NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
1994-01-01
Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using 'quick-look' and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
A preliminary study of the tropical water cycle and its sensitivity to surface warming
NASA Technical Reports Server (NTRS)
Lau, K. M.; Sui, C. H.; Tao, W. K.
1993-01-01
The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert;
2017-01-01
This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Chao, Winston C.; Walker, G. K.
1992-01-01
The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.
2001-01-01
The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.
Tropical Convection and Climate Processes in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung
1999-01-01
Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.
NASA Astrophysics Data System (ADS)
Kuang, Zhiming; Bretherton, Christopher S.
2006-07-01
In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.
Performance of multi-physics ensembles in convective precipitation events over northeastern Spain
NASA Astrophysics Data System (ADS)
García-Ortega, E.; Lorenzana, J.; Merino, A.; Fernández-González, S.; López, L.; Sánchez, J. L.
2017-07-01
Convective precipitation with hail greatly affects southwestern Europe, causing major economic losses. The local character of this meteorological phenomenon is a serious obstacle to forecasting. Therefore, the development of reliable short-term forecasts constitutes an essential challenge to minimizing and managing risks. However, deterministic outcomes are affected by different uncertainty sources, such as physics parameterizations. This study examines the performance of different combinations of physics schemes of the Weather Research and Forecasting model to describe the spatial distribution of precipitation in convective environments with hail falls. Two 30-member multi-physics ensembles, with two and three domains of maximum resolution 9 and 3km each, were designed using various combinations of cumulus, microphysics and radiation schemes. The experiment was evaluated for 10 convective precipitation days with hail over 2005-2010 in northeastern Spain. Different indexes were used to evaluate the ability of each ensemble member to capture the precipitation patterns, which were compared with observations of a rain-gauge network. A standardized metric was constructed to identify optimal performers. Results show interesting differences between the two ensembles. In two domain simulations, the selection of cumulus parameterizations was crucial, with the Betts-Miller-Janjic scheme the best. In contrast, the Kain-Fristch cumulus scheme gave the poorest results, suggesting that it should not be used in the study area. Nevertheless, in three domain simulations, the cumulus schemes used in coarser domains were not critical and the best results depended mainly on microphysics schemes. The best performance was shown by Morrison, New Thomson and Goddard microphysics.
Chemistry on the mesoscale: Modeling and measurement issues
NASA Technical Reports Server (NTRS)
Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth
1993-01-01
The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2002-01-01
In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.
Interaction of a cumulus cloud ensemble with the large-scale environment
NASA Technical Reports Server (NTRS)
Arakawa, A.; Schubert, W.
1973-01-01
Large-scale modification of the environment by cumulus clouds is discussed in terms of entrainment, detrainment, evaporation, and subsidence. Drying, warming, and condensation by vertical displacement of air are considered as well as budget equations for mass, static energy, water vapor, and liquid water.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)
2001-01-01
The Goddard Cumulus Ensemble (GCE) model was utilized in two and three dimensions in order to examine the behavior and response of simulated deep tropical cloud systems occurred in west Pacific warm pool region and Atlantic ocean. The periods chosen for simulation were convectively active period over the TOGA-COARE IFA (19-27 December 1992) and GATE (September 1 to 7, 1974). The TOGA COARE IFA period was also in the framework of the GEWEX Cloud System Study (GCSS) WG4 case 2. We will examine the differences between the microphysics (warm rain and ice processes, evaporation/sublimation and condensation/deposition), Q1 (Temperature) and Q2 (Water vapor) budgets between these two convective events occurred in different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. The results from GCSS model intercomparsion will be presented. The new improvements (i.e., microphysics, cloud radiation interaction, surface processes and numerical advection scheme) of the GCE model as well as their sensitivity to the model results will be discussed.
Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2002-01-01
One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and incoming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a cloud-resolving model, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. Dr. Joanne Simpson played a central role in GCE modeling developments and applications. She was the lead author or co-author on more than forty GCE modeling papers. In this paper, a brief discussion and review of the application of the GCE model to (1) cloud interactions and mergers, (2) convective and stratiform interaction, (3) mechanisms of cloud-radiation interaction, (4) latent heating profiles and TRMM, and (5) responses of cloud systems to large-scale processes are provided. Comparisons between the GCE model's results, other cloud-resolving model results and observations are also examined.
An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.
1994-01-01
In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.
NASA Technical Reports Server (NTRS)
Tapiador, Francisco; Tao, Wei-Kuo; Angelis, Carlos F.; Martinez, Miguel A.; Cecilia Marcos; Antonio Rodriguez; Hou, Arthur; Jong Shi, Jain
2012-01-01
Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations.
NASA Astrophysics Data System (ADS)
Qiao, F.; Liang, X.
2011-12-01
Accurate prediction of U.S. summer precipitation, including its geographic distribution, the occurrence frequency and intensity, and diurnal cycle, has been a long-standing problem for most climate and weather models. This study employs the Climate-Weather Research and Forecasting model (CWRF) to investigate the effects of cumulus parameterization on prediction of these key precipitation features during the summers of 1993 and 2008 when severe floods occurred over the U.S. Midwest. Among the 12 widely-used cumulus schemes incorporated in the CWRF, the Ensemble Cumulus Parameterization modified from G3 (ECP) scheme and the Zhang-McFarland cumulus scheme modified by Liang (ZML) well reproduce the geographic distributions of observed 1993 and 2008 floods, albeit both slightly underestimating the maximum amount. However, the ZML scheme greatly overestimates the rainfall amount over the North American Monsoon region and Southeast U.S. while the ECP scheme has a better performance over the entire U.S. Compared to global general circulations models that tend to produce too frequent rainy events at reduced intensity, the CWRF better captures both frequency and intensity of extreme events (heavy rainfall and dry bells). However, most existing cumulus schemes in the CWRF are likely to convert atmospheric moisture into rainfall too fast, leading to less rainy days and stronger heavy rainfall events. A few cumulus schemes can depict the diurnal characteristics in certain but not all the regions over the U.S. For example, the Grell scheme shows its superiority in reproducing the eastward diurnal phase transition and the nocturnal peaks over the Great Plains, whereas the other schemes all fail in capturing this feature. By investigating the critical trigger function(s) that enable these cumulus schemes to capture the observed features, it provides opportunity to better understand the underlying mechanisms that drive the diurnal variation, and thus significantly improves the U.S. summer rainfall diurnal cycle prediction. These will be discussed. For an oral presentation at AGU Fall Meeting 2011 A15: Cloud, Convection, Precipitation, and Radiation: Observations and Modeling, San Francisco, California, USA, 5-9 December 2011.
NASA Technical Reports Server (NTRS)
Yanai, M.; Esbensen, S.; Chu, J.
1972-01-01
The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.
NASA Astrophysics Data System (ADS)
Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.
2018-03-01
Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.
NASA Astrophysics Data System (ADS)
Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev
2018-06-01
Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute to the understanding of the added value in seasonal simulations by RCMs.
NASA Astrophysics Data System (ADS)
Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev
2017-08-01
Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute to the understanding of the added value in seasonal simulations by RCMs.
NASA Technical Reports Server (NTRS)
Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.
2013-01-01
The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.; Tripoli, G.
1996-01-08
The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap regionmore » near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.« less
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less
NASA Technical Reports Server (NTRS)
Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.
2006-01-01
Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.
Report of the proceedings of the Colloquium and Workshop on Multiscale Coupled Modeling
NASA Technical Reports Server (NTRS)
Koch, Steven E. (Editor)
1993-01-01
The Colloquium and Workshop on Multiscale Coupled Modeling was held for the purpose of addressing modeling issues of importance to planning for the Cooperative Multiscale Experiment (CME). The colloquium presentations attempted to assess the current ability of numerical models to accurately simulate the development and evolution of mesoscale cloud and precipitation systems and their cycling of water substance, energy, and trace species. The primary purpose of the workshop was to make specific recommendations for the improvement of mesoscale models prior to the CME, their coupling with cloud, cumulus ensemble, hydrology, air chemistry models, and the observational requirements to initialize and verify these models.
Extreme precipitation in WRF during the Newcastle East Coast Low of 2007
NASA Astrophysics Data System (ADS)
Gilmore, James B.; Evans, Jason P.; Sherwood, Steven C.; Ekström, Marie; Ji, Fei
2016-08-01
In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated "Newy"). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ˜10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme dependent.
Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data
NASA Astrophysics Data System (ADS)
Dorrestijn, Jesse; Crommelin, Daan T.; Siebesma, A. Pier.; Jonker, Harm J. J.
2013-02-01
In this paper, we report on the development of a methodology for stochastic parameterization of convective transport by shallow cumulus convection in weather and climate models. We construct a parameterization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are conditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM) experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the discretized fluxes produced by SCM and observed in LES.
a Cumulus Parameterization Study with Special Attention to the Arakawa-Schubert Scheme
NASA Astrophysics Data System (ADS)
Kao, Chih-Yue Jim
Arakawa and Schubert (1974) developed a cumulus parameterization scheme in a framework that conceptually divides the mutual interaction of the cumulus convection and large-scale disturbance into the categories of large -scale budget requirements and the quasi-equilibrium assumption of cloud work function. We have applied the A-S scheme through a semi-prognostic approach to two different data sets: one is for an intense tropical cloud band event; the other is for tropical composite easterly wave disturbances. Both were observed in GATE. The cloud heating and drying effects predicted by the Arakawa-Schubert scheme are found to agree rather well with the observations. However, it is also found that the Arakawa-Schubert scheme underestimates both condensation and evaporation rates substantially when compared with the cumulus ensemble model results (Soong and Tao, 1980; Tao, 1983). An inclusion of the downdraft effects, as formulated by Johnson (1976), appears to alleviate this deficiency. In order to examine how the Arakawa-Schubert scheme works in a fully prognostic problem, a simulation of the evolution and structure of the tropical cloud band, mentioned above, under the influence of an imposed large-scale low -level forcing has been made, using a two-dimensional hydrostatic model with the inclusion of the Arakawa-Schubert scheme. Basically, the model result indicates that the meso-scale convective system is driven by the excess of the convective heating derived from the Arakawa-Schubert scheme over the adiabatic cooling due to the imposed large-scale lifting and induced meso-scale upward motion. However, as the convective system develops, the adiabatic warming due to the subsidence outside the cloud cluster gradually accumulates into a secondary temperature anomaly which subsequently reduces the original temperature contrast and inhibits the further development of the convective system. A 24 hour integration shows that the model is capable of simulating many important features such as the life cycle, intensity of circulation, and rainfall rates.
NASA Technical Reports Server (NTRS)
Senocak, Inane
2003-01-01
The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.
The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016
NASA Astrophysics Data System (ADS)
Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.
2017-12-01
Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne
2012-01-01
Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.
NASA Astrophysics Data System (ADS)
Silva Junior, R. S.; Rocha, R. P.; Andrade, M. F.
2007-05-01
The Planetary Boundary Layer (PBL) is the region of the atmosphere that suffers the direct influence of surface processes and the evolution of their characteristics during the day is of great importance for the pollutants dispersion. The aim of the present work is to analyze the most efficient combination of PBL, cumulus convection and cloud microphysics parameterizations for the forecast of the vertical profile of wind speed over Metropolitan Region of São Paulo (MRSP) that presents serious problems of atmospheric pollution. The model used was the WRF/Chem that was integrated for 48 h forecasts during one week of observational experiment that take place in the MRSP during October-November of 2006. The model domain has 72 x 48 grid points, with 18 km of resolution, centered in the MRSP. Considering a mixed-physics ensemble approach the forecasts used a combination of the parameterizations: (a) PBL the schemes of Mellor-Yamada-Janjic (MYJ) and Yonsei University Scheme (YSU); (b) cumulus convections schemes of Grell-Devenyi ensemble (GDE) and Betts-Miller-Janjic (BMJ); (c) cloud microphysics schemes of Purdue Lin (MPL) and NCEP 5-class (MPN). The combinations tested were the following: MYJ-BMJ-MPL, MYJ-BMJ-MPN, MYJ-GDE-MPL, MYJ-GDE-MPN, YSU-BMJ-MPL, YSU-BMJ-MPN, YSU-GDE-MPL, YSU-GDE-MPN, i.e., a set of 8 previsions for day. The model initial and boundary conditions was obtained of the AVN-NCEP model. Besides this data set, the MRSP observed soundings were used to verify the WRF results. The statistical analysis considered the correlation coefficient, root mean square error, mean error between forecasts and observed wind profiles. The results showed that the most suitable combination is the YSU-GDE-MPL. This can be associated to the GDE cumulus convection scheme, which takes into consideration the entrainment process in the clouds, and also the MPL scheme that considers a larger number of classes of water phase, including the ice and mixed phases. For PBL the YSU presents the better approaches to represent the wind speed, where the atmospheric gradients are stronger and the atmosphere is less mixed.
NASA Astrophysics Data System (ADS)
Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa
2017-04-01
This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.
Vertical transport by convective clouds: Comparisons of three modeling approaches
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Rood, Richard B.; Mcnamara, Donna P.; Molod, Andrea M.
1995-01-01
A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.
NASA Astrophysics Data System (ADS)
Peishu, Zong; Jianping, Tang; Shuyu, Wang; Lingyun, Xie; Jianwei, Yu; Yunqian, Zhu; Xiaorui, Niu; Chao, Li
2017-08-01
The parameterization of physical processes is one of the critical elements to properly simulate the regional climate over eastern China. It is essential to conduct detailed analyses on the effect of physical parameterization schemes on regional climate simulation, to provide more reliable regional climate change information. In this paper, we evaluate the 25-year (1983-2007) summer monsoon climate characteristics of precipitation and surface air temperature by using the regional spectral model (RSM) with different physical schemes. The ensemble results using the reliability ensemble averaging (REA) method are also assessed. The result shows that the RSM model has the capacity to reproduce the spatial patterns, the variations, and the temporal tendency of surface air temperature and precipitation over eastern China. And it tends to predict better climatology characteristics over the Yangtze River basin and the South China. The impact of different physical schemes on RSM simulations is also investigated. Generally, the CLD3 cloud water prediction scheme tends to produce larger precipitation because of its overestimation of the low-level moisture. The systematic biases derived from the KF2 cumulus scheme are larger than those from the RAS scheme. The scale-selective bias correction (SSBC) method improves the simulation of the temporal and spatial characteristics of surface air temperature and precipitation and advances the circulation simulation capacity. The REA ensemble results show significant improvement in simulating temperature and precipitation distribution, which have much higher correlation coefficient and lower root mean square error. The REA result of selected experiments is better than that of nonselected experiments, indicating the necessity of choosing better ensemble samples for ensemble.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Starr, David (Technical Monitor)
2002-01-01
One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.
Aerosol microphysical and radiative effects on continental cloud ensembles
NASA Astrophysics Data System (ADS)
Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi
2018-02-01
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang
2014-02-22
Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less
A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.
2016-06-01
This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.
NASA Astrophysics Data System (ADS)
Ge, Cui; Wang, Jun; Reid, Jeffrey S.; Posselt, Derek J.; Xian, Peng; Hyer, Edward
2017-05-01
Atmospheric transport of smoke from equatorial Southeast Asian Maritime Continent (Indonesia, Singapore, and Malaysia) to the Philippines was recently verified by the first-ever measurement of aerosol composition in the region of the Sulu Sea from a research vessel named Vasco. However, numerical modeling of such transport can have large uncertainties due to the lack of observations for parameterization schemes and for describing fire emission and meteorology in this region. These uncertainties are analyzed here, for the first time, with an ensemble of 24 Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations. The ensemble reproduces the time series of observed surface nonsea-salt PM2.5 concentrations observed from the Vasco vessel during 17-30 September 2011 and overall agrees with satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and Aerosol Robotic Network (AERONET) data. The difference of meteorology between National Centers for Environmental Prediction (NCEP's) Final (FNL) and European Center for Medium range Weather Forecasting (ECMWF's) ERA renders the biggest spread in the ensemble (up to 20 μg m-3 or 200% in surface PM2.5), with FNL showing systematically superior results. The second biggest uncertainty is from fire emissions; the 2 day maximum Fire Locating and Modelling of Burning Emissions (FLAMBE) emission is superior than the instantaneous one. While Grell-Devenyi (G3) and Betts-Miller-Janjić cumulus schemes only produce a difference of 3 μg m-3 of surface PM2.5 over the Sulu Sea, the ensemble mean agrees best with Climate Prediction Center (CPC) MORPHing (CMORPH)'s spatial distribution of precipitation. Simulation with FNL-G3, 2 day maximum FLAMBE, and 800 m injection height outperforms other ensemble members. Finally, the global transport model (Navy Aerosol Analysis and Prediction System (NAAPS)) outperforms all WRF-Chem simulations in describing smoke transport on 20 September 2011, suggesting the challenges to model tropical meteorology at mesoscale and finer scale.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)
2001-01-01
Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.
WRF model sensitivity to choice of parameterization: a study of the `York Flood 1999'
NASA Astrophysics Data System (ADS)
Remesan, Renji; Bellerby, Tim; Holman, Ian; Frostick, Lynne
2015-10-01
Numerical weather modelling has gained considerable attention in the field of hydrology especially in un-gauged catchments and in conjunction with distributed models. As a consequence, the accuracy with which these models represent precipitation, sub-grid-scale processes and exceptional events has become of considerable concern to the hydrological community. This paper presents sensitivity analyses for the Weather Research Forecast (WRF) model with respect to the choice of physical parameterization schemes (both cumulus parameterisation (CPSs) and microphysics parameterization schemes (MPSs)) used to represent the `1999 York Flood' event, which occurred over North Yorkshire, UK, 1st-14th March 1999. The study assessed four CPSs (Kain-Fritsch (KF2), Betts-Miller-Janjic (BMJ), Grell-Devenyi ensemble (GD) and the old Kain-Fritsch (KF1)) and four MPSs (Kessler, Lin et al., WRF single-moment 3-class (WSM3) and WRF single-moment 5-class (WSM5)] with respect to their influence on modelled rainfall. The study suggests that the BMJ scheme may be a better cumulus parameterization choice for the study region, giving a consistently better performance than other three CPSs, though there are suggestions of underestimation. The WSM3 was identified as the best MPSs and a combined WSM3/BMJ model setup produced realistic estimates of precipitation quantities for this exceptional flood event. This study analysed spatial variability in WRF performance through categorical indices, including POD, FBI, FAR and CSI during York Flood 1999 under various model settings. Moreover, the WRF model was good at predicting high-intensity rare events over the Yorkshire region, suggesting it has potential for operational use.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Stephen E.; Zeng, Xiping; Li, Xiaowen; Matsui, Toshi; Mohr, Karen; Posselt, Derek; Chern, Jiundar; Peters-Lidard, Christa; Norris, Peter M.;
2014-01-01
Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on precipitation processes, utilizing a satellite simulator to improve the microphysics, providing better simulations for satellite-derived latent heating retrieval, and coupling with a general circulation model to improve the representation of precipitation processes.
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.
2007-12-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
ED(MF)n: Humidity-Convection Feedbacks in a Mass Flux Scheme Based on Resolved Size Densities
NASA Astrophysics Data System (ADS)
Neggers, R.
2014-12-01
Cumulus cloud populations remain at least partially unresolved in present-day numerical simulations of global weather and climate, and accordingly their impact on the larger-scale flow has to be represented through parameterization. Various methods have been developed over the years, ranging in complexity from the early bulk models relying on a single plume to more recent approaches that attempt to reconstruct the underlying probability density functions, such as statistical schemes and multiple plume approaches. Most of these "classic" methods capture key aspects of cumulus cloud populations, and have been successfully implemented in operational weather and climate models. However, the ever finer discretizations of operational circulation models, driven by advances in the computational efficiency of supercomputers, is creating new problems for existing sub-grid schemes. Ideally, a sub-grid scheme should automatically adapt its impact on the resolved scales to the dimension of the grid-box within which it is supposed to act. It can be argued that this is only possible when i) the scheme is aware of the range of scales of the processes it represents, and ii) it can distinguish between contributions as a function of size. How to conceptually represent this knowledge of scale in existing parameterization schemes remains an open question that is actively researched. This study considers a relatively new class of models for sub-grid transport in which ideas from the field of population dynamics are merged with the concept of multi plume modelling. More precisely, a multiple mass flux framework for moist convective transport is formulated in which the ensemble of plumes is created in "size-space". It is argued that thus resolving the underlying size-densities creates opportunities for introducing scale-awareness and scale-adaptivity in the scheme. The behavior of an implementation of this framework in the Eddy Diffusivity Mass Flux (EDMF) model, named ED(MF)n, is examined for a standard case of subtropical marine shallow cumulus. We ask if a system of multiple independently resolved plumes is able to automatically create the vertical profile of bulk (mass) flux at which the sub-grid scale transport balances the imposed larger-scale forcings in the cloud layer.
NASA Astrophysics Data System (ADS)
Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang
2017-12-01
This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.
NASA Technical Reports Server (NTRS)
Loftus, Adrian M.; Tsay, Si-Chee
2015-01-01
This talk presents some of the detailed observations of low-level stratocumulus over northern Vietnam during 7-SEASBASELInE 2013 by SMARTLabs' ACHIEVE W-band cloud radar and other remote sensing instruments. These observations are the first of their kind for this region and will aid in ongoing studies of biomass-burning aerosol impacts on local and regional weather and climate. Preliminary results from simulations using the Goddard Cumulus Ensemble (GCE) with recently implemented triple-moment bulk microphysics to examine the sensitivity of low-level stratocumulus over land to aerosols are also presented. Recommendations for future observational activities in the 7-SEAS northern region in collaboration with international partners will also be discussed.
NASA Astrophysics Data System (ADS)
Solman, Silvina A.; Pessacg, Natalia L.
2012-01-01
In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
The radiative impact of cumulus cloudiness in a general circulation model
NASA Technical Reports Server (NTRS)
Moeng, C. H.; Randall, D. A.
1982-01-01
The effect of cumulus cloudiness on the radiational heating and, on other aspects of the climate were simulated by the GLAS Climate Model. An experiment in which the cumulus cloudiness is neglected completely for purposes of the solar and terrestrial radiation parameterizations was performed. The results are compared with those of a control run, in which 100% cumulus cloud cover is assumed. The net solar radiation input into the Earth atmosphere system is more realistic in the experiment, and the model's underprediction of the global mean outgoing thermal radiation at the top of the atmosphere is reduced. The results suggest that there is a positive feedback between cumulus convection and the radiation field. The upper troposphere is warmer in the experiment, the surface air temperature increases over land, and the thermal lows over the continents intensity.
New Approaches to Parameterizing Convection
NASA Technical Reports Server (NTRS)
Randall, David A.; Lappen, Cara-Lyn
1999-01-01
Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.
Improved Point Analysis Model (IPAM) (Users Guide)
1991-02-01
Descriptions 7 Stratus fractus of bad weather* or Cumulus fractus of bad weather, or both ( pannus ), usually below Altostratus or Nimbostratus. 8...Cumulonimbus without anvil or fibrous upper part, Cumulus, Stratocumulus, Stratus or pannus . / Stratocumulus, Stratus, Cumulus and Cumulonimbus invisible owing
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2005-01-01
Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
NASA Astrophysics Data System (ADS)
Li, Yu-Bin; Tam, Chi-Yung; Huang, Wan-Ru; Cheung, Kevin K. W.; Gao, Zhiqiu
2016-04-01
This study evaluates the sensitivity of summertime rainfall simulations over East-to-southeast Asia and the western north Pacific in the regional climate model version 4 (RegCM4) to cumulus (including Grell with Arakawa-Schubert type closure, Grell with Fritsch-Chappell type closure, and Emanuel), land surface (Biosphere-atmosphere transfer scheme or BATS, and the community land model or CLM) and ocean surface (referred to as Zeng1, Zeng2 and BATS1e in the model) schemes by running the model with different combinations of these parameterization packages. For each of these experiments, ensemble integration of the model was carried out in the extended boreal summer of May-October from 1998 to 2007. The simulated spatial distribution, intensity and inter-annual variation of the precipitation, latent heat flux, position of the subtropical high and tropical cyclone genesis patterns from these numerical experiments were analyzed. Examinations show that the combination of Emanuel, CLM and Zeng2 (E-C-Z2) yields the best overall results, consistent with the fact that physical mechanisms considered in E-C-Z2 tend to be more comprehensive in comparison with the others. Additionally, the rainfall quantity is found very sensitive to sea surface roughness length, and the reduction of the roughness length constant (from 2 × 10-4 to 5 × 10-5 m) in our modified BATS1e mitigates the drastic overestimation of latent heat flux and rainfall, and is therefore preferable to the default value for simulations in the western north Pacific region in RegCM4.
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...
2018-01-10
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan; Vogel, Jonathan M.; Lin, Yun
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less
Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations
NASA Astrophysics Data System (ADS)
Vitart, Frederic Pol.
1999-11-01
A T42L18 Atmospheric General Circulation Model forced by observed SSTs has been integrated for 10 years with 9 different initial conditions. An objective procedure for tracking model-generated tropical storms has been applied to this ensemble. Statistical tools have been applied to the ensemble frequency, intensity and location of tropical storms, leading to the conclusion that the potential predictability is particularly strong over the western North Pacific, the eastern North Pacific and the western North Atlantic. An EOF analysis of local SSts and a combined EOF analysis of vertical wind shear, 200 mb and 850 mb vorticity indicate that the simulated tropical storm interannual variability is mostly constrained by the large scale circulation as in observations. The model simulates a realistic interannual variability of tropical storms over the western North Atlantic, eastern North Pacific, western North Pacific and Australian basin where the model simulates a realistic large scale circulation. Several experiments with the atmospheric GCM forced by imposed SSTs demonstrate that the GCM simulates a realistic impact of ENSO on the simulated Atlantic tropical storms. In addition the GCM simulates fewer tropical storms over the western North Atlantic with SSTs of the 1950s than with SSTs of the 1970s in agreement with observations. Tropical storms simulated with RAS and with MCA have been compared to evaluate their sensitivity to a change in cumulus parameterization. Composites of tropical storm structure indicate stronger tropical storms with higher warm cores with MCA. An experiment using the GFDL hurricane model and several theoretical calculations indicate that the mean state may be responsible for the difference in intensity and in the height of the warm core. With the RAS scheme, increasing the threshold which determines when convection can occur increases the tropical storm frequency almost linearly. The increase of tropical storm frequency seems to be linked to an increase of CAPE. Tropical storms predicted by a coupled model produce a strong cooling of SSTs and their intensity is lower than in the simulations. An ensemble of coupled GCM integrations displays some skill in forecasting the tropical storm frequency when starting on July 1st.
A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.
Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang; Liang, Cheng-Guang
2016-01-01
Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.
A Heuristic Parameterization for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2017-10-01
The author developed a heuristic parameterization to handle the contrasting vertical overlap structures of cumulus and stratus in an integrated way. The parameterization assumes that cumulus is maximum-randomly overlapped with adjacent cumulus; stratus is maximum-randomly overlapped with adjacent stratus; and radiation and precipitation areas at each model interface are grouped into four categories, that is, convective, stratiform, mixed, and clear areas. For simplicity, thermodynamic scalars within individual portions of cloud, radiation, and precipitation areas are assumed to be internally homogeneous. The parameterization was implemented into the Seoul National University Atmosphere Model version 0 (SAM0) in an offline mode and tested over the globe. The offline control simulation reasonably reproduces the online surface precipitation flux and longwave cloud radiative forcing (LWCF). Although the cumulus fraction is much smaller than the stratus fraction, cumulus dominantly contributes to precipitation production in the tropics. For radiation, however, stratus is dominant. Compared with the maximum overlap, the random overlap of stratus produces stronger LWCF and, surprisingly, more precipitation flux due to less evaporation of convective precipitation. Compared with the maximum overlap, the random overlap of cumulus simulates stronger LWCF and weaker precipitation flux. Compared with the control simulation with separate cumulus and stratus, the simulation with a single-merged cloud substantially enhances the LWCF in the tropical deep convection and midlatitude storm track regions. The process-splitting treatment of convective and stratiform precipitation with an independent precipitation approximation (IPA) simulates weaker surface precipitation flux than the control simulation in the tropical region.
Summary of Cumulus Parameterization Workshop
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Starr, David OC.; Hou, Arthur; Newman, Paul; Sud, Yogesh
2002-01-01
A workshop on cumulus parameterization took place at the NASA Goddard Space Flight Center from December 3-5, 2001. The major objectives of this workshop were (1) to review the problem of representation of moist processes in large-scale models (mesoscale models, Numerical Weather Prediction models and Atmospheric General Circulation Models), (2) to review the state-of-the-art in cumulus parameterization schemes, and (3) to discuss the need for future research and applications. There were a total of 31 presentations and about 100 participants from the United States, Japan, the United Kingdom, France and South Korea. The specific presentations and discussions during the workshop are summarized in this paper.
The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate
NASA Technical Reports Server (NTRS)
Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.
1994-01-01
A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated latent heating in the water cycle is the dominant source in the heat budget that generates a net upward motion in convective regions, upper stratiform regions (above the freezing level), and a downward motion in the lower stratiform regions. The budgets reveal a cycle of water and energy resulted from radiation-dynamic-convection interactions that maintain equilibrium of the atmosphere.
High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...
DETERMINATION OF CLOUD PARAMETERS FOR NEROS II FROM DIGITAL SATELLITE DATA
As part of the input for their regional-scale photochemical oxidant model of air pollution, known as the Regional Oxidant Model, requires statistical descriptions of total cloud amount, cumulus cloud amount, and cumulus cloud top height for certain regions and dates. These statis...
NASA Technical Reports Server (NTRS)
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua
2015-01-01
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...
2015-06-19
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less
Ground-Based Remote Retrievals of Cumulus Entrainment Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Timothy J.; Turner, David D.; Berg, Larry K.
2013-07-26
While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess ofmore » the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.« less
Observations and mechanisms of GATE waterspouts
NASA Technical Reports Server (NTRS)
Simpson, J.; Mccumber, M. C.; Morton, B. R.; Penc, R. S.
1986-01-01
The present numerical and observational investigation of interacting cumulus processes implicated in the formation of waterspouts, the GATE database for days 261 and 186 is noted to imply that the existence of cumulus-scale parent vortices is a necessary (albeit not sufficient) condition for the production of waterspouts. A high resolution version of the Schlessinger (1975) three-dimensional cumulus model with a Kessler (1969) type precipitation scheme is used to analyze cumulus-scale vorticity organization, which on the two days in question exhibited contrasting thermal stratification and cloud features. The observations from both days suggest that the waterspouts formed ahead of the wind shift, due to the passage of a gust front.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.
NASA Astrophysics Data System (ADS)
Bustamante, J. F. F.; Chou, S. C.; Gomes, J. L.
2009-04-01
The Southeast Brazil, in the coastal and mountain region called Serra do Mar, between Sao Paulo and Rio de Janeiro, is subject to frequent events of landslides and floods. The Eta Model has been producing good quality forecasts over South America at about 40-km horizontal resolution. For that type of hazards, however, more detailed and probabilistic information on the risks should be provided with the forecasts. Thus, a short-range ensemble prediction system (SREPS) based on the Eta Model is being constructed. Ensemble members derived from perturbed initial and lateral boundary conditions did not provide enough spread for the forecasts. Members with model physics perturbation are being included and tested. The objective of this work is to construct more members for the Eta SREPS by adding physics perturbed members. The Eta Model is configured at 10-km resolution and 38 layers in the vertical. The domain covered is most of Southeast Brazil, centered over the Serra do Mar region. The constructed members comprise variations of the cumulus parameterization Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) schemes. Three members were constructed from the BMJ scheme by varying the deficit of saturation pressure profile over land and sea, and 2 members of the KF scheme were included using the standard KF and a momentum flux added to KF scheme version. One of the runs with BMJ scheme is the control run as it was used for the initial condition perturbation SREPS. The forecasts were tested for 6 cases of South America Convergence Zone (SACZ) events. The SACZ is a common summer season feature of Southern Hemisphere that causes persistent rain for a few days over the Southeast Brazil and it frequently organizes over Serra do Mar region. These events are particularly interesting because of the persistent rains that can accumulate large amounts and cause generalized landslides and death. With respect to precipitation, the KF scheme versions have shown to be able to reach the larger precipitation peaks of the events. On the other hand, for predicted 850-hPa temperature, the KF scheme versions produce positive bias and BMJ versions produce negative bias. Therefore, the ensemble mean forecast of 850-hPa temperature of this SREPS exhibits smaller error than the control member. Specific humidity shows smaller bias in the KF scheme. In general, the ensemble mean produced forecasts closer to the observations than the control run.
NASA Astrophysics Data System (ADS)
Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang
2017-07-01
Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi-arid areas. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for generating ensembles in numerical rainfall predictions using the WRF model.
A simple diagnostic model of cumulus convective clouds is developed and used in a sensitivity study to examine the extent to which the rate of change of mixed and cloud layer pollutant concentration is influenced by vertical transport and chemical transformation processes occurri...
Simulated Radar Characteristics of LBA Convective Systems: Easterly and Westerly Regimes
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes n order to provide cloud datasets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different cases are analyzed: Jan 26, 1999, an eastely regime case, and Feb 23, 1999, a westerly regime case. The Jan 26 case is an organized squall line, while the Feb 23 case is less organized with only transient lines. Radar signatures, including CFADs, from the two simulated cases are compared to each other and with observations. The microphysical processes simulated in the model are also compared between the two cases.
NASA Technical Reports Server (NTRS)
Tao, W. K.; Wang, Y.; Qian, J.; Shie, C. -L.; Lau, W. K. -M.; Kakar, R.; Starr, David O' C. (Technical Monitor)
2002-01-01
The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China (Lau et al. 2000). Multiple observation platforms (e.g., soundings, Doppler radar, ships, wind seafarers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes, associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets (Johnson and Ciesielski 2002) and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional climate model and a cloud-resolving model are used to perform multi-day integrations to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil - precipitation interaction and feedback associated with a flood event that occurred in and around China's Atlantic River during SCSMEX. Sensitivity tests on various land surface models, cumulus parameterization schemes (CASE), sea surface temperature (SST) variations and midlatitude influences are also performed to understand the processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. Cloud-resolving models (CRMs) use more sophisticated and physically realistic parameterizations of cloud microphysical processes with very fine spatial and temporal resolution. One of the major characteristics of CRMs is an explicit interaction between clouds, radiation and the land/ocean surface. It is for this reason that GEWEX (Global Energy and Water Cycle Experiment) has formed the GCSS (GEWEX Cloud System Study) expressly for the purpose of improving the representation of the moist processes in large-scale models using CRMs. The Goddard Cumulus Ensemble (GCE) model is a CRM and is used to simulate convective systems associated with the onset of the South China Sea monsoon in 1998. The BRUCE model includes the same land surface model, cloud physics, and radiation scheme used in the regional climate model. A comparison between the results from the GCE model and regional climate model is performed.
NASA Astrophysics Data System (ADS)
Kan, Yu; Chen, Bo; Shen, Tao; Liu, Chaoshun; Qiao, Fengxue
2017-09-01
It has been a longstanding problem for current weather/climate models to accurately predict summer heavy precipitation over the Yangtze-Huaihe Region (YHR) which is the key flood-prone area in China with intensive population and developed economy. Large uncertainty has been identified with model deficiencies in representing precipitation processes such as microphysics and cumulus parameterizations. This study focuses on examining the effects of microphysics parameterization on the simulation of different type of heavy precipitation over the YHR taking into account two different cumulus schemes. All regional persistent heavy precipitation events over the YHR during 2008-2012 are classified into three types according to their weather patterns: the type I associated with stationary front, the type II directly associated with typhoon or with its spiral rain band, and the type III associated with strong convection along the edge of the Subtropical High. Sixteen groups of experiments are conducted for three selected cases with different types and a local short-time rainstorm in Shanghai, using the WRF model with eight microphysics and two cumulus schemes. Results show that microphysics parameterization has large but different impacts on the location and intensity of regional heavy precipitation centers. The Ferrier (microphysics) -BMJ (cumulus) scheme and Thompson (microphysics) - KF (cumulus) scheme most realistically simulates the rain-bands with the center location and intensity for type I and II respectively. For type III, the Lin microphysics scheme shows advantages in regional persistent cases over YHR, while the WSM5 microphysics scheme is better in local short-term case, both with the BMJ cumulus scheme.
Modeling Studying the Role of Bacteria on ice Nucleation Processes
NASA Astrophysics Data System (ADS)
Sun, J.
2006-12-01
Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...
2015-06-19
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang;
2015-01-01
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.
NASA Astrophysics Data System (ADS)
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat
2015-06-01
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...
Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.
2014-01-01
Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology. PMID:24505284
NASA Astrophysics Data System (ADS)
De Meij, A.; Vinuesa, J.-F.; Maupas, V.
2018-05-01
The sensitivity of different microphysics and dynamics schemes on calculated global horizontal irradiation (GHI) values in the Weather Research Forecasting (WRF) model is studied. 13 sensitivity simulations were performed for which the microphysics, cumulus parameterization schemes and land surface models were changed. Firstly we evaluated the model's performance by comparing calculated GHI values for the Base Case with observations for the Reunion Island for 2014. In general, the model calculates the largest bias during the austral summer. This indicates that the model is less accurate in timing the formation and dissipation of clouds during the summer, when higher water vapor quantities are present in the atmosphere than during the austral winter. Secondly, the model sensitivity on changing the microphysics, cumulus parameterization and land surface models on calculated GHI values is evaluated. The sensitivity simulations showed that changing the microphysics from the Thompson scheme (or Single-Moment 6-class scheme) to the Morrison double-moment scheme, the relative bias improves from 45% to 10%. The underlying reason for this improvement is that the Morrison double-moment scheme predicts the mass and number concentrations of five hydrometeors, which help to improve the calculation of the densities, size and lifetime of the cloud droplets. While the single moment schemes only predicts the mass for less hydrometeors. Changing the cumulus parameterization schemes and land surface models does not have a large impact on GHI calculations.
NASA Astrophysics Data System (ADS)
Krzesinska, A. M.; Schofield, P. F.; Smith, C. L.; Salge, T.; Almeida, N. V.; Russell, S. S.
2017-07-01
Some Chassigny fragments contain cumulus pigeonite. They host Pb,Hg,Sn,Au,Ag-sulfides. This supports the model of infiltration metasomatism during crystallization of Chassigny and shed light on the potential co-magmatism of Chassigny and nakhlites.
NASA Astrophysics Data System (ADS)
Hasan, Md Alfi; Islam, A. K. M. Saiful
2018-05-01
Accurate forecasting of heavy rainfall is crucial for the improvement of flood warning to prevent loss of life and property damage due to flash-flood-related landslides in the hilly region of Bangladesh. Forecasting heavy rainfall events is challenging where microphysics and cumulus parameterization schemes of Weather Research and Forecast (WRF) model play an important role. In this study, a comparison was made between observed and simulated rainfall using 19 different combinations of microphysics and cumulus schemes available in WRF over Bangladesh. Two severe rainfall events during 11th June 2007 and 24-27th June 2012, over the eastern hilly region of Bangladesh, were selected for performance evaluation using a number of indicators. A combination of the Stony Brook University microphysics scheme with Tiedtke cumulus scheme is found as the most suitable scheme for reproducing those events. Another combination of the single-moment 6-class microphysics scheme with New Grell 3D cumulus schemes also showed reasonable performance in forecasting heavy rainfall over this region. The sensitivity analysis confirms that cumulus schemes play a greater role than microphysics schemes for reproducing the heavy rainfall events using WRF.
Soil Moisture, Coastline Curvature, and Sea Breeze Initiated Precipitation Over Florida
NASA Technical Reports Server (NTRS)
Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo
1999-01-01
Land surface-atmosphere interaction plays a key role in the development of summertime convection and precipitation over the Florida peninsula. Land-ocean temperature contrasts induce sea-breeze circulations along both coasts. Clouds develop along sea-breeze fronts, and significant precipitation can occur during the summer months. However, other factors such as soil moisture distribution and coastline curvature may modulate the timing, location, and intensity of sea breeze initiated precipitation. Here, we investigate the role of soil moisture and coastline curvature on Florida precipitation using the 3-D Goddard Cumulus Ensemble (GCE) cloud model coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data from the Convection and Precipitation Electrification Experiment (CaPE) collected on 27 July 1991. Our numerical simulations suggest that a realistic distribution of soil moisture influences the location and intensity of precipitation but not the timing of precipitation. In contrast, coastline curvature affects the timing and location of precipitation but has little influence on peak rainfall rates. However, both factors (soil moisture and coastline curvature) are required to fully account for observed rainfall amounts.
Regime-dependence of Impacts of Radar Rainfall Data Assimilation
NASA Astrophysics Data System (ADS)
Craig, G. C.; Keil, C.
2009-04-01
Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.
NASA Astrophysics Data System (ADS)
Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison
2017-07-01
The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
A Robust Multi-Scale Modeling System for the Study of Cloud and Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
During the past decade, numerical weather and global non-hydrostatic models have started using more complex microphysical schemes originally developed for high resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. These microphysical schemes affect the dynamic through the release of latent heat (buoyancy loading and pressure gradient) the radiation through the cloud coverage (vertical distribution of cloud species), and surface processes through rainfall (both amount and intensity). Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving model (Goddard Cumulus Ensemble, GCE, model) and regional scale (Weather Research and Forecast, WRF) model. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2010); a 4-ICE (cloud ice, snow, graupel and hail) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. The performance of these schemes has been evaluated by using observational data from TRMM and other major field campaigns. In this talk, we will present the high-resolution (1 km) GeE and WRF model simulations and compared the simulated model results with observation from recent field campaigns [i.e., midlatitude continental spring season (MC3E; 2010), high latitude cold-season (C3VP, 2007; GCPEx, 2012), and tropical oceanic (TWP-ICE, 2006)].
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review.
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
2017-01-01
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review
NASA Astrophysics Data System (ADS)
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
2017-11-01
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review
NASA Astrophysics Data System (ADS)
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and highresolution modeling on large domains are discussed.
Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation
NASA Technical Reports Server (NTRS)
Yao, Mao-Sung; Del Genio, Anthony D.
1989-01-01
An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2000-01-01
Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.
Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo
2013-01-01
One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.
Ruppert-Lingham, C J; Paynter, S J; Godfrey, J; Fuller, B J; Shaw, R W
2003-02-01
Cumulus cells of the cumulus-oocyte complex (COC) are important in oocyte maturation. Thus, in preserving immature oocytes it is prudent to also preserve their associated cumulus cells. The survival and function of oocytes and their associated cumulus cells was assessed following cryopreservation or exposure to cryoprotectant without freezing. Immature COCs were collected from mice primed with pregnant mare's serum. COCs were either slow-cooled or exposed to 1.5 mol/l dimethylsulphoxide without freezing. Treated and fresh COCs were stained for membrane integrity or, after in-vitro maturation and IVF, were assessed for developmental capability. Development of cumulus-denuded fresh oocytes, as well as denuded and frozen-thawed oocytes co-cultured with fresh cumulus cells, was assessed. Slow-cooled oocytes had significantly reduced coverage by intact cumulus cells compared with fresh COCs. Cumulus cell association and developmental capability were not substantially affected by exposure to cryoprotectant without freezing. Denuded fresh oocytes and cryopreserved COCs had decreased developmental potential that was not overcome by co-culture with fresh cumulus cells. Loss of association between oocyte and cumulus cells was induced by cryopreservation, but not by treatment with cryoprotectant alone. The data indicate that direct physical contact between cumulus cells and the oocyte, throughout maturation, improves subsequent embryo development.
Simulations of the effect of a warmer climate on atmospheric humidity
NASA Technical Reports Server (NTRS)
Del Genio, Anthony D.; Lacis, Andrew A.; Ruedy, Reto A.
1991-01-01
Increases in the concentration of water vapor constitute the single largest positive feedback in models of global climate warming caused by greenhouse gases. It has been suggested that sinking air in the regions surrounding deep cumulus clouds will dry the upper troposphere and eliminate or reverse the direction of water vapor feedback. This hypothesis has been tested by performing an idealized simulation of climate change with two different versions of a climate model which both incorporate drying due to subsidence of clear air but differ in their parameterization of moist convection and stratiform clouds. Despite increased drying of the upper troposphere by cumulus clouds, upper-level humidity increases in the warmer climate because of enhanced upward moisture transport by the general circulation and increased accumulation of water vapor and ice at cumulus cloud tops.
NASA Technical Reports Server (NTRS)
Randall, D. A.; Abeles, J. A.; Corsetti, T. G.
1985-01-01
The formulation of the planetary boundary layer (PBL) and stratocumulus parametrizations in the UCLA general circulation model (GCM) are briefly summarized, and extensive new results are presented illustrating some aspects of the simulated seasonal changes of the global distributions of PBL depth, stratocumulus cloudiness, cloud-top entrainment instability, the cumulus mass flux, and related fields. Results from three experiments designed to reveal the sensitivity of the GCM results to aspects of the PBL and stratocumulus parametrizations are presented. The GCM results show that the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes, and that instability frequently occurs in association with cumulus convection over land. Cumulus convection acts as a very significant sink of PBL mass throughout the tropics and over the midlatitude continents in winter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, C.Y.J.; Bossert, J.E.; Winterkamp, J.
1993-10-01
One of the objectives of the DOE ARM Program is to improve the parameterization of clouds in general circulation models (GCMs). The approach taken in this research is two fold. We first examine the behavior of cumulus parameterization schemes by comparing their performance against the results from explicit cloud simulations with state-of-the-art microphysics. This is conducted in a two-dimensional (2-D) configuration of an idealized convective system. We then apply the cumulus parameterization schemes to realistic three-dimensional (3-D) simulations over the western US for a case with an enormous amount of convection in an extended period of five days. In themore » 2-D idealized tests, cloud effects are parameterized in the ``parameterization cases`` with a coarse resolution, whereas each cloud is explicitly resolved by the ``microphysics cases`` with a much finer resolution. Thus, the capability of the parameterization schemes in reproducing the growth and life cycle of a convective system can then be evaluated. These 2-D tests will form the basis for further 3-D realistic simulations which have the model resolution equivalent to that of the next generation of GCMs. Two cumulus parameterizations are used in this research: the Arakawa-Schubert (A-S) scheme (Arakawa and Schubert, 1974) used in Kao and Ogura (1987) and the Kuo scheme (Kuo, 1974) used in Tremback (1990). The numerical model used in this research is the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU).« less
New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Feingold, G.; Kazil, J.
2017-12-01
The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter
2007-01-01
The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen
2008-01-01
This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.
NASA Technical Reports Server (NTRS)
Randall, David A.; Fowler, Laura D.
1999-01-01
This report summarizes the design of a new version of the stratiform cloud parameterization called Eauliq; the new version is called Eauliq NG. The key features of Eauliq NG are: (1) a prognostic fractional area covered by stratiform cloudiness, following the approach developed by M. Tiedtke for use in the ECMWF model; (2) separate prognostic thermodynamic variables for the clear and cloudy portions of each grid cell; (3) separate vertical velocities for the clear and cloudy portions of each grid cell, allowing the model to represent some aspects of observed mesoscale circulations; (4) cumulus entrainment from both the clear and cloudy portions of a grid cell, and cumulus detrainment into the cloudy portion only; and (5) the effects of the cumulus-induced subsidence in the cloudy portion of a grid cell on the cloud water and ice there. In this paper we present the mathematical framework of Eauliq NG; a discussion of cumulus effects; a new parameterization of lateral mass exchanges between clear and cloudy regions; and a theory to determine the mesoscale mass circulation, based on the hypothesis that the stratiform clouds remain neutrally buoyant through time and that the mesoscale circulations are the mechanism which makes this possible. An appendix also discusses some time-differencing methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
A New Framework for Cumulus Parametrization - A CPT in action
NASA Astrophysics Data System (ADS)
Jakob, C.; Peters, K.; Protat, A.; Kumar, V.
2016-12-01
The representation of convection in climate model remains a major Achilles Heel in our pursuit of better predictions of global and regional climate. The basic principle underpinning the parametrisation of tropical convection in global weather and climate models is that there exist discernible interactions between the resolved model scale and the parametrised cumulus scale. Furthermore, there must be at least some predictive power in the larger scales for the statistical behaviour on small scales for us to be able to formally close the parametrised equations. The presentation will discuss a new framework for cumulus parametrisation based on the idea of separating the prediction of cloud area from that of velocity. This idea is put into practice by combining an existing multi-scale stochastic cloud model with observations to arrive at the prediction of the area fraction for deep precipitating convection. Using mid-tropospheric humidity and vertical motion as predictors, the model is shown to reproduce the observed behaviour of both mean and variability of deep convective area fraction well. The framework allows for the inclusion of convective organisation and can - in principle - be made resolution-aware or resolution-independent. When combined with simple assumptions about cloud-base vertical motion the model can be used as a closure assumption in any existing cumulus parametrisation. Results of applying this idea in the the ECHAM model indicate significant improvements in the simulation of tropical variability, including but not limited to the MJO. This presentation will highlight how the close collaboration of the observational, theoretical and model development community in the spirit of the climate process teams can lead to significant progress in long-standing issues in climate modelling while preserving the freedom of individual groups in pursuing their specific implementation of an agreed framework.
The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida
NASA Technical Reports Server (NTRS)
Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo
1998-01-01
Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.
An efficient framework for modeling clouds from Landsat8 images
NASA Astrophysics Data System (ADS)
Yuan, Chunqiang; Guo, Jing
2015-03-01
Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2007-01-01
The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.
A stochastic parameterization for deep convection using cellular automata
NASA Astrophysics Data System (ADS)
Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.
2012-12-01
Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.
Cloud-Resolving Model Simulations of LBA Convective Systems: Easterly and Westerly Regimes
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo
2002-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes in order to provide cloud data sets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different case are presented: Jan 26,1999, an easterly regime case, and Feb 23,1999, a westerly regime case. The Jan 26 case is an organized squall line and is initialized with a standard cold pool. The sensitivity to mid-level sounding moisture and wind shear will also be shown. The Feb 23 case is less-organized with only transient lines and is initialized with either warm bubbles or prescribed surface fluxes. Heating profiles, rainfall statistics and storm characteristics are compared and validated for the two cases against observations collected during the experiment.
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;
2013-01-01
1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
NASA Astrophysics Data System (ADS)
Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.
2012-04-01
Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.
NASA Astrophysics Data System (ADS)
Elardo, Stephen M.; McCubbin, Francis M.; Shearer, Charles K.
2012-06-01
Despite the very low chromium concentrations in its cumulus olivine (˜140 ppm), lunar troctolite 76535 contains large amounts of Cr sporadically, but highly concentrated, in symplectite assemblages consisting of Mg-Al-chromite and two pyroxenes. Previously proposed symplectite formation mechanisms include crystallization of trapped interstitial melt, diffusion of Cr from cumulus olivine, and/or remobilization of cumulus chromite grains. These mechanisms would imply that the highly Cr-depleted nature of Mg-suite parental magmas and their source materials inferred from cumulus olivine may be illusory. We have conducted a detailed petrologic and textural study of symplectites, as well as chromite veins, intercumulus assemblages, olivine-hosted melt inclusions and clinopyroxene-troilite veins in 76535 with the goals of constraining the origin of the symplectites, and the degree of Cr-depletion in Mg-suite magmas relative to other lunar basalts. Orthopyroxene and clinopyroxene in melt inclusions are depleted in Cr relative to their symplectite counterparts, averaging 900 and 1200 ppm vs. 7400 and 8100 ppm Cr2O3, respectively. Olivine in contact with symplectite assemblages may exhibit a diffusion profile of Cr going into olivine, whereas olivine boundaries away from symplectites show no diffusion profile. There is also a distinct lack of primary chromite as inclusions in cumulus phases and melt inclusions. Multiple textural observations, melt inclusion chemistry, and modeling of chromite-olivine equilibrium rule out previously proposed symplectite formation mechanisms, and strongly suggest that chromite was not a primary crystallization product of the 76535 parental magma. Accordingly, the post-cumulus addition of Cr and Fe is required to produce the symplectites. After considering multiple models, the addition of Cr and Fe to 76535 via infiltration metasomatism by an exogenous chromite-saturated melt is the model most consistent with multiple textural and geochemical observations. Failure of models that call upon Cr diffusion out of olivine grains imply that the observed Cr-depleted nature of olivine observed in many Mg-suite lithologies is a primary feature of the Cr-depleted nature of the Mg-suite parental magmas and their source materials. This substantial depletion of Cr in the magma relative to mare basalt magmas still requires a satisfactory explanation in order to be consistent with Mg-suite petrogenetic models and currently accepted bulk-Moon compositions. Additionally, if the intimate interaction of migrating melts with early lunar crustal lithologies was a widespread phenomenon after LMO solidification, it provides another mechanism by which to reset or delay closure of radiogenic isotopic systems and explain the Mg-suite-ferroan anorthosite age overlap.
An Empirical Cumulus Parameterization Scheme for a Global Spectral Model
NASA Technical Reports Server (NTRS)
Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.
2004-01-01
Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.
NASA Astrophysics Data System (ADS)
Posselt, D.; L'Ecuyer, T.; Matsui, T.
2009-05-01
Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...
2016-10-27
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
Viability of cumulus cells is associated with basal AMH levels in assisted reproduction.
Ebner, Thomas; Shebl, Omar; Holzer, Sandra; Oppelt, Peter; Petek, Erwin; Schappacher-Tilp, Gudrun; Mayer, Richard B
2014-12-01
An interesting non-invasive approach to select embryos for transfer is analyzing the health state of somatic granulosa cells surrounding the oocyte addressing their mutual dependence. This prospective study was set up to analyse whether the DNA integrity of cumulus cells correlates with preimplantation development and basal AMH levels. Therefore, 56 patients who gave written consent were enrolled. Sequential denudation of the cumulus-oocyte-complexes was performed in order to separate corona radiata from outer cumulus cells. DNA integrity of both cell types was analysed using a modified chromatin dispersion test. The percentage of viable corona radiata cells per patient showed a linear correlation to blastulation (P<0.05). These innermost cells showed significantly lower rates of strand breaks (P<0.01) as compared to outer cumulus cells. Age-corrected AMH was significantly associated with the DNA integrity of outer cumulus cells (P<0.05). For the first time it could be shown that in fact clinical embryologists deal with two different entities of cumulus cells, inner and outer ones. It seems that any protective mechanism of the female gamete follows an outward gradient, so that negative effects, e.g. apoptosis, may impair outer cumulus cells first. Age-corrected AMH reflects quality of these outer cumulus cells. AMH; Corona radiata cells; DNA fragmentation; Outer cumulus cells; SCD test. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Qian, I.; Lau, W.; Shie, C.-L.; Starr, David (Technical Monitor)
2002-01-01
A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/ South China Sea (SCS)/China, N. America and S. America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-C loud Exchange (PLACE) land surface model. PLACE allows for the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1997 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lau, W.; Jia, Y.; Johnson, D.; Shie, C.-L.; Einaudi, Franco (Technical Monitor)
2001-01-01
A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/South China Sea (SCS)/China, North America and South America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, PLACE allows for the effect A vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1991 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the South China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.
NASA Technical Reports Server (NTRS)
Arnold, Nathan; Barahona, Donifan; Achuthavarier, Deepthi
2017-01-01
Weather and climate models have long struggled to realistically simulate the Madden-Julian Oscillation (MJO). Here we present a significant improvement in MJO simulation in NASA's GEOS atmospheric model with the implementation of 2-moment microphysics and the UW shallow cumulus parameterization. Comparing ten-year runs (2007-2016) with the old (1mom) and updated (2mom+shlw) model physics, the updated model has increased intra-seasonal variance with increased coherence. Surface fluxes and OLR are found to vary more realistically with precipitation, and a moisture budget suggests that changes in rain reevaporation and the cloud longwave feedback help support heavy precipitation. Preliminary results also show improved MJO hindcast skill.
LES study of microphysical variability bias in shallow cumulus
NASA Astrophysics Data System (ADS)
Kogan, Yefim
2017-05-01
Subgrid-scale (SGS) variability of cloud microphysical variables over the mesoscale numerical weather prediction (NWP) model has been evaluated by means of joint probability distribution functions (JPDFs). The latter were obtained using dynamically balanced Large Eddy Simulation (LES) model dataset from a case of marine trade cumulus initialized with soundings from Rain in Cumulus Over the Ocean (RICO) field project. Bias in autoconversion and accretion rates from different formulations of the JPDFs was analyzed. Approximating the 2-D PDF using a generic
(fixed-in-time), but variable-in-height JPDFs give an acceptable level of accuracy, whereas neglecting the SGS variability altogether results in a substantial underestimate of the grid-mean total conversion rate and producing negative bias in rain water. Nevertheless the total effect on rain formation may be uncertain in the long run due to the fact that the negative bias in rain water may be counterbalanced by the positive bias in cloud water. Consequently, the overall effect of SGS neglect needs to be investigated in direct simulations with a NWP model.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.
2006-05-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Duan, Y.
2017-12-01
A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.
Rhesus Monkey Cumulus Cells Revert to a Mural Granulosa Cell State After an Ovulatory Stimulus
Chaffin, Charles L.; Lee, Young S.; Patel, Bela G.; Latham, Keith E.
2012-01-01
Follicular somatic cells (mural granulosa cells and cumulus cells) and the oocyte communicate through paracrine interactions and through direct gap junctions between oocyte and cumulus cells. Considering that mural and cumulus cells arise through a common developmental pathway and that their differentiation is essential to reproductive success, understanding how these cells differ is a key aspect to understanding their critical functions. Changes in global gene expression before and after an ovulatory stimulus were compared between cumulus and mural granulosa cells to test the hypothesis that mural and cumulus cells are highly differentiated at the time of an ovulatory stimulus and further differentiate during the periovulatory interval. The transcriptomes of the two cell types were markedly different (>1500 genes) before an ovulatory hCG bolus but converged after ovulation to become completely overlapping. The predominant transition was for the cumulus cells to become more like mural cells after hCG. This indicates that the differentiated phenotype of the cumulus cell is not stable and irreversibly established but may rather be an ongoing physiological response to the oocyte. PMID:23008515
Modulation of Terrestrial Convection by Tropospheric Humidity, and Implications for Other Planets
NASA Technical Reports Server (NTRS)
Genio, Anthony Del
2013-01-01
For decades, deep cumulus convection was viewed as consisting partly of undilute plumes that do not interact with their surrounding environment in order to explain their observed tendency to reach or penetrate the tropical tropopause. This behavior was built into all cumulus parameterizations used in terrestrial global climate and numerical weather prediction models, and it still persists in some models today. In the past decade, though, some embarrassing failures of global models have come to light, notably their tendency to rain over land near noon rather than in late afternoon or evening as observed, and the absence in the models of the Madden-Julian Oscillation (MJO), the major source of intraseasonal (30-90 day) precipitation variability in the Indian Ocean, West Pacific, and surrounding continental regions. In the past decade it has become clear that an important missing component of parameterizations is strong turbulent entrainment of drier environmental air into cumulus updrafts, which reduces the buoyancy of the updrafts and thus limits their vertical development. Tropospheric humidity thus serves as a throttle on convective penetration to high altitudes and delays the convective response to large-scale destabilizing influences in the environment.
NASA Technical Reports Server (NTRS)
Tao, W.-K.
2006-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NCAR), NOAA GFDL, the U.K. Met. Office, Colorado State University and NASA Goddard Space Flight Center. An improved 3D Goddard Cumulus Ensemble (GCE) model was recently used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (september 1-7, 1974), SCSMEX (May 18-26, June 2-11, 1998) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain and 41 vertical layers. The major objectives of this paper are: (1) to identify the differences and similarities in the simulated precipitation processes and their associated surface and water energy budgets in TOGA COARE, GATE, KWAJEX, and SCSMEX, and (2) to asses the impact of microphysics, radiation budget and surface fluxes on the organization of convection in tropics.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2004-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.
A Multi-scale Modeling System: Developments, Applications and Critical Issues
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Randall, David; Lin, Xin; Khairoutdinov, Marat; Li, Jui-Lin; Waliser, Duane E.; Hou, Arthur; Peters-Lidard, Christa;
2006-01-01
A multi-scale modeling framework (MMF), which replaces the conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM, constitutes a new and promising approach. The MMF can provide for global coverage and two-way interactions between the CRMs and their parent GCM. The GCM allows global coverage and the CRM allows explicit simulation of cloud processes and their interactions with radiation and surface processes. A new MMF has been developed that is based the Goddard finite volume GCM (fvGCM) and the Goddard Cumulus Ensemble (GCE) model. This Goddard MMF produces many features that are similar to another MMF that was developed at Colorado State University (CSU), such as an improved .surface precipitation pattern, better cloudiness, improved diurnal variability over both oceans and continents, and a stronger, propagating Madden-Julian oscillation (MJO) compared to their parent GCMs using conventional cloud parameterizations. Both MMFs also produce a precipitation bias in the western Pacific during Northern Hemisphere summer. However, there are also notable differences between two MMFs. For example, the CSU MMF simulates less rainfall over land than its parent GCM. This is why the CSU MMF simulated less overall global rainfall than its parent GCM. The Goddard MMF overestimates global rainfall because of its oceanic component. Some critical issues associated with the Goddard MMF are presented in this paper.
Biase, Fernando H; Kimble, Katelyn M
2018-05-10
The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level. We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal projections from cumulus cells that reach the oocyte's membrane. Thousands of gene pairs exhibit significant linear co-expression (absolute correlation > 0.85, FDR < 1.8 × 10 - 5 ) patterns between oocytes and cumulus cells. Hundreds of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription, translation, apoptosis, cell differentiation and transport). Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the oocytes' developmental potential to derive an embryo.
Factors affecting the electrofusion of mouse and ferret oocytes with ferret somatic cells.
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H; Engelhardt, John F
2005-09-01
The domestic ferret, Mustela putorius furos, holds great promise as a genetic model for human lung disease, provided that key technologies for somatic cell nuclear transfer (SCNT) are developed. In this report, we extend our understanding of SCNT in this species by defining conditions for efficient cell fusion by electrical pulse. Two experimental systems were employed in this study. First, in vivo-matured mouse oocytes and ferret somatic cells were used to establish general parameters for fusion. One fibroblast, or cumulus cell, was agglutinated to nucleate, zona pellucida-free, mouse oocytes, and subjected to an electrical pulse. Similar electrical pulse conditions were also tested with 1 or 2 somatic cells inserted into the perivitelline space (PVS) of intact mouse oocytes. The fusion rate for a single fibroblast with a zona-free oocyte was 80.2%, significantly higher (P < 0.05) than that observed for 1, or 2, fibroblasts placed in the PVS (52.0% and 63.8%, respectively). The fusion rate (44.1%) following insertion of two cumulus cells was significantly higher (P < 0.05) than that following insertion of one cumulus cell (25.1%). Second, in vitro-matured ferret oocytes were enucleated, and one to three fibroblasts or cumulus cells were inserted into the PVS. Zona pellucida-free ferret oocytes were fragile and excluded from the study. The fusion rates with two or three fibroblasts were 71.4% and 76.8%, respectively; significantly higher (P < 0.05) than that for one fibroblast (48.6%). This cell number-dependent difference in fusion efficiency was also observed with cumulus cells. Fusion-derived (ferret-ferret) NT embryos cleaved, formed blastocysts in vitro, and underwent early-stage fetal development following embryo transfer. The rate of development was cell type-independent, in contrast to the cell type-dependent differences observed in fusion efficiency. In conclusion, fibroblasts fused more efficiently than cumulus cells and the efficiency of single cell fusions was improved when two or more cells were inserted into the PVS. These studies define conditions for efficient cell fusion with ferret oocytes and should facilitate SCNT and the development of genetically defined animal models in this species.
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
A bulk planetary boundary layer (PBL) model was developed with a simple internal vertical structure and a simple second-order closure, designed for use as a PBL parameterization in a large-scale model. The model allows the mean fields to vary with height within the PBL, and so must address the vertical profiles of the turbulent fluxes, going beyond the usual mixed-layer assumption that the fluxes of conservative variables are linear with height. This is accomplished using the same convective mass flux approach that has also been used in cumulus parameterizations. The purpose is to show that such a mass flux model can include, in a single framework, the compensating subsidence concept, downgradient mixing, and well-mixed layers.
Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
Cree, Lynsey M; Hammond, Elizabeth R; Shelling, Andrew N; Berg, Martin C; Peek, John C; Green, Mark P
2015-06-01
Does maternal ageing and ovarian stimulation alter mitochondrial DNA (mtDNA) copy number and gene expression of oocytes and cumulus cells from a novel bovine model for human IVF? Oocytes collected from females with identical nuclear genetics show decreased mtDNA copy number and increased expression of an endoplasmic reticulum (ER) stress gene with repect to ovarian stimulation, whilst differences in the expression of genes involved in mitochondrial function, antioxidant protection and apoptosis were evident in relation to maternal ageing and the degree of ovarian stimulation in cumulus cells. Oocyte quality declines with advancing maternal age; however, the underlying mechanism, as well as the effects of ovarian stimulation are poorly understood. Human studies investigating these effects are often limited by differences in age and ovarian stimulation regimens within a patient cohort, as well as genetic and environmental variability. A novel bovine cross-sectional maternal age model for human IVF was undertaken. Follicles were aspirated from young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian clones following multiple unstimulated, mild and standard ovarian stimulation cycles. These bovine cloned females were generated by the process of somatic cell nuclear transfer (SCNT) from the same founder and represent a homogeneous population with reduced genetic and environmental variability. Maternal age and ovarian stimulation effects were investigated in relation to mtDNA copy number, and the expression of 19 genes involved in mitochondrial function, antioxidant protection, oocyte-cumulus cell signalling and follicle development in both oocytes and cumulus cells. Young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian bovine clones were maintained as one herd. Stimulation cycles were based on the long GnRH agonist down-regulation regimen used in human fertility clinics. Follicle growth rates, numbers and diameters were monitored by ultrasonography and aspirated when the lead follicles were >14 mm in diameter. Follicle characteristics were analysed using a mixed model procedure. Quantitative PCR (qPCR) was used to determine mtDNA copy number and reverse transcriptase-qPCR (RT-qPCR) was used to measure gene expression in oocytes and cumulus cells. Method of ovarian stimulation (P = 0.04), but not maternal age (P > 0.1), was associated with a lower mtDNA copy number in oocytes. Neither factor affected mtDNA copy number in cumulus cells. In oocytes, maternal age had no effect on gene expression; however, ovarian stimulation in older females increased the expression of GRP78 (P = 0.02), a gene involved in ER stress. In cumulus cells, increasing maternal age was associated with the higher expression of genes involved in mitochondrial maintenance (TXN2 P = 0.008 and TFAM P = 0.03), whereas ovarian stimulation decreased the expression of genes involved in mitochondrial oxidative stress and apoptosis (TXN2 P = 0.002, PRDX3 P = 0.03 and BAX P = 0.03). The low number of oocyte and cumulus cell samples collected from the unstimulated cycles limited the analysis. Fertilization and developmental potential of the oocytes was not assessed because these were used for mtDNA and gene expression quantification. Delineation of the independent effects of maternal age and ovarian stimulation regimen on mtDNA copy number gene expression in oocytes and cumulus cells was enabled by the removal of genetic and environmental variability in this bovine model for human IVF. Therefore, these extend upon previous knowledge and findings provide relevant insights that are applicable for improving human ovarian stimulation regimens. Funding was provided by Fertility Associates and the University of Auckland. J.C.P. is a shareholder of Fertility Associates and M.P.G. received a fellowship from Fertility Associates. The other authors of this manuscript declare no conflict of interest that could be perceived as prejudicing the impartiality of the reported research. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kitasaka, Hiroya; Kawai, Tomoko; Hoque, S A Masudul; Umehara, Takashi; Fujita, Youko; Shimada, Masayuki
2018-01-01
It has been known that EGF-like factor secreted from LH-stimulated granuloma cells acts on granulosa cells and cumulus cells to induce ovulation process. Granulosa cells are changed the morphology with differentiating cell functions to produce progesterone. Cumulus cells are detached to make a space between the cells to accumulate hyaluronan rich matrix. LH also changes extracellular matrix (ECM) components including fibronectin in the follicular walls and granulosa cell layers. EGF like factor and fibronectin synergistically play important roles in numerous cell functions, especially cancer cell migration, estimating that fibronectin would impact on granulosa cells and cumulus cells. To clear this hypothesis, the localizations of fibronectin and its receptor integrin were observed by immunofluorescence technique. The functions were monitored by the detection of downstream signaling pathway, focal adhesion kinase (FAK). The pharmacological approach in both in vivo and in vitro were used for analyzing the physiological roles of FAK during ovulation process. The immunofluorescence staining revealed that fibronectin and integrin were observed in granulosa cells, cumulus cells and the space between cumulus cells and oocyte at 4 and 8 h after hCG injection. Concomitantly with the changes of fibronectin-integrin localization, FAK was phosphorylated in periovulatory follicles. The injection of FAK inhibitor suppressed not only ovulation but also luteinization of granulosa cells and cumulus expansion. In cultured-granulosa cells, fibronectin-integrin synergistically activated FAK with amphiregulin (AREG). Such cooperative stimulations induced a morphological change in granulosa cells, which resulted in the maximum level of progesterone production via the induction of Hsd3b. When cumulus-oocyte complexes (COCs) were cultured with AREG in the presence of serum, the maximum level of cumulus expansion was observed. The AREG-induced cumulus expansion was also suppressed by FAK inhibitor. Thus, it is concluded that fibronectin and AREG synergistically activate FAK not only in granulosa cells and cumulus cells to induce successful ovulation process.
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...
2017-01-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
NASA Astrophysics Data System (ADS)
Pauliquevis, T.; Gomes, H. B.; Barbosa, H. M.
2014-12-01
In this study we evaluate the skill of WRF model to simulate the actual diurnal cycle of convection in the Amazon basin. Models tipically are not capable to simulate the well documented cycle of 1) shallow cumulus in the morning; 2) towering process around noon; 3) shallow-to-deep convection and rain around 14h (LT). The fail in models is explained by the typical size of shallow cumulus (~0.5 - 2.0 km) and the coarse resolution of models using convection parameterisation (> 20 km). In this study we employed high spatial resolution (Dx = 0.625 km) to reach the shallow cumulus scale. . The simulations corresponds to a dynamical downscaling of ERA-Interim from 25 to 28 February 2013 with 40 vertical levels, 30 minutes outputs,and three nested grids (10 km, 2.5 km, 0.625 km). Improved vegetation (USGS + PROVEG), albedo and greenfrac (computed from MODIS-NDVI + LEAF-2 land surface parameterization), as well as pseudo analysis of soil moisture were used as input data sets, resulting in more realistic precipitation fields when compared to observations in sensitivity tests. Convective parameterization was switched off for the 2.5/0.625 km grids, where cloud formation was solely resolved by the microphysics module (WSM6 scheme, which provided better results). Results showed a significant improved capability of the model to simulate diurnal cycle. Shallow cumulus begin to appear in the first hours in the morning. They were followed by a towering process that culminates with precipitation in the early afternoon, which is a behavior well described by observations but rarely obtained in models. Rain volumes were also realistic (~20 mm for single events) when compared to typical events during the period, which is in the core of the wet season. Cloud fields evolution also differed with respect to Amazonas River bank, which is a clear evidence of the interaction between river breeze and large scale circulation.
NASA Astrophysics Data System (ADS)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.
2017-10-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2006-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
Shallow Cumulus Variability at the ARM Eastern North Atlantic Site
NASA Astrophysics Data System (ADS)
Lamer, K.; Kollias, P.; Ghate, V. P.; Luke, E. P.
2016-12-01
Cumulus clouds play a critical role in modulating the radiative and hydrological budget of the lower troposphere. These clouds, which are ubiquitous in regions of large-scale subsidence over the oceans, tend to be misrepresented in global climate models. Island-based, long-term, high-resolution ground-based observations can provide valuable insights on the factors controlling their macroscopic and microphysical properties and subsequenlty assist in model evaluation and guidance. Previous studies, limited to fair-weather cumuli over land, revealed that their fractional coverage is only weakly correlated with several parameters; the best ones being complex dynamical characteristics of the subcloud layer (vertical velocity skewness and eddy coherence). Other studies noted a relationship between cumuli depth and their propensity to precipitate. The current study will expand on such analysis by performing detail characterization of the full spectrum of shallow cumulus fields from non-precipitating to precipitating in the context of the large-scale forcing (i.e. thermodynamic structure and subsidence rates). Two years of ground-based remote sensing observations collected at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic (ENA) site are used to document macroscopic (cloud depth, cord length, cover), microphysical (liquid water path, cloud base rain rate) and dynamical (cloud base mass flux, eddy dissipation rate) cumuli properties. The observed variability in shallow cumulus is examined in relation to the variability of the large-scale environment as captured by the humidity profile, the magnitude of the low-level horizontal winds and near-surface aerosol conditions.
Motility contrast imaging of live porcine cumulus-oocyte complexes
NASA Astrophysics Data System (ADS)
An, Ran; Turek, John; Machaty, Zoltan; Nolte, David
2013-02-01
Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.
Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.
2011-12-01
Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
The impact of mesoscale convective systems on global precipitation: A modeling study
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo
2017-04-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-01-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-06-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
Boundary-layer cumulus over land: Some observations and conceptual models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.
1993-09-01
Starting in 1980, the Boundary Layer Research Team at the University of Wisconsin has been systematically studying the formation and evolution of nonprecipitating boundary-layer cumulus clouds (BLCu) in regions of fair weather (anticyclones) over land (Stull, 1980). Our approach is to quantify the average statistical characteristics of the surface, thermals, boundary layer, and clouds over horizontal regions of roughly 20 km in diameter. Within such a region over land, there is typically quite a variation in land use, and associated variations in surface albedo and moisture.
Wang, Feng; Tian, XiuZhi; Zhang, Lu; He, ChangJiu; Ji, PengYun; Li, Yu; Tan, DunXian; Liu, GuoShi
2014-02-01
To analyze the potential beneficial effects and mechanisms of action of resveratrol on the maturation of bovine oocytes that were incubated in different concentrations of resveratrol (0.1, 1.0, or 10.0 μM) as germinal vesicle-stage oocytes. In vitro prospective study. University research laboratory. Animal models for human studies. In vitro culture in the presence of various concentrations of the antioxidant resveratrol. Parameters of hormone levels, oocyte nuclear maturation, cumulus expansion, levels of intracellular glutathione and reactive oxygen species, embryonic cleavage, blastocyst formation, gene expression associated with mature bovine oocytes and cumulus cells, and level of sirtuin 1 gene expression. Resveratrol statistically significantly increased progesterone secretion and decreased estradiol-17β secretion by cumulus cells. The elevated levels of progesterone activated the Mos/MEK/p42 mitogen-activated protein kinase (MAPK) cascade in the oocytes. At a concentration of 1.0 μM, resveratrol statistically significantly improved cumulus expansion, polar body formation, the (hatched) blastocyst rate, and the mean number of cells/blastocysts. Meanwhile, resveratrol statistically significantly reduced the level of reactive oxygen species (ROS) and increased the level of glutathione (GSH). For the first time, the expression of the sirtuin-1 gene was identified in granulosa cells, cumulus cells, oocytes, and blastocysts. Further studies revealed that resveratrol promoted sirtuin-1 gene expression. Resveratrol promoted bovine oocyte maturation and subsequent post-in vitro fertilization embryonic development by inducing progesterone secretion and an antioxidant effect, probably in a manner dependent on sirtuin-1. Copyright © 2014 American Society for Reproductive Medicine. All rights reserved.
Accogli, Gianluca; Douet, Cécile; Ambruosi, Barbara; Martino, Nicola Antonio; Uranio, Manuel Filioli; Deleuze, Stefan; Dell'Aquila, Maria Elena; Desantis, Salvatore; Goudet, Ghylène
2014-12-01
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models. © 2014 Wiley Periodicals, Inc.
Varga, Erika; Gardón, J C; Papp, Agnes Bali
2006-03-01
Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.
Final Technical Report for "Reducing tropical precipitation biases in CESM"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent
In state-of-the-art climate models, each cloud type is treated using its own separate cloud parameterization and its own separate microphysics parameterization. This use of separate schemes for separate cloud regimes is undesirable because it is theoretically unfounded, it hampers interpretation of results, and it leads to the temptation to overtune parameters. In this grant, we have created a climate model that contains a unified cloud parameterization (“CLUBB”) and a unified microphysics parameterization (“MG2”). In this model, all cloud types --- including marine stratocumulus, shallow cumulus, and deep cumulus --- are represented with a single equation set. This model improves themore » representation of convection in the Tropics. The model has been compared with ARM observations. The chief benefit of the project is to provide a climate model that is based on a more theoretically rigorous formulation.« less
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.
2008-01-01
As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.
Shimada, Masayuki; Mihara, Toshihiro; Kawashima, Ikko; Okazaki, Tetsuji
2013-02-01
The aim of this study was to find immune-related genes expressed in cumulus cells of ovulated cumulus oocyte complexes (COCs) and to clear the functional roles during fertilization process. Ovulated COCs were collected from oviduct 16 hr after the hCG injections followed by eCG priming. The cumulus cells were used for RT-PCR or western blotting study. COCs were also used for in vitro fertilization study. Cramp, Trf, Lyz2, S100a8, and S100a9 were expressed in cumulus cells during ovulation process. The protein levels of CRAMP or transferrin were detected in ovulated COCs and then secreted into hyaluronan-rich matrix. The high dose of these factors reduced the proliferative activity of E. coli; however, the lower levels of them significantly increased the rate of fertilization in in vitro via the induction of sperm capacitation. Cumulus-secreted anti-bacterial factors act on sperm to induce sperm capacitation. © 2012 John Wiley & Sons A/S.
Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment
Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.
2011-01-01
Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112
Aardema, Hilde; van Tol, Helena T. A.; Wubbolts, Richard W.; Brouwers, Jos F. H. M.; Gadella, Bart M.; Roelen, Bernard A. J.
2017-01-01
Abstract Metabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while monounsaturated free fatty acids appear less harmful. Cumulus cells seem to protect the oocyte against free fatty acids, and the aim of this study was to determine the mechanism behind this protection In particular, the role of the enzyme stearoyl-CoA desaturase (SCD) that converts saturated into monounsaturated fatty acids was investigated. SCD gene and protein were abundantly expressed in cumulus cells, but expression was low in oocytes. The level of SCD protein expression in cumulus cells did not change when COCs were exposed to saturated stearic acid during maturation. SCD inhibition in the presence of stearic acid significantly reduced the developmental competence of oocytes and increased the incidence of apoptosis in cumulus cells. The esterified oleic/stearic acid ratio of the neutral lipid fraction in cumulus cells decreased in the presence of SCD inhibitors when COCs were exposed to saturated free fatty acids during maturation, indicating the SCD-specific conversion of saturated fatty acids under noninhibiting conditions. The observation that cumulus cells can desaturate the potentially toxic stearic acid into oleic acid via SCD activity provides a mechanistic insight into how the cumulus cells protect the oocyte against toxicity by saturated fatty acid. PMID:28486699
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.
2003-01-01
In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.
Evaluation of WRF Parameterizations for Air Quality Applications over the Midwest USA
NASA Astrophysics Data System (ADS)
Zheng, Z.; Fu, K.; Balasubramanian, S.; Koloutsou-Vakakis, S.; McFarland, D. M.; Rood, M. J.
2017-12-01
Reliable predictions from Chemical Transport Models (CTMs) for air quality research require accurate gridded weather inputs. In this study, a sensitivity analysis of 17 Weather Research and Forecast (WRF) model runs was conducted to explore the optimum configuration in six physics categories (i.e., cumulus, surface layer, microphysics, land surface model, planetary boundary layer, and longwave/shortwave radiation) for the Midwest USA. WRF runs were initally conducted over four days in May 2011 for a 12 km x 12 km domain over contiguous USA and a nested 4 km x 4 km domain over the Midwest USA (i.e., Illinois and adjacent areas including Iowa, Indiana, and Missouri). Model outputs were evaluated statistically by comparison with meteorological observations (DS337.0, METAR data, and the Water and Atmospheric Resources Monitoring Network) and resulting statistics were compared to benchmark values from the literature. Identified optimum configurations of physics parametrizations were then evaluated for the whole months of May and October 2011 to evaluate WRF model performance for Midwestern spring and fall seasons. This study demonstrated that for the chosen physics options, WRF predicted well temperature (Index of Agreement (IOA) = 0.99), pressure (IOA = 0.99), relative humidity (IOA = 0.93), wind speed (IOA = 0.85), and wind direction (IOA = 0.97). However, WRF did not predict daily precipitation satisfactorily (IOA = 0.16). Developed gridded weather fields will be used as inputs to a CTM ensemble consisting of the Comprehensive Air Quality Model with Extensions to study impacts of chemical fertilizer usage on regional air quality in the Midwest USA.
Mechem, David B.; Giangrande, Scott E.; Wittman, Carly S.; ...
2015-03-13
A case of shallow cumulus and precipitating cumulus congestus sampled at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) supersite is analyzed using a multi-sensor observational approach and numerical simulation. Observations from a new radar suite surrounding the facility are used to characterize the evolving statistical behavior of the precipitating cloud system. This is accomplished using distributions of different measures of cloud geometry and precipitation properties. Large-eddy simulation (LES) with size-resolved (bin) microphysics is employed to determine the forcings most important in producing the salient aspects of the cloud system captured in the radar observations. Our emphasis ismore » on assessing the importance of time-varying vs. steady-state large-scale forcing on the model's ability to reproduce the evolutionary behavior of the cloud system. Additional consideration is given to how the characteristic spatial scale and homogeneity of the forcing imposed on the simulation influences the evolution of cloud system properties. Results indicate that several new scanning radar estimates such as distributions of cloud top are useful to differentiate the value of time-varying (or at least temporally well-matched) forcing on LES solution fidelity.« less
NASA Astrophysics Data System (ADS)
Tan, Elcin
A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the physically possible upper limits of precipitation due to climate change. The simulation results indicate that the meridional shift in atmospheric conditions is the optimum method to determine maximum precipitation in consideration of cost and efficiency. Finally, exceedance probability analyses of the model results of 42 historical extreme precipitation events demonstrate that the 72-hr basin averaged probable maximum precipitation is 21.72 inches for the exceedance probability of 0.5 percent. On the other hand, the current operational PMP estimation for the American River Watershed is 28.57 inches as published in the hydrometeorological report no. 59 and a previous PMP value was 31.48 inches as published in the hydrometeorological report no. 36. According to the exceedance probability analyses of this proposed method, the exceedance probabilities of these two estimations correspond to 0.036 percent and 0.011 percent, respectively.
Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations
NASA Technical Reports Server (NTRS)
Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko
2010-01-01
Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.
Beek, J; Nauwynck, H; Appeltant, R; Maes, D; Van Soom, A
2015-11-01
Serine proteases are involved in mammalian fertilization. Inhibitors of serine proteases can be applied to investigate at which point these enzymes exert their action. We selected two serine protease inhibitors, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF, 100 μM) and soybean trypsin inhibitor (STI, 5 μM) from Glycine max, via previous dose-response IVF experiments and sperm toxicity tests. In the present study, we evaluated how these inhibitors affect porcine fertilization in vitro as calculated on total fertilization rate, polyspermy rate, and the sperm number per fertilized oocyte of cumulus-intact, cumulus-free, and zona-free oocytes. In the control group (no inhibitor), these parameters were 86%, 49%, and 2.2 for cumulus-intact oocytes and 77%, 43%, and 2.2 for cumulus-free oocytes (6-hour gamete incubation period, 1.25 × 10(5) spermatozoa/mL). 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride and STI significantly reduced total fertilization and polyspermy rate in cumulus-intact and cumulus-free oocytes (P < 0.05). Total fertilization rates were respectively 65% and 53% (AEBSF) and 36% and 17% (STI). Inhibition rates were higher in cumulus-free oocytes than in cumulus-intact oocytes, indicating that inhibitors exerted their action after sperm passage through the cumulus. 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride but not STI reduced sperm binding to the ZP. The acrosome reaction was significantly inhibited by both inhibitors. Only 40.4% (AEBSF) and 11.4% (STI) of spermatozoa completed a calcium-induced acrosome reaction compared to 86.7% of spermatozoa in the control group. There was no effect on sperm binding or fertilization parameters in zona-free oocytes. In conclusion, sperm-zona binding and acrosome reaction were inhibited by serine protease inhibitors during porcine IVF. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lang, S.; Ferrier, B.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was utilized to examine the behavior and response of simulated deep tropical cloud systems that occurred over the west Pacific warm pool region, the Atlantic ocean and the central United States. The periods chosen for simulation were convectively active periods during TOGA-COARE (February 22 1993, December 11-17, 1992; December 19-28, February 9-13, 1993), GATE (September 4, 1974), LBA (January 26 and February 23, 1998), ARM (1997 IOP) and PRESTORM (June 11, 1985). We will examine differences in the microphysics for both warm rain and ice processes (evaporation /sublimation and condensation/ deposition), Q1 (Temperature), Q2 (Water vapor) and Q3 (momentum both U and V) budgets for these three convective events from different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. New improvements to the GCE model (i.e., microphysics: 4ICE two moments and 3ICE one moment; advection schemes) as well as their sensitivity to the model results will be discussed. Preliminary results indicated that various microphysical schemes could have a major impact on stratiform formation as well as the size of convective systems. However, they do not change the major characteristics of the convective systems, such as: arc shape, strong rotational circulation on both ends of system, heavy precipitation along the leading edge of systems.
Three-dimensional simulations of cumulus congestus clouds on GATE day 261
NASA Technical Reports Server (NTRS)
Simpson, J.; Van Helvoirt, G.; Mccumber, M.
1982-01-01
Schlesinger's (1978) three-dimensional cumulus model is applied to showering congestus clouds on day 261 of GATE. Model results are compared with each other and with observations to analyze the effects of varying shear and altered sounding. Relationships between shear, mesovortices and dynamic entrainment are examined, as well as the model clouds' impact on the environment as a function of shear. The simulations appear to resemble reality in many important aspects. Altostratus layers observed on day 261 are found to be a by-product of convection in three-dimensional shear. Rapid erosion of cloud base to 3.6 km is related to the ambient thermal structure, with wind shear and initial perturbation playing a secondary role. Some of the apparent conflict regarding lateral versus cloud-top entrainment is clarified, as well as some factors governing convective downdraft structure and intensity.
NASA Technical Reports Server (NTRS)
Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.
GCSS/WGNE Pacific Cross-section Intercomparison: Tropical and Subtropical Cloud Transitions
NASA Astrophysics Data System (ADS)
Teixeira, J.
2008-12-01
In this presentation I will discuss the role of the GEWEX Cloud Systems Study (GCSS) working groups in paving the way for substantial improvements in cloud parameterization in weather and climate models. The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is an extension of GCSS and is a different type of model evaluation where climate models are analyzed along a Pacific Ocean transect from California to the equator. This approach aims at complementing the more traditional efforts in GCSS by providing a simple framework for the evaluation of models that encompasses several fundamental cloud regimes such as stratocumulus, shallow cumulus and deep cumulus, as well as the transitions between them. Currently twenty four climate and weather prediction models are participating in GPCI. We will present results of the comparison between models and recent satellite data. In particular, we will explore in detail the potential of the Atmospheric Infrared Sounder (AIRS) and CloudSat data for the evaluation of the representation of clouds and convection in climate models.
Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective
NASA Astrophysics Data System (ADS)
Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik
2010-02-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
NASA Technical Reports Server (NTRS)
Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.
2010-01-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
Modeling cumulus clouds in a two-phase wind tunnel
NASA Astrophysics Data System (ADS)
Bordás, R.; Thévenin, D.
2009-04-01
Experiments in wind-tunnels concerning meteorological flows are not very frequent in the literature. However, they are indispensable for a well-controlled and accurate investigation of turbulence-droplet interactions at the micro-scale. Of course it is impossible to reproduce perfectly the turbulent properties of clouds in a comparatively small wind-tunnel. The enormous length scales that are predominant in nature (integral length scale of typically 100 meters) lead to very high Reynolds numbers, roughly 107 calculated with the cloud dimensions or 104 as Taylor Reynolds number Reλ. Nevertheless, it is not necessary to reproduce exactly the whole turbulence spectrum to investigate the issue of rain formation in cumulus clouds. Only those scales and turbulence properties should be reproduced in the wind tunnel, which are physically important for the droplet population. In this work the key properties of cumulus clouds will be identified and implemented in a two-phase wind tunnel, allowing reproducible and accurate measurements. These properties are in particular the droplet number density, the turbulent kinetic energy and its dissipation rate. It is demonstrated by means of non-intrusive optical measurement techniques that the flow velocity, droplet number density, and key turbulence properties have been matched and are in the right order of magnitude. In this manner wind-tunnel investigations become possible and deliver realistic information concerning the interaction between droplets and turbulence in cumulus clouds.
Merhi, Zaher; Doswell, Angela; Krebs, Kendall; Cipolla, Marilyn
2014-06-01
Vitamin D deficiency is common among reproductive-aged women and has a role in female reproduction. This study evaluated the role of 1,25-dihydroxyvitamin D3 (vit D3) in ovarian follicular development and steroidogenesis by using a human granulosa cell (GC) model. Fifty-four women who underwent in vitro fertilization were enrolled. Follicular fluid (FF) and mural and cumulus GCs were collected from small and large follicles. In separate experiments, primary cumulus GCs were cultured with or without vit D3 followed by RT-PCR for mRNA expression levels. The effect of recombinant anti-Mullerian hormone (AMH) on nuclear localization of phospho-Smad 1/5/8 was evaluated in the presence or absence of vit D3 by using immunofluorescence. 25-Hydroxyvitamin D levels in FF as well as cell culture media AMH, progesterone, and estradiol (E2) concentrations were determined by ELISA and RIA. The following were measured: 1) mRNA expression levels; 2) 3β-hydroxysteroid dehydrogenase (3β-HSD) enzyme activity; 3) FSH-induced aromatase mRNA and E2 production; and 4) nuclear localization of phospho-Smad 1/5/8. In a multivariate analysis, 25 OH-D levels in FF negatively correlated with AMH and AMH receptor (AMHR)-II mRNA levels in cumulus GCs of small follicles. Compared with women with replete 25-hydroxyvitamin D levels in FF, those with insufficient/deficient levels had a 2-fold increase in AMHR-II mRNA levels in cumulus GCs of small follicles (P = .02). Treatment with vit D3 caused a decrease in AMHR-II and FSH receptor mRNA but an increase in 3-βHSD mRNA levels compared with control (P < .05). Vit D3 enhanced 3-βHSD enzyme activity as assessed by increasing progesterone release; however, vit D3 did not affect FSH-induced aromatase mRNA and E2 production, but it decreased the phosphorylation of Smad 1/5/8 and its nuclear localization. These data suggest that vit D3 alters AMH signaling and steroidogenesis in human cumulus GCs, possibly reflecting a state of GC luteinization potentiation.
Integrating Cloud Processes in the Community Atmosphere Model, Version 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.; Bretherton, Christopher S.; Rasch, Philip J.
2014-09-15
This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and icemore » crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.« less
Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G.; Bonfiglio, Rita; Salustri, Antonietta
2016-01-01
Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3′,5′-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability. PMID:26694612
Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes.
Lee, Sanghoon; Jin, Jun-Xue; Taweechaipaisankul, Anukul; Kim, Geon A; Ahn, Curie; Lee, Byeong Chun
2017-10-01
Melatonin, which is synthesized in the pineal gland and peripheral reproductive organs, has antioxidant properties and regulates physiological processes. It is well known that melatonin affects in vitro maturation (IVM) of oocytes and embryonic development in many species. However, beneficial effects of melatonin on IVM have been explained mainly by indirect antioxidant effects and little information is available on the underlying mechanism by which melatonin directly acts on porcine cumulus oocyte complexes (COCs). Sonic hedgehog (Shh) signaling is important for follicle development, oocyte maturation, and embryo development, and there may be a relationship between melatonin and Shh signaling. To examine this, we designed three groups: (i) control, (ii) melatonin (10 -9 mol/L), and (iii) melatonin with cyclopamine (2 μmol/L; Shh signaling inhibitor). The aim of this study was to investigate the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation (PA), gene expression in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Melatonin significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), PA blastocyst formation rates, and total cell numbers, which were inhibited by addition of cyclopamine. Simultaneously, the expression of cumulus expansion-related genes (Ptgs1, Ptgs2, and Has2) and Shh signaling-related genes (Shh, Pthc1, Smo, and Gli1) and proteins (Ptch1, Smo, and Gli1) in cumulus cells was upregulated in the melatonin-treated group, and these effects were also inhibited by cyclopamine. In conclusion, our results suggest that Shh signaling mediates effects of melatonin to improve porcine cumulus expansion and subsequent embryo development. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Haskin, L. A.
1995-01-01
The impact that produced North Ray Crater, Apollo 16 landing site, exhumed rocks that include relatively mafic members of the lunar ferroan anorthositic suite. Bulk and mineral compositions indicate that a majority of 2-4 mm lithic fragments from sample 67513, including impact breccias and monomict igneous rocks, are related to a common noritic-anorthosite precursor. Compositions and geochemical trends of these lithic fragments and of related samples collected along the rim of North Ray Crater suggest that these rocks derived from a single igneous body. This body developed as an orthocumulate from a mixture of cumulus plagioclase and mafic intercumulus melt, after the plagioclase had separated from any cogenetic mafic minerals and had become concentrated into a crystal mush (approximately 70 wt% plagioclase, 30 wt% intercumulus melt). We present a model for the crystallization of the igneous system wherein "system" is defined as cumulus plagioclase and intercumulus melt. The initial accumulation of plagioclase is analogous to the formation of thick anorthosites of the terrestrial Stillwater Complex; however, a second stage of formation is indicated, involving migration of the cumulus-plagioclase-intercumulus-melt system to a higher crustal level, analogous to the emplacement of terrestrial massif anorthosites. Compositional variations of the lithic fragments from sample 67513 are consistent with dominantly equilibrium crystallization of intercumulus melt. The highly calcic nature of orthocumulus pyroxene and plagioclase suggests some reaction between the intercumulus melt and cumulus plagioclase, perhaps facilitated by some recrystallization of cumulus plagioclase. Bulk compositions and mineral assemblages of individual rock fragments also require that most of the mafic minerals fortned in close contact with cumulus plagioclase, not as separate layers. The distribution of compositions (and by inference, modes) has a narrow peak at anorthosite and a broader, larger peak at noritic anoilhosite. Characteristics of the samples and their geochemical trends imply an origin in a system that was large relative to the (unknown) size of the impact that produced the breccias of ferroan noritic-anorthosite composition that were excavated later by the formation of North Ray Crater, and they appear to be consistent with an origin of the suite within a perched plagioclase cumulate. If the Moon's crust formed by accumulation of plagioclase in a magma ocean, ferroan noritic anothosite, formed as an orthocumulate, is an alternative to extensive adcumulus formation of ferroan anorthosite (greater than 90 vol% plagiclase). This provides a relatively mafic ferroan anorthositic component (approximately 15 vol% mafics), which is required by mass-balance models of compositions of polymict lunar-crustal materials. The inferred bulk composition of the system of cumulus plagioclase and intercumulus melt is similar to that of ferroan regolith breccia MacAlpine Hills 88104/5, a lunar-highland meteorite, and may represent a common and widespread component of the Moon's early highland crust.
Numerical Modeling of the Global Atmosphere
NASA Technical Reports Server (NTRS)
Arakawa, Akio; Mechoso, Carlos R.
1996-01-01
Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM.
HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.
Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng
2018-03-27
LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .
Jin, Mayuko; Fujiwara, Eiji; Kakiuchi, Yasutaka; Okabe, Masaru; Satouh, Yuhkoh; Baba, Shoji A.; Chiba, Kazuyoshi; Hirohashi, Noritaka
2011-01-01
To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm–oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm–zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization. PMID:21383182
2013-01-01
Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus cell expansion of in vitro matured bovine COC. However, GM-CSF did not increase oocyte nuclear or cytoplasmic maturation rates, IGF-2 expression or subsequent embryonic development. PMID:23799974
NASA Technical Reports Server (NTRS)
Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.
1992-01-01
The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.
Suzuki, T; Singla, S K; Sujata, J; Madan, M L
1991-06-01
Water buffalo (Murrah) oocytes were collected from ovaries obtained from the slaughter house. They were classified according to the character of the cumulus cells under a stereomicroscope, and cultured in 25 mM Hepes buffered Tissue Culture Medium-199 (TCM-199) supplemented with 5% estrous water buffalo serum in an atmosphere containing 5% CO2 in air at 39 degrees C. After 20-24 hr of in vitro maturation, the oocytes were fertilized using capacitated sperm obtained from 4 different bulls. For cleavage the oocytes were cultured at 39 degrees C in TCM-199 supplemented with 1% estrous water buffalo serum and in an atmosphere containing 5% CO2 in air. The good oocytes, with compact and dense cumulus cells cleaved significantly higher (p less than 0.01, 67.3%), than those of fair. partially naked oocytes with thin cumulus layers (27.5%, 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation cumulus layers (27.5% 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation in fertilization and developmental rates (16.0% to 43.8%) was observed among 4 different bulls. Late non-surgically into 14 buffalo recipients on day 6 or 7 of their estrous cycle. One recipient was diagnosed to be pregnant by rectal palpation on day 60 and confirmed to be so on day 90 post-estrus.
Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...
Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki
2002-01-01
Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).
NASA Technical Reports Server (NTRS)
Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne
2000-01-01
Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.
A review of recent research on improvement of physical parameterizations in the GLA GCM
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.
1990-01-01
A systematic assessment of the effect of a series of improvements in physical parameterizations of the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) are summarized. The implementation of the Simple Biosphere Model (SiB) in the GCM is followed by a comparison of SiB GCM simulations with that of the earlier slab soil hydrology GCM (SSH-GCM) simulations. In the Sahelian context, the biogeophysical component of desertification was analyzed for SiB-GCM simulations. Cumulus parameterization is found to be the primary determinant of the organization of the simulated tropical rainfall of the GLA GCM using Arakawa-Schubert cumulus parameterization. A comparison of model simulations with station data revealed excessive shortwave radiation accompanied by excessive drying and heating to the land. The perpetual July simulations with and without interactive soil moisture shows that 30 to 40 day oscillations may be a natural mode of the simulated earth atmosphere system.
Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.
2009-01-01
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models. Crown Copyright ?? 2008.
Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold
2016-01-01
Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.
Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T
2013-08-01
The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).
Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C
2017-10-01
The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.
NASA Technical Reports Server (NTRS)
Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich
2006-01-01
The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production.
NASA Technical Reports Server (NTRS)
Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve
2004-01-01
The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.
NASA Astrophysics Data System (ADS)
Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich
2007-03-01
The 21 July 1998 thunderstorm observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NOx production which uses observed flash rates as input. Estimates of lightning NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N yr-1. Chemical reactions were included in the model to evaluate the impact of lightning NOx on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NOx, maximizing at approximately 5 ppbv day-1 at 5.5 km. Between 8 and 10.5 km, lightning NOx causes decreased net ozone production.
Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies
NASA Astrophysics Data System (ADS)
Xie, S.; Zhang, Y.
2011-12-01
The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.
Evaluation of a Cloud Resolving Model Using TRMM Observations for Multiscale Modeling Applications
NASA Technical Reports Server (NTRS)
Posselt, Derek J.; L'Ecuyer, Tristan; Tao, Wei-Kuo; Hou, Arthur Y.; Stephens, Graeme L.
2007-01-01
The climate change simulation community is moving toward use of global cloud resolving models (CRMs), however, current computational resources are not sufficient to run global CRMs over the hundreds of years necessary to produce climate change estimates. As an intermediate step between conventional general circulation models (GCMs) and global CRMs, many climate analysis centers are embedding a CRM in each grid cell of a conventional GCM. These Multiscale Modeling Frameworks (MMFs) represent a theoretical advance over the use of conventional GCM cloud and convection parameterizations, but have been shown to exhibit an overproduction of precipitation in the tropics during the northern hemisphere summer. In this study, simulations of clouds, precipitation, and radiation over the South China Sea using the CRM component of the NASA Goddard MMF are evaluated using retrievals derived from the instruments aboard the Tropical Rainfall Measuring Mission (TRMM) satellite platform for a 46-day time period that spans 5 May - 20 June 1998. The NASA Goddard Cumulus Ensemble (GCE) model is forced with observed largescale forcing derived from soundings taken during the intensive observing period of the South China Sea Monsoon Experiment. It is found that the GCE configuration used in the NASA Goddard MMF responds too vigorously to the imposed large-scale forcing, accumulating too much moisture and producing too much cloud cover during convective phases, and overdrying the atmosphere and suppressing clouds during monsoon break periods. Sensitivity experiments reveal that changes to ice cloud microphysical parameters have a relatively large effect on simulated clouds, precipitation, and radiation, while changes to grid spacing and domain length have little effect on simulation results. The results motivate a more detailed and quantitative exploration of the sources and magnitude of the uncertainty associated with specified cloud microphysical parameters in the CRM components of MMFs.
10 Ways to Improve the Representation of MCSs in Climate Models
NASA Astrophysics Data System (ADS)
Schumacher, C.
2017-12-01
1. The first way to improve the representation of mesoscale convective systems (MCSs) in global climate models (GCMs) is to recognize that MCSs are important to climate. That may be obvious to most of the people attending this session, but it cannot be taken for granted in the wider community. The fact that MCSs produce large amounts of the global rainfall and that they dramatically impact the atmosphere via transports of heat, moisture, and momentum must be continuously stressed. 2-4. There has traditionally been three approaches to representing MCSs and/or their impacts in GCMs. The first is to focus on improving cumulus parameterizations by implementing things like cold pools that are assumed to better organize convection. The second is to focus on including mesoscale processes in the cumulus parameterization such as mesoscale vertical motions. The third is to just buy your way out with higher resolution using techniques like super-parameterization or global cloud-resolving model runs. All of these approaches have their pros and cons, but none of them satisfactorily solve the MCS climate modeling problem. 5-10. Looking forward, there is active discussion and new ideas in the modeling community on how to better represent convective organization in models. A number of ideas are a dramatic shift from the traditional plume-based cumulus parameterizations of most GCMs, such as implementing mesoscale parmaterizations based on their physical impacts (e.g., via heating), on empirical relationships based on big data/machine learning, or on stochastic approaches. Regardless of the technique employed, smart evaluation processes using observations are paramount to refining and constraining the inevitable tunable parameters in any parameterization.
Martino, N A; Marzano, G; Mangiacotti, M; Miedico, O; Sardanelli, A M; Gnoni, A; Lacalandra, G M; Chiaravalle, A E; Ciani, E; Bogliolo, L; Minervini, F; Pizzi, F; Dell'Aquila, M E
2017-04-01
Cadmium is a highly toxic heavy metal with negative effects on oocyte fertilization. The aim of this study was to analyse whether cadmium-induced impairment of fertilization is caused by mitochondria dysfunction and oxidative stress in the cumulus-oocyte complex (COC). Preliminarily, 19 trace element levels were measured in ovaries from juvenile and adult ewes and age-related cadmium ovarian bioaccumulation at nanomolar concentrations was found. COCs from juvenile and adult ewes, exposed during in vitro maturation to 1nM or 100nM CdCl 2 , and subjected to in vitro fertilization showed significantly lower fertilization rates in exposed COCs compared with controls. In vitro matured exposed and control COCs underwent confocal microscopy analysis of mitochondria activity and reactive oxygen species (ROS) levels and lipid peroxidation (LPO) assay at cumulus cell and oocyte level. In both age groups, cadmium at nanomolar concentrations induced cumulus-oocyte mitochondria over-activity and oxidative damage which were related to impaired oocyte fertilization. Copyright © 2017 Elsevier Inc. All rights reserved.
Ebner, T; Moser, M; Shebl, O; Sommergruber, M; Yaman, C; Tews, G
2008-06-01
Assessment of oocyte maturity and quality (morphological appearance) at the time of retrieval is difficult as the egg is obscured by a large cumulus mass that hinders adequate scoring. Since no data are available on the possible relationship between the cumulus-oocyte complex (COC) and oocyte morphology, this prospective intracytoplasmic sperm injection study was set up in 87 consecutive patients. COC were grouped according to expansion of both corona radiata and cumulus matrix. Special emphasis was placed on recording morphological anomalies of COC (inclusion of blood clots and amorphous clumps). For all mature ovae, quality was assessed and preimplantation development followed up to blastocyst stage if fertilized. The risk of not harvesting an oocyte was higher in COC with blood clots compared with normal cumulus matrices (P = 0.004). COC expansion did not allow for prediction of either nuclear status or quality of the egg. The presence of blood clots within the cumulus matrix was associated with reduced oocyte quality (dense central granulation), fertilization rate and blastocyst formation, compared with unaffected COC (P < 0.05). It may be postulated that COC showing blood inclusions derive from poor quality follicles, which has a detrimental effect on oocyte quality and further cleavage to blastocyst stage. Consequently, mechanical removal of blood clots cannot rescue the corresponding embryo.
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro.
Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Yasuhara, Kazuma; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji
2017-02-16
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs.
Effects of exosome-like vesicles on cumulus expansion in pigs in vitro
MATSUNO, Yuta; ONUMA, Asuka; FUJIOKA, Yoshie A; YASUHARA, Kazuma; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji
2017-01-01
Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs. PMID:28163264
Rethinking the Default Construction of Multimodel Climate Ensembles
Rauser, Florian; Gleckler, Peter; Marotzke, Jochem
2015-07-21
Here, we discuss the current code of practice in the climate sciences to routinely create climate model ensembles as ensembles of opportunity from the newest phase of the Coupled Model Intercomparison Project (CMIP). We give a two-step argument to rethink this process. First, the differences between generations of ensembles corresponding to different CMIP phases in key climate quantities are not large enough to warrant an automatic separation into generational ensembles for CMIP3 and CMIP5. Second, we suggest that climate model ensembles cannot continue to be mere ensembles of opportunity but should always be based on a transparent scientific decision process.more » If ensembles can be constrained by observation, then they should be constructed as target ensembles that are specifically tailored to a physical question. If model ensembles cannot be constrained by observation, then they should be constructed as cross-generational ensembles, including all available model data to enhance structural model diversity and to better sample the underlying uncertainties. To facilitate this, CMIP should guide the necessarily ongoing process of updating experimental protocols for the evaluation and documentation of coupled models. Finally, with an emphasis on easy access to model data and facilitating the filtering of climate model data across all CMIP generations and experiments, our community could return to the underlying idea of using model data ensembles to improve uncertainty quantification, evaluation, and cross-institutional exchange.« less
Incorporation of a Cumulus Fraction Scheme in the GRAPES_Meso and Evaluation of Its Performance
NASA Astrophysics Data System (ADS)
Zheng, X.
2016-12-01
Accurate simulation of cloud cover fraction is a key and difficult issue in numerical modeling studies. Preliminary evaluations have indicated that cloud fraction is generally underestimated in GRAPES_Meso simulations, while the cloud fraction scheme (CFS) of ECMWF can provide more realistic results. Therefore, the ECMWF cumulus fraction scheme is introduced into GRAPES_Meso to replace the original CFS, and the model performance with the new CFS is evaluated based on simulated three-dimensional cloud fractions and surface temperature. Results indicate that the simulated cloud fractions increase and become more accurate with the new CFS; the simulation for vertical cloud structure has improved too; errors in surface temperature simulation have decreased. The above analysis and results suggest that the new CFS has a positive impact on cloud fraction and surface temperature simulation.
Numerical simulation and analysis of the April 2013 Chicago floods
Campos, Edwin; Wang, Jiali
2015-09-08
The weather event associated to record Chicago floods on April 2013 is investigated by using the Weather Research and Forecasting (WRF) model. Observations at Argonne National Laboratory and multi-sensor (weather radar and rain gauge) precipitation data from the National Weather Service were employed to evaluate the model’s performance. The WRF model captured the synoptic-scale atmospheric features well, but the simulated 24-h accumulated precipitation and short-period temporal evolution of precipitation over the heavy-rain region were less successful. To investigate the potential reasons for the model bias, four supplementary sensitivity experiments using various microphysics schemes and cumulus parameterizations were designed. Of themore » five tested parameterizations, the WRF Single-Moment 6-class (WSM6) graupel scheme and Kain-Fritsch (KF) cumulus parameterization outperformed the others, such as Grell-Dévényi (GD) cumulus parameterization, which underestimated the precipitation by 30–50% on a regional-average scale. Morrison microphysics and KF outperformed the others for the spatial patterns of 24-h accumulated precipitation. The spatial correlation between observation and Morrison-KF was 0.45, higher than those for other simulations. All of the simulations underestimated the precipitation over northeastern Illinois (especially at Argonne) during 0400–0800 UTC 18 April because of weak ascending motion or small moisture. In conclusion, all of the simulations except WSM6-GD also underestimated the precipitation during 1200–1600 UTC 18 April because of weak southerly flow.« less
Zang, Lili; Zhang, Quan; Zhou, Yi; Zhao, Yan; Lu, Linlin; Jiang, Zhou; Peng, Zhen; Zou, Shuhua
2016-06-01
Estradiol mediates its actions by binding to classical nuclear receptors, estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and the non-classical G protein-coupled estrogen receptor 1(GPER). Several gene knockdown models have shown the importance of the receptors for growth of the oocyte and for ovulation. The aim of our study was to identify the pattern of GPER expression in human cumulus granulosa cells (CGCs) from ovarian follicles at different stages of oocyte maturation, and the differences of GPER expression between polycystic ovary syndrome (PCOS) patients and non-PCOS women. Thirty-eight cases of PCOS patients and a control group of thirty-two infertile women without PCOS were used in this study. GPER's location in CGCs was investigated by immunohistochemistry. Quantitative RT-PCR and western blot were used to identify the quantify GPER expression. Here we demonstrated that GPER was expressed in CGCs of both PCOS patients and non-PCOS women, and the expression of GPER was decreased significantly during oocyte maturation. But the expression levels of GPER in CGCs of PCOS patients and non-PCOS women were not significantly different. The data indicate that GPER may play a role during human oocyte maturation through its action in cumulus granulosa cells. AMHRIIs: anti-Mullerian hormone type II receptors; BMI: body mass index; CGCs: cumulus granulosa cells; COH: controlled ovarian hyperstimulation; E2: estradiol; EGFR: epidermal growth factor receptor; ER-α: estrogen receptor; ER-β: estrogen receptor β; FF: follicular fluid; FSH: follicle-stimulating hormone; GCs: granulosa cells; GPER: G protein-coupled estrogen receptor 1; GV: germinal vesicle; GVBD: germinal vesicle breakdown; HCG: human chorionic gonadotropin; IRS: immunoreactive score; IVF-ET: in vitro fertilization and embryo transfer; MI: metaphase I; MII: metaphase II; MAPK: mitogen-activated protein kinase; OCCCs: oocyte corona cumulus complexes; PCOS: polycystic ovarian syndrome; q quantitative real-time PCR: qRT-PCR.
Determination of the cumulus size distribution from LANDSAT pictures
NASA Technical Reports Server (NTRS)
Karg, E.; Mueller, H.; Quenzel, H.
1983-01-01
Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.
Homogenizing Surface and Satellite Observations of Cloud. Aspects of Bias in Surface Data.
1987-11-10
both ( pannus ), usually below fractus of bad weather, or both ( pannus ), usu- Altostratus or Nimbostratus ally below Altostratus or Nimbostratus 8 Cumulus...Stratocumulus, Stratus of an anvil; either accompanied or not by Cu- or pannus mulonimbus without anvil or fibrous upper part, by Cumulus, Stratocumulus...Stratus or pannus CL clouds invisible owing to darkness, fog, / Stratocumulus, Stratus, Cumulus and Cu- blowing dust or sand, or other similar mulonimbus
A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes
NASA Astrophysics Data System (ADS)
Tao, W. K.
2017-12-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2010-01-01
In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Doswell, Angela; Krebs, Kendall; Cipolla, Marilyn
2014-01-01
Context: Vitamin D deficiency is common among reproductive-aged women and has a role in female reproduction. Objective: This study evaluated the role of 1,25-dihydroxyvitamin D3 (vit D3) in ovarian follicular development and steroidogenesis by using a human granulosa cell (GC) model. Design, Setting, and Participants: Fifty-four women who underwent in vitro fertilization were enrolled. Intervention: Follicular fluid (FF) and mural and cumulus GCs were collected from small and large follicles. In separate experiments, primary cumulus GCs were cultured with or without vit D3 followed by RT-PCR for mRNA expression levels. The effect of recombinant anti-Mullerian hormone (AMH) on nuclear localization of phospho-Smad 1/5/8 was evaluated in the presence or absence of vit D3 by using immunofluorescence. 25-Hydroxyvitamin D levels in FF as well as cell culture media AMH, progesterone, and estradiol (E2) concentrations were determined by ELISA and RIA. Main Outcome Measures: The following were measured: 1) mRNA expression levels; 2) 3β-hydroxysteroid dehydrogenase (3β-HSD) enzyme activity; 3) FSH-induced aromatase mRNA and E2 production; and 4) nuclear localization of phospho-Smad 1/5/8. Results: In a multivariate analysis, 25 OH-D levels in FF negatively correlated with AMH and AMH receptor (AMHR)-II mRNA levels in cumulus GCs of small follicles. Compared with women with replete 25-hydroxyvitamin D levels in FF, those with insufficient/deficient levels had a 2-fold increase in AMHR-II mRNA levels in cumulus GCs of small follicles (P = .02). Treatment with vit D3 caused a decrease in AMHR-II and FSH receptor mRNA but an increase in 3-βHSD mRNA levels compared with control (P < .05). Vit D3 enhanced 3-βHSD enzyme activity as assessed by increasing progesterone release; however, vit D3 did not affect FSH-induced aromatase mRNA and E2 production, but it decreased the phosphorylation of Smad 1/5/8 and its nuclear localization. Conclusion: These data suggest that vit D3 alters AMH signaling and steroidogenesis in human cumulus GCs, possibly reflecting a state of GC luteinization potentiation. PMID:24628555
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
NASA Technical Reports Server (NTRS)
Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man
2005-01-01
This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.
Blaha, Milan; Nemcova, Lucie; Kepkova, Katerina Vodickova; Vodicka, Petr; Prochazka, Radek
2015-10-06
The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly
Ievoli, Elena; Lindstedt, Ragnar; Inforzato, Antonio; Camaioni, Antonella; Palone, Francesca; Day, Anthony J.; Mantovani, Alberto; Salvatori, Giovanni; Salustri, Antonietta
2011-01-01
Pentraxin 3 (PTX3) plays a key role in the formation of the hyaluronan-rich matrix of the cumulus oophorus surrounding ovulated eggs that is required for successful fertilization and female fertility. PTX3 is a multimeric protein consisting of eight identical protomers held together by a combination of non-covalent interactions and disulfide bonds. Recent findings suggest that the oligomeric status of PTX3 is important for stabilizing the cumulus matrix. Because the role of PTX3 in the cumulus resides in the unique N-terminal sequence of the protomer, we investigated further this issue by testing the ability of distinct Cys/Ser mutants of recombinant N-terminal region of PTX3 (N_PTX3) with different oligomeric arrangement to promote in vitro normal expansion in cumuli from Ptx3-null mice. Here we report that the dimer of the N_PTX3 is unable to rescue cumulus matrix organization, and that the tetrameric assembly of the protein is the minimal oligomeric state required for accomplishing this function. We have previously demonstrated that PTX3 binds to HCs of IαI and TSG-6, which are essential for cumulus matrix formation and able to interact with hyaluronan. Interestingly, here we show by solid-phase binding experiments that the dimer of the N_PTX3 retains the ability to bind to both IαI and TSG-6, suggesting that the octameric structure of PTX3 provides multiple binding sites for each of these ligands. These findings support the hypothesis that PTX3 contributes to cumulus matrix organization by cross-linking HA polymers through interactions with multiple HCs of IαI and/or TSG-6. The N-terminal PTX3 tetrameric oligomerization was recently reported to be also required for recognition and inhibition of FGF2. Given that this growth factor has been detected in the mammalian preovulatory follicle, we wondered whether FGF2 negatively influences cumulus expansion and PTX3 may also serve in vivo to antagonize its activity. We found that a molar excess of FGF2, above PTX3 binding capacity, does not affect in vitro cumulus matrix formation thus ruling out this possibility. In conclusion, the data strength the view that PTX3 acts as a nodal molecule in cross-linking HA in the matrix. PMID:21619930
Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah
2018-07-01
In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro.
Zhang, Kun; Hansen, Peter J; Ealy, Alan D
2010-12-01
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Fujiwara, Katsuyoshi; Kamoshita, Maki; Kato, Tsubasa; Ito, Junya; Kashiwazaki, Naomi
2017-01-01
The objective of this study was to evaluate fertility and full-term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co-cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full-term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm. © 2016 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
NASA Astrophysics Data System (ADS)
Pu, Z.; Yu, Y.
2016-12-01
The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.
NASA Astrophysics Data System (ADS)
Allahyari, Khalil; Saccani, Emilio; Rahimzadeh, Bahman; Zeda, Ottavia
2014-01-01
The Sarve-Abad (Sawlava) ophiolitic complex consists of several tectonically dismembered ophiolitic sequences. They are located along the Main Zagros Thrust Zone, which marks the ophiolitic suture between the Arabian and Sanandaj-Sirjan continental blocks. They represent a portion of the southern Neo-Tethyan oceanic lithosphere, which originally existed between the Arabian (to the south) and Eurasian (to the north) continental margins. The Sarve-Abad ophiolites include cumulitic lherzolites bearing minor dunite and chromitite lenses in places. The main rock-forming minerals in ultramafic cumulates are cumulus olivine and inter-cumulus clinopyroxene and orthopyroxene. Minor (<5%) chromian spinel occurs as both cumulus and inter-cumulus phases.
On the generation of climate model ensembles
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy; Phipps, Steven J.
2014-10-01
Climate model ensembles are used to estimate uncertainty in future projections, typically by interpreting the ensemble distribution for a particular variable probabilistically. There are, however, different ways to produce climate model ensembles that yield different results, and therefore different probabilities for a future change in a variable. Perhaps equally importantly, there are different approaches to interpreting the ensemble distribution that lead to different conclusions. Here we use a reduced-resolution climate system model to compare three common ways to generate ensembles: initial conditions perturbation, physical parameter perturbation, and structural changes. Despite these three approaches conceptually representing very different categories of uncertainty within a modelling system, when comparing simulations to observations of surface air temperature they can be very difficult to separate. Using the twentieth century CMIP5 ensemble for comparison, we show that initial conditions ensembles, in theory representing internal variability, significantly underestimate observed variance. Structural ensembles, perhaps less surprisingly, exhibit over-dispersion in simulated variance. We argue that future climate model ensembles may need to include parameter or structural perturbation members in addition to perturbed initial conditions members to ensure that they sample uncertainty due to internal variability more completely. We note that where ensembles are over- or under-dispersive, such as for the CMIP5 ensemble, estimates of uncertainty need to be treated with care.
A Conceptual Model for Tropical Cyclone Formation
NASA Astrophysics Data System (ADS)
Wang, Z.
2014-12-01
The role of cumulus congestus (shallow and congestus convection) in tropical cyclone (TC) formation is examined in a high-resolution simulation of Tropical Cyclone Fay (2008). It is found that cumulus congestus plays a dominant role in moistening the lower to middle troposphere and spinning up the near-surface circulation before genesis, while deep convection plays a key role in moistening the upper troposphere and intensifying the cyclonic circulation over a deep layer. The transition from the tropical wave stage to the TC stage is marked by a substantial increase in net condensation and potential vorticity generation by deep convection in the inner wave pouch region. This study suggests that TC formation can be regarded as a two-stage process. The first stage is a gradual process of moisture preconditioning and the low-level spinup, in which cumulus congestus plays a dominant role. The second stage commences with the rapid development of deep convection in the inner pouch region after the air column is moistened sufficiently, whereupon the concentrated convective heating near the pouch center strengthens the transverse circulation and leads to the amplification of the cyclonic circulation over a deep layer. The rapid development of deep convection can be explained by the power-law increase of precipitation rate with column water vapor (CWV) above a critical value. The high CWV near the pouch center thus plays an important role in convective organization. It is also shown that cumulus congestus can effectively drive the low-level convergence and provides a direct and simple pathway for the development of the TC proto-vortex near the surface.
Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds
NASA Astrophysics Data System (ADS)
Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.
2017-12-01
Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.
A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.
Scales of convective activity in the MJO (Invited)
NASA Astrophysics Data System (ADS)
Houze, R.
2013-12-01
One of the results of the Dynamics of the Madden-Julian Oscillation (MJO) field experiment (DYNAMO) is the realization that an active period of the MJO is not a continuous stretch of time in which convection and rainfall are occurring. Rather, an active MJO period, as determined by standard statistical treatments of the wind and satellite data such as that of Wheeler and Hendon (2004), has periods of highly suppressed conditions interspersed with bursts or episodes of deep convection and rainfall. At a given location, an MJO cycle is of the order of 30-60 days. The active half of a cycle is then about 2-4 weeks. DYNAMO data show that within this multi-week period rain falls in intermittent bursts of deep convection at intervals of 2-6 days, with each burst lasting 1-2 days. The time between bursts is highly suppressed, such that the convective cloud population consists of shallow non-precipitating cumulus. This intermediate burst timescale is neither the MJO timescale nor the timescale of an individual convective cloud. The modulation on the 2-6 day timescale was related to various types of higher frequency equatorial waves (especially, inertio-gravity waves and easterly waves). The largest individual convective cloud element in the MJO environment is the mesoscale convective system (MCS), which lasts about a half day, much shorter than the time period of the wave-modulated bursts. The intermediate scale bursts reflect an evolution of the cloud population. Numerous individual cloud systems undergo their lifecycles within the envelope of the wave-controlled time period of a few days. At a given site, such as the principal island site of Addu Atoll in DYNAMO, radar observations show that in an intermediate timescale episode the convective ensemble goes through a systematic series of stages characterized by differing proportions of elements of different sizes and intensities. The first stage is a population of shallow non-precipitating cumulus, followed by an ensemble of clouds containing some deeper convective elements. At the time of maximum rain during the episode, the population contains growing mesoscale systems. As the rain episode declines the population contains a substantial number of MCSs with broad stratiform regions. Thus, at least three scales are critical in the active periods of an MJO: the MJO scale, the equatorial wave scale of 2-6 days, and the scale of individual clouds, the largest of which are MCSs. This presentation will document the large-scale environment conditions on each of these scales, the population characteristics of the convection during the wave-modulated bursts, and of the individual cloud systems themselves.
Multi-Model Ensemble Wake Vortex Prediction
NASA Technical Reports Server (NTRS)
Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.
2015-01-01
Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.
Residue-level global and local ensemble-ensemble comparisons of protein domains.
Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew
2015-09-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.
Residue-level global and local ensemble-ensemble comparisons of protein domains
Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P
2015-01-01
Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2007-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2006-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
NASA Astrophysics Data System (ADS)
Choudhury, Devanil; Das, Someshwar
2017-06-01
The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.
Evaluation of Warm-Rain Microphysical Parameterizations in Cloudy Boundary Layer Transitions
NASA Astrophysics Data System (ADS)
Nelson, K.; Mechem, D. B.
2014-12-01
Common warm-rain microphysical parameterizations used for marine boundary layer (MBL) clouds are either tuned for specific cloud types (e.g., the Khairoutdinov and Kogan 2000 parameterization, "KK2000") or are altogether ill-posed (Kessler 1969). An ideal microphysical parameterization should be "unified" in the sense of being suitable across MBL cloud regimes that include stratocumulus, cumulus rising into stratocumulus, and shallow trade cumulus. The recent parameterization of Kogan (2013, "K2013") was formulated for shallow cumulus but has been shown in a large-eddy simulation environment to work quite well for stratocumulus as well. We report on our efforts to implement and test this parameterization into a regional forecast model (NRL COAMPS). Results from K2013 and KK2000 are compared with the operational Kessler parameterization for a 5-day period of the VOCALS-REx field campaign, which took place over the southeast Pacific. We focus on both the relative performance of the three parameterizations and also on how they compare to the VOCALS-REx observations from the NOAA R/V Ronald H. Brown, in particular estimates of boundary-layer depth, liquid water path (LWP), cloud base, and area-mean precipitation rate obtained from C-band radar.
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Wang, Yuqing
2018-01-01
The sensitivity of simulated tropical cyclones (TCs) to the choice of cumulus parameterization (CP) scheme in the advanced Weather Research and Forecasting Model (WRF-ARW) version 3.5 is analyzed based on ten seasonal simulations with 20-km horizontal grid spacing over the western North Pacific. Results show that the simulated frequency and intensity of TCs are very sensitive to the choice of the CP scheme. The sensitivity can be explained well by the difference in the low-level circulation in a height and sorted moisture space. By transporting moist static energy from dry to moist region, the low-level circulation is important to convective self-aggregation which is believed to be related to genesis of TC-like vortices (TCLVs) and TCs in idealized settings. The radiative and evaporative cooling associated with low-level clouds and shallow convection in dry regions is found to play a crucial role in driving the moisture-sorted low-level circulation. With shallow convection turned off in a CP scheme, relatively strong precipitation occurs frequently in dry regions. In this case, the diabatic cooling can still drive the low-level circulation but its strength is reduced and thus TCLV/TC genesis is suppressed. The inclusion of the cumulus momentum transport (CMT) in a CP scheme can considerably suppress genesis of TCLVs/TCs, while changes in the moisture-sorted low-level circulation and horizontal distribution of precipitation are trivial, indicating that the CMT modulates the TCLVs/TCs activities in the model by mechanisms other than the horizontal transport of moist static energy.
An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2018-03-01
By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.
Impacts of Wind Farms on Cumulus Cloud Development in the Central Great Plains
NASA Astrophysics Data System (ADS)
Mahoney, L. C.; Wagner, T. J.; L'Ecuyer, T. S.; Kulie, M.
2014-12-01
Cumulus clouds have a net cooling effect on the surface radiative balance by reflecting more downwelling solar radiation than absorbing upwelling terrestrial radiation. As boundary layer cumuli form from buoyant, moist plumes ascending from the surface, their growth may be hindered by the turbulent deformation of the plume by wind farms. A natural laboratory to study the impact of wind farms on cumulus formation are the states of Iowa and Nebraska. Despite their prime location for wind resources and similar synoptic forcings, regulatory issues cause these two states to vary vastly in their wind power offerings. In 2013, Iowa ranked 3rd in the nation for total megawatts installed and generates over a quarter of its electricity from wind energy, more than any other state. In contrast, Nebraska has an order of magnitude fewer turbines installed, and less than five percent of the state's electrical load is wind-generated. This variance in wind power in close proximity makes Iowa and Nebraska a prime area for initial research. This study uses Geostationary Operational Environmental Satellite (GOES) visible satellite imagery from the summer of 2009 to 2013 to investigate cumulus development in these adjacent states, as the majority of large-scale wind farms in Iowa were completed by 2009. Image reflectances in Nebraska and Iowa are compared to determine the magnitude of cumulus growth. Preliminary analysis indicates a reduction in cumulus development near the existing wind farms; a synoptic investigation of these cases will be completed to determine causality.
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.
1999-01-01
Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.
Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac
2014-01-01
This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (p<0.05). Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05). Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05). Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.
Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post
1980-11-24
time before and after) or cumulus fractus of bad weath’er, or both ( pannus ), usually below altostratus or nimbostratus. 8 = Cumulus and stratocumulus...vibrous upper part by cumulus, stratocumulus, stratus or pannus . + . from Surface Marine Observations Tape Deck TDF-11 *Fog All clouds in the 0-50...Fractus of bad weather, cr V both ( pannus ), usually below Alto- stratus or N~imbostratus. The term "bad weather* denotes the conditions which coenerally
Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.
2009-01-01
An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.
A Simple Approach to Account for Climate Model Interdependence in Multi-Model Ensembles
NASA Astrophysics Data System (ADS)
Herger, N.; Abramowitz, G.; Angelil, O. M.; Knutti, R.; Sanderson, B.
2016-12-01
Multi-model ensembles are an indispensable tool for future climate projection and its uncertainty quantification. Ensembles containing multiple climate models generally have increased skill, consistency and reliability. Due to the lack of agreed-on alternatives, most scientists use the equally-weighted multi-model mean as they subscribe to model democracy ("one model, one vote").Different research groups are known to share sections of code, parameterizations in their model, literature, or even whole model components. Therefore, individual model runs do not represent truly independent estimates. Ignoring this dependence structure might lead to a false model consensus, wrong estimation of uncertainty and effective number of independent models.Here, we present a way to partially address this problem by selecting a subset of CMIP5 model runs so that its climatological mean minimizes the RMSE compared to a given observation product. Due to the cancelling out of errors, regional biases in the ensemble mean are reduced significantly.Using a model-as-truth experiment we demonstrate that those regional biases persist into the future and we are not fitting noise, thus providing improved observationally-constrained projections of the 21st century. The optimally selected ensemble shows significantly higher global mean surface temperature projections than the original ensemble, where all the model runs are considered. Moreover, the spread is decreased well beyond that expected from the decreased ensemble size.Several previous studies have recommended an ensemble selection approach based on performance ranking of the model runs. Here, we show that this approach can perform even worse than randomly selecting ensemble members and can thus be harmful. We suggest that accounting for interdependence in the ensemble selection process is a necessary step for robust projections for use in impact assessments, adaptation and mitigation of climate change.
Pauci ex tanto numero: reducing redundancy in multi-model ensembles
NASA Astrophysics Data System (ADS)
Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.
2013-02-01
We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date no attempts in this direction are documented within the air quality (AQ) community, although the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared biases among models will determine a biased ensemble, making therefore essential the errors of the ensemble members to be independent so that bias can cancel out. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated) we discourage selecting the members of the ensemble simply on the basis of scores, that is, independence and skills need to be considered disjointly.
SST Variation Due to Interactive Convective-Radiative Processes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.
2000-01-01
The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.
Eshtiyaghi, Mahbobeh; Deldar, Hamid; Pirsaraei, Zarbakht Ansari; Shohreh, Bahram
2016-12-01
The aim of this study was to investigate the effect of different concentrations of royal jelly (RJ) on in vitro maturation (IVM), fertilization, cleavage, blastocyst rates, glutathione (GSH) content in ovine oocyte, mRNA abundance of antioxidant enzymes in both oocyte and cumulus, and glucose metabolism-related genes in cumulus cells. In vitro maturation of oocyte was performed in the presence of control (RJ 0 ), 2.5 (RJ 2.5 ), 5 (RJ 5 ), and 10 (RJ 10 ) mg/mL of RJ. Nuclear status, intracellular GSH content in oocytes, and mRNA abundance of selected genes were evaluated following 24 hours of IVM. Following the IVM, fertilization and embryo culture were carried out in all the groups and embryonic development was examined. The addition of 10-mg/mL RJ to maturation media not only yielded a higher number of oocytes at MII stage but also showed an increased level of intracellular GSH content than did RJ 2.5 and control groups. Fertilization, cleavage, and blastocyst rate were higher in the RJ 10 treatment group in comparison to the control one. In cumulus cells, the expression of PFKM, PFKL, and G6PDH were increased following the addition of RJ to the maturation media. Supplementation of 10-mg/mL RJ to IVM medium increased the GPx mRNA abundance in both oocyte and cumulus cells and SOD expression in the cumulus cells. The CAT mRNA abundance was not influenced by the addition of RJ to the maturation media in either oocyte or cumulus cells. It seems that the improvement of oocyte maturation and its subsequent development in RJ 10 group may be associated with amelioration of redox status in the oocytes and activation of glucose metabolic pathways in their surrounding cumulus cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Weather Forecasting Systems and Methods
NASA Technical Reports Server (NTRS)
Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)
2014-01-01
A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.
Multi-model analysis in hydrological prediction
NASA Astrophysics Data System (ADS)
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been largely corrected on short-term predictions. For the longer term, the addition of the multi-model member has been beneficial to the quality of the predictions, although it is too early to determine whether the gain is related to the addition of a member or if multi-model member has plus-value itself.
Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...
2015-06-19
A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less
NASA Technical Reports Server (NTRS)
Yuan, T.; Remer, L. A.; Yu, H.
2011-01-01
Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.
NASA Astrophysics Data System (ADS)
Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.
2012-02-01
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.
Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES
NASA Astrophysics Data System (ADS)
Brast, Maren; Schemann, Vera; Neggers, Roel
2017-04-01
In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Mixture EMOS model for calibrating ensemble forecasts of wind speed.
Baran, S; Lerch, S
2016-03-01
Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.
Ensemble Downscaling of Winter Seasonal Forecasts: The MRED Project
NASA Astrophysics Data System (ADS)
Arritt, R. W.; Mred Team
2010-12-01
The Multi-Regional climate model Ensemble Downscaling (MRED) project is a multi-institutional project that is producing large ensembles of downscaled winter seasonal forecasts from coupled atmosphere-ocean seasonal prediction models. Eight regional climate models each are downscaling 15-member ensembles from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the new NASA seasonal forecast system based on the GEOS5 atmospheric model coupled with the MOM4 ocean model. This produces 240-member ensembles, i.e., 8 regional models x 15 global ensemble members x 2 global models, for each winter season (December-April) of 1982-2003. Results to date show that combined global-regional downscaled forecasts have greatest skill for seasonal precipitation anomalies during strong El Niño events such as 1982-83 and 1997-98. Ensemble means of area-averaged seasonal precipitation for the regional models generally track the corresponding results for the global model, though there is considerable inter-model variability amongst the regional models. For seasons and regions where area mean precipitation is accurately simulated the regional models bring added value by extracting greater spatial detail from the global forecasts, mainly due to better resolution of terrain in the regional models. Our results also emphasize that an ensemble approach is essential to realizing the added value from the combined global-regional modeling system.
Pauci ex tanto numero: reduce redundancy in multi-model ensembles
NASA Astrophysics Data System (ADS)
Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.
2013-08-01
We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date, no attempts in this direction have been documented within the air quality (AQ) community despite the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared, dependant biases among models do not cancel out but will instead determine a biased ensemble. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated), we discourage selecting the members of the ensemble simply on the basis of scores; that is, independence and skills need to be considered disjointly.
Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model
NASA Astrophysics Data System (ADS)
Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.
2012-12-01
Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.
Ensemble habitat mapping of invasive plant species
Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.
2010-01-01
Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Luke, E. P.; Kollias, P.
2016-12-01
Shallow cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans and frequently produce warm rain. However, quantitative rainfall estimates from these clouds are challenging to acquire from satellites due to their small horizontal scale. Here, two years of observations from the US Department of Energy Atmospheric Radiation Measurement Program (ARM) Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to characterize the frequency, intensity, and fractional coverage of shallow cumulus precipitation. The analyzed dataset is the most comprehensive of its type, considering both its temporal extent and the sophistication of the ground-based observations. The precipitation rate at the base of shallow cumulus is estimated using combined radar-lidar observations and the rain retrievals are compared to the rainfall measurements available at the ground by optical disdrometers. Using synergy between surfaced-based observations of aerosols and thermodynamic soundings, the vertical structure of the Marine Boundary Layer and the temporal variability of the cloud condensation nuclei (CCN) number concentration are determined. The observed variability in shallow cumulus precipitation is examined in relation to the variability of the large-scale environment as captured by the humidity profile, the magnitude of the low-level horizontal winds and aerosol loading.
Influence of the Biosphere on Precipitation: July 1995 Studies with the ARM-CART Data
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Walker, G. K.; Koster, Randal D.
2000-01-01
Ensemble sets of simulation experiments were conducted with a single column model (SCM) using the Goddard GEOS II GCM physics containing a recent version of the Cumulus Scheme (McRAS) and a biosphere based land-fluxes scheme (SSiB). The study used the 18 July to 5 August 1995 ARM-CART (Atmospheric Radiation Measurement-Cloud Atmospheric Radiation Test-bed) data, which was collected at the ARM-CART site in the mid-western United States and analyzed for single column modeling (SCM) studies. The new findings affirm the earlier findings that the vegetation, which increases the solar energy absorption at the surface together with soil and soil-moisture dependent processes, which modulate the surface, fluxes (particularly evapotranspiration) together help to increase the local rainfall. In addition, the results also show that for the particular study period roughly 50% of the increased evaporation over the ARM-CART site would be converted into rainfall with the Column, while the remainder would be advected out to the large-scale. Notwithstanding the limitations of only one-way interaction (i.e., the large-scale influencing the regional physics and not vice versa), the current SCM simulations show a very robust relationship. The evaporation-precipitation relationship turns out to be independent of the soil types, and soil moisture; however, it is weakly dependent on the vegetation cover because of its surface-albedo effect. Clearly, these inferences are prone to weaknesses of the SCM physics, the assumptions of the large-scale being unaffected by gridscale (SCM-scale) changes in moist processes, and other limitations of the evaluation procedures.
Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)
2000-01-01
The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen
2015-01-01
Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2015-01-01
The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries
Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013
NASA Astrophysics Data System (ADS)
Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.
2014-12-01
This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.
Numerical simulation of a winter hailstorm event over Delhi, India on 17 January 2013
NASA Astrophysics Data System (ADS)
Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.
2014-09-01
This study analyzes the cause of rare occurrence of winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using Weather Research and Forecasting (WRF) model with Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options, hail or graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with comparative analysis of the two options of GCE microphysics. On evaluating the model simulations, it is observed that hail option shows similar precipitation intensity with TRMM observation than the graupel option and is able to simulate hail precipitation. Using the model simulated output with hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached upto the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of WD. Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)
2002-01-01
A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
NASA Astrophysics Data System (ADS)
Bretherton, Christopher; Wood, Robert; Albrecht, Bruce; Zuidema, Paquita; Ghate, Virendra; Mohrmann, Johannes; Oh, Kuan-Ting; Blossey, Peter
2017-04-01
The CSET field study in July-August 2015 over the Northeast Pacific ocean was motivated by a need for more in-situ sampling of the subtropical stratocumulus to cumulus (Sc-Cu) transition zones. One goal was comprehensive documentation of observational cases suitable for detailed intercomparison with large-eddy simulation models run following Lagrangian air columns and global models run in a hindcast mode. A second goal was to understand the role of aerosol and precipitation processes in this transition. The U.S. National Science Foundation G-V, equipped with cloud, aerosol, turbulence probes, a multispectral lidar, a cloud radar, and dropsondes, flew seven missions consisting of an outbound leg from northern California to Hawaii and a return leg two days later. Each mission was based on forecast air trajectories within the boundary layer; the goal was to sample a 2000-km long vertical curtain of boundary-layer air on the outbound leg and resample the advected position of that curtain on the return leg, using ramped sawtooths. In this way, most missions successfully captured the Lagrangian Sc-Cu transition. While CSET sampled diverse aerosol conditions, including the interaction of the boundary layer with smoke plumes from massive forest fires, lower tropospheric stability was the primary control on cloud cover. Mesoscale cloud organization was ubiquitous. Toward Hawaii, clusters of 2 km deep precipitating shallow cumulus and patchy thin stratiform 'veil cloud' with extremely low droplet concentrations were embedded in ultraclean layers at the trade inversion. These were separated by drier regions of suppressed convection. LES and parcel modeling plausibly explain these features.
Analyzing the impact of changing size and composition of a crop model ensemble
NASA Astrophysics Data System (ADS)
Rodríguez, Alfredo
2017-04-01
The use of an ensemble of crop growth simulation models is a practice recently adopted in order to quantify aspects of uncertainties in model simulations. Yet, while the climate modelling community has extensively investigated the properties of model ensembles and their implications, this has hardly been investigated for crop model ensembles (Wallach et al., 2016). In their ensemble of 27 wheat models, Martre et al. (2015) found that the accuracy of the multi-model ensemble-average only increases up to an ensemble size of ca. 10, but does not improve when including more models in the analysis. However, even when this number of members is reached, questions about the impact of the addition or removal of a member to/from the ensemble arise. When selecting ensemble members, identifying members with poor performance or giving implausible results can make a large difference on the outcome. The objective of this study is to set up a methodology that defines indicators to show the effects of changing the ensemble composition and size on simulation results, when a selection procedure of ensemble members is applied. Ensemble mean or median, and variance are measures used to depict ensemble results among other indicators. We are utilizing simulations from an ensemble of wheat models that have been used to construct impact response surfaces (Pirttioja et al., 2015) (IRSs). These show the response of an impact variable (e.g., crop yield) to systematic changes in two explanatory variables (e.g., precipitation and temperature). Using these, we compare different sub-ensembles in terms of the mean, median and spread, and also by comparing IRSs. The methodology developed here allows comparing an ensemble before and after applying any procedure that changes the ensemble composition and size by measuring the impact of this decision on the ensemble central tendency measures. The methodology could also be further developed to compare the effect of changing ensemble composition and size on IRS features. References Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Muller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stockle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F.L., Travasso, M., Waha, K., White, J.W., Wolf, J., 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911-925. Pirttioja N., Carter T., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos, M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Doro L., Dumont B., Ewert F., Ferrise R., Francois L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.-C., Kollas C., Krzyszczak J., Lorite I. J., Minet J., Minguez M. I., Montesion M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodriguez, A., Ruane A.C., Ruget F., Sanna M., Semenov M., Slawinski C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., Rötter R.P, 2015. A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65:87-105, doi:10.3354/cr01322 Wallach, D., Mearns, L.O. Ruane, A.C., Rötter, R.P., Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climate Change (in press) doi:10.1007/s10584-016-1803-1.
NASA Astrophysics Data System (ADS)
Niu, Mingfei; Wang, Yufang; Sun, Shaolong; Li, Yongwu
2016-06-01
To enhance prediction reliability and accuracy, a hybrid model based on the promising principle of "decomposition and ensemble" and a recently proposed meta-heuristic called grey wolf optimizer (GWO) is introduced for daily PM2.5 concentration forecasting. Compared with existing PM2.5 forecasting methods, this proposed model has improved the prediction accuracy and hit rates of directional prediction. The proposed model involves three main steps, i.e., decomposing the original PM2.5 series into several intrinsic mode functions (IMFs) via complementary ensemble empirical mode decomposition (CEEMD) for simplifying the complex data; individually predicting each IMF with support vector regression (SVR) optimized by GWO; integrating all predicted IMFs for the ensemble result as the final prediction by another SVR optimized by GWO. Seven benchmark models, including single artificial intelligence (AI) models, other decomposition-ensemble models with different decomposition methods and models with the same decomposition-ensemble method but optimized by different algorithms, are considered to verify the superiority of the proposed hybrid model. The empirical study indicates that the proposed hybrid decomposition-ensemble model is remarkably superior to all considered benchmark models for its higher prediction accuracy and hit rates of directional prediction.
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Short-range solar radiation forecasts over Sweden
NASA Astrophysics Data System (ADS)
Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra
2018-04-01
In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.
Changing precipitation in western Europe, climate change or natural variability?
NASA Astrophysics Data System (ADS)
Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart
2017-04-01
Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.
Selecting a climate model subset to optimise key ensemble properties
NASA Astrophysics Data System (ADS)
Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.
2018-02-01
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
NASA Astrophysics Data System (ADS)
Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.
2002-05-01
Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.
Early Detection of Rapidly Developing Cumulus Area using HIMAWARI-8
NASA Astrophysics Data System (ADS)
Yamada, Y.; Kadosaki, G.
2017-12-01
In recent years, many disasters have been occured by influence of meteorological change in Japan. So, it becomes more important to inform rapid weather change caused by cumulus which brings concentrated heavy rain/hail, wind gust, lightning in a short period. These severe events should inclease in the future by global warming. Therefore we are developping the alert system for Rapidly Developing Cumulus Area (RDCA) detection using Japanese new satellite. At July 2015, Japan Meteorological Agency started operation of new geostationary meteorological satellite "Himawari-8". This satellite has optical imager named Advanced Himawari Imager (AHI). It can observe Japan area every 2.5 minutes. The frequently infrared image with high resolution (2km) is the key of our alert system. We took some special functions in the algorithm of this system. One of the points is cloud location which shifts to north from true location around Japan by viewing angle from the satellite above the equator. We moved clouds to the correct position using geometric correction method according to its height and latitude. This algorithm also follows a movement of cloud every 2.5 minutes during several observations. It derives the information about degree of the development of cumulus. The prototype system gives the alert before 30 to 60 minutes in advance to the first lightning in typical cumulus case. However, we understand that there are some difficult cases to alert. For example, winter low cloud over the Japan Sea which brings a winter lightning, and tornado (although it is not cumulus). Now, we are adjusting some parameters of the algorithm. In the near future, our algorithm will be used in weather information delivery service to the customer.
Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes
McElroy, Sohyun L.; Byrne, James A.; Chavez, Shawn L.; Behr, Barry; Hsueh, Aaron J.; Westphal, Lynn M.; Reijo Pera, Renee A.
2010-01-01
Background Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. Methodology/Principal Finding Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. Conclusions/Significance Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer. PMID:20539753
NASA Astrophysics Data System (ADS)
Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.
2015-12-01
A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a local computer, and inter-compare CRM output and data with GCE and NU-WRF.
Modeling studying on ice formation by bacteria in warm-based convective cloud
NASA Astrophysics Data System (ADS)
Sun, J.
2005-12-01
Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.
NASA Astrophysics Data System (ADS)
Takemi, T.; Yasui, M.
2005-12-01
Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.
USDA-ARS?s Scientific Manuscript database
To improve climate change impact estimates, multi-model ensembles (MMEs) have been suggested. MMEs enable quantifying model uncertainty, and their medians are more accurate than that of any single model when compared with observations. However, multi-model ensembles are costly to execute, so model i...
1968-10-11
Apollo 7,Cumulus,alto-cumulus,cirrus clouds. Very high oblique. Cloud Cover 50%. Original film magazine was labeled S. Camera Data: Hasselblad 500-C; Lens: Zeiss Planar,F/2.8,80mm; Film Type: Kodak SO-121,Aerial Ektachrome; Filter: Wratten 2A. Flight Date: October 11-12. 1968.
Pechmann, Matthias; Benton, Matthew A; Kenny, Nathan J; Posnien, Nico; Roth, Siegfried
2017-08-29
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
NASA Technical Reports Server (NTRS)
Barlow, Roy W.; Nicholls, S.
1990-01-01
On several occasions during the FIRE Marine Stratocumulus IFO off the California coast, small cumulus were observed to form during the morning beneath the main stratocumulus (Sc) deck. This occurs in the type of situation described by Turton and Nicholls (1987) in which there is insufficient generation of turbulent kinetic energy (TKE) from the cloudtop or the surface to sustain mixing throughout the layer, and a separation of the surface and cloud layers occurs. The build up of humidity in the surface layer allows cumuli to form, and the more energetic of these may penetrate back into the Sc deck, reconnecting the layers. The results presented were collected by the UKMO C-130 aircraft flying in a region where these small cumulus had grown to the extent that they had penetrated into the main Sc deck above. The structure of these penetrative cumulus are examined and their implications on the layer flux and radiation budget discussed.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)
2002-01-01
Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.
Zhang, Li; Ai, Haixin; Chen, Wen; Yin, Zimo; Hu, Huan; Zhu, Junfeng; Zhao, Jian; Zhao, Qi; Liu, Hongsheng
2017-05-18
Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with some recent methods, the ensemble models outperform some machine learning-based approaches and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. It is also found that the ensemble models could be further improved if more data were available. As an application, the ensemble models are employed to discover potential carcinogens in the DrugBank database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of chemicals. A web server called CarcinoPred-EL has been built for these models ( http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/ ).
Accurate representation of organized convection in CFSv2 via a stochastic lattice model
NASA Astrophysics Data System (ADS)
Goswami, B. B.; Khouider, B.; Krishna, R. P. M. M.; Mukhopadhyay, P.; Majda, A.
2016-12-01
General circulation models (GCM) show limitations of various sorts in their representation of synoptic and intra-seasonal variability associated with tropical convective systems apart from the success of superparameterization and cloud system permitting global models. This systematic deficiency is believed to be due to the inadequate treatment of organized convection by the underlying cumulus parameterizations, which have the quasi-equilibrium assumption as a common denominator. By its nature, this assumption neglects the continuous interactions across scales between convection and the large scale dynamics. By design, the stochastic multicloud model (SMCM) mimics the interactions between the three cloud types, congestus, deep, and stratiform, that are observed to play a central role across multiple scales in the dynamics and physical structure of tropical convective systems. It is based on a stochastic lattice model, overlaid over each GCM grid box, where an order parameter taking the values 0,1,2,3 at each lattice site according to whether the site is clear sky or occupied by a congestus, deep, or stratiform cloud, respectively. As such the SMCM mimics the unresolved variability due to cumulus convection and the interactions across multiple scales of organized convective systems, following the philosophy of superparameterization. Here, we discuss the implementation of the SMCM in NCEP Climate Forecast System model (CFS), version-2, through the use of a simple parametrization of adiabatic heating and moisture sink due to cumulus clouds based on their observed vertical profiles (a.k.a Q1 and Q2). Much like the success of superparameterization but without the burden of high computational cost, a 20 year run showed tremendous improvements in the ability of the CFS-SMCM model to represent synoptic and intraseasonal variability associated with organized convection as well as a few minor improvements in the simulated climatology when compared to the control CFSv2 model which is based on the widely used simplified Arakawa-Shubert parameterization. This extra-ordinary improvement comes in despite the fact that CFSv2 is one of the best GCMs in terms of its representation of intra-seasonal oscillations in the tropical atmosphere.
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Effects of Ensemble Configuration on Estimates of Regional Climate Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenson, N.; Mauger, G.; Leung, L. R.
Internal variability in the climate system can contribute substantial uncertainty in climate projections, particularly at regional scales. Internal variability can be quantified using large ensembles of simulations that are identical but for perturbed initial conditions. Here we compare methods for quantifying internal variability. Our study region spans the west coast of North America, which is strongly influenced by El Niño and other large-scale dynamics through their contribution to large-scale internal variability. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find that internal variability can be quantified consistently using a large ensemble or an ensemble ofmore » opportunity that includes small ensembles from multiple models and climate scenarios. The latter also produce estimates of uncertainty due to model differences. We conclude that projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible, which has implications for ensemble design in large modeling efforts.« less
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
The Fukushima-137Cs deposition case study: properties of the multi-model ensemble.
Solazzo, E; Galmarini, S
2015-01-01
In this paper we analyse the properties of an eighteen-member ensemble generated by the combination of five atmospheric dispersion modelling systems and six meteorological data sets. The models have been applied to the total deposition of (137)Cs, following the nuclear accident of the Fukushima power plant in March 2011. Analysis is carried out with the scope of determining whether the ensemble is reliable, sufficiently diverse and if its accuracy and precision can be improved. Although ensemble practice is becoming more and more popular in many geophysical applications, good practice guidelines are missing as to how models should be combined for the ensembles to offer an improvement over single model realisations. We show that the ensemble of models share large portions of bias and variance and make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble mean with the advantage of being poorly correlated, allowing to save computational resources and reduce noise (and thus improving accuracy). We further propose and discuss two methods for selecting subsets of skilful and diverse members, and prove that, in the contingency of the present analysis, their mean outscores the full ensemble mean in terms of both accuracy (error) and precision (variance). Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Madhulatha, A.; Rajeevan, M.
2018-02-01
Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.
Blaha, Milan; Nemcova, Lucie; Prochazka, Radek
2015-01-07
Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). The COCs were isolated from ovaries of slaughtered gilts and cultured in vitro in M199 supplemented with 5% fetal calf serum. The expression levels of the C-type natriuretic peptide (CNP) precursor (NPPC) and its receptor (NPR2) mRNAs during the culture of COCs were determined by real-time RT-PCR. To control the intracellular concentration of cGMP in the COCs, the culture medium was further supplemented with CNP or various concentrations of synthetic cGMP analogues; the concentration of cGMP in COCs was then assessed by ELISA. The effect of the drugs on oocyte maturation was assessed after 24 and 44 h of culture by determining nuclear maturation. The expansion of cumulus cells was assessed by light microscopy and the expression of cumulus expansion-related genes by real-time RT-PCR. A possible effect of cGMP on FSH-induced activation of MAPK3/1 was assessed by immunoblotting the COC proteins with phospho-specific and total anti-Erk1/2 antibodies. The COCs expressed NPPC and NPR2, the key components of cGMP synthesis, and produced a large amount of cGMP upon stimulation with exogenous CNP, which lead to a significant (P < 0.05) delay in oocyte meiotic resumption. The COCs also responded to cGMP analogues by inhibiting the resumption of oocyte meiosis. The inhibitory effect of cGMP on meiotic resumption was reversed by stimulating the COCs with FSH. However, high concentration of intracellular cGMP was not able to suppress FSH-induced activation of MAPK3/1 in cumulus cells, cumulus expansion and expression of expansion-related genes (P > 0.05). The findings of this study indicate that high cGMP concentrations inhibit the maturation of pig oocytes in vitro but the inhibitory mechanism does not involve the suppression of MAPK3/1 activation in cumulus cells.
The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...
A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment
NASA Technical Reports Server (NTRS)
Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.;
2013-01-01
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
The human cumulus--oocyte complex gene-expression profile
Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir
2006-01-01
BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642
Appeltant, Ruth; Somfai, Tamás; Kikuchi, Kazuhiro; Maes, Dominiek; Van Soom, Ann
2016-04-01
Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system. © 2015 Japanese Society of Animal Science.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 km domain (with 2-kilometer resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (ie., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
NASA Technical Reports Server (NTRS)
Tao, W-K.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NACAR) and at NASA Goddard Space Flight Center . At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, SCSMEX and KWAJEX using 512 by 512 km domain (with 2 km resolution). The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulations. The reason for the strong similarity between the 2D and 3D CRM simulations is that the same observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main focusing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used at CSU showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique, (2) calculate and examine the surface energy (especially radiation) and water budgets, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
Mixture models for protein structure ensembles.
Hirsch, Michael; Habeck, Michael
2008-10-01
Protein structure ensembles provide important insight into the dynamics and function of a protein and contain information that is not captured with a single static structure. However, it is not clear a priori to what extent the variability within an ensemble is caused by internal structural changes. Additional variability results from overall translations and rotations of the molecule. And most experimental data do not provide information to relate the structures to a common reference frame. To report meaningful values of intrinsic dynamics, structural precision, conformational entropy, etc., it is therefore important to disentangle local from global conformational heterogeneity. We consider the task of disentangling local from global heterogeneity as an inference problem. We use probabilistic methods to infer from the protein ensemble missing information on reference frames and stable conformational sub-states. To this end, we model a protein ensemble as a mixture of Gaussian probability distributions of either entire conformations or structural segments. We learn these models from a protein ensemble using the expectation-maximization algorithm. Our first model can be used to find multiple conformers in a structure ensemble. The second model partitions the protein chain into locally stable structural segments or core elements and less structured regions typically found in loops. Both models are simple to implement and contain only a single free parameter: the number of conformers or structural segments. Our models can be used to analyse experimental ensembles, molecular dynamics trajectories and conformational change in proteins. The Python source code for protein ensemble analysis is available from the authors upon request.
Multi-model ensembles for assessment of flood losses and associated uncertainty
NASA Astrophysics Data System (ADS)
Figueiredo, Rui; Schröter, Kai; Weiss-Motz, Alexander; Martina, Mario L. V.; Kreibich, Heidi
2018-05-01
Flood loss modelling is a crucial part of risk assessments. However, it is subject to large uncertainty that is often neglected. Most models available in the literature are deterministic, providing only single point estimates of flood loss, and large disparities tend to exist among them. Adopting any one such model in a risk assessment context is likely to lead to inaccurate loss estimates and sub-optimal decision-making. In this paper, we propose the use of multi-model ensembles to address these issues. This approach, which has been applied successfully in other scientific fields, is based on the combination of different model outputs with the aim of improving the skill and usefulness of predictions. We first propose a model rating framework to support ensemble construction, based on a probability tree of model properties, which establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, we then construct numerous multi-model ensembles, based both on the rating framework and on a stochastic method, differing in terms of participating members, ensemble size and model weights. We evaluate the performance of ensemble means, as well as their probabilistic skill and reliability. Our results demonstrate that well-designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss estimates and reliable probability distributions of model uncertainty.
NASA Technical Reports Server (NTRS)
Wang, Shouping; Wang, Qing
1994-01-01
This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.
15 CFR 908.8 - Maintenance of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...
15 CFR 908.8 - Maintenance of records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...
15 CFR 908.8 - Maintenance of records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... activity during each operational period (e.g., cumulus clouds between 10,000 and 30,000 feet m.s.l.; ground... weather modification activity during each operational period (e.g., cumulus clouds between 10,000 and 30... operation; for example: Percent of cloud cover, temperature, humidity, the presence of lightning, hail...
Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric GCMs
NASA Technical Reports Server (NTRS)
Horinouchi, T.; Pawson, S.; Shibata, K.; Langematz, U.; Manzini, E.; Giorgetta, M. A.; Sassi, F.; Wilson, R. J.; Hamilton, K. P.; deGranpre, J.;
2002-01-01
It is recognized that the resolved tropical wave spectrum can vary considerably between general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of the waves is presented for the December-January-February period using high-frequency (three-hourly) data archives from eight GCMs and one simple model participating in the GCM Reality Intercomparison Project for SPARC (GRIPS). Quantitative measures of the structure and causes of the wavenumber-frequency structure of resolved waves and their impacts on the climate are given. Space-time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude between the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different, cumulus par amet erizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the truth. This result indicates that a significant portion of the forcing of the equatorial quasi-biennial oscillation (QBO) is provided by waves with scales that are not resolved in present-day GCMs, since only the moist convective adjustment scheme (which has the largest transient variability) can force a QBO in models that have no parameterization of non-stationary gravity waves. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is larger than that by Kelvin waves, being more significant than has been thought. It is shown that the equatorial semi-annual oscillation in the models examined is driven mainly by gravity waves with periods shorter than three days, with at least some contribution from parameterized gravity waves; the contribution from the ultra-fast zonal wavenumber-1 Kelvin waves is negligible.
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
NASA Astrophysics Data System (ADS)
Vervatis, Vassilios; De Mey, Pierre; Ayoub, Nadia; Kailas, Marios; Sofianos, Sarantis
2017-04-01
The project entitled Stochastic Coastal/Regional Uncertainty Modelling (SCRUM) aims at strengthening CMEMS in the areas of ocean uncertainty quantification, ensemble consistency verification and ensemble data assimilation. The project has been initiated by the University of Athens and LEGOS/CNRS research teams, in the framework of CMEMS Service Evolution. The work is based on stochastic modelling of ocean physics and biogeochemistry in the Bay of Biscay, on an identical sub-grid configuration of the IBI-MFC system in its latest CMEMS operational version V2. In a first step, we use a perturbed tendencies scheme to generate ensembles describing uncertainties in open ocean and on the shelf, focusing on upper ocean processes. In a second step, we introduce two methodologies (i.e. rank histograms and array modes) aimed at checking the consistency of the above ensembles with respect to TAC data and arrays. Preliminary results highlight that wind uncertainties dominate all other atmosphere-ocean sources of model errors. The ensemble spread in medium-range ensembles is approximately 0.01 m for SSH and 0.15 °C for SST, though these values vary depending on season and cross shelf regions. Ecosystem model uncertainties emerging from perturbations in physics appear to be moderately larger than those perturbing the concentration of the biogeochemical compartments, resulting in total chlorophyll spread at about 0.01 mg.m-3. First consistency results show that the model ensemble and the pseudo-ensemble of OSTIA (L4) observation SSTs appear to exhibit nonzero joint probabilities with each other since error vicinities overlap. Rank histograms show that the model ensemble is initially under-dispersive, though results improve in the context of seasonal-range ensembles.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Three-model ensemble wind prediction in southern Italy
NASA Astrophysics Data System (ADS)
Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo
2016-03-01
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.
NASA Astrophysics Data System (ADS)
Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.
2018-03-01
We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.
NASA Astrophysics Data System (ADS)
Norris, Joel R.; Klein, Stephen A.
2000-01-01
Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for moderate and large cumulus. Subsidence interpolated from NCEP analyses to the top of the boundary layer does not exhibit such variation, but the discrepancy may be due to deficiencies in the analysis procedure or the boundary layer parameterization of the NCEP model. The VOS results suggest that decreasing divergence and subsidence in addition to increasing sea surface temperature may promote the transition from stratocumulus to trade cumulus observed over low-latitude oceans.
Simulation's Ensemble is Better Than Ensemble Simulation
NASA Astrophysics Data System (ADS)
Yan, X.
2017-12-01
Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.
A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Laura; Jakob, Christian; Cheung, K.
2013-06-27
Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less
The role of ensemble post-processing for modeling the ensemble tail
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert; Vannitsem, Stéphane
2016-04-01
The past decades the numerical weather prediction community has witnessed a paradigm shift from deterministic to probabilistic forecast and state estimation (Buizza and Leutbecher, 2015; Buizza et al., 2008), in an attempt to quantify the uncertainties associated with initial-condition and model errors. An important benefit of a probabilistic framework is the improved prediction of extreme events. However, one may ask to what extent such model estimates contain information on the occurrence probability of extreme events and how this information can be optimally extracted. Different approaches have been proposed and applied on real-world systems which, based on extreme value theory, allow the estimation of extreme-event probabilities conditional on forecasts and state estimates (Ferro, 2007; Friederichs, 2010). Using ensemble predictions generated with a model of low dimensionality, a thorough investigation is presented quantifying the change of predictability of extreme events associated with ensemble post-processing and other influencing factors including the finite ensemble size, lead time and model assumption and the use of different covariates (ensemble mean, maximum, spread...) for modeling the tail distribution. Tail modeling is performed by deriving extreme-quantile estimates using peak-over-threshold representation (generalized Pareto distribution) or quantile regression. Common ensemble post-processing methods aim to improve mostly the ensemble mean and spread of a raw forecast (Van Schaeybroeck and Vannitsem, 2015). Conditional tail modeling, on the other hand, is a post-processing in itself, focusing on the tails only. Therefore, it is unclear how applying ensemble post-processing prior to conditional tail modeling impacts the skill of extreme-event predictions. This work is investigating this question in details. Buizza, Leutbecher, and Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Q. J. R. Meteorol. Soc. 134: 2051-2066.Buizza and Leutbecher, 2015: The forecast skill horizon, Q. J. R. Meteorol. Soc. 141: 3366-3382.Ferro, 2007: A probability model for verifying deterministic forecasts of extreme events. Weather and Forecasting 22 (5), 1089-1100.Friederichs, 2010: Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 13, 109-132.Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne
2008-01-01
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, N. C.; Taylor, P. C.
2014-12-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to overproduce precipitation, this result could indicate that the metric is effective in identifying models which simulate more realistic precipitation. Ultimately, the goal of the framework is to identify performance metrics for advising better methods for ensemble averaging models and create better climate predictions.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
Validation of Microphysical Schemes in a CRM Using TRMM Satellite
NASA Astrophysics Data System (ADS)
Li, X.; Tao, W.; Matsui, T.; Liu, C.; Masunaga, H.
2007-12-01
The microphysical scheme in the Goddard Cumulus Ensemble (GCE) model has been the most heavily developed component in the past decade. The cloud-resolving model now has microphysical schemes ranging from the original Lin type bulk scheme, to improved bulk schemes, to a two-moment scheme, to a detailed bin spectral scheme. Even with the most sophisticated bin scheme, many uncertainties still exist, especially in ice phase microphysics. In this study, we take advantages of the long-term TRMM observations, especially the cloud profiles observed by the precipitation radar (PR), to validate microphysical schemes in the simulations of Mesoscale Convective Systems (MCSs). Two contrasting cases, a midlatitude summertime continental MCS with leading convection and trailing stratiform region, and an oceanic MCS in tropical western Pacific are studied. The simulated cloud structures and particle sizes are fed into a forward radiative transfer model to simulate the TRMM satellite sensors, i.e., the PR, the TRMM microwave imager (TMI) and the visible and infrared scanner (VIRS). MCS cases that match the structure and strength of the simulated systems over the 10-year period are used to construct statistics of different sensors. These statistics are then compared with the synthetic satellite data obtained from the forward radiative transfer calculations. It is found that the GCE model simulates the contrasts between the continental and oceanic case reasonably well, with less ice scattering in the oceanic case comparing with the continental case. However, the simulated ice scattering signals for both PR and TMI are generally stronger than the observations, especially for the bulk scheme and at the upper levels in the stratiform region. This indicates larger, denser snow/graupel particles at these levels. Adjusting microphysical schemes in the GCE model according the observations, especially the 3D cloud structure observed by TRMM PR, result in a much better agreement.
NASA Astrophysics Data System (ADS)
Posselt, Derek J.
The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.
2003-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.
Spectral cumulus parameterization based on cloud-resolving model
NASA Astrophysics Data System (ADS)
Baba, Yuya
2018-02-01
We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.
NASA Astrophysics Data System (ADS)
Fernández, J.; Primo, C.; Cofiño, A. S.; Gutiérrez, J. M.; Rodríguez, M. A.
2009-08-01
In a recent paper, Gutiérrez et al. (Nonlinear Process Geophys 15(1):109-114, 2008) introduced a new characterization of spatiotemporal error growth—the so called mean-variance logarithmic (MVL) diagram—and applied it to study ensemble prediction systems (EPS); in particular, they analyzed single-model ensembles obtained by perturbing the initial conditions. In the present work, the MVL diagram is applied to multi-model ensembles analyzing also the effect of model formulation differences. To this aim, the MVL diagram is systematically applied to the multi-model ensemble produced in the EU-funded DEMETER project. It is shown that the shared building blocks (atmospheric and ocean components) impose similar dynamics among different models and, thus, contribute to poorly sampling the model formulation uncertainty. This dynamical similarity should be taken into account, at least as a pre-screening process, before applying any objective weighting method.
Decadal climate predictions improved by ocean ensemble dispersion filtering
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-06-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Gustafson, William I.; Kassianov, Evgueni I.
A new treatment for shallow clouds has been introduced into the Weather Research and Forecasting (WRF) model. The new scheme, called the cumulus potential (CuP) scheme, replaces the ad-hoc trigger function used in the Kain-Fritsch cumulus parameterization with a trigger function related to the distribution of temperature and humidity in the convective boundary layer via probability density functions (PDFs). An additional modification to the default version of WRF is the computation of a cumulus cloud fraction based on the time scales relevant for shallow cumuli. Results from three case studies over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM)more » site in north central Oklahoma are presented. These days were selected because of the presence of shallow cumuli over the ARM site. The modified version of WRF does a much better job predicting the cloud fraction and the downwelling shortwave irradiance thancontrol simulations utilizing the default Kain-Fritsch scheme. The modified scheme includes a number of additional free parameters, including the number and size of bins used to define the PDF, the minimum frequency of a bin within the PDF before that bin is considered for shallow clouds to form, and the critical cumulative frequency of bins required to trigger deep convection. A series of tests were undertaken to evaluate the sensitivity of the simulations to these parameters. Overall, the scheme was found to be relatively insensitive to each of the parameters.« less
Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation.
Gadella, B M
2012-01-01
Recent findings have refined our thinking on sperm interactions with the cumulus-oocyte complex (COC) and our understanding of how, at the molecular level, the sperm cell fertilises the oocyte. Proteomic analyses has identified a capacitation-dependent sperm surface reordering that leads to the formation of functional multiprotein complexes involved in zona-cumulus interactions in several mammalian species. During this process, multiple docking of the acrosomal membrane to the plasma membrane takes place. In contrast with the dogma that the acrosome reaction is initiated when spermatozoa bind to the zona pellucida (ZP), it has been established recently that, in mice, the fertilising spermatozoon initiates its acrosome reaction during its voyage through the cumulus before it reaches the ZP. In fact, even acrosome-reacted mouse spermatozoa collected from the perivitelline space can fertilise another ZP-intact oocyte. The oviduct appears to influence the extracellular matrix properties of the spermatozoa as well as the COC. This may influence sperm binding and penetration of the cumulus and ZP, and, in doing so, increase monospermic while decreasing polyspermic fertilisation rates. Structural analysis of the ZP has shed new light on how spermatozoa bind and penetrate this structure and how the cortical reaction blocks sperm-ZP interactions. The current understanding of sperm interactions with the cumulus and ZP layers surrounding the oocyte is reviewed with a special emphasis on the lack of comparative knowledge on this topic in humans, as well as in most farm mammals.
Aghaz, F; Hajarian, H; Shabankareh, H Karami; Abdolmohammadi, A
2015-12-01
The purpose of this study was to evaluate the effect of sericin with different concentrations (0% [control], 0.1%, 0.5%, 1.0%, and 2.5%) added to the IVM medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. The resumption of meiosis was assessed by the frequency of germinal vesicle breakdown and the first polar body extrusion. After IVF with fresh ram semen, presumptive zygotes were cultured 8 days in potassium simplex optimization medium supplemented by amino acids, and the percentages developing to the two-cell and blastocyst stages were measured as the indicators of early embryonic developmental competence. More cumulus-oocyte complexes matured with 0.5% sericin underwent germinal vesicle breakdown and reached metaphase II stage compared with the control cumulus-oocyte complexes matured without sericin (P ≤ 0.05). The present findings indicated that supplementation with 0.5% sericin during the maturation culture may improve the nuclear maturation and the cumulus cell expansion. Furthermore, the percentage of blastocysts obtained from 0.5% and 0.1% sericin (37.8 ± 1.76% and 34.8 ± 1.09%, respectively) was higher (P ≤ 0.05) than that of the control medium (29.60 ± 1.67%). However, addition of 1% and 2.5% of sericin to the IVM medium oocytes had a negative effect on nuclear maturation and cumulus cell expansion. Furthermore, the percentage of cleavage and blastocyst rate was significantly lower in the 1% and 2.5% sericin groups than in the control group. These findings showed that supplementation of IVM medium with 0.5% sericin may improve the meiotic competence of oocytes and early embryonic development in Sanjabi ewes during the breeding season. Copyright © 2015 Elsevier Inc. All rights reserved.
Segers, Ingrid; Adriaenssens, Tom; Smitz, Johan
2012-01-01
Poliovirus receptor (Pvr), erythrocyte protein band 4.1-like 3 (Epb4.1l3), regulator of G-protein signaling 11 (Rgs11), and oxytocin receptor (Oxtr) expression were quantified in in vitro- and in vivo-grown mouse follicles. The expression of all genes was increased during antral growth in in vitro-grown cumulus cells, whereas only Rgs11 and Oxtr were increased and Pvr and Epb4.1l3 were decreased in in vivo grown cumulus cells. In vivo mural granulosa cells showed the highest expression of Pvr, Rgs11, and Oxtr. The in vitro granulosa + theca compartment responded to human chorionic gonadotropinduring early luteinization by either an upregulation (Pvr, Oxtr) or downregulation (Epb41l3, Rgs11). Oocytes expressed Epb4.1l3, not Rgs11, and Pvr only in in vitro-grown oocytes. Translation into protein was confirmed for Epb4.1l3 in in vitro-grown follicles and in vivo-grown cumulus-oocyte complexes. Protein 4.1B was present during antral growth in cumulus, granulosa cells, and oocytes. Hypothetical functions of Epb4.1l3 and Pvr involve cell adhesion regulation and Rgs11 could be involved in cAMP production in the follicle. Oxtr is known to be important during and after the ovulatory stimulus, but, as in bovine, was also regulated during folliculogenesis. High expression of Pvr and Epb4.1l3 with culture duration in cumulus cells might mark inappropriate differentiation into a mural granulosa-like cell type and function as negative follicle development marker. Rgs11 and Oxtr are both in vivo and in vitro upregulated in cumulus cells during antral follicle growth and might be considered positive markers for follicle development.
Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L
2013-08-01
When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P<0.01), sufficient to reduce the development of blastocysts by 46.4%. In a separate study, quantitative PCR (qPCR) was used to confirm heat-induced differences in the relative abundances of the transcripts of five different genes (caveolin 1, matrix metallopeptidase 9, FSH receptor, Indian hedgehog homolog, and inducible nitric oxide synthase). Heat stress exposure resulted in >1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.
Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts
2013-09-30
wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability effects? surface stress Surface Momentum Flux Ensembles from Summaries of BHM Winds (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of
Insights into the deterministic skill of air quality ensembles ...
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each stati
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
Guidobaldi, Héctor Alejandro; Teves, María Eugenia; Uñates, Diego Rafael; Anastasía, Agustín; Giojalas, Laura Cecilia
2008-01-01
Sperm chemotaxis in mammals have been identified towards several female sources as follicular fluid (FF), oviduct fluid, and conditioned medium from the cumulus oophorus (CU) and the oocyte (O). Though several substances were confirmed as sperm chemoattractant, Progesterone (P) seems to be the best chemoattractant candidate, because: 1) spermatozoa express a cell surface P receptor, 2) capacitated spermatozoa are chemotactically attracted in vitro by gradients of low quantities of P; 3) the CU cells produce and secrete P after ovulation; 4) a gradient of P may be kept stable along the CU; and 5) the most probable site for sperm chemotaxis in vivo could be near and/or inside the CU. The aim of this study was to verify whether P is the sperm chemoattractant secreted by the rabbit oocyte-cumulus complex (OCC) in the rabbit, as a mammalian animal model. By means of videomicroscopy and computer image analysis we observed that only the CU are a stable source of sperm attractants. The CU produce and secrete P since the hormone was localized inside these cells by immunocytochemistry and in the conditioned medium by enzyme immunoassay. In addition, rabbit spermatozoa express a cell surface P receptor detected by western blot and localized over the acrosomal region by immunocytochemistry. To confirm that P is the sperm chemoattractant secreted by the CU, the sperm chemotactic response towards the OCC conditioned medium was inhibited by three different approaches: P from the OCC conditioned medium was removed with an anti-P antibody, the attractant gradient of the OCC conditioned medium was disrupted by a P counter gradient, and the sperm P receptor was blocked with a specific antibody. We concluded that only the CU but not the oocyte secretes P, and the latter chemoattract spermatozoa by means of a cell surface receptor. Our findings may be of interest in assisted reproduction procedures in humans, animals of economic importance and endangered species. PMID:18725941
NASA Astrophysics Data System (ADS)
Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin
2014-05-01
Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the processes considered, this was most closely, and fairly exclusively, related to mid-tropospheric entrainment strength. This demonstrates that water isotope retrievals have considerable potential alongside more conventional measurements for climate model evaluation and development.
Several air quality forecasting ensembles were created from seven models, running in real-time during the 2006 Texas Air Quality (TEXAQS-II) experiment. These multi-model ensembles incorporated a diverse set of meteorological models, chemical mechanisms, and emission inventories...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Susanne
2015-02-09
We participated in a FASTER SCM intercomparison for which we ran our SCM for 3 years at the SGP to analyze statistics of the precipitation field (Song et al., 2013). An important feature of these simulations was the use of relaxation forcing to observed T, q, which decouples the model convection from the forcing and allows precipitation errors to emerge. Because the GISS cumulus parameterization includes a trigger that prevents convection until sufficient lifting is present, and because convection at the SGP is usually triggered by mesoscale motions that are not represented in the forcing when relaxation is applied, themore » duration of SCM precipitation is shorter than observed (Del Genio and Wolf, 2012) and thus its mean precipitation less than observed. However, its diurnal cycle phase is correct, and it is the only operational cumulus parameterization in the intercomparison that does not produce excessive warm season precipitation under weak large-scale forcing conditions.« less
NASA Astrophysics Data System (ADS)
Guan, S.; Reuter, G. W.
1996-08-01
Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.
NASA Astrophysics Data System (ADS)
Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping
2017-11-01
Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For peak values taking flood forecasts from each individual member into account is more appropriate.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.
2016-12-01
As part of the NASA-NSF Space Weather Modeling Collaboration, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics system that is based on Data Assimilation (DA) models. MEPS is composed of seven physics-based data assimilation models that cover the globe. Ensemble modeling can be conducted for the mid-low latitude ionosphere using the four GAIM data assimilation models, including the Gauss Markov (GM), Full Physics (FP), Band Limited (BL) and 4DVAR DA models. These models can assimilate Total Electron Content (TEC) from a constellation of satellites, bottom-side electron density profiles from digisondes, in situ plasma densities, occultation data and ultraviolet emissions. The four GAIM models were run for the March 16-17, 2013, geomagnetic storm period with the same data, but we also systematically added new data types and re-ran the GAIM models to see how the different data types affected the GAIM results, with the emphasis on elucidating differences in the underlying ionospheric dynamics and thermospheric coupling. Also, for each scenario the outputs from the four GAIM models were used to produce an ensemble mean for TEC, NmF2, and hmF2. A simple average of the models was used in the ensemble averaging to see if there was an improvement of the ensemble average over the individual models. For the scenarios considered, the ensemble average yielded better specifications than the individual GAIM models. The model differences and averages, and the consequent differences in ionosphere-thermosphere coupling and dynamics will be discussed.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2016-01-01
The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
NASA Astrophysics Data System (ADS)
Liu, Li; Xu, Yue-Ping
2017-04-01
Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Miller, Mark
The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less
Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...
Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling setup was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME.
NASA Astrophysics Data System (ADS)
Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.
2009-08-01
The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.
NASA Astrophysics Data System (ADS)
Yan, Y.; Barth, A.; Beckers, J. M.; Candille, G.; Brankart, J. M.; Brasseur, P.
2015-07-01
Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. An incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semiindependent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analyzed jointly. The consistency and complementarity between both validations are highlighted.
An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone
NASA Technical Reports Server (NTRS)
Tripoli, G. J.
1992-01-01
A nonhydrostatic numerical simulation of a tropical cyclone is performed with explicit representation of cumulus on a meso-beta scale grid and for a brief period on a meso-gamma scale grid. Individual cumulus plumes are represented by a combination of explicit resolution and a 1.5 level closure predicting turbulent kinetic energy (TKE).
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2010 CFR
2010-01-01
... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2011 CFR
2011-01-01
... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...
76 FR 14394 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
..., NY; CUMULUS LICENSING LLC, Station KRRF, Facility ID 10329, BPH-20110218ABV, From GOLETA, CA, To OAK VIEW, CA; CUMULUS LICENSING LLC, Station KRUZ, Facility ID 3159, BPH-20110218ABW, From SANTA BARBARA..., BPH-20091211AFR, From MEXIA, TX, To BELLMEAD, TX; MICHAEL GREENE, Station KOYD, Facility ID 166015...
Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...
NASA Astrophysics Data System (ADS)
Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.
2017-12-01
Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
NASA Astrophysics Data System (ADS)
Tito Arandia Martinez, Fabian
2014-05-01
Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and combined to form a grand ensemble. Results show that the hydrological forecasts derived from the grand ensemble perform better than the pseudo ensemble forecasts actually used operationally at Hydro-Québec. References: [1] M. Verbunt, A. Walser, J. Gurtz et al., "Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies," Journal of Hydrometeorology, vol. 8, no. 4, pp. 897-909, Aug, 2007. [2] N. Evora, Valorisation des prévisions météorologiques d'ensemble, Institu de recherceh d'Hydro-Québec 2005. [3] V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, Institut de recherche d'Hydro-Québec, 2000.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Kim, H.; Utsumi, N.
2017-12-01
This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.
NASA Astrophysics Data System (ADS)
Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie
2015-08-01
The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.
Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.
NASA Astrophysics Data System (ADS)
Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.
2003-12-01
The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are simulated by the model. They are determined by the observed mean U wind shear (unidirectional versus reverse shear profiles above midlevels).Several sensitivity tests are performed to examine the impact of the radiation, microphysics, and large-scale mean horizontal wind on the organization and intensity of the SCSMEX convective systems.
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
Application of an Ensemble Smoother to Precipitation Assimilation
NASA Technical Reports Server (NTRS)
Zhang, Sara; Zupanski, Dusanka; Hou, Arthur; Zupanski, Milija
2008-01-01
Assimilation of precipitation in a global modeling system poses a special challenge in that the observation operators for precipitation processes are highly nonlinear. In the variational approach, substantial development work and model simplifications are required to include precipitation-related physical processes in the tangent linear model and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood Ensemble Smoother (MLES)" has been developed to explore the ensemble representation of the precipitation observation operator with nonlinear convection and large-scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 GCM has been constructed to assimilate satellite precipitation data within the MLES framework. The configuration of the smoother takes the time dimension into account for the relationship between state variables and observable rainfall. The full nonlinear forward model ensembles are used to represent components involving the observation operator and its transpose. Several assimilation experiments using satellite precipitation observations have been carried out to investigate the effectiveness of the ensemble representation of the nonlinear observation operator and the data impact of assimilating rain retrievals from the TMI and SSM/I sensors. Preliminary results show that this ensemble assimilation approach is capable of extracting information from nonlinear observations to improve the analysis and forecast if ensemble size is adequate, and a suitable localization scheme is applied. In addition to a dynamically consistent precipitation analysis, the assimilation system produces a statistical estimate of the analysis uncertainty.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry
Walker, Peter
2017-01-01
Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663
Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao
2014-01-01
Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...
Study on wet scavenging of atmospheric pollutants in south Brazil
NASA Astrophysics Data System (ADS)
Wiegand, Flavio; Pereira, Felipe Norte; Teixeira, Elba Calesso
2011-09-01
The present paper presents the study of in-cloud and below-cloud SO 2 and SO 42-scavenging processes by applying numerical models in the Candiota region, located in the state of Rio Grande do Sul, South Brazil. The BRAMS (Brazilian Regional Atmospheric Modeling System) model was applied to simulate the vertical structure of the clouds, and the B.V.2 (Below-Cloud Beheng Version 2) scavenging model was applied to simulate in-cloud and below-cloud scavenging processes of the pollutants SO 2 and SO 42-. Five events in 2004 were selected for this study and were sampled at the Candiota Airport station. The concentrations of SO 2 and SO 42- sampled in the air and the simulated meteorological parameters of rainfall episodes were used as input data in the B.V.2, which simulates raindrop interactions associated with the scavenging process. Results for the Candiota region showed that in-cloud scavenging processes were more significant than below-cloud scavenging processes for two of the five events studied, with a contribution of approximately 90-100% of SO 2 and SO 42- concentrations in rainwater. A few adjustments to the original version of B.V.2 were made to allow simulation of scavenging processes in several types of clouds, not only cumulus humilis and cumulus congestus.
Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing
2018-02-01
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N 2 O emissions at field scale is discussed. © 2017 John Wiley & Sons Ltd.
Medeiros, Brian; Nuijens, Louise
2016-05-31
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.
Nuijens, Louise
2016-01-01
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925
Numerical weather prediction model tuning via ensemble prediction system
NASA Astrophysics Data System (ADS)
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2014-11-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
NASA Astrophysics Data System (ADS)
Berg, L. K.; Gustafson, W. I., Jr.; Kassianov, E.; Long, C. N.
2015-12-01
Accurate forecasts of broken cloud fields and their associated impact on the downwelling solar irradiance has remained a challenge to the renewable energy industry. Likewise, shallow cumulus play an important role in the Earth's radiation budget and hydrologic cycle and are of interest to the weather forecasting and climate science communities. The main challenge associated with predicting these clouds are their relatively small size (on the order of a kilometer or less) relative to the model grid spacing. Recently, however, there have been significant efforts put into improving forecasts of shallow clouds and the associated temporal and spatial variability of the solar irradiance that they induce. As an example of these efforts, we will describe recent modifications to the standard Kain-Fritsch parameterization as applied within the Weather Research and Forecasting (WRF) model that are designed to improve predictions of the macroscale and microscale structure of shallow cumulus. These modifications are shown to lead to a realistic increase in the simulated cloud fraction and associated decrease in the solar irradiance. We will evaluate our results using data collected at the Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains site, which is located in north-central Oklahoma. Our team has analyzed over 5 years of data collected at this site to document the macroscale structure of the clouds (including cloud fraction, cloud-base and cloud-top height) as well as their impact on the downwelling shortwave and longwave irradiance. One particularly interesting impact of shallow cumuli is the enhancement of the diffuse radiation, such that during periods in which the sun is not blocked, the observed irradiance can be significantly larger than the corresponding clear sky case. To date, this feature is not accurately represented by models that apply the plane-parallel assumption applied in the standard radiation parameterizations.
Model studies on the role of moist convection as a mechanism for interaction between the mesoscales
NASA Technical Reports Server (NTRS)
Waight, Kenneth T., III; Song, J. Aaron; Zack, John W.; Price, Pamela E.
1991-01-01
A three year research effort is described which had as its goal the development of techniques to improve the numerical prediction of cumulus convection on the meso-beta and meso-gamma scales. Two MESO models are used, the MASS (mesoscale) and TASS (cloud scale) models. The primary meteorological situation studied is the 28-29 Jun. 1986 Cooperative Huntsville Meteorological Experiment (COHMEX) study area on a day with relatively weak large scale forcing. The problem of determining where and when convection should be initiated is considered to be a major problem of current approaches. Assimilation of moisture data from satellite, radar, and surface data is shown to significantly improve mesoscale simulations. The TASS model is shown to reproduce some observed mesoscale features when initialized with 3-D observational data. Convection evolution studies center on comparison of the Kuo and Fritsch-Chappell cumulus parameterization schemes to each other, and to cloud model results. The Fritsch-Chappell scheme is found to be superior at about 30 km resolution, while the Kuo scheme does surprisingly well in simulating convection down to 10 km in cases where convergence features are well-resolved by the model grid. Results from MASS-TASS interaction experiments are presented and discussed. A discussion of the future of convective simulation is given, with the conclusion that significant progress is possible on several fronts in the next few years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby
In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. Themore » evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.« less
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2001-01-01
It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2004-01-01
Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.
Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A
2015-01-15
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.
Pourhoseingholi, Mohamad Amin; Kheirian, Sedigheh; Zali, Mohammad Reza
2017-12-01
Colorectal cancer (CRC) is one of the most common malignancies and cause of cancer mortality worldwide. Given the importance of predicting the survival of CRC patients and the growing use of data mining methods, this study aims to compare the performance of models for predicting 5-year survival of CRC patients using variety of basic and ensemble data mining methods. The CRC dataset from The Shahid Beheshti University of Medical Sciences Research Center for Gastroenterology and Liver Diseases were used for prediction and comparative study of the base and ensemble data mining techniques. Feature selection methods were used to select predictor attributes for classification. The WEKA toolkit and MedCalc software were respectively utilized for creating and comparing the models. The obtained results showed that the predictive performance of developed models was altogether high (all greater than 90%). Overall, the performance of ensemble models was higher than that of basic classifiers and the best result achieved by ensemble voting model in terms of area under the ROC curve (AUC= 0.96). AUC Comparison of models showed that the ensemble voting method significantly outperformed all models except for two methods of Random Forest (RF) and Bayesian Network (BN) considered the overlapping 95% confidence intervals. This result may indicate high predictive power of these two methods along with ensemble voting for predicting 5-year survival of CRC patients.
Gruber, Susan; Logan, Roger W.; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A.
2014-01-01
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. PMID:25316152
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.
NASA Astrophysics Data System (ADS)
Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens
2017-04-01
Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.
Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S
2017-10-01
The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Chong; Kang, Woojin; Baba, Tadashi
2012-01-01
Mammalian fertilization requires sperm to penetrate the cumulus to reach the oocyte. Although sperm hyaluronidase has long been believed to participate in the penetration process, our previous works revealed that neither of two sperm hyaluronidases, SPAM1 and HYAL5, are essential for fertilization. In this study, we have produced double-knockout mice lacking SPAM1 and either one of two sperm serine proteases, ACR and PRSS21, and characterized the mutant sperm. The SPAM1/ACR- and SPAM1/PRSS21-deficient males were fertile, whereas epididymal sperm of the mutant mice exhibited a reduced capacity to fertilize the oocytes in vitro. Despite normal motility, the ability of sperm to traverse the cumulus matrix was more severely impaired by the loss of SPAM1 and ACR or SPAM1 and PRSS21 than by the loss of only SPAM1. Moreover, SPAM1/ACR- and SPAM1/PRSS21-deficient sperm accumulated on the surface (outer edge) of the cumulus more abundantly than SPAM1-deficient sperm. These results suggest that ACR or PRSS21 or both may function cooperatively with SPAM1 in sperm/cumulus penetration.
Papler, Tanja Burnik; Bokal, Eda Vrtačnik; Tacer, Klementina Fon; Juvan, Peter; Virant Klun, Irma; Devjak, Rok
2014-01-01
The aim of our study was to determine whether there are any differences in the cumulus cell gene expression profile of mature oocytes derived from modified natural IVF and controlled ovarian hyperstimulation cycles and if these changes could help us understand why modified natural IVF has lower success rates. Cumulus cells surrounding mature oocytes that developed to morulae or blastocysts on day 5 after oocyte retrieval were submitted to microarray analysis. The obtained data were then validated using quantitative real-time PCR. There were 66 differentially expressed genes between cumulus cells of modified natural IVF and controlled ovarian hyperstimulation cycles. Gene ontology analysis revealed the oxidation-reduction process, glutathione metabolic process, xenobiotic metabolic process and gene expression were significantly enriched biological processes in MNIVF cycles. Among differentially expressed genes we observed a large group of small nucleolar RNA's whose role in folliculogenesis has not yet been established. The increased expression of genes involved in the oxidation-reduction process probably points to hypoxic conditions in modified natural IVF cycles. This finding opens up new perspectives for the establishment of the potential role that oxidation-reduction processes have in determining success rates of modified natural IVF.
A Bayesian Ensemble Approach for Epidemiological Projections
Lindström, Tom; Tildesley, Michael; Webb, Colleen
2015-01-01
Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks. PMID:25927892
Skill of Ensemble Seasonal Probability Forecasts
NASA Astrophysics Data System (ADS)
Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk
2010-05-01
In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.
Amozegar, M; Khorasani, K
2016-04-01
In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador
2015-02-19
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
NASA Astrophysics Data System (ADS)
Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim
2017-07-01
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
Multi-criterion model ensemble of CMIP5 surface air temperature over China
NASA Astrophysics Data System (ADS)
Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming
2018-05-01
The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the South Central China (the Inner Mongolia), the North Eastern China (the South Central China), and the North Western China (the South Central China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.
NASA Astrophysics Data System (ADS)
Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen
2016-07-01
The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.
NASA Astrophysics Data System (ADS)
Kumar, Sujay V.; Wang, Shugong; Mocko, David M.; Peters-Lidard, Christa D.; Xia, Youlong
2017-11-01
Multimodel ensembles are often used to produce ensemble mean estimates that tend to have increased simulation skill over any individual model output. If multimodel outputs are too similar, an individual LSM would add little additional information to the multimodel ensemble, whereas if the models are too dissimilar, it may be indicative of systematic errors in their formulations or configurations. The article presents a formal similarity assessment of the North American Land Data Assimilation System (NLDAS) multimodel ensemble outputs to assess their utility to the ensemble, using a confirmatory factor analysis. Outputs from four NLDAS Phase 2 models currently running in operations at NOAA/NCEP and four new/upgraded models that are under consideration for the next phase of NLDAS are employed in this study. The results show that the runoff estimates from the LSMs were most dissimilar whereas the models showed greater similarity for root zone soil moisture, snow water equivalent, and terrestrial water storage. Generally, the NLDAS operational models showed weaker association with the common factor of the ensemble and the newer versions of the LSMs showed stronger association with the common factor, with the model similarity increasing at longer time scales. Trade-offs between the similarity metrics and accuracy measures indicated that the NLDAS operational models demonstrate a larger span in the similarity-accuracy space compared to the new LSMs. The results of the article indicate that simultaneous consideration of model similarity and accuracy at the relevant time scales is necessary in the development of multimodel ensemble.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
NASA Astrophysics Data System (ADS)
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2017-04-01
How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.
NASA Astrophysics Data System (ADS)
Annan, James; Hargreaves, Julia
2016-04-01
In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.
DART: Tools and Support for Ensemble Data Assimilation Research, Operations, and Education
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Collins, N.; Raeder, K.; Kershaw, H.; Romine, G. S.; Mizzi, A. P.; Chatterjee, A.; Karspeck, A. R.; Zarzycki, C. M.; Ha, S. Y.; Barre, J.; Gaubert, B.
2014-12-01
The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models. First, DART is being used with the Community Atmosphere Model Spectral Element (CAM-SE) and Model for Prediction Across Scales (MPAS) global atmospheric models that support locally enhanced grid resolution. Initial results from ensemble assimilation with both models are presented. DART is also being used to produce ensemble analyses of atmospheric tracers, in particular CO, in both the global CAM-Chem model and the regional Weather Research and Forecast with chemistry (WRF-Chem) model by assimilating observations from the Measurements of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments. Results from ensemble analyses in both models are presented. An interface between DART and the Community Atmosphere Biosphere Land Exchange (CABLE) model has been completed and ensemble land surface analyses with DART/CABLE will be discussed. Finally, an update on ensemble analyses in the fully-coupled Community Earth System (CESM) is presented. The poster includes instructions on how to get started using DART for research or educational applications.
Muhlestein, Whitney E; Akagi, Dallin S; Kallos, Justiss A; Morone, Peter J; Weaver, Kyle D; Thompson, Reid C; Chambless, Lola B
2018-04-01
Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.
Shi, Xuesong; Walker, Peter; Harbury, Pehr B; Herschlag, Daniel
2017-05-05
The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Walcott, Sam
2013-03-01
Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.
Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.
2008-01-01
Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2015-04-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
2014-10-01
variability with well trained readers. Figure 7: comparison between the PD (percent density using Cumulus area) and the automatic PD. The...evaluation of outlier correction, comparison of several different software methods, precision measurement, and evaluation of variation by mammography...chart review for selected cases (month 4-6). Comparison of information from the Breast Cancer Database and medical records showed good consistency
Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.
2017-12-01
We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.
Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.
Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan
2016-01-01
To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed that lncRNAs differentially expressed in PCOS and normal women may contribute to the occurrence of PCOS and affect oocyte development.
Cloud Condensation Nuclei in Cumulus Humilis - Selected Case Study During the CHAPS Campaign
NASA Astrophysics Data System (ADS)
Yu, X.; Berg, L. K.; Berkowitz, C. M.; Alexander, M. L.; Lee, Y.; Laskin, A.; Ogren, J. A.; Andrews, B.
2009-12-01
The Cumulus Humilis Aerosol Processing Study (CHAPS) provided a unique opportunity to study aerosol and cloud processing. Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Department of Energy (DOE) G-1 aircraft was used as one of the main platforms in CHAPS. Flight tracks were designed and implemented to characterize freshly emitted aerosols on cloud top and cloud base as well as with cloud, i.e., cumulus humilis (or fair-weather cumulus), in the vicinity of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols were determined downstream of an isokinetic inlet; and the activated particles downstream of a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This work will focus on studying CCN properties in cumulus humilis. Several approaches will be taken. The first is single particle analysis of particles collected by the Time-Resolved Aerosol Sampler (TRAC) by SEM/TEM coupled with EDX. We will specifically look into differences in particle properties such as chemical composition and morphology between activated and interstitial ones. The second analysis will link in situ measurements with the snap shots observations by TRAC. For instance, by looking into the characteristic m/z obtained by AMS vs. CO or isoprene, one can gain more insight into the role of primary and secondary organic aerosols in CCNs and background aerosols. Combined with observations of cloud properties, an improved picture of CCN activation in cumulus humilis can be made.
Ensemble method for dengue prediction.
Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan
2018-01-01
In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.
Ensemble method for dengue prediction
Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan
2018-01-01
Background In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Methods Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Principal findings Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. Conclusions The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru. PMID:29298320
NASA Astrophysics Data System (ADS)
Erfanian, A.; Fomenko, L.; Wang, G.
2016-12-01
Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling
Multimodel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay Originating NASA
NASA Technical Reports Server (NTRS)
Korner, Stephan; Ahmad, Nashat N.; Holzapfel, Frank; VanValkenburg, Randal L.
2017-01-01
Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.
Moyer, Jason T.; Halterman, Benjamin L.; Finkel, Leif H.; Wolf, John A.
2014-01-01
Striatal medium spiny neurons (MSNs) receive lateral inhibitory projections from other MSNs and feedforward inhibitory projections from fast-spiking, parvalbumin-containing striatal interneurons (FSIs). The functional roles of these connections are unknown, and difficult to study in an experimental preparation. We therefore investigated the functionality of both lateral (MSN-MSN) and feedforward (FSI-MSN) inhibition using a large-scale computational model of the striatal network. The model consists of 2744 MSNs comprised of 189 compartments each and 121 FSIs comprised of 148 compartments each, with dendrites explicitly represented and almost all known ionic currents included and strictly constrained by biological data as appropriate. Our analysis of the model indicates that both lateral inhibition and feedforward inhibition function at the population level to limit non-ensemble MSN spiking while preserving ensemble MSN spiking. Specifically, lateral inhibition enables large ensembles of MSNs firing synchronously to strongly suppress non-ensemble MSNs over a short time-scale (10–30 ms). Feedforward inhibition enables FSIs to strongly inhibit weakly activated, non-ensemble MSNs while moderately inhibiting activated ensemble MSNs. Importantly, FSIs appear to more effectively inhibit MSNs when FSIs fire asynchronously. Both types of inhibition would increase the signal-to-noise ratio of responding MSN ensembles and contribute to the formation and dissolution of MSN ensembles in the striatal network. PMID:25505406
Climate Model Ensemble Methodology: Rationale and Challenges
NASA Astrophysics Data System (ADS)
Vezer, M. A.; Myrvold, W.
2012-12-01
A tractable model of the Earth's atmosphere, or, indeed, any large, complex system, is inevitably unrealistic in a variety of ways. This will have an effect on the model's output. Nonetheless, we want to be able to rely on certain features of the model's output in studies aiming to detect, attribute, and project climate change. For this, we need assurance that these features reflect the target system, and are not artifacts of the unrealistic assumptions that go into the model. One technique for overcoming these limitations is to study ensembles of models which employ different simplifying assumptions and different methods of modelling. One then either takes as reliable certain outputs on which models in the ensemble agree, or takes the average of these outputs as the best estimate. Since the Intergovernmental Panel on Climate Change's Fourth Assessment Report (IPCC AR4) modellers have aimed to improve ensemble analysis by developing techniques to account for dependencies among models, and to ascribe unequal weights to models according to their performance. The goal of this paper is to present as clearly and cogently as possible the rationale for climate model ensemble methodology, the motivation of modellers to account for model dependencies, and their efforts to ascribe unequal weights to models. The method of our analysis is as follows. We will consider a simpler, well-understood case of taking the mean of a number of measurements of some quantity. Contrary to what is sometimes said, it is not a requirement of this practice that the errors of the component measurements be independent; one must, however, compensate for any lack of independence. We will also extend the usual accounts to include cases of unknown systematic error. We draw parallels between this simpler illustration and the more complex example of climate model ensembles, detailing how ensembles can provide more useful information than any of their constituent models. This account emphasizes the epistemic importance of considering degrees of model dependence, and the practice of ascribing unequal weights to models of unequal skill.
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2015-04-01
Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.
NASA Astrophysics Data System (ADS)
Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei
2016-08-01
The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.
NASA Astrophysics Data System (ADS)
Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie
2016-07-01
This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.
Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve
2017-04-01
An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.
Gantner, Melisa E; Peroni, Roxana N; Morales, Juan F; Villalba, María L; Ruiz, María E; Talevi, Alan
2017-08-28
Breast Cancer Resistance Protein (BCRP) is an ATP-dependent efflux transporter linked to the multidrug resistance phenomenon in many diseases such as epilepsy and cancer and a potential source of drug interactions. For these reasons, the early identification of substrates and nonsubstrates of this transporter during the drug discovery stage is of great interest. We have developed a computational nonlinear model ensemble based on conformational independent molecular descriptors using a combined strategy of genetic algorithms, J48 decision tree classifiers, and data fusion. The best model ensemble consists in averaging the ranking of the 12 decision trees that showed the best performance on the training set, which also demonstrated a good performance for the test set. It was experimentally validated using the ex vivo everted rat intestinal sac model. Five anticonvulsant drugs classified as nonsubstrates for BRCP by the model ensemble were experimentally evaluated, and none of them proved to be a BCRP substrate under the experimental conditions used, thus confirming the predictive ability of the model ensemble. The model ensemble reported here is a potentially valuable tool to be used as an in silico ADME filter in computer-aided drug discovery campaigns intended to overcome BCRP-mediated multidrug resistance issues and to prevent drug-drug interactions.
Model dependence and its effect on ensemble projections in CMIP5
NASA Astrophysics Data System (ADS)
Abramowitz, G.; Bishop, C.
2013-12-01
Conceptually, the notion of model dependence within climate model ensembles is relatively simple - modelling groups share a literature base, parametrisations, data sets and even model code - the potential for dependence in sampling different climate futures is clear. How though can this conceptual problem inform a practical solution that demonstrably improves the ensemble mean and ensemble variance as an estimate of system uncertainty? While some research has already focused on error correlation or error covariance as a candidate to improve ensemble mean estimates, a complete definition of independence must at least implicitly subscribe to an ensemble interpretation paradigm, such as the 'truth-plus-error', 'indistinguishable', or more recently 'replicate Earth' paradigm. Using a definition of model dependence based on error covariance within the replicate Earth paradigm, this presentation will show that accounting for dependence in surface air temperature gives cooler projections in CMIP5 - by as much as 20% globally in some RCPs - although results differ significantly for each RCP, especially regionally. The fact that the change afforded by accounting for dependence across different RCPs is different is not an inconsistent result. Different numbers of submissions to each RCP by different modelling groups mean that differences in projections from different RCPs are not entirely about RCP forcing conditions - they also reflect different sampling strategies.
NASA Astrophysics Data System (ADS)
Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.
2016-12-01
Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of representations of large-scale moisture transport, cloud microphysics, ice nucleation, and cumulus detrainment in order to improve the mixed-phase transition in GCMs.
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.
Kilic, Niyazi; Hosgormez, Erkan
2016-03-01
Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.
Selecting climate simulations for impact studies based on multivariate patterns of climate change.
Mendlik, Thomas; Gobiet, Andreas
In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.
Smith, Morgan E; Singh, Brajendra K; Irvine, Michael A; Stolk, Wilma A; Subramanian, Swaminathan; Hollingsworth, T Déirdre; Michael, Edwin
2017-03-01
Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG). We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Acuña-Hernández, Deyanira Guadalupe; Arreola-Mendoza, Laura; Santacruz-Márquez, Ramsés; García-Zepeda, Sihomara Patricia; Parra-Forero, Lyda Yuliana; Olivares-Reyes, Jesús Alberto; Hernández-Ochoa, Isabel
2018-04-01
In ovarian follicles, cumulus cells communicate with the oocyte through gap junction intercellular communication (GJIC), to nurture the oocyte and control its meiosis arrest and division. Bisphenol A (BPA) is a monomer found in polycarbonate-made containers that can induce functional alterations, including impaired oocyte meiotic division and reduced molecule transfer in GJIC. However, how BPA alters oocyte meiotic division is unclear. We investigated whether BPA effects on oocyte meiotic division were correlated with reduced transfer in GJIC. Cumulus cell-oocyte complexes (COCs) isolated from mouse preovulatory follicles were cultured with 0, 0.22, 2.2, 22, 220, and 2200 nM BPA for 2 h. An additional 16-h incubation with epidermal growth factor (EGF) was performed to promote the occurrence of meiotic resumption and progression to metaphase II. Without EGF stimulus, BPA treatment increased the percentage of oocytes undergoing meiotic resumption, decreased GJIC in the COCs, and did not modify GJIC gene (Cx43 and Cx37) and protein (CX43) expression. Following EGF stimulus, BPA increased the percentage of oocytes that remained at the anaphase and telophase stages, and decreased the percentage of oocytes reaching the metaphase II stage. Concomitantly, BPA reduced the expansion of cumulus cells. Carbenoxolone (a GJIC inhibitor) and 6-diazo-5-oxo-l-norleucine (a cumulus cell-expansion inhibitor) exerted effects on meiotic division similar to those exerted by BPA. These data suggest that BPA accelerates meiotic progression, leading to impaired prophase I-to-metaphase II transition, and that this adverse effect is correlated with reduced bidirectional communication in the COC. Copyright © 2018 Elsevier Inc. All rights reserved.
McGibbon, J.; Bretherton, C. S.
2017-03-17
During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons andmore » meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a –0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m –2 in sensible heat flux (SHF). Altogether, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.« less
Nguyen, Tuong L; Aung, Ye K; Evans, Christopher F; Dite, Gillian S; Stone, Jennifer; MacInnis, Robert J; Dowty, James G; Bickerstaffe, Adrian; Aujard, Kelly; Rommens, Johanna M; Song, Yun-Mi; Sung, Joohon; Jenkins, Mark A; Southey, Melissa C; Giles, Graham G; Apicella, Carmel; Hopper, John L
2017-01-01
Abstract Background: Mammographic density defined by the conventional pixel brightness threshold, and adjusted for age and body mass index (BMI), is a well-established risk factor for breast cancer. We asked if higher thresholds better separate women with and without breast cancer. Methods: We studied Australian women, 354 with breast cancer over-sampled for early-onset and family history, and 944 unaffected controls frequency-matched for age at mammogram. We measured mammographic dense area and percent density using the CUMULUS software at the conventional threshold, which we call Cumulus, and at two increasingly higher thresholds, which we call Altocumulus and Cirrocumulus, respectively. All measures were Box–Cox transformed and adjusted for age and BMI. We estimated the odds per adjusted standard deviation (OPERA) using logistic regression and the area under the receiver operating characteristic curve (AUC). Results: Altocumulus and Cirrocumulus were correlated with Cumulus (r ∼ 0.8 and 0.6, respectively). For dense area, the OPERA was 1.62, 1.74 and 1.73 for Cumulus, Altocumulus and Cirrocumulus, respectively (all P < 0.001). After adjusting for Altocumulus and Cirrocumulus, Cumulus was not significant (P > 0.6). The OPERAs for percent density were less but gave similar findings. The mean of the standardized adjusted Altocumulus and Cirrocumulus dense area measures was the best predictor; OPERA = 1.87 [95% confidence interval (CI): 1.64–2.14] and AUC = 0.68 (0.65–0.71). Conclusions: The areas of higher mammographically dense regions are associated with almost 30% stronger breast cancer risk gradient, explain the risk association of the conventional measure and might be more aetiologically important. This has substantial implications for clinical translation and molecular, genetic and epidemiological research. PMID:28338721
Ezzati, Maryam; Roshangar, Leila; Soleimani Rad, Jafar; Karimian, Nahid
2018-04-01
Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 μM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR. Copyright© by Royan Institute. All rights reserved.
Nguyen, Tuong L; Aung, Ye K; Evans, Christopher F; Dite, Gillian S; Stone, Jennifer; MacInnis, Robert J; Dowty, James G; Bickerstaffe, Adrian; Aujard, Kelly; Rommens, Johanna M; Song, Yun-Mi; Sung, Joohon; Jenkins, Mark A; Southey, Melissa C; Giles, Graham G; Apicella, Carmel; Hopper, John L
2017-04-01
Mammographic density defined by the conventional pixel brightness threshold, and adjusted for age and body mass index (BMI), is a well-established risk factor for breast cancer. We asked if higher thresholds better separate women with and without breast cancer. We studied Australian women, 354 with breast cancer over-sampled for early-onset and family history, and 944 unaffected controls frequency-matched for age at mammogram. We measured mammographic dense area and percent density using the CUMULUS software at the conventional threshold, which we call Cumulus , and at two increasingly higher thresholds, which we call Altocumulus and Cirrocumulus , respectively. All measures were Box-Cox transformed and adjusted for age and BMI. We estimated the odds per adjusted standard deviation (OPERA) using logistic regression and the area under the receiver operating characteristic curve (AUC). Altocumulus and Cirrocumulus were correlated with Cumulus (r ∼ 0.8 and 0.6 , respectively) . For dense area, the OPERA was 1.62, 1.74 and 1.73 for Cumulus, Altocumulus and Cirrocumulus , respectively (all P < 0.001). After adjusting for Altocumulus and Cirrocumulus , Cumulus was not significant ( P > 0.6). The OPERAs for percent density were less but gave similar findings. The mean of the standardized adjusted Altocumulus and Cirrocumulus dense area measures was the best predictor; OPERA = 1.87 [95% confidence interval (CI): 1.64-2.14] and AUC = 0.68 (0.65-0.71). The areas of higher mammographically dense regions are associated with almost 30% stronger breast cancer risk gradient, explain the risk association of the conventional measure and might be more aetiologically important. This has substantial implications for clinical translation and molecular, genetic and epidemiological research. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association
Hanaue, Mayu; Miwa, Naofumi; Uebi, Tatsuya; Fukuda, Yusuke; Katagiri, Yukiko; Takamatsu, Ken
2011-02-01
We recently found that Xenopus dicalcin, present in the extracellular egg-coating envelope, suppresses the efficiency of fertilization in vitro through binding to envelope-constituent glycoproteins. In the present study, we explored the mouse counterpart of Xenopus dicalcin, specifically its localization in the female reproductive tract and its action on mouse fertilization. Our homology and phylogenetic analyses using known S100 proteins showed that S100A11 is most closely related to Xenopus dicalcin. S100A11 was localized in the cytosol of luteal cells, but not in the follicle, in the mouse ovary, and also in the cytosol of the oviductal epithelial cells. In addition, our quantitative analyses revealed preferential expression of S100A11 in the ampullary region of the oviduct and at the estrus stage during the mouse estrous cycle. In the cumulus cell-oocyte complex dissected from the oviduct following ovulation, S100A11 was present in the plasma membrane of cumulus cells, but not in the zona pellucida, which is comparable with Ca(2+) -dependent binding of exogenously applied S100A11 to the plasma membrane of cumulus cells. Pretreatment of the cumulus cell-oocyte complex with recombinant S100A11 substantially reduced the efficiency of in vitro fertilization, but S100A10, the next closest S100 protein to Xenopus dicalcin, had no effect. These results suggested that S100A11 is the mouse counterpart of Xenopus dicalcin, suppresses the fertilization process through its action on cumulus cells, and thereby plays a key role in fertilization success in the mouse. Copyright © 2010 Wiley-Liss, Inc.
Gómez-Torres, María José; García, Eva María; Guerrero, Jaime; Medina, Sonia; Izquierdo-Rico, María José; Gil-Izquierdo, Ángel; Orduna, Jesús; Savirón, María; González-Brusi, Leopoldo; Ten, Jorge; Bernabeu, Rafael; Avilés, Manuel
2015-11-09
Fertilization is a key physiological process for the preservation of the species. Consequently, different mechanisms affecting the sperm and the oocyte have been developed to ensure a successful fertilization. Thus, sperm acrosome reaction is necessary for the egg coat penetration and sperm-oolema fusion. Several molecules are able to induce the sperm acrosome reaction; however, this process should be produced coordinately in time and in the space to allow the success of fertilization between gametes. The goal of this study was to analyze the metabolites secreted by cumulus-oocyte-complex (COC) to find out new components that could contribute to the induction of the human sperm acrosome reaction and other physiological processes at the time of gamete interaction and fertilization. For the metabolomic analysis, eighteen aliquots of medium were used in each group, containing: a) only COC before insemination and after 3 h of incubation; b) COC and capacitated spermatozoa after insemination and incubated for 16-20 hours; c) only capacitated sperm after 16-20 h in culture and d) only fertilization medium as control. Six patients undergoing assisted reproduction whose male partners provided normozoospermic samples were included in the study. Seventy-two COC were inseminated. The metabolites identified were monoacylglycerol (MAG), lysophosphatidylcholine (LPC) and phytosphingosine (PHS). Analysis by PCR and in silico of the gene expression strongly suggests that the cumulus cells contribute to the formation of the PHS and LPC. LPC and PHS are secreted by cumulus cells during in vitro fertilization and they could be involved in the induction of human acrosome reaction (AR). The identification of new molecules with a paracrine effect on oocytes, cumulus cells and spermatozoa will provide a better understanding of gamete interaction.
Abadjieva, Desislava; Kistanova, Elena
2016-01-01
Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.
2016-01-01
Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288
Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He
2010-04-01
Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.
Tian, X; Anthony, K; Diaz, Francisco J
2017-04-01
Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume
2013-01-01
Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.
Prediction of Weather Impacted Airport Capacity using Ensemble Learning
NASA Technical Reports Server (NTRS)
Wang, Yao Xun
2011-01-01
Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.
NASA Technical Reports Server (NTRS)
Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo
2013-01-01
This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.
NASA Astrophysics Data System (ADS)
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2015-11-01
Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.
NASA's EOSDIS Cumulus: Ingesting, Archiving, Managing, and Distributing from Commercial Cloud
NASA Astrophysics Data System (ADS)
Baynes, K.; Ramachandran, R.; Pilone, D.; Quinn, P.; Schuler, I.; Gilman, J.; Jazayeri, A.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.
2018-04-01
A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.
NASA Astrophysics Data System (ADS)
Solvang Johansen, Stian; Steinsland, Ingelin; Engeland, Kolbjørn
2016-04-01
Running hydrological models with precipitation and temperature ensemble forcing to generate ensembles of streamflow is a commonly used method in operational hydrology. Evaluations of streamflow ensembles have however revealed that the ensembles are biased with respect to both mean and spread. Thus postprocessing of the ensembles is needed in order to improve the forecast skill. The aims of this study is (i) to to evaluate how postprocessing of streamflow ensembles works for Norwegian catchments within different hydrological regimes and to (ii) demonstrate how post processed streamflow ensembles are used operationally by a hydropower producer. These aims were achieved by postprocessing forecasted daily discharge for 10 lead-times for 20 catchments in Norway by using EPS forcing from ECMWF applied the semi-distributed HBV-model dividing each catchment into 10 elevation zones. Statkraft Energi uses forecasts from these catchments for scheduling hydropower production. The catchments represent different hydrological regimes. Some catchments have stable winter condition with winter low flow and a major flood event during spring or early summer caused by snow melting. Others has a more mixed snow-rain regime, often with a secondary flood season during autumn, and in the coastal areas, the stream flow is dominated by rain, and the main flood season is autumn and winter. For post processing, a Bayesian model averaging model (BMA) close to (Kleiber et al 2011) is used. The model creates a predictive PDF that is a weighted average of PDFs centered on the individual bias corrected forecasts. The weights are here equal since all ensemble members come from the same model, and thus have the same probability. For modeling streamflow, the gamma distribution is chosen as a predictive PDF. The bias correction parameters and the PDF parameters are estimated using a 30-day sliding window training period. Preliminary results show that the improvement varies between catchments depending on where they are situated and the hydrological regime. There is an improvement in CRPS for all catchments compared to raw EPS ensembles. The improvement is up to lead-time 5-7. The postprocessing also improves the MAE for the median of the predictive PDF compared to the median of the raw EPS. But less compared to CRPS, often up to lead-time 2-3. The streamflow ensembles are to some extent used operationally in Statkraft Energi (Hydro Power company, Norway), with respect to early warning, risk assessment and decision-making. Presently all forecast used operationally for short-term scheduling are deterministic, but ensembles are used visually for expert assessment of risk in difficult situations where e.g. there is a chance of overflow in a reservoir. However, there are plans to incorporate ensembles in the daily scheduling of hydropower production.
Supermodeling With A Global Atmospheric Model
NASA Astrophysics Data System (ADS)
Wiegerinck, Wim; Burgers, Willem; Selten, Frank
2013-04-01
In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra-tropical circulation in the Northern Hemisphere winter.
Improving Climate Projections Using "Intelligent" Ensembles
NASA Technical Reports Server (NTRS)
Baker, Noel C.; Taylor, Patrick C.
2015-01-01
Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.
2013-01-01
A two-step ensemble recentering Kalman filter (ERKF) analysis scheme is introduced. The algorithm consists of a recentering step followed by an ensemble Kalman filter (EnKF) analysis step. The recentering step is formulated such as to adjust the prior distribution of an ensemble of model states so that the deviations of individual samples from the sample mean are unchanged but the original sample mean is shifted to the prior position of the most likely particle, where the likelihood of each particle is measured in terms of closeness to a chosen subset of the observations. The computational cost of the ERKF is essentially the same as that of a same size EnKF. The ERKF is applied to the assimilation of Argo temperature profiles into the OGCM component of an ensemble of NASA GEOS-5 coupled models. Unassimilated Argo salt data are used for validation. A surprisingly small number (16) of model trajectories is sufficient to significantly improve model estimates of salinity over estimates from an ensemble run without assimilation. The two-step algorithm also performs better than the EnKF although its performance is degraded in poorly observed regions.
Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K
2012-01-01
The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.
NASA Astrophysics Data System (ADS)
Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique
2018-05-01
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
NASA Astrophysics Data System (ADS)
Brown, James; Seo, Dong-Jun
2010-05-01
Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.
Ensemble Bayesian forecasting system Part I: Theory and algorithms
NASA Astrophysics Data System (ADS)
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
National Centers for Environmental Prediction
Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Contacts Change Log Events Calendar People Numerical Forecast Systems Ensemble and Post Processing Team
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.
Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil
2016-10-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
Staras, Kevin
2016-01-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture. PMID:27760125
Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat
2016-04-01
Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P < 0.05), while the results for the cumulus-oocyte complex groups were similar between the experimental groups and control groups. The results of this study indicated that platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.
In vitro fertilization of water buffalo follicular oocytes and their ability to cleave in vitro.
Suzuki, T; Singla, S K; Sujata, J; Madan, M L
1992-12-01
Water buffalo (Murrah) oocytes were collected from ovaries obtained from a local slaughterhouse. They were classified according to the character of the cumulus cells under a stereomicroscope and then cultured in 25 mM Hepes buffered tissue culture medium-199 (TCM-199) supplemented with 5% estrous water buffalo serum in an atmosphere containing 5% CO2 in air at 39 degrees C. After 20 to 24 hours of in vitro maturation, the oocytes were cultured at 38.5 degrees C in TCM-199 supplemented with 1% estrous water buffalo serum and in an atmosphere containing 5% CO2 in air. Oocytes with compact and dense cumulus cells cleaved significantly further (P<0.01, 67.3%, 33/49) than those with fair, partially denuded oocytes with thin cumulus layers (27.5%, 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation in fertilization and developmental rates (16.0 to 43.8%) was observed among 4 different bulls. Late morulae were transferred nonsurgically into 14 buffalo recipients on Day 6 or 7 of their estrous cycle. One recipient was diagnosed to be pregnant by palpation per rectum on Day 60 and delivered a calf in October 1991.
Ebner, Thomas; Moser, Marianne; Shebl, Omar; Mayer, Richard; Tews, Gernot
2011-01-01
Objective This prospective study was set up in order to analyze whether additional treatment (cutting off supernumerous cumulus cells; adding hyaluronidase) of the cumulus-oocyte-complex (COC) would help to improve treatment outcome. Material and Methods COCs from 50 patients were prospectively subdivided into a control group A (no manipulation of COC) and two study groups. In group B, surplus cumulus cells were cut off using syringes, and in the second study group COCs were incubated with a 1:11 dilution of hyaluronidase (final concentration 7 IU/l). Main outcome measures were fertilization rate, embryo development, as well as rates of implantation, pregnancy, and live birth. Results Fertilization was higher in group C as compared to the untreated control group A (p<0.05). However, complete fertilization failure could not be avoided by any of the modified IVF approaches. Compaction on day 4 and blastocyst quality on day 5 were significantly improved in group C as compared to group B (but not to group A). Rates of implantation, pregnancy, and live birth were not affected by any of the methods. Conclusion ICSI seems to be the only choice for avoiding the vast majority of fertilization failures after IVF. PMID:24591979
NASA Technical Reports Server (NTRS)
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
Post-processing of multi-model ensemble river discharge forecasts using censored EMOS
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2014-05-01
When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a daily basis over a period of three years. For the two catchments considered, this resulted in well calibrated and sharp forecast distributions over all lead-times from 1 to 114 h. Training observations tended to be better indicators for the dependence structure than the raw ensemble.
NASA Astrophysics Data System (ADS)
Szunyogh, Istvan; Kostelich, Eric J.; Gyarmati, G.; Patil, D. J.; Hunt, Brian R.; Kalnay, Eugenia; Ott, Edward; Yorke, James A.
2005-08-01
The accuracy and computational efficiency of the recently proposed local ensemble Kalman filter (LEKF) data assimilation scheme is investigated on a state-of-the-art operational numerical weather prediction model using simulated observations. The model selected for this purpose is the T62 horizontal- and 28-level vertical-resolution version of the Global Forecast System (GFS) of the National Center for Environmental Prediction. The performance of the data assimilation system is assessed for different configurations of the LEKF scheme. It is shown that a modest size (40-member) ensemble is sufficient to track the evolution of the atmospheric state with high accuracy. For this ensemble size, the computational time per analysis is less than 9 min on a cluster of PCs. The analyses are extremely accurate in the mid-latitude storm track regions. The largest analysis errors, which are typically much smaller than the observational errors, occur where parametrized physical processes play important roles. Because these are also the regions where model errors are expected to be the largest, limitations of a real-data implementation of the ensemble-based Kalman filter may be easily mistaken for model errors. In light of these results, the importance of testing the ensemble-based Kalman filter data assimilation systems on simulated observations is stressed.
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.
2013-09-01
The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.
The total probabilities from high-resolution ensemble forecasting of floods
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2015-04-01
Ensemble forecasting has for a long time been used in meteorological modelling, to give an indication of the uncertainty of the forecasts. As meteorological ensemble forecasts often show some bias and dispersion errors, there is a need for calibration and post-processing of the ensembles. Typical methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). To make optimal predictions of floods along the stream network in hydrology, we can easily use the ensemble members as input to the hydrological models. However, some of the post-processing methods will need modifications when regionalizing the forecasts outside the calibration locations, as done by Hemri et al. (2013). We present a method for spatial regionalization of the post-processed forecasts based on EMOS and top-kriging (Skøien et al., 2006). We will also look into different methods for handling the non-normality of runoff and the effect on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005. Skøien, J. O., Merz, R. and Blöschl, G.: Top-kriging - Geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10(2), 277-287, 2006.
Information flow in an atmospheric model and data assimilation
NASA Astrophysics Data System (ADS)
Yoon, Young-noh
2011-12-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background state estimate with new observations, and the cycle repeats. In an ensemble Kalman filter, the probability distribution of the state estimate is represented by an ensemble of sample states, and the covariance matrix is calculated using the ensemble of sample states. We perform numerical experiments on toy atmospheric models introduced by Lorenz in 2005 to study the information flow in an atmospheric model in conjunction with ensemble Kalman filtering for data assimilation. This dissertation consists of two parts. The first part of this dissertation is about the propagation of information and the use of localization in ensemble Kalman filtering. If we can perform data assimilation locally by considering the observations and the state variables only near each grid point, then we can reduce the number of ensemble members necessary to cover the probability distribution of the state estimate, reducing the computational cost for the data assimilation and the model integration. Several localized versions of the ensemble Kalman filter have been proposed. Although tests applying such schemes have proven them to be extremely promising, a full basic understanding of the rationale and limitations of localization is currently lacking. We address these issues and elucidate the role played by chaotic wave dynamics in the propagation of information and the resulting impact on forecasts. The second part of this dissertation is about ensemble regional data assimilation using joint states. Assuming that we have a global model and a regional model of higher accuracy defined in a subregion inside the global region, we propose a data assimilation scheme that produces the analyses for the global and the regional model simultaneously, considering forecast information from both models. We show that our new data assimilation scheme produces better results both in the subregion and the global region than the data assimilation scheme that produces the analyses for the global and the regional model separately.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
Advanced Atmospheric Ensemble Modeling Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Chiswell, S.; Kurzeja, R.
Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less
Wang, Minghuai; Larson, Vincent E.; Ghan, Steven; ...
2015-04-18
In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared tomore » the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). As a result, improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.« less
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)
2001-01-01
A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.
NASA Astrophysics Data System (ADS)
Arnold, N.; Barahona, D.
2017-12-01
Atmospheric general circulation models (AGCMs) have long struggled to realistically represent tropical intraseasonal variability. Here we report progress in simulating the Madden Julian Oscillation (MJO) with the NASA Goddard Earth Observing System (GEOS) AGCM, in free-running simulations utilizing a new two-moment microphysics scheme and the University of Washington shallow cumulus parameterization. Lag composites of intraseasonal signals show significantly improved eastward propagation over the Indian Ocean and maritime region, with increased eastward precipitation variance and more coherent large-scale structure. The dynamics of the MJO are analyzed using a vertically resolved moisture budget, assuming weak temperature gradient conditions. We find that positive longwave radiative heating anomalies associated with high clouds contribute to low-level ascent and moistening, coincident with intraseasonal precipitation anomalies. Horizontal advection generally damps intraseasonal moisture anomalies, but at some longitudes contributes to their eastward tendency. Shallow convection is enhanced to the east of the intraseasonal precipitation maximum, and its associated moistening of the lower free troposphere encourages eastward propagation of deep convection.
NASA Astrophysics Data System (ADS)
2013-09-01
WE RECOMMEND Marie Curie and Her Daughters An insightful study of a resilient and ingenious family and their achievements Cumulus Simple to install and operate and with obvious teaching applications, this weather station 'donationware' is as easy to recommend as it is to use Alpha Particle Scattering Apparatus Good design and construction make for good results National Grid Transmission Model Despite its expense, this resource offers excellent value Einstein's Physics A vivid, accurate, compelling and rigorous treatment, but requiring an investment of time and thought WORTH A LOOK 3D Magnetic Tube Magnetic fields in three dimensions at a low cost Barton's Pendulums A neat, well-made and handy variant, but not a replacement for the more traditional version Weather Station Though not as robust or substantial as hoped for, this can be put to good use with the right software WEB WATCH An online experiment and worksheet are useful for teaching motor efficiency, a glance at CERN, and NASA's interesting information on the alpha-magnetic spectrometer and climate change
Machine Learning Predictions of a Multiresolution Climate Model Ensemble
NASA Astrophysics Data System (ADS)
Anderson, Gemma J.; Lucas, Donald D.
2018-05-01
Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.
Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng
2014-09-23
The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less
Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model
NASA Astrophysics Data System (ADS)
Fonseca, R. M.; Zhang, T.; Yong, K.-T.
2015-09-01
The successful modelling of the observed precipitation, a very important variable for a wide range of climate applications, continues to be one of the major challenges that climate scientists face today. When the Weather Research and Forecasting (WRF) model is used to dynamically downscale the Climate Forecast System Reanalysis (CFSR) over the Indo-Pacific region, with analysis (grid-point) nudging, it is found that the cumulus scheme used, Betts-Miller-Janjić (BMJ), produces excessive rainfall suggesting that it has to be modified for this region. Experimentation has shown that the cumulus precipitation is not very sensitive to changes in the cloud efficiency but varies greatly in response to modifications of the temperature and humidity reference profiles. A new version of the scheme, denoted "modified BMJ" scheme, where the humidity reference profile is more moist, was developed. In tropical belt simulations it was found to give a better estimate of the observed precipitation as given by the Tropical Rainfall Measuring Mission (TRMM) 3B42 data set than the default BMJ scheme for the whole tropics and both monsoon seasons. In fact, in some regions the model even outperforms CFSR. The advantage of modifying the BMJ scheme to produce better rainfall estimates lies in the final dynamical consistency of the rainfall with other dynamical and thermodynamical variables of the atmosphere.
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; Giangrande, Scott E.
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
NASA Astrophysics Data System (ADS)
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large-eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud top occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time-varying three-dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.
NASA Astrophysics Data System (ADS)
Neggers, R.
2017-12-01
Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask). Powerlaw scaling is still evident, but with a reduced exponent, suggesting that this behavior could be parameterized.
Avoiding the ensemble decorrelation problem using member-by-member post-processing
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2014-05-01
Forecast calibration or post-processing has become a standard tool in atmospheric and climatological science due to the presence of systematic initial condition and model errors. For ensemble forecasts the most competitive methods derive from the assumption of a fixed ensemble distribution. However, when independently applying such 'statistical' methods at different locations, lead times or for multiple variables the correlation structure for individual ensemble members is destroyed. Instead of reastablishing the correlation structure as in Schefzik et al. (2013) we instead propose a calibration method that avoids such problem by correcting each ensemble member individually. Moreover, we analyse the fundamental mechanisms by which the probabilistic ensemble skill can be enhanced. In terms of continuous ranked probability score, our member-by-member approach amounts to skill gain that extends for lead times far beyond the error doubling time and which is as good as the one of the most competitive statistical approach, non-homogeneous Gaussian regression (Gneiting et al. 2005). Besides the conservation of correlation structure, additional benefits arise including the fact that higher-order ensemble moments like kurtosis and skewness are inherited from the uncorrected forecasts. Our detailed analysis is performed in the context of the Kuramoto-Sivashinsky equation and different simple models but the results extent succesfully to the ensemble forecast of the European Centre for Medium-Range Weather Forecasts (Van Schaeybroeck and Vannitsem, 2013, 2014) . References [1] Gneiting, T., Raftery, A. E., Westveld, A., Goldman, T., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133, 1098-1118. [2] Schefzik, R., T.L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling. To appear in Statistical Science 28. [3] Van Schaeybroeck, B., and S. Vannitsem, 2013: Reliable probabilities through statistical post-processing of ensemble forecasts. Proceedings of the European Conference on Complex Systems 2012, Springer proceedings on complexity, XVI, p. 347-352. [4] Van Schaeybroeck, B., and S. Vannitsem, 2014: Ensemble post-processing using member-by-member approaches: theoretical aspects, under review.
A comparison of breeding and ensemble transform vectors for global ensemble generation
NASA Astrophysics Data System (ADS)
Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan
2012-02-01
To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.
NASA Astrophysics Data System (ADS)
Wang, Yuanbing; Min, Jinzhong; Chen, Yaodeng; Huang, Xiang-Yu; Zeng, Mingjian; Li, Xin
2017-01-01
This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to implement. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from time-lagged ensemble into variational cost function without significantly increasing computational cost. Single observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is evaluated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a continuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-lagged ensembles. Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved precipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like a viable alternative or supplement in the complex models for some weather service agencies that have limited computing resources to conduct large size of ensembles.
Decadal climate prediction in the large ensemble limit
NASA Astrophysics Data System (ADS)
Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.
2017-12-01
In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.
NASA Astrophysics Data System (ADS)
Firl, G. J.; Randall, D. A.
2013-12-01
The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been included in THOR to drive existing microphysical and radiation parameterizations with samples drawn from the trivariate PDF. THOR has been tested in a single-column model framework using standardized test cases spanning a range of large-scale conditions conducive to both shallow cumulus and stratocumulus clouds and the transition between the two states. The results were compared to published LES intercomparison results using the same cases, and the gross characteristics of both cloudiness and boundary layer turbulence produced by THOR were within the range of results from the respective LES ensembles. In addition, THOR was used in a single-column model framework to study low cloud feedbacks in the northeastern Pacific Ocean. Using initialization and forcings developed as part of the CGILS project, THOR was run at 8 points along a cross-section from the trade-wind cumulus region east of Hawaii to the coastal stratocumulus region off the coast of California for both the control climate and a climate perturbed by +2K SST. A neutral to weakly positive cloud feedback of 0-4 W m-2 K-1 was simulated along the cross-section. The physical mechanisms responsible appeared to be increased boundary layer entrainment and stratocumulus decoupling leading to reduced maximum cloud cover and liquid water path.
Interpolation of property-values between electron numbers is inconsistent with ensemble averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda-Quintana, Ramón Alain; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1; Ayers, Paul W.
2016-06-28
In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integermore » electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem’s surroundings in determining its properties.« less