAs, chain length C 6 and C 8 ) and four perfluoroalkyl carboxylic acids (PFCAs, chain length C 8 -C 11 ) were studied. These PFAAs have been detected in human blood and the brain tissue of mammals. The cell viability trypan blue and MTT assays were used to determine toxicity potencies (based on LC 50 values) after 24h exposure (in descending order): perfluoroundecanoic acid (PFUnDA)≥perfluorodecanoic acid (PFDA)>perfluorooctanesulfonic acid potassium salt (PFOS)>perfluorononanoic acid (PFNA)>perfluorooctanoic acid (PFOA)>perfluorohexanesulfonic acid potassium salt (PFHxS). Concentrations of the six PFAAs that produced equipotent effects after 24h exposure were used to further explore the dynamics of viability changes during this period. Therefore viability was assessed at 10, 30, 60, 90, 120 and 180min as well as 6, 12, 18 and 24h. A difference in the onset of reduction in viability was observed, occurring relatively quickly (30-60min) for PFOS, PFDA and PFUnDA, and much slower (12-24h) for PFHxS, PFOA and PFNA. A slight protective effect of vitamin E against PFOA, PFNA and PFOS-induced reduction in viability indicated a possible involvement of oxidative stress. PFOA and PFOS did not induce lipid peroxidation on their own, but significantly accelerated cumene hydroperoxide-induced lipid peroxidation. When distribution of the six PFAAs in the CGN-membrane was investigated using NanoSIMS50 imaging, two distinct patterns appeared. Whereas PFHxS, PFOS and PFUnDA aggregated in large hotspots, PFOA, PFNA and PFDA showed a more dispersed distribution pattern. In conclusion, the toxicity of the investigated PFAAs increased with increasing carbon chain length. For molecules with a similar chain length, a sulfonate functional group led to greater toxicity than a carboxyl group. Copyright © 2017 Elsevier B.V. All rights reserved.
Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat
2017-05-01
Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus neurons of aged rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress, although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). The beta-amyloid plaque induces oxidative stress in hippocampus. SCOP can result in augmented ROS release in hippocampal neurons, leading to Ca 2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca 2+ provided that intracellular Ca 2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Se reduced TRPM2 and TRPV1 channel activation through the modulation of aging oxidative reactions and Se-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.
Che, Chi-Ming; Zhang, Jun-Long; Zhang, Rui; Huang, Jie-Sheng; Lai, Tat-Shing; Tsui, Wai-Man; Zhou, Xiang-Ge; Zhou, Zhong-Yuan; Zhu, Nianyong; Chang, Chi Kwong
2005-11-18
beta-Halogenated dioxoruthenium(VI) porphyrin complexes [Ru(VI)(F(28)-tpp)O(2)] [F(28)-tpp=2,3,7,8,12,13, 17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(VI)(beta-Br(8)-tmp)O(2)] [beta-Br(8)-tmp=2,3,7,8,12,13,17,18-octabromo-5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-)] were prepared from reactions of [Ru(II)(por)(CO)] [por=porphyrinato(2-)] with m-chloroperoxybenzoic acid in CH(2)Cl(2). Reactions of [Ru(VI)(por)O(2)] with excess PPh(3) in CH(2)Cl(2) gave [Ru(II)(F(20)-tpp)(PPh(3))(2)] [F(20)-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)] and [Ru(II)(F(28)-tpp)(PPh(3))(2)]. The structures of [Ru(II)(por)(CO)(H(2)O)] and [Ru(II)(por)(PPh(3))(2)] (por=F(20)-tpp, F(28)-tpp) were determined by X-ray crystallography, revealing the effect of beta-fluorination of the porphyrin ligand on the coordination of axial ligands to ruthenium atom. The X-ray crystal structure of [Ru(VI)(F(20)-tpp)O(2)] shows a Ru=O bond length of 1.718(3) A. Electrochemical reduction of [Ru(VI)(por)O(2)] (Ru(VI) to Ru(V)) is irreversible or quasi-reversible, with the E(p,c)(Ru(VI/V)) spanning -0.31 to -1.15 V versus Cp(2)Fe(+/0). Kinetic studies were performed for the reactions of various [Ru(VI)(por)O(2)], including [Ru(VI)(F(28)-tpp)O(2)] and [Ru(VI)(beta-Br(8)-tmp)O(2)], with para-substituted styrenes p-X-C(6)H(4)CH=CH(2) (X=H, F, Cl, Me, MeO), cis- and trans-beta-methylstyrene, cyclohexene, norbornene, ethylbenzene, cumene, 9,10-dihydroanthracene, xanthene, and fluorene. The second-order rate constants (k(2)) obtained for the hydrocarbon oxidations by [Ru(VI)(F(28)-tpp)O(2)] are up to 28-fold larger than by [Ru(VI)(F(20)-tpp)O(2)]. Dual-parameter Hammett correlation implies that the styrene oxidation by [Ru(VI)(F(28)-tpp)O(2)] should involve rate-limiting generation of a benzylic radical intermediate, and the spin delocalization effect is more important than the polar effect. The k(2) values for the oxidation of styrene and ethylbenzene by [Ru(VI)(por)O(2)] increase with E(p,c)(Ru(VI/V)), and there is a linear correlation between log k(2) and E(p,c)(Ru(VI/V)). The small slope (approximately 2 V(-1)) of the log k(2) versus E(p,c)(Ru(VI/V)) plot suggests that the extent of charge transfer is small in the rate-determining step of the hydrocarbon oxidations. The rate constants correlate well with the C-H bond dissociation energies, in favor of a hydrogen-atom abstraction mechanism.
Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Övey, İshak Suat
2017-04-01
Neuropathic pain and hippocampal injury can arise from the overload of diabetes-induced calcium ion (Ca 2+ ) entry and oxidative stress. The transient receptor potential (TRP) melastatin 2 (TRPM2) and TRP vanilloid type 1 (TRPV1) are expressed in sensory neurons and hippocampus. Moreover, activations of TRPM2 and TRPV1 during oxidative stress have been linked to neuronal death. Melatonin (MEL) and selenium (Se) have been considered potent antioxidants that detoxify a variety of reactive oxygen species (ROS) in neurological diseases. In order to better characterize the actions of MEL and Se in diabetes-induced peripheral pain and hippocampal injury through modulation of TRPM2 and TRPV1, we tested the effects of MEL and Se on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of streptozotocin (STZ)-induced diabetic rats. Fifty-eight rats were divided into six groups. The first group was used as control. The second group was used as the diabetic group. The third and fourth groups received Se and MEL, respectively. Intraperitoneal Se and MEL were given to diabetic rats in the fifth and sixth groups. On the 14th day, hippocampal and DRG neuron samples were freshly taken from all animals. The neurons were stimulated with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We observed a modulator role of MEL and Se on intracellular free Ca 2+ concentrations, current densities of TRPM2 and TRPV1 channels, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, reduced glutathione, glutathione peroxidase, lipid peroxidation, and intracellular ROS production values in the neurons. In addition, procaspase 3 and 9 activities in western blot analyses of the brain cortex were also decreased by MEL and Se treatments. In conclusion, in our diabetes experimental model, TRPM2 and TRPV1 channels are involved in the Ca 2+ entry-induced neuronal death and modulation of this channel activity by MEL and Se treatment may account for their neuroprotective activity against apoptosis and Ca 2+ entry. Graphical Abstract Possible molecular pathways of involvement of melatonin and selenium in diabetes-induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus and DRG neurons of rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine (CPZ). Diabetes can result in augmented ROS release in hippocampal and DRG neurons through polyol reactions, leading to Ca 2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca 2+ provided intracellular Ca 2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Melatonin and selenium reduce TRPM2 and TRPV1 channel activation through the modulation of polyol oxidative reactions and selenium-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.
Balamurugan, Mani; Mayilmurugan, Ramasamy; Suresh, Eringathodi; Palaniandavar, Mallayan
2011-10-07
Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly coordinating -NMe(2) or -NEt(2) donor nitrogen atom the catalytic activity decreases slightly with no change in the selectivity. In contrast, upon replacing the pyridyl nitrogen donor by the strongly σ-bonding imidazolyl or sterically demanding quinolyl/benzimidazolyl nitrogen donor, both the catalytic activity and selectivity decrease, possibly due to destabilization of the intermediate [(4N)(CH(3)CN)Ni-O˙](+) radical species. Adamantane is selectively (3°/2°, 12-17) oxidized to 1-adamantanol, 2-adamantanol and 2-adamantanone while cumene is selectively oxidized to 2-phenyl-2-propanol. In contrast to cyclohexane oxidation, the incorporation of sterically hindering quinolyl/benzimidazolyl donors around Ni(ii) leads to a high 3°/2° bond selectivity for adamantane oxidation. A linear correlation between the metal-ligand covalency parameter (β) and the turnover number has been observed.