Science.gov

Sample records for cunhaporanga granitic complex

  1. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    NASA Astrophysics Data System (ADS)

    Day, Warren C.; Weiblen, P. W.

    1986-07-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite ( S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite ( I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.

  2. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    USGS Publications Warehouse

    Day, W.C.; Weiblen, P.W.

    1986-01-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite (S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite (I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield. ?? 1986 Springer-Verlag.

  3. Petrological features of the Santa Teresa Granitic Complex Southeastern Uruguay

    NASA Astrophysics Data System (ADS)

    Muzio, Rossana; Artur, Antonio Carlos

    1999-09-01

    The Santa Teresa Granitic Complex, located in the north-eastern region of the Rocha Department (Eastern Uruguay), is an epizonal Late-Brasiliano granite intruded in the low-grade metasedimentary sequence of the Rocha Group. Twelve different facies types, each with distinctive structural-petrographic features, were recognized during detailed mapping (1:50,000) of the central-eastern part of the granitic complex and form two magmatic suites. The Santa Teresa Calk-alkaline Suite is composed of mostly porphyritic 3a-3b granites with variable amounts of biotite, sphene, allanite, magnetite and microgranular enclaves and belongs to a middle to high potassium calk-alkaline series with high silica contents. In contrast, the Sierra de la Blanqueada Peraluminous Suite has a great variation of grain size, including 3a-3b granitic facies with variable content of muscovite, biotite, tourmaline, ilmenite and monazite. Zircon morphology was studied in both suites and also shows their calk-alkaline and peraluminous nature. The Santa Teresa Calk-alkaline Suite had a Late- to Post-orogenic setting whereas the Sierra de la Blanqueada Peraluminous Suite was formed during the crustal thickening related to a syn-collisional environment.

  4. Geochemistry and origin of granitic rocks, Scourian Complex, NW Scotland

    NASA Astrophysics Data System (ADS)

    Pride, C.; Muecke, G. K.

    1982-11-01

    Concordant granite sheets from the granulite facies Scourian Complex, N.W. Scotland exhibit the following features: 1) a common planar fabric with their host pyroxene granulites; 2) the presence of an exsolved ternary feldspar phase; 3) a low-pressure, water-saturated minimum composition; 4) K/Rb ratios (450 1,350) distinctly higher than most upper crustal granites but similar to the surrounding granulites; 5) low absolute concentrations of the rare earth elements (REEs), light REE enrichment, and large positive Eu anomalies. It is proposed that the granite sheets have originated by anatexis of gneisses undergoing granulite facies metamorphism — gneisses that were already essentially dry and depleted in incompatible elements. Their unusual trace element chemistry may be explained by either disequilibrium melting and/or sub-solidus reequilibration of the granite sheets with the surrounding gneisses. Isotopic and trace element data suggest that cross-cutting, potash-rich pegmatites represent reworking of the granite sheets during a later amphibolitization.

  5. Changes in complex resistivity during creep in granite

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1986-01-01

    A sample of Westerly granite was deformed under constant stress conditions: a pore pressure of 5 MPa, a confining pressure of 10 MPa, and an axial load of 170 MPa. Pore volume changes were determined by measuring the volume of pore fluid (0.01 M KClaq) injected into the sample. After 6 days of creep, characterized by accelerating volumetric stain, the sample failed along a macroscopic fault. Measurements of complex resistivity over the frequency range 0.001-300 Hz, taken at various times during creep, showed a gradual increase in both conductivity and permittivity. When analysed in terms of standard induced polarization (IP) techniques, the changing complex resistivity resulted in systematic changes in such parameters as percent frequency effect and chargeability. These results suggest that it may be possible to monitor the development of dilatancy in the source region of an impending earthquake through standard IP techniques. ?? 1986 Birka??user Verlag.

  6. Age of granites of Wrangel Island metamorphic complex

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sergeev, Sergey; Sokolov, Sergey; Tuchkova, Marianna

    2014-05-01

    Within huge arctic shelf of Eastern-Siberian and Chukchi seas the metamorphic basement (Wrangel complex, Berri Formation) is exposed only on the Wrangel Island. There are different points of views on the age of metamorphic rocks of Wrangel complex (Berri Formation): (1) Neoproterozoic (Kameneva, 1970; Ageev, 1979; Kos'ko et al., 1993, 2003), (2) Devonian (Til'man et al., 1964, 1970; Ganelin, 1989). Metamorphic basement is represented by stratified complex, composed of dislocated metavolcanic, metavolcaniclastic and metasedimentary rocks (schists, metasandstones, metaconglomerated) with single lenses and layers of carbonate rocks (Wrangel Island…, 2003). Among basement rocks in the central part of Wrangel Island there are felsic intrusive bodies. They form small tabular bodies from tens centimeters to 70-80 meters in thickness, rarely dikes and small stocks (up to 20 x 30 m) and are composed of granite-porphyres, rarely muscovite porphyr-like granites and granosyenites (Wrangel Island…, 2003). The age of intrusions allow to determine the age of basement formation. Earlier the age of intrusions was determined by different methods and correlated to the boundary between Neoproterozoic and Paleozoic: K-Ar 570-603 Ma, Pb-Pb 590±50 Ma (S.M. Pavlov, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), Rb-Sr 475±31 Ma (I.M.Vasil'eva, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), U-Pb 609, 633, 677 Ma (Geological Survey of Canada) (Wrangel Island…, 2003; Kos'ko et al., 1993; Cecile et al., 1991). In the lower part of metamorphic rocks of Wrangel complex there are conformable tabular bodies of gneissosed and foliated granitoides. The latter are meramorphosed and transformed in biotite-muscovite-feldspar-quartz-sericite and muscovite-feldspar-quartz-sericite gneisses and schists, where relics of primary minerals (quartz, plagioclase, potassium feldspar, rarely biotite and muscovite) and equigranular granitic

  7. The late Tonian Zhaunkar granite complex of the Ulutau sialic massif, Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Tretyakov, A. A.; Degtyarev, K. E.; Salnikova, E. B.; Shatagin, K. N.; Kotov, A. B.; Anisimova, I. V.; Plotkina, Yu. V.

    2017-04-01

    The crystallization age of Zhaunkar granites (829 ± 10 Ma) was determined by U-Pb zircon dating. Taking into account the data obtained earlier on the granite age (791 ± 7 Ma) in the Aktas Complex and the syenite age (673 ± 2 Ma) in the Karsakpai Complex, the Ulutau sialic massif is assumed to be composed of three igneous complexes formed during the Tonian-Cryogenian periods of the Neoproterozoic.

  8. Geochemistry and petrogenesis of Proterozoic granitic rocks from northern margin of the Chotanagpur Gneissic Complex (CGC)

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra S.; Wanjari, Nishchal; Ahmad, Talat; Chaturvedi, Rajesh

    2016-07-01

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses the possible petrogenetic process and source characteristics. These granites are associated with Barabar Anorthosite Complex and Neo-proterozoic Munger-Rajgir group of rocks. The granitic litho-units identified in the field are grey, pink and porphyritic granites. On the basis of geochemical and petrographic characteristics, the grey and pink granites were grouped together as GPG while the porphyritic granites were named as PG. Both GPG and PG are enriched in SiO2, K2O, Na2O, REE (except Eu), Rb, Ba, HFSE (Nb, Y, Zr), depleted in MgO, CaO, Sr and are characterised by high Fe* values, Ga/Al ratios and high Zr saturation temperatures (GPGavg˜ 861 ∘C and PGavg˜ 835 ∘C). The REE patterns for GPG are moderately fractionated with an average (La/Yb)N˜ 4.55 and Eu/Eu* ˜ 0.58, than PG which are strongly fractionated with an average (La/Yb)N˜ 31.86 and Eu/Eu* ˜ 0.75. These features indicate that the granites have an A-type character. On the basis of geochemical data, we conclude that the granites are probably derived from a predominant crustal source with variable mantle involvement in a post-collisional setting.

  9. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China

    NASA Astrophysics Data System (ADS)

    Li, He; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Li, Cong-ying; Liu, Dun-yi; Sun, Wei-dong

    2014-07-01

    Haiyang granite complex consists of K-feldspar granite and syenite, with a total exposure area of ~ 600 km2. The K-feldspar granite is metaluminous (A/CNK = 0.70 to 0.99) and the syenite is slightly peraluminous (A/CNK = 1.01 to 1.10), both of which have typical characteristics of A-type granite with high total alkali contents and FeOT/(FeOT + MgO) ratios. Zircon U-Pb age are 116.8 ± 1.7 Ma and 115.8 ± 2.2 Ma, for the K-feldspar granite and the syenite, respectively. This is consistent with field observation that the syenite intruded into the K-feldspar granite. Varied zircon O isotope (5.65-7.78‰ for K-feldspar granite and 4.68-7.08‰ for syenite) with peak values that are marginally higher than those of mantle zircon reflects important mantle contributions. These together with large variation of zircon εHf(t) values of K-feldspar granite (- 22.4 to - 15.6) and syenite (- 24.6 to - 13.5), can best be explained by the involvement of at least two components, e.g., enriched lithospheric mantle +/- subducted materials, and upwelling asthenosphere. Apatite has right decline REE pattern. The apatite from K-feldspar granite has higher Cl contents than those of syenite, implying more influence from a subduction released fluid in K-feldspar granite source. This distinction is supported by the systematically higher oxygen fugacity of K-feldspar granite as indicated by zircon Ce4 +/Ce3 + ratios. In the Yb/Ta-Y/Nb, Ce/Nb-Y/Nb diagrams, both K-feldspar granite and syenite plot in A1-type, with K-feldspar granite plotting closer to A2. In the Nb-Y-3Ga and Nb-Y-Ce charts, syenite plots near the boundary between A1 and A2, whereas some K-feldspar granite samples plot in A2 field, indicating a tendency of transition originally from A2 to A1. In general A1 granites form in intraplate settings, whereas A2 granite forms in post-collision. It is likely that mantle components metasomatized by subduction released fluids are easier to be partially melted, forming K-feldspar granite

  10. Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Harris, N. B. W.; Marriner, G. F.

    1980-10-01

    A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.

  11. Petrogenesis of two types of Late Triassic granite from the Guandimiao Complex, southern Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxia; Miao, Baihu; Xu, Zhaowen; Lu, Jianjun; Liu, Lei; Zuo, Changhu; Lu, Rui; Wang, Hao

    2017-06-01

    Two types of Late Triassic granite are found in the Guandimiao Complex of the South China Block (SCB). Here, we present new LA-ICP-MS zircon U-Pb ages as well as geochemical and Sr-Nd-Pb-Hf isotopic data in order to elucidate the genesis of these granites. The Guandimiao Complex, located in southern Hunan Province, consists dominantly of the Shizhuqiao two-mica alkali feldspar granite and the Jingtou hornblende-bearing biotite monzogranite. The latter contains abundant microgranular enclaves. Zircon U-Pb isotopic analyses show that the microgranular enclaves and the two types of granite were all emplaced during the Late Triassic (226-220 Ma). The Shizhuqiao peraluminous granite has high (87Sr/86Sr)i ratios (0.72173-0.72485), enriched εNd(t) and εHf(t) values (-9.6 to -9.4 and -10.5 to -5.5, respectively), and Pb isotopic compositions similar to those of the metamorphic basement of the Cathaysia Block (part of the SCB), implying derivation from the crust. The granite's low molar CaO/(MgO + FeOT) ratios and high molar Al2O3/(MgO + FeOT) ratios indicate a metasedimentary source. The Jingtou metaluminous granite exhibits εHf(t) values (-10.0 to -5.6) that are similar to those of the Shizhuqiao granite, but it has lower (87Sr/86Sr)i ratios (0.71326-0.71454) and higher εNd(t) values (-7.2 to -6.6). Its high ratios of molar CaO/(MgO + FeOT) and low ratios of molar Al2O3/(MgO + FeOT) suggest an amphibolitic source. The microgranular enclaves contain acicular apatite and are more mafic than their hosts. The combined textural, geochemical, and isotopic data indicate that the enclaves in the Jingtou granite originated from a more mafic crust-derived melt that was injected into the host felsic melt. The geochemical signatures indicate that the microgranular enclaves and the two types of coeval granite that constitute the Guandimiao Complex were derived from different source rocks. The Late Triassic granites in the SCB were emplaced in an extensional post-orogenic setting

  12. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex

    USGS Publications Warehouse

    Hill, M.; Barker, F.; Hunter, D.; Knight, R.

    1996-01-01

    rocks and formed siliceous melting-precipitating cells (SMPCs) (see, e.g., Huppert and Sparks, 1988). This mass of siliceous magma blocked ascent of denser mafic magmas to higher levels in the crust; hence the RLS is confined to a series of circumferential lobes around the periphery of the Bushveld Complex. Diapirs rose from the SMPCs to form sheets of Nebo Granite, which ascended in the center of the Bushveld Complex and spread laterally along the upper contacts of the RLS lenses.

  13. The Neocene Magmatism in South Gangdese, Tibet and its tectonic significance: Evidences from Namuru Granitic Complex

    NASA Astrophysics Data System (ADS)

    Dong, G.; Mo, X.

    2011-12-01

    There are lots of granitic intrusions in the western Gangdese, Tibet. Namuru granite complex is one of the typical intrusions with various gabbro inclusions and mafic micro-granular enclaves (shortly MME). Field investigation has found the gradually transitional relationship between the gabbro inclusions and granite with abundant MMEs. It is lithologically biotite granite and few granodiorite for Namuru complex. The chemical analyses show that the SiO2 varies from 65-76%, average 73% for the granite and 48.5-55.6%, average 51%. The total alkali contents are high in both the granite (K2O+Na2O= 5.50%~8.71%) and mafic rocks (4.42~6.7%). The REE pattern is flat and slightly declining with no clearly Eu anomaly with the total content from up to 284.75ppm and lowest of 105.35ppm in the granite and up to 120.38ppm, and lowest 72.48×10-6 in the gabbro rocks. The normalized trace element spider is quite similar in the both with K element enriched and Nb, Ti depleted. Zircon LA-ICP-MS U-Pb dating for 4 samples both granite and gabbro inclusions gave the age of 46.11±0.78Ma, 45.47±0.4Ma, 46.7±2.9Ma and 45.4±1.4Ma respectively, falling into a range of 45.4-46.7Ma of crystalling age. All the characters indicated that magma mixing had happened between granite and mafic magma during the Neocene (45.4-46.7Ma), forming the vast granitic and gabbro rocks as an important magmatic event in western Gangdese. It happens to be consistent with the duration (40.0-52.5Ma) for the known magma mixing and underplating in eastern to middle Gangdese, such as Quxu and Xigarze. It probably represents the giant magma event with magma mixing and underplating in Gangdese during early Neocene. Therefore it was inferred, on the basis of magmatic rocks, that the collision between India-Eurasian continents are acting simultaneously in both eastern and western Gangdese in Eocene, resulting in basaltic magma underplating below and then magma mixing along whole Gangdese belt and formation of the

  14. Southern complex: geology, geochemistry, mineralogy, and mineral chemistry of selected uranium- and thorium-rich granites

    SciTech Connect

    Hoffman, M.A.

    1987-01-01

    Four major rock groups are defined in the Southern Complex: the Bell Creek Granite (BCG), the Clotted Granitoids (CGR), the Albite Granite (AGR), and the Migmatite Complex. Metatexites of the Migmatite Complex are the oldest rocks and include paleosome of a metasedimentary and metavolcanic protolith represented by Banded Iron Formation, Banded Amphibolite, and Banded Gneisses, and interlayered or crosscutting leucogranites. The CGR span the range from metatexite to diatexite and represent in-situ partial melting of metapelitic layers in the protolith during intrusion of the BCG. The BCG cuts the migmatites, is locally cut by the CGR, and was derived by partial melting of a dominantly metasedimentary protolith at some depth below the presently exposed migmatites during a regional tectonothermal event. The Albite Granite is a 2km diameter, muscovite-fluorite-columbite-bearing intrusive stock that cuts all other major units. The thorium history of the BCG is a function of the history of monazite. The thorium history of the CGR is also dominated by monazite but the thorium content of this unit cannot be entirely accounted for by original restite monazite. The uranium history of the BCG and CGR was dominated by magmatic differentiation and post magmatic, metamorphic and supergene redistributions and is largely independent of the thorium history. The thorium and uranium history of the AGR was dominated by magmatic/deuteric processes unlike the BCG and CGR.

  15. Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex

    SciTech Connect

    Sauerer, A.; Troll, G. )

    1990-01-01

    Hercynian S-type granites from the Hauzenberg igneous complex show a range of boron concentration from 1 to 12 ppm. The whole-rock boron data are not significantly correlated with concentrations of other trace elements (Zr, Rb, Ba, Sr, Ni, V, Co, Cu, Zn, F); neither is boron correlated with the major elements (except with sodium) or with the differentiation index (DI). The boron budget in the rock-forming minerals (plagioclase, alkali feldspar, quartz, biotite, muscovite) of the tourmaline-free granites reveals that the highest concentrations of boron occur in muscovite, whereas the greatest amount of boron is incorporated in plagioclase (57-69%) due to its high modal amount. Boron in plagioclase increases with the extent of of sericitization (obtained by X-ray diffractometry). Muscovite in a pegmatite contains more than 50% of the total boron. The areal distribution of boron within the complex is neither uniform nor random; an increase of boron concentrations from granodioritic to granitic rocks is indicated, whereas the late differentiates are depleted in boron.

  16. Origin and interaction of some alkalic and silicic plutons in the Vermilion Granitic Complex, NE Minnesota

    SciTech Connect

    McCall, G.W.; Nabelek, P.I.; Bauer, R.L.; Glascock, M.D.

    1985-01-01

    Alkalic gabbros and tonalites comprise a significant portion of the Archaean crust in the Vermilion Granitic Complex of NE Minnesota. The origin of these and associated rocks has been modeled using major and trace element approaches. Samples of the alkalic gabbro collected from three different intrusions have similar major element, REE, and transition metal concentrations. The REE patterns of these rocks can be modeled as the result of 1% to 3% melting of an undepleted garnet herzolite mantle with REE concentrations three times that of chondrites. However, their Al/sub 2/O/sub 3//CaO ratios of 2 - 3, Sr content of 900-1400 ppm and Ba of 100 - 1600 ppm suggest that the source may have been an enriched, metasomatized mantle. The hornblendites associated with these alkalic rocks have REE patterns which are consistent with crystallization and accumulation from the gabbroic magma. Major and trace element modeling suggest that the granitic dikes which are common throughout the area may be residual liquids formed by 60% crystallization of plagioclase, biotite, hornblende and apatite from the nearby tonalites such as the Burntside of Wakemup Bay plutons. Porphyritic hornblende monzonites composed of centimeter sized hornblende crystals floating in a granitic matrix occur locally. The field relations as well as the major and trace element data are consistent with the formation of these monzonitic rocks by mixing of the granite with partially consolidated hornblendite. These results suggest a complex interaction between alkalic gabbros and tonalites involving fractionation and mixing during the development of the Archaean crust of NE Minnesota.

  17. Palaeomagnetism of the Ezhimala Granite-Granophyre-Gabbro Complex, Southwest Coast of India

    NASA Astrophysics Data System (ADS)

    Joseph, Mathew; Perrin, Mireille; Radhakrishna, Tallavjhala; Dautria, Jean Marie; Camps, Pierre; Balasubramonium, G.

    2010-05-01

    The igneous complex at Ezhimala, southwestern coast of India, consists mainly of granite, granophyre and gabbro and is cut by dolerites. It occurs as a linear ridge with a NNW-SSE trend. This complex is considered to be Precambrian in age, following Rb-Sr determinations at 678 Ma. Paleomagnetic samples were collected from one site in the doleritic dyke and six sites in the complex, out of which three are from gabbro, two from granophyre and one from granite. The high-temperature susceptibility measurements on selected specimens from each site have indicated magnetite as the main carrier of magnetization. Samples were subjected to detailed step-wise alternating field demagnetisation. After removal of a secondary viscous component, a characteristic mean remanent magnetization could be estimated for all samples. The mean directions per sites are very well defined with 95 confidence circles between 2.5° and 5.0° (kappa between 243 and 580). The mean paleomagnetic direction associated with the complex corresponds to D/I = 308.6/-58.9 (k = 473 and α95 = 3.1°) with a paleopole position at 66.0°W/19.4°N. This direction is almost identical to the direction obtained from the cross-cutting doleritic dyke with D/I = 301.8/-62.9 (kappa = 755 and α95 = 1.9°), and similar to 90 Ma poles derived from other areas in south western India (St. Mary Group of Islands, leucogabbro dykes of central and north Kerala and dykes of the Coimbatore-Agali area). Therefore palaeomagnetic analysis of the complex strongly suggests a Cretaceous age for the Ezhimala complex and would indicate a much more widespread magmatic activity around 90 Ma along the south western coast of India. Geochemical studies and Ar-Ar dating of the complex are in progress to confirm the paleomagnetic observation.

  18. The Paleoproterozoic Singo granite in south-central Uganda revealed as a nested igneous ring complex using geophysical data

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Katumwehe, Andrew B.; Atekwana, Estella A.; Le Pera, Alan K.; Achang, Mercy

    2016-04-01

    We used high-resolution airborne magnetic and radiometric data and satellite gravity data to investigate the form of occurrence of the Paleoproterozoic Singo granite in west-central Uganda. This granitic body covers an area of ∼700 km2, intrudes Paleoproterozoic crystalline rocks and overlain by Paleoproterozoic-Mesoproterozoic sedimentary rocks, both of which belong to the Rwenzori terrane, and it is host to hydrothermally-formed economic minerals such as gold and tungsten. Our analysis provided unprecedented geometrical details of the granitic body and revealed the following: (1) the margins of the Singo granite are characterized by a higher magnetic signature compared to the interior of the granitic body as well as the surroundings. These anomalies are apparent in both the total magnetic field and horizontal derivative images and define eight overlapping ring features. (2) the depth continuation of these magnetic anomalies define outward but steeply-dipping features as indicated by the tilt images extracted from the airborne magnetic data. This is further supported by forward modeling of the magnetic and gravity data. (3) the Singo granite is characterized by relatively high and evenly-distributed equivalent concentration of Uranium (eU) and Thorium (eTh) compared to the surroundings and this is apparent in the Potassium (K)-eTh-eU radiometric ternary image. (4) the granitic body is defined by a gravity low anomaly that persisted to a depth of three km as shown by the Bouguer anomaly image and its five km upward continuation. We used these observations to identify this granitic body as a nested igneous ring complex and we refer to it as the Singo Igneous Ring Complex (SIRC). We further interpreted the eight ring structures as individual igneous ring complexes aligned in an E-W and NE-SW direction and these were developed due to repeated calderas collapse. Additionally, we interpreted the ring-shaped magnetic anomalies as due to hydrothermally-altered margins

  19. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    USGS Publications Warehouse

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial

  20. Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan

    PubMed Central

    Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654

  1. Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.

    PubMed

    Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.

  2. Osa Creek gabbro-granite ring complex, Sierra Nevada, CA, by degassing-driven subsidence of mafic-magmatic sheets

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Moore, J. G.

    2010-12-01

    Intrusive ring complexes commonly represent the shallow substrates of calderas, with arcuate intrusions forming as ring dikes engulfing subsiding caldera blocks, and as cone sheets injected during magmatic repressurization. The Osa Creek ring complex, southern Sierra Nevada batholith, differs in having formed by axial subsidence of solidifying gabbro-diorite sheets that injected a coeval mushy granitic magma body. The result is a remarkable nearly circular (6×10 km) steep-sided bimodal intrusive body, exposed 60 km east of Porterville and 30 km southwest of Owens Lake on the east side of the Kern Canyon. Zircon ages (SHRIMP) of both gabbro and granite are 146 ±1.5 Ma (1-sigma), slightly younger than, or concurrent with, the Independence Dike Swarm. Much of the structure is hornblende-biotite gabbro and diorite (SiO2, 47-51 wt %) emplaced as sheets 0.1-5 m thick, with each mafic sheet commonly chilled against and separated by thin (1-25 cm) septa of lighter colored and coarser rock ranging from granite to hornblende-plagioclase pegmatite. Mutually intrusive relations indicate that the septa were partly molten during sheet injection. In the outer portions of the complex the mafic sheets strike parallel to the margins and dip vertically-to-steeply radially inward. Dips of mafic sheets shallow toward the center of the complex, and are sub-horizontal in the center, defining a cup or basin structure. At least 28 thicker (5-250 m) conformable granitic sheets (SiO2, 70-77 wt. %) are spaced through the gabbroic layers and are increasingly thicker and abundant toward the higher elevation outer edges of the structure. Granite sheets also dip steeply inward, further defining the basin-shaped structure. Subsidence of the complex’s interior is indicated by rotation of igneous geopetal (way-up) indicators. These are in the form of small flames and pipes (to ~10 cm across) of the comagmatic inter-sheet septa granitoids that inject adjacent mafic sheets consistently toward the

  3. Granite intrusion in a metamorphic core complex: The example of the Mykonos laccolith (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Denèle, Y.; Lecomte, E.; Jolivet, L.; Lacombe, O.; Labrousse, L.; Huet, B.; Le Pourhiet, L.

    2011-03-01

    The Aegean domain is a well-suited place to study the formation of metamorphic core complex (MCC) and to investigate the role of syn-tectonic granites on their development. In the northern Cyclades, the Mykonos-Delos-Rhenia MCC is characterized by the intrusion of a kilometer-scale Late Miocene pluton of I-type granitoids within a migmatitic gneiss dome. New combined AMS (anisotropy of magnetic susceptibility) and microstructural studies on the Mykonos granitoids together with recently published thermochronological data allow us to use the granitoids as strain markers. The Mykonos granitoids form a laccolith-like intrusion with a N70°E long axis. The laccolith is strongly asymmetric with an outlying root zone to the SW and a major body mainly developed to the NE. The laccolith construction is due to successive pulses of more or less differentiated magma that intruded the Cycladic Blueschist Unit. The attitude of stretching markers suggests an important (about 60°) vertical-axis local rotation phenomenon in the cycladic upper crust during the exhumation of the Mykonos MCC. Structural data suggest a four-stage evolution of the Mykonos MCC: (i) a first stage characterized by flat shearing toward the N-NE and by the formation of a domal structure in migmatitic paragneisses with multi-scale generation of folds with axes either perpendicular or parallel to the regional stretching, as a result of the interplay between regional N20°E-directed extension and EW shortening; (ii) a second stage marked by the emplacement of the Mykonos laccolith at 13.5 ± 0.3 Ma at the top of the migmatitic paragneisses; (iii) the third stage corresponding to the development of protomylonitic foliations and lineations in the whole laccolith in high to medium temperature conditions; and (iv) the late stage marked by an acceleration of the exhumation of the Mykonos MCC. This exhumation was accommodated by important rotations of upper crustal blocks. During the end of the exhumation processes

  4. Temporal and compositional variation within the Early Paleogene Silhouette/North Island A-type Granite Complex, Seychelles

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Yeh, M. W.

    2016-12-01

    The Main Islands of the Seychelles are primarily composed of Neoproterozoic ( 750 Ma to 800 Ma) granites that were formed at an Andean-type margin. The Early Paleogene Silhouette/North Island volcano-plutonic complex is located to the NW of the Main Islands and is attributed to magmatism associated with the eruption of the Deccan Traps and rifting of the Seychelles microcontinent from India. The zircon 206Pb/238U ages show that the silicic volcanic and plutonic rocks from Silhouette are generally older (i.e. 64.9 ± 1.6 Ma to 62.3 ± 0.8 Ma) than the rocks from North Island (i.e. 61.0 ± 0.8 Ma to 60.6 ± 0.7 Ma). The Danian-Selandian age of the Silhouette/North Island complex is younger than the peak eruption time of the Deccan Traps (i.e. 65 ± 1 Ma) suggesting that it was emplaced during the continental rifting/sea-floor spreading transition. The granitic rocks from both islands are compositionally ferroan and alkalic (ACNK < 1; Na+K/Al = 0.8 to 1.1) and correspond to within-plate granites. The whole rock Sr and Nd and zircon Hf isotopes reveal that there are subtle differences between the islands with Silhouette generally have higher 87Sr/86Sri (0.7035 to 0.7061) ratios, and lower ɛNd(t) (+0.5 to +2.9) and ɛHf(t) (+3.8 to +5.2) values than North Island (87Sr/86Sri = 0.7036 to 0.7041; ɛNd(t) = +1.4 to +3.8; ɛHf(t) = +4.6 to +6.2). The granitic rocks were likely derived by fractional crystallization of parental magmas similar to the composition of the volumetrically minor mafic intrusive rocks found on each island. The modeling conditions that produce the best results are hydrous (H2O ≤ 1.5 wt%), slightly reducing (FMQ ≤ 0) and shallow pressure (≤ 0.3 GPa). Crustal contamination is documented within the rocks from Silhouette but appears to be negligible or absent within the North Island rocks. The spatial and temporal differences between the two islands can be explained by the movement of the plate over the magma source as the Seychelles microcontinent

  5. Contact metamorphism, partial melting and fluid flow in the granitic footwall of the South Kawishiwi Intrusion, Duluth Complex, USA

    NASA Astrophysics Data System (ADS)

    Benko, Z.; Mogessie, A.; Molnar, F.; Severson, M.; Hauck, S.; Lechler, P.; Arehart, G.

    2012-04-01

    The footwall of the South Kawishiwi Intrusion (SKI) a part of the Mesoproterozoic (1.1 Ga) Duluth Complex consists of Archean granite-gneiss, diorite, granodiorite (Giant Range Batholith), thin condensed sequences of Paleoproterozoic shale (Virginia Fm.), as well as banded iron formation (Biwabik Iron Fm). Detailed (re)logging and petrographic analysis of granitic footwall rocks in the NM-57 drillhole from the Dunka Pit area has been performed to understand metamorphic processes, partial melting, deformation and geochemical characteristics of de-volatilization or influx of fluids. In the studied drillhole the footwall consists of foliated metagranite that is intersected by mafic (dioritic) dykes of older age than the SKI. In the proximal contact zones, in the mafic dykes, the orthopyroxene+clinopyroxene+plagioclase+quartz+Fe-Ti-oxide+hornblende±biotite porphyroblasts embedded in a plagioclase+K-feldspar+orthopyroxene+apatite matrix indicate pyroxene-hornfels facies conditions. Migmatitization is revealed by the euhedral crystal faces of plagioclase and pyroxene against anhedral quartz crystals in the in-situ leucosome and by the presence of abundant in-source plagioclase±biotite leucosome veinlets. Amphibole in the melanosome of mafic dykes was formed with breakdown of biotite and implies addition of H2O to the system during partial melting. Towards the deeper zones, the partially melted metatexite-granite can be characterized by K-feldspar+plagioclase+quartz+ortho/clinopyroxene+biotite+Fe-Ti-oxide+apatite mineral assemblage. The felsic veins with either pegmatitic or aplititic textures display sharp contact both to the granite and the mafic veins. They are characterized by K-feldspar+quartz±plagioclase±muscovite mineral assemblage. Sporadic occurrence of muscovite suggest local fluid saturated conditions. Emplacement of gabbroic rocks of the SKI generated intense shear in some zones of the granitic footwall resulting in formation of biotite-rich mylonites with

  6. The mineralogy and geochemistry of quartz-tourmaline schlieren in the granites of the Primorsky Complex, Western Baikal Region

    NASA Astrophysics Data System (ADS)

    Savel'eva, V. B.; Bazarova, E. P.; Kanakin, S. V.

    2014-12-01

    Quartz-tourmaline schlieren have been found within rapakivi-like granites of the Early Proterozoic Primorsky Complex in the Western Baikal Region. These rocks are biotite leucogranites with normal alkalinity (A/CNK = 1.00-1.04); a high iron mole fraction (92-95%); a K2O/Na2O value of about 2.0; relatively high F, Li, Rb, Cs, Sn, Pb, Th, and U contents; and low Ba, Sr, Eu, Zn, Sc, and V contents. The schlieren composed of quartz and tourmaline with relics of feldspar also contain fluorite, rare muscovite, chlorite, and accessory rutile, ilmenite, zircon, monazite, xenotime, and bastnäsite. B2O3 and F contents in the schlieren are 2.29-2.63 and 0.30-0.47 wt %, respectively. Fe2O3 (4.8-5.4 wt %), F, and H2O contents are higher in these schlieren than in the host granite, while SiO2, CaO, Na2O, K2O, and P2O5 contents are lower than in host rocks. K2O/Na2O values decrease in the schlieren down to 0.4. Enrichment of the schlieren in Fe and other ore elements (Zn, Co, Cu, Sn, etc.), together with B, F, H2O, and Na, suggests that they crystallized from fluid-saturated melt segregated from aluminosilicate melt in the apical part of a shallow-seated intrusion. The formation of tourmaline may be related to the interaction of the fluid with feldspars in the crystallizing granites; it was accompanied by a separation of fluid F-CO2. Quartz precipitated at the next stage, due to the acidic character of the aqueous fluid. In general, the relationships of minerals in the schlieren indicate distinct fractionation of LREE, HREE, and Y in the fluid-saturated melt.

  7. Dynamic Topology and Spatio-Temporal Complexity of Stick-Slip Events in Natural Faulted Westerly Granite

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Thompson, B. D.; Young, R.

    2011-12-01

    The patterns of acoustic events prior to and after a stick-slip event are transformed to complex networks and the characteristics of the networks are measured. The patterns are the result of acoustic emission monitoring through loading a cylindrical sample of Westerly granite containing a natural fault [1].Two approaches are implemented in construction of the networks. In the first approach the network is constructed based on nearest neighbour events while the interactions of the main fault with the second and third faults are inspected through analyzing the spatial communities of the networks. The second approach uses a network method on phase space of time series (i.e., constructing a smooth manifold) obtained from the waveforms of over occurrence rank of events [2]. With the later implementation, we characterize the source mechanism of events while we compare the characteristics of the obtained networks (i.e., motif distribution and eigenvector of Laplacian) with the inferred source mechanism from the inverse moment tensor approach. Our results show the correlation of motifs rank evolution with source mechanism. Furthermore, with respect to the shape of triangles (as well as stretching and folding) over spatial complex networks and based on the first approach, the 3 point nodes motif distributions are extended to consider possible statistical geometry of events. Thus, the spatio-temporal complexity and possible coupling of events in time and space in terms of network parameters is inferred. We compare our results with the recent analysis of networks motifs from pure shear rupture associated with sudden variation of contact strings [3]. Keyword:, Stick-sllip; Westerly granite, Acoustic Emission Patterns; Complex Networks, and Motifs Ref. [1] Thompson, B.D., D.A. Lockner and R.P. Young, Premonitory acoustic emissions and stick slip in natural and smooth faulted Westerly granite,J. Geophysical Research, Vol 114, B02205, doi: 10.1029/2008jb005753, 2009. [2] J. F

  8. Hydrothermal metasomatism of a peralkaline granite pegmatite, Khaldzan Buragtag massif, Mongolian Altai; complex evolution of REE-Nb minerals

    NASA Astrophysics Data System (ADS)

    Bagiński, Bogusław; Jokubauskas, Petras; Domańska-Siuda, Justyna; Kartashov, Pavel; Macdonald, Ray

    2016-09-01

    The low-temperature hydrothermal alteration of certain rare-metal minerals is recorded in a quartz-epidote metasomatite from the Tsakhirin Khuduk occurrence in the Khaldzan-Buragtag Nb-REE-Zr deposit, Mongolian Altai. A peralkaline granitic pegmatite was metasomatized by hydrothermal fluids released from associated intrusions, with the formation of, inter alia, chevkinite-(Ce), fergusonite-(Nd) and minerals of the epidote group. The textural pattern indicates recrystallization and coarsening of these phases. Later, low-temperature alteration by fluids resulted in the chevkinite-(Ce) being replaced by complex titanite-TiO2 -cerite-(Ce)-hingganite-hydroxylbastnasite-( Ce) assemblages. Calcite formed late-stage veins and patches. The hydrous fluids were poor in F and CO2 but had high Ca contents.

  9. Measurement and interpretation of strain in the syntectonic Solı´s de Mataojo Granitic Complex, Uruguay

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Heimann, Adriana; Miranda, Sara

    2001-05-01

    The Neoproterozoic Solı´s de Mataojo Granitic Complex is an intrusive body, elongate north-south, emplaced in the Sarandı´ del Yı´-Arroyo Solı´s Grande Shear Zone. In the present work, a quantification of the magmatic strain has been made by analysis of fabric, enclave geometry and minor structures. Structural evidence indicates that deformation began in the magmatic state and continued through the sub-solidus stage. The observed distribution of magmatic foliations and lineations, the fabric, the geometry of the enclaves and the late to post-magmatic structures, are related to a non-coaxial flattening regime that took place after the emplacement, and late in the magmatic history. These structures reveal that magmatic strain involved a shortening of the order of 80% with a simple shear component ( γ) between 3 and 4.5. The solid-state deformation records an additional mean γ of 2.7.

  10. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China

    NASA Astrophysics Data System (ADS)

    Jiao, Shu-Juan; Li, Xian-Hua; Huang, Hui-Qing; Deng, Xi-Guang

    2015-12-01

    Charnockites are Opx-bearing igneous rocks commonly found in high-grade metamorphic terranes. Despite being volumetrically minor, they show a wide range in both bulk geochemistry and intensive parameters. They form a characteristic component of the AMCG (anorthosite-mangerite-charnockite-granite) suite, but their association with typical S-type granites is less well-known. The Darongshan S-type granitic complex (DSGC) in Guangxi Province, southern China, contains granites varying in mafic silicate mineral assemblages from Bt + Crd (Darongshan suite) to Opx + Grt + Bt + Crd (Jiuzhou suite) and Opx + Crd ± Bt (Taima suite), corresponding to a geochemical transition from magnesian calc-alkalic to ferroan calc-alkalic. However, its genesis, even the accurate age of intrusion, remains highly contentious despite intensive research. In order to understand the genesis of charnockite and its genetic relationship with S-type granite; here, we first determined zircon U-Pb ages of each suite using a SIMS on the basis of a detailed petrological study. Zircon U-Pb ages show that all suites of the complex were emplaced contemporaneously at ca. 249 Ma. Monazite apparent U-Pb ages are indistinguishable from zircon U-Pb ages within analytical error. Further in situ zircon Hf-O isotope analyses reveal that the granitic complex was dominantly derived from reduced melting metasedimentary rocks (δ18Ozircon = ca. 11‰; εHf(t)zircon = ca. - 10; Δlog FMQ ≤ 0; Mn in apatite oxybarometer) with rare material input from the mantle. The variation in δ18O (7.8‰-12.9‰) is more likely a result of hybridization, whereas that in εHf(t) (- 31.9 to - 1.8) is a result of both hybridization and disequilibrium melting. The variation in mineralogy and geochemistry may be interpreted as a result of entrainment of peritectic garnets from biotite-dehydration melting. Nevertheless, heat input from mantle through basaltic intrusion/underplating is considered to play a major role in high

  11. Zircon morphology and U-Pb geochronology of seven metaluminous and peralkaline post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Aleinikoff, John Nicholas; Stoeser, D.B.

    1988-01-01

    The U-Pb zircon method was used to determine the ages of seven metaluminous-to-peralkaline post-orogenic granites located throughout the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of about 2-4:1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well developed prismatic faces (are pseudo-octahedral) or are anhedral. Some of the zircons from the peralkaline granites contain inherited radiogenic lead. This complicates interpretation of the isotopic data and. in many cases, may make the U-Pb method unsuitable for determining the age of a peralkaline granite. Zircons in the metaluminous granites do not contain inheritance and thus, best-fit chords calculated through the data have upper concordia intercepts that indicate the age of intrusion, and lower intercepts that indicate simple episodic lead loss. The results show that these granites were emplaced during multiple intrusive episodes from 670 to 510 Ma (Late Proterozoic to Cambrian).

  12. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ~30 km north and ~100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  13. Bokan Mountain peralkaline granitic complex, Alexander terrane (southeastern Alaska): evidence for Early Jurassic rifting prior to accretion with North America

    USGS Publications Warehouse

    Dostal, Jaroslav; Karl, Susan M.; Keppie, J. Duncan; Kontak, Daniel J.; Shellnutt, J. Gregory

    2013-01-01

    The circular Bokan Mountain complex (BMC) on southern Prince of Wales Island, southernmost Alaska, is a Jurassic peralkaline granitic intrusion about 3 km in diameter that crosscuts igneous and metasedimentary rocks of the Alexander terrane. The BMC hosts significant rare metal (rare earth elements, Y, U, Th, Zr, and Nb) mineralization related to the last stage of BMC emplacement. U–Pb (zircon) and 40Ar/39Ar (amphibole and whole-rock) geochronology indicates the following sequence of intrusive activity: (i) a Paleozoic basement composed mainly of 469 ± 4 Ma granitic rocks; (ii) intrusion of the BMC at 177 ± 1 Ma followed by rapid cooling through ca. 550 °C at 176 ± 1 Ma that was synchronous with mineralization associated with vertical, WNW-trending pegmatites, felsic dikes, and aegirine–fluorite veins and late-stage, sinistral shear deformation; and (iii) intrusion of crosscutting lamprophyre dikes at >150 Ma and again at ca. 105 Ma. The peralkaline nature of the BMC and the WNW trend of associated dikes suggest intrusion during NE–SW rifting that was followed by NE–SW shortening during the waning stages of BMC emplacement. The 177 Ma BMC was synchronous with other magmatic centres in the Alexander terrane, such as (1) the Dora Bay peralkaline stock and (2) the bimodal Moffatt volcanic suite located ∼30 km north and ∼100 km SE of the BMC, respectively. This regional magmatism is interpreted to represent a regional extensional event that precedes deposition of the Late Jurassic – Cretaceous Gravina sequence that oversteps the Wrangellia and Alexander exotic accreted terranes and the Taku and Yukon–Tanana pericratonic terranes of the Canadian–Alaskan Cordillera.

  14. Monazite trumps zircon: applying SHRIMP U-Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen

    NASA Astrophysics Data System (ADS)

    Piechocka, Agnieszka M.; Gregory, Courtney J.; Zi, Jian-Wei; Sheppard, Stephen; Wingate, Michael T. D.; Rasmussen, Birger

    2017-08-01

    Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U-Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning 800 million years. In several instances, SHRIMP U-Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U-Th-Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U-Th-Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span 80 million years was emplaced in less than half that time (1688-1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over 70 million years was instead assembled over 130 million years and outlasted associated regional metamorphism by 100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.

  15. Contrasting zircon morphology and UPb systematics in peralkaline and metaluminous post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Aleinikof, J.N.; Stoeser, D.B.

    1989-01-01

    Uzircon ages are reported for seven metaluminous-to-peralkaline post-orogenic granites from the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of ??? 2-4: 1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well-developed prismatic faces (are pseudo-octahedral) or are anhedral. Some zircons from the peralkaline granites contain inherited radiogenic Pb and have very high common Pb contents (206Pb/204Pb < 150), making the UPb method poorly suited for determining the age of these rocks. Zircons in the metaluminous granites do not contain inheritance and yield well-defined concordia intercepts. The span of ages of the seven complexes (670-470 Ma) indicates that post-orogenic granitic magmatism was not a singular event in the Arabian Shield but rather occurred as multiple intrusive episodes from the Late Proterozoic to the Middle Ordovician. ?? 1989.

  16. Vertical structure of a caldera-filling pyroclastics and post-caldera granitic sill: the Middle Miocene Kumano Acidic Rocks emplaced in the Paleogene Shimanto accretionary complex, Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Geshi, N.; Oikawa, T.; Shinjoe, H.; Miura, D.; Koizumi, N.

    2009-04-01

    A 600m all-core drilling penetrated a volcano-plutonic complex associated with middle Miocene Kumano caldera, Kii Peninsula, Southwest Japan. It shows us the vertical cross section of the caldera-filling pyroclastic deposit and granitic sill intruded inside the caldera. The drilling site is located in the southern rim of the north body of Kumano igneous complex. The drilling core consists of the granite porphyry intrusion (Kumano Granite Porphyry) in the upper part (from surface to 464.3 m depth) and the welded tuff (Owase-Shirahama Pyroclastic Rocks) beneath them (464.3 and 600 m depth), which are associated with the caldera formation. The welded tuff in the core sample consists mainly of well-sorted coarse-grained volcanic ash of crystal fragments and lithic fragments. Subordinate amount of pumice fragment more than 10 cm across are scattered. Though most part of the welded tuff in the core sample is massive as observed in the surface outcrops, some parts show remarkable bedding structure. These structural characters suggest that the welded tuff is a pile of many flow units with several 10s meters thick each, which consists of basal pumice-concentrated bed, main massive tuff, and upper bedding part. The lower intrusion boundary of the Kumano Granite Porphyry is exposed at 464.3 m deep, where the granite porphyry intrudes into the host welded tuff with about 10 m thick chilled margin, in which the granite porphyry has very-fine groundmass. The groundmass texture of the granite porphyry shows systematic variation with the distance from the intrusion contact. Within about 20 m from the contact, the groundmass consists of very-fine crystals and entirely shows volcanic rock texture. For 150 m above them, the groundmass consists mainly of quartz and plagioclase and shows equigranular texture. In the upper part (less than 300m deep), the groundmass shows graphic texture with quartz and alkali feldspar. The vertical variation of the groundmass texture indicates upward

  17. Role of magma pressure, tectonic stress and crystallization progress in the emplacement of syntectonic granites. The A-type Estrela Granite Complex (Carajás Mineral Province, Brazil)

    NASA Astrophysics Data System (ADS)

    Barros, C. E. M.; Barbey, P.; Boullier, A. M.

    2001-12-01

    The Archaean, syntectonic, A-type Estrela Granite Complex (Carajás Mineral Province, Brazil) consists of three plutons emplaced in a greenstone sequence under low-pressure conditions (180< P<310 MPa). It is composed mainly of annite-, ferropargasite (±hedenbergite)- and ilmenite-bearing monzogranites. The contact aureole is affected by a subvertical penetrative schistosity conformable with the limits of the plutons. Meso- to microstructures and mineral reactions in the granites indicate that deformation occurred in a continuum from above-solidus to low- T subsolidus conditions. Two distinct planar structures are observed: (i) a concentrical primary foliation (S 0) corresponding to rhythmic, isomodal, phase layering associated with a faint grain shape fabric; it is horizontal in the centre and vertical towards the edges of the plutons; and (ii) a steep to subvertical foliation (S 1) associated with the deformation of S 0 and accompanied with emplacement of synplutonic dykes and veins of leucocratic granites and pegmatites. Emplacement, differentiation and consolidation of the Estrela Granite Complex are considered to result from a continuous evolution under decreasing temperatures in a single-stage strained crust (transpression), with two main periods. (1) The first period is controlled by body forces, and it corresponds to inflation with magma ponding. As long as the rheology is melt dominated, magma pressure is the critical parameter and almost no strain is recorded. With decreasing T, magmas crystallize and differentiate leading to a concentrical magmatic phase layering. The growing magmatic bodies are mechanically decoupled from the country rocks and their evolution depends on internal magma chamber processes. (2) For higher amount of crystallization (residual melt fraction F<0.5), the role of magma pressure becomes insignificant. Establishment of a continuous crystal framework leads to the coupling of plutons with their surroundings, and deformation in

  18. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  19. Niobium in hydrothermal systems related to alkali granites: Thermodynamic description of hydroxo and hydroxofluoride complexes

    NASA Astrophysics Data System (ADS)

    Lukyanova, E. V.; Akinfiev, N. N.; Zotov, A. V.; Rass, I. T.; Kotova, N. P.; Korzhinskaya, V. S.

    2017-07-01

    Available experimental data on the solubility of Nb2O5 and the stability constants for particles of an aqueous solution in the Nb-O-H-F system were processed. As a result, a set of thermodynamic properties for 25°C and 1 bar was obtained, in addition to the equation parameters for the HKF model (Helgeson-Kirkham-Flowers) for hydroxo and hydroxofluoride niobium complexes. F- ion is the most important factor governing the concentration of dissolved Nb: neutral hydroxo complex Nb(OH)5(aq) is formed at a low HF concentration, whereas an increase in HF results in an increase in the first Nb(OH)4F(aq) and second Nb(OH)3F2(aq) fluoride complexes. The Nb(OH)5F- oxofluoride anion determines oxide solubility in alkali F-bearing fluids. Neutralization of acidic fluoride solution can be the main factor leading to niobium deposition.

  20. Pluton-dyke relationships in a Variscan granitic complex from AMS and gravity modelling. Inception of the extensional tectonics in the South Armorican Domain (France)

    NASA Astrophysics Data System (ADS)

    Turrillot, P.; Faure, M.; Martelet, G.; Chen, Y.; Augier, R.

    2011-11-01

    The Carnac granitic Complex (South Armorican Domain, Western France) was emplaced during Late Carboniferous times in the deepest Variscan unit, roofed by two major extensional shear zones. Through the acquisition and interpretation of field data, Anisotropy of Magnetic Susceptibility and gravity data, emphasized by petrological and structural observations, we address the emplacement model and possible magmatic processes involved between dyking to massive plutonism in a synkinematic context. Gravity modelling highlights an overall eastward thinning of the pluton, and several deep zones in the western part of the complex, interpreted as the pluton feeder zones. The internal granitic fabric, developed in a sub-solidus state, shows marked planar-linear anisotropy, consistent with a vertical shortening in the WNW-ESE regional stretching regime and eastward magma spreading. This study documents the occurrence of numerous NNE-SSW trending dykes within the eastern part of the pluton, suggesting that this granitic Complex formed by the coalescence of dykes oriented perpendicular to the regional stretching direction, and thus interpreted as large-scale “tension gashes”. The synkinematic character of the Carnac Complex intrusion, recently dated at ca. 319 ± 6 Ma, thus times the inception of the late-orogenic extensional deformation experienced in the whole South Armorican Domain.

  1. Rhyolites in caldera complexes: away from granitization but toward numerical models with hydrothermal preconditioning

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander; Bindeman, Ilya

    2010-05-01

    We here present results of geochemical investigation and modeling of remelting conditions of rocks that have undergone chemical change in the process of hydrothermal alteration inside of large caldera complexes with high heat flux. Similar conditions exist in rift zones and may characherize early stages of magmatism on the Earth. Oxygen isotope and geochemical investigations of calderas in Yellowstone, Long Valley, and Kamchatka have lead to the model of rapid flash-remelting of hydrothermally-altered rhyolites using the heat of basaltic magmas. These models are based on consideration of zircon geochronology and rapid timescales of magma generation from geologic data. Finite element 2D convective model runs include rhyolitic phase diagram, and we used some effective representation of magma viscosity in the temperature range 500-900°C and with crystal content below 0.50 vol. %. Viscosity description exactly follows experimental data on smooth transition of viscosity at subsolidus temperatures taken at strain rate 10^-13 s^-1. Dynamic power-law rheology was used for magmas with low melt fraction at steady state according to recent data of Lavallée et al. (2007). Thermal and chemical evolution of underlying rhyolite-solid silicified roofrock system was considered with varying silica concentration and oxygen isotopic ratios in the hydrothermally-altered layer. The main results of numerical model are: 1. Convection in lower rhyolitic layer system is rather effective even at the thermally insulated bottom due to the gravity instability of the two-phase zone at the melting front. 2. Condition for the onset of convective melting is rather close to the simple conductive estimate of the melting temperature to be the mean of rock and intruded magma. 3. Dependence of the viscosity on the strain rate leads to the wave-like embayments at the rock-magma interface, which accelerates melting process. 4. If the lower layer is represented by the superheated (>50°C) rhyolite, the

  2. The relationship between forceful and passive emplacement: The interplay between tectonic strain and magma supply in the Rosses Granitic Complex, NW Ireland

    NASA Astrophysics Data System (ADS)

    Stevenson, Carl

    2009-03-01

    The Rosses Granitic Complex, NW Ireland, part of the late Caledonian (c. 400 Ma) Donegal Batholith, provides the opportunity to study the interplay between relative tectonic strain and magma supply rates in the wall of a major tectonic shear zone. Anisotropy of magnetic susceptibility (AMS) measurements, structural analysis and examination of key intrusive relationships were used to assess the accommodation of magma, associated deformation and magma flow pathways in this complex. In this case the varying emplacement styles, switching from forceful to passive, indicate that relative tectonic strain and magma supply rates were not constant. In the earliest component (a suite of microgranite sheets), AMS reveals subtle fabrics discordant to the sheet margins and is interpreted as post-emplacement deformation fabrics. The concordance of these fabrics to the next component of the complex, the main pluton (G1 and G2 monzogranite), indicates that this deformation was caused by the forceful emplacement of the pluton. AMS fabrics in G1 and G2 reveal a dome shaped foliation with an east-west lineation, indicating an east-west oriented magma transport direction. Outcrops of small stocks or cupolas similar to G2, east of the main pluton, link it to similar lithologies in the Main Donegal Granite further to the east via a partially exposed lateral feeder. This suggests east to west emplacement. The next component, a suite of subvertical porphyritic felsite dykes, is shown (from AMS and visible shearing fabrics) to have been emplaced passively under east-west tension. The final component comprises G3 and G4 of the main pluton, which passively cut all earlier components and contains significant amounts of aplite, pegmatite and greisen. These are interpreted to be cupolas or stocks emanating from an unexposed sheet probably similar in composition and mode of emplacement to G1 and G2. Thus, a general model is put forward where initially forceful subhorizontal sheets extending

  3. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Saikia, Ashima; Gogoi, Bibhuti; Ahmad, Mansoor; Ahmad, Talat

    2014-06-01

    The Bathani volcanic and volcano-sedimentary (BVS) sequence is a volcanic and volcano-sedimentary sequence, best exposed near Bathani village in Gaya district of Bihar. It is located in the northern fringe of the Chotanagpur Granite Gneiss Complex (CGGC). The volcano-sedimentary unit comprises of garnet-mica schist, rhyolite, tuff, banded iron formation (BIF) and chert bands with carbonate rocks as enclaves within the rhyolite and the differentiated volcanic sequence comprises of rhyolite, andesite, pillow basalt, massive basalt, tuff and mafic pyroclasts. Emplacement of diverse felsic and mafic rocks together testifies for a multi-stage and multi-source magmatism for the area. The presence of pillow basalt marks the eruption of these rocks in a subaqueous environment. Intermittent eruption of mafic and felsic magmas resulted in the formation of rhyolite, mafic pyroclasts, and tuff. Mixing and mingling of the felsic and mafic magmas resulted in the hybrid rock andesite. Granites are emplaced later, cross-cutting the volcanic sequence and are probably products of fractional crystallization of basaltic magma. The present work characterizes the geochemical characteristics of the magmatic rocks comprising of basalt, andesite, rhyolite, tuff, and granite of the area. Tholeiitic trend for basalt and calc-alkaline affinities of andesite, rhyolite and granite is consistent with their generation in an island arc, subduction related setting. The rocks of the BVS sequence probably mark the collision of the northern and southern Indian blocks during Proterozoic period. The explosive submarine volcanism may be related to culmination of the collision of the aforementioned blocks during the Neoproterozoic (1.0 Ga) as the Grenvillian metamorphism is well established in various parts of CGGC.

  4. Genesis of emulsion texture due to magma mixing: a case study from Chotanagpur Granite Gneiss Complex of Eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2016-04-01

    The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic

  5. Provenance of granites used to build the Santa Maria de Valdeiglesias Monastery, Pelayos de la Presa (Madrid, Spain), and conservation state of the monumental complex

    NASA Astrophysics Data System (ADS)

    Fort, R.; Alvarez de Buergo, M.; Vazquez-Calvo, C.; Perez-Monserrat, E. M.; Varas-Muriel, M. J.; Lopez-Arce, P.

    2012-04-01

    The construction of the Cistercian Monastery began at 1180, in an initial Late Romanesque style in which the Church was erected; later on, in 1258, the church underwent a severe fire, only the apse stood standing. The church was reconstructed at the end of the 13th century in Mudejar style. Gothic style was used later on, in the 16th century, for the reconstruction of the funerary chapel, and Renaissance style for the Plateresque door in between the church and the sacristy. At the end of the 16th century, the main door to access the church was built in Baroque style. In 1836, the Ecclesiastical Confiscations resulted on transfer the Monastery into particular owners. This fact favoured its abandon and ruin state until 1979, when architect Mariano Garcia Benito purchased the property and started the conservation and consolidation of the complex, beginning with the Bell Tower. Natural stone materials used in the Monastery are igneous (granite) and metamorphic rocks (gneiss and schist), and artificial stone materials are bricks and mortars, both joint and rendering ones. Granite is the most abundant material used in the complex, with a structural/reinforcing role in elements such as lintels, jambs, buttresses, or bottom areas of the walls with greater sizes and better dimensioned. Some pillars are granite built, from the large ashlars of the sacristy, to the rubble-work of the Mozarab chapel. Two types of monzogranite can be differentiated in relation to distinct constructive stages: the coarse texture monzogranite is used in the first building stages, while the fine texture monzogranite was employed mainly from 17th century on. Petrophysical characteristics of these granites are different but show a good quality to be used in construction. Nevertheless, the abandon and partial ruin of the complex, the devastating fire events (the second one in 1743) leaded to the decay acceleration of the monumental complex, being nowadays the church in ruin, with no roofs and walls

  6. Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria)

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs

    2017-07-01

    Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We

  7. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs

  8. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Ma, Changqian; Zhang, Chao; Wang, Shiming; She, Zhenbing; Liu, Lei; Xu, Haijin

    2013-09-01

    This work presents an integrated study of zircon U-Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic-felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093-0.7127, low ɛNd(t) values ranging from -5.6 to -5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have ɛHf(t) values ranging from -2.7 to 2.6 and model ages of 951-1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053-0.7058, ɛNd(t) values of 0.2-1.6 and corresponding T2DM of 1.0-1.1 Ga. Their zircon grains have ɛHf(t) values ranging from 3.2 to 6.1 and model ages of 774-911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065-0.7117, ɛNd(t) values from -5.7 to -1.9 and Nd model ages of 1.3-1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled

  9. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  10. The geology and petrogenesis of the southern closepet granite

    NASA Technical Reports Server (NTRS)

    Jayananda, M.; Mahabaleswar, B.; Oak, K. A.; Friend, C. R. L.

    1988-01-01

    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases.

  11. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Chen, Yanjing; Zeng, Qingtao

    2012-04-01

    The basement of the Argun massif in the northern Great Hinggan Range consists of the metamorphic supracrustal rocks of the Xinghuadukou Group and associated granitic complexes. The metamorphic supracrustal rocks were previously interpreted as Paleoproterozoic, while the granitic complexes were considered Mesoproterozoic in age. This paper presents new zircon LA-MC-ICP-MS U-Pb ages of biotite-plagioclase leptynite and biotite schist from the Xinghuadukou Group in the Lulin Forest area, Heilongjiang Province; zircon SHRIMP U-Pb ages of biotite-plagioclase gneiss from the Xinghuadukou Group in Lulin Forest; and quartz diorite and monzogranite from the granitic complexes in Mohe County, Heilongjiang Province. New geochronological data from the three metasedimentary rock samples of the Xinghuadukou Group can be preliminarily divided into five groups: (1) 2017-2765 Ma, (2) 1736-1942 Ma, (3) 1359-1610 Ma, (4) 749-1239 Ma, and (5) 448-716 Ma. Except for the zircons of the 448-716 Ma group belonging to a metamorphic origin, the other age groups had the youngest age of 749 ± 17 Ma, indicating that the Xinghuadukou Group formed during the Neoproterozoic era (at least <749 Ma). These detrital zircon ages cluster at ca. 2.0-1.8 Ga and ca. 1.0-0.80 Ga, suggesting that the Argun massif had connections with both Columbia and Rodinia and implying that the provenance of the Xinghuadukou Group metamorphosed sediments must be characteristic of felsic-intermediate igneous rocks with ages of ca. 2.0-1.8 Ga and ca. 1.0-0.80 Ga. The quartz diorite and monzogranite from the granitic complexes of the basement within the Argun massif yielded weighted mean ages of 516 ± 10 Ma and 504 ± 9 Ma, respectively, indicating that these rocks emplaced in the Early Paleozoic. Considering the geochemical and chronological data together, we propose that the Xinghuadukou Group was most likely deposited in a back-arc basin environment, whereas the granitic complexes emplaced in a post-collisional setting

  12. Geochemistry of zircons from basic rocks of the Korosten anorthosite-mangerite-charnockite-granite complex, north-western region of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Belousova, Elena; Petrenko, Oksana

    2017-09-01

    The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten anorthosite-mangerite-charnockite-granite plutonic complex, the Ukrainian Shield. Zircons from the Fedorivka and Torchyn gabbroic intrusions and Volynsky anorthosite massif have distinctive abundances of many trace elements (REE, Sr, Y, Mn, Th). Zircons from the gabbroic massifs are unusually enriched in trace elements, while zircons from pegmatites in anorthosite are relatively depleted in trace elements. High concentrations of trace elements in zircons from gabbroic intrusions can be explained by their crystallization from residual interstitial melts enriched in incompatible elements. The zircons studied demonstrate a wide range of Ti concentrations, which reflects their temperature of crystallization: the zircons most enriched in Ti, from mafic pegmatites of the Horbuliv quarry (20-40 ppm), have the highest temperature of crystallization (845 ± 40 °C). Lower (720-770 °C) temperatures of zircon crystallization in gabbroic rocks are explained by its crystallization from the latest portions of the interstitial melt or by simultaneous crystallization of ilmenite. The Ce anomaly in zircons correlates with the degree of oxidation of the coexisting ilmenite.

  13. Geochemistry of zircons from basic rocks of the Korosten anorthosite-mangerite-charnockite-granite complex, north-western region of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Belousova, Elena; Petrenko, Oksana

    2017-05-01

    The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten anorthosite-mangerite-charnockite-granite plutonic complex, the Ukrainian Shield. Zircons from the Fedorivka and Torchyn gabbroic intrusions and Volynsky anorthosite massif have distinctive abundances of many trace elements (REE, Sr, Y, Mn, Th). Zircons from the gabbroic massifs are unusually enriched in trace elements, while zircons from pegmatites in anorthosite are relatively depleted in trace elements. High concentrations of trace elements in zircons from gabbroic intrusions can be explained by their crystallization from residual interstitial melts enriched in incompatible elements. The zircons studied demonstrate a wide range of Ti concentrations, which reflects their temperature of crystallization: the zircons most enriched in Ti, from mafic pegmatites of the Horbuliv quarry (20-40 ppm), have the highest temperature of crystallization (845 ± 40 °C). Lower (720-770 °C) temperatures of zircon crystallization in gabbroic rocks are explained by its crystallization from the latest portions of the interstitial melt or by simultaneous crystallization of ilmenite. The Ce anomaly in zircons correlates with the degree of oxidation of the coexisting ilmenite.

  14. Isotopic, major and trace element constraints on the sources of granites in an 1800-Ma-old igneous complex near St. Cloud, Minnesota

    SciTech Connect

    Spencer, K.J.

    1987-01-01

    A suite of basic to granitic rocks was emplaced near St. Cloud, MN about 1800 Ma ago. These are strongly LREE enriched and were derived from LREE enriched sources. Nd-Sm systematics suggest that LREE enrichment occurred during the Early Proterozoic. Initial Pb ratios for basic rocks through granites are similar to inferred 1800 Ma old mantle Pb, and suggest sources that became U/Pb enriched during the Proterozoic or latest Archean. These sources had long-term Th/U ratios similar to inferred mantle or average crustal values. Oxygen isotopes indicate that granitic rocks incorporated a small previous crustal component. Petrogenetic modeling suggest these processes: Granodiorite represents an evolved high Mg-andesite or a partial melt of a basic precursor distinct from the nearby basic rocks. Granites and quartz monzonites were derived at temperatures of ca. 800-950 (e.g. water-undersaturated) and at 15 to 20 km depth. The sources are inferred to have been quartz saturated with respect to tholeiite. Because granites have similar isotopic histories as basic, sources of granites were ultimately derived from the mantle. REE and Nd isotope systematics allow these scenarios: (1) 40-75% of the Nd in the rocks was derived from continental crust recycled into the mantle. (2) The mantle source had a chondritic REE geochemistry but was enriched in LREE shortly before melting. (3) The rocks were in fact derived by melting a basic lower crust that included a small fraction of intercalated sedimentary rocks.

  15. Radiological implications of granite of northern Pakistan.

    PubMed

    Asghar, M; Tufail, M; Sabiha-Javied; Abid, A; Waqas, M

    2008-09-01

    Granite is an igneous rock that contains natural radioactivity of primordial radionuclides. In Pakistan, granite is distributed in a vast area called the Ambela Granitic Complex (AGC) in North West Frontier Province (NWFP). Granite is a hard rock that exists in different colours and is used to decorate floors, kitchen counter tops, etc. The use of granite in a building as a decor material is a potential source of radiation dose; therefore, natural radioactivity has been measured in 20 granite samples of the AGC with an HPGe (high purity germanium) based gamma ray spectrometer. The average specific activities and their range (given in parentheses) for primordial radionuclides (40)K, (226)Ra and (232)Th were 1218 (899-1927), 659 (46-6120) and 598 (92-3214) Bq kg(-1), respectively. The measured activity concentrations were used for the assessment of hazard indices and radiation dose which were evaluated based on the permissible limits defined for these parameters. The measured specific activities and the derived quantities, hazard indices and radiation dose, have been compared with those given in the literature for these parameters.

  16. U-Pb-Hf zircon study of two mylonitic granite complexes in the Talas-Fergana fault zone, Kyrgyzstan, and Ar-Ar age of deformations along the fault

    NASA Astrophysics Data System (ADS)

    Konopelko, D.; Seltmann, R.; Apayarov, F.; Belousova, E.; Izokh, A.; Lepekhina, E.

    2013-09-01

    A 2000 km long dextral Talas-Fergana strike-slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar-Ar dating of micas. We also carried out a U-Pb-Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U-Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300-400 °C and caused resetting of the K-Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar-Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions

  17. RESEARCH PAPERS : Palaeomagnetism of the Ross of Mull granite complex, western Scotland: lower Palaeozoic apparent polar wander of the Orthotectonic Caledonides

    NASA Astrophysics Data System (ADS)

    Piper, J. D. A.

    1998-01-01

    The Ross of Mull granite complex was emplaced near the western margin of the Orthotectonic Caledonides of Scotland in early-mid-Silurian times. Anisotropy of magnetic susceptibility reflects the post-tectonic character of the pluton and contrasts with magnetic fabrics in adjoining country rocks which record the regional D3 deformation. Palaeomagnetic study identifies two dominant magnetizations. An `A' component is magnetite-resident with distributed blocking temperatures (100-500°C) and normal polarity (D/I=339/-50°, 30 samples, α95=5.6°, palaeomagnetic pole at 12°E, 1°S, dp/dm=5.0/7.5°) it was probably acquired during initial cooling. A `B' magnetization (unblocking temperatures 500-580°C, D/I=195/+21°, 40 samples, α95=4.3°, palaeomagnetic pole at 339°E, 22°S, dp/dm=2.4/4.5°) is of dual polarity and comparable to magnetizations widely recorded in the Younger Granite Suite of the Scottish Caledonides. It does not correlate with the timing of regional isotopic closure as defined by K/Ar thermochron ages and appears to have been imparted during a regional thermochemical event at low temperatures (~250-150°C) and a late stage of cooling of the orogen (~420-410 Ma). Metamorphic facies in the aureole and adjoining country rocks record examples of both A and B magnetizations, together with a low-blocking-temperature (0-350°C) component acquired during late Palaeozoic/early Mesozoic rifting in the Hebridean Basin. Palaeomagnetic poles from the Orthotectonic Caledonides define a late to post-tectonic magnetization record equivalent to a general east to west apparent polar wander trend of late Ordovician-Lower Devonian age. A short-term reversal of this trend is identified during the earlier part of Silurian times so that mid-late Silurian poles are located in a similar position to late Ordovician poles. The overall path coincides with the contemporaneous record from the Paratectonic Caledonides of England and Wales from c. 455 Ma. It is therefore concluded

  18. Origin of peralkaline granites of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Radain, A. A. M.; Fyfe, W. S.; Kerrich, R.

    1982-01-01

    Small volumes of peralkaline granites were generated as the final phase of a Pan African calc-alkaline igneous event which built the Arabian Peninsula. The peralkaline granites are closely associated with trends or sutures related to ophiolites. Peralkaline rocks are chemically heterogeneous, with anomalous abundances of Zr (average 2,150 ppm±2,600 1σ), Y (200±190), and Nb (105±100), representing up to ten-fold enrichments of these elements relative to abundances in calc alkaline granite counterparts. Large enrichments of some rare earth elements and fluorine are also present. The peralkaline granites have scattered whole rock 18O values, averaging 8.7±0.6% in the Hadb Aldyaheen Complex and 10.7±1% in the Jabal Sayid Complex. Quartz-albite fractionations of 0.5 to 1.5% signify that the heavier whole rock δ-values probably represent the oxygen isotope composition of the peralkaline magma. Small variable enrichments of 18O, in conjunction with slightly elevated 87Sr/86Sr initial ratios relative to broadly contemporaneous calc alkaline granites, are both suggestive of a small degree of involvement of crustal, or crustal derived material in the peralkaline magmas. It is proposed that the peculiar magma genesis is associated with a relaxation event which followed continental collision and underthrusting of salt rich sediments.

  19. Geochemistry and 207Pb/ 206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil)

    NASA Astrophysics Data System (ADS)

    de Araujo, Carlos E. G.; Costa, Felipe G.; Pinéo, Tercyo R. G.; Cavalcante, José C.; Moura, Candido A. V.

    2012-02-01

    The Tamboril-Santa Quitéria Complex is an important Neoproterozoic granitic-migmatitic unit from the Ceará Central Domain that developed from ca. 650 to 610 Ma. In general the granitoids range in composition from diorite to granite with predominance (up to 85%) of granitic to monzogranitic composition with biotite as the main mafic AFM phase. Geochemical and 207Pb/ 206Pb evaporation zircon geochronology studies were applied in a group of these abundant monzogranitic rocks from the region of Novo Oriente in the southern portion of the Ceará Central Domain. In this area the granitoids are weakly peraluminous biotite granitoids and deformed biotite granitoids of high-K calc-alkaline and ferroan composition, which we interpreted as primary magmas (segregated diatexites) derived from the partial melting of crustal material. The close temporal relation of this magmatism with local eclogitic and regional high temperature metamorphism in Ceará Central Domain point out to an orogenic setting, arguably emplaced during the collisional stage. Subordinate coeval juvenile mantle incursions are also present. This crustally derived magmatism is the primary product of the continental thickening that resulted from the collision between the rocks represented by the Amazonian-West African craton (São Luiz cratonic fragment) to the northwest and the Paleoproterozoic-Archean basement of the Borborema Province to the southeast along the Transbrasiliano tectonic corridor.

  20. Petrogenesis of Archean lamprophyres in the southern Vermilion Granitic Complex, northeastern Minnesota, with implications for the nature of their mantle source

    NASA Astrophysics Data System (ADS)

    Wesley McCall, G.; Nabelek, Peter I.; Bauer, Robert L.; Glascock, Michael D.

    1990-07-01

    Petrogenetic modeling of major and trace element and isotopic data is used: 1. to define probable modes of petrogenesis of Archean spessartitic lamprophyric rocks in the southern portion of the Vermilion Granitic Complex (VGC) of northeastern Minnesota, and 2. to place constraints on the nature of the mantle source of these rocks. The lamprophyres range from olto qtz-normative and are associated with cumulate hornblendites and pyroxenites. The silica-rich lamprophyres are shown to be the result of low-pressure fractionation upon emplacement. On the other hand, the composition range of the ol-normative lamprophyres is explained by approximately 40% polybaric fractionation of elinopyroxene + olivine yielding ne-normative liquids. The fractionation explains low Cr, Ni and Sc concentrations compared to primary mantle-derived melts. Modeling of the lamprophyre MgO-FeO compositions using the olivine saturation surface (Hanson and Langmuir 1978) suggests that the 0.42 to 0.55 Mg/(Mg+Fe) ratios of most of the lamprophyres can be explained by the high-pressure fractionation. The model parent melt composition is similar to sanukitoid-type rocks found in Japan and elsewhere in the Superior Province. The lamprophyres have ɛ{/Nd 2700} values of +1.4 to +2.0, indicating derivation from a depleted mantle source. Growth curves on an ɛ Nd vs. age diagram are consistent with the extraction of the lamprophyres from a depleted source (Sm/Nd>chondrite) just prior to 2700 Ma, the accepted age of the VGC. The lamprophyres have fractionated REE patterns (Ce/Ybn=10 15) that indicate genesis by a) 1% to 3% fusion of a pristine garnet lherzolite or b) ˜10% fusion of an enriched mantle source. However, consideration of the pressure of melting and elemental plots of Al and Ti indicate that garnet was not a residual phase during lamprophyre genesis. Thus, the enrichment of the LREE (80 100 x chondrite), Sr (580 1400 ppm), and Ba (590 1600 ppm) indicate derivation from an enriched mantle

  1. Two-stage Uplift of Granite-Gneiss-Migmatite Complex (GGMC) of Çataldaǧ Core Complex (Western Anatolia, Turkey): the role of detachment faults on uplift processes

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2016-04-01

    The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.

  2. Petrogenesis of synorogenic diorite-granodiorite-granite complexes in the Damara Belt, Namibia: Constraints from U-Pb zircon ages and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Jung, S.; Kröner, A.; Hauff, F.; Masberg, P.

    2015-01-01

    the granite, this rock type cannot be considered as a fractionation product of the quartz diorites and therefore represents likely a melting product of the underlying felsic basement. We also report data from two quartz diorite samples collected in the north and east of the Palmental area. They plot off the trends defined by the other quartz diorites. Palaeoproterozoic Nd model ages of 2.1 Ga and distinct Pb isotopic data indicate a Palaeoproterozoic mean crustal residence age for the source material. We conclude that these samples belong to the nearby Goas and Okongava quartz diorites. For these rocks, based on a previous model and a comparison with results from amphibolite-dehydration melting experiments, a high-K meta-tholeiite melted at 1000-1050 °C is a likely source. Isotopic data obtained on samples of the Palmental complex make a Pan African subduction zone setting unlikely for these rocks. It is concluded that the most primitive Palmental quartz diorites recording moderately evolved Nd and Sr isotope data (εNd(t): -2.7, 87Sr/86Sr: 0.706) reflect an isotope composition typical of aged subcrustal lithospheric mantle.

  3. Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Laul, J. C.

    1987-03-01

    The Harney Peak Granite (1.7 b.y.) in the Black Hills, South Dakota, is a well-exposed granite complex surrounded by a rare-element pegmatite field (barren to Nb-, Ta-, Be, Li-enriched pegmatites). It consists of a multitude of large and small sills and dikes, which exhibit great variation in texture, mineralogy and geochemistry. This granite is moderately to strongly peraluminous with the following mineralogy: plagioclase (An 0-An 21) + potassium feldspar (Or 70-96) + quartz + muscovite ± apatite ± biotite ± garnet ± tourmaline. The granitic intrusions in the interior of the complex have similar K/Rb ratios (> 190), whereas this ratio decreases and is more variable for intrusions which are structurally higher or along the perimeter of the complex. Substitutions of (Fe, Mn)Mg -1 in the ferromagnesian minerals, NaCa -1 in plagioclase and RbK -1 in muscovite and potassium feldspar increase in the perimeter granites and vary systematically with K/Rb. These more evolved intrusions are commonly enriched in incompatible elements such as Nb, Li, Cs, Be, and B and depleted in Ba, Ca, and Sr relative to the interior, primitive granites. Biotite-bearing assemblages are common in the interior granites but are replaced by tourmaline-bearing granites in the more evolved intrusions. A series of discontinuous reactions may explain this assemblage transition. Observations and trace element modeling suggest that: (1) within individual units volatile transfer mechanisms have resulted in mineral and chemical segregation; (2) 75-80% fractional crystallization of a primitive biotite-muscovite granite was the dominant mechanism in producing the more evolved tourmaline-bearing granites; and (3) extreme fractional crystallization aided by high volatile activity produced the associated rare-element pegmatites.

  4. The GRANIT spectrometer

    SciTech Connect

    Baessler, Stefan; Beau, M; Kreuz, Michael; Nesvizhevsky, V.; Kurlov, V; Pignol, G; Protasov, K.; Vezzu, Francis; Voronin, Vladimir

    2011-01-01

    The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces; as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL. It has been constructed in framework of an ANR grant; and will become operational in 2011.

  5. Fractal patterns of fractures in granites

    USGS Publications Warehouse

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-01-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: 1. (1)|The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). 2. (2)|Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. 3. (3)|Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis. ?? 1991.

  6. Lead isotopic evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota, USA

    NASA Astrophysics Data System (ADS)

    Krogstad, Eirik J.; Walker, Richard J.; Nabelek, Peter I.; Russ-Nabelek, Carol

    1993-10-01

    The lead isotopic compositions of K-feldspars separated from the ca. 1700 Ma Harney Peak Granite complex and spatially associated granitic pegmatites indicate that these rocks were derived from at least two sources. It has been reported previously that the core of the Harney Peak Granite complex is dominated by relatively lower/ gd18O (avg. 11.5 %.) granites, whereas higher / gd18O (avg. 13.2%.) granites occur around the periphery of the complex. The higher δ 18O granites and one simple pegmatite have low values of 207Pb /204Pb for their 206Pb /204Pb Thus, they likely were derived from a source with a short crustal residence time. This source may have been the pelitic schists into which the Harney Peak Granite complex and pegmatites were intruded. Feldspars from granites with lower / gd18O values have significantly higher 207Pb /204Pb for their 206Pb /204Pb . The data define a linear array with a slope equivalent to an age of ca. 2.6 Ga with t 2 defined to be 1.7 Ga. Such a slope could represent a mixing array or a secondary isochron for the source. These low δ18O granites could have been derived from a source with a high U/ Pb and with a crustal residence beginning before the Proterozoic. The source (s) of these granites may have been a sediment derived from late Archean continental crust. The highly evolved Tin Mountain pegmatite has lead isotopic systematics intermediate between those of the two granite groups, suggesting either a mixed source or contamination. Two late Archean granites, the Little Elk Granite and the Bear Mountain Granite, had precursors with high U/Pb and low Th/U histories. The Th/U history of the Bear Mountain Granite is too low for this rock to have been an important component of the source of the Proterozoic granites. However, crustal rocks with lead isotopic compositions similar to those of the Little Elk Granite were an important source of lead for some of the Proterozoic granitic rocks.

  7. Climax granite test results

    SciTech Connect

    Ramspott, L.D.

    1980-01-15

    The Lawrence Livermore Laboratory (LLL), as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) program, is carrying out in situ rock mechanics testing in the Climax granitic stock at the Nevada Test Site (NTS). This summary addresses only those field data taken to date that address thermomechanical modeling for a hard-rock repository. The results to be discussed include thermal measurements in a heater test that was conducted from October 1977 through July 1978, and stress and displacement measurements made during and after excavation of the canister storage drift for the Spent Fuel Test (SFT) in the Climax granite. Associated laboratory and field measurements are summarized. The rock temperature for a given applied heat load at a point in time and space can be adequately modeled with simple analytic calculations involving superposition and integration of numerous point source solutions. The input, for locations beyond about a meter from the source, can be a constant thermal conductivity and diffusivity. The value of thermal conductivity required to match the field data is as much as 25% different from laboratory-measured values. Therefore, unless we come to understand the mechanisms for this difference, a simple in situ test will be required to obtain a value for final repository design. Some sensitivity calculations have shown that the temperature field is about ten times more sensitive to conductivity than to diffusivity under the test conditions. The orthogonal array was designed to detect anisotropy. After considering all error sources, anisotropic efforts in the thermal field were less than 5 to 10%.

  8. Mo-mineralized porphyries are relatively hydrous and differentiated: insights from the Permian-Triassic granitic complex in the Baituyingzi Mo-Cu district, eastern Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Liu, Jianming; Zeng, Qingdong; Wang, Jingbin; Wang, Yuwang; Hu, Ruizhong; Zhou, Lingli; Wu, Guanbin

    2016-12-01

    Mo-Cu mineralization in the Baituyingzi district of eastern Inner Mongolia occurs within a granitic complex. This paper presents and discusses zircon U-Pb ages and whole-rock geochemical and Sr-Nd-Pb isotopic data from the granitic complex as potential indicators for porphyry Mo fertility. The U-Pb ages indicate that five units of the granitic complex were emplaced between 265.2 ± 0.7 and 246.5 ± 1.0 Ma. Constrained by crosscutting dikes, Mo-Cu mineralization was probably related to the Baituyingzi monzogranite porphyry dated at 248.2 ± 0.64 Ma. The intrusions belong to high-K calc-alkaline to shoshonitic series that are characterized by highly fractionated rare earth element (REE) patterns and strong enrichments of large ion lithophile elements, relative to high-field strength elements. Apart from the ˜246-Ma dike that shows negative ɛNd (t) values (-14.9 to -13.1), the intrusions have ɛNd(t) values ranging from -3.9 to 1.0, relatively young depleted mantle model ages (811 to 1183 Ma), 206Pb/204Pb of 18.137-18.335, and 207Pb/204Pb of 15.591-15.625, which are consistent with a juvenile lower crustal origin. Among the intrusions, the ˜248-Ma porphyry and the ˜246-Ma dike show adakite-like characteristics (e.g., Sr/Y = 44.9-185) and listric-shaped REE patterns that indicate amphibole fractionation and a hydrous magma source. However, the porphyry exhibits a higher differentiation index (81.4-91.5) and a steeper REE profile (e.g., LaN/YbN = 25.6-87.0) than those of the ˜246-Ma dike, which suggests that it is highly differentiated. We propose that the complex was generated by the partial melting of juvenile mafic lower crust (containing minor old crustal relicts) that was triggered by collision between the North China Craton and Siberian Craton. As indicated by the Th/Nb, Th/Yb, Ba/Th, and Ba/La ratios of the intrusions, the crust may have been derived from the melting of the fertile mantle wedge that was metasomatized by various amounts of slab-derived fluids

  9. Mo-mineralized porphyries are relatively hydrous and differentiated: insights from the Permian-Triassic granitic complex in the Baituyingzi Mo-Cu district, eastern Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Liu, Jianming; Zeng, Qingdong; Wang, Jingbin; Wang, Yuwang; Hu, Ruizhong; Zhou, Lingli; Wu, Guanbin

    2017-08-01

    Mo-Cu mineralization in the Baituyingzi district of eastern Inner Mongolia occurs within a granitic complex. This paper presents and discusses zircon U-Pb ages and whole-rock geochemical and Sr-Nd-Pb isotopic data from the granitic complex as potential indicators for porphyry Mo fertility. The U-Pb ages indicate that five units of the granitic complex were emplaced between 265.2 ± 0.7 and 246.5 ± 1.0 Ma. Constrained by crosscutting dikes, Mo-Cu mineralization was probably related to the Baituyingzi monzogranite porphyry dated at 248.2 ± 0.64 Ma. The intrusions belong to high-K calc-alkaline to shoshonitic series that are characterized by highly fractionated rare earth element (REE) patterns and strong enrichments of large ion lithophile elements, relative to high-field strength elements. Apart from the ˜246-Ma dike that shows negative ɛNd ( t) values (-14.9 to -13.1), the intrusions have ɛNd( t) values ranging from -3.9 to 1.0, relatively young depleted mantle model ages (811 to 1183 Ma), 206Pb/204Pb of 18.137-18.335, and 207Pb/204Pb of 15.591-15.625, which are consistent with a juvenile lower crustal origin. Among the intrusions, the ˜248-Ma porphyry and the ˜246-Ma dike show adakite-like characteristics (e.g., Sr/Y = 44.9-185) and listric-shaped REE patterns that indicate amphibole fractionation and a hydrous magma source. However, the porphyry exhibits a higher differentiation index (81.4-91.5) and a steeper REE profile (e.g., LaN/YbN = 25.6-87.0) than those of the ˜246-Ma dike, which suggests that it is highly differentiated. We propose that the complex was generated by the partial melting of juvenile mafic lower crust (containing minor old crustal relicts) that was triggered by collision between the North China Craton and Siberian Craton. As indicated by the Th/Nb, Th/Yb, Ba/Th, and Ba/La ratios of the intrusions, the crust may have been derived from the melting of the fertile mantle wedge that was metasomatized by various amounts of slab

  10. Granite Symposia and Working Groups

    NASA Astrophysics Data System (ADS)

    Miller, Calvin

    In addition to the Hutton Symposium on Granites and Related Rocks to be held in Canberra, Australia, Sept. 23-28, 1991, two other international symposia on granitoids will take place during 1991: the inaugural meeting and field excursion of the proposed IGCP project Rapakivi Granites and Related Rocks, to be held in Helsinki, Finland, July 29-August 4, and Granites and Geodynamics, to be held in Moscow, August 6-9. Contacts for these meetings are: Hutton Symposium, Bruce Chappell, Dept. of Geology, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia; Rapakivi Granites, Ilmari Haapala or Tapani Ramo, Dept. of Geology, Division of Geology and Mineralogy, University of Helsinki, Snelmaninkatu 5, 60170 Helsinki 17, Finland. Melt segregation and migration in partly molten rocks will be the topic of a special session at the Geological Association/Mineralogical Association of Canada meeting in Toronto, May 27-29, 1991.

  11. Magmatic origin and fluid alteration versus inheritance: Complex history of accessory minerals from I-type granites from northern Victoria Land (Antarctica)

    NASA Astrophysics Data System (ADS)

    Menneken, M.; John, T.; Läufer, A.; Berndt, J.; Henjes-Kunst, F.; Giese, J.

    2016-12-01

    When reconstructing the formation and evolution of Earths earliest crust, one is still heavily reliant on information that can be gathered from detrital zircon grains, which have been proven to be a useful tool concerning the various isotopic, chemical, and mineralogical features that can be utilized within. However, detailed investigations have shown that some of these tracers might be prone to alteration and will not necessarily reflect conditions during formation [1, 2]. In this study, zircons and their host rocks from the Granite Harbour Intrusives (GHI) of northern Victoria Land, Antarctica, have been investigated with respect to regional evolution of continental crust as well as the reliability of zircon as a recorder of crustal formation. Here we present U-Pb, δ18O, trace element and inclusion data of zircons from Cambro-Ordovician granitoids, as well as geochemical analyses of accessory apatites. Our initial results show that even in I-type granitoids with a presumably simple formation history, U-Pb-age data and related isotopic, chemical, or mineralogical features have to be evaluated carefully in order to constrain the timing of magmatic events, inheritance or fluid alteration events. They do, for example, incorporate a large portion of recycled material, which is clearly reflected by a strong component of inherited U-Pb-zircon ages, but can also be inferred by comparing main- and trace-element compositions of apatite inclusions in zircon with accessory apatites. Apatite inclusions from all investigated samples for example, are clearly higher in F concentration, than their accessory counterparts. However, not all zircon grains record the youngest event, emphasizing that not only alteration might be a key factor to consider when evaluating zircon characteristics with respect to their host rock, but also, the timing and preservation of predating features. [1] Rasmussen et al. (2011) Metamorphic replacement of mineral inclusions in detrital zircon from Jack

  12. Petrogenetic modeling of a potential uranium source rock, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Stuckless, J.S.; Miesch, A.T.

    1981-01-01

    Previous studies of the granite of Lankin Dome have led to the conclusion that this granite was a source for the sandstone-type uranium deposits in the basins that surround the Granite Mountains, Wyo. Q-mode factor analysis of 29 samples of this granite shows that five bulk compositions are required to explain the observed variances of 33 constituents in these samples. Models presented in this paper show that the origin of the granite can be accounted for by the mixing of a starting liquid with two ranges of solid compositions such that all five compositions are granitic. There are several features of the granite of Lankin Dome that suggest derivation by partial melting and, because the proposed source region was inhomogeneous, that more than one of the five end members may have been a liquid. Data for the granite are compatible with derivation from rocks similar to those of the metamorphic complex that the granite intrudes. Evidence for crustal derivation by partial melting includes a strongly peraluminous nature, extremely high differentiation indices, high contents of incompatible elements, generally large negative Eu anomalies, and high initial lead and strontium isotopic ratios. If the granite of Lankin Dome originated by partial melting of a heterogeneous metamorphic complex, the initial magma could reasonably have been composed of a range of granitic liquids. Five variables were not well accounted for by a five-end-member model. Water, CO 2 , and U0 2 contents and the oxidation state of iron are all subject to variations caused by near-surface processes. The Q-mode factor analysis suggests that these four variables have a distribution determined by postmagmatic processes. The reason for failure of Cs0 2 to vary systematically with the other 33 variables is not known. Other granites that have lost large amounts of uranium possibly can be identified by Q-mode factor analysis.

  13. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kotler, P. D.; Khromykh, S. V.; Vladimirov, A. G.; Navozov, O. V.; Travin, A. V.; Karavaeva, G. S.; Kruk, N. N.; Murzintsev, N. G.

    2015-06-01

    Geological and new geochronological data are summarized for the Kalba-Narym granitic batholith in eastern Kazakhstan, and their geodynamic interpretation is suggested. In the structure of the batholith, we consider (from late to early) the Kunush plagiogranitic complex, the Kalguta granodiorite-granitic association, and the Kalba granitic, Monastery leucogranitic, and Kainda granitic complexes. The granitic complexes of the Kalba-Narym batholith were formed between the Carboniferous-Permian and the Early-Middle Permian (˜30 Ma). New data indicate that formation of the Kalba-Narym batholith was related to the activity of the Tarim mantle plume. Heating of the lithosphere by the plume coincided with postcollision collapse of the orogenic structure and led to the crust melting and formation of the studied granitic complexes in a relatively short period.

  14. The Evaluation of Complex Borehole Geophysics and Corescanning: for Detailed Characterization of Oriented Fracture Sets, Zones, and Hydraulic Flow on Different Scales. A Case Study: Moragy Granite, Mecsek Mts., Hungary

    NASA Astrophysics Data System (ADS)

    Maros, G.; Zilahi-Sebess, L.; Dudko, A.; Koroknai, Z.

    2005-12-01

    Our presentation outlines the methodology to determine the relationship between fractures and flow systems, and it tries to homogenize the results deriving from methods of different resolutions in a geological model. The granite suffered multi-phase brittle deformation during the Alpine orogene, the fractures renewed several times and were filled with multi-generation infillings. The cores were scanned with the ImaGeo system, the fractures were oriented, characterized in detail from geological and geophysical point of views, and structurally evaluated. A structural model was sketched (Maros et al 2004). The results were refined by the information received from geophysical data, primarily from well-logging (Zilahi-Sebess et al 2003), but radar measurements, crosshole velocity tomography were also used (Toros et al 2004). Transmissivity in granite: 10-6-10-12, main fractures: 10-6-10-5 m2/s. Porous and fracture flow models were set up (Benedek et al 2003, Balla et al 2004). Correlations were found between the core-logging and the well-logging: acoustic openness, density, acoustic velocity, resistivity versus fracture frequency, fracture zones versus HPF influx places. The complex evaluation made the determination of the size and dip of fracture zones more precise. The flow characteristics of individual fractures and fracture zones, however, are influenced by their unique features; no parameter-group can be selected that definitely produces permeable or impermeable fractures. The interpretation of the observations carried out on different scales can be done in several ways. One method is to use methods of different resolutions densely enough to be representative. We examined the relation of information deriving from high resolution methods and the well-logging. On the basis of the depth-trends it is possible to extrapolate the information around the borehole. The relationship with the geophysical surveys is possible through the resistivity and acoustic measurements

  15. Magmatic Enclaves in Granitic Rocks: Paragons or Parasites?

    NASA Astrophysics Data System (ADS)

    Clemens, John; Stevens, Gary; Elburg, Marlina

    2017-04-01

    have commonly undergone hybridisation through mixing with deep crustal melts and both chemical and mechanical interactions with wall rocks and their host granitic magmas. As a result of this complex and chaotic set of processes, it remains extremely difficult to unravel the precise mechanisms that produced a given suite of ME magmas. Due to the similarities between the studied granites and their ME with occurrences worldwide, we suggest that our findings are likely to be generally applicable.

  16. The main features of the interaction of mantle magmas with granulite complexes of the lower crust and their relationship with granitic melts (exemplified by the Early Caledonides of the West Baikal Region, Russia)

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexandr; Khromykh, Sergei; Mekhonoshin, Alexei; Volkova, Nina; Travin, Alexei; Mikheev, Evgeny; Vladimirova, Anna

    2016-04-01

    Granulite complexes occurring in the Early Caledonian southern folded framing of the Siberian Craton are deeply eroded fragments of the Vendian-Early Paleozoic accretionary prism, which is an indicator of the early stages of the Paleo-Asian Ocean (Gladkochub et al., 2010). The main feature of the granulite complexes is a wide development of gabbro-pyroxenites composing tectonic plates, synmetamorphic intrusive bodies, and numerous disintegrated fragments (boudins and enclaves), immersed in a metamorphic matrix. The volume of basites reaches 5-10 %, which allows us to consider mantle magmatism as a heat source for the granulite metamorphism. The most studied polygon is Chernorud granulite zone, which is a part of the Olkhon metamorphic terrane, West Baikal Region. Just this polygon was used for considering the problems of interaction of mantle magmas with lower crust granulite complexes and their relationship with granitic melts. The Chernorud Zone is a typical example of the accretionary prism with a predominance of metabasalts (70-80 %), subordinate amounts of marbles, quartzites and metapelites that have been subjected to granulite facies metamorphism and viscoelastic flow of rock masses. Study of two-pyroxene granulites (metabasalts) and garnet-sillimanite gneisses (metapelites) allows us to estimate P-T metamorphic conditions (P = 7.7-8.6 kbar, T = 770-820°C) and their U-Pb metamorphic age (530-500 Ma). Metabasalts correspond in their geochemistry to the island-arc tholeiitic series (Volkova et al., 2010; Gladkochub et al., 2010). Sin-metamorphic gabbro-pyroxenites formed in two stages: 1) Chernorud complex - tectonic slices and body's exhumed from deep earth crust levels (10-12 kb) and composed of arc tholeiitic series rocks (age T ≥ 500 Ma); 2) Ulan-Khargana complex - supply magmatic canals and fragmented tabular intrusions. This rocks composition corresponds to subalkaline petrochemical series (OIB) and U/Pb age is equal to 485±10 Ma (Travin et al., 2009

  17. Vermont granite workers' mortality study.

    PubMed

    Costello, J; Graham, W G

    1988-01-01

    A cohort mortality study was carried out in Vermont granite workers who had been employed between the years 1950 and 1982. The cohort included men who had been exposed to high levels of granite dust prior to 1938-1940 (average cutters to 40 million parts/cubic foot), and those employed at dust levels after 1940, which on average were less than 10 million parts/cubic foot. Deaths were coded by a qualified nosologist and standardized mortality ratios were calculated. The results confirm previous studies that show that death rates from silicosis and tuberculosis, the major health threats in the years before 1940, were essentially eliminated after dust controls. However, we found excessive mortality rates from lung cancer in stone shed workers who had been employed prior to 1930, and hence had been exposed to high levels of granite dust. When information was available, 100% of those dying from lung cancer had been smokers.

  18. Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Larin, A. M.

    2009-06-01

    Rapakivi granites characteristic practically of all old platforms are greatly variable in age and irregularly distributed over the globe. Four types of magmatic associations, which include rapakivi granites, are represented by anorthosite-mangerite-charnockite-rapakivi granite, anorthosite-mangerite-rapakivi-peralkaline granite, gabbro-rapakivi granite-foidite, and rapakivi granite-shoshonite rock series. Granitoids of these associations used to be divided into the following three groups: (1) classical rapakivi granites from magmatic associations of the first three types, which correspond to subalkaline high-K and high-Fe reduced A2-type granites exemplifying the plumasitic trend of evolution; (2) peralkaline granites of the second magmatic association representing the highly differentiated A1-type reduced granites of Na-series, which are extremely enriched in incompatible elements and show the agpaitic trend of evolution; and (3) subalkaline oxidized granites of the fourth magmatic association ranging in composition from potassic A2-type granites to S-granites. Magmatic complexes including rapakivi granites originated during the geochronological interval that spanned three supercontinental cycles 2.7-1.8, 1.8-1.0 and 1.0-0.55 Ga ago. The onset and end of each cycle constrained the assembly periods of supercontinents and the formation epochs of predominantly anorthosite-charnockite complexes of the anorthosite-mangerite-charnockite-rapakivi granite magmatic association. Peak of the respective magmatism at the time of Grenvillian Orogeny signified the transition from the tectonics of small lithospheric plates to the subsequent plate tectonics of the current type. The outburst of rapakivi granite magmatism was typical of the second cycle exclusively. The anorthosite-mangerite-charnockite-rapakivi granite magmatic series associated with this magmatism originated in back-arc settings, if we consider the latter in a broad sense as corresponding to the rear parts of

  19. Experimental study of physical and chemical melting conditions of rare-metal granites at the Voznesenka ore cluster, Primorye region

    NASA Astrophysics Data System (ADS)

    Aksyuk, A. M.; Konyshev, A. A.; Korzhinskaya, V. S.; Shapovalov, Yu. B.

    2016-09-01

    The melting of two basic granite varieties in the Voznesenka Complex such as Yaroslavka biotite granite and Voznesenka Li-F granite was subject to experimental studies to analyze and to compare the conditions of their physicochemical formation. The experiments were conducted at 550-700°C and 50-500 MPa in pure water and in 0.1 and 1 m HF aqueous fluorine-bearing solutions. The melting temperature of Voznesenka Li-F granites was 60-70°C lower than that of Yaroslavka biotite granites. The temperature decreased by almost 100°C from the completion of biotite granite crystallization to the completion of Li-F granite crystallization.

  20. Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo C.; Vicente-Tavera, Santiago; Molina-Ballesteros, Eloy

    2015-04-01

    Silicified Granites have been widely used to build the main Romanesque monuments in the 12 th century of Avila city that was designated a World Heritage Site by the UNESCO in 1985. The stone was used in the Cathedral (12 th century); churches located interior and exterior of the Walls (e.g. Saint Vincent; Saint Peter). During the Renaissance and Gothic period, 15 th century Silicified Granites have been used mainly to buid ribbed vaults in Avila city (e.g. Royal Palace of the Catholic Monarchs, and Chapel of Mosén Rubí). Silicified Granites are related to an intermediate and upper parts of a complex palaeoweathering mantle developed on the Iberian Hercynian Basement (the greatest part of the western Iberian Peninsula and its oldest geological entity). In the Mesozoic the basement underwent tropical weathering processes. The weathered mantle were truncated by the Alpine tectonic movements during the Tertiary, and Its remnants were unconformably covered by more recent sediments and are located in the west and south part of the Duero Basin and in the north edge of the Ambles Valley graben. For the weathering profiles developed on the Hercynian Basement is possible to define three levels from bottom to top: 1) Lower level (biotitic granodiorite/porphyry and aplite dykes); 2) Intermediate level (ochre granite); 3) Upper level (red/white granite). The lower level has been much used as a source of ornamental stone, Avila Grey granite. The porphyry and applite dykes are mainly used to built the Walls of the City. The intermediate level is called Ochre granite or Caleño and was formed from the previous level through a tropical weathering process that, apart from variations in the petrophysical characteristics of the stone, has been accompanied by important mineralogical changes (2:1 and 1:1 phyllosilicates) and decreases in the contents of the most mobile cations. The upper level has received several names, Bleeding stone, Red and White granite or Silcrete and was formed

  1. New methodical developments for GRANIT

    SciTech Connect

    Baessler, Stefan; Nesvizhevsky, V.; Toperverg, B; Zhernenkov, K.; Gagarski, A; Lychagin, E; Muzychka, A; Strelkov, A; Mietke, A

    2011-01-01

    New methodical developments for the GRANIT spectrometer address further improvements of the critical parameters of this experimental installation, as well as its applications to new fields of research. Keeping in mind an extremely small fraction of ultra cold neutrons (UCN) that could be bound in gravitational quantum states, we look for methods to increase statistics due to: developing UCN sources with maximum phase-space density, counting simultaneously a large fraction of neutrons using position-sensitive detectors, and decreasing detector backgrounds. Also we explore an eventual application of the GRANIT spectrometer beyond the scope of its initial goals, for instance, for reflectometry with UCN.

  2. Status of LLNL granite projects

    SciTech Connect

    Ramspott, L.D.

    1980-12-31

    The status of LLNL Projects dealing with nuclear waste disposal in granitic rocks is reviewed. This review covers work done subsequent to the June 1979 Workshop on Thermomechanical Modeling for a Hardrock Waste Repository and is prepared for the July 1980 Workshop on Thermomechanical-Hydrochemical Modeling for a Hardrock Waste Repository. Topics reviewed include laboratory determination of thermal, mechanical, and transport properties of rocks at conditions simulating a deep geologic repository, and field testing at the Climax granitic stock at the USDOE Nevada Test Site.

  3. The Wuluma granite, Arunta Block, central Australia: An example of in situ, near-isochemical granite formation in a granulite-facies terrane

    NASA Astrophysics Data System (ADS)

    Collins, W. J.; Flood, R. H.; Vernon, R. H.; Shaw, S. E.

    1989-06-01

    The Wuluma granite is a small, elongate, relatively undeformed pluton in the Proterozoic Strangways Metamorphic Complex, central Australia. The complex constitutes a supracrustal assemblage that underwent granulite-facies metamorphism 1800 Ma ago. Metamorphism was associated with at least three phases of folding that ultimately produced upright, regional, doubly plunging F 3 folds and isobaric cooling ensued. Generation of the Wuluma granite occurred at ˜ 1750 Ma, based on RbSr isotopic data, during syn-D 3 regional retrogression and rehydration of the terrane. Contacts between the granite and gneisses are invariably gradational. At the pluton margin, banded gneisses grade along strike into granite containing abundant biotite schlieren that parallel regional structures. Granite and pegmatite dykes cut these rocks. Inwards from the contact, the granite is more homogeneous, containing diffuse parallel schlieren and small aligned rectangular feldspar crystals, indicating flow of magma. Rafts of unmelted granofels form a ghost layering; they mimic macroscopic F 3 folds and show only minor retrogressive metamorphic effects. At the pluton core, the granite is homogeneous and structurally isotropic, containing some subrounded granofelsic inclusions, very diffuse schlieren and disaggregated pegmatite dykes. Thus, it appears that an isoclinally folded, vertical body of quartzofeldspathic gneiss was melted "in situ" to form the pluton, which did not break away from the source. The body resembles a tapered diapir and we term this type of pluton a regional migmatite terrane granite. Geochemical data are consistent with the granite forming by anatexis of quartzofeldspathic migmatitic gneisses with appropriate composition. The chemical similarity of both rock types implies derivation of the granite by either partial melting and retention of residual material in the magma or more complete melting, followed by solidification virtually in situ. The latter interpretation is

  4. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an

  5. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: The Staré Sedlo complex, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Tomek, Filip; Žák, Jiří; Chadima, Martin

    2015-07-01

    The Late Devonian Staré Sedlo complex, Bohemian Massif, was emplaced as a subhorizontal sheeted sill pluton into a transtension zone. The transtensional setting is documented by strong constrictional fabric, corroborated by the anisotropy of magnetic susceptibility (AMS), with variably developed subhorizontal magmatic to solid-state foliation suggesting vertical shortening. Intrusive contacts of the granitoids with metapelitic screens and tapered sill tips indicate that magma wedging was the dominant process of sill propagation. The sills exhibit two intrusive styles, ranging from thin lit-par-lit injections to widely spaced meter-thick sills. These two styles are interpreted as reflecting variable viscosities of intruding magma where low-viscosity magma percolated along foliation planes whereas high-viscosity magma produced more localized thicker sills. We propose that the magma/host rock system in transtension must have evolved from initial crack tip propagation and vertical expansion due to new magma additions through conduit flow to ductile thinning after the magma input had ceased. The sill emplacement and their subsequent deformation are then interpreted as recording early-orogenic syn-convergent sinistral transtension along the rear side of an upper-crustal wedge, which was extruded both upward and laterally in response to subduction and continental underthrusting.

  6. Natural polish in granitic rocks

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Brodsky, E. E.; Stock, G. M.; White, J. C.

    2016-12-01

    Fault mirrors are highly smooth and reflective rock surfaces that are found in many shear zones around the world. Recent studies suggest that fault mirrors are formed during high velocity slip on faults and therefore may serve as an indicator for seismic slip. In contrast, other studies suggest that fault mirrors may form under high normal stress at sub-seismic velocities and at room temperature. Fault mirrors are observed within the fault core of many rock type environments including limestone, dolomite, chert and rhyolite. However, to the best of our knowledge, they are missing in faults hosted in granite. Moreover, mirror-like surfaces form during high velocity rotary shear experiments in many types of rock but not in sheared granite blocks. The absence of fault mirrors in granite is surprising, particularly since there exists extensive glacial polish on granitic bedrock. Glacial polish describes the smooth and reflective rock surfaces formed at the base of glaciers that carved the underlying bedrock. In addition to their import for studies of glacial dynamics and geomorphology, glacially polished surfaces may hold some significance for fault mechanics. Glacial polish and fault mirrors share many similarities. At field exposures they both present highly smooth surfaces and striations that clearly point in the slip direction. Studies on carbonate fault mirrors showed that individual highly reflective surfaces are composed of a thin nanograin layer. Preliminary SEM observations on samples collected from granitic rocks at Yosemite National Park suggest that these polished surfaces are also coated by an ultrathin cohesive layer composed of nanograins. Although there are clear differences between glacial and fault-zone environments, the similarity between these textures, and the fact that both are formed during shear, suggest that a similar mechanism is responsible for their formation. The comparison raises questions about the importance of high fluid contents and

  7. Timing of Early Proterozoic collisional and extensional events in the granulite-gneiss-charnockite-granite complex, Lake Baikal, USSR: A U-Pb, Rb-Sr, and Sm-Nd isotopic study

    SciTech Connect

    Aftalion, M. ); Bibikova, E.V. ); Bowes, D.R. ); Hopwood, A.M. ); Perchuk, L.L. )

    1991-11-01

    In the Sharyzhalgay Complex of the Lake Baikal region in eastern Siberia Early Proterozoic collisional and extensional events were separated by ca. 100 m.yr. The earlier collisional event, associated with the development of granulites and gneisses as the result of high-grade dynamothermal metamorphism, took place close to 1965 {plus minus} 4 Ma. A {sup 207}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb isochron for zircon from five size fractions and a six point Rb-Sr whole-rock errorchron give generally corresponding ages of 1956 {plus minus} 8 and 1963 {plus minus} 163 Ma, respectively. The later extensional event, associated with charnockitization due to the uprise of fluids and heat in a regime corresponding to the middle to upper crustal levels of a Basin and Range-type province, was initiated in the 1880-1860 Ma period. The event was continued with magmatic emplacement of granitic masses into the deep levels of caldera-like structures, possibly during the upper time range of lower concordia intercept ages of 1817 +30/{minus}32 and 1797 +40/{minus}44 Ma for two distinctly different zircon populations in a pyroxene-bearing granodiorite interpreted as an evolved (and contaminated) product of the mantle-derived magma that was the source of CO{sub 2} involved in the charnockitization. Upper intercept ages of 2784 +48/{minus}45 and 2775 +61/{minus}55 Ma indicate late Archean crust at depth as the source region of the incorporated zircon. T{sub DM} ages from Sm-Nd isotopic data show that the protolith of the lithologically layered supracrustal assemblage, subsequently polyphase deformed and polymetamorphosed in Early Proterozoic times, was also formed in Early Proterozoic (not Archean) times.

  8. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  9. Thermomechanical properties of Stripa granite

    NASA Astrophysics Data System (ADS)

    Myer, L.

    1982-09-01

    The Stripa material properties testing program was initiated to study, by laboratory testing, the thermomechanical behavior of the Stripa rock mass and to provide material properties for input into numerical programs for simulation of the in situ heater experiments at Stripa. Measurement of elastic moduli and coefficients of thermal expansion of dry, intact samples of Stripa granite was completed in fiscal year 1980. A summary of the most significant findings resulting from tests on six samples are presented.

  10. Riftogenic A-type granites of the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Udoratina, Oksana; Kulikova, Ksenia; Shuysky, Alexander

    2016-04-01

    There are granitoids-markers of the riftogenic geodynamic setting in the Polar Urals. Isotope-geochronological and petrographic-petrogeochemical data on granitoids indicate the post-collisional conditions of their formation. Granitoids along with other alkaline massifs North Urals mark rifting in this part of the Urals. These granitoids formed after the collision peak of Timanides formation, after 520 Ma in the absolute chronology, when the intensity of magmatism fell sharply and only small volumes of rhyolite and A-type granites were formed. Granitoid massifs occur within the Northern Urals fragment of the Central Ural uplift composed of preuralide complexes. According to the recent data (U-Pb, SIMS) for single zircon the granitoids of the massifs (hereinafter Ma): Syadatayakhinsky (516±2, 503±6.3), Ochetinsky (500±5), Ingilorsky (487.3±6.9, 503±5), the northern part of Gerdizsky (496.2±7.1), Marunkeu Ridge (495±2.4) and part of massifs of kharbeysky complex of Laptayugansky and Evyugansky domes (497±3 and 487.1±2.1) were formed in the Late Cambrian-Early Ordovician time. Within rare metal ore deposits of Taykeyusky ore unit, except for older granitoids with ages 600-560-540 Ma, the granitoids occur with the following ages: Longotyugansky (512±8, 482±8, 511±11), Taykeusky (513±3.4, 518.6±3.9, 477±12), Ust-Mramorny (516±16). There are the following situation localization of granites in the area of the Central Urals uplift: 1) in Ochetinsky and Syadatayakhinsky blocks without significant tectonic deformations among greenschist metamorphites; 2) in the areas of intense tectonic transformations (Longotyugansky, Taykeusky, Ust-Mramorny), but also among greenschist metamorphites; 3) in highly metamorphized rocks (Marunkeu Ridge, Ingilorsky, Gerdizsky, small bodies of Kharbeysky complex). Granitoids differ by the material and structural-textural features of the rocks. Some are massive with preserved granite fabric (1), the other have clearly expressed

  11. Late Paleozoic granitic rocks of the Chukchi Peninsula: Composition and location in the structure of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Kotov, A. B.; Natapov, L. M.; Belousova, E. A.; Katkov, S. M.

    2015-07-01

    An Early Carboniferous (352-359 Ma) U-Pb (TIMS, SIMS) age is established for granitic rocks of the Kibera pluton, quartz sienites of the Kuekvun pluton, and granites from the pebbles in the basement of Carboniferous rocks of the Kuul and Kuekvun uplifts in the Central Chukotka region. These data support the suggestion of granitic magmatism to occur in the region in the Late Paleozoic. The petrogeochemistry of most granitic rocks of the Kibera and Kuekvun plutons is similar to that of I-type granites, and their age coincides with tectonic events of Ellesmerian Orogeny in the Arctic region at the Late Devonian-Early Carboniferous boundary. The Devonian-Early Carboniferous granitic complexes extend to the territories of the Arctic Alaska, Yukon, and Arctic Canada, which indicates a common geological evolution within the Chukotka-Arctic Alaska block, which experienced a motion away from Arctic Canada.

  12. Understanding Granites: Integrating New and Classical Techniques

    NASA Astrophysics Data System (ADS)

    Candela, Philip A.

    Many aspects of granite geology are covered in Understanding Granites: Integrating New and Classical Techniques, a 288-page volume edited by Antonio Castro, Carlos Ferñandez, and Jean-Louis Vigneresse. However, the topics chosen for this collection lean toward the physical, rather than the chemical end of the spectrum. In the introduction to this 16-chapter collection, the authors set the stage by reviewing the groundwork laid by Hutton, Reed, and Bowen; they then discuss the landmark work of Chappell and White, first published in the 1970s, which ushered in the new era of granite research—one that has continued unabated to the present day. Finally, the editors outline some of the perennial questions of granite science, such as the “room problem,” granite ascent and emplacement, and the thermal and petrochemical requirements for granite genesis.

  13. Multiple-staged granite evolution and TaNb mineralization in South China

    NASA Astrophysics Data System (ADS)

    Lin, Yin; Jinchu, Zhu; Shouxi, Hu

    The Mesozoic post-orogenic granites in South China are widespread. Hundreds of tungsten and tin mineral deposits are closely associated with these granites. However, the number of TaNb deposits including those of the granite-type and the pegmatite-type, are relatively less. On the basis of geology, petrology, geochemistry and mineralization data from 8 ore deposits and related granites, we suggest that the TaNb mineralized granites are the special products of well-evolved granite magmas. The most important W and Sn deposits are clustered in post-Caledonian uplift and adjacent Hercynian-Indosinian depression of the South China orogenic belt. Most of the TaNb mineralizations are found within 20 km from the boundary faults surrounding the South Jiangxi post-Caledonian uplift. The paragenetic features of rare metal elements show that TaNb are accompanied by W in the uplift region, and by Sn in the depression region. The general intrusive sequence of a rare metal-bearing granite complex is: rare metal barren (porphyrytic) biotite granite—W and/or Sn ore-forming granite—TaNb (Sn) mineralized granite. The geological and geochemical data from eight mineralization districts indicate that the TaNb mineralizations are always developed in the last stage of a multiple-stage granite evolution. Albite-rich granite is the most common rock type of the TaNb ore-bearing granite, while the maximum albite contents in different deposits vary from more than 60% to less than 30%. Quartz with "snow ball" structure, topaz, and Li-micas (lepidolite, zinnwaldite, Li-muscovite and protolithionite) exist as common typomorphic minerals. The typical TaNb host are Mn-rich columbite-Tantalite and sometimes microlite and Ta-cassiterite. The pegmatoid crust (stockscheider) can be used as one of the most distinctive indicators for the degree of rare metal-tearing granite evolution based on its thickness and zonation. Compared with the normal granites, the Ta

  14. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  15. Dirty or Tidy ? Contrasting peraluminous granites in a collapsing Orogen: Examples from the French Massif Central

    NASA Astrophysics Data System (ADS)

    Villaros, Arnaud; Pichavant, Michel; Moyen, Jean-François; Cuney, Michel; Deveaud, Sarah; Gloaguen, Eric; Melleton, Jérémie

    2013-04-01

    Post collisional collapse commonly enhances crustal melting. Such melting typically produces peraluminous granitic magmas. In the French Massif Central, a mid-crustal segment of the western Variscan belt, two large granitic bodies were produced during the collapse of the Variscan Belt. The St Sylvestre Leucogranitic Complex (SSyL) in the western part of the Massif Central and the Velay Migmatitic Complex (VMC) in the Eastern part. Although these two complexes are formed in similar geodynamic context they present meaningful petrological and geochemical differences. The VMC (~305 Ma) is clearly intrusive in migmatitic terranes. The migmatitic host recorded two successive melting events M3 (720 °C and 5kb) dated between 335 and 315 Ma and M4 (850°C and 4 kb) dated at 305 Ma. The compositions of the VMC are strictly H2O-undersaturated and ranges from leucogranitic to granodioritic. Three main successive granite types have been distinguished (1) A heterogeneous banded biotite granite, (2) A main biotite-cordierite granite, where cordierite can be prismatic, as cockade or pseudomorphic (3) a late magmatic with large K-feldspar phenocryst and prismatic cordierite. The compositions of the VMC granites are quite similar to typical Australian S-type granites in the sense that they also show a positive correlation between ferromagnesian abundance and aluminosity. The SSyL (~320 Ma) is intrusive in upper greenschist facies to upper amphibolite migmatitic metasediment and orthogneiss (~3kb). The compositional variety observed in the SSyL suggests a continuous trend from a moderately mafic, peraluminous magma (cd- and sill- granite) to a H2O saturated granite ("two-mica" granite) facies and finally to an extremely felsic, H2O-saturated magma. Three granitic units have been recognized in the SSyL: (1) the western "Brame Unit" composed of the less evolved cd- and sill- granite facies (2) the central "St Sylvestre Unit", composed mainly by U-rich two-mica granite, intruded by two

  16. 6. Photocopied August 1971 from Photo 13731, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1971 from Photo 13731, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  17. FROGS (Friends of Granites) report

    NASA Astrophysics Data System (ADS)

    Miller, Calvin

    This VGP News, which is devoted to petrology, is a good one for noting the existence of FROGS. FROGS is, as the name suggests, an informal organization of people whose research relates in one way or another to granitic rocks. Its purpose has been to promote communication among geoscientists with different perspectives and concerns about felsic plutonism. Initially, a major focus was experimental petrology and integration of field-oriented and lab-oriented viewpoints; now that there is the opportunity to communicate with the Eos readership, an obvious additional goal will be to bring together volcanic and plutonic views of felsic magmatism.FROGS first gathered in late 1982 under the guidance of E-an Zen and Pete Toulmin (both at U.S. Geological Survey (USGS), Reston, Va.), who saw a need for greater interaction among those interested in granites and for renewed, focused experimental investigations. They produced two newsletters (which were sent out by direct mail) and organized an informal meeting at the Geological Society of America meeting at Indianapolis, Ind., and then turned over the FROG reins to Sue Kieffer (USGS, Flagstaff, Ariz.) and John Clemens (Arizona State University, Tempe). They generated another newsletter, which was directly mailed to a readership that had grown beyond 200.

  18. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  19. A-type granite and the Red Sea opening

    NASA Astrophysics Data System (ADS)

    Coleman, Robert G.; DeBari, Susan; Peterman, Zell

    1992-03-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/ 86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  20. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  1. A 3D Magnetotelluric Perspective on the Galway Granite, Western Ireland

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Muller, Mark; Vozar, Jan; Feely, Martin; Hogg, Colin

    2017-04-01

    Magnetotelluric (MT) and audi-magnetotelluric (AMT) data were acquired at 75 locations across the exposed calc-alkaline Caledonian Galway granite batholith and surrounding country rocks into which the granite intruded. The Galway granite is located in western Ireland on the north shore of Galway bay, and has an ESE-WNW long axis. The granite is cut by trans-batholith faults, the Shannawona Fault Zone (SFZ) in the western part of the batholith, which has a NE-SW trend, and the Bearna Fault Zone (BFZ) in the eastern sector that has a NW-SE trend. Geobarometry data indicate that the central granite block between these fault zones has been uplifted, with the interpretation being that the granite in this central block is thinned. To the west of the SFZ, much of the Galway granite is below sea level, with the majority of the southern granite contact also beneath the sea in Galway bay. To the east of the batholith, the Carboniferous successions, consisting of mainly limestone with shale, overlie the basement rocks. The country rock to the north includes the metagabbro-gneiss suite, which itself intruded the deformed Dalradian successions that were deposited on the Laurentian margin of the Iapetus Ocean. The deformation of the Dalradian rocks, the intrusion of the metagabbro-gneiss suite and the intrusion of the Galway granite were major events in the protracted closure of the Iapetus Ocean. It is clear from geological mapping, from geobarometry and from the present submergence by the sea of a large part of the Galway granite, that inversion of MT data in this structurally complex geology is likely to require a 3D approach. We present a summary of 3D inversion of the Galway MT and AMT data. The study shows that the structure of the Galway granite is quite different from the pre-existing perspective. The central block, thought by its uplifting to be thinned, is shown to be the thickest part of the batholith. A geological model of granite intrusion is offered to explain this

  2. Two-mica granites of northeastern Nevada.

    USGS Publications Warehouse

    Lee, D.E.; Kistler, R.W.; Friedman, I.; Van Loenen, R. E.

    1981-01-01

    The field settings are described and analytical data are presented for six two-mica granites from NE Nevada. High delta 18O and 87Sr/86Sr values indicate that all are S-type granite, derived from continental crust. The major element chemistry and accessory mineral contents of these rocks also are characteristic of S-type granites. Chemical, X ray, and other data are presented for the micas recovered from these granites. The muscovites are notably high in Fe2O3, FeO, and MgO. Except for one hydrobiotite, each of the biotites has an MgO content near 6.0 wt%. Two different types of two-mica granites are recognized in the area of this study. One type is distinguished by the presence of many biotite euhedra within muscovite phenocrysts and by an unusual suite of accessory minerals completely devoid of opaque oxides. This type probably resulted from anatexis of late Precambrian argillites under conditions of relatively low oxygen fugacity, along a line that roughly coincides with the westward disappearance of continental basement. In the other textural type of two-mica granite the micas are equigranular and there is a greater variety of accessory minerals. The magmatic evolution of this type also appears to reflect the influence of late Precambrian argillites; there may be age differences between the two types of two-mica granites.-Author

  3. Archaean greenstone belts and associated granitic rocks - A review

    NASA Astrophysics Data System (ADS)

    Anhaeusser, Carl R.

    2014-12-01

    Archaean greenstone belts and associated granitic rocks comprise some of the most diverse rock types on the Earth's surface and were formed during the early stages of the development of the planet from Eoarchaean to Neoarchaean times - a period extending back from about 4000 to 2500 million years ago. Because of their great age, these rocks have received unprecedented attention from a wide spectrum of Earth scientists striving to learn more about the evolution of the Earth, including its crust, hydrosphere, atmosphere, the commencement of life, and the nature and distribution of mineral deposits. The knowledge gained thus far has accumulated incrementally, beginning with solid field-based studies, the latter being supplemented with increasingly advanced technological developments that have enabled scientists to probe fundamental questions of Earth history. Archaean granite-greenstone terranes display considerable variability of lithologies and geotectonic events, yet there are unifying characteristics that distinguish them from other geological environments. Most greenstone belts consist of a wide variety of volcanic and sedimentary rocks that reflect different evolutionary conditions of formation and all have invariably been influenced by subsequent geotectonic factors, including the intrusion of ultramafic, mafic and granitic complexes, resulting in widespread deformation, metamorphism, metasomatism, as well as mineralization. Geochemical and isotopic age determinations have shown how complex these ancient rocks are and efforts at understanding the nature and evolution of the hydrosphere, atmosphere and primitive life have made Archaean terranes exciting environments in which to study. Conflicting views as to the nature, history and origin of many of the rock types and events in Archaean terranes has been ongoing and stimulating. This review attempts to describe the main lithotypes and other characteristics of granite-greenstone belt geology and points to some

  4. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  5. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Molina, J. F.; Bea, F.; Abu Anbar, M.; Montero, P.

    2016-08-01

    The relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios in A-type felsic rocks from the Ediacaran Katerina Ring Complex, northernmost Arabian-Nubian Shield (ANS; S. Sinai, Egypt), are investigated in this work to understand their behavior during generation of highly evolved granitic magmas and to explore the nature of magma sources. Textural and compositional relationships of cognate Th-REE- and Nb-Ta-accessory minerals in Katerina felsic rocks show that chevkinite-group minerals (CGM), monazite, thorite, allanite and xenotime formed from residual liquids in quartz syenite porphyries, quartz monzonites and peralkaline granites, whereas in aluminous granites, allanite and monazite crystallized early, and thorite and columbite formed from residual liquids. Relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios with Zr/Hf ratios in the aluminous granites and with Be abundances in the peralkaline granites suggest a decrease in La/Nb and Ce/Pb ratios in the former, and in Y/Nb and La/Nb ratios in the latter with crystallization progress. This contrasts with absence of systematic variations of Th/Nb and Ce/Pb ratios in the peralkaline compositions and of Y/Nb ratio in the aluminous ones. In this latter, Th/Nb ratio can present a significant decrease only in highly evolved compositions. An analysis of Y/Nb, Th/Nb, La/Nb and Ce/Pb relationships in worldwide OIB and subduction-related magmatic suites reveals that A-type felsic rocks with (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 may have A1-type affinity, and those with (Th/Nb)N > 2, (La/Nb)N > 2, and (Ce/Pb)N < 1 tend to present A2-type affinity. The crystal fractionation of Th-LREE- and Nb-Ta-accessory minerals and mixing of components derived from the two granite groups may cause deviations from these compositional limits that can be evaluated using constraints imposed by Th/Nb-La/Nb, Ce/Pb-Th/Nb and Ce/Pb-La/Nb relationships in OIB and subduction-related magmatic suites. Three mantle sources might have been

  6. Potassium-argon dating of the cape granite and a granitized xenolith at sea point.

    PubMed

    Schreiner, G D; Basson, H H; Verbeek, A A

    1968-11-01

    Ages obtained by potassium-argon dating are reported for the total rock, light mineral fraction and heavy mineral fractions of the Cape Granite, and of a granitized xenolith derived from the Malmesbury sediments. These ages lie between 430 and 554 million years. The heavy mineral fractions from each rock type show the oldest age, 540 (granite) and 554 (xenolith) million years. These ages are interpreted as lower limits, and the granite age confirms the age of 553 million years found by rubidium-strontium dating. The coincidence of the ages of the different fractions of the granite and xenolith samples is discussed in the light of the different suggestions about the age of the Malmesbury sediments. The conclusion is reached that all pre-granitization history has been eliminated. The possibility of the use of argon retention as a measure of metamorphic activity is suggested.

  7. Grusification of granite (scheme based on the study of granites from Sudety Mts., SW Poland)

    NASA Astrophysics Data System (ADS)

    Kajdas, Bartlomiej; Michalik, Marek

    2014-05-01

    Gruses that are developed on the Karkonosze granite (three outcrops) and the Izera granite (one outcrop) were investigated using optical microscope, scanning electron microscope equipped with EDS and electron microprobe, X-ray diffraction, IR spectrometry, chemical analysis (ICP-AES and ICP-MS), hydrogen and oxygen isotopic ratio determination and K-Ar dating. Three groups of samples were distinguished according to the degree of grusification (group I - compact granite; group II - friable granite; group III - granitic grus). The results of the examination allowed to present the simplified scheme of the grusification: 1. Development of microcracks (caused by tectonic stress, mechanical upload or magma cooling processes) promote circulation of hydrothermal fluids in granites; 2. The presence of the microcracks in granite facilitate the circulation of low-temperature fluids (low-temperature hydrothermal or weathering fluids). Fluids cause hydration and expansion of primary biotite (vermiculitization), what leads to development of secondary cracks in a rock. Fluids can also induce advanced alteration of plagioclases into clay minerals (mainly smectite or vermiculite). Expansion of biotite during vermiculitization is the most important factor in grusification. Other processes of alteration also contribute to grusification. Hydrothermal fluids in granite contribute the increase of alteration degree of primary minerals (e.g. sericitization and albitization of feldspar, chloritization or muscovitization of biotite, decomposition of monazite-(Ce) and formation of secondary REE phosphates). If primary biotite is subjected to muscovitization or chloritization, complete grusification of granite does not occur because of lack of vermiculitation.

  8. AMS studies in Portuguese variscan granites

    NASA Astrophysics Data System (ADS)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  9. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  10. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  11. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    SciTech Connect

    Drummond, M.S. . Geology Dept.); Allison, D.T. . Geology Dept.); Tull, J.F. . Geology Dept.); Bieler, D.B. . Geology Dept.)

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derived from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.

  12. Rheology of Granitic Magmas During Ascent and Emplacement

    NASA Astrophysics Data System (ADS)

    Petford, Nick

    Considerable progress has been made over the past decade in understanding the static rheological properties of granitic magmas in the continental crust. Changes in H2O content, CO2 content, and oxidation state of the interstitial melt phase have been identified as important compositional factors governing the rheodynamic behavior of the solid/fluid mixture. Although the strengths of granitic magmas over the crystallization interval are still poorly constrained, theoretical investigations suggest that during magma ascent, yield strengths of the order of 9 kPa are required to completely retard the upward flow in meter-wide conduits. In low Bagnold number magma suspensions with moderate crystal contents (solidosities 0.1 0.3), viscous fluctuations may lead to flow differentiation by shear-enhanced diffusion. AMS and microstructural studies support the idea that granite plutons are intruded as crystal-poor liquids ( 50%), with fabric and foliation development restricted to the final stages of emplacement. If so, then these fabrics contain no information on the ascent (vertical transport) history of the magma. Deformation of a magmatic mush during pluton emplacement can enhance significantly the pressure gradient in the melt, resulting in a range of local macroscopic flow structures, including layering, crystal alignment, and other mechanical instabilities such as shear zones. As the suspension viscosity varies with stress rate, it is not clear how the timing of proposed rheological transitions formulated from simple equations for static magma suspensions applies to mixtures undergoing shear. New theories of magmas as multiphase flows are required if the full complexity of granitic magma rheology is to be resolved.

  13. Formation of a Granite Bodies in Depleted Granulite Terranes: the Wuluma Granite, Central Australia

    NASA Astrophysics Data System (ADS)

    Lavaure, S.; Sawyer, E. W.

    2009-05-01

    The Wuluma Granite (ca.17 km2) is hosted by Palaeoproterozoic, granulite facies metasedimentary and metaigneous rocks. It is believed to have formed by in situ partial melting of quartzo-feldspathic gneisses at 1728±3 Ma due to the influx of an externally derived aqueous fluid after the granulite facies metamorphism. We have reinvestigated the Wuluma Granite and find that most contacts between the granite and the host granulites are intrusive, not gradational. Granite occurs as thin (<1m) subconcordant sheets and dykes in country rocks that contain fresh orthopyroxene and cordierite without much replacement by hydrous minerals. Screens of country rock are common within the granite, and many contain metapelitic rocks that have leucosome and melanosome structures similar those found in the country rocks. Although some of the migmatite structures in the screens still contain garnet, cordierite and orthopyroxene, in most these minerals are replaced by biotite. Biotite is the only ferromagnesian mineral in the thinnest screens of country rock. All the screens contain subconcordant sheets and dykes of granite; typically a narrow selvedge is developed between the intrusive granite and the rocks of the screen; selvedges are either rich in biotite or in quartz depending on the host rock type. Schlieren are common throughout the granite and represent the last vestiges of the country rocks in the granite; there is much morphological and mineralogical variation among the schlieren. The Wuluma granite consists of innumerable thin (less than a metre) subparallel sheets and cross-cutting dykes, that are distinguished by variations in grain size, microstructure and the proportion of minerals present. The earliest phase to be porphyritic and rich in biotite, whereas the last is leucocratic, coarse grained and locally forms dykes up to 20m wide. The centre of the granite contains large (1 cm) crystals of garnet and, more rarely, cordierite. However, in many places these have been

  14. The adsorption behavior of U(VI) on granite.

    PubMed

    Fan, Q H; Hao, L M; Wang, C L; Zheng, Z; Liu, C L; Wu, W S

    2014-03-01

    The effects of pH, counter ions and temperature on the adsorption of U(VI) on Beishan granite (BsG) were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The adsorption edge of U(VI) on BsG suggested that U(VI) adsorption was mainly controlled by ion exchange and outer-sphere complexation at low pH, whereas inner-sphere complex was the dominant adsorption species in the pH range of 4.0-9.0. Above pH 9.0, Na2U2O7 might play an important role in the rise of U(VI) adsorption again. Counter ions such as Cl(-), SO4(2-) and PO4(3-) can provoke U(VI) adsorption on BsG to some extent, which was directly correlated to the complexing ability of U(VI)-ligand. More noticeably, the large enhancement of U(VI) adsorption in the presence of phosphate can be attributed to the ternary complex formation (BsG-PO4-UO2), precipitation ((UO2)3(PO4)2(s)) and secondary phase (Na-autunite). Both FA and HA can slightly increase U(VI) adsorption at low pH, whereas they strongly inhibited U(VI) adsorption at high pH range. Artificial synthesized granite (AsG) prepared in the laboratory is impossible to use as an analogue of natural granite because of the large difference in the adsorption and surface properties.

  15. Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the Bohemian Massif, Czech Republic

    NASA Astrophysics Data System (ADS)

    Buriánek, David; Novák, Milan

    2007-04-01

    Two distinct textural types of tourmaline have been distinguished in leucocratic granites of the Bohemian Massif (Moldanubicum, Saxothuringicum): (i) commonly euhedral disseminated tourmaline (DT) crystallized during relatively early stage of the granite consolidation, and (ii) typically interstitial nodular tourmaline (NT) formed during the stage transitional from late solidus to early subsolidus crystallization. The following substitutions (exchange vectors) participated in tourmaline from the studied granites: (1) X□ YAl XNa - 1 YR 2+- 1 in the DT granites from the Moldanubicum; (2) X□ YAl 3WO 2XNa - 1 YR 2+- 3 W(OH) - 2 and (6) XNa YR 2+WF X□ - 1 YAl - 1 WOH - 1 in the DT and NT granites from the Saxothuringicum. Tourmaline in the NT granites from the Moldanubicum yielded a complicated pattern indicating participation of several substitutions such as (1), (2) and (3) X□ YAl 2WO XNa - 1 YR 2+- 2 W(OH) - 1 . Very similar chemical compositions and similar fractionation trends in both DT and NT tourmaline types indicate crystallization in a quasi-closed system from early solidus to early subsolidus stage of granite consolidation. Substitutions in tourmaline from NT granites in the Moldanubicum are more similar to substitutions in tourmaline from Li-poor granitic pegmatites in the same region relative to tourmaline from DT granites. Plotting up EMP analyses of tourmaline indicates that a combination of two ternary diagrams Al-Fe-Mg and Na-Ca- X-site vacancy, coupled with simple plots involving single cations (elements) such as Na/Al, F/Na, Fe/Mg, characterizes both their chemical composition as well as the probable substitution mechanisms. Complex diagrams such as R1 + R2 versus R3 do not enable a proper investigation of the compositional evolution in the X-site and W-site and oversimplify the real substitutions. As a consequence the use of specific diagrams for specific tourmaline compositions (e.g., Ca-rich, Li-rich) is recommended.

  16. Estimation of crystallization pressure of granite intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Ming

    2017-08-01

    A numerical method is presented to estimate the crystallization pressure of granite intrusions based on two polynomial equations obtained by an analysis of the existing haplogranite ternary phase diagram and associated dataset. The results indicate that the pressure is correlated respectively with normative quartz (Qtz) content and with normative albite (Ab) plus orthoclase (Or) contents of granitic rocks as follows. where P is pressure in MPa, and R denotes correlation coefficient. It is noted that the procedure of normalizing the sum of CIPW norm (quartz, albite, orthoclase) contents to 100% is required before using Eqs. (1) and (2). The difference in pressure calculations between these two equations is ≤ 16 MPa for the range of normative quartz contents from 15 to 40 wt%. An example of how to use these equations to estimate the crystallization pressure of a granite intrusion is also provided to show the validity and convenience of this method. The uncertainty of such pressure estimation is not well known, although it must fall into the uncertainty range of the existing experimental work on pressure constraints. The simplicity of this empirical method is appreciable, although its applicability to natural granitoids needs further test. More experimental work is required to constrain the effects of components, such as CaO, FeO, MgO, F, Cl, CO2, on the granite phase equilibria. These equations, however, can be used for estimating crystallization pressures of water-saturated and quartz-oversaturated granitic systems.

  17. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  18. Are cumulate granites characteristic of migmatitic gneiss domes? An example from the Fosdick Mountains of Marie Byrd Land, West Antarctica

    NASA Astrophysics Data System (ADS)

    Brown, Caitlin R.; Yakymchuk, Chris; Brown, Michael; Fanning, C. Mark; Korhonen, Fawna J.; Piccoli, Philip M.; Siddoway, Christine S.

    2014-05-01

    In the Fosdick migmatite-granite complex, Cretaceous granites yield U-Pb zircon crystallization ages of 117-102 Ma, corresponding to the timing of doming during a regional transition from transpression to transtension that facilitated exhumation of the complex. The results of P-T phase equilibria modeling and occurrence of leucosome-bearing normal-sense shear zones are consistent with suprasolidus conditions during the early stages of exhumation. Commonly, leucosomes in normal-sense shear zones and sub-horizontal sheeted granites within the complex have coarse blocky plagioclase or K-feldspar grains with interstitial quartz, suggesting a cumulate origin. The Cretaceous granites have whole rock Sr and Nd and zircon Hf and O isotope compositions consistent with derivation from regionally-associated source materials comprising a Devonian-Carboniferous calc-alkaline granodiorite suite (dominant component) and a Cambrian metaturbidite sequence (minor component). However, the major and trace element chemistry of these granites is highly variable and inconsistent with melt compositions expected from simple anatexis of such source materials. Furthermore, major element compositions are inconsistent with those of cotectic granites and more variable than those reported from melt inclusions. The granites typically have large positive Eu anomalies and the overall geochemistry is consistent with the early accumulation of feldspar and quartz, and drainage of fractionated melt. These granites are interpreted to record the collapse of sub-horizontal partially-crystallized layers of magma by filter pressing during vertical shortening associated with dome exhumation, leaving behind cumulate-rich residues. Consequently, the extracted melt is expected to be more evolved and variable than compositions of experimental melts and melt inclusions in peritectic minerals. A potential sink for melt complementary to the cumulate granites is represented by the Cretaceous Byrd Coast Granite suite

  19. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon

    NASA Astrophysics Data System (ADS)

    Appleby, Sarah K.; Gillespie, Martin R.; Graham, Colin M.; Hinton, Richard W.; Oliver, Grahame J. H.; Kelly, Nigel M.

    2010-07-01

    In contrast to I-type granites, which commonly comprise infracrustal and supracrustal sources, S-type granites typically incorporate predominantly supracrustal sources. The initial aim of this study was to identify the sources of three Scottish Caledonian (~460 Ma) S-type granites (Kemnay, Cove and Nigg Bay) by conducting oxygen, U-Pb and Hf isotope analyses in zircon in order to characterise one potential end-member magma involved in the genesis of the voluminous late Caledonian (~430-400 Ma) I-type granites. Field, whole-rock geochemical and isotopic data are consistent with the generation of the S-type granites by melting their Dalradian Supergroup country rocks. While Hf isotope compositions of magmatic zircon, U-Pb data of inherited zircons, and high mean zircon δ18O values of 9.0 ± 2.7‰ (2SD) and 9.8 ± 2.0‰ for the Kemnay and Cove granites support this model, the Nigg Bay Granite contains zircons with much lower δ18O values (6.8 ± 2.1‰), similar to those found in Scottish I-type granites. This suggests that the Nigg Bay Granite contains low-δ18O material representing either altered supracrustal material, or more likely, an infracrustal source component with mantle-like δ18O. Mixing trends in plots of δ18O vs. ɛHf for S-type granite zircons indicate involvement of at least two sources in all three granites. This pilot study of Scottish Caledonian S-type granites demonstrates that, while field and whole-rock geochemical data are consistent with local melting of only supracrustal sources, the oxygen isotopic record stored in zircon reveals a much more complex petrogenetic evolution involving two or more magma sources.

  20. Thermometers and thermobarometers in granitic systems

    USGS Publications Warehouse

    Anderson, J.L.; Barth, A.P.; Wooden, J.L.; Mazdab, F.; ,

    2008-01-01

    The ability to determine the thermal and barometric history during crystallization and emplacement of granitic plutons has been enhanced by several new calibrations applicable to granitic mineral assemblages. Other existing calibrations for granitic plutons have continued to be popular and fairly robust. Recent advances include the trace element thermometers Ti-in-quartz, Ti-in-zircon, and Zr-in-sphene (titanite), which need to be further evaluated on the roles of reduced activities due to lack of a saturating phase, the effect of pressure dependence (particularly for the Ti-in-zircon thermometer), and how resistive these thermometers are to subsolidus reequilibration. As zircon and sphene are also hosts to radiogenic isotopes, these minerals potentially also provide new insights into the temperature - time history of magmas. When used in conjunction with pressure-sensitive mineral equilibria in the same rocks, a complete assessment of the P-T-t (pressure-temperature-time) path is possible given that the mineralogy of plutons can reflect crystallization over a range of pressure and temperature during ascent and emplacement and that many intrusions are now seen as forming over several millions of years during the protracted history of batholith construction. Accessory mineral saturation thermometers, such as those for zircon, apatite, and allanite, provide a different and powerful perspective, specifically that of the temperature of the onset of crystallization of these minerals, which can allow an estimate of the range of temperature between the liquidus and solidus of a given pluton. In assessment of the depth of crystallization and emplacement of granitic plutons, the Al-in-hornblende remains popular for metaluminous granites when appropriately corrected for temperature. For peraluminous granites, potential new calibrations exist for the assemblages bearing garnet, biotite, plagioclase, muscovite, and quartz. Other thermometers, based on oxygen abundance, and

  1. Mesozoic Granitic Magmatism in Macao, Southeast China

    NASA Astrophysics Data System (ADS)

    Quelhas, P. M.; Mata, J.; Lou, U. T.; Ribeiro, M. L.; Dias, Á. A.

    2016-12-01

    Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic

  2. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  3. OVERALL VIEW OF QUARRY, FACING NORTH, WITH UNQUARRIED GRANITE OUTCROP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTH, WITH UN-QUARRIED GRANITE OUTCROP IN BACKGROUND - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  4. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiao; Li, He; Sun, Weidong; Ireland, Trevor; Tian, Xufeng; Hu, Yongbin; Yang, Wubin; Chen, Chen; Xu, Deru

    2016-12-01

    The Late Mesozoic Qianlishan granitic complex in the western Nanling Range, South China is associated with the Shizhuyuan giant W-Sn-Mo-Bi polymetallic deposit. It mainly consists of three phases of intrusions, P-1 porphyritic biotite granite, P-2 equigranular biotite granite and P-3 granite porphyry. All three phases of granite contain quartz, plagioclase, K-feldspar and Fe-rich biotite. They have geochemical affinities of A-type granites, e.g., high FeOT/(FeOT + MgO) ratios (0.84-0.99), total alkali (Na2O + K2O, 7.50-9.04 wt.%), high Ga/Al ratios (10,000*Ga/Al > 2.6) and high Zr + Nb + Y + Ce concentrations (> 350 ppm). High Y/Nb ratios (> 1.2) suggest that the Qianlishan complex belongs to A2-type granite. Zircon U-Pb ages indicate a short age interval decreasing from 158-157 Ma, to 158-155 Ma and to 154 Ma for the P-1, P-2 and P-3 granites, respectively. These ages are similar to the mineralization age of the Shizhuyuan tungsten polymetallic deposit, within error. The Qianlishan granites were generated at low oxygen fugacity conditions based on the low values of zircon Ce4 +/Ce3 + ratios (1.53-198) and significantly negative Eu anomalies (EuN/EuN*, 0.03-0.13) in apatite. New zircon εHf(t) values for the P-3 granite range from - 13.0 to - 4.4, similar to those previously obtained for the P-1 and P-2 granites. Both the granite and apatite grains therein are characterized by high F but low Cl concentrations, suggesting the influx of a high F/Cl component. The P-2 granites especially contain higher F contents (1840-8690 ppm) and W (7-158 ppm) and Sn (6-51 ppm) concentrations and with stronger evolution features. Positive trends between F and W and Sn of Qianlishan complex indicate that high F source is crucial for mineralization of W and Sn. We consider that the lithospheric mantle source may have been metasomatized by subduction fluids in the far end of subduction zones to produce the A2 feature of the Qianlishan granite and the fluorine was introduced through

  5. Silurian granites of northern Kazakhstan: U-Pb age and tectonic position

    NASA Astrophysics Data System (ADS)

    Letnikov, F. A.; Kotov, A. B.; Degtyarev, K. E.; Sal'Nikova, E. B.; Levchenkov, O. A.; Shershakova, M. M.; Shershakov, A. V.; Rizvanova, N. G.; Makeev, A. F.; Tolkachev, M. D.

    2009-06-01

    The isotopic-geochronological studies of zircons from granites of the Borovoe, Makinsk, and Zhukei massifs located in the eastern part of the Precambrian Kokchetav median massif revealed that they were formed during the relatively brief period from 431 to 423 Ma ago, which allowed them to be united into the Early Silurian Borovoe Complex.

  6. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites?

    NASA Astrophysics Data System (ADS)

    Feio, G. R. L.; Dall'Agnol, R.; Dantas, E. L.; Macambira, M. J. B.; Gomes, A. C. B.; Sardinha, A. S.; Oliveira, D. C.; Santos, R. D.; Santos, P. A.

    2012-10-01

    New whole-rock geochemistry and LA-MC-ICPMS and Pb-evaporation geochronological data were obtained on zircon from the Neoarchean Planalto suite granites and associated charnockitic rocks of the Canaã area of the Carajás province, eastern Amazonian craton, Brazil. The Pb-evaporation ages of three samples from the Planalto suite are around 2730 Ma (2733 ± 2 Ma, 2731 ± 1 Ma and 2736 ± 4 Ma), whereas U-Pb LA-MC-ICPMS concordia ages obtained for these samples are 2729 ± 17 Ma, 2710 ± 10 Ma, and 2706 ± 5 Ma, respectively. An orthopyroxene quartz gabbro associated with the Pium complex and Planalto suite yielded a U-Pb concordia age of 2735 ± 5 Ma, interpreted as its crystallization age. The Planalto suite granites and the charnockitic rocks associated with the Mesoarchean Pium complex were probably crystallized at 2730 ± 10 Ma. The Planalto granites have ferroan character and are similar geochemically to reduced A-type granites. In previous studies, they have been classified as such, despite the fact that they are syntectonic. The tectonic setting and the association between the Planalto suite and charnockitic series led us to classify these biotite-hornblende granites as hydrated granites of the charnockitic series. The Planalto suite and the Neoarchean charnockitic magmas were more probably derived by partial melting of mafic to intermediate tholeiitic orthopyroxene-bearing rocks similar to those of the Pium complex. At 2.76 Ga, upwelling of asthenospheric mantle in an extensional setting propitiated the formation of the Carajás basin. Later on, at ca. 2.73 Ga, heat input associated with underplate of mafic magma induced partial melting of mafic to intermediate lower crustal rocks, originating the Planalto and charnockitic magmas. The emplacement of these magmas occurred under active regional stress and resultant major shear zones found in the Canaã dos Carajás area. The close association between the Planalto suite and charnockitic rocks suggests that they

  7. 7. Photocopied August 1971 from Photo 13729, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 13729, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  8. 9. Photocopied August 1971 from Photo 13730, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopied August 1971 from Photo 13730, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION: WESTINGHOUSE 750 K.V.A., 2- PHASE GENERATORS AND SWITCHBOARD, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  9. 8. Photocopied August 1971 from Photo 11479, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1971 from Photo 11479, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500 KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  10. Paleoproterozoic gabbro-diorite-granite magmatism of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.

    2016-02-01

    The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified magmatic source. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.

  11. Landslides and the weathering of granitic rocks

    Treesearch

    Philip B. Durgin

    1977-01-01

    Abstract - Granitic batholiths around the Pacific Ocean basin provide examples of landslide types that characterize progressive stages of weathering. The stages include (1) fresh rock, (2) corestones, (3) decomposed granitoid, and (4) saprolite. Fresh granitoid is subject to rockfalls, rockslides, and block glides. They are all controlled by factors related to...

  12. The origin of granites and related rocks

    USGS Publications Warehouse

    Brown, Michael; Piccoli, Philip M.

    1995-01-01

    This Circular is a compilation of abstracts for posters and oral presentations given at the third Hutton symposium on the Origin of granites and related rocks. The symposium was co-sponsored by the Department of Geology, University of Maryland at College Park; the U.S. Geological Survey, Reston, Virginia; and the Department of Terrestrial Magnetism and Geophysical Laboratory, Carnegie Institution of Washington.

  13. Subsurface drainage erodes forested granitic terrane

    Treesearch

    Philip Durgin

    1984-01-01

    Abstract - Solution and landsliding, the dominant erosion processes in undisturbed forested mountainous watersheds, are both influenced by subsurface drainage. Biological processes that generate organic acids accelerate loss of dissolved solids by promoting the dissolution of primary minerals in granitic rock. These organic acids can also disperse the secondary...

  14. Voluminous granitic magmas from common basaltic sources

    USGS Publications Warehouse

    Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F.

    2005-01-01

    Granitic-rhyolitic liquids were produced experimentally from moderately hydrous (1.7-2.3 wt% H2O) medium-to-high K basaltic compositions at 700 MPa and f O2 controlled from Ni-NiO -1.3 to +4. Amount and composition of evolved liquids and coexisting mineral assemblages vary with fO2 and temperature, with melt being more evolved at higher fO2s, where coexisting mineral assemblages are more plagioclase- and Fe-Ti oxide-rich and amphibole-poor. At fO2 of Ni-NiO +1, typical for many silicic magmas, the samples produce 12-25 wt% granitic-rhyolitic liquid, amounts varying with bulk composition. Medium-to-high K basalts are common in subduction-related magmatic arcs, and near-solidus true granite or rhyolite liquids can form widely, and in geologically significant quantities, by advanced crystallization-differentiation or by low-degree partial remelting of mantle-derived basaltic sources. Previously differentiated or weathered materials may be involved in generating specific felsic magmas, but are not required for such magmas to be voluminous or to have the K-rich granitic compositions typical of the upper continental crust. ?? Springer-Verlag 2005.

  15. The global age distribution of granitic pegmatites

    USGS Publications Warehouse

    McCauley, Andrew; Bradley, Dwight C.

    2014-01-01

    An updated global compilation of 377 new and previously published ages indicates that granitic pegmatites range in age from Mesoarchean to Neogene and have a semi-periodic age distribution. Undivided granitic pegmatites show twelve age maxima: 2913, 2687, 2501, 1853, 1379, 1174, 988, 525, 483, 391, 319, and 72 Ma. These peaks correspond broadly with various proxy records of supercontinent assembly, including the age distributions of granites, detrital zircon grains, and passive margins. Lithium-cesium-tantalum (LCT) pegmatites have a similar age distribution to the undivided granitic pegmatites, with maxima at 2638, 1800, 962, 529, 485, 371, 309, and 274 Ma. Lithium and Ta resources in LCT pegmatites are concentrated in the Archean and Phanerozoic. While there are some Li resources from the Proterozoic, the dominantly bimodal distribution of resources is particularly evident for Ta. This distribution is similar to that of orogenic gold deposits, and has been interpreted to reflect the preservation potential of the orogenic belts where these deposits are formed. Niobium-yttrium-fluorine (NYF) pegmatites show similar age distributions to LCT pegmatites, but with a strong maximum at ca. 1000 Ma.

  16. Granite School District First Grade Reading Study.

    ERIC Educational Resources Information Center

    Castner, Myra H.; And Others

    A comparative study of first-grade reading instructional methods was undertaken with the support of the Granite School District Exemplary Center for Reading Instruction. This study was conducted in 19 schools of the district and involved approximately 1,295 students. Nine hypotheses concerning the various approaches used in reading instruction…

  17. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil

    NASA Astrophysics Data System (ADS)

    Lenharo, Sara Lais Rahal; Pollard, Peter J.; Born, Helmut

    2003-01-01

    The Água Boa and Madeira igneous complexes at the Pitinga mine were emplaced into acid volcanic rocks of the Paleoproterozoic Iricoumé Group, and host major tin, rare-metal (Zr, Nb, Ta, Y, REE) and cryolite mineralization. The igneous complexes are elongate NE-SW and each is composed of three major facies that, in order of emplacement, include porphyritic and equigranular rapakivi granite and biotite granite in both igneous complexes, followed by topaz granite in the Água Boa igneous complex (ABIC) and albite granite in the Madeira igneous complex (MIC). Rapakivi, porphyritic and granophyric textures observed in the granites are interpreted to reflect multiple stages of crystallization at different pressures (depths). Decompression during ascent shifted the magmas into the plagioclase stability field, causing partial resorption of quartz, with subsequent growth at lower pressure. Fluid saturation and separation probably occurred after final emplacement at shallow levels. Temperature and pressure estimates based on phase relations and zircon concentrations range from a maximum of 930 °C and 5 kbar for the rapakivi granites to below 650 °C and 1 kbar for the peralkaline albite granite. This suggests initial crystallization of early intrusive phases at around 15 km depth, with final emplacement of more volatile-rich crystal-mush at a depth of 0.5-1 km. Accessory minerals, including zircon, thorite, monazite, columbite-tantalite, cassiterite, bastnaesite and xenotime are present in almost all facies of the Água Boa and Madeira igneous complexes, attesting to the highly evolved character of the magmas. The presence of magnetite and/or primary cassiterite indicate crystallization under oxidizing conditions above the NNO buffer. The evolutionary sequence and Nd isotope characteristics ( TDM=2.2-2.4 Ga) of the Pitinga granites are similar to those of other Proterozoic rapakivi granites. However, petrographic, geochemical and Nd isotopic data ( ɛNd initial=-2.1 to +0

  18. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  19. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  20. Identification of granite varieties from colour spectrum data.

    PubMed

    Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio

    2010-01-01

    The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques.

  1. Identification of Granite Varieties from Colour Spectrum Data

    PubMed Central

    Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio

    2010-01-01

    The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques. PMID:22163673

  2. Assessment of radiological hazard of commercial granites from Extremadura (Spain).

    PubMed

    Guillén, J; Tejado, J J; Baeza, A; Corbacho, J A; Muñoz, J G

    2014-06-01

    The term "commercial granite" comprises different natural stones with different mineralogical components. In Extremadura, western Spain, "commercial granites" can be classified in three types: granite s.s. (sensus stricti), granodiorite, and diorite. The content of naturally occurring radionuclides depended of the mineralogy. Thus, the (40)K content increased as the relative content of alkaline feldspar increased but decreased as the plagioclase content increased. The radioactive content decreased in the following order: granite s.s. > granodiorite > diorite. In this work, the radiological hazard of these granites as building material was analyzed in terms of external irradiation and radon exposure. External irradiation was estimated based on the "I" index, ranged between 0.073 and 1.36. Therefore, these granites can be use as superficial building materials with no restriction. Radon exposure was estimated using the surface exhalation rates in polished granites. The exhalation rate in granites depends of their superficial finishes (different roughness). For distinct mechanical finishes of granite (polish, diamond sawed, bush-hammered and flamed), the surface exhalation rate increased with the roughness of the finishes. Thermal finish presented the highest exhalation rate, because the high temperatures applied to the granite may increase the number of fissures within it. The exhalation rates in polished granites varied from 0.013 to 10.4 Bq m(-2) h(-1).

  3. An evaluation of disequilibrium melting and granitic magma evolution by zircon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tang, M.

    2012-12-01

    The magma-mixing model has been widely used to explain the isotopic diversity in various granitic systems, although it, in many cases, lacks definite field and petrographic evidence to link the possible mantle input in granitic magma. The issue of disequilibrium melting, however, has seldom been fully evaluated in the formation of granitic rocks and it may readily occur when the melt extraction is fast enough that the melt may fail to attain isotopic equilibrium with the protoliths. In this scenario, melt batches of different stages may continually feed the magma chamber and then crystallize, causing large isotopic heterogeneity within individual pluton/intrusion. In this work, the effect of disequilibrium melting on granitic magmatism was pictured by in-situ geochemical and isotopic analyses on zircons from five representative granite samples in South China. These granites are characterized by significant ɛHf(t) variation (> 5 epsilon units) in zircons on specimen scale, although they do not have evident field or petrographic signs of magma mixing. Zircons from these samples display roughly positive Th/U-T (temperature) correlations with various extents of scatter. Many zircons show reverse thermal zonation, implying complex thermal evolution of the magma chambers, which might result from multiple melt impulses. Such open-system processes may also be responsible for the large ɛHf(t) variations in zircons. Coupled zircon ɛHf(t) variations and extent of scatter in zircon Th/U-T diagram are observed in one sample (Jiuling Pluton), strongly implying that isotopic evolution in the magma chamber may have been controlled by melt recharge frequency, which in turn may be associated with melt extraction rate in the source. Zircon ɛHf(t)-Th/U covariation, which may be expected in the mixing processes between mantle and crust derived magmas, was not observed in any sample of this work.

  4. Late immiscible Fe-rich melt separation during crystallization of highly differentiated siliceous granites

    SciTech Connect

    Silver, L.T.; Woodhead, J.A.; Williams, I.S.; Chappell, B.W.

    1985-01-01

    Observational evidence pointing to late immiscible separation of an Fe-Mn-Ti-rich melt has been obtained for some siliceous granites (SiO/sub 2/ > 70%; alkali oxides > 7 1/2 %; FeO* + MnO/FeO* + MnO + MgO > 0.70). Separation is inferred when crystallization exceeded 95% (vol) and residual melts were isolated and interstitial. Effects on the distribution of incompatible elements (U, Th, REE, Nb, Ta, Ti, P, F) and the paragenesis of the host accessory minerals were immediate and profound. The evidence derived from an exemplar granite includes: (1) diversity and complexity of the accessory mineral assemblage; (2) mappable preferred association of the accessory assemblages with Fe-Ti-Mn-oxides; (3) remarkable discontinuous compositional zonation and reaction relations in various accessory minerals; (4) presence of two distinct compositional variants of some mineral species; (5) interstitial textural and compositional relations to major minerals; (6) unusual textures for the Fe-Ti-Mn-oxide minerals; (7) isotopic evidence that the assemblage is cogenetic. Among several important implications are: (1) the model is suitable for experimental petrology verification; (2) incompatible element behavior during granite crystallization is more complex and more determined by kinetics and local equilibria than has been previously considered; (3) endowment of late differentiates (aplites, pegmatites) may be determined by timing of their separation relative to immiscible liquid separation; (4) separation of incompatible elements from granites by volatile processes may be controlled by volatile/Fe-rich melt equilibria.

  5. New perspectives on the origin and emplacement of the Late Jurassic Fanos granite, associated with an intra-oceanic subduction within the Neotethyan Axios-Vardar Ocean

    NASA Astrophysics Data System (ADS)

    Michail, Maria; Pipera, Kyriaki; Koroneos, Antonios; Kilias, Adamantios; Ntaflos, Theodoros

    2016-10-01

    The Fanos granite occurs in the Peonias subzone of the eastern Axios-Vardar zone in northern Greece. The Fanos granite is Late Jurassic (158 ± 1 Ma) and trends N-S, intruding the Mesozoic back-arc Guevgueli ophiolitic complex. The intrusive character of the eastern contact of the Fanos granite with the host ophiolitic complex is well preserved. In turn the western contact is overprinted by a few meters thick, west- to southwest-directed semi-ductile thrust zone, of Late Jurassic-Early Cretaceous age. The Fanos granite is dominated by the typical, isotropic granitoid fabric, although in some places the initial magmatic flow fabric is preserved. The main deformation recognized in the Fanos granite occurred in brittle regime and expressed by Tertiary thrust faults and Neogene-Quaternary normal to oblique normal faults. The origin as well as the possible tectonic setting of the Fanos granite is the main topics that we address in our study. Rock samples of the Fanos granite along with the adjusted Kotza Dere quartz diorite were analyzed for major and trace elements and for Sr and Nd isotopes (only the quartz diorite). The geochemical data show that the granite has peraluminous characteristics, high-K calc-alkaline affinities, and I-type features. The Sr initial isotopic values of the Fanos granite are rather low (0.7053-0.7056) while for the quartz diorite range from 0.7066 to 0.7068. The Nd initial isotopic values range from 0.51235 to 0.51240 for the granite and from 0.51222 to 0.51233 for the quartz diorite. The source of the granitic melt is interpreted to be meta-basaltic amphibolites. These amphibolites are the metamorphic products of enriched mantle melts that underplated the oceanic lithosphere. Taking into account our and published structural and geochemical data for the Fanos granite along with the tectonic data of the broader Axios-Vardar zone, we suggest that the studied granitic rocks were formed during an intra-oceanic subduction within the Neotethyan

  6. Hydro-thermal experiments and simulations within a granitic fracture

    NASA Astrophysics Data System (ADS)

    Neuville, Amélie; Flekkøy, Eirik; Jørgen Måløy, Knut; Toussaint, Renaud; Galland, Olivier

    2013-04-01

    The porous medium that we consider is a fracture with impermeable walls that have a complex topography. Our study aims at addressing the heat and mass transport which occurs during the injection of cold water into a fracture, initially filled with warm water and embedded in a warm rock. The characterization of such transfers is relevant to, for instance, hydrothermal circulations occurring at depth, or use of temperature measurements as a tracer of flow pathways. The fluid-rock interface separates exclusively-diffusive from advecto-diffusive processes where the water flows, and the heat diffusion is different in the water and rock. We look at the shape of the isotherm lines (in two dimensions) or surfaces (in three dimensions -- 3D) through time, until steady state is reached. We have both numerical and experimental approaches. The numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in 3D. The experimental setup has been developed in order to adjust the scaling of our simulations and further investigate the complexity of the hydro-thermal exchange. In this setup, an infrared camera and thermistors are used to monitor the temperature in space and time. Water is injected through a partly natural rough fracture: the bottom part is a granitic bloc with a rough wall, and the top part is a flat layer which is transparent in the infrared range. The surface of the granitic bloc has been digitized using a photogrammetry software (MicMac, developed by the French Institut Géographique National). This digitized surface is then transformed into a 3D mask showing void spaces and rock (digitized porous medium), and is used for the 3D hydro-thermal simulations. We will first present a numerical simulation where the geometry of the fracture consists of flat parallel walls perturbed by a single cavity. Then we will present experimental observations of the temperature done using a

  7. Retention of Anionic Species on Granite: Influence of Granite Composition - 12129

    SciTech Connect

    Videnska, Katerina; Havlova, Vaclava

    2012-07-01

    Technetium (Tc-99, T{sub 1/2} = 2.1.10{sup 5} yrs) and selenium (Se-79, T{sub 1/2} = 6.5.10{sup 4} yrs) belong among fission products, being produced by fission of nuclear fuel. Both elements can significantly contribute to risk due to their complicated chemistry, long life times, high mobility and prevailing anionic character. Therefore, knowledge of migration behaviour under different conditions can significantly improve input into performance and safety assessment models. Granite is considered as a potential host rock for deep geological disposal of radioactive waste in many countries. Granitic rocks consist usually of quartz, feldspar, plagioclase (main components), mica, chlorite, kaolinite (minor components). The main feature of the rock is advection governed transport in fractures, complemented with diffusion process from fracture towards undisturbed rock matrix. The presented work is focused on interaction of anionic species (TcO{sub 4}{sup -}, SeO{sub 4}{sup 2-}, SeO{sub 3}{sup 2-}) with granitic rock. Furthermore, the importance of mineral composition on sorption of anionic species was also studied. The batch sorption experiments were conducted on the crushed granite from Bohemian Massive. Five fractions with defined grain size were used for static batch method. Mineral composition of each granitic fraction was evaluated using X-ray diffraction. The results showed differences in composition of granitic fractions, even though originating from one homogenized material. Sorption experiments showed influence of granite composition on adsorption of both TcO4{sup -} and SeO3{sup 2-} on granitic rock. Generally, Se(IV) showed higher retention than Tc(VII). Se(VI) was not almost sorbed at all. Fe containing minerals are pronounced as a selective Se and Tc sorbent, being reduced on their surface. As micas in granite are usually enriched in Fe, increased sorption of anionic species onto mica enriched fractions can be explained by this reason. On the other hand

  8. Silicosis in West Country Granite Workers

    PubMed Central

    Hale, L. W.; Sheers, G.

    1963-01-01

    The granite industry in Cornwall and Devon is briefly described, especially the production of dust in dressing the stone. In 1951, 210 granite masons were examined (about 84% of the total at that time) and 37 (17·6%) showed silicosis. These men were followed up for 10 years. No silicosis was seen in men with less than 15 years' exposure, but after this time the risk increased to 11 out of 14 in those with over 35 years' exposure. Nine deaths occurred, two of which were due to silicosis. Radiological progression was observed in 13 of the 28 survivors. It was not necessarily associated with additional exposure but was related to age. More young men progressed. In 1961, 132 of the granite masons (about 93% of the total at that time) were re-examined and nine new cases of silicosis were found to have developed during the 10-year interval. The exposure in the 1961 cases was comparable with that of similar cases in 1951. Thus the risk has not been much reduced over this period. Pulmonary tuberculosis occurred in eight of the 37 cases of silicosis in 1951, and between 1951 and 1961 a further five cases were diagnosed, four being from one locality. This was by far the most frequent and disabling complication. Only one case of progressive massive fibrosis was seen. More extensive use of protective antituberculous chemotherapy is advocated, and also better dust control. Images PMID:14046159

  9. SILICOSIS FROM QUARRYING AND WORKING OF GRANITE

    PubMed Central

    Ahlmark, A.; Bruce, T.; Nyström, Å

    1965-01-01

    Previous knowledge of silicosis in the Swedish granite industry suggested that the disease was neither common nor severe. In recent years, however, changes in working methods have involved a considerably increased formation of dust, and it was considered likely that the risk of contracting silicosis was increased. Reports from other countries supported this conjecture. The 34 known cases of silicosis caused by quarrying and working of granite in Sweden were therefore reviewed. The mean duration of exposure to siliceous dust when stage I silicosis was diagnosed was 32 years, and the mean age at diagnosis was 55 years. Despite the relatively long `prediagnosis' exposure to dust, the disease showed a pronounced tendency to progression, and six cases were complicated by pulmonary tuberculosis. Eighty per cent of the men were awarded disablement benefit because of their pulmonary lesions, and four men died from silicosis alone or in combination with tuberculosis. In Swedish granite works there is room for considerable improvement in dust suppression. Careful checks of such preventive measures and periodic medical examination of exposed persons are strongly advocated. PMID:5836568

  10. Geochronology, geochemistry and tectonic implications of Late Triassic granites in the Mongolian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Dash, Batulzii; Boldbaatar, Enkhjargal; Zorigtkhuu, Oyun-Erdene; Yin, An

    2016-03-01

    Although the closure of the Paleo-Asian Ocean in western China and western Mongolia occurred in the Late Carboniferous and Early Permian, widespread intra-continental magmatism continued to occur across this region from the Late Permian to the end of the Triassic. In this study we document field relationships and geochemical characterization of a Late Triassic felsic intrusive complex in the western Mongolian Altai. The plutonic complex occurs as sills, dikes, and small stocks and its composition varies from biotite granite, two-mica granite, to leucogranite. Structurally, the plutonic complex occurs in the hanging wall of a segment of the regionally extensively (>1500 km long) Irtysh-Ertix-Bulgan thrust zone. As the plutonic bodies both cut and are deformed by the shear fabrics in this regional thrust shear zone, the duration of felsic magmatism and regional thrusting was temporally overlapping. This suggests that magmatism was coeval with crustal thickening. Major- and trace-element data and isotopic analysis of granitoid samples from our study area indicate that the felsic intrusions were derived from partial melting of meta-sediments, with the biotite and two-mica granite generated through vapor-absent melting and the leucogranite from flux melting. Although the Mongolian Altai intrusions were clearly originated from anatexis, coeval granite in the Chinese Altai directly west of our study area in the hanging wall of the Irtysh-Ertix-Bulgan thrust was derived in part from mantle melting. To reconcile these observations, we propose a Himalayan-style intracontinental-subduction model that predicts two geologic settings for the occurrence of felsic magmatism: (1) along the intracontinental thrust zone where granite was entirely generated by anatexis and (2) in the hanging wall of the intracontinental thrust where convective removal and/or continental subduction induced mantle melting.

  11. Origin and evolution of Pliocene Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy)

    NASA Astrophysics Data System (ADS)

    Dini, A.; Gianelli, G.; Puxeddu, M.; Ruggieri, G.

    2005-04-01

    Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8-2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3-1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14-23 km depth), characterized by distinct ɛNd( t) and 87Sr/ 86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3-6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low ɛNd( t) value (about -10.5) produced the oldest intrusions (about 3.8-2.5 Ma). Afterwards (2.5-2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher ɛNd( t) value (-7.9). Finally, a muscovite-rich source with high ɛNd( t) (about -8.9) gave origin to the younger group of granites (2.3-1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to

  12. Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Yinhang; Teng, Xuejian; Li, Yanfeng; Li, Min; Zhang, Tianfu

    2014-12-01

    The East-Ujimqin complex, located north of the Erenhot-Hegenshan fault, North China, is composed of mafic-ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing'an-Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U-Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic-ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic-ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U-Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2-14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9-12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic-ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic-ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280-276 Ma.

  13. Natural radioactivity of granites used as building materials.

    PubMed

    Pavlidou, S; Koroneos, A; Papastefanou, C; Christofides, G; Stoulos, S; Vavelides, M

    2006-01-01

    Sixteen kinds of different granites, used as building materials, imported to Greece mainly from Spain and Brazil, were sampled and their natural radioactivity was measured by gamma-ray spectrometry. The activity concentrations of (238)U, (226)Ra, (232)Th and (40)K of granites are presented and compared to those of other building materials as well as other granite types used all over the world. In order to assess the radiological impact from the granites investigated, the absorbed and the effective doses were determined. Although the annual effective dose is higher than the limit of 1mSvy(-1) for some studied granites, they could be used safely as building materials, considering that their contribution in most of the house constructions is very low. An attempt to correlate the relatively high level of natural radioactivity, shown by some of the granites, with their constituent radioactive minerals and their chemical composition, was also made.

  14. Preface to special issue: Granite magmatism in Brazil

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; de Pinho Guimarães, Ignez; Nardi, Lauro Valentim Stoll

    2016-07-01

    Granites are important both to the geologic evolution and to the economy of Brazil. Deposits of precious and rare metals, such as Au, Sn and many others, are directly or indirectly associated with granites, especially in the geologically under-explored Amazon region. On the opposite eastern side of the country, expanding exploitation of natural granite as dimension stone makes Brazil currently the world's second largest exporter of granite blocks. Granites are a major constituent of the Brazilian Archean-Proterozoic cratonic domains (the Amazon and São Francisco cratons) and their surrounding Neoproterozoic fold belts. The granites are thus fundamental markers of the major events of crustal generation and recycling that shaped the South American Platform. As a result, Brazilian granites have received great attention from the national and international community, and a number of influential meetings focused on the study of granites were held in the country in the last three decades. These meetings include the two International Symposia on Granites and Associated Mineralization (Salvador, January 21-31, 1987, and August 24-29, 1997), the Symposium on Rapakivi Granites and Related Rocks (Belém, August 2-5, 1995) and the Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton (Belém, August 2006). Special issues dedicated to contributions presented at these meetings in the Journal of South American Earth Sciences (Sial et al., 1998), Lithos (Stephens et al., 1999), Canadian Mineralogist (Dall'Agnol and Ramo, 2006), Precambrian Research (Ramo et al., 2002) and Anais da Academia Brasileira de Ciências (Dall'Agnol and Bettencourt, 1997; Sial et al., 1999a) are still important references on the knowledge of Brazilian granites and granite petrology in general.

  15. Index of granitic rock masses in the state of Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Spengler, Richard W.; Hanna, W.F.; Dixon, G.L.

    1988-01-01

    A compilation of 205 areas of exposed granitic rock in Nevada was undertaken for the U.S. Department of Energy. The purpose was to obtain data for evaluating granitic rock masses as potential underground nuclear waste repositories. Information, compiled by county for areas of granitic rock exposure, includes general location, coordinates, land classification, areal extent, accessibility, composition, age, rocks intruded, aeromagnetic expression, mining activity, and selected references.

  16. Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Katzir, Y.; Eyal, M.; Litvinovsky, B. A.; Jahn, B. M.; Zanvilevich, A. N.; Valley, J. W.; Beeri, Y.; Pelly, I.; Shimshilashvili, E.

    2007-05-01

    The central pluton within the Neoproterozoic Katharina Ring Complex (area of Gebel Mussa, traditionally believed to be the biblical Mt. Sinai) shows a vertical compositional zoning: syenogranite makes up the bulk of the pluton and grades upwards to alkali-feldspar granites. The latters form two horizontal subzones, an albite-alkali feldspar (Ab-Afs) granite and an uppermost perthite granite. These two varieties are chemically indistinguishable. Syenogranite, as compared with alkali-feldspar granites, is richer in Ca, Sr, K, Ba and contains less SiO 2, Rb, Y, Nb and U; Eu/Eu* values are 0.22-0.33 for syenogranite and 0.08-0.02 for alkali-feldspar granites. The δ18O (Qtz) is rather homogeneous throughout the pluton, 8.03-8.55‰. The δ18O (Afs) values in the syenogranite are appreciably lower relative to those in the alkali-feldspar granites: 7.59-8.75‰ vs. 8.31-9.12‰. A Rb-Sr isochron ( n = 9) yields an age of 593 ± 16 Ma for the Katharina Ring Complex (granite pluton and ring dikes). The alkali-feldspar granites were generated mainly by fractional crystallization of syenogranite magma. The model for residual melt extraction and accumulation is based on the estimated extent of crystallization (˜ 50 wt.%), which approximates the rigid percolation threshold for silicic melts. The fluid-rich residual melt could be separated efficiently by its upward flow through the rigid clusters of crystal phase. Crystallization of the evolved melt started with formation of hypersolvus granite immediately under the roof. Fluid influx from the inner part of the pluton to its apical zone persisted and caused increase of PH2O in the magma below the perthite granite zone. Owing to the presence of F and Ca in the melt, PH2O of only slightly more than 1 kbar allows crystallization of subsolvus Ab-Afs granite. Abundance of turbid alkali feldspars and their 18O/ 16O enrichment suggest that crystallization of alkali-feldspar granites was followed by subsolvus fluid-rock interaction

  17. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  18. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  19. Multivariate analyses of Erzgebirge granite and rhyolite composition: implications for classification of granites and their genetic relations

    NASA Astrophysics Data System (ADS)

    Förster, Hans-Jürgen; Davis, John C.; Tischendorf, Gerhard; Seltmann, Reimar

    1999-06-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P 2O 5 Li-mica granites; high-F, low-P 2O 5 Li-mica granites; high-F, low-P 2O 5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological

  20. GRANITE CHIEF WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    The Granite Chief Wilderness study area encompasses 57 sq mi near the crest of the Sierra Nevada 6 mi west of Tahoe City, California. Geologic, geochemical, and mines and prospect studies were carried out to assess the mineral-resource potential of the area. On the basis of the mineral-resource survey, it is concluded that the area has little promise for the occurrence of precious or base metals, oil, gas, coal, or geothermal resources. Sand, gravel, and glacial till suitable for construction materials occur in the area, but inaccessability and remoteness from available markets preclude their being shown on the map as a potential resource.

  1. Rare accessory uraninite in a Sierran granite

    NASA Technical Reports Server (NTRS)

    Snetsinger, K. G.; Polkowski, G.

    1977-01-01

    One grain of uraninite was found in a single thin-section of Sierran granite. Electron and ion microprobe analysis were used to determine the composition. Since the U-Pb age calculated for the uraninite does not differ greatly from the K-Ar age of the unit in which it occurs, it is suggested that the mineral is primary and not reworked from a preexisting rock. No uraninite has been detected in heavy mineral concentrates from other rocks of the local area.

  2. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  3. SIMFUEL dissolution studies in granitic groundwater

    NASA Astrophysics Data System (ADS)

    Ollila, K.

    1992-08-01

    The dissolution behaviour of an unirradiated chemical analogue of spent nuclear fuel, SIMFUEL, has been studied in synthetic, granitic groundwater under anoxic conditions. The release of U and the minor components Mo, Ru, Sr, Ba, La, Zr, Ce, Y, Rh, Pd and Nd was monitored during static (batch) leaching experiments. For molybdenum, ruthenium, strontium and barium, the leaching results (the total experimental time of 300 days) show a trend to congruent dissolution with the UO 2 matrix. The release rates of lanthanum, zirconium and cerium are higher relative to uranium. Sorption, colloidal and/or precipitation phenomena appear to play an important role under these experimental conditions.

  4. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite

    NASA Astrophysics Data System (ADS)

    Foden, John; Sossi, Paolo A.; Wawryk, Christine M.

    2015-01-01

    We present new Fe isotope data of 42 S-, I- and A-type (ferroan) granites from the Cambrian Delamerian orogen in South Australia, the Palaeozoic Lachlan Fold Belt and Western USA. Interpretation of these data, together with modelling suggests that magmatic processes do result in quite complex Fe-isotopic differentiation trends and can lead to granites with isotopically heavy iron with δ57Fe > 0.35‰. By comparison Mid-Ocean Ridge Basalts (MORBs) have δ57Fe = 0.15‰ (Teng et al., 2013). These variations are similar to those previously reported (Poitrasson and Freydier, 2005; Heimann et al., 2008; Telus et al., 2012), but, contrary to some interpretations (Beard and Johnson, 2006; Heimann et al., 2008), heavy values are not necessarily the product of late-stage hydrothermal fluid loss, though this process is undoubtedly also an important factor in some circumstances. A-type (ferroan) granites reach very heavy δ57Fe values (0.4-0.5‰) whereas I-types are systematically lighter (δ57Fe = 0.2‰). S-type granites show a range of intermediate values, but also tend to be isotopically heavy (δ57Fe ≈ 0.2-0.4‰). Our results show that the iron isotopic values and trends are signatures that reflect granite generation processes. A modelling using the Rhyolite-MELTS software suggests that contrasting trajectories and end-points in Fe isotope evolution towards granite depend on: oxidation state of the evolving magma and, whether or not the system is oxygen-buffered. Iron isotopic evolution supports an origin of ferroan A-type granite from protracted, closed magma chamber fractionation of moderately reduced mafic magmas. In these systems magnetite saturation is delayed and the ferric iron budget is finite. I-type systems originate with the supply of relatively oxidised, hydrous, subduction-related magmas from the mantle wedge to the upper plate crust. These then experience oxygen-buffered open-system AFC processes in lower crustal hot-zones. S-type magmas are crustal

  5. Effectiveness of granite cleaning procedures in cultural heritage: A review.

    PubMed

    Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A

    2016-11-15

    Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out.

  6. Ponderosa pine progenies: differential response to ultramafic and granitic soils

    Treesearch

    James L. Jenkinson

    1974-01-01

    Progenies of nine ponderosa pines native to one granitic and several ultramafic soils in the northern Sierra Nevada were grown on both soil types in a greenhouse. The progenies differed markedly in first-year growth on infertile ultramafic soils, but not on a fertile granitic soil. Growth differences between progenies were primarily related to differences in calcium...

  7. Detail of south granite pier revealing riveted truss ends and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  8. Experimental methods of determining thermal properties of granite

    USDA-ARS?s Scientific Manuscript database

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  9. Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.

    2014-12-01

    We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to

  10. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  11. Lower Granite Pool and Turbine Survival Study, 1987.

    SciTech Connect

    Giorgi, Albert E.; Stuehrenberg, Lowell

    1988-06-01

    Survival of yearling spring chinook salmon was estimated as they traversed Lower Granite Reservoir and passed through a turbine at Lower Granite Dam. Fish were PIT tagged at Rapid River Hatchery and transported to release sites near Asotin, Washington, and at Lower Granite Dam. Recovery ratios of treatment and control groups were used to estimate survival. Estimates were based on tags intercepted at both Lower Granite and Little Goose dams. Turbine survival was estimated to be 83.1% (95% CI = 74.1 to 92.2%). A qualified estimate of survival from Asotin to Lower Granite Dam for a single release group was calculated as 71.9%. Uncertainties associated with satisfying certain key mark and recapture statistical assumptions are examined. As a result of these uncertainties, an alternate study design and analytical procedure are recommended for future investigations. 14 refs., 7 figs., 5 tabs.

  12. Geochemistry of late Cretaceous granitoids from northeastern Washington: implication for genesis of two-mica Cordilleran granites

    SciTech Connect

    Asmerom, Y.; Ikramuddin, M.; Kinart, K.

    1988-05-01

    Mesozoic two-mica granites and I-type granodiorites from northeastern Washington have initial /sup 87/Sr//sup 86/Sr ratios around 0.7100, similar to many other Cordilleran granitoids. Metapelite and calcsilicate country rocks, equivalent to the Belt Supergroup, have measured /sup 87/Sr//sup 86/Sr ratios in the range of 0.91 to 0.98. Unlike many of their Cordilleran counterparts, the northeastern Washington two-mica granites are enriched in U, Rb, and other incompatible elements, and therefore cannot have been derived from depleted lower crust sedimentary sources. Both the two-mica granites and the I-type granodiorites have similar rare-earth-element and trace-element enrichment patterns. Trace-elements modeling shows that it is feasible to derive the two-mica granites by 60% partial melting of a granodiorite-like source. The close association of Cordilleran metamorphic core complexes and older I-type granodiorites with two-mica granites supports this model.

  13. Anomalously low strength of serpentinite sheared against granite and implications for creep on the Hayward and Calaveras Faults

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.; Ponce, David A.

    2010-01-01

    Serpentinized ophiolitic rocks are juxtaposed against quartzofeldspathic rocks at depth across considerable portions of the Hayward and Calaveras Faults. The marked compositional contrast between these rock types may contribute to fault creep that has been observed along these faults. To investigate this possibility, we are conducting hydrothermal shearing experiments to look for changes in frictional properties resulting from the shear of ultramafic rock juxtaposed against quartzose rock units. In this paper we report the first results in this effort: shear of bare-rock surfaces of serpentinite and granite, and shear of antigorite-serpentinite gouge between forcing blocks of granitic rock. All experiments were conducted at 250°C. Serpentinite sheared against granite at 50 MPa pore-fluid pressure is weaker than either rock type separately, and the weakening is significantly more pronounced at lower shearing rates. In contrast, serpentinite gouge sheared dry between granite blocks is as strong as the bare granite surface. We propose that the weakening is the result of a solution-transfer process involving the dissolution of serpentine minerals at grain-to-grain contacts. Dissolution of serpentine is enhanced by modifications to pore-fluid chemistry caused by interaction of the fluid with the quartz-bearing rocks. The compositional differences between serpentinized ultramafic rocks of the Coast Range Ophiolite and quartzofeldspathic rock units such as those of the Franciscan Complex may provide the mechanism for aseismic slip (creep) in the shallow crust along the Hayward, Calaveras, and other creeping faults in central and northern California.

  14. Contrasting Modes for Granitic Batholith Construction: the Role of Tectonic Stress

    NASA Astrophysics Data System (ADS)

    Hogan, J. P.

    2005-05-01

    Mental images of felsic magma chambers are inextricably linked to eruption of voluminous high silica ignimbrites which require the presence of even larger volume magma chambers within the crust. Systematic stratigraphic compositional variation within ignimbrites indicate compositionally stratified chambers, with a high silica cap, grading downward to intermediate compositions, all underlain by mafic magma. Influx of basaltic magma keeps the overlying felsic magma liquid and convecting, thus sustaining the large volume chamber. Too large a mafic replenishment can catastrophically extinguish the chamber by triggering an eruption. Silurian granitic batholiths of the coastal Maine magmatic province fit well with an origin as the plutonic roots for such volcanic systems e.g., Mount Desert Igneous Complex (Seaman, 1999), Vinalhaven Igneous Complex (Hawkins and Wiebe, 2004). Large volcanic eruptions are associated with these batholiths. In contrast to "open system" magma chambers, isotopic evidence indicates large "closed system" granitic batholiths can be assembled incrementally from coalescence of discrete smaller batches of felsic magma. Observed heterogeneity in initial isotopic compositions (e.g., Sr, Pb) from these batholiths is interpreted to be inherited form the source region. Preservation of this isotopic heterogeneity eliminates homogenization by convective mixing, indicating discrete batches of magma welded together to form large granitic batholiths. The Devonian Lucerne granite of the coastal Maine magmatic province fits this style of "closed system" batholith construction (Hogan and Sinha, 1991). It is indeterminate as to whether or not the Lucerne magma chamber erupted. The distinction between these two styles of batholith construction, and their magma chambers dynamics, is dependent upon the availability and volume of basaltic magma within the crustal column, which is linked to tectonic stress (Hogan et al., 1998). Increased magma driving pressures during

  15. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Lamarão, Claudio Nery; Borges, Régis Munhoz Krás; Dall'Agnol, Roberto

    2014-04-01

    The trace element content in zircons from A-type granites and rhyolites was investigated by using back-scattered electron images and electron microprobe analyses. The studied Proterozoic (Wiborg batholith, Finland and Pará, Amazonas and Goiás states, Brazil) and Variscan (Krušné Hory/Erzgebirge, Czech Republic and Germany) plutons cover a wide range of rocks, from large rapakivi-textured geochemically primitive plutons to small intrusions of F-, Li-, Sn-, Nb-, Ta-, and U-enriched rare-metal granites. While zircon is one of the first crystallized minerals in less fractionated metaluminous and peraluminous granites, it is a late-crystallized phase in peralkaline granites and in evolved granites that may crystallize during the whole process of magma solidification. The early crystals are included in mica, quartz, and feldspar; the late grains are included in fluorite or cryolite or are interstitial. The zircon in hornblende-biotite and biotite granites from the non-mineralized plutons is poor in minor and trace elements; the zircon in moderately fractionated granite varieties is slightly enriched in Hf, Th, U, Y, and HREEs; whereas the zircon in highly fractionated ore-bearing granites may be strongly enriched in Hf (up to 10 wt.% HfO2), Th (up to 10 wt.% ThO2), U (up to 10 wt.% UO2), Y (up to 12 wt.% Y2O3), Sc (up to 3 wt.% Sc2O3), Nb (up to 5 wt.% Nb2O5), Ta (up to 1 wt.% Ta2O5), W (up to 3 wt.% WO3), F (up to 2.5 wt.% F), P (up to 11 wt.% P2O5), and As (up to 1 wt.% As2O5). Metamictized zircons may also be enriched in Bi, Ca, Fe, and Al. The increase in the Hf content coupled with the decrease in the Zr/Hf value in zircon is one of the most reliable indicators of granitic magma evolution. In the zircon of A-type granites, the Zr/Hf value decreases from 41-67 (porphyritic granite) to 16-19 (equigranular granite) in the Kymi stock, Finland, and from 49-52 (biotite granite) to 18-36 (leucogranite) in the Pedra Branca pluton, Brazil. In the in situ strongly

  16. Enigmatic reticulated filaments in subsurface granite.

    PubMed

    Miller, A Z; Hernández-Mariné, M; Jurado, V; Dionísio, A; Barquinha, P; Fortunato, E; Afonso, M J; Chaminé, H I; Saiz-Jimenez, C

    2012-12-01

    In the last few years, geomicrobiologists have focused their researches on the nature and origin of enigmatic reticulated filaments reported in modern and fossil samples from limestone caves and basalt lava tubes. Researchers have posed questions on these filaments concerning their nature, origin, chemistry, morphology, mode of formation and growth. A tentative microbial origin has been elusive since these filaments are found as hollow tubular sheaths and could not be affiliated to any known microorganism. We describe the presence of similar structures in a 16th century granite tunnel in Porto, Northwest Portugal. The reticulated filaments we identify exhibit fine geometry surface ornamentation formed by cross-linked Mn-rich nanofibres, surrounded by a large amount of extracellular polymeric substances. Within these Mn-rich filaments we report for the first time the occurrence of microbial cells.

  17. Uranium-lead isotope systematics and apparent ages of zircons and other minerals in precambrian granitic rocks, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Ludwig, K. R.; Stuckless, J.S.

    1978-01-01

    Zircon suites from the two main types of granite in the Granite Mountains, Wyoming, yielded concordia-intercept ages of 2,640??20 m.y. for a red, foliated granite (granite of Long Creek Mountain) and 2,595??40 m.y. for the much larger mass of the granite of Lankin Dome. These ages are statistically distinct (40??20 m.y. difference) and are consistent with observed chemical and textural differences. The lower intercepts of the zircon chords of 50??40 and 100+ 75 m.y. for the granite of Long Creek Mountain and granite of Lankin Dome, respectively, are not consistent with reasonable continuous diffusion lead-loss curves but do correspond well with the known (Laramide) time of uplift of the rocks. Epidote, zircon, and apatite from silicified and epidotized zones in the granites all record at least one postcrystallization disturbance in addition to the Laramide event and do not define a unique age of silicification and epidotization. The lower limit of ???2,500 m.y. provided by the least disturbed epidote, however, suggests that these rocks were probably formed by deuteric processes shortly after emplacement of the granite of the Lankin Dome. The earlier of the two disturbances that affected the minerals of the silicified-epidotized rock can be bracketed between 1,350 and 2,240 m.y. ago and is probably the same event that lowered mineral K-Ar and ages in the region. Zircon suites from both types of granite show well-defined linear correlations among U content, common-Pb content, and degree of discordance. One of the zircon suites has an extremely high common-Pb content (up to 180 ppm) and exhibits a component of radiogenic-Pb loss that is apparently unrelated to radiation damage. ?? 1978 Springer-Verlag.

  18. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  19. Late-orogenic, post-orogenic, and anorogenic granites: Distinction by major-element and trace-element chemistry and possible origins

    SciTech Connect

    Rogers, J.J.W.; Greenberg, J.K. )

    1990-05-01

    Granites classified into four categories based solely on tectonics of occurrence and associated rock types also have compositional characteristics that are consistent within groups and different among groups. Orogenically related granites include late-orogenic varieties (LO) associated with calc-alkaline batholiths, and post-orogenic varieties (PO), which occur in broad zones of isolated diapiric plutons in recently deformed orogenic belts. Inclined REE patterns, moderate Sr contents, and K{sub 2}O-SiO{sub 2} relationships show that late-orogenic granites formed by fractionation of plagioclase, clinopyroxene, and amphibole from calcalkaline magmas. Flatter REE patterns and K{sub 2}O contents near 5%, plus the absence of associated magmatic rocks, indicate that the post-orogenic granites developed by partial melting of subduction-produced mafic/intermediate magmatic rocks. Both the late- and post-orogenic granites can be part of material newly added to continental crust as a result of orogeny. Anorogenic granites in anorthosite/rapakivi complexes (AR) or alkaline ring complexes (RC) have LIL contents too high to have been equilibrated with a mafic mineral assemblage. These anorogenic rocks probably formed by partial melting of preexisting sialic crust and do not represent new crustal increment.

  20. Radon exhalation from granites used in Saudi Arabia.

    PubMed

    al-Jarallah, M

    2001-01-01

    Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series.

  1. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps)

    PubMed Central

    Miller, C.; Thöni, M.; Goessler, W.; Tessadri, R.

    2011-01-01

    The northern part of the Karawanken plutonic belt is a gabbro–granite complex located just north of the Periadriatic lineament near the Slovenian–Austrian border. Petrographic and geochemical studies of the Eisenkappel intrusive complex indicate that this multiphase plutonic suite developed by a combination of crystal accumulation, fractional crystallization and assimilation processes, magma mixing and mingling. The mafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from an enriched mantle source. The mafic melts triggered partial melting of the crust and the formation of granite. The granitic rocks are alkalic, metaluminous and have the high Fe/Fe + Mg characteristics of within-plate plutons. Temperature and pressure conditions, derived from amphibole-plagioclase and different amphibole thermobarometers, suggest that the analysed Eisenkappel gabbros crystallized at around 1000 ± 20 °C and 380–470 MPa, whereas the granitic rock crystallized at T ≤ 800 ± 20 °C and ≤ 350 MPa. Mineral-whole rock Sm–Nd analyses of two cumulate gabbros yielded 249 ± 8.4 Ma and 250 ± 26 Ma (εNd: + 3.6), garnet-whole rock Sm–Nd analyses of two silicic samples yielded well-constrained ages of 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma (εNd: − 2.6). PMID:26525511

  2. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps).

    PubMed

    Miller, C; Thöni, M; Goessler, W; Tessadri, R

    2011-07-01

    The northern part of the Karawanken plutonic belt is a gabbro-granite complex located just north of the Periadriatic lineament near the Slovenian-Austrian border. Petrographic and geochemical studies of the Eisenkappel intrusive complex indicate that this multiphase plutonic suite developed by a combination of crystal accumulation, fractional crystallization and assimilation processes, magma mixing and mingling. The mafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from an enriched mantle source. The mafic melts triggered partial melting of the crust and the formation of granite. The granitic rocks are alkalic, metaluminous and have the high Fe/Fe + Mg characteristics of within-plate plutons. Temperature and pressure conditions, derived from amphibole-plagioclase and different amphibole thermobarometers, suggest that the analysed Eisenkappel gabbros crystallized at around 1000 ± 20 °C and 380-470 MPa, whereas the granitic rock crystallized at T ≤ 800 ± 20 °C and ≤ 350 MPa. Mineral-whole rock Sm-Nd analyses of two cumulate gabbros yielded 249 ± 8.4 Ma and 250 ± 26 Ma (εNd: + 3.6), garnet-whole rock Sm-Nd analyses of two silicic samples yielded well-constrained ages of 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma (εNd: - 2.6).

  3. Geology of Nicholson's point granite, Natal Metamorphic Province, South Africa: the chemistry of charnockitic alteration and origin of the granite

    NASA Astrophysics Data System (ADS)

    Grantham, G. H.; Allen, A. R.; Cornell, D. H.; Harris, C.

    1996-10-01

    In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to ˜4 m in width are developed adjacent to contacts with Port Edward enderbite and pegmatites intruded into the normally garnetiferous Nicholson's Point granite. Other mineralogical differences between the aureoles and the granite include increased myrmekite and significantly less biotite in the former and the replacement of pyrite by pyrrhotite in the charnockitic rocks. No significant differences in major element chemistry between the garnet-biotite Nicholson's Point granite and charnockitic Nicholson's Point granite are seen, except possibly for higher CaO and TiO 2 in the charnockite. Higher Rb, Th, Nb and Y contents in the garnet-biotite granite suggest that these elements have been locally depleted from garnet-biotite granite during char nockitisation. This depletion is considered to be related to the reduction in biotite. Strontium and Ba contents are significantly higher in the charnockite. Generally higher S contents in the charnockite suggest S metasomatism, with S possibly being added from the enderbite. No differences in δ18O isotope data are seen between the garnetiferous and hypersthene bearing granite. In the charnockite the LREEs are weakly depleted whereas the HREEs show greater depletion compared to the garnetiferous granite. The depletions in REEs are thought to be related to the breakdown of garnet. Europium is marginally enriched or unchanged in the charnockite relative to the garnetiferous granite. Two-pyroxene thermometry on the Port Edward enderbite suggests that it was intruded at temperatures of ˜1000-1100°C. The replacement of pyrite by pyrrhotite is also consistent with a thermal auroele. Consequently the charnockitic zones developed around the intrusions of Port Edward enderbite may result from the thermally driven dehydration of biotite. The aureoles developed adjacent to pegmatites are not considered to have resulted from heat but probably

  4. Petrogenesis of pegmatites and granites in southwestern Maine

    SciTech Connect

    Tomascak, P.B.; Walker, R.J.; Krogstad, E.J. . Dept. of Geology)

    1993-03-01

    Granitic pegmatites occurring near the town of Topsham in southwestern Maine are mineralogically diverse, featuring abundant dikes and contain rare earth element minerals as well as one pegmatite that contains Li minerals. The pegmatite series crops out near the Brunswick granite, a texturally diverse granitic pluton, and lies 13 km southeast of the Mississippian age Sebago batholith. Areas intruded by pegmatites that possess such different mineral assemblages are globally rare. The origins of these mixed'' pegmatite series have not been comprehensively investigated. There is no known pattern of regional zonation (mineral/chemical) among Topsham series pegmatites, hence simple fractionation processes are probably not responsible for the compositional variations. The authors are attempting to clarify pegmatite petrogenesis using common Pb isotopic ratios of feldspars and Sm-Nd isotopic data from whole rocks and minerals. Pb isotopic ratios from leached feldspars reflect the Pb ratios of the source from which they were derived. The range of Pb isotopic compositions of alkali feldspars from 7 granitic pegmatites is as follows: [sup 206]Pb/[sup 204]Pb = 18.5-19.1; [sup 207]Pb/[sup 204]Pb = 15.53-15.69; [sup 208]Pb/[sup 204]Pb = 38.3-38.6. The Brunswick granite has K-feldspars with [sup 206]Pb/[sup 204]Pb = 18.40-18.47, [sup 207]/[sup 204]Pb = 15.64-15.66 and [sup 208]Pb/[sup 204]Pb = 38.29-38.39. The Pb isotopic compositions of both pegmatites and granites are significantly more radiogenic than existing data for the Sebago granite and argue against the consanguinity of Topsham pegmatites and the Sebago batholith. These data instead support a genetic link between the pegmatites and the Brunswick granite, which ranges from a fine-grained two-mica granite to a garnet-bearing pegmatitic leucogranite.

  5. Performance of Granite Asphalt Mixture Modified by Silane Coupling Agent

    NASA Astrophysics Data System (ADS)

    Liu, Zhihang; Li, Xia; Wang, Li; Kang, Rongling

    2017-06-01

    In order to improve pavement performance of granite asphalt mixture, the surface of granite mineral powder was organic modified by silane coupling agent. The water stability and high temperature stability of the asphalt mixture were analyzed by Marshall tests, immersion Marshall test, freeze-thaw splitting test and rutting test. The results show that the mixing amount of silane coupling agent in the range from 0.5% to 2.5% can significantly improve the high temperature stability and water stability of the asphalt mixture. Taking into account the performance and economic factors, 2.0% silane coupling agent on the surface of granite filler was recommended.

  6. Pb and O isotopic constraints on the source of granitic rocks from Cape Breton Island, Nova Scotia, Canada

    USGS Publications Warehouse

    Ayuso, R.A.; Barr, S.M.; Longstaffe, F.J.

    1996-01-01

    Pb isotopic compositions of leached feldspars from twenty-three plutons in Cape Breton Island can be divided into two groups: anorthosite, syenite, and granite in the Blair River Complex, which have the least radiogenic compositions on the Island, and granitic rocks from terranes (Aspy, Bras d'Or, and Mira) to the south. Pb isotopic data for the Blair River Complex (206Pb/204Pb = 17.399-18.107; 207Pb/204Pb = 15.505-15.560; 208Pb/204Pb = 36.689-37.733) are consistent with an old source region ultimately derived from the mantle and contaminated by sialic crust. Oxygen isotopic compositions of syenite in the Blair River Complex (??18O = +8.0 to +8.5 permil) are slightly higher than anorthosite (+7.0 to +8.3 permil); a Silurian granite in the Blair River Complex has ??18O = +7.5 permil. Cambrian to Devonian plutons in the Aspy, Bras d'Or, and Mira terranes are more radiogenic (206Pb/204Pb = 18.192-18.981; 207Pb/204Pb = 15.574-15.712; 208Pb/ 204Pb =37.815-38.936) than the Blair River Complex and were generated from source regions having a predominant crustal Pb signature (high ??). The ??18O values of granites and granodiorites in the Aspy terrane (+7.5 to +9.2 permil; avg = +8.6 permil) and Bras d'Or (+3.7 to +11.3 permil; avg = +9.4 permil) are also consistent with involvement of sialic crust. Many Late Proterozoic granites from the Mira terrane have anomalously low ??18O values (+0.2 to +5.9 permil), perhaps produced from protoliths that had undergone hydrothermal alteration prior to melting. Paleozoic granitic rocks from the Aspy, Bras d'Or, and Mira terranes cannot be uniquely distinguished on the basis of their Pb and O isotopic compositions. The granitic rocks could have been generated during terrane amalgamation from combinations of unradiogenic (Grenville-like) and more radiogenic (Avalon-like) sources.

  7. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  8. Newly discovered uranium mineralization at 2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China

    NASA Astrophysics Data System (ADS)

    Luo, Jin-Cheng; Hu, Rui-Zhong; Fayek, Mostafa; Bi, Xian-Wu; Shi, Shao-Hua; Chen, You-Wei

    2017-04-01

    The southeastern part of the Nanling metallogenic province, South China contains numerous economically important granite-hosted, hydrothermal vein-type uranium deposits. The Miao'ershan (MES) uranium ore field is one of the most important uranium sources in China, hosts the largest Chanziping carbonaceous-siliceous-pelitic rock-type uranium deposit and several representative granite-hosted uranium deposits. The geology and geochemistry of these deposits have been extensively studied. However, accurate and precise ages for the uranium mineralization are scarce because uranium minerals in these deposits are usually fine-grained, and may have formed in several stages, thus hindering the understanding of the uranium metallogenesis of this province. The Menggongjie (MGJ) uranium deposit is one of the largest granite-hosted uranium deposits in the MES ore field. Uranium mineralization in this deposit occurs at the central part of the MES granitic complex, accompanied with silicification, fluorination, K-metasomatism and hematitization. The ore minerals are dominated by uraninite, occurring in quartz or fluorite veinlets along fractures in altered granite. In-situ SIMS U-Pb dating on the uraninite yields the U-Pb isotopic age of 1.9 ± 0.7 Ma, which is comparable to the chemical U-Th-Pbtol uraninite age of 2.3 ± 0.1 Ma. Such ages agree well with the eruption ages of the extension-related Quaternary volcanics (2.1-1.2 Ma) in South China, suggesting that the uranium mineralization have formed at an extensional setting, possibly related to the Quaternary volcanic activities. Therefore, our robust, new dating results of the MGJ uranium deposit make it the youngest granite-hosted uranium deposit reported so far in South China and the mineralization event represents a newly identified mineralization epoch.

  9. Source regions of granites and their links to tectonic environment: examples from the western United States

    NASA Astrophysics Data System (ADS)

    Anthony, Elizabeth Y.

    2005-03-01

    This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry. Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the "plutonic province", is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K 2O/Na 2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the "Panhandle igneous complex", is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the "plutonic province" and systematically older than crystallization ages, implying a substantial crustal input to the magmas. At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial ɛNd (-4.3) and lowest 87Sr/ 86Sr i (0.7069). It is also the oldest and chemically most primitive, having low

  10. 5. VIEW SHOWING DREDGING OF ARIZONA CANAL NEAR THE GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING DREDGING OF ARIZONA CANAL NEAR THE GRANITE REEF DAM. SOUTH INTAKE OF THE DAM IS IN THE BACKGROUND Photographer: Walter J. Lubken. March 1908 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  11. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  12. 10. Lighthouse boathouse and granite wharf, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Lighthouse boathouse and granite wharf, view north northeast, southwest and southeast sides of boathouse, west and south sides of dock - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  13. Lift Off (Granite City C. U. School District 9)

    ERIC Educational Resources Information Center

    Goodall, Robert C.; And Others

    1970-01-01

    Describes and evaluates the ESEA Title I program in Granite City (Illinois) target area schools which provide preschool classes, remedial reading, and supportive health and counseling services. The programs are considered to be efficient. (DM)

  14. 9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE BLOCK PAVING, EXPANSION JOINT AND NORTH SIDE PIPE RAILING - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  15. Detail of track girder, south portal and granite piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of track girder, south portal and granite piers at low tide. View Northwest - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  16. Granite Monument Plaza Oklahoma City Civic Center, Bounded by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Granite Monument Plaza - Oklahoma City Civic Center, Bounded by N. Shartel Avenue to the West, N. Hudson Avenue to the East, Couch Drive to the North, and Colcord Drive to the South, Oklahoma City, Oklahoma County, OK

  17. 7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  18. 8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  19. A Global compilation of Heat Production in Granitic Rocks

    NASA Astrophysics Data System (ADS)

    Jakobsen, Kiki; Sørensen, Nanna K.; Nielsen, Louise S. K.; Thybo, Hans; Artemieva, Irina M.

    2017-04-01

    Knowledge of the heat production in the crust is important for understanding the energy balance in Earth. It is assumed that the crust produces a substantial part of the heat in Earth, but its proportion in comparison to the mantle and the contribution from core solidification is not well known. Knowledge of the crustal heat production is required for assessing the mantle heat flow at the crust-mantle interface. Granites probably are the main heat producing rock types in the crust, and therefore their heat production is of crucial importance for understanding Earth heat balance. As part of a B.Sc. thesis study we have compiled a new database based on published values of heat production in various types of granites. The database has about 500 entries for concentrations of U, Th, and K and the total heat generation in different continental regions. The database also includes information on crustal age and the emplacement age of granites, where available. Some of the main conclusions that may be drawn from analyses of this new database are: • Distribution of heat production values is narrow in Archean-early Proterozoic granites but very broad in middle-late Proterozoic granites. • We observe no correlation between granite type and heat production. • Some correlation may be inferred between age and heat production - heat production is relatively low in Archaean-early Proterozoic granites. • Proterozoic granites are dominated by A-type which have high heat production; the I-type Archean granitic rocks seem to have the highest Th/U ratio. • The Th/U ratio is supposed to be 3.7-4.0 based on relative time constants. This is in general correct with a global average value of 3.7. However, it is ca. 3.8 for Phanerozoic and Archaean-early Proterozoic granites and 3.3 for middle-late Proterozoic granites. We speculate if this variation may be caused by major plate reorganization or perhaps by change in global plate tectonic style?

  20. Lithium Isotopes; a Potential aid to Understanding Granite Petrogenesis

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Chappell, B.; Bennett, V.

    2002-12-01

    Significant enrichment in 6Li occurs during the weathering of continental crustal materials to clays, contributing to depleted δ7Li in the resultant sedimentary rocks. As such Li isotopes potentially provide a unique perspective on the nature of crustal components involved granite genesis. Carboniferous-Permian granites of the New England Batholith (NEB), Australia, emplaced in a Devonian-Triassic arc setting, are subdivided into 5 major supersuites1. Bundarra and Hillgrove are both S-types, interpreted to be derived from strongly weathered arc rocks1, and immature greywackes2, respectively. Moonbi, Uralla and Clarence River represent three distinct I-type supersuites. Moonbi granites are high-K and strongly oxidised. Uralla granites are medium-high-K, and more reduced. Clarence River are low-K, isotopically primitive granites, equivalent to arc magmas. Li isotopes were evaluated using MC-ICP-MS analysis under conditions of reduced RF power. This 'cool' plasma technique yields precision equivalent to TIMS (2\\sigma SD; 0.5‰ , 680W; 0.7‰ , 800W)3. Overall variations of ~10‰ δ 7Li are observed, greater than the differences observed in arc lavas worldwide (δ 7Li = ~2 to 7‰ ). Clarence River granites typically have δ7Li > 4‰ , similar to lavas from sediment poor island arcs (e.g. Izu-Bonin and Kuriles). Bundarra granites have low δ7Li, consistent with involvement of more strongly weathered source components. The higher δ7Li (< 4.9‰ ) observed for Hillgrove supports the inferred derivation from immature arc sediments2. Moonbi and Uralla overlap with the lighter values observed for arc lavas. The slightly heavier values for Uralla granites are consistent with the greater involvement of sedimentary components in the latter. Although no simple delineation exists between NEB S- and I-type granites, Li isotopes provide important insights into the nature of the crustal components involved in granite magma-genesis. 1Shaw, S.E. and Flood, R.H. 1981. JGR, 86

  1. Initiation and propagation of mixed mode fractures in granite and sandstone

    NASA Astrophysics Data System (ADS)

    Rück, Marc; Rahner, Roman; Sone, Hiroki; Dresen, Georg

    2017-10-01

    We investigate mixed mode fracture initiation and propagation in experimentally deformed granite and sandstone. We performed a series of asymmetric loading tests to induce fractures in cylindrical specimens at confining pressures up to 20 MPa. Loading was controlled using acoustic emission (AE) feedback control, which allows studying quasi-static fracture propagation for several hours. Location of acoustic emissions reveals distinct differences in spatial-temporal fracture evolution between granite and sandstone samples. Before reaching peak stress in experiments performed on granite, axial fractures initiate first at the edge of the indenter and then propagate through the entire sample. Secondary inclined fractures develop during softening of the sample. In sandstone, inclined shear fractures nucleate at peak stress and propagate through the specimen. AE source type analysis shows complex fracturing in both materials with pore collapse contributing significantly to fracture growth in sandstone samples. We compare the experimental results with numerical models to analyze stress distribution and energy release rate per unit crack surface area in the samples at different stages during fracture growth. We thereby show that for both rock types the energy release rate increases approximately linearly during fracture propagation. The study illuminates how different material properties modify fracture initiation direction under similar loading conditions.

  2. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  3. Natural radioactivity content of granite tiles used in Greece.

    PubMed

    Papaefthymiou, H

    2008-01-01

    Measurements of (226)Ra, (232)Th and (40)K activity concentrations in commercial granite tiles imported in Greece were performed using gamma-ray spectrometry. The activity concentration of (226)Ra, (232)Th and (40)K ranged from 1 to 434, 2 to 239 and 71 to 1576 Bq kg(-1), respectively. The calculated activity concentration index (I) values for all granite samples examined were found to be within the EC limit values for superficial and other materials with restricted use.

  4. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  5. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  6. Thermal history of Apollo 12 granite and KREEP-rich rock: Clues from Pb/Pb ages of zircon in lunar breccia 12013

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Cheng; Taylor, Lawrence A.; Wang, Ru-Cheng; Li, Qiu-Li; Li, Xian-Hua; Patchen, Allan D.; Liu, Yang

    2012-10-01

    With the mafic to ultramafic petrology of the Moon, the presence of granite appears anomalous. However, fragments of rocks with a definite granitic textures and mineralogy have been recovered from the maria, where their ages point to an ultimate origin in the highlands. Apollo 12 mare breccia 12013 is one of these unique lunar rocks, containing abundant granitic components. It consists of a black portion, composed mainly of fragments of plagioclase and noritic rock, with minor fragments of granitic rock, and a gray portion that is dominated by an overall granitic component. Zircon grains from this breccia were studied by combining cathodoluminescence (CL) imaging and micron-scale, ion-microprobe dating techniques. Zircon grains from the black portion have a large age variation (4.0-4.3 Ga). A few of them exhibit complex age zoning within individual grains, corresponding to CL zoning. Zircon grains from the gray portion show no CL zoning features but also have a large age variation between different grains (4.2-4.3 Ga). In this study, we suggest that the large age variations of zircon in 12013, among different grains and within individual grains were caused by post-crystallization impact events, and most of them are not original crystallization ages. The 4.3-Ga zircon age probably represents the minimum crystallization age of the granitic component in 12013, similar to lunar granites from the Apollo 14 and 17 landing sites. This old crystallization age also implies that various REE patterns of lunar granites might not be entirely related to their crystallization ages. Based on comparison with the 207Pb/206Pb ages for zircon from the Apollo 12, 14, and 17 landing sites, we suggest that there was at least one pre-3.9 Ga major impact event on the Moon, at ˜4.2 Ga.

  7. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Bender, E. Erik

    1989-06-01

    The mountain ranges of Arizona and adjacent California and Nevada contain large areas underlain by Proterozoic anorogenic granites comprising the southwesternmost portion of a transcontinental belt of 1.4-1.5-Ga-old anorogenic complexes that extends across North America northeast into Labrador. Of these, a two-mica, monazite-bearing granitic suite resides in central and southeastern Arizona as part of a peraluminous subprovince that is bordered on the south (southern Arizona to Sonora) and west (western Arizona and adjacent portions of California and Nevada) by marginally metaluminous granites bearing biotite-sphene ± hornblende and fluorite. All of these 1.4-Ga granites are distinctly more potassic, iron-enriched (relative to Mg), and depleted in Ca, Mg and Sr in contrast to typical orogenic granitoids. In general, the large-ion lithophile-element enriched composition is a consequence of limited melting of a water-deficient crustal source at depths greater than 25-37 km. For the peraluminous granites, this contrast is less extreme, perhaps resulting from a larger degree of melting as a consequence of a greater metasedimentary component and water in its crustal source. The anorogenic granitic magmas intruded into the upper crust at depths of 8-17 km or shallower at temperatures up to 790°C. The most dramatic variation in the crystallization-intensive parameters resides in the oxygen fugacity, which spans three orders of magnitude. Relative to other anorogenic suites, all of the magmas crystallized at elevated levels of ƒ O 2 as reflected in their assignment to the anorogenic magnetite series. Yet a regionally significant rise in primary ƒ O 2 levels, unmatched elsewhere in the transcontinental belt, occurs for plutons in western Arizona, including the Holy Moses and Hualapai granites. The most extreme case is the Hualapai granite whose biotite {Fe}/{( Fe + Mg)} ratios drop (due to high ƒ O 2) to a low of 0.27, down from more typical levels of 0.54 to 0

  8. Mortality experience of Vermont granite workers

    SciTech Connect

    Davis, L.K.; Wegman, D.H.; Monson, R.R.; Froines, J.

    1982-01-01

    A comparison was made between the chief cause of death among 969 deceased white male granite workers in Vermont and the causes of death among other individuals not in that occupation. Tuberculosis deaths were ten times the number predicted, based on the U.S. white male experience. Of the 65 tuberculosis deaths, 48 were silicotuberculosis and 16 were pulmonary tuberculosis. A notable increase was found for deaths due to all respiratory diseases, with 28 deaths due to silicosis. Excluding deaths due to silicosis and tuberculosis left a small excess of emphysema-related deaths. For 25 men in the respiratory disease category whose cause of death was not listed as silicosis, ten had evidence of silicosis in their x-ray records suggesting some misdiagnoses may have occurred. An excess of lung cancer deaths was noted among sawyers and polishers, suggesting possible effects of abrasive exposures. No tuberculosis deaths were noted in men who started work in the post dust control period, after 1950. There was an excess of suicide deaths before 1970.

  9. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  10. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr Nd isotope compositions

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Shan; Chen, Cheng-Hong; Yang, Huai-Jen; Lee, Chi-Yu

    2008-08-01

    The widespread Mesozoic granitoids in South China (˜135,300 km 2) were emplaced in three main periods: Triassic (16% of the total surface area of Mesozoic granitoids), Jurassic (47%), and Cretaceous (37%). Though much study has been conducted on the most abundant Jurassic Nanling Mountains (NLM) granites, their rock affinities relative to the Triassic Darongshan (DRS) and Cretaceous Fuzhou-Zhangzhou Complex (FZC) granites which are typical S- and I-type, respectively, and the issue of their petrogenetic evolution is still the subject of much debate. In this study, we discuss the petrogenesis of NLM granites using apatite geochemistry combined with whole-rock geochemical and Sr-Nd isotope compositions. Sixteen apatite samples from six granite batholiths, one gabbro, and three syenite bodies in the NLM area were analyzed for their major and trace element abundances and compared with those collected from DRS ( n = 7) and FZC ( n = 6) granites. The apatite geochemistry reveals that Na, Si, S, Mn, Sr, U, Th concentrations and REE distribution patterns for apatites from DRS and FZC granites basically are similar to the S and I granite types of the Lachlan Fold Belt (Australia), whereas those from NLM granites have intermediate properties and cannot be correlated directly with these granite types. According to some indications set by the apatite geochemistry (e.g., lower U and higher Eu abundances), NLM apatites appear to have formed under oxidizing conditions. In addition, we further found that their REE distribution patterns are closely related to aluminum saturation index (ASI) and Nd isotope composition, rather than SiO 2 content or degree of differentiation, of the host rock. The majority of apatites from NLM granites (ASI = 0.97-1.08 and ɛNd( T) = -8.8 to -11.6) display slightly right-inclined apatite REE patterns distinguishable from the typical S- and I-type. However, those from few granites with ASI > 1.1 and ɛNd( T) < -11.6 have REE distribution patterns

  11. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization

    NASA Astrophysics Data System (ADS)

    Huang, Lan-Chun; Jiang, Shao-Yong

    2014-08-01

    . The granites show bulk rock εNd(t) values in the range of - 9.37 to - 5.92 and zircon εHf(t) values from - 8.44 to - 2.13, with late Mesoproterozoic TDMC ages for both Nd and Hf isotopes. Geochemical and isotopic data suggest that these highly fractionated S-type granites G1 and G2-G4 were originated from two episodes of partial melting of different protoliths which have analogous components of metamorphosed pelitic rocks from the Neoproterozoic Shuangqiaoshan Group, which are enriched in tungsten. Extreme fractional crystallization resulted in further enrichment of tungsten in the evolved granitic magma. The new presented data together with previously published data suggest that the Dahutang granitic complex was likely to be formed during lithospheric thinning and asthenospheric upwelling process in Eastern China.

  12. KENNEDY SPACE CENTER, FLA. - NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in the Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface.

    NASA Image and Video Library

    2003-10-28

    KENNEDY SPACE CENTER, FLA. - NASA T-38 jets fly over the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in the Missing Man Formation. During this dedication ceremony, the names of the STS-107 astronauts who lost their lives during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon -- join the names of 17 other space heroes who gave their lives for the U.S. space program. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface.

  13. The H2O Content of Granite Embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Cesare, B.; Remusat, L.; Acosta-Vigil, A.; Poli, S.

    2014-12-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can be applied to

  14. The H2O content of granite embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, Omar; Cesare, Bernardo; Remusat, Laurent; Acosta-Vigil, Antonio; Poli, Stefano

    2015-04-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites [1, 2, 3]. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region [3]. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can

  15. Magnetic Properties of the Precambrian Granitic Rocks in Minnesota

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Jackson, M.; Kogiso, T.; Sato, M.; Seita, K.; Tsunakawa, H.

    2008-12-01

    It has been known that granitic rocks have stable components of natural remanent magnetization (NRM) as well as unstable NRM. It is noted that remanent magnetization of plagioclase crystals in granitic and basaltic rocks can yield reliable paleomagnetic data (e.g. Wu et al., 1974; Geissman et al., 1988; Tarduno et al., 2001; Wakabayashi et al., 2006). The acquisition process of thermoremanent magnetization (TRM) of granitic rocks is not well-understood because the size of magnetic grains varies from less than a few μm to hundreds of μm and parts of them are included in each crystal of granitic rocks. Thus we have made rock-magnetic studies and microscopic observations on granitic rocks and their separated crystals. Samples used in this study are collected from multiple sites of the Sacred Heart Granite (2.6 Ga U-Pb zircon ages) and the St. Cloud Granite and Granodiorite (1.8 Ga U-Pb zircon age) in Minnesota. For most of the bulk samples from granitic rocks, the Verwey transition at 120 K is clearly recognized. Susceptibility- temperature (χ-T) curves show an abrupt drop at about 580°C. Hysteresis parameters of bulk samples are distributed along a mixing line between the multi-domain (MD) and pseudo-single-domain (PSD) areas on the Day plot. Saturation isothermal remanence (SIRM) cooling and warming curves indicate that low-temperature memories range in a few to several tens % of the initial SIRM. These results indicate the MD magnetite grains dominate the magnetic properties but more or less PSD (or single-domain (SD)) magnetite grains are present in the granitic rocks. The separated crystals of feldspar and quartz show the Verwey transition at 120 K and the Curie temperature of about 580°C. Hysteresis properties of them are similar to those of bulk samples. These suggest that the MD and PSD (or SD) magnetite are included in both feldspar and quartz, suggesting that those magnetite grains primarily formed during the initial formation of the granitic rocks. We

  16. Smolt Monitoring at the Head of Granite Reservoir and Lower Granite Dam, 1989 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Nelson, V. Lance

    1990-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1989 spring outmigration at a migrant trap on the Snake River and the Clearwater River. Chinook salmon catch at the Snake River trap was much higher in 1989 than in either of the 1987 or 1988 drought years. The 1989 Snake River trap catch was similar to 1986. Effort was the same during the four years. Steelhead trout catch was greater than in any previous year. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1986, even though effort was greatly reduced in 1989 due to high runoff during most of the season. The 1989 Clearwater River trap catch was lower than in the two drought years (1987 and 1988) and was due to the minimal number of days the trap was operated. Fish tagged with Passive Interrogated Transponder (PIT) tags at the Snake River trap were recovered at the three dams (Lower Granite, Little Goose, and McNary) with PIT tag detection systems. Travel time (days) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three-fold and steelhead trout travel time decreased two-fold. 11 refs., 8 figs., 17 tabs.

  17. Multiple origins for the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Chang; Jiang, Yao-Hui; Liu, Zheng; Ni, Chun-Yu; Qing, Long; Zhang, Qiao; Zhu, Shu-Qi

    2016-03-01

    A comprehensive study of zircon U-Pb dating and in situ Hf isotopes, whole-rock major and trace element geochemistry and Sr-Nd isotopes was carried out for three late Mesozoic granitic plutons (Waitun, Shipi and Taiyuan) in northwestern Fujian province, SE China. We assess the origin of the granites and their relationship to the evolution of the late Mesozoic volcanic-intrusive complex belt in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Middle Jurassic to Early Cretaceous (168-109 Ma), in which the Waitun and Shipi plutons are intrusive complexes. All the plutons are composed of high-K calc-alkaline I-type granites with a great diversity in elemental and isotopic compositions. The granites have SiO2 contents of 68.3-78.5 wt.%, showing a gradual decrease in initial 87Sr/86Sr (0.7181 to 0.7091) and increase in εNd (T) (- 16.7 to - 8.1) and εHf (T) (in-situ zircon) (- 20.6 to - 6.9) with decreasing emplacement ages. Geochemical data suggest that the Middle Jurassic ( 168 Ma) Waitun granites are of purely crustal origin, derived by partial melting of a mixed source of Paleoproterozoic metaigneous ( 78%) and metasedimentary ( 22%) rocks at a depth of 30-40 km triggered by underplating of basaltic magma. Mixing of such crustal melts with about 10% basaltic magma could account for the origin of the Late Jurassic ( 161 Ma) Waitun granites. The Late Jurassic ( 156 Ma) Shipi and Early Cretaceous ( 134 Ma) Taiyuan granites were produced by extensive fractional crystallization of primary crustal melts, the source of which show relatively high proportion ( 82%) of metaigneous rocks. The Early Cretaceous ( 109 Ma) Shipi granites were generated by partial melting of a mixed source of Paleoproterozoic metaigneous ( 92%) and metasedimentary ( 8%) rocks at a depth of 30 km plus additional ( 15%) input from coeval basaltic magma. The granites were formed in a continental arc setting induced by northwestward subduction of the Paleo

  18. Episodic Growth and Solidification of the Vinalhaven Intrusive Complex, Maine, USA

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.; Hawkins, D. P.; Wark, D. A.

    2007-12-01

    The Silurian Vinalhaven intrusive complex is about 12 km in diameter and consists mainly of cg granite, a thick section of inward-dipping gabbro-diorite sheets in the SE half of the complex, and a core of fg granite. The lowest exposed part of the complex occurs on its S margin. Along its NW margin, granite intrudes the older, cogenetic Vinalhaven rhyolite, which consists of effusive and pyroclastic units of largely high-silica rhyolite. It is probable that plutonic rocks coeval with the exposed rhyolite units occur at depth and younger rhyolite units, coeval with the plutonic complex, were eroded. The complex was fed by multiple replenishments of isotopically distinct basaltic and granitic magmas. Basaltic replenishments typically produced gabbroic sheets that ponded on granitic crystal mush at the base of a silicic chamber. Where basalt encountered only crystal-rich granitic magma, it locally remelted and mixed with granite, producing bodies of porphyry with corroded phenocrysts and mafic enclaves. CL and Ti zoning in quartz phenocrysts records corrosion followed by growth of high T rims (based on Ti-in-qtz thermometer of Wark and Watson, 2006). Fg granitic dikes and the fg granitic core of the complex represent silicic replenishments. Contact relationships between these dikes and the surrounding granite provide insight into the rheology of the granite at the time of intrusion. Where the resident granitic magma was crystal rich, aphyric magma in the dikes intimately mixed and commingled with the resident cg granite mush. Convective mixing was important in the silicic magma chambers. Where mafic sheets are present in granite, upward gradations through hybrid rocks back into granite and the occurrence of mafic enclaves in granite far above the mafic sheets demonstrate mixing within overlying silicic magma. Complex CL and Ti zoning in the cores of granitic quartz far from the mafic input also records thermal perturbations caused by the mafic input. The oldest

  19. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    SciTech Connect

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  20. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  1. Decrepitometry of fluid inclusions in quartz from the guadalcazar granite of Mexico; principles and application to mineral exploration

    NASA Astrophysics Data System (ADS)

    Chryssoulis, S. L.; Rankin, A. H.

    1988-01-01

    A simple acoustic decrepitometric method, with which samples of granite quartz are heated to about 600°C while the number of decrepitations are counted, has been developed to study rock samples derived from the mineralized guadalcazar granite in Mexico. Decrepitation temperatures for individual inclusions have also been determined by observing the point at which they rupture upon heating using a microscope heating stage. Decrepitation temperatures of individual fluid inclusions in granite quartz are influenced by a variety of factors notably size, shape, composition, homogenization temperature and proximity to the surface. There is a positive correlation between total decrepitation activity and fluid inclusion abundances (determined optically using point counting methods). Decrepitographs show a period of low intensity decrepitation activity below 390°C followed by a period of intensive decrepitation up to 570°C. The onset of massive decrepitation at around 390°C is constant for all samples, but variations in decrepitation activity often occur between mineralized and barren samples. These variations reflect complex differences in the fluid inclusion populations, but illustrate the potential for applying simple audio-decrepitometry as an aid to mineral exploration in granite terrains.

  2. Overview of granitic rocks in the Bradfield Canal area, southeastern Alaska

    SciTech Connect

    Koch, R.D. )

    1993-04-01

    Granitic rocks in the Bradfield Canal area of southeastern Alaska are part of the Coast plutonic-metamorphic complex and include rocks representing several different periods of magmatic activity. Units belonging to the previously named Admiralty-Revillagigedo, great tonalite sill, Coast Mountains, and Groundhog Basin-Cone Mountain belts are present. The Texas Creek Granodiorite is located in the southeastern part of the area and is probably 212 Ma or somewhat older. It consists mainly of locally deformed and altered calc-alkalic biotite-hornblende granodiorite and is closely associated with important mineral deposits. Distinguishing features include primary epidote, accessory garnet, and locally a distinctive plagioclase-porphyritic texture. Northeast of the Admiralty-Revillagigedo belt lies the northwest-trending great tonalite sill belt. These rocks are 58--55 Ma and consist of calc-alkalic, generally well-foliated and locally lineated biotite-hornblende and hornblende tonalite, quartz diorite, and granodiorite. The Coast Mountains belt granitic rocks are the most extensive in the area. The granite has been explored for U, Th, and REE deposits. The Coast plutonic-metamorphic complex records dynamothermal and regional contact metamorphic events related to the regional plutonism. Most of the lengthy and complicated magmatic and metamorphic history of the complex is related to Late Cretaceous collision of the Alexander and Wrangellia terranes and juxtaposition of the Gravina overlap assemblage to the west (Superterrane II) against the Yukon prong and Stikine terrane to the east (Superterrane I). An exception is the Texas Creek Granodiorite, which is related to a pre-accretionary Jurassic arc in the Stikine terrane.

  3. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations

  6. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  7. Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Chapman, John B.; Weiss, Dominik J.; Shan, Yao; Lemburger, Marcus

    2009-03-01

    Transport of iron (Fe) within hydrothermal and soil environments involves the transferral into aqueous solutions by leaching of complex, polyminerallic rocks. Understanding the isotope fractionation mechanisms during this process is key for any application of the Fe-isotope system to biogeochemical studies. Here, we reacted biotite granite and tholeiite-basalt with 0.5 M hydrochloric acid and 5 mM oxalic acid solutions at ambient temperature. Solution aliquots were recovered over a seven-day period and analysed for major and trace element concentrations and Fe isotopic compositions. In all experiments, Fe initially released into solution was isotopically lighter, with Δ 56Fe solution-rock as low as -1.80‰ in the granite-hydrochloric acid system. The oxalic acid experiments showed similar patterns but smaller fractionation. In all experiments, the Δ 56Fe solution-rock reduced over time, which would be in line with the formation of a leached layer as proposed before [Brantley S. L., Liermann L. J., Guynn R. L., Anbar A., Icopini G. A., and Barling J. (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta68(15), 3189-3204]. Granite and basalts reacting with hydrochloric acid reached apparent steady-state values of -0.60 ± 0.15‰ and -0.40 ± 0.20‰, respectively, whilst experimental values with oxalic acid were -1.0 ± 0.15‰ and -0.50 ± 0.15‰. During the granite experiments, alteration of biotite to chlorite, followed by dissolution of chlorite, were likely the dominant processes, whilst in the basalt experiments, dissolution of pigeonite was likely the principal source of Fe. Variations in pH during the hydrochloric acid experiments were minimal, remaining below 0.5 at all times. In oxalic acid solutions, the pH increased to over 4, leading likely to precipitation of secondary minerals and adsorption/co-precipitation of Fe onto mineral surfaces. These processes could contribute to the greater

  8. Geology of the Andover Granite and surrounding rocks, Massachusetts

    USGS Publications Warehouse

    Castle, Robert O.

    1964-01-01

    Field and petrographic studies of the Andover Granite and surrounding rocks have afforded an opportunity for an explanation of its emplacement and crystallization. The investigation has contributed secondarily to an understanding of the geologic history of southeastern New England, particularly as it is revealed in the Lawrence, Wilmington, South Groveland, and Reading quadrangles of Massachusetts. The Andover Granite and Sharpners Pond Tonalite together comprise up to 90 percent of the Acadian(?) subalkaline intrusive series cropping out within the area of study. The subalkaline series locally invades a sequence of early to middle Paleozoic and possibly Precambrian metasedimentary and metavolcanic rocks. Much of the subalkaline series and most of the Andover Granite is confined between two prominent east-northeast trending faults or fault systems. The northern fault separates the mildly metamorphosed Middle Silurian(?) Merrimack Group on the north from a highly metamorphosed and thoroughly intruded Ordovician(?) sequence on the south. The southern 'boundary '' fault is a major structural discontinuity characterized by penetrative, diffuse shearing over a zone one-half mile or more in width. The magmatic nature of the Andover Granite is demonstrated by: (1) sharply crosscutting relationships with surrounding rocks; (2) the occurrence of tabular-shaped xenoliths whose long directions parallel the foliation within the granite and whose internal foliation trends at a high angle to that of the granite; (3) continuity with the clearly intrusive Sharpners Pond Tonalite; (4) the compositional uniformity of the granite as contrasted with the compositional diversity of the rocks it invades; (5) its modal and normative correspondence with (a) calculated norms of salic extrusives and (b) that of the ternary (granite) minimum for the system NaAlSi3O8-KAlSi3O8-SiO2. Orogenic granites, as represented by the Andover, contrast with post-orogenic granites, represented locally by

  9. Prevalence of dry methods in granite countertop fabrication in Oklahoma.

    PubMed

    Phillips, Margaret L; Johnson, Andrew C

    2012-01-01

    Granite countertop fabricators are at risk of exposure to respirable crystalline silica, which may cause silicosis and other lung conditions. The purpose of this study was to estimate the prevalence of exposure control methods, especially wet methods, in granite countertop fabrication in Oklahoma to assess how many workers might be at risk of overexposure to crystalline silica in this industry. Granite fabrication shops in the three largest metropolitan areas in Oklahoma were enumerated, and 47 of the 52 shops participated in a survey on fabrication methods. Countertop shops were small businesses with average work forces of fewer than 10 employees. Ten shops (21%) reported using exclusively wet methods during all fabrication steps. Thirty-five shops (74%) employing a total of about 200 workers reported using dry methods all or most of the time in at least one fabrication step. The tasks most often performed dry were edge profiling (17% of shops), cutting of grooves for reinforcing rods (62% of shops), and cutting of sink openings (45% of shops). All shops reported providing either half-face or full-face respirators for use during fabrication, but none reported doing respirator fit testing. Few shops reported using any kind of dust collection system. These findings suggest that current consumer demand for granite countertops is giving rise to a new wave of workers at risk of silicosis due to potential overexposure to granite dust.

  10. Fractionated alkaline rare-metal granites: two examples

    NASA Astrophysics Data System (ADS)

    Liverton, Timothy; Botelho, Nilson F.

    2001-04-01

    Two suites of tin-related alkaline granites are compared: the Seagull-Thirtymile granites of the Yukon, which were emplaced in a cordilleran setting and the Paranã suite of Goiás, which were emplaced in an incipient rift environment. The geochemistry of these two suites is similar and both have evolved small volumes of Li-Rb rich alkali feldspar leucogranites. Both fall partly, but not wholly, within the compositional fields defined for 'A-types' on various tectonic discrimination diagrams. Halogen contents and major element chemistry of Fe-Li micas from the Seagull-Thirtymile suite indicate that these plutons were reduced magmas that evolved magmatic/hydrothermal systems with increasing Cl content in a shallow, at least periodically 'open' system. The most important Sn-granites of the Paranã suite of Goiás were also emplaced at shallow depth and developed extensive greisen in active shear zones, which contrasts with a more passive environment for the Seagull granites. Both of these suites may be classified as low-P 2O 5 alkaline types and they display particularly Fe 2+-rich biotite micas that separate the alkaline plutons from S-type tin granites.

  11. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    PubMed

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  12. The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm

    NASA Astrophysics Data System (ADS)

    Brown, M.; Solar, G. S.

    1999-10-01

    We propose a model for syntectonic ascent and emplacement of granite magma based on structural relations in part of the northern Appalachians. In the study area in western Maine, strain was distributed heterogeneously during Devonian Acadian transpression. Metasedimentary rocks (migmatites at high grades) record two contrasting types of finite strain in zones that alternate across strike. Rocks in both types of zones have a penetrative, moderately-to-steeply NE-plunging mineral elongation lineation defined by bladed muscovite (fibrolite/sillimanite at high grades). In `straight' belts of enhanced deformation rocks have S > L fabrics that record apparent flattening-to-plane strain (apparent flattening zones, AFZs), but rocks between these belts have L > S fabrics that record apparent constriction (apparent constriction zones, ACZs). At metamorphic grades above the contemporary solidus, rocks in AFZs developed stromatic structure in migmatite, which suggests that percolative flow of melt occurred along the evolving flattening fabric. Stromatic migmatites are intruded by concordant to weakly discordant, m-scale composite sheet-like bodies of granite to suggest magma transport in planar conduits through the AFZ rocks. Inhomogeneous migmatite is found in the intervening ACZs, which suggests migration of partially molten material through these zones en masse, probably by melt-assisted granular flow. Inhomogeneous migmatites are intruded by irregular m-scale bodies of granite that vary from elongate to sub-circular in plan view and seem cylindrical in three dimensions. These bodies apparently plunge to the northeast, parallel to the regional mineral elongation lineation, to suggest magma transport in pipe-like conduits through the ACZ rocks. We postulate that the form of magma ascent conduits was deformation-controlled, and was governed by the contemporaneous strain partitioning. Magma ascent in planar and pipe-like conduits through migmatites is possible because oblique

  13. Late Permian to Early Oligocene granitic magmatism of the Phan Si Pan uplift area, NW Vietnam: their relationship to Phanerozoic crustal evolution of Southwest China

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Shellnutt, G.

    2015-12-01

    The Phan Si Pan uplift area of NW Vietnam is a part of the Archean to Paleoproterozoic Yangtze Block, Southwest China. This area is of particular interest because it experienced a number of Phanerozoic crustal building events including the Emeishan Large Igneous Province, the India-Eurasia collision and Ailaoshan - Red River Fault displacement. In the Phan Si Pan uplift area, there are at least three different geochronological complexes, including: (1) Late Permian, (2) Eocene and (3) Early Oligocene. (1) The Late Permian silicic rocks are alkali ferroan A1-type granitic rocks with U/Pb ages of 251 ± 3 to 254 ± 3 Ma. The Late Permian silicic rocks of Phan Si Pan uplift area intrude the upper to middle crust and are considered to be part of the ELIP that was displaced during the India-Eurasian collision along the Ailaoshan-Red River Fault shear zone and adjacent structures (i.e. Song Da zone). Previous studies suggest the Late Permian granitic rocks were derived by fractional crystallization of high - Ti basaltic magma. (2) The Eocene rocks are alkali ferroan A1-type granites (U/Pb ages 49 ± 0.9 Ma) and are spatially associated with the Late Permian granitic rocks. The trace element ratios of this granite are similar to the Late Permian rocks (Th/Nb=0.2, Th/Ta = 2.5, Nb/U = 24, Nb/La =1.2, Sr/Y=1). The origin of the Eocene granite is uncertain but it is possible that it formed by fractional crystallization of a mafic magma during a period of extension within the Yangtze Block around the time of the India-Eurasia collision. (3) The Early Oligocene granite is characterized as a peraluminous within-plate granite with U/Pb ages of 31.3 ± 0.4 to 34 ± 1 Ma. The Early Oligocene granite has trace element ratios (Th/Nb = 2.1, Th/Ta = 22.6, Nb/U = 4.4, Nb/La = 0.4, Sr/Y = 60.4) similar to crust melts. The high Sr/Y ratio (Sr/Y = 20 - 205) indicates a lower crust source that was garnet-bearing. The Phan Si Pan uplift was neither a subduction zone nor an arc environment

  14. Geochemical and zircon U-Pb geochronological study of the Yangshan A-type granite: Insights into the geological evolution in south Anhui, eastern Jiangnan Orogen

    NASA Astrophysics Data System (ADS)

    Gu, Huangling; Yang, Xiaoyong; Deng, Jianghong; Duan, Liuan; Liu, Lei

    2017-07-01

    The Early Cretaceous Yangshan granite is an A-type granitic intrusion that was emplaced along the eastern Jiangnan Orogen in southern Anhui Province, South China. The Yangshan intrusion mainly consists of syenite porphyry (127.0 ± 0.6 Ma) and alkali-feldspar granite porphyry (126.0 ± 1.0 Ma). As a part of Qingyang-Jiuhuashan complex intrusion, the Yangshan A-type granites have lower MgO, CaO, Co, Sr, and higher Rb, Nb, Th and HREE contents, with enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), and slightly negative Eu anomalies. However, the syenite porphyry and the alkali-feldspar granite porphyry differ in terms of zircon εHf(t) values: small variations in the syenite porphyry from - 5.5 to - 3.7, corresponding to Hf model ages (tDMC) between 1.42 Ga and 1.53 Ga, and large variations in the alkali-feldspar granite porphyry from - 6.4 to + 4.4, yielding tDMC of 0.90-1.59 Ga. While both rocks also have similar εNd(t) values ranging from - 7.02 to - 5.47, corresponding Nd model ages (TDMC) are 1.37-1.49 Ga, falling within the Hf model ages. We take these features to indicate that the Qingyang I-type granites, which are isotopically similar, and Yangshan A-type granites were originated from partial melting of Mesoproterozoic-Neoproterozoic crust, with minor juvenile crust input for the alkali-feldspar granite porphyry, followed by fractional crystallization. In combination with previous studies, we propose that the Cretaceous A-type granitic rocks formed between 135 Ma and 122 Ma, implying an important Mesozoic extensional event in eastern Jiangnan Orogen, which facilitated underplating of mantle-derived magma and crustal heating. This may have occurred in a back-arc extension in response to the drift of subduction direction of the Paleo-Pacific plate, which started as early as 135 Ma ago.

  15. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  16. Nature and time of emplacement of a pegmatoidal granite within the Delhi Fold Belt near Bayalan, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, N.; Sen, J.; Pal, T.; Ghosh, T.

    2009-04-01

    The study area is situated about 70 km south east of Ajmer, in Rajasthan, India around the village Bayala (26o 02' 19 N''; 74o 21' 01'') within the Ajmer district of Central Rajasthan. The area is along the eastern flank of the central portion of the Precambrian South Delhi Fold Belt (SDFB) and it stratigraphically belongs to the Bhim Group of rocks. Basement rocks of Archaean age, commonly known as the Banded gneissic Complex (BGC), is exposed to the east, where the rocks of the Bhim Group rests unconformably over BGC. To the west gneissic basement rocks of mid-Proterozoic times underlie the Bhim Group and have been referred to as the Beawar gneiss (BG). The Bhim Group of rocks comprises of metamorphosed marls and calc-silicate gneisses with minor amounts of quartzites and pelitic schists, indicative of its shallow marine origin. Within the Bhim Group, a pegmatoidal granite has intruded the calc silicate gneisses of the area. The pegmatoidal granite body is elliptical in outline with the long dimension(20 km) trending N-S and covers an area of 300 sq. km. approximately. This granite have so far been mapped as basement rocks (BG) surrounding the Beawar town (26o 06' 05'' N; 74o 19' 03'' E), 50 km south east of Ajmer. Rafts of calc-silicate gneisses, belonging to the Bhim Group, are seen to be entrapped within granite. Fragments of BG and its equivalents have also been found as caught up blocks within this pegmatoidal granite body near Andheri Devari, a small hamlet east of Beawar. The objective of the study was to map this pegmatoidal body, and decipher the mechanism and time of emplacement of this granite. A detailed structural mapping of the area in a 1:20000 scale spread over a 30 sq. km area in the vicinity of Bayala was carried out to analyse the geometry and the time of emplacement of the pegmatitic granite. The ridges of calc silicates and marbles adjoining the area were studied for the structural analyses of the Delhi fold belt rocks of the area. The calc

  17. On the Eighth Hutton Symposium on Granites and Related Rocks

    NASA Astrophysics Data System (ADS)

    de Fátima Bitencourt, Maria; de Assis Janasi, Valdecir; Sawyer, Edward

    2017-04-01

    The Eighth Hutton Symposium was held on September 20-25, in the coastal city of Florianópolis, south Brazil, situated on the Neoproterozoic Florianópolis Batholith. During the mid-symposium field trip shallow-level granites, rhyolites and mafic dikes were visited in several large exposures along the shore. A 4-day pre-meeting field trip took place to see the Quadrilátero Ferrífero Province Archaean basement in Minas Gerais (southeast Brazil). After the meeting, another field trip took participants to the southern Brazilian coast to see Neoproterozoic, syntectonic granite magmatism within a transpressive orogen and to discuss crust and mantle contribution to granite generation.

  18. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  19. SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks

    NASA Astrophysics Data System (ADS)

    Hertogen, Jan; Mareels, Joyce

    2016-07-01

    A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a

  20. The Later Paleozoic granites of the Greater Caucasus Fore Range zone: geochemistry, magnetic properties and the structural and metamorphic evolution.

    NASA Astrophysics Data System (ADS)

    Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav; Vidjapin, Jury

    2017-04-01

    Clarification of the position of the granitic intrusions associated with the Blyb Metamorphic Complex is the important problem of the reconstruction of the structural evolution of the Greater Caucasus Fore Range zone. Based of the rock geochemistry we found out that the quartz diorites, granodiorites and syeno-granites of the BMC formed in suprasubduction conditions and refer to I-type granites. However, their emplacement was multistage coinciding with the various stages of the BMC evolution. We detected the mineral associations typical for the epidote-amphibolite facies in the Balkan massif, but these metamorphic features are absent in the granodiorite intrusions in the southern part of the Fore Range zone. Thus, quartz diorites of the Balkan intrusion intruded after the high-pressure metamorphism of the host rocks, but before the epidote-amphibolite stage, and the Southern granodiorite intrusions are younger. The measurements of the anisotropy of the magnetic susceptibility (AMS) in the Balkan intrusion indicated the shallow orientation of the minimal (north-eastern strike) and maximal (north-western strike) axes of the AMS ellipsoid. This result is compatible with the idea of the north-east compression fixed in the fold deformation structures of the BMC host rocks (Vidyapin, Kamzolkin, 2015). However, the macroscopic foliation in the granites dips to the east steeply. The discrepancy of the texture orientation of the granites, the host rock structure and the magnetic fabric can be explained as a result of the repeated changes of the stress field during the evolution of the Fore Range nappe structures. The reported study was partially supported by RFBR, research projects No. 16-35-00571mol_a; 16-05-01012a.

  1. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Ling, Xiao-Xiao; Stern, Robert J.; Santos, Jose F.; Meinhold, Guido; Ghorbani, Ghasem; Shahabi, Shirin

    2015-01-01

    Carboniferous igneous rocks constitute volumetrically minor components of Iranian crust but preserve important information about the magmatic and tectonic history of SW Asia. Ghushchi granites and gabbronorites in NW Iran comprise a bimodal magmatic suite that intruded Ediacaran-Cambrian gneiss and are good representatives of carboniferous igneous activity. Precise SIMS U-Pb zircon ages indicate that the gabbronorites and granites were emplaced synchronously at ~ 320 Ma. Ghushchi granites show A-type magmatic affinities, with typical enrichments in alkalis, Ga, Zr, Nb and Y, depletion in Sr and P and fractionated REE patterns showing strong negative Eu anomalies. The gabbronorites are enriched in LREEs, Nb, Ta and other incompatible trace elements, and are similar in geochemistry to OIB-type rocks. Granites and gabbronorites have similar εNd(t) (+ 1.3 to + 3.4 and - 0.1 to + 4.4, respectively) and zircon εHf(t) (+ 1.7 to + 6.2 and + 0.94 to + 6.5, respectively). The similar variation in bulk rock εNd(t) and zircon εHf(t) values and radiometric ages for the granites and gabbronorites indicate a genetic relationship between mafic and felsic magmas, either a crystal fractionation or silicate liquid immiscibility process; further work is needed to resolve petrogenetic details. The compositional characteristics of the bimodal Ghushchi complex are most consistent with magmatic activity in an extensional tectonic environment. This extension may have occurred during rifting of Cadomian fragments away from northern Gondwana during early phases of Neotethys opening.

  2. Nature of the Yucatan Block Basement as Derived From Study of Granitic Clasts in the Impact Breccias of Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-05-01

    The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.

  3. Assessing exposure to granite countertops--Part 1: Radiation.

    PubMed

    Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F

    2010-05-01

    Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health.

  4. Granite microcracks: Structure and connectivity at different depths

    NASA Astrophysics Data System (ADS)

    Song, Fan; Dong, Yan-Hui; Xu, Zhi-Fang; Zhou, Peng-Peng; Wang, Li-Heng; Tong, Shao-Qing; Duan, Rui-Qi

    2016-07-01

    Granite is one rock type used to host high-level radioactive waste repositories, and the structure of microcracks in the rock can influence its hydraulic characteristics. Thus, a quantitative analysis of granite microcracks is relevant for understanding the hydrogeological characteristics of the rocks surrounding geological repositories. The analysis can also contribute scientific data to a seepage model for low permeability rocks and materials with microscopic pores. In this study, seven granite core samples were drilled from different depths up to 600 m in Alxa, Inner Mongolia, China. Using a grid survey method and image processing technology, micrographs were converted into binary images of microcracks. The geometric parameters of the microcracks, including their quantity, width, cranny ratio, crack intersections and dimensional parameters of the fracture network, were analyzed in order to fully describe their spatial distribution. In addition, the morphological characteristics and elemental compositions of the microcracks were analyzed by scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), and the natural moisture content was also determined through heated. Finally, two-dimensional microcrack network seepage models of the granite samples were simulated using the Lattice Boltzmann method (LBM), which revealed the influence of the microcrack structure on their connectivity. The results show that the growth and development of microcracks in the granite samples generally decreases as sampling depth increases in this study area. Connectivity is positively correlated with a number of the geometric parameters: the quantity of microcracks, the cranny ratio, the number of crack intersections and dimensional parameters of the fracture network, which is revealed in the two-dimensional microcrack network seepage models for these granite samples.

  5. Magnetic Properties of Hydrothermalized A-type Red Granites

    NASA Astrophysics Data System (ADS)

    Trindade, R. I. F.; Nédélec, A.; Peschler, A.; Archanjo, C. J.; Poitrasson, F.; Bouchez, J. L.

    Hydrothermalized A-type granites are commonly identified by their pink to red-brick colour attributed to tiny flakes of hematite in the alkali feldspars. These inclusions can be of interest in magnetic studies, but their timing and process of formation are still unclear. Formation of chlorite after biotite is the commonest effect of hydrother- malization and may occur quite early after crystallization due to late-magmatic or externally-derived fluids. The reddish colour appears at a later stage. Five cases of A-type granites were investigated for their magnetic mineralogy and properties. The selected cases range from nearly unmodified granites (Panafrican stratoid granites of Madagascar) to strongly hydrothermalized ones (Meruoca, Brazil; Tana, Corsica); in- termediate cases are : Mount Scott (Oklahoma), Bushveld (granitic core kindly pro- vided by R.G. Cawthorn) and. Hydrothermal alteration is often associated to a de- crease of the magnetic susceptibility magnitude (K) and of the anisotropy degree (P). It also strongly affects the rockt's bulk coercivity parameters, since alteration changes the relative amounts of coarse-grained primary magnetite, fine-grained PSD to SD sec- ondary magnetite, and hematite. Correspondingly, most samples plot away from the magnetite trend in the Dayt's diagram, but the different groups identified after coer- civity parameters do not directly correlate with whole-rock colour. In addition, IRM- acquisition curves and thermal demagnetization of tri-axial IRM show that hematite occurs in almost all analysed samples despite their colour. Various hematite coercivity ranges are also evidenced. In fact, hematite can be formed either in feldspar crys- tals or after magnetite. Tiny hematite within feldspars can appear either by exsolu- tion process or, more likely, by precipitation from a fluid phase. For these reasons, hematite inclusions may carry a remanence acquired shortly after granite crystalliza- tion or, conversely, a recent

  6. The identification and significance of pure sediment-derived granites

    NASA Astrophysics Data System (ADS)

    Hopkinson, Thomas N.; Harris, Nigel B. W.; Warren, Clare J.; Spencer, Christopher J.; Roberts, Nick M. W.; Horstwood, Matthew S. A.; Parrish, Randall R.; EIMF

    2017-06-01

    The characterization of the geochemical reservoirs of the Earth's continental crust, including the determination of representative upper and lower crustal compositions, underpins our understanding of crustal evolution. The classic I- and S-type granite classification has often been invoked to distinguish between melts derived from igneous protoliths and those derived from the melting of a sedimentary source. Recent geochemical studies suggest that most granites, even those cited as typical examples of 'S-type', show evidence for a mixture of mantle and upper crustal sources, thereby implying that granite formation is evidence for overall crustal growth. We have examined the source of leucogranite bodies in one of the world's youngest collisional orogens using novel zircon techniques that can resolve the presence of even minor mantle contributions. 232 zircons from 12 granites from the Bhutan Himalaya were analysed by in-situ techniques for O, Hf and U-Pb isotopic signatures. In combination with data from the granite host rocks, our data show that the Himalayan leucogranites were derived solely from metamorphosed crustal sediments, and do not record any mantle contribution. This finding is consistent with the time-lag between crustal thickening and widespread crustal melting, and the heat-producing capacities of the pelitic source rocks. We conclude that Himalayan leucogranites provide a more suitable type locality for 'S-type' granites than the Lachlan area in South-East Australia where the term was first defined. The Himalayan leucogranites therefore provide evidence that syn-orogenic melting during collisional events does not necessarily result in crustal growth. Importantly, crustal growth models should not always assume that crustal growth is achieved during collisional orogenesis.

  7. Multiple sources for the origin of the early Cretaceous Xinxian granitic batholith and its tectonic implications for the western Dabie orogen, eastern China

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Chen, Maohong; Yu, Yang

    2016-02-01

    This paper investigates the petrogenesis of the Xinxian granitic batholith and its tectonic implications for the Dabie orogen. Two Xinxian granites yield Early Cretaceous 238U/206Pb ages of 122.7 ± 1.3 Ma and 123.6 ± 2.2 Ma. The granites are metaluminous differentiated I-type granites, with A/NKC ranging from 0.90 to 0.96. The chondrite-normalised REE patterns display significant LREE/HREE enrichments with moderate negative Eu anomalies (Eu/Euδ = 0.30 ~ 0.85). The granites show enrichments in large-ion lithophile elements (LILEs, e.g. Rb, K, Th and U) and depletions in Sr, Ba and high field strength elements (HFSEs, e.g. Nb, Ta and Ti). Inherited zircons of different age (Neoproterozoic, one Early Proterozoic, one Archean and two Triassic inherited metamorphic zircons) are identified. The Early Cretaceous magmatic zircons contain enriched Hf isotopes with ɛ Hf ( t) values ranging from -26.9 to -18.7 (average = -22.5), more enriched than their probable alleged source, i.e. the Dabie Complex, represented by the Neoproterozoic and Triassic inherited zircons. Thus, the Archean and Early Proterozoic crustal materials may represent an enriched end member source for the parental magma of the Xinxian granites. Provenance analysis of the magmatic zircons in the North China and Yangtze blocks demonstrates that the Early Proterozoic inherited zircon in Xinxian has North China affinity. Thus, we proposed a multiple-sourced petrogenetic model for the Xinxian granitic batholith, which suggests that the batholith was formed by the remelting of a mixed crustal assemblage, including the Archean and Early Proterozoic crust of the North China Block, the Neoproterozoic crust of the Yangtze Block, as well as some Triassic collision-related ultra-high pressure (UHP) metamorphic rocks.

  8. Scale-dependent resistivity measurements of Oracle granite

    SciTech Connect

    Jones, J.W.

    1995-06-01

    The author reports a series of electrical conductivity measurements made on a section of Oracle granite, in Arizona. The measurements were made within and between bore holes, over a length scale of 8 inches to 100 feet, in a block sized roughly as 50 x 50 x 150 ft, of subsurface granite. A power law relationship was observed, with the electric conductivity increasing with electrode spacing. In general the author argues these measurements give a good assesment of the electrical properties of this fractured system.

  9. The Swedish Bohus granite - a stone with a fascinating history

    NASA Astrophysics Data System (ADS)

    Schouenborg, Björn; Eliasson, Thomas

    2015-04-01

    One of the most well-known and well spread Swedish stone types used as building stones is the Bonus granite. It outcrops in an area north of Gothenburgh (SW Sweden), along the coastline, approximately 35 km wide and 85 km long. The granite continues into Norway as the Iddefjord granite. The Bohus granite is one of Sweden's youngest granites. Isotopic dating shows that the magma cooled at about 920 M years ago and thus marking the end of the Sveconorwegian orogoney. It is a composite granite massif area with several granitic intrusions but with rather homogeneous mineralogy. However, colour and texture varies quite a lot and the colour ranges from red to reddish grey although some pure grey varieties occur sparsely. The grain size ranges from medium grained to coarse grained and even with some porphyric parts. Quarrying in an industrial scale started 1842. The merchant A C Kullgren opened the first quarry and produced stones for the construction of the 86 km long Trollhättan channel connecting lake Vänern and the Atlantic ocean in the SW Sweden The stone was used for constructing harbors and wharves along the channel. Several quarries opened in the late 1800 around 1870 - 1890 and the export increased steadily with deliveries to Germany, Denmark, Holland, England and even to South America. The stone industries in Bohuslän (Bohus county), at its peak in 1929, engaged around 7 000 employees. During the depression in 1930 almost all of them became unemployed. However, as a curiosity, production and export continued to Germany for construction of Germania, the future World capital city ("Welthauptstadt Germania"), planned by Adolf Hitler and Albert Speer. About 500 stone workers were kept employed for this project during the late thirties. Today several varieties are still produced: Evja/Ävja, Tossene, Brastad, Näsinge, Broberg, Nolby, Allemarken and Skarstad. However, the number of stone workers is far from that of the early 1900. The Swedish production is mainly

  10. Threshold Differences on Figure and Ground: Gelb and Granit (1923)

    PubMed Central

    Kinateder, Max

    2017-01-01

    In 1923, Gelb and Granit, using a method of adjustment for a small red light, reported a lower threshold for the target when presented on a ground region than on an adjacent figural region. More recent work in perceptual organization has found precisely the opposite—a processing advantage seems to go to items presented on the figure, not the ground. Although Gelb and Granit continue to be cited for their finding, it has not previously been available as an English translation. Understanding their methodology and results is important for integrating early Gestalt theory with more recent investigations. PMID:28286640

  11. Effets d'échelle dans la fracturation des granites

    NASA Astrophysics Data System (ADS)

    Genter, Albert; Castaing, Christian

    1997-09-01

    A multi-scale fracture-system characterization was made at the surface of a well-exposed granite (Jabal Qutan, Saudi Arabia) and in a buried granite known only through drilling (Soultz-sous-Forêts, France). At outcrop scale the fractures are seen to lie in irregularly distributed clusters that form highly fractured zones alternating with non-fractured zones. The fracture spacing is governed by a power law to three decades revealing a self-similar fractal character. At massif scale the regional fractures and faults show a more regular spacing indicating a periodic organization characterized by a lognormal-type distribution.

  12. Hercynian Granite and Related Mineralisation in Beni Snouss, Western Algeria

    NASA Astrophysics Data System (ADS)

    Nacera, Hadj Mohamed; Abdelhak, Boutaleb

    2016-10-01

    The purpose of this research is to describe the mineralisation related to the Hercynian granite located in western Algeria by combining geologic, tectonic, mineralogical and fluid inclusion studies. Quartz veins bearing sulphides occur in close spatial association with granitoids, which, representing hydrothermal activities associated with them. Visible but rare gold occurs in a very small quantity connected with arsenopyrite. Barite veins and stock works are developed in the granites where are observed at Mallal and Bouabdous. The vein varies in thickness from a few centimetres up to 2 meters, and their length varies from 10 up to up 100 m. Most of veins are N50 - N75 and 60 to 90 dip.

  13. Metalliferous deposits near Granite Mountain, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Miller, Thomas P.; Elliott, R.L.

    1969-01-01

    New deposits of lead, zinc, and silver were found in a large altered zone 18 miles long and 2 to 5 miles wide near Quartz Creek west of Granite Mountain in the eastern Seward Peninsula, Alaska. New deposits of molybdenum, bismuth, and silver were found associated with a previously reported occurrence of uranium, copper, lead, and zinc minerals in the upper Peace River drainage northeast of Granite Mountain. Both groups of deposits are associated spatially with felsic plutonic rocks and occur near the western edge of a late Mesozoic province of volcanic plutonic rocks. Both groups of deposits warrant further investigation as possible exploration target areas.

  14. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the

  15. From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)

    NASA Astrophysics Data System (ADS)

    Roda-Robles, E.; Pesquera, A.; Gil-Crespo, P.; Torres-Ruiz, J.

    2012-11-01

    The Pinilla de Fermoselle pegmatite is a cap-like body with an asymmetrical vertical zoning, from a granitic facies at the bottom to the upper contact with the metamorphic country-rocks. The granite grades imperceptibly into the pegmatite, which includes three main zones with different degrees of enrichment in Li + F + B (± P, Rb, Cs, Be, Sn). The essential minerals are quartz, feldspar, Al-micas from the muscovite-lepidolite series, Fe-micas (biotite and zinnwaldite), tourmaline (schorl-elbaite-rossmanite) and Fe-Mn phosphates. Apatite, beryl, cassiterite and cookeite are the most significant accessory minerals. The trace elements Li, Be and Sr show similar trends in feldspar, micas and tourmaline, with an increase in the Li and Be contents and a decrease in Sr from the granite to the most evolved pegmatitic zone. Similar trends are shown by Rb, Cs and Ba for micas and K-feldspar, Rb and Cs increasing gradually from the granite to most evolved pegmatitic zones, simultaneously to the decrease of Ba. In tourmaline Nb and Ta contents increase upwards whereas Zn contents decrease in the same way. The Mn contents increase until intermediate degrees of evolution, and decrease again in the pinkish elbaite. Combined field, petrographic and geochemical data are consistent with a fractional crystallization model from a granitic melt, with a clear petrogenetic relationship between the underlying peraluminous granite and the pegmatite body. K-feldspar and, particularly, micas and tourmaline appear as good geochemical monitors using trace elements such as Li, Rb, Be, Sr and Ba, which offer intriguing insights into the petrogenesis of pegmatites.

  16. Enclaves in the S-type granites of the Kösseine massif (Fichtelgebirge, Germany): implications for the origin of granites

    NASA Astrophysics Data System (ADS)

    Schödlbauer, S.; Hecht, L.; Höhndorf, A.; Morteani, G.

    The Hercynian peraluminous granites of the Kösseine massif differ in composition and content of enclaves from the other granites of the Fichtelgebirge. They are garnet-, cordierite- and andalusite-bearing S-type granites containing at least five different types of enclaves. Based on petrography and geochemical data, including radiogenic isotopes, the following is concluded: The amphibolite enclave (AE) and most of the aluminium silicate-bearing surmicaceous enclaves (SEA) are country-rock xenoliths picked up by the granite at or close to the emplacement level. The orthopyroxene-bearing surmicaceous enclave (SEO) probably represents a restite from the source level of the granite. The gneiss enclaves (GE) could be fragments of Saxothuringian paragneisses taken up by the granite near the source level. The pale microgranular enclaves with igneous texture (PMEI) could be fragments of a yet-unknown granitic material or unmelted igneous material of an inhomogeneous source. The biotite-rich microgranular enclaves with igneous texture (BMEI) and the microgranular enclaves with polygonal texture (MEP) represent material which derives from the source region of the granite. The Kösseine granites represent an independent intrusion among the Fichtelgebirge granites formed by a combination of incomplete restite unmixing, assimilation and probably fractional crystallization in the course of magma formation, ascent and emplacement.

  17. Late Triassic granites from Bangka, Indonesia: A continuation of the Main Range granite province of the South-East Asian Tin Belt

    NASA Astrophysics Data System (ADS)

    Ng, Samuel Wai-Pan; Whitehouse, Martin J.; Roselee, Muhammad H.; Teschner, Claudia; Murtadha, Sayed; Oliver, Grahame J. H.; Ghani, Azman A.; Chang, Su-Chin

    2017-05-01

    The South-East Asian Tin Belt is one of the most tin-productive regions in the world. It comprises three north-south oriented granite provinces, of which the arc-related Eastern granite province and the collision-related Main Range granite province run across Thailand, Singapore, and Indonesia. These tin-producing granite provinces with different mineral assemblages are separated by Paleo-Tethyan sutures exposed in Thailand and Malaysia. The Eastern Province is usually characterised by granites with biotite ± hornblende. Main Range granites are sometimes characterised by the presence of biotite ± muscovite. However, the physical boundary between the two types of granite is not well-defined on the Indonesian Tin Islands, because the Paleo-Tethyan suture is not exposed on land there. Both hornblende-bearing (previously interpreted as I-type) and hornblende-barren (previously interpreted as S-type) granites are apparently randomly distributed on the Indonesian Tin Islands. Granites exposed on Bangka, the largest and southernmost Tin Island, no matter whether they are hornblende-bearing or hornblende-barren, are geochemically similar to Malaysian Main Range granites. The average ɛNd(t) value obtained from the granites from Bangka (average ɛNd(t) = -8.2) falls within the range of the Main Range Province (-9.6 to -5.4). These granites have SIMS zircon U-Pb ages of ca. 225 Ma and ca. 220 Ma, respectively that are both within the period of Main Range magmatism (∼226-201 Ma) in the Peninsular Malaysia. We suggest that the granites exposed on Bangka represent the continuation of the Main Range Province, and that the Paleo-Tethyan suture lies to the east of the island.

  18. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand

    NASA Astrophysics Data System (ADS)

    Sanematsu, Kenzo; Kon, Yoshiaki; Imai, Akira

    2015-11-01

    The Permo-Jurassic North Thai (NT) Granites and the Late Cretaceous to Paleogene Western Province (WP) Granites in Thailand are contrasting in terms of tectonic settings and chemical compositions. The NT Granites, which are dominated by S-type features, are characterized by lower SiO2 contents and higher P2O5 contents than the WP Granites in this study. In order to compare the mobility and adsorption of rare earth elements (REEs) during weathering of the two granite suites, geochemical analyses were conducted on the granite and weathered granites. The weathered WP Granites show wider ranges of REEs + Y (REY) contents, percentages of ion-exchangeable REY and Ce anomalies than the weathered NT Granites. These results indicate that REEs were less mobile during weathering of the NT Granites than those of the WP Granites. The low mobility of REEs can be explained by the occurrences of residual monazite and secondary REE phosphates which immobilize REEs during weathering. Therefore, in the weathered NT Granites, REEs are mostly contained in the phosphate minerals. In contrast, the weathered WP Granites are dominated by ion-exchangeable REEs (adsorbed REEs) which are likely to exist on the surface of clays. Previous studies and our study results suggest that the ion-exchangeable REEs in the weathered granites were probably sourced from weatherable allanite, titanite, apatite and/or REE fluorocarbonate, and rarely from monazite and zircon, which are resistant to weathering. The weathered granites of low phosphate contents potentially show high percentages of ion-exchangeable REY, although they can be influenced by the degree of hydrothermal alteration or weathering of granites.

  19. Zircon crystal morphology and internal structures as a tool for constraining magma sources: Examples from northern Portugal Variscan biotite-rich granite plutons

    NASA Astrophysics Data System (ADS)

    Brites Martins, Helena C.; Simões, Pedro P.; Abreu, Joana

    2014-09-01

    In northern Portugal, large volumes of granitoids were emplaced during the last stage (D3) of the Variscan orogeny and display a wide range of petrological signatures. We studied the morphologies and internal structures of zircons from syn-, late- and post-D3 granitoids. The sin-D3 granitoids include the Ucanha-Vilar, Lamego, Felgueiras, Sameiro, and Refoios do Lima plutons, the late- and post-D3 granitoids are represented by the Vieira do Minho and the Vila Pouca de Aguiar plutons, respectively. Typological investigations after Pupin (1980) along with scanning electron microprobe imaging reveal that the external morphology of zircon changes consistently with a decrease in the crystallization temperature. Zircon populations from the Refoios do Lima and the Vieira do Minho granites show gradual changes in the internal morphologies and their typologic evolution trends are consistent with their mainly crustal origin. The Sameiro, Felgueiras, Lamego and Ucanha-Vilar granites have more complex internal and external morphology and typological evolution trends that cross the domain of the calc-alkaline to the aluminous granites compatible with a mixing process. Finally, the morphological types of the Vila Pouca de Aguiar granites are found both in calc-alkaline and sub-alkaline granites and their typological evolutionary trends follow the calc-alkaline/sub-alkaline trend, suggesting crustal sources with some mantle contribution.

  20. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    2000-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  1. Alteration and arenization processes of granitic waste rock piles from former uranium Mines in Limousin, France.

    NASA Astrophysics Data System (ADS)

    Kanzari, Aisha; Boekhout, Flora; Gérard, Martine; Galoisy, Laurence; Phrommavanh, Vannapha; Descostes, Michael

    2014-05-01

    France counts approximately 200 former uranium mines, 50 of which are located in the Limousin region. Mining activities between 1945 and 2001 have generated close to 200 000 tons of waste rocks in the Limousin, with uranium levels corresponding essentially to the geological background. Waste rock piles from three former mining sites in this region, were selected according to their age, uranium content and petrological signature. These sites are part of the two-mica granitic complex of St Sylvestre massif, formed 324 million years ago. Granitic blocks that build up the waste rock piles have experienced different processes and intensities of alteration before their emplacement at the surface. These processes are responsible for the petrological heterogeneity throughout the waste rock pile at the time of construction. It is important to make a distinction within waste rocks between natural-cut-off waste rocks and economic-cut-off waste rocks. The latter represents a minority and is linked to stock prices. Natural-cut-off waste rocks contain about 20 ppm of uranium; economic-cut-off waste rocks contain about 100 to 300 ppm of uranium. The aims of this study are to 1) assess the neo-formation of U-bearing minerals hosted by these rocks, and 2) to characterize the weathering processes since the construction of the rock piles, including both mechanical and chemical processes. The structure of the waste rocks piles, from metric blocks to boulders of tens centimeters, induces an enhanced weathering rate, compared to a granitic massif. Mechanical fracturing and chemical leaching by rainwater (arenization) of the waste rocks produce a sandy-silty alteration phase. Silty-clay weathering aureoles of submetric-granitic blocks evolving into technic soil are mainly located below growing birch trees. Sampling on the rock piles was restricted to surface rocks. Samples collected consist mainly of granites, and rare lamprophyres with a high radiometric signal, thereby especially

  2. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Forest Service Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans... of mining Plans of Operation in the Granite Creek Watershed Mining Plans analysis area on the Whitman... proposed mining Plans in the portions of the Granite Creek Watershed under their administration. As issues...

  3. Geochemical study of granites from Chinmen (Quemoy) and Hong Kong, southeastern China

    NASA Astrophysics Data System (ADS)

    Sun, Li-Min; Chen, Ju-Chin

    Eighteen granite samples from Chinmen and 31 granite samples from Hong Kong were chemically analyzed. All granite specimens contain essentially quartz, potash-feldspar and albite with a minor amount of biotite. Chinmen granites are chemically similar to Hong Kong granites and both show the characteristics of S-type granite defined by Chappell and White (1974), indicating that Chinmen and Hong Kong granites originated from continental crustal material. Negative europium anomalies observed in Chinmen and Hong Kong granites suggest that both Chinmen and Hong Kong granites have evolved through magmatic differentiation with Ca-rich plagioclase being separated out in the early stage of the differentiation. It is inferred that the parental magmas of Chinmen and Hong Kong granites were derived from partially melted SiO 2, Na 2O, K 2O-enriched material during the Yenshan orogeny in southeastern China in Late Mesozoic, associated with the rapid spreading of the Pacific plate. The Chinmen granites are relatively higher in Al, Ca, Na, Ni and Sc but lower in Fe, K, Ba, Hf, Y and Ce when compared with Hong Kong granites, indicating that there might be slight differences in the parental crustal material and/or differentiation process.

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1990 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Nelson, V. Lance

    1991-05-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout Oncorhynchus mvkiss smolts during the 1990 spring outmigration at migrant traps on the Snake River and the Clearwater River. Chinook salmon catch at the Snake River trap was similar to 1987 and 1988, drought years, but considerably less than 1989, a near normal flow year. Trapping effort was the same during the four years. Hatchery steelhead trout catch was similar to 1988 and 1989. Wild steelhead trout catch was greater than in any previous year. Chinook salmon catch at the Clearwater River trap was slightly less than in 1987 or 1988 and considerably higher than in 1989. Hatchery steelhead trout trap catch was 3 to 26 times greater than in previous years. Wild steelhead trout trap catch was 2 to 11 times greater than in previous years. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were recovered at the three dams with PIT tag detection systems (Lower Granite, Little Goose, and McNary dams). Cumulative recovery at the three dams for fish marked at the Snake River trap was 64.4% for chinook salmon, 83.1% for hatchery steelhead trout, and 79.0% for wild steelhead trout. Cumulative recovery at the three dams for fish PIT-tagged at the Clearwater River trap was 54.6% for chinook salmon, 77.6% for hatchery steelhead trout, and 70.4% for wild steelhead trout. Travel time (days) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that a two-fold increase in discharge increased migration rate by 2.2 times for PIT-tagged chinook salmon released from the Snake River trap and 1.8 times for chinook salmon released from the Clearwater River trap. A two-fold increase in discharge increased migration rate by 3.1 times for PIT-tagged hatchery steelhead trout released from the Snake River trap

  5. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  6. Ancient granite gneiss in the Black Hills, South Dakota

    USGS Publications Warehouse

    Zartman, R.E.; Norton, J.J.; Stern, T.W.

    1964-01-01

    Granite gneiss, with an age of approximately 2.5 billion years, in the Black Hills, South Dakota , provides a link betweeen ancient rocks in western Wyoming and Montana and in eastern North and South Dakota and Minnesota. The discovery suggests that early Precambrian rocks covered an extensive area in northcentral United States and were not restricted to several small nuclei.

  7. Chemical composition and origin of black patinas on granite.

    PubMed

    Silva, Benita; Aira, Noelia; Martínez-Cortizas, Antonio; Prieto, Beatriz

    2009-12-15

    Black patinas from the surfaces of granite outcrops (including some with engravings) and granite buildings were analysed. Rock samples were also taken from areas of the same surfaces where there were no black patinas. The constituent elements of the granite rocks, elements of essentially biological origin (C, N, H) and other minor elements, including some typical from pollution, were all determined. The ratios between the concentrations of each element in the patinas and in the corresponding rock samples without patina were calculated in order to determine which elements form the patinas. The data were then examined by hierarchical cluster analysis and principal components analysis to establish the factors that determine the differences between samples. It was found that the elements that differentiate the patinas from the samples of rock without patina are those unrelated to granite, which indicates that, at least from a geochemical point of view, the rocky substrate does not affect patina formation. In all patinas analysed, the concentrations of carbon were higher than in the corresponding samples without patina; there were also relatively higher concentrations of sulphur, phosphorus, chlorine, calcium, etc. in some patinas, depending on the situation of the outcrop or monument.

  8. Detail of typical subdeck of granite pier showing humanscale arched ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of typical subdeck of granite pier showing human-scale arched openings in pies. Note remnants of fender system. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  9. Flow Chart for Mineral Separation from Granitic Rocks.

    ERIC Educational Resources Information Center

    Mursky, Gregory

    1987-01-01

    Provided is a flow chart for the separation and purification of major, minor, and accessory minerals from granitic rocks. With careful use of heavy liquids, and a Franz Isodynamic Magnetic Separator, it is possible to obtain mineral concentrates with a purity of 95 percent or better. (Author/RH)

  10. Erosion over time on severely disturbed granitic soils: a model

    Treesearch

    W. F. Megahan

    1974-01-01

    A negative exponential equation containing three parameters was derived to describe time trends in surface erosion on severely disturbed soils. Data from four different studies of surface erosion on roads constructed from the granitic materials found in the Idaho Batholith were used to develop equation parameters. The evidence suggests that surface "armoring...

  11. Lithological strength but chemical weakness controls granitic tor formation

    NASA Astrophysics Data System (ADS)

    Stroeven, A. P.; Goodfellow, B. W.; Skelton, A.; Jansson, K. N.; Hättestrand, C.

    2010-12-01

    The origins of tors have long inspired wonder and are usually attributed to differential weathering according to variations in bedrock joint spacing and/or initial regolith depths. In this study, we investigate the origins of granitic tors in the Cairngorm Mountains, NE Scotland. Specifically, we examine whether: (i) joint spacing correlates with bedrock chemistry, mineralogy, or texture, and (ii) tor size correlates with any of these lithological attributes and/or topographic parameters such as slope, surface curvature, and tor position. Presently, our results indicate that: (i) bedrock joint spacing increases with feldspar crystal size, (ii) tor dimensions increase with joint spacing, particularly along the axis perpendicular to the regional foliation, and (iii) there is a strong positive correlation between joint spacing and tor volume. In addition, the largest tors occur where granite contains comparatively moderate quantities of biotite. If more biotite is present, then grusification, largely driven by the oxidation of Fe in biotite, proceeds too rapidly for large tors to form. Conversely, in granites containing lower quantities of biotite, it appears that the potential for differential weathering between exposed and regolith-covered bedrock is insufficient to produce large tors. Both lithological strength and chemical weakness therefore contribute to granitic tor formation.

  12. 16. Detail showing roller nest between granite pier cap and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail showing roller nest between granite pier cap and moveable end of truss at east end of main spans. View to southeast. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  13. Granite School District's Comprehensive Counseling and Guidance Program in Action.

    ERIC Educational Resources Information Center

    Petersen, Judy

    This paper discusses the development of the Utah Model for Comprehensive Counseling and Guidance, and specifically, its application in the Granite School Districts Guidance Program. This model adopted the National Occupational Information Coordinating Committee (NOICC) competencies as its desired program content, which focuses on student outcomes.…

  14. Electrical properties of granite with implications for the lower crust.

    USGS Publications Warehouse

    Olhoeft, G.R.

    1981-01-01

    The electrical properties of granite appear to be dominantly controlled by the amount of free water in the granite and by temperature. Minor contributions to the electrical properties are provided by hydrostatic and lithostatic pressure, structurally bound water, oxygen fugacity, and other parameters. The effect of sulphur fugacity may be important but is experimentally unconfirmed. In addition to changing the magnitude of electrical properties, the amount and chemistry of water in granite significantly changes the temperature dependence of the electrical properties. With increasing temperature, changes in water content retain large, but lessened, effects on electrical properties. Near room temperature, a monolayer of water will decrease the electrical resistivity by an order of magnitude. Several weight-percent water may decrease the electrical resistivity by as much as nine orders of magnitude and decrease the thermal activation energy by a factor of five. At elevated temperatures just below granitic melting, a few weight-percent water may still decrease the resistivity by as much as 3 orders of magnitude and the activation energy by a factor of two.-Author

  15. 74. The Butte Water Company Building (124 Weat Granite) was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. The Butte Water Company Building (124 Weat Granite) was built in 1907 for the Montana Independant Telephone Company, which occupied it until 1918. Since then, it has been occupied by the Butte Water Company, and has not been altered substantially. It was designed by George H. Shanley. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  16. Flow Chart for Mineral Separation from Granitic Rocks.

    ERIC Educational Resources Information Center

    Mursky, Gregory

    1987-01-01

    Provided is a flow chart for the separation and purification of major, minor, and accessory minerals from granitic rocks. With careful use of heavy liquids, and a Franz Isodynamic Magnetic Separator, it is possible to obtain mineral concentrates with a purity of 95 percent or better. (Author/RH)

  17. Monte Carlo simulations for generic granite repository studies

    SciTech Connect

    Chu, Shaoping; Lee, Joon H; Wang, Yifeng

    2010-12-08

    In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport models were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.

  18. Detail of west span showing connection of superstructure to granite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of west span showing connection of superstructure to granite pier at low tide. Photograph articulates subdeck support members. View southeast - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  19. 8. Granite quay wall at foot of Pier 10 (west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Granite quay wall at foot of Pier 10 (west end), view to north, at low tide. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  20. Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods

    NASA Astrophysics Data System (ADS)

    Schild, M.; Siegesmund, S.; Vollbrecht, A.; Mazurek, M.

    2001-07-01

    Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the `in situ Connected Porosity' experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the pore-space, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P-wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2-2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of

  1. Multi-Bandwidth GPR Profiles of Granite in New Hampshire: Attributes of Fracture Horizons and Wavelets

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Campbell, S. W.

    2012-12-01

    Sheet and tectonic fractures transport water and facilitate erosion on geologic time scales. We discuss ground-penetrating radar profiles of fractures recorded with 150, 350, 600 and 1000 MHz pulse dominant frequencies, and quantitative data obtained from their horizons and pulse wavelet attributes. We recorded the profiles along dirt roads and bare rock transects, beneath which include the mid Ordovician Oliverian granodiorite and binary granite of western New Hampshire and just north of the Presidential Range, respectively, and the late Devonian biotite granite just west of the Presidential Range. The overriding till is characterized by numerous diffractions, and from 0 to about 5 m thick. We use a known relative dielectric permittivity of 6.6 for granodiorite and assume the same for the other types to calibrate depth from the reflection time scale. Dielectric permittivity values for the till range from about 13-21. The sheet fracture responses are up to 25 m deep while the deepest tectonic fracture horizon extends to at least 35 m depth. Some horizons are associated with numerous diffractions originating along their length, while others have very few. The less clear horizons recorded in seasonal profiles of the binary granite suggest grusification, a possible factor to help explain the greater height of the more durable metamorphic Presidential Range. Sheet fracture spacing can be closer than one meter, with horizons comprised of thin layer responses because the wavelets, even at 1000 MHz, are similar to the transmitted wavelet. Therefore, the fractures are likely less than a few cm thick, as is apparent from quarry wall exposures, and from models that predict that even one mm fractures are detectable. The wavelet phase structure generally indicates a higher dielectric medium, which could mean calcite, and more likely water, but this structure is not consistent along individual horizons. The higher frequency profiles reveal a complex fracture network that

  2. Stream water chemistry in a gabbro/granite watershed, Quabbin reservation, central Massachusetts

    SciTech Connect

    Reid, J.B. Jr.; Gallant, J.; Christensen, C.; Mengason, M. . School of Natural Science)

    1993-03-01

    While monitoring pH-alkalinity relationships in tributaries of the Quabbin Reservoir, the authors have discovered an anomalous brook whose waters become progressively more acidic downstream. The watershed's bedrock is roughly half Prescott hornblende gabbro and half Cooleyville granitic gneiss with the contact crossing the watershed diagonally; gabbroic bedrock dominates the stream's upper reaches. Outcrop density and topography suggest relatively thin till cover (< [approximately]2m). All parts of the stream get some contribution from both bedrock types, through gabbro contribution diminishes smoothly downstream. Springs in gabbro (pH [approximately]7, alk 20--30mg/1, cond [approximately]50[mu]mho) and in granite (pH [approximately]5, alk 2--6 mg/1, cond [approximately]15[mu]mho) retain these characteristics through dry and wet seasons; the stream's response to high rain events is more complex and can be used to estimate where surface water and groundwater each make their greatest contributions. Each point along the brook can be assigned a value of %gabbro characterizing the bedrock proportions in the watershed upstream of it; plots of major cations, alkalinity and conductivity vs. %gabbro show strong positive correlation. Two-week leaching experiments (initial pH = 4) with A, B and C soil horizons from both sides of the contact show greatest rises (to pH = 5.5) in gabbro soils distant from the contact, and progressively smaller increases crossing the contact to granite soils (pH rises to 4.5). The data suggest that bedrock and soil chemistry are primarily responsible for stream chemistry; topography and residence time here play secondary roles.

  3. The density of dry and hydrous granitic magmas

    NASA Astrophysics Data System (ADS)

    Malfait, W. J.; Sanchez-Valle, C.; Seifert, R.; Petitgirard, S.; Perrillat, J.

    2011-12-01

    Large volumes of granitic magmas form through partial melting of the lower crust and are subsequently emplaced in the higher crustal levels [1]. In addition, granite-like liquids may form through partial melting of subducted sediments [2] or as an end-product of magmatic differentiation [3]. Moreover, water rich magmas of granitic composition are a major source of explosive volcanism. The physical properties of granitic melts, and particularly their density, are key controls on the migration rate and emplacement depth of granitic intrusions. However, because of the high viscosity of granitic liquids, density and compressibility measurements with the sink/float method and sound velocity measurements are challenging. As a result, the density and compressibility of dry and volatile-bearing granitic liquids is poorly constrained, particularly for the pressure-temperature conditions relevant for their formation and emplacement. In this study, we present in situ experimental data on the density of dry and hydrous haplogranitic melts (5 and 10 wt% water) at pressure and temperature conditions relevant for the crust and the subducting slab (1.0-2.7 GPa, 1350-1720 K). The experiments were performed with a panoramic Paris-Edinburgh press installed at the ID27 beamline of ESRF. The samples were contained in a cylindrical diamond capsule, capped with a platinum disk on either side, surrounded by hexagonal boron nitride (hBN) and placed inside a graphite heater and boron epoxy gasket. Pressure and temperature were determined from the X-ray diffraction patterns of hBN and platinum using the double-isochore method [4]. The density of the melts was determined from the X-ray absorption contrast between the sample and the diamond capsule (Mo edge, 20 keV). The molten state of the sample at the condition of the density measurements was verified by X-ray diffraction. The run products were analyzed by electron microprobe and infrared spectroscopy to verify the chemical composition and

  4. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA

    USGS Publications Warehouse

    Lipman, P.W.

    1988-01-01

    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  5. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2017-09-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  6. ASTEROIDAL GRANITE-LIKE MAGMATISM 4.53 GYR AGO

    SciTech Connect

    Terada, Kentaro; Bischoff, Addi

    2009-07-10

    Constraining the timescales for the evolution of planetary bodies in our solar system is essential for a complete understanding of planet-forming processes. However, frequent collisions between planetesimals in the early solar system obscured and destroyed much of the primitive features of the old, first-generation planetary bodies. The presence of differentiated, achondritic clasts in brecciated chondrites and of chondritic fragments in achondritic breccias clearly witness multiple processes such as metamorphism, magmatism, fragmentation, mixing, and reaccretion. Here, we report the results of ion microprobe Pb-Pb dating of a granite-like fragment found in a meteorite, the LL3-6 ordinary chondrite regolith breccia Adzhi-Bogdo. Eight spot analyses of two phosphate grains and other co-genetic phases of the granitoid give a Pb-Pb isochron age of 4.48 {+-} 0.12 billion years (95% confidence) and a model age of 4.53 {+-} 0.03 billion years (1{sigma}), respectively. These ages represent the crystallization age of a parental granite-like magma that is significantly older than those of terrestrial (4.00-4.40 Gyr) and lunar granites (3.88-4.32 Gyr) indicating that the clast in Adzhi-Bogdo is the oldest known granitoid in the solar system. This is the first evidence that granite-like formation is not only a common process on Earth, but also occurred on primitive asteroids in the early solar system 4.53 Gyr ago. Thus, the discovery of granite magmatism recorded in a brecciated meteorite provides an innovative idea within the framework of scenarios for the formation and evolution of planetary bodies and possibly exoplanetary bodies.

  7. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2016-12-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  8. Evaluation of a small-diameter sampling method in magnetic susceptibility, AMS and X-ray CT studies and its applications to mafic microgranular enclaves (MMEs) in granite

    NASA Astrophysics Data System (ADS)

    Zhu, Kong-Yang; Li, Ming-Yue; Shentu, Lu-Feng; Shen, Zhong-Yue; Yu, Yi-Hao

    2017-07-01

    This paper reviews the technical details of the small diameter sampling method in a study of anisotropy of magnetic susceptibility (AMS) and X-ray CT (computed tomography) and their applications to studies of MMEs (Mafic Microgranular Enclaves) in granite. The AMS results based on 9 mm diameter cylinder specimens collected from the Cretaceous Tongkengxi mafic dykes in South China were consistent with results using 25 mm diameter specimens. The first case study demonstrated the variation of AMS in the interior of a large MME from South China, which contained a center of strong short-range magnetic lineation. This type of magnetic fabric could be detected only by using sample cores with a small diameter. In the foliation direction, the host granite interacted with the MME more heavily and produced a region with a high magnetite content. The second case study was the investigation of the MMEs in the Early Cretaceous Muchen complex in eastern South China. The MME swarms exhibited relatively uniform magnetic fabrics at the outcrop scale, but the fabrics varied significantly at the intrusion scale. AMS of the MME swarms is coaxial with that of the host granite only at some localities. The disagreement of AMS between MME and host granite either imply different magma flow directions, or different magma flow velocities, or disturbance of the granite fabric by the MME. The MMEs in a mylonitic granite from eastern North China were also studied. The MME specimens show highly variable magnetic susceptibility and lineations. They can be only studied appropriately by a small drill. In the three cases, the three magnetic susceptibility axes of the MMEs are consistent with the volume-weighted maximum eigenvector of long/intermediate/short axes of magnetite. The orientations of the magnetite long axes in the three cases form several modes and the concentration of the modes results in a strong lineation. One implication of this study is that MMEs, with the same magmatic fabrics as

  9. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  10. Granite-migmatite genetic link: the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal

    NASA Astrophysics Data System (ADS)

    Barbey, P.; Brouand, M.; Le Fort, P.; Pêcher, A.

    1996-07-01

    In central Nepal, the Tibetan Slab is made up of biotite-gneisses (metapelites and metagreywackes), orthogneisses (metagranites) and migmatites. Melanosomes are generally biotite-(± muscovite)-bearing, but locally they may be tourmaline-rich when associated with boron-rich granitic material. Leucosomes occur as lenses conformable with the foliation, veins, patches, or as fillings in shear zones and extensional structures. Field relationships, and mineralogical and chemical data show that three processes may have contributed to the formation of the Tibetan Slab leucosomes: metamorphic differentiation or disequilibrium partial melting (low-Zr tonalitic leucosomes), in-situ equilibrium partial melting (high-Zr leucosomes and some granitic leucosomes) and injection of externally-derived melts (most granitic and some tonalitic leucosomes). The Manaslu pluton belongs to the High Himalayan leucogranite belt and was emplaced at the top of the Tibetan Slab. It corresponds to a muscovite-biotite leucogranite that has been assumed to derive from melting of the Tibetan Slab gneisses (Formation I). Phase relationships, a more magnesian chemistry of the ferromagnesian minerals from the Tibetan-Slab migmatites as compared to the Manaslu leucogranite, the microtextures of accessory phases, and trace-element compositions (lower U, Li, F and higher Sr, Eu, Y, Yb contents in the migmatite leucosomes) show that the in situ Himalayan migmatites, at the crustal level presently exposed, have not been produced under the same P-T-XH 2O conditions as the Manaslu leucogranite magma. While the Formation I was the probable source for the Manaslu granite, migmatites within the formation are not the remanants of a melting process from which the Manaslu granite was derived. Both the Tibetan Slab migmatites and the Manaslu leucogranite may be considered as evidence of dehydration and melting at deeper crustal levels, and of percolation of melts and hydrothermal fluids through the crust.

  11. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    NASA Astrophysics Data System (ADS)

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  12. Subsolidus physical and chemical mixing of granite and gabbro during mylonitization, South Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Rachel Walcott, C.; Craw, Dave

    1993-12-01

    At Dromedary Massif, Southern Victoria Land, Antarctica, a suite of coarse-grained granite dykes cross-cuts a gabbro pluton which has been partially metamorphosed at amphibolite facies. During regional deformation, strain has been inhomogeneously distributed through the gabbro pluton and has been concentrated in granite dykes. In zones of relatively high strain, the granite dykes have developed a mylonitic fabric. A high strain gradient between granitic mylonite and metagabbroic host rock has induced isochemical mylonitization of the margin of the host. This grain size reduction allowed chemical diffusion between granitic and metagabbroic mylonites, resulting in a marginal zone of biotite-rich mylonite with intermediate composition. Biotite-rich mylonite decoupled from metagabbroic mylonite and flowed with granitic mylonite. Continued folding and transposition of granitic mylonite and biotite-rich mylonite has produced compositionally banded mylonite zones through thorough and irreversible mixing of the two lithologies.

  13. Petrology and Li-Be-B geochemistry of muscovite-biotite granite and associated pegmatite near Yellowknife, Canada

    NASA Astrophysics Data System (ADS)

    Kretz, R.; Loop, J.; Hartree, R.

    1989-06-01

    Prosperous granite (Rb-Sr 2520±25 Ma) occurs as several plutons (1 380 km2 outcrop area) in a thick succession of metamorphosed greywacke-mudstone of the Yellowknife Supergroup. The average mineral content of the Sparrow pluton (in vol.%) is quartz (32), plagioclase (31), K-feldspar (24), muscovite (9), biotite (3), and apatite (<1). Average trace-element concentrations (in ppm) are Li (140), Be (4), B (28), Zn (47), Rb (250), Sr (76), Zr (75) and Ba (360). The central portion of the pluton is slightly richer in K, Sr, and Ba than the margin. Li is concentrated in mica (Li in biotite/Li in muscovite=4.7), and Be and B in muscovite and plagioclase. Countless pegmatite dikes occur in the Sparrow pluton and in schist-hornfels to the east; the outer limit is marked by the cordierite isograd, 9 km from the granite contact. Dikes vary greatly in size (1 km to a few cm in length), in mineral content (quartz, albite, K-feldspar, muscovite, tourmaline, beryl, spodumene), in major element composition (especially the Na∶K ratio), and in trace-element content (Li 18 5000 ppm, Be 5 260 ppm, B 20 150 ppm). Compared with Prosperous granite, the pegmatite bodies are richer in P and Rb, and poorer in Ti, Fe, Mg, Zr, and Ba. Dikes rich in tourmaline, beryl, and spodumene occur in overlapping zones situated progressively farther from the centre of the Sparrow pluton. The composition of tourmaline is related to host rock; the highest concentrations of Fe and Zn occur in crystals from pegmetite and the highest concentrations of Mg and V occur in crystals from tourmalinized schist, while those from granite and quartz veins occupy on intermediate position. Complex compositional zoning is present in some tourmaline crystals in pegmatite. Estimates of temperature (500° 600° C) and pressure (2 4 kb) of granite emplacement, based on the distribution of andalusite and sillimanite in the contact rocks, suggest that the final stage of granite emplacement occurred at sub-solidus conditions

  14. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    NASA Astrophysics Data System (ADS)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  15. Migration of (75)Se(IV) in crushed Beishan granite: Effects of the iron content.

    PubMed

    He, Jiangang; Ma, Bin; Kang, Mingliang; Wang, Chunli; Nie, Zhe; Liu, Chunli

    2017-02-15

    The diffusion of selenite (labeled with (75)Se) in compacted Beishan granite (BsG) was investigated using the in-diffusion capillary method at pH values from ∼2.0 to ∼11.0 under oxic and anoxic conditions. The results indicate that the apparent diffusion coefficient (Da) values of selenite in BsG always reached the minimum at approximately pH 5. Unexpectedly, the Da values under oxic conditions are nearly one order of magnitude lower than those under the anoxic conditions. Further characterization reveals the existence of redox-sensitive Fe(II)-containing components, which can be responsible for the great difference in Da values. Fe(2p) X-ray photoelectron spectroscopy (XPS) results show that more Fe(III)-oxyhydroxide coating is formed on the granite's surface under aerobic conditions than is formed under anaerobic conditions. Correspondingly, Se(3d) spectra indicate that more selenium is sorbed under oxic conditions, and the sorbed amount always reached the maximum at pH values from ∼4 to ∼5. A linear combination fit of X-ray absorption near edge structure (XANES) spectroscopy data revealed that Se(0) was formed under anoxic condition and that selenite preferred to form inner-sphere complexes with Fe(III)-oxyhydroxide. Overall, this study indicates that natural Fe-bearing minerals can greatly attenuate selenite diffusion and the retardation would be enhanced under aerobic conditions.

  16. Late Paleozoic vertical crustal growth of Western Junggar, Xinjiang in China: evidence from petrology and Nd isotope in charnockites and alkaline granites

    NASA Astrophysics Data System (ADS)

    Xian, W. S.; Sun, M.; Zhang, L. F.; Zhao, G. C.; Malpas, J.

    2003-04-01

    This abstract reports our new petrographic, mineralogical, geochemical and Nd isotope studies on the charnockites and alkaline granites in the western Junggar of Xinjiang, China. During the 1997 field excursion, we for the first time discovered charnockites in the Miaergou alkaline granite batholith, one of the six largest intrusive A-type bodies in the western Junggar of Xinjiang, Northwest China. The batholith is located in the southwestern part of the East-Central Asian Orogenic Belt, which is characterized by the presence of voluminous Paleozoic to Mesozoic granitoids with positive ɛNd(t) values. In spatial distribution, the batholith occurs as a ring-like igneous complex, which intrudes the early-Carboniferous volcanic sedimentary rocks of low-grade metamorphism. It is mainly composed of charnockite, quartz diorite, alkaline granite, potash feldspar granite, syenite and rare tourmaline-bearing intermediate-mafic dykes. Charnockites occur only within the diorite. A large amount of gabbroic, dioritic and leucogranitic enclaves are found in a zone between the alkaline granite and diorite. Petrographic and mineralogical studies indicate that the charnockites were derived from partial melting of the lower crust and crystallized under P-T conditions of 5.44˜5.63 ± 1.0 kbar and 700˜800^oC. Zircons from a charnockite sample and an alkaline granite sample yielded concordant U-Pb TIMS ages of 305.3 ± 1. 1 Ma and 274.1 ± 2.9 Ma, respectively, interpreted as the age of the emplacement of the charnockites and alkaline granites. Two-pyroxene granulites, biotite-spinel-cordierite gneisses and sillimanlite-biotite gneisses occur as enclaves within the charnockites. The two-pyroxene granulite enclaves are considered to be restites of partial melting of the previous lower crust at ˜845^oC, whereas the xenoliths of biotite-spinel-cordierite and sillimanlite-biotite gneisses were metamorphosed at low-pressure amphibolite- to granulite-facies, which were related to the

  17. Scaling minerals from deep-seated granitic geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Norio

    2016-04-01

    To promote geothermal energy use and sustainable production, the information of scaling situation from deep-seated geothermal reservoir is important. In Japan, at the Kakkonda geothermal field, Iwate prefecture, north-eastern of Japan, there is 80MW geothermal power plant using about 300 degree C fluid from the reservoir at the boundary between Quaternary Kakkonda granite and Pre-Tertiary formations about 3km depth and more deep-seated reservoir survey was carried out by NEDO. Then, to understand the mechanism of deep-seated reservoir, we survey the metal sulphide minerals deposited at production wellhead and pipeline and compare with the brine And the brine of WD-1a at 3.7km depth, into Quaternary Kakkonda granite rock. In Kakkonda geothermal system, the scales are classified into two types based on sulphide mineralogy, which are Pb-Zn rich type and Cu rich type. Pb-Zn rich scales, for example galena (PbS) and Sphalerite (ZnS), are found in Well-19 located at the marginal part of the Kakkonda granite And Cu-rich scales, for example chalcocite (Cu2S), loellingite (FeAs2) and native antimony (Sb), are found in Well-13, located at the central part of the Kakkonda granite. And the brine of WD-1a at 3.7km depth about 500 degree C, into Quaternary Kakkonda granite rock near Well-19 is rich in Pb and Zn and similar composition as the Well-19 scale. Therefore, deep reservoir of Kakkonda field evolves with mixing the fluid of shallow reservoir and the brine of occurred in the Quaternary Kakkonda granite. Then, the existence of both Pb-Zn rich scale and Cu rich scale is a characteristic feature of Kakkonda geothermal and this fact suggest to have similar zoning as found in Porphyry Copper Zoning. On progress of production the fluids from deep reservoir continue to be suffered by the fluid of shallow reservoir and meteoritic water. With temperature of production well decreasing and chemical composition changed, silica precipitation decreased and the metal sulfide mineral

  18. The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Verner, Kryštof; Finger, Fritz; Faryad, Shah Wali; Chlupáčová, Marta; Veselovský, František

    2011-01-01

    This paper presents new structural, anisotropy of magnetic susceptibility (AMS), petrological, and geochronological data to examine the link between LP-HT metamorphism and S-type granite formation in the Moldanubian unit, Bohemian Massif. We first describe the intrusive relationships of an S-type granite to its host cordierite-bearing migmatites, superbly exposed in the Rácov locality, northeastern Moldanubian batholith. The knife-sharp contacts and rectangular stoped blocks establish that the migmatites cooled and were exhumed above the brittle-ductile transition prior to the granite emplacement. The U-Pb monazite geochronology combined with P-T estimations constrain the age and depth of migmatization at ~ 329 Ma and ~ 21 km (T ≈ 730 °C). The migmatite complex was then exhumed at a rate of 6-7 mm y-1 to a depth of < 9 km where it was intruded by the granite at ~ 327 Ma. These data indicate that the hot fertile metapelitic middle crust in this part of the Moldanubian unit, newly defined as the Pelhřimov complex, underwent rapid isothermal decompression at ~ 329-327 Ma, giving rise to biotite melting and generation of large volumes of S-type granite magma. We propose that the rapid ~ 329-327 Ma exhumation of the Pelhřimov complex may have been partly assisted by the crustal-scale Přibyslav mylonite zone, which delineates the underlying western edge of the Brunia microplate underthrust beneath the eastern half of the Moldanubian unit during the early Carboniferous. The front edge of Brunia thus acted as a rigid backstop at depth, localizing the exhumation of the Pelhřimov complex and separating the hot fertile middle crust to the west from the already cooled overthrust complexes to the east. The magnetic fabric of the granite around the migmatite blocks further reveals that the Pelhřimov complex was shortened vertically and extended in the ~ WNW-ESE direction during and after its exhumation, implying that the SSE-directed underthrusting of Brunia along the

  19. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1997 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Nelson, William R.

    1999-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris.

  20. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1999 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.; Putnam, Scott A.

    2001-06-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris.

  1. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    .L. Phanerozoic granite-metamorphic domes at Russian North-East. Paper 2. Magmatism, metamorphism and migmatization in Late Mesozoic domes // Pacific geology. 1996. V. 15. № 1. P. 84-93. (in Russian) 13. Bering Strait Geologic Field Party, Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region // Tectonics, vol. 16, no. 5, p. 713-729 14. Bondarenko G.E., Luchitskaya M.V. Mesozoic tectonic evolution of Alarmaut rise // Byul. MOIP. Otd. Geol. V. 78. Is. 3. P. 25-38. (in Russian) 15. Katkov S.M., Strikland A., Miller E.L. Age of granite batholiths in the Anyui-Chukotka Foldbelt // Doklady. Earth Sciences. 2007. Vol. 414. № 4. P. 515-518. 16. Amato J.M., Wright J.E. Potassic mafic magtism in the Kigluaik gneiss dome, northern Alaska: a geochemical study of arc magmatism in an extensional tectonic setting // J. Geophys. Res. 1997. Vol.102. N B4. P.8065-8084 17. Tikhomirov P.L., Luchitskaya M.V., Kravchenko-Berezhnoy I.R. Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation // Stephan Mueller series. Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov (in press) 28. Velikoslavinsky S.D. Geochemical typification of acid magmatic rocks of leading geodynamic settings // Petrology. 2003. V. 11. № 4. P.363-380. (in Russian) 19. Pearce J.A. Sources and settings of granitic rocks // Episodes. 1996. V. 19. N. 4. P. 120-125

  2. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal

  3. Sequence of mineral assemblages in differentiated granitic pegmatites.

    USGS Publications Warehouse

    Norton, J.J.

    1983-01-01

    The sequence of mineral assemblages in internally zoned granitic pegmatites recognized by Cameron et al. (1949) is modified here to account for an observed vertical component, especially in feldspar compositions, in addition to the recognized outer contact-to-inner core differentiation process, and the importance of primary lithium minerals other than spodumene, such as petalite. The zonal patterns of 11 well-known granitic pegmatites are consistent with this revised sequence, with additional explanations for the repeated monomineralic zones of quartz or pollucite, etc. The crystallization history of zoned pegmatites is described in general terms, beginning with the magmatic crystallization which produces the outer zones. Aqueous fluid is exsolved continuously from the magma as relatively anhydrous phases precipitate, and plays an important role in the formation of the inner zones; its evolution is thought to be a major cause of pegmatite differentiation.-J.E.S.

  4. Preliminary report on a glass burial experiment in granite

    SciTech Connect

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10/sup 0/C) or 90/sup 0/C. The glasses were analyzed before burial and after one month storage at 90/sup 0/C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared.

  5. Natural radioactivity levels of granites used in Turkey.

    PubMed

    Cetin, E; Altinsoy, N; Orgün, Y

    2012-08-01

    Thirty granite samples commonly used in Turkey were surveyed for natural radioactivity. Concentrations of natural radionuclides in all samples were determined by gamma-ray spectroscopy with hyper-pure germanium detector. The activity concentrations measured for (226)Ra and (232)Th ranged from 0.7±0.1 to 186±1 Bq kg(-1), and from 0.5±0.1 to 249±2 Bq kg(-1), respectively. The activity concentrations obtained for (40)K varied from minimum detectable activity (0.4 Bq kg(-1)) to 1935±11 Bq kg(-1). The radium equivalent activity (Ra(eq)), the absorbed dose rate (D), the external hazard index (H(ex)) and the annual effective dose equivalent were also calculated and compared with the international recommended values. Granite samples were also analysed mineralogically. It was observed that the presence of large amount orthoclase and radiogenic accessory minerals are the sources of high activity concentration levels.

  6. Lower Granite Dam Smolt Monitoring Program, 1999 Annual Report.

    SciTech Connect

    Verhey, Peter; Morrill, Charles; Mensik, Fred

    1999-01-01

    The 1999 fish collection season at Lower Granite was characterized by high spring flows and spill, low levels of debris, cool water temperatures, increased hatchery chinook numbers, and an overall decrease in numbers of smolts collected and transported. A total of 5,882,872 juvenile salmonids were collected at Lower Granite. Of these, 5,466,057 were transported to release sites below Bonneville Dam, 5,232,105 by barge and 233,952 by truck. An additional 339,398 fish were bypassed back to the river. A total of 117,609 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 440,810 smolts (7.5% of the total collected) of which 247,268 were PIT tagged and 572 were recorded as incidental mortalities.

  7. Development of modal layering in granites: a case study from the Carna Pluton, Connemara, Ireland

    NASA Astrophysics Data System (ADS)

    McKenzie, Kirsty; McCarthy, William; Hunt, Emma

    2016-04-01

    Modal layering in igneous rocks uniquely record dynamic processes operating in magma chambers and also host a large proportion of Earth's strategic mineral deposits. This research investigates the origin of biotite modal layering and primary pseudo-sedimentary structures in felsic magmas, by using a combination of Crystal Size Distribution (CSD) analysis and Electron Probe Microanalysis (EPMA) to determine the mechanisms responsible for the development of these structures in the Carna Pluton, Connemara, Ireland. The Carna Pluton is a composite granodiorite intrusion and is one of five plutons comprising the Galway Granite Complex (425 - 380 Ma). Prominent 30 cm thick modal layers are defined by sharp basal contacts to a biotite-rich (20%) granite, which grades upward over 10 cm into biotite-poor, alkali-feldspar megacrystic granite. The layering strikes parallel to, and dips 30-60° N toward the external pluton contact. Pseudo-sedimentary structures (cross-bedding, flame structures, slumping and crystal graded bedding) are observed within these layers. Petrographic observations indicate the layers contain euhedral biotite and fresh undeformed quartz and feldspar. Throughout the pluton, alkali-feldspar phenocrysts define a foliation that is sub-parallel to the strike of biotite modal layers. Together these observations indicate that the intrusion's concentric foliation, biotite layers and associated structures formed in the magmatic state and due to a complex interaction between magma flow and crystallisation processes. Biotite CSDs (>250 crystals per sample) were determined for nine samples across three biotite-rich layers in a single unit. Preliminary CSD results suggest biotite within basal contacts accumulated via fractional crystallisation within an upward-growing crystal pile, likely reflecting the yield strength of the magma as a limiting factor to gravitational settling of biotite. This is supported by the abrupt decrease in mean biotite crystal size across

  8. 76. The Silver Bow County Courthouse, 19101912, at West Granite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. The Silver Bow County Courthouse, 1910-1912, at West Granite and Montana Streets, was designed by Link and Haire. The building has a dressed sandstone foundation, brick walls, and sandstone trim, parapet and columns. It was used as a barracks for the State militia when the city was placed under martial law following the dynamiting of the Old Miners' Union Hall in September, 1914. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  9. Lower granite GIS data description and collection guidelines

    SciTech Connect

    Gordon, J.L.; Evans, B.J.; Perry, E.M.

    1995-12-01

    The Lower Granite Geographic Information System (GIS) was developed jointly by the US Army Corps of Engineers (USCOE) Walla Walla District and the Pacific Northwest Laboratory (PNL). The goal of the project is to use GIS technology to analyze impacts of the drawdown mitigation option on the physical and biological environment of the Lower Granite Reservoir. The drawdown mitigation option is based on the hypothesis that faster juvenile salmon travel to the ocean would result in higher juvenile survival and greater smolt-to-adult return ratios; to accomplish this, reservoir elevations would be lowered to increase channel velocities. Altering the elevation of the reservoirs on the Snake River is expected to have a variety of impacts to the Physical environment including changes to water velocity, temperature, dissolved gases, and turbidity. The GIS was developed to evaluate these changes and the resulting impacts on the anadromous and resident fish of the Snake River, as well as other aquatic organisms and terrestrial wildlife residing in the adjacent riparian areas. The Lower Granite GIS was developed using commercial hardware and software and is supported by a commercial relational database. Much of the initial system development involved collecting and incorporating data describing the river channel characteristics, hydrologic properties, and aquatic ecology. Potentially meaningful data for the Lower Granite GIS were identified and an extensive data search was performed. Data were obtained from scientists who are analyzing the habitats, limnology, and hydrology of the Snake River. The next six sections of this document describe the bathymetry, fish abundance, substrate, sediment chemistry, and channel hydrology data.

  10. Static and kinetic friction of granite at high normal stress

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  11. Getting granite dikes out of the source region

    NASA Technical Reports Server (NTRS)

    Rubin, Allan M.

    1995-01-01

    Whether a dike can propagate far from a magma reservoir depends upon the competition between the rate at which propagation widens the dike and the rate at which freezing constricts the aperture available for magma flow. Various formulations are developed for a viscous fluid at temperature T(sub m) intruding a growing crack in an elastic solid. The initial solid temperature equals T(sub m) at the source and decreases linearly with distance from the source. If T(sub m) is the unique freezing temperature of the fluid, dike growth is initially self-similar and an essentially exact solution is obtained; if T(sub m) is above the solidus temperature, the solution is approximate but is designed to overestimate the distance the dike may propagate. The ability of a dike to survive thermally depends primarily upon a single parameter that is a measure of the ratio of the dike frozen margin thickness to elastic thickness. Perhaps more intuitively, one may define a minimum distance from the essentially solid reservoir wall to the point at which the host rock temperature drops below the solidus, necessary for dikes to propagate far into subsolidus rock. It is concluded that for reasonable material properties and source conditions, most basalt dikes will have little difficulty leaving the source region, but most rhyolite dikes will be halted by freezing soon after the magma encounters rock at temperatures below the magma solidus. While these results can explain why granitic dikes are common near granitic plutons but rare elsewhere, the potentially large variation in magmatic systems makes it premature to rule out the possibility that most granites are transported through the crust in dikes. Nonetheless, these results highlight difficulties with such proposals and suggest that it may also be premature to rule out the possibility that most granite plutons ascend as more equidimensional bodies.

  12. Lower Granite Dam Smolt Monitoring Program, 1998 Annual Report.

    SciTech Connect

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1998-12-01

    The 1998 fish collection season at Lower Granite was characterized by relatively moderate spring flows and spill, moderate levels of debris, cool spring, warm summer and fall water temperatures, and increased chinook numbers, particularly wild subyearling chinook collected and transported. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database on fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  13. Lower Granite Dam Smolt Monitoring Program; 1997 Annual Report.

    SciTech Connect

    Verhey, Peter; Witalis, Shirley; Morrill, Charles

    1998-01-01

    The 1997 fish collection season at Lower Granite was characterized by high spring flows, extensive spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database of fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  14. Assessing exposure to granite countertops--Part 2: Radon.

    PubMed

    Allen, Joseph G; Minegishi, Taeko; Myatt, Theodore A; Stewart, James H; McCarthy, John F; Macintosh, David L

    2010-05-01

    Radon gas ((222)Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium ((226)Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m(2)/h (median 3.9 Bq/m(2)/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m(3); 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m(3); 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples.

  15. New contributions to granite characterization by ultrasonic testing.

    PubMed

    Cerrillo, C; Jiménez, A; Rufo, M; Paniagua, J; Pachón, F T

    2014-01-01

    Ultrasound evaluation permits the state of rocks to be determined quickly and cheaply, satisfying the demands faced by today's producers of ornamental stone, such as environmental sustainability, durability and safety of use. The basic objective of the present work is to analyse and develop the usefulness of ultrasound testing in estimating the physico-mechanical properties of granite. Various parameters related to Fast Fourier Transform (FFTs) and attenuation have been extracted from some of the studies conducted (parameters which have not previously been considered in work on this topic, unlike the ultrasonic pulse velocity). The experimental study was carried out on cubic specimens of 30 cm edges using longitudinal and shear wave transducers and equipment which extended the normally used natural resonance frequency range up to 500 kHz. Additionally, a validation study of the laboratory data has been conducted and some methodological improvements have been implemented. The main contribution of the work is the analysis of linear statistical correlations between the aforementioned new ultrasound parameters and physico-mechanical properties of the granites that had not previously been studied, i.e., resistance to salt crystallization and breaking load for anchors. Being properties that directly affect the durability and safety of use of granites, these correlations consolidate ultrasonics as a nondestructive method well suited to this type of material.

  16. Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns.

    PubMed

    Qureshi, Aziz Ahmed; Jadoon, Ishtiaq Ahmed Khan; Wajid, Ali Abbas; Attique, Ahsan; Masood, Adil; Anees, Muhammad; Manzoor, Shahid; Waheed, Abdul; Tubassam, Aneela

    2014-03-01

    A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.

  17. Granite petrogenesis revealed by combined gravimetric and radiometric imaging

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Boulvais, Philippe; Poujol, Marc; Vigneresse, Jean-Louis

    2011-03-01

    In peneplaned terranes, it is often impossible to get a full 3D view of geological objects. In the case of granitic plutons, for which intrusive relationships between constituent units can provide first order information regarding their petrogenesis, this lack of 3D field evidence is a major issue. Indirect observations can be provided by geophysical surveys. Here, we interpret field gravity data and airborne gamma ray radiometric maps with whole rock geochemistry data in order to obtain information on granite petrogenesis. First, we test our proposed combined geophysical and geochemical approach on the Huelgoat Variscan intrusion (Armorican Massif, France) and we show that ternary radiometric maps are a good proxy for the distribution of K, U and Th radioelements. Then, we apply our method to the Lizio and Questembert Variscan granitic intrusions (Armorican Massif) and show that some features characteristic of the intrusions, such as the feeding zones, can be localised by geophysical imaging. Indeed, radiometric maps constitute a frozen image of the latest stage of the magmatic building of plutons.

  18. Chemical weathering of granite under acid rainfall environment, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeop; Kim, Soo Jin; Baik, Min Hoon

    2008-08-01

    Chemical weathering was investigated by collecting samples from five selected weathering profiles in a high elevation granitic environment located in Seoul, Korea. The overall changes of chemistry and mineralogical textures were examined reflecting weathering degrees of the samples, using polarization microscopy, X-ray diffraction (XRD), electron probe micro analysis (EPMA), X-ray fluorescence spectroscopy (XRF), and inductively coupled plasma-mass spectroscopy (ICP-MS). The chemical distribution in the weathering profiles shows that few trace elements are slightly immobile, whereas most major (particularly Ca and Na) and trace elements are mobile from the beginning of the granite weathering. On the other hand, there were mineralogical changes initiated from a plagioclase breakdown, which shows a characteristic circular dissolved pattern caused by a preferential leaching of Ca cation along grain boundaries and zoning. The biotite in that region is also supposed to be sensitive to exterior environmental condition and may be easily dissolved by acidic percolated water. As a result, it seems that some rock-forming minerals in the granitic rock located in Seoul are significantly unstable due to the environmental condition of acidic rainfall and steep slopes, where they are susceptible to be dissolved incongruently leading some elements to be highly depleted.

  19. Lower Granite Dam Smolt Monitoring Program, 2000 Annual Report.

    SciTech Connect

    Morrill, Charles; Ross, Doug; Mensik, Fred

    2000-01-01

    The 2000 fish collection season at Lower Granite was characterized by lower than average spring flows and spill, low levels of debris, cool water temperatures, increased unclipped yearling and subyearling chinook smolts, and 8,300,546 smolts collected and transported compared to 5,882,872 in 1999. With the continued release of unclipped supplementation chinook and steelhead above Lower Granite Dam, we can no longer accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. Although some table titles in this report still show ''wild'' column headings, the numbers in these columns for 1999 and 2000 include wild and unclipped hatchery origin smolts. The increases over previous years reflect the increased supplementation. A total of 8,300,546 juvenile salmonids were collected at Lower Granite Dam. Of these, 187,862 fish were bypassed back to the river and 7,950,648 were transported to release sites below Bonneville Dam, 7,778,853 by barge and 171,795 by truck. A total of 151,344 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 1,361,006 smolts (16.4% of the total collection).

  20. Static and Dynamic Flexural Strength Anisotropy of Barre Granite

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Zuo, J. P.; Zhang, R.; Xu, N. W.

    2013-11-01

    Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

  1. δ30Si systematics in a granitic saprolite, Puerto Rico

    USGS Publications Warehouse

    Ziegler, Karen; Chadwick, Oliver A.; White, Arthur F.; Brzezinski, Mark A.

    2005-01-01

    Granite weathering and clay mineral formation impart distinct and interpretable stable Si isotope (δ30Si) signatures to their solid and aqueous products. Within a saprolite, clay minerals have δ30Si values ∼2.0‰ more negative than their parent mineral and the δ30Si signature of the bulk solid is determined by the ratio of primary to secondary minerals. Mineral-specific weathering reactions predominate at different depths, driving changes in differing δ30Sipore watervalues. At the bedrock-saprolite interface, dissolution of plagioclase and hornblende creates δ30Sipore water signatures more positive than granite by up to 1.2‰; these reactions are the main contributor of Si to stream water and determine its δ30Si value. Throughout the saprolite, biotite weathering releases Si to pore waters but kaolinite overgrowth formation modulates its contribution to pore-water Si. The influence of biotite on δ30Sipore water is greatest near the bedrock where biotite-derived Si mixes with bulk pore water prior to kaolinite formation. Higher in the saprolite, biotite grains have become more isolated by kaolinite overgrowth, which consumes biotite-derived Si that would otherwise influence δ30Sipore water. Because of this isolation, which shifts the dominant source of pore-water Si from biotite to quartz, δ30Sipore water values are more negative than granite by up to 1.3‰ near the top of the saprolite.

  2. Relationship between UHP eclogite and two different types of granite in the North Qaidam, NW China: Evidence from zircon SHRIMP ages of granites

    NASA Astrophysics Data System (ADS)

    Wu, C.; Yang, J.; Wooden, J.; Ernst, G. W.; Liou, J. G.; Li, H.; Zhang, J.; Wan, Y.; Shi, R.

    2001-12-01

    The southern margin of the Qilianshan is a long, narrow mountain range extending from the Altyn Mtn southeastward to the Alcitoshan for about 800 km and consists chiefly of Proterozoic and Paleozoic rocks. Our recent studies show that this foldbelt consists of a Caledonian north Qaidam UHP belt near the Qaidam Basin and I-type and S-type granites to the north near the Qilianshan. Two types of granite bodies at the Aolaoshan and Qaidamshan were selected for zircon SHRIMP dating. The results indicate that the Aolaoshan granites range from 496+/-7.6 to 445+/-15.3 Ma whereas the Qaidamshan granites range from 435+/-6 to 456+/-11 Ma. The Aolaoshan granites have geochemical characteristics similar to I-type granite probably formed in an island arc setting whereas the Qaidamshan granites are S type granites coeval with timing of collision. The UHP eclogites at Yuca have 238U-206Pb age of 494.6+/-6.5Ma, representing the peak stage of UHP metamorphism, and the 39 Ar-40Ar plateau and isochron ages of phengite respectively at 466.7+/-1.2 Ma and 465.9+/-5.4Ma represent the cooling ages of retrograde metamorphism during exhumation. In addition, the SHRIMP ages of UHP eclogites from Xitieshan and Dulan are the Caledonian. These spatial and temporal relationships suggest that UHP eclogites and two different types of Caledonian granites occur in north Qaidam with the eclogite belt to the south and the granite bodies to the north. The country rocks of UHP eclogites are Proterozoic age whereas granitic bodies have both Proterozoic and Paleozoic groups. Thus, an early Caledonian northward subduction of an oceanic lithosphere resulted in the formation of high-P eclogite to the south and I type Aolaoshan granite to the north. Subsequent continent-continent collision induced widespread partial melting of continental crust to form S type Qaidamshan granites. Hence both eclogite and two different types of granites in this foldbelt are the products of two different stages of plate

  3. Increase vs. decrease in the strength of granitic rocks subjected to heat

    NASA Astrophysics Data System (ADS)

    Török, Anita; Török, Ákos

    2015-04-01

    Accidental fire generally causes catastrophic loss in granitic structures or tunnels excavated in granitic rocks. It is necessary to measure strength of materials at various degrees to understand the mechanical behaviour of such stone structures or tunnels. Our laboratory experiments were aimed to detect indirect tensile strength and uniaxial compressive strength of granitic rocks that were subjected to temperatures of up to 600°C. For control measurements ultrasonic pulse velocity was also recorded. The studied rocks included three granites: a Hungarian dark pink granite (Mórágy), an Austrian greyish granite (Mauthausen) and a common pinkish Spanish granite (Rosa Beta). Cylindrical tests specimens of the three granites were subjected to 300°C and 600°C, respectively. Compressive strength test and tensile strength test results were compared to strength values obtained at room temperature. Our test results show that two of the studied granites (Hungarian and the Spanish one) have higher strength at 300°C that at room temperature. To the contrary ultrasonic pulse velocity decreased for all the three granites from room temperature to 300°C. The tensile strength of the granites did not show such a clear trend, however Hungarian granite has a slightly increased tensile strength at 300°C than at room temperature. At 600°C the compressive strength, tensile strength and ultrasonic pulse velocity dropped but not at the same rate. Our experiments showed that a given and limited temperature increase can have a positive effect on strength of granites rather than an adverse effect on a short-term.

  4. The peculiarities of the processes of forming, accumulation and migration of the graniteic melt

    NASA Astrophysics Data System (ADS)

    Anfilogov, V.

    2003-04-01

    The peculiarity of the processes of forming, accumulation and migration of granitic melts in katazone, mesozone and epizone are discussed. It is shown, that if fluid phase is present, the forming of the eutectic granitic melt by melting of the substrate realizes without the contact between grain of quartz and alkaline fieldspars.The leaf-by-leaf migmatites are able to form by the way of contrary diffusion of the components of granitic eutectic through the fluid. This way do not demand the addition of the components from outside The accumulation of big volume of granitic melt in katazone and the forming of granit - gneiss domes do not conected with metasomatism. They are formed as the result of leaf-by-leaf flow of the partialy melted material of migmatite. The granitic batholthes in mesozone are formed from the melt, which is generated in katazone. The zone of anatexis and the zone of the accumulation of granitic melt in batholithes are formed in thia case the united magmatic system. Our experiments show, that if the concentration of Na_2O and K_2O in fluid are constant the composition of granitic melt is constant too, in spite of the fact its temperature more than 100o higher than the temperature of granitic eutectic. Granitic melt is able to migrate up to 4 - 5 km without crystalization in this condition. The forming of batholithe is going graduately, layer by layer from its upper boundary to the down one. Experiments on interaction of ,basalt with chloride solutions at temperature 700 - 800 o C allow to construct the model of granitic melt origin from basaltic substrate. It is shown that the forming of big volume of granitic melt in the areas of active basaltic volcanism goes by three steps: autometasomatic transformation of the basalt, partialy melting of the meyasomatic products and migration of granitic melt to the upper part of the magmatic system.

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1992 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    1993-11-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout 0. mykiss smolts during the 1992 spring outmigration at migrant traps on the Snake River and the Clearwater River. Annual chinook salmon catch at the Snake River trap was the second lowest since the beginning of this project. The low trap catch wall due to extremely poor trap efficiency associated with severe low flows. Hatchery steelhead trout catch was similar to 1988 through 1991. Wild steelhead trout catch was 35% less than in 1991. Operations at the Snake River trap and a new screw trap were extended through the end of July to collect summer-migrating age-0 chinook. The differentiation of age-0 chinook from spring and Bummer chinook (age-1) using physical characteristics was again employed in 1992. The Snake River trap and the screw trap collected 20 and 18 age-0 chinook salmon, respectively, due to extremely low discharge. Chinook salmon catch at the Clearwater River trap was the highest since trap operation began in 1984. Hatchery steelhead trout trap catch was 23% lower than in 1991. Wild steelhead trout trap catch wall the highest since trap operation began. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at three dams with PIT-tag detection systems (Lower Granite, Little Goose, and McNary dams). Cumulative interrogation, for fish marked at the Snake River trap, was not calculated for chinook salmon due to a lack of data over the entire migration season. The rates for hatchery steelhead trout and wild steelhead trout were 44.9% and 72.9% respectively. Cumulative interrogation at the three dams for fish PIT-tagged at the Clearwater River trap was 55.1% for chinook salmon, 60.4% for hatchery steelhead trout, and 73.1% for wild steelhead trout. Cumulative interrogations for hatchery steelhead tagged at the Snake River trap and recovered at the downstream dams was about 50% less than in previous years.

  6. Interactions between extensional shear zones and syn-tectonic granitic intrusions: the example of Ikaria Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Beaudoin, Alexandre; Jolivet, Laurent; Arbaret, Laurent; Augier, Romain; Rabillard, Aurelien

    2014-05-01

    The Aegean domain is an ideal place to investigate the development of Metamorphic Core Complex (MCC) and to study the role of syn-tectonic granites on their development. MCCs of the Aegean domain are dynamically associated with a few major detachments, especially the North Cycladic Detachment System (NCDS) and the West Cycladic Detachment System (WCDS), which have accommodated a large part of the crustal thinning during the Oligocene and Miocene. The NCDS extends toward the East within the Simav Detachment that has exhumed the northern high-temperature part of the Menderes massif. The transition between the NCDS and the Simav Detachments is located above a major tear in the Aegean slab whose effects on lithospheric deformation are far from understood. The Aegean granitoids were emplaced during the Middle Miocene within a zone of high-temperature during the episode of slab tearing and recorded increments of extensional tectonics within this complex zone. Ikaria Island (Cyclades, Greece) is a metamorphic dome intruded by three Miocene granitoid plutons (one I-type intrusion, two S-type ones) including the largest pluton of the Aegean domain. However, geometry, structures and kinematics are still debated with several recent yet conflicting studies. We have reconsidered the geology of Ikaria to settle the geological and structural context of these plutons. The intrusion depth of the Raches granite has been estimated at 10-15 km by the Al-in-hornblende barometer. Our field study has led to the identification of two major structures: the Gialiskari and Kalamos detachments, which we interpret as belonging to the NCDS. A study of deformation in the granites has highlighted a continuum during cooling that can be described in three stages: i) magmatic deformation, ii) high-temperature ductile deformation from late magmatic stage until complete crystallization of the granite, iii) low-temperature brittle deformation. Throughout this evolution, the same top-to-the-NE shearing

  7. Review of geomechanics data from French nuclear explosions in the Hoggar granite, with some comparisons to tests in US granite

    SciTech Connect

    Heuze, F.E.

    1983-05-01

    Numerous unclassified reports on the French nuclear explosions in the Hoggar (1961-1966) were reviewed from the standpoint of geomechanics. The following aspects of the tests are summarized: spectral content of the tests compared to U.S. results; shock front positions with time; cavity radius as a function of yield, coupling, density of rock, rock shear strength, and overburden; radial pressure, tangential pressure and peak velocity as a function of distance and yield; pressure vs. time at various distances; mechanical properties of granite; scaling laws for acceleration, velocity and displacement as a function of yield and distance for all Hoggar shots; extent of tunnel damage as a function of distance and yield; time to collapse of chimney as a function of yield, or cavity radius; extent of granite crushing and disking as a function of distance and yield cavity height relation to cavity radius; faulting and jointing on the Taourirt Tan Afella massif; and influence of water content on cavity radius vs. yield. Whenever possible, these French data are compared to corresponding data obtained in the U.S. granite events Hard Hat, Shoal, and Piledriver. The following results emerge from the comparison: (1) agreement is found between the French and U.S. experience for: mechanical properties of the granites, rock damage due to the blast, and yield-scaled peak values of acceleration, velocity and displacement; and (2) lack of agreement exists for: cavity size, chminey height, and time to cavity collapse. Average spacing of rock joints also was about 5 times greater in the Hoggar.

  8. Bluish granites from Extremadura (Spain): a radiological evaluation.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Neves, Luís.; Peinado, Mercedes; Pereira, Alcides; Rodríguez, Leticia; António Blanco, José

    2010-05-01

    We have found in the area of Trujillo (Extremadura, Spain) a variety of striking bluish granites, outcropping within the Plasenzuela pluton. They are all quarried under different names and are characterized by leucocratic minerals such as quartz, feldspar (both potassium and plagioclase), sometimes giving a fenocrystic texture and muscovite, with some biotite. As accessory phases, idiomorphic tourmaline is found. Recently a bluish phosphate distributed in the whole rock was detected, included within most mineral phases and fillings from stressed structures that are cutting the rock. We attribute the bluish color of the granites to this phosphate. Although biotite is almost always transformed to chlorite, the rock gives an excellent response to be polished. Physico-mechanical properties make this bluish granite a perfect option for most applications. Absorption coefficient is rather low and alteration by thermal changes has not been observed. A secondary facies with yellow colour also occurs, spatially close to the topographic surface, and probably represents an alteration product of the original granite. This facies is also commercialized as ornamental stone. A radiological survey was carried out in the field, using a gamma ray spectrometer. The radiological background is quite homogeneous in the pluton, without significant differences between gamma ray fluxes of both facies (altered and non altered). The average contents of U, Th and K2O determined in situ with the spectrometer are 7.4 ppm, 0.8 ppm and 3.67%, respectively (n=15). Using U as a Ra proxy, the I index of the EU technical document 112 can be determined, and results in a value of 0.64 for the referred composition. This implies that the rock can be used without any restrictions for building purposes. However, a marked difference was observed in radon exhalation tests carried out in laboratorial facilities. The dominant blue variety shows radon exhalation rates comprised between 0.02 and 0.04 Bq.kg-1.h-1

  9. Li isotope geochemical study on weathering of granite in Longnan, Jiangxi Province, South China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, Z.; Zhao, T.; Yu, C.; Zhou, L.

    2015-12-01

    .22μg/g. Our study indicates that Li isotope composition of residual material is dominanted by the extent of granite weathering. However complex processes, including adsorption and desorption of clay minerals, fluid flow and interaction, and atmospheric input control the Li isotopic composition of residual materials during deep weathering and pedogenic processes.

  10. The origin of radiogenic isotope variability in granites: intracrustal recycling and/or juvenile crust production?

    NASA Astrophysics Data System (ADS)

    Farina, Federico

    2014-05-01

    by the time evolved inherited zircon population, suggesting that the ɛHf heterogeneity of magmatic zircon is inherited from the source. The model proposed involves dissolution at the emplacement level of detrital zircons within small magma volumes and crystallization of new zircon from these magma domains, prior to complete hafnium isotopic homogenization. In the second case, the extreme mineral-scale initial Sr isotope variability characterizing the Elba Island granitic complex (Italy) is explained by mixing between magma batches produced by disequilibrium melting of individual crustal sources. These batches represent discrete melting events taking place as the isotherms advance through the source: the earlier magmas represent lower-temperature melts while magmas developed later formed at higher-temperature. The prime implication of these studies is that isotope variations in granitoids do not necessarily call for the involvement of a mantle-derived component. Substantial isotopic variation is to be expected in felsic magmas produced solely by reworking of crustal material, with no net crustal growth. Isotopic variability, generated during crustal anatexis, can survive magma segregation and ascent indicating the lack of pluton-wide homogenization occurring at the emplacement level.

  11. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is

  12. Strength and permeability of an ultra-large specimen of granitic rock

    SciTech Connect

    Thorpe, R.K.; Watkins, D.J.; Ralph, W.E.

    1983-03-01

    Laboratory tests were conducted to measure the mechanical and transport properties of a 1-m-diameter by 2-m-high specimen of jointed granitic rock. Uniaxial loading was applied and radial permeability tests were made at various stress levels. Ultimate strength of the specimen was estimated prior to loading by testing small 52 mm diameter cores with similar fracture patterns. It was found that deformabilities of the large and small specimens were similar; however, the uniaxial strength of the large core was about 10% of that predicted. Although the large core contained a complex joint system, its overall permeability was dominated by a single open fracture normal to the axis. Using a simple parallel-plate analog, changes in the equivalent single-fracture aperture under load were significantly less than closures measured by means of linear variable differential transformers situated across the main fracture. 11 references.

  13. Chaotic Mixing of Granitic and Basaltic Liquids

    NASA Astrophysics Data System (ADS)

    Decampos, C.; Ingrisch, W. E.; Perugini, D.; Dingwell, D. B.; Poli, G.

    2008-12-01

    , changing with depth, in complex chaotic patterns. The general morphology of experimental flow patterns matches theoretical predictions well. We will present the chemical analytical evaluation of these experiments in the context of the effectiveness of the interplay between convection and diffusion, under chaotic dynamics, in enhancing mixing in silicate melts. The results are strong evidence that the treatment of or testing for mixing based solely on the presence of straight lines on inter-elemental plots is flawed.

  14. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, James P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd–Sr–Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  15. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, J.P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd-Sr-Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  16. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  17. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  18. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    USGS Publications Warehouse

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  19. Field geology of the Dago ring complex, Nigeria

    NASA Astrophysics Data System (ADS)

    Ike, E. C.; Sakoma, E. M.

    The Dago ring complex was only recently recognised as a Younger Granite unit and called the 'Dogo Dutse complex' after the main settlement of 'Dogo Dutse' which is now better recognised in its proper name and location as Dago. The newly completed geological map of the complex reveals an oval outline and a surface area of 60 km 2 defined by a discontinuous peripheral ring-dyke of granite porphyry. Volcanic rocks preceding the ring-dyke in time are sparsely preserved in the south while the ring-dyke is completely obliterated in the west by the granite intrusion. The latter is an aegirine arfvedsonite alkali feldspar granite which occurs as the only 'plutonic' phase of intrusion and thus by its composition identifies the Dago unit ass a truly peralkaline ring complex.

  20. New U Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, I. T.; De Waal, S. A.; Armstrong, R. A.

    2005-12-01

    The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050-2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.

  1. Determination of geochemical affinities of granitic rocks from the Aue-Schwarzenberg zone (Erzgebirge, Germany) by multivariate statistics

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.

    2000-01-01

    Variscan granites of the Erzgebirge region can be effectively classified into five genetically distinct major groups by canonical analysis of geochemical variables. The same classification procedure, when applied to small plutons in the Aue-Schwarzenberg granite zone (ASGZ), shows that all ASGZ granites have compositional affinities to low-F biotite or low-F two-mica granite groups. This suggests that the ASGZ granites were emplaced during the first, late-collisional stage of silicic magmatism in the region, which occurred between about 325 and 318 Ma. The numerous biotite granite bodies in the zone are geochemically distinct from both the neighboring Kirchberg granite pluton and the spatially displaced Niederbobritzsch biotite granite massif. Instead, these bodies seem to constitute a third sub-group within the low-F biotite granite class. The ASGZ biotite granites represent three or more genetically distinct bodies, thus highlighting the enormous compositional variability within this group of granites. Least evolved samples of two-mica granites from the ASGZ apparently reflect the assimilation of low-grade metamorphic country rocks during emplacement, altering the original composition of the melts by enhancing primary Al content. The same genesis is implied for the rare "cordierite granite" facies of the Bergen massif, the type pluton for the low-F two-mica granite group in the Erzgebirge.

  2. Marginal continental and within-plate neoproterozoic granites and rhyolites of Wrangel Island, Arctic region

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Moiseev, A. V.; Sokolov, S. D.; Tuchkova, M. I.; Sergeev, S. A.; O'Sullivan, P. B.; Verzhbitskii, V. E.; Malyshev, N. A.

    2017-01-01

    The paper presents new data on the U-Pb zircon age, as well as results of isotopic geochemical analysis, of granites and rhyolites from Wrangel Island. The U-Pb age estimates of granites and rhyolites are grouped into two clusters ( 690-730 and 590-610 Ma), which imply that these rocks crystallized in the Late Neoproterozoic. Granitic rocks dated back to 690-730 Ma are characterized by negative ɛNd( t) values and Paleoproterozoic Sm-Nd model age. The older inherited zircons corroborate the ancient age of their crustal source. The granitic rocks pertain to involved peraluminous granites of type I, which form at a continental margin of the Andean type and can be compared with coeval granites and orthogneisses from the Seward Peninsula in Alaska. Rhyolites and granites 590-610 Ma in age are distinguished by a moderately positive ɛNd( t) and Mesoproterozoic model age. It is suggested that they have a heterogeneous magma source comprising crustal and mantle components. The geochemical features of granites and rhyolites correspond to type A granites. Together with coeval OIB-type basalts, they make up a riftogenic bimodal association of igneous rocks, which are comparable with orthogneisses (565 Ma) and gabbroic rocks (540 Ma) of Seward Peninsula in Alaska.

  3. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence

    NASA Astrophysics Data System (ADS)

    Goodge, John W.; Vervoort, Jeffrey D.

    2006-03-01

    Granitic rocks are commonly used as a means to study chemical evolution of continental crust. In particular, their isotopic compositions reflect the relative contributions of mantle and crustal sources in their genesis. In Laurentia, a distinctive belt of Mesoproterozoic A-type or "anorogenic" granites of ˜ 1.4 Ga age was emplaced within composite, heterogeneous Proterozoic crust. Zircons are an ideal mineral to constrain the granite petrogenetic history because they are repositories of both age (U-Pb geochronology) and tracer (Lu-Hf isotopic) information. We measured the Hf isotope composition of zircons from 31 previously dated A-type granites intruding Proterozoic basement provinces from the southwest U.S. to the upper mid-continent. Isotopic compositions for all granites are broadly similar, with average 176Hf/ 177Hf(i) ratios of 0.281871-0.282153. Averages for granites within different crustal provinces yield present-day ɛHf values between - 31.9 and - 21.9. Initial ɛHf values discriminate the granites by age of the 2.0-1.6 Ga crust which they intrude, but are independent of intrusion age, as follows (basement formation ages in parentheses): southern Granite-Rhyolite (1.5-1.3 Ga), + 7.0 ± 0.9; central Yavapai (1.8-1.7 Ga), + 5.4 ± 0.9; western Yavapai (1.8-1.7 Ga), + 3.3 ± 1.1; Granite-Rhyolite (1.5-1.3 Ga), + 1.4 ± 0.6; Mojave (1.8-1.7 Ga), + 0.2 ± 0.8; and Penokean (1.9-1.8 Ga), - 0.1 ± n/d. The narrow ranges of Hf isotopic signatures within these regional groupings of granites reflect the age and isotopic composition of the basement provinces they intrude. Granites in the southern Granite-Rhyolite and central Yavapai provinces have the highest initial ɛHf, reflecting their more juvenile sources, whereas Mojave and Penokean granites show contributions from more evolved crustal sources. Simple calculations indicate that all the granites represent dominantly crustal melts; although a mantle contribution cannot be ruled out, if present it must be

  4. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Foster, G L; Paterson, B A; Woodhead, J D; Hergt, J M; Gray, C M; Whitehouse, M J

    2007-02-16

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  5. Early Mesozoic deep-crust reworking beneath the central Lhasa terrane (South Tibet): Evidence from intermediate gneiss xenoliths in granites

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Zheng, Jian-Ping; Xiong, Qing; Yang, Jing-Sui; Wu, Yuan-Bao; Zhao, Jun-Hong; Griffin, William L.; Dai, Hong-Kun

    2017-03-01

    Understanding the rheological behavior of the Tibetan Plateau and its response to geodynamic processes requires a clear knowledge of the composition, evolution and lithological properties of the deep crust. Here we present U-Pb-Hf isotopes of zircons, bulk-rock geochemistry and mineral compositions for seven intermediate gneiss xenoliths and their host Early Mesozoic granites (205 ± 6 Ma) in the central Lhasa terrane to probe the deep crust beneath Southern Tibet. The xenoliths contain plagioclase, amphibole, titanite, allanite, quartz, biotite and muscovite, with accessory Fe-Ti oxides, apatite and zircon. Bulk-rock and mineral geochemistry suggests that these xenoliths have a magmatic origin and experienced deformation and amphibolite-facies metamorphism (equilibration at pressures of 0.46-0.83 GPa and temperatures of 650 °C), before they were captured by the host granite at 205 Ma. Zircons in these xenoliths show complex microstructures, including inherited cores, magmatic or metamorphic bands, and high U-Th hydrothermal rims. Inherited zircon cores record U-Pb ages from 2277 Ma to 517 Ma. Igneous zircons show a range of concordant U-Pb ages, suggesting a protracted magmatism from 236 Ma to 203 Ma. Metamorphic zircon zones record the timing of amphibolite-facies metamorphism from 224 to 192 Ma, while the high U-Th hydrothermal rims show a subsequent fluid activity until 150 Ma. Unradiogenic Hf isotopic compositions of both xenoliths and host granites [xenolith εHf(t) = - 11.2 to 0; host granite εHf(t) = - 17.3 to - 3.3] indicate that the Early Mesozoic deep crust in the central Lhasa terrane originated mainly from ancient (i.e., Proterozoic) crust, with little or no interaction with juvenile magmas. This study suggests a possible continental differentiation mechanism during crustal reworking; progressive melting may initiate from the lower mafic crust (at ca. 236 Ma) and gradually migrate into the sediment-rich upper crust (until ca. 203 Ma). The reworking

  6. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  7. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  8. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  9. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.

    2015-12-01

    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH <2 led to the formation of quartz and fluorite in the core of the pegmatites and to an increase in the stability of REE chloride species favorable for REE mobilization. The mobilization of Zr was favored at low temperature with the

  10. Lead-alpha age determinations of granitic rocks from Alaska

    USGS Publications Warehouse

    Matzko, John J.; Jaffe, H.W.; Waring, C.L.

    1957-01-01

    Lead-alpha activity age determinations were made on zircon from seven granitic rocks of central and southeastern Alaska. The results of the age determinations indicate two periods of igneous intrusion, one about 95 million years ago, during the Cretaceous period, and another about 53 million years ago, during the early part of the Tertiary. The individual ages determined on zircon from 2 rocks from southeastern Alaska and 1 from east-central Alaska gave results of 90, 100, and 96 million years; those determined on 4 rocks from central Alaska gave results of 47, 56, 58, and 51 million years.

  11. The effect of dilatancy on velocity anisotropy in Westerly granite

    NASA Technical Reports Server (NTRS)

    Soga, N.; Mizutani, H.; Spetzler, H.; Martin, R. J., III

    1978-01-01

    Jacketed samples of Westerly granite were fractured at confining pressures up to 1 kbar, and compressional and horizontally as well as vertically polarized shear velocities were measured in orthogonal directions perpendicular to the compression axis. Changes occurring with increased strain are described, and the velocity data were analyzed by application of the Anderson et al (1974) approach. Observed and calculated velocities are found to be in good agreement, and the degree of dilatancy was determined from the differences between the strains measured perpendicularly to the compression axis and the estimated elastic strains in those directions.

  12. The geochemical and Srsbnd Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis

    NASA Astrophysics Data System (ADS)

    Champion, David C.; Bultitude, Robert J.

    2013-03-01

    Moderately to strongly fractionated S-type granites crop out extensively (> 2500 km2) in the central and eastern parts of the Hodgkinson Province, north Queensland, Australia. The granites have been subdivided in two major supersuites: the garnet-bearing Whypalla and cordierite-bearing Cooktown Supersuites; and a number of minor suites—including the extremely fractionated Wangetti and Mount Alto Suites. Early formed magmatic tourmaline is a feature of the Wangetti and Mount Alto granites. Almost all of the S-type granites contain metasedimentary enclave material, while microdioritic enclaves are mostly notably absent. The S-type granites are felsic with a moderate SiO2 range (68-77%). Most elements are negatively correlated with increasing differentiation, including TiO2, FeOtot, MgO, CaO, Ba, Sr, Th, LREE, Eu, Zr, Hf, and ratios such as K/Rb; many decrease to very low levels. There are very few positively correlated elements: Rb, U, and to some extent Na2O. Geochemical differences between supersuites include higher CaO, Ba, Sr, Pb, and lower Rb, Sn, B, V in the Whypalla Supersuite. Geochemical variation within the granites is largely due to extensive crystal fractionation. Some of the S-type granites have FeO* and MgO contents of 2.5-3.0% or more indicating they do not represent simple sedimentary melts, but rather represent the presence of both cumulate and restitic material. Variable Nd and Sr signatures (ɛNd between - 2 and - 6.5; initial Sr ratios between 0.709 and 0.715), suggest multiple components. The S-type granites intrude a very extensive, siliciclastic turbidite sequence that is isotopically evolved (e.g., ɛNd mostly - 12.0 to - 15.0 at 270 Ma), and generally too mature (too CaO poor) to produce S-type granites. Isotopic and chemical modeling show that although magma-mixing is permissible, the levels permissible (< ca. 20-25% basaltic input), are not large enough to explain the signature of the granites. Instead the data suggest that the S

  13. Origin and tectonic implications of the ∼200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jamil, Azmiah; Ghani, Azman A.; Zaw, Khin; Osman, Syamir; Quek, Long Xiang

    2016-09-01

    Triassic granitoids (∼200-225 Ma) are widespread in the Western Belt of Peninsular Malaysia. The Main Range granite is the biggest batholith in the Western Belt composed of peraluminous to metaluminous granite and granodiorite and displays typical ilmenite-series characteristics. Jerai granitic pluton occurs at the northwestern part of the Main Range granite batholith. The Jerai granite can be divided into three facies: (i) biotite-muscovite granite; (ii) tourmaline granite; and (iii) pegmatite and aplopegmatite. Biotite-muscovite granite accounts for 90% of the Jerai pluton, and the rest is tourmaline granite. Geochemical data reveal that pegmatite and tourmaline granite are more differentiated than biotite-muscovite granite. Both pegmatite and tourmaline granite have a higher SiO2 content (70.95-83.94% versus 69.45-73.35%) and a more pronounced peraluminous character. The U-Pb zircon geochronology of the Jerai granite gave an age ranging from 204 ± 4.3 Ma, 205 ± 4 Ma and 205 ± 2 Ma for pegmatite biotite-muscovite granite and tourmaline granite, respectively. The biotite-muscovite Jerai granites are similar to S-type Main Range granite, but the tourmaline granite has a signature of late-stage hydrothermal fluid interaction such as tourmaline quartz pods, the accumulation of large pegmatitic K-feldspar, pronounced peraluminous character, higher SiO2 content. Age evidence of these two granitic facies suggest that they are from the same magma.

  14. The Origin of Graphic Granite: New Insights from Electron Backscatter Diffraction (EBSD) Analyses

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, Y.

    2016-12-01

    Graphic granite, found predominantly in granitic pegmatite, is a leucocratic granitic rock consisting of an intimate intergrowth of alkali feldspar and quartz with a distinctive texture as ancient cuneiform writing when viewed in certain cross sections. Deciphering the graphic texture is important for understanding its origin and the crystallization process of granitic rocks. In this study, we present investigations on petrology, mineral composition, crystallographic relationship and topotaxy of quartz and alkali feldspar in graphic granites from the Fangshan adakitic pluton, Beijing, north China and the Luotian dome in the Northern Dabie Mountains, central China. The euhedral to subhedral coarse-grained feldspar host in graphic granite can be alkali feldspar or plagioclase. Microscopically, the feldspar host is usually a perthite, which is decomposed into irregular intergrowth of sodic and potassic feldspar. The volume content of quartz usually ranges from 20% to 45%, and the composition of feldspar in graphic granite depends greatly on the formation conditions. However, the quartz-feldspar ratio and the composition of feldspar in graphic granite are relatively stable in coeval graphic granites in the same area. The majority of the quartz grains undergrown with host feldspar are in the form of sub-parallel tabular, long rods and unconnected dendritic crystals, which only shows a distinctive graphic texture in certain cross sections. Under cross polarized light microscopy, multiple domains of quartz grains exhibit a nearly simultaneous extinction within a single crystal of feldspar. The crystallographic orientations of the quartz grains and the host feldspar were measured using the electron backscatter diffraction (EBSD) technique. Statistical analyses indicate a definite crystallographic orientation relationship between the majority of graphic quartz grains and the host feldspar in that [11-23]Quartz parallel to [001]Feldspar. Moreover, Dauphiné twin of quartz

  15. Reactive transport model and apparent Kd of Ni in the near field of a HLW repository in granite

    NASA Astrophysics Data System (ADS)

    Lu, Chuanhe; Samper, Javier; Luis Cormenzana, José; Ma, Hongyun; Montenegro, Luis; Ángel Cuñado, Miguel

    2012-12-01

    Current performance assessment models for radionuclide migration through the near field of high-level radioactive waste repositories often rely on the assumption of a constant Kd for sorption. The validity of such assumption is evaluated here with a reactive transport model for Ni2+ in the near field of a repository in granite. Model results show that Ni2+ sorbs mainly by surface complexation on weak sorption sites. The apparent Kd of Ni2+, Kda, depends on the concentration of dissolved Ni and pH and is constant only when the concentration of dissolved Ni is smaller than 10-6 mol/L. The results of the sensitivity runs show that Kda is sensitive to the water flux at the bentonite-granite interface, the effective diffusion of the bentonite and the concentration of weak sorption sites of the bentonite. The competition of other nuclides such as Cs+ on Ni2+ sorption is not important. Corrosion products, however, affect significantly the sorption of Ni2+ on the bentonite. The model with a constant Kd does not reproduce the release rates of Ni2+ from the bentonite into the granite. A model with a variable Kd which depends on the concentration of dissolved Ni2+ and pH may provide an acceptable surrogate of the multicomponent reactive transport model for the conditions of the repository considered in our model. Simulations using the Kd-approach were performed with GoldSim based on the interpolation in the pH and concentration table, while the reactive transport model simulations were performed with CORE2D which incorporates multisite surface complexation.

  16. Metamorphic signature of the Gneiss Canyon Shear Zone, Lower Granite Gorge, Grand Canyon, Arizona

    SciTech Connect

    Robinson, K.; Williams, M.L. . Dept. of Geology and Geography)

    1992-01-01

    The Proterozoic orogen in Arizona consists of structural blocks separated by NE trending shear zones. The Gneiss Canyon Shear Zone (GCSZ) is important because it appears to define in part the boundary between the amphibolite facies Yavapai Province and the granulite facies Mojave Province. An early NW striking foliation is clearly visible in many samples from the Lower Granite Gorge (LGG). In Travertine Canyon, east of the GCSZ, pelitic schists contain And-Sil-Crd-Bi and Gar-Sil-Sta-Bi. Mafic rocks exhibit complex phase relations between cummingtonite, anthophyllite, gedrite, garnet, and cordierite. The coexistence of cordierite-cummingtonite is indicative of low pressure metamorphism. Microprobe analyses of garnets reveal prograde growth zoning profiles. Temperature and pressure estimates of peak metamorphism are 550--600 C and 3 kb. Just east of the GCSZ, pelitic assemblages contain Gar-Bi [+-] Sil [+-] Mus, and garnet zoning profiles are flat in the cores. In Spencer Canyon, west of the GCSZ, samples commonly contain Gar-Bi-Sil-Crd, and in many samples cordierite is being replaced by sillimanite. Thermobarometric calculations yield temperature and pressure estimates of 650 C and 3.5 kb. Mineral assemblages and quantitative thermobarometry suggest higher peak metamorphic temperature west of the GCSZ but relatively constant pressures across the LGG. On the east side of the GCSZ, temperatures increase toward the Shear Zone, probably due to the presence of extensive dikes, pods, and veins of variably deformed granite. Peak mineral assemblages are syntectonic with respect to the NE-striking GCSZ fabric. If a suture exists in the LGG, the GCSZ fabrics apparently reflect post-accretionary tectonism, with accretion occurring prior to the peak of metamorphism.

  17. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry

    USGS Publications Warehouse

    Nordstrom, D.K.; Lindblom, S.; Donahoe, R.J.; Barton, C.C.

    1989-01-01

    Fluid inclusions in quartz and calcite of the Proterozoic Stripa granite, central Sweden, demonstrate that the rock and its fracture fillings have a complex evolutionary history. The majority of inclusions indicate formation during a hydrothermal stage following emplacement of the Stripa pluton. Total salinities of quartz inclusions range from 0-18 eq.wt% NaCl for unfractured rock and from 0-10 eq.wt% for fractured rock. Vein calcites contain up to 25 eq.wt% NaCl but the inclusion size is larger and the population density is lower. Homogenization temperatures are 100-150??C for unfractured rock and 100-250?? for fractured rock. Pressure corrections, assuming immediate post-emplacement conditions of 2 kbar, give temperatures about 160??C higher. Measurements of fluid-inclusion population-densities in quartz range from about 108 inclusions/cm3 in grain quartz to 109 inclusions/cm3 in vein quartz. Residual porosity from inclusion densities has been estimated to be at least 1% which is two orders of magnitude greater than the flow porosity. Breakage and leaching of fluid inclusions is proposed as an hypothesis for the origin of major solutes (Na-Ca-Cl) in the groundwater. Evidence for the hypothesis is based on (1) mass balance-only a small fraction of the inclusions need to leak to account for salt concentrations in the groundwater, (2) chemical signatures- Br Cl ratios of fluid inclusion leachates (0.0101) match those ratios for the deep groundwaters (0.0107), (3) leakage mechanisms-micro-stresses from isostatic rebound or mining activities acting on irregular-shaped inclusions could cause breakage and provide connection with the flow porosity, and (4) experimental studies-water forced through low permeability granites leach significant quantities of salt. This hypothesis is consistent with the available data although alternate hypotheses cannot be excluded. ?? 1989.

  18. Structural record of mechanisms of granite intrusion in the Achaean gneisses

    NASA Astrophysics Data System (ADS)

    Perchuk, L. L.; van Reenen, D. D.

    2009-04-01

    orientation of strong liniation and small folds axes in granulite facies complexes (see a micro model in Fig. 1a). Despite the fact that these structures are located more than hundred kilometers apart, they are characterized by similar orientation of foliation and lineations that are the evidence for their simultaneous formation. This conclusion is well supported by isotopic geochronological data (Boshoff et al., 2006; van Reenen et al., 2007). Numerical modeling (Fig. 1b-d) of this movement strongly supports this mechanism and suggests that the formation of sheath folds as the result of granite magma generation from gneisses of similar bulk composition reminds boiling of viscose liquids. This study was financially supported by NRF SA and the Russian Foundation for Basic Research, project nos. 06-05-64098 and 08-05-00354, and Russian President's Program for the support of leading scientific schools, grant NSh-1949.2008.5. References. Boshoff, R., Van Reenen, D.D., Smit, C.A. еt al., 2006. J. Geology, 114, 699. Davidson, A. Journal of Geodynamics. 1984, 1, 433-444. Gerya, T.V., Perchuk, L.L., Van Reenen, D.D. et al. 2000. J. Geodynamics, 30, 17. Gerya T.V., Perchuk L.L., Maresch W.V et al., 2002. Europ. J Mineral., 14, 687-699. Macgregor A.M. Transactions of Geological Society of South Africa. 1951. V. 54. P. 27-71. Perchuk L.L., 1989. In Evolution of Metamorphic Belts. Geol. Soc. Lond. Spec. Pub. 42, P. 275. Perchuk, L.L., Podladchikov, Yu.Yu., Polyakov, A.N., 1992. J. Metam. Geol., 10, 311. Perchuk L.L., van Reenen D.D., Smit C.A., Boshoff, G. A. Belyanin, Yapaskurt V.O. Petrology, 2008, V. 16, No. 7, Р. 652-678. Ramberg H. Gravity, deformation and the Earth's crust. Academic Press. London-New-York-Toronto-San Francisco. 1981. 296 p. Smit, C.A. & Van Reenen, D.D., 1997. Journal of Geology, 105, 37-57. Van Reenen, D.D., Boshoff, R., Smit, C.A. et al., 2007, Gondwana Research (in press). To observe this Figure please contact the first author llp@geol.msu.ru Figure 1

  19. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    NASA Technical Reports Server (NTRS)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  20. An Early Neoproterozoic gabbro-granite association in the Bureya Continental Massif (Central Asian fold belt): First geochemical and geochronological data

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Ovchinnikov, R. O.; Kudryashov, N. M.; Sorokina, A. P.

    2016-12-01

    The fact that gneissose granites and gabbros of the Nyatygran Complex in the Bureya Continental Massif are not Palaeoproterozoic in age, as previously thought, but Neoproterozoic, 933 Ma is proved. New data with the first direct evidence of Early Neoproterozoic magmatism in continental massifs composing the Bureya-Jiamusi Superterrane are given. At the moment, the obtained age estimates are the oldest for the magmatic rocks of this superterrane.

  1. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  2. Middle Triassic magma mixing in an active continental margin: Evidence from mafic enclaves and host granites from the Dewulu pluton in West Qinling, central China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Mo, X.; Yu, X.

    2015-12-01

    The Qinling-Dabie-Sulu orogen was formed through the collision of the North and South China blocks, but the precise timing of the closure of the Paleo-Tethys ocean between the two blocks remains debated. Large volumes of Triassic granites associated with mafic microgranular enclaves (MMEs) were emplaced in the Qinling terrane. This paper presents field observations, petrography, geochronology and geochemistry of the MMEs and their host granites from the Dewulu pluton in West Qinling. The host rocks comprise granodiorite and granodioritic porphyry, and the The MMEs range in composition from gabbroic diorite to diorite. Zircon LA-ICP-MS U-Pb ages suggest that the granites and MMEs were coeval at ca. 245 Ma. The granites are relatively enriched in LILE and depleted in HFSE, and have evolved Sr-Nd-Pb and zircon Hf isotopic compositions [initial 87Sr/86Sr = 0.7070-0.7076, ɛNd(t) = -7.5 to -6.8, ɛHf(t) = -8.2 to -4.2], indicative of an origin from the amphibolitic lower crust. The near-primitive gabbro-dioritic MMEs bear a remarkable geochemical resemblance to the high-magnesium andesite (HMA), such as moderate SiO2 (~55 wt.%), low FeOT/MgO (~0.75), high Cr (268-308 ppm) and MgO (8.58-8.77 wt.%) with Mg# of ~70. Additionally, they exhibit lower initial 87Sr/86Sr, higher ɛNd(t) and ɛHf(t), and more radiogenic Pb isotopes than the dioritic MMEs which share similar isotopic compositions with the granites. These features, together with the presence of the specific minerals in the MMEs (e.g., felsic xenocrysts and acicular apatite), point to mixing process between the lower crust-derived magmas and the melts produced by the reaction of the subducting sediment-derived components and the overlying mantle. Taking into account the regional occurrence of synchronous plutonic-volcanic complexes (250-234 Ma) ranging from basaltic to granitic variants, we suggest that the Dewulu pluton formed in an active continental margin in response to the local extension triggered by the

  3. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W. Y.; Wang, H. L.; Wang, W.; Wang, R. B.

    2016-09-01

    Permeability is an important factor for seepage analysis of rock material, and a key factor in ensuring the safety of underground works. In this study, the permeability evolution of granite gneiss during triaxial creep tests was investigated. In the context of an underground oil storage cavern in China, a series of hydro-mechanical coupling creep tests were conducted on rock cores of granite gneiss at three different pore pressures to reveal the effect of pore pressure on the permeability evolution and to investigate the correlation between the permeability and volumetric strain during the creep process. During the creep tests, the permeability decreases in the initial loading phase. At all deviatoric stress levels, the permeability remains stable in the steady creep stage and increases rapidly in the accelerated creep stage. Based on the test data, the initial permeability, steady permeability and peak permeability at various stress levels are defined. The effect of pore pressure on the permeability is captured by a linear model. In addition, the relationship between permeability and volumetric strain can be described as a process divided into three phases, with different functions in each phase.

  4. Desorption of cesium from granite under various aqueous conditions.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Wei, Yuan-Yaw; Teng, Shi-Ping

    2010-12-01

    In this work the desorption of cesium ions from crushed granite in synthetic groundwater (GW) and seawater (SW) was investigated. Results were compared with those obtained in deionized water (DW) and in two kinds of extraction solutions, namely: MgCl(2) and NaOAc (sodium acetate). In general, the desorption rate of Cs from crushed granite increased proportionally with initial Cs loadings. Also, amounts of desorbed Cs ions followed the tendency in the order SW>GW>NaOAc approximately equal MgCl(2)>DW solutions. This indicated that the utilization of extraction reagents for ion exchange will underestimate the Cs desorption behavior. Fitting these experimental data by Langmuir model showed that these extraction reagents have reduced Cs uptake by more than 90%, while only less than 1% of adsorbed Cs ions are still observed in GW and SW solutions in comparison to those in DW. Further SEM/EDS mapping studies clearly demonstrate that these remaining adsorbed Cs ions are at the fracture areas of biotite.

  5. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  6. Mineralogy maketh mountains: Granitic landscapes shaped by dissolution

    NASA Astrophysics Data System (ADS)

    Eggleton, Richard A.

    2017-05-01

    In tectonically quiet regions, the shape of the landscape is controlled by the erosion resistance of the rocks. Erosion largely depends on the release of particles from the weathering rock, which in turn requires a degree of dissolution of the more soluble grains. The rate of dissolution of the common rock forming minerals allows the construction of a numerical Rock Weatherability Scale (RWS) based on the rock's modal mineralogical analysis. Applied regionally to three granitic landscape regions of the Bega Valley of southern New South Wales, the Tate Batholith and Featherbed Volcanics of north Queensland, and granitoids in the Beaufort region of Victoria, the mean elevation of the larger plutons in each region correlates highly (r = 0.83-0.93) with their RWS. Variation in composition within a pluton also shows there is a clear connection between changes in RWS and relief within the pluton. From these results it is apparent that the landscape of such granitic terrains is determined very largely by mineral dissolution rates, with plagioclase composition and content being a major factor.

  7. Autoradiographic study of actinide sorption on climax stock granite

    SciTech Connect

    Beall, G.W.; O'Kelley, G.D.; Allard, B.

    1980-06-01

    An autoradiographic technique that employed an arrangement for placing in firm contact Polaroid sheet film, a scintillator screen, and the radioactive face of a specimen was applied to a study of the sorption of americium, neptunium, plutonium, and uranium on Climax Stock granite under varying conditions of pH and Eh. Qualitative agreement was found between the sorption of americium on crushed, pure minerals and on the minerals comprising the specimen of Climax Stock granite. The observations also supported a mechanism for reduction of Np(V) to Np(IV) and Pu(VI) to Pu(IV) by Fe(II)-containing minerals. There was no evidence for reduction of U(VI) by the Fe(II)-containing minerals, although the uranium, assumed to be present as UO/sub 2//sup 2 +/, appeared to be the only actinide species to exhibit sorption by a simple, cation-exchange mechanism at particular mineral sites. Some implications of these results for nuclear waste isolation are discussed briefly.

  8. Potential source for crushed granite aggregate in Heard County, Georgia

    USGS Publications Warehouse

    Atkins, R.L.; Higgins, Michael W.; Dickerson, Robert P.

    1981-01-01

    The production of crushed stone suitable for highway and general construction is a major industry in Georgia. The state ranks eighth in the nation in overall crushed stone production, and first in crushed granite production. Crushed stone production in Georgia in 1979 was 40,902,000 short tons worth $154,021,000 (D.H. White, Jr., US Bureau of Mines, personal commun., Aug. 1980). More than 3,000 people were employed by the crushed stone industry in Georgia during that year.Presently, the only active quarry in Heard County is located in an amphibolite. Amphibolite is not a conventional aggregate. It has a high specific gravity, a tendency to make elongate fragments, and varies considerably in abrasion tests.Because the nearest approved aggregate quarry is more than 25 miles from Franklin, the county seat, the purpose of this brief report is to describe a body of granite gneiss that may provide suitable aggregate for the crushed stone industry, potential quarry operators and various agencies in Heard County. This report is part of a project to study the geology and mineral resources of the Piedmont south of the Brevard Zone, and is not intended to supplant detailed site investigations by industry or consultants. The report is a joint effort between the Georgia Geologic Survey and the Office of Materials and Research of the Georgia Department of Transportation.

  9. A petrologic assessment of internal zonation in granitic pegmatites

    NASA Astrophysics Data System (ADS)

    London, David

    2014-01-01

    Cameron et al. (1949) devised the nomenclature and delineated the patterns of internal zonation within granitic pegmatites that are in use today. Zonation in pegmatites is manifested both in mineralogy and in fabric (mineral habits and rock texture). Although internal zonation is a conspicuous and distinctive attribute of pegmatites, there has been no thorough effort to explain that mineralogical and textural evolution in relation to the zoning sequence presented by Cameron et al. (1949), or in terms of the comprehensive petrogenesis of pegmatite bodies (pressure, temperature, and whole-rock composition). This overview of internal zonation within granitic pegmatites consists of four principal parts: (1) a historic review of the subject, (2) a summary of the current understanding of the pegmatite-forming environment, (3) the processes that determine mineralogical and textural zonation in pegmatites, and (4) the applications of those processes to each of the major zones of pegmatites. Based on the concepts presented in London (2008), the fundamental determinates of the internal evolution of pegmatite zones are: (1) the bulk composition of melt, (2) the magnitude of liquidus undercooling prior to the onset of crystallization, (3) subsolidus isothermal fractional crystallization, by which eutectic or minimum melts fractionate by sequential, non-eutectic crystallization, (4) constitutional zone refining via the creation of a boundary layer liquid, chemically distinct from but continuous with the bulk melt at the crystallization front, and (5) far-field chemical diffusion, the long-range and coordinated diffusion of ions, particularly of alkalis and alkaline earths, through melt.

  10. Petrogenesis of Oxidized Arfvedsonite Granite Gneiss from Dimra Pahar, Hazaribagh, Eastern India: Constraints from Mineral Chemistry and Trace Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Basak, Ankita; Goswami, Bapi

    2017-04-01

    The arfvedsonite granite gneiss of Dimra Pahar occurs along the North Purulia Shear Zone (NPSZ) which pivots the Proterozoic Chotannagpur Gneissic Complex (CGC), Eastern India. Although minerals like arfvedsonite and aegirine depict the peralkaline nature of the pluton, the geochemistry of the rock reflects its composition varying from peralkaline to mildly peraluminous. K-feldspar, quartz, arfvedsonite, albite with accessory aegirine, titaniferous iron oxides and zircon form the dominant mineralogy of this alkali feldspar granite (IUGS, 2000) gneiss. The zircon saturation temperature corresponds to 747oC-1066oC. The granitic magma contains low water content evidenced by the absence of any pegmatite associated with this pluton. Geochemically these granites are classified as ferroan and alkalic (cf. Frost et al., 2001). These highly evolved granites possess enrichment of SiO2, Na2O + K2O, FeO(t)/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce and rare earth elements (REE) with low abundance of CaO, MgO, Ba and Sr which characterize their A-type nature while standard discrimination diagrams ( cf. Eby, 1992; Grebennikov, 2014) help to further discriminate them as A1 type. Tectonic discriminations diagrams (Pearce et al., 1984; Maniar and Piccoli, 1989; Batchelor and Bowden, 1985) constrain the tectonic setting of the magma to be anorogenic, within plate, rift-related one. The REE compositions show moderately fractionated patterns with (La/Yb)N 2.57-10.5 and Eu/Eu* 0.16-0.70. Multielement spider diagram and various trace element ratio together with oxidized nature (ΔNNO: +2) of these granites further suggest that these have been derived from OIB-type parental magma. The peralkaline nature of the granite and its lack of subduction- related geochemical features are consistent with an origin in a zone of regional extension. The extremely high Rb/Sr ratios combined with the extreme Sr, Ba, P, Ti and Eu depletions clearly indicate that these A-type granites were highly evolved and require

  11. IRETHERM: Magnetotelluric studies of Irish radiothermal granites and their geothermal energy potential

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Jones, A. G.; Muller, M. R.; Feely, M.

    2013-12-01

    The IRETHERM project seeks to develop a strategic understanding of Ireland's deep geothermal energy potential through integrated modeling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), heat-flow (HF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is of key importance in assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Leinster granite, the Galway granite and the buried Kentstown granite. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of an early 1980's EU-funded geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite. In the Galway granite batholith, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Ros a Mhil borehole. The lower heat-flow encountered at the Ros a Mhil borehole suggests that the associated high heat production does not extend to great depth. The buried Kentstown granite has associated with it a significant negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 485 m. Heat production has been measured at 2.4 μWm-3 in core samples taken from the weathered top 30m of the granite. The core of this study consists of an ambitious program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, extending over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite extend to depths of 2-5 km. Over the Galway granite, MT and AMT data have been collected at a total

  12. Visualization of microcrack anisotropy in granite affected by afault zone, using confocal laser scanning microscope

    SciTech Connect

    Onishi, Celia T.; Shimizu, Ichiko

    2004-01-02

    Brittle deformation in granite can generate a fracture system with different patterns. Detailed fracture analyses at both macroscopic and microscopic scales, together with physical property data from a drill-core, are used to classify the effects of reverse fault deformation in four domains: (1) undeformed granite, (2) fractured granite with cataclastic seams, (3) fractured granite from the damage zone, and (4) foliated cataclasite from the core of the fault. Intact samples from two orthogonal directions, horizontal (H) and vertical (V), from the four domains indicate a developing fracture anisotropy toward the fault, which is highly developed in the damage zone. As a specific illustration of this phenomenon, resin impregnation, using a confocal laser scanning microscope (CLSM) technique is applied to visualize the fracture anisotropy developed in the Toki Granite, Japan. As a result, microcrack networks have been observed to develop in H sections and elongate open cracks in V sections, suggesting that flow pathways can be determined by deformation.

  13. The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)

    NASA Astrophysics Data System (ADS)

    Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.

    2003-04-01

    The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic

  14. Mafic microgranular enclaves (MMEs) in amphibole-bearing granites of the Bintang batholith, Main Range granite province: Evidence for a meta-igneous basement in Western Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Quek, Long Xiang; Ghani, Azman A.; Chung, Sun-Lin; Li, Shan; Lai, Yu-Ming; Saidin, Mokhtar; Amir Hassan, Meor H.; Muhammad Ali, Muhammad Afiq; Badruldin, Muhammad Hafifi; Abu Bakar, Ahmad Farid

    2017-08-01

    Mafic microgranular enclaves (MMEs) with varying sizes are a common occurrence in porphyritic amphibole-bearing granite of the Bintang batholith, which is part of the Main Range granite province. The MMEs of the amphibole-bearing granite are significant as they are related to the I-type granitoids within the Main Range granite province. Petrographic observations indicate the MMEs are mantled with coarse mafic crystals on the rim and contain similar minerals to the host (biotite + plagioclase + K-feldspar + pyroxene + amphibole), but in different proportions. Geochemical analyses indicate the MMEs are shoshonitic with mg# comparable to the granite host. Substantial similarities exist between the MMEs and granite with regards to the normalized rare earth element patterns and trace elements variation diagrams. The MMEs and granite are not completely coeval as the MME zircon U-Pb age (224.3 ± 1.2 Ma) is slightly older than its granite host zircon U-Pb age (216.2 ± 1.0 Ma). The age difference is also observed from the unusual 500 m-long Tiak MME and another amphibole-bearing granite sample from the south of the pluton, which yield 221.8 ± 1.1 Ma and 217.4 ± 1.0 Ma respectively. The oldest inherited zircons found in the MME and granite are 2.0 Ga and 1.3 Ga respectively, while the oldest xenocrystic zircons found in the MME and granite are 2.5 Ga and 1.5 Ga respectively. Identical negative εHf(t) values from zircon U-Pb and Lu-Hf analysis for a MME-granite pair indicates the rocks were generated from a similar, ancient source in the basement. Combining the results, we suggest that incongruent melting of an ancient protolith played an important part in the evolution of the MMEs and granite and the MMEs characteristics are best explained as restite. The zircon Hf model age (two-stage) and the I-type peritectic and restitic mineral assemblages in the MMEs further describe the protolith as Early Proterozoic-Late Archean (≈2.5 Ga) meta-igneous rock. This shows the

  15. Mobility of heavy metals through granitic soils using mini column infiltration test

    NASA Astrophysics Data System (ADS)

    Zarime, Nur'Aishah; Yaacob, W. Z. W.

    2014-09-01

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%-63% and 46%-54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50-2.59 and 2.45-2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35-5.85 for BGR and pH 5.32-5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%-0.34% and 0.39%- 0.50% respectively for organic matter test, 17.96 m2/g-21.93 m2/g and 25.76 m2/g-26.83 m2/g respectively for SSA test and 0.79 meq/100g-1.35 meq/100g and 1.31 meq/100g-1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes.

  16. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these

  17. Mineralogical Control on Microbial Diversity in a Weathered Granite?

    NASA Astrophysics Data System (ADS)

    Gleeson, D.; Clipson, N.; McDermott, F.

    2003-12-01

    Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that

  18. 76 FR 60493 - Settlement Agreements for Recovery of Past Response Costs; Granite Timber Post and Pole Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... AGENCY Settlement Agreements for Recovery of Past Response Costs; Granite Timber Post and Pole Site, Philipsburg, Granite County, MT AGENCY: Environmental Protection Agency (EPA). ACTION: Notice and Request for... Mark Metesh (Settling Party), regarding the Granite Timber Site (Site), located 5 miles south...

  19. Granite emplacement at the termination of a major Variscan transcurrent shear zone: The late collisional Viseu batholith

    NASA Astrophysics Data System (ADS)

    Valle Aguado, B.; Azevedo, M. R.; Nolan, J.; Medina, J.; Costa, M. M.; Corfu, F.; Martínez Catalán, J. R.

    2017-05-01

    A major event of plutonic activity occurred all across the Central Iberian Zone of the Iberian Variscan Belt at the end of Late Paleozoic Variscan collisional tectonism. The present study focuses on the western sector of the Viseu late-post-tectonic batholith (central Portugal), a large composite intrusion comprising three main plutonic units: (a) small bodies of mafic to intermediate composition preferentially concentrated along the northern border, (b) a wide ring of coarse porphyritic biotite monzogranite (Cota-Viseu granite) and (c) a more evolved medium porphyritic, biotite-muscovite monzogranite occupying the central part of the intrusion (Alcafache granite). The compositional zonation pattern of the whole batholith and the complex mixing/mingling relationships between the voluminous Cota-Viseu porphyritic granite and the mafic/intermediate rocks suggest that these melts were withdrawn from a lower crustal source region undergoing partial melting, invasion by mantle-derived mafic magmas, mixing and fractional crystallization. New CA-ID-TIMS U-Pb zircon ages indicate that pluton assembly via multipulse injection of successive magma batches took place between 299.4 ± 0.4 Ma and 296.0 ± 0.6 Ma. A detailed anisotropy of magnetic susceptibility (AMS) survey suggests that pluton emplacement occurred at the extensional termination of a regional-scale, ENE-WSW trending, sinistral D3 shear zone - the Juzbado-Penalva Shear Zone (JPSZ). A dilational opening model involving the development of ;en-échelon; tensional gashes at the extensional termination of the fault, followed by progressive opening and widening of north-south trending fractures, provided the space into which the successive magma batches arriving from below were emplaced. Vertical inflation was accommodated by depression of the pluton floor. The proposed model is consistent with the asymmetric wedge-shaped geometry of the intrusion (steep root zone on the northern side, discordant subvertical walls and

  20. Petrology and physical properties of granites from the Illinois Deep Hole in Stephenson County

    NASA Astrophysics Data System (ADS)

    Lidiak, Edward G.; Denison, Roger E.

    1983-09-01

    Two main basement granitoid types have been identified in core samples from the Illinois deep hole project. The main variety is a medium- to coarse-grained porphyritic biotite granite with phenocrysts of microcline perthite and less commonly quartz and sodic plagioclase in a matrix of these minerals and biotite, muscovite, fluorite, magnetite, ilmenite, zircon, hornblende, apatite, sphene, monazite, rutile, and clinopyroxene (relict). The texture is typically hypidiomorphic gradational to recrystallized xenomorphic. The second main granitoid, which occurs in the upper part of hole UPH 3, is a fine-grained granoblastic to lepidoblastic gneissic granite that is distinct from and possibly older than the nonfoliated granite. The textures of both rocks have been modified by a mild cataclastic shearing that has partially recrystallized the more susceptible mineral phases. Thin fracture planes that crosscut the earlier foliations are common. Microprobe analyses indicate that biotites in the gneissic granite are chemically distinct from those in the granite. Biotites in the gneissic granite have higher Fe/Fe + Mg ratio, FeO, and Al2O3 and lower MgO and SiO2. Reflection microscopy and microprobe analyses indicate that the oxide phases in the two rocks are also different. The oxides in the granite are magnetite and ilmenite, whereas hematite and pseudobrookite occur in the gneissic granite. The biotite and Fe-Ti oxide data represent additional evidence in support of the fact that the granite and gneissic granite are distinct rocks and probably not part of a continuous comagmatic sequence. Major element chemical analyses indicate that the granites have affinities to anorogenic rapakivi granites. The granites in the deep holes are high in SiO2, alkalis (Na2O+K2O), F, FeO/MgO; low in Al2O3, FeO, Fe2O3, TiO2, MnO, and P2O5; and slightly low in MgO and CaO. Magnetic susceptibility and density measurements correlate generally well with magnetic susceptibility and density logs

  1. Orphan strontium-87 in abyssal peridotites: daddy was a granite.

    PubMed

    Snow, J E; Hart, S R; Dick, H J

    1993-12-17

    The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  2. 50. The apartment building on the left (164166 West Granite) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. The apartment building on the left (164-166 West Granite) was built about 1885-1886, and was used as a combination of residence and rooming house. It is one of the few remaining wood-frame structures dating from the beginning of Butte's economic and building development. Modifications, both interior and exterior, have been minimal, and the historic integrity of the structure has been retained. The Courthouse Grocery on the right (ca. 1887), is another early wood-frame building, and was also originally used as a residence and rooming house. It was modified in the early 20th century to accomodate commercial use on the ground floor, but the historic fabric of the structure is largely intact. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  3. New observations on the quartz monzodiorite-granite suite

    NASA Astrophysics Data System (ADS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  4. Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite

    NASA Astrophysics Data System (ADS)

    Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.

    1993-12-01

    The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  5. Numerical modeling of fish passage at the Lower Granite dam

    NASA Astrophysics Data System (ADS)

    Weber, Larry; Li, Songheng; Hansen, Ken

    2005-11-01

    Being the first collector dam on the Snake River, the Lower Granite Dam is important to juvenile fish downstream passage. To improve the performance of the Behavioral-Guidance-Structure(BGS), Surface-Bypass-Collector(SBC), and Removable-Spillway-Weir (RSW) on fish passage, numerical simulations have been conducted using the 3D CFD model developed at IIHR-Hydroscience & Engineering. The code solves the RANS equations with two-equation turbulence models. Multi-block structured grids were generated. The model was first compared in the total force and distribution on the BGS wall with the prototype data and the comparison gave a satisfactory agreement. Then runs with combinations of the BGS, SBC, RSW, trash boom, and loading of the units and spillway were conducted, and the primary flow patterns, pressure distribution on the BGS wall, velocity, and acceleration status of flow approaching the RSW were analyzed and compared.

  6. Thermal cracking of Westerly granite: from physical to numerical experiment

    NASA Astrophysics Data System (ADS)

    Schrank, Christoph; Fusseis, Florian; Karrech, Ali; Revets, Stefan; Regenauer-Lieb, Klaus; Liu, Jie

    2010-05-01

    Laboratory experiments provide some of the most comprehensive constraints on rock properties such as permeability, porosity, and rheology. However, in most cases such experiments are performed on length and time scales that are much smaller than geological scales. Upscaling, physically sound methods for extrapolation, of the obtained constitutive laws is therefore a matter of hot debate. Here, we present a numerical approach for the upscaling of the porosity evolution due to thermal cracking of Westerly granite. This project draws upon actual laboratory step-heating experiments of Westerly granite observed with high-resolution 3D synchrotron tomography (see Fusseis and others:" Formation of secondary porosity in 4D Synchrotron X-ray tomography experiments"). First, we use tomography time-series data to calibrate numerical simulations at the laboratory scale. In effect, the real-world sample is discretised and "heated" numerically. The software is an implicit Lagrangian finite-element code (Abaqus Standard) using elastoplastic rheologies in coupled temperature-displacement analysis. To minimize computational costs, indirect feedbacks, namely temperature-dependent functions of density, coefficient of thermal expansion, specific heat capacity, Poisson's ratio, and Young's modulus, are pre-calculated with PerpleX (Connolly 2005) and implemented as table input. Direct feedbacks are computed in the framework of thermodynamic equations and solved for explicitly. Next, we repeat the above numerical experiments for simplified stochastic models of the actual sample at the laboratory scale. Finally, we generate stochastic numerical models on increasing scales to determine the scale at which rock properties remain constant regardless of the specific microstructure. This empirical homogenization allows the derivation of constitutive laws which can be employed for large-scale simulations. In this contribution, we will briefly outline this workflow and present first results for

  7. Laboratory Simulation of Flow through Single Fractured Granite

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Singh, D. N.; Ranjith, P. G.

    2015-05-01

    Laboratory simulation on fluid flow through fractured rock is important in addressing the seepage/fluid-in-rush related problems that occur during the execution of any civil or geological engineering projects. To understand the mechanics and transport properties of fluid through a fractured rock in detail and to quantify the sources of non-linearity in the discharge and base pressure relationship, fluid flow experiments were carried out on a cylindrical sample of granite containing a `single rough walled fracture'. These experiments were performed under varied conditions of confining pressures, σ 3 (5-40 MPa), which can simulate the condition occurring about 1,000 m below in the earth crust, with elevated base pressure, b p (up to 25 MPa) and by changing fracture roughness. The details of the methodologies involved and the observations are discussed here. The obtained results indicate that most of the data in the Q verses b p plot, fall on the straight line and the flow through the single fracture in granite obeys Darcy's law or the well-known "cubic law" even at high value of b p (=4 MPa) and σ 3 (=5 MPa) combination. The Reynolds number is quite sensitive to the b p, σ 3 and fracture roughness, and there is a critical b p, beyond which transition in flow occurs from laminar to turbulent. It is believed that such studies will be quite useful in identifying the limits of applicability of well know `cubic law', which is required for precise calculation of discharge and/or aperture in any practical issues and in further improving theoretical/numerical models associated with fluid flow through a single fracture.

  8. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal

    NASA Astrophysics Data System (ADS)

    Fernandes, Susana; Gomes, Maria; Teixeira, Rui; Corfu, Fernando

    2013-04-01

    In the Central Iberian Zone (CIZ) extensive crustal recycling occurred during the post-thickening extension stage of the Variscan orogeny (~330-290 Ma). After the ductile deformation phase D3 (~320-300 Ma), characterized by the intrusion of large volumes of highly peraluminous granitic magmas, rapid and drastic tectonic changes at about 300 Ma gave rise to the brittle phase of deformation D4 that controlled the emplacement of Fe-K subalkaline granites (296-290 Ma; Dias et al. 1998). The Lamas de Olo Pluton (LOP) is controlled by NE-SW and NW-SE fracture systems, probably related to the Régua-Verin fault zone (Pereira, 1989). The LOP is a medium to coarse-grained, porphyritic biotite granite, accompanied by medium- to fine grained, porphyritic biotite granite (Alto dos Cabeços- AC) and a more leucocratic, fine-grained, slightly porphyritic biotite-muscovite granite (Barragens- BA). The contacts between LO and AC are generally diffuse, whereas those to BA are sharp. In fact, the BA granite can occur in dykes and sills cutting LO and AC. Microgranular enclaves and xenoliths are very rare. The LOP intrudes the Douro Group, presumably of Precambrian to Cambrian age, and two-mica granites from the Vila Real composite massif. The LOP granites consist of quartz, microcline, plagioclase, biotite, zircon, titanite, tourmaline apatite, fluorite, ilmenite, magnetite, and rutile, with muscovite in BA granite and rare allanite in the LO and AC granites. The plagioclase composition is of oligoclase (An12) - andesine (An35) for LO granite, albite (An9) - andesine (An30) for CA granite and albite (An5) - oligoclase (An20) for BA granite. There are decreases in: a) anorthite content from phenocryst to matrix plagioclase; b) Ba content from phenocryst to matrix microcline in all granites. The Fe2+ biotite has a composition similar to that of biotite from calc-alkaline to sub-alkaline rock series. The LO and AC granites are meta- to peraluminous with ASI variable between 1.05 and 1

  9. Major magmatic events in Mt Meredith, Prince Charles Mountains: First evidence for early Palaeozoic syntectonic granites

    USGS Publications Warehouse

    Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.

    2007-01-01

    Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.

  10. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Müller, Axel; Leichmann, Jaromír; Gabašová, Ananda

    2005-03-01

    The Podlesí granite stock (Czech Republic) is a fractionated, peraluminous, F-, Li- and P-rich, and Sn, W, Nb, Ta-bearing rare-metal granite system. Its magmatic evolution involved processes typical of intrusions related to porphyry type deposits (explosive breccia, comb layers), rare-metal granites (stockscheider), and rare metal pegmatites (extreme F-P-Li enrichment, Nb-Ta-Sn minerals, layering). Geological, textural and mineralogical data suggest that the Podlesí granites evolved from fractionated granitic melt progressively enriched in H 2O, F, P, Li, etc. Quartz, K-feldspar, Fe-Li mica and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. Changes in chemical composition between individual crystal zones and/or populations provide evidence of chemical evolution of the melt. Variations in rock textures mirror changes in the pressure and temperature conditions of crystallization. Equilibrium crystallization was interrupted several times by opening of the system and the consequent adiabatic decrease of pressure and temperature resulted in episodes of nonequilibrium crystallization. The Podlesí granites demonstrate that adiabatic fluctuation of pressure ("swinging eutectic") and boundary-layer crystallization of undercooled melt can explain magmatic layering and unidirectional solidification textures (USTs) in highly fractionated granites.

  11. Pliocene obducted, rotated and migrated ultramafic rocks and obduction-induced anatectic granite, SW Seram and Ambon, Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Linthout, Kees; Helmers, Hendrik

    Geochemistry, petrography and thermobarometry of the ultramafic and associated rocks of SW Seram and Ambon indicate that they were obducted as weakly depleted oceanic lithosphere which was formed about 10 Ma prior to obduction. Occurrences of cordierite-bearing granite are closely associated with the ultramafic rocks. Petrography and geochemical analysis based on major, RE and other trace elements, indicate that the granite is of the S-type, containing a significant restite component; a VAG signal is interpreted as inherited from the partly melted and included Palaeozoic metasediments. The granite magma was formed as a consequence of the obduction of very hot mantle peridotite inflicting high-grade metamorphism and partial anatexis on the Palaeozoic continental substratum. The oldest age in the literature for cordierite-bearing dacite, connected to this partial anatexis, sets the minimum age of the obduction event at 4.4 Ma. The obduction took place at the eastern end of the Banda Arc, near the NE margin of the Weber Deep, where SW Seram must have been at that time. The ophiolite as part of the Buru-Seram Microplate, rotated and migrated about 400 km westward to its present position. Since the Early Pliocene, the rate of upheaval in Kaibobo (SW Seram) has averaged about 260 cm Ka -1, but may well have been over 1000 cm Ka -1 in the early period immediately after the formation of the granite melt. As the average uplift rate over the same period for Central Seram was previously estimated at 110 cm Ka -1, strongly differential upheaval prevailed in Seram in the Early Pliocene. It is postulated that young oceanic lithosphere has been created by transtensional pull-apart in the easternmost part of the Banda Sea Plate due to oblique convergence of the northward moving Australian Plate, of which fragments gradually became incorporated in the regime of the westbound SW Pacific Plates. Obduction was effected during the strong Pliocene rotation of the Buru-Seram Microplate

  12. Cambro-Ordovician Granites in the Araçuaí Belt, in Brazil: snapshots from a late orogenic collapse

    NASA Astrophysics Data System (ADS)

    De Campos, Cristina P.; Mendes, Júlio Cesar; de Medeiros, Silvia Regina; Ludka, Isabel P.

    2014-05-01

    Along the Brazilian Coast, surrounding the São Francisco Craton and adjacent mobile belts, deep segments of a Neoproterozoic orogen (Araçuaí-West Congo) generated over 120 Ma of successive magmatic episodes of granitic magmatism. The c.630-585 Ma calc-alkaline magmatic arc consists of metatonalite to metagranodiorite, with metadioritic to noritic facies and enclaves. During the syn-collisional and crustal thickening stage (c. 585 to 560 Ma) S-type metagranites have been built by dehydration melting of a diverse package of sediments. Around 545-525 Ma late orogenic crustal remelting formed mostly non-foliated garnet-cordierite leucogranites. In the post-orogenic stage (c. 510-480 Ma) inversely zoned calc-alkaline to alkaline plutons intruded previous units. This work will focus on the youngest post-orogenic magmatism. It will present the state of the art by reviewing structural measurements, detailed mapping of flow patterns and additional geochemical and isotopic data. The architecture of around 10 plutons, ranging from c. 20 to 200 km2 in surface area, unravels deep mushroom- to funnel-like magma chambers and/or conduits. Available data point towards different compositional domains, which are interfingered in complex concentric layers, so that, each pluton depicts a unique internal flow pattern. In the silica-richer structures concentric fragmented or folded layers of granite, in a hybrid K-gabbroic/dioritic matrix, contrast with predominantly homogeneous K-basaltic to gabbroic regions. These may be separated by magmatic shear zones where mixing is enhanced, also resulting in hybrid compositions. Sharp and pillow-like contacts between granitic and K-basaltic rocks locally depict a frozen-in situation of different intrusive episodes. In the silica-poorer plutonic bodies gradational contacts are more frequent and may be the result of convection enhanced diffusion. For all plutons, however, mostly sub-vertical internal contacts between most- and least

  13. Origin of reverse compositional and textural zoning in granite plutons by localized thermal overturn of stratified magma chambers

    NASA Astrophysics Data System (ADS)

    Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška

    2017-04-01

    This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded

  14. New U/Pb ages from granite and granite gneiss in the Ruby geanticline and southern Brooks Range, Alaska ( USA).

    USGS Publications Warehouse

    Patton, W.W.; Stern, T.W.; Arth, Joseph G.; Carlson, C.

    1987-01-01

    New U/Pb zircon ages from the Ray Mountains of central Alaska clarify the plutonic history of the Ruby geanticline and support earlier suggestions that the Ruby geanticline and S Brooks Range were once parts of the same tectonostratigraphic terrane. U/Pb zircon ages of 109 to 112 Ma from the Ray Mountains pluton confirm previously reported mid-Cretaceous K/Ar ages and rule out the possibility that the earliest intrusive phase of the pluton is older than mid-Cretaceous K/Ar ages and rule out the possibility that the earliest intrusive phase of the pluton is older than mid- Cretaceous. New U/Pb zircon ages from 4 granite gneiss samples in the Ray Mountains indicate a Devonian protolith age of 390+ or -12 Ma and suggest that the Ruby geanticline, like the S Brooks Range, underwent a major plutonic event in mid-Paleozoic time.-Authors

  15. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    PubMed Central

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  16. Contribution of Portuguese two-mica granites to stone built heritage

    NASA Astrophysics Data System (ADS)

    Almeida, Angela; Begonha, Arlindo

    2013-04-01

    The present study deals with the importance of the application of natural stone in monuments in urban setting, both as the main building material during the historical evolution of a city and as a means to increase the public awareness of the social role of geological resources of a specific region. The City of Oporto, World Heritage of the Humanity , has been selected to illustrate the use of the local granite since ancient times to the present day, a two-mica peraluminous granite ,classified as syn-tectonic relatively to the third tectonic deformation phase of the Hercynian orogeny, included in an expressive group that occurs extensively in northern Portugal . The Oporto granite has been the object of several geochemical, structural and geotechnical approaches. Despite the urban development, outcrops of this granite can be observed in different areas of the city, side by side with the urban constructions, and particularly in the imposing and intensely fractured escarpments carved by the river Douro. Oporto monumental heritage goes back to Roman occupation and the profile has been developed by the construction of granite buildings, following history and the social evolution, of an impressive grey architecture according to different styles of granite work that characterize the city in all its aspects, namely the old city wall, the medieval and baroque churches, the neoclassic houses but also the small humble habitations. The Oporto granite is always affected by weathering processes and the buildings exhibit various aspects of stone decay such as granular desintegration, plates, flakes, black crusts, thin black layers, efflorescences and biological colonization. The description of selected sites within the historical centre , where it is possible to recognize the importance of the granite in the character of the city, aims to call the attention to the inextricable role of geology in built heritage and in the culture, as well as to diagnose the deterioration

  17. Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism

    NASA Astrophysics Data System (ADS)

    Haapala, Ilmari; Rämö, O. Tapani; Frindt, Stephen

    2005-03-01

    This paper compares the 1.67-1.47 Ga rapakivi granites of Finland and vicinity to the 1.70-1.68 Ga rapakivi granites of the Beijing area in China, the anorogenic ˜130 Ma granites of western Namibia, and the 20-15 Ma granites of the Colorado River extensional corridor in the Basin and Range Province of southern Nevada. In Finland and China, the tectonic setting was incipient, aborted rifting of Paleoproterozoic or Archean continental crust, in Namibia it was continental rifting and mantle plume activity that led to the opening of southern Atlantic at ˜130 Ma. The 20-15 Ma granites of southern Nevada were related to rifting that followed the Triassic-Paleogene subduction of the Farallon plate beneath the southwestern United States. In all cases, extension-related magmatism was bimodal and accompanied by swarms of diabase and rhyolite-quartz latite dikes. Rapakivi texture with plagioclase-mantled alkali feldspar megacrysts occurs in varying amounts in the granites, and the latest intrusive phases are commonly topaz-bearing granites or rhyolites that may host tin, tungsten, and beryllium mineralization. The granites are typically ferroan alkali-calcic metaluminous to slightly peraluminous rocks with A-type and within-plate geochemical and mineralogical characteristics. Isotope studies (Nd, Sr) suggest dominant crustal sources for the granites. The preferred genetic model is magmatic underplating involving dehydration melting of intermediate-felsic deep crust. Juvenile mafic magma was incorporated either via magma mingling and mixing, or by remelting of newly hybridized lower crust. In Namibia, partial melting of subcontinental lithospheric mantle was caused by the Tristan mantle plume, in the other cases the origin of the mantle magmatism is controversial. For the Fennoscandian suites, extensive long-time mantle upwelling associated with periodic, migrating melting of the subcontinental lithospheric mantle, governed by heat flow and deep crustal structures, is

  18. 3D density modelling of Gemeric granites of the Western Carpathians

    NASA Astrophysics Data System (ADS)

    Šefara, Ján; Bielik, Miroslav; Vozár, Jozef; Katona, Martin; Szalaiová, Viktória; Vozárová, Anna; Šimonová, Barbora; Pánisová, Jaroslava; Schmidt, Sabine; Götze, Hans-Jürgen

    2017-06-01

    The position of the Gemeric Superunit within the Western Carpathians is unique due to the occurrence of the Lower Palaeozoic basement rocks together with the autochthonous Upper Palaeozoic cover. The Gemeric granites play one of the most important roles in the framework of the tectonic evolution of this mountain range. They can be observed in several small intrusions outcropping in the western and south-eastern parts of the Gemeric Superunit. Moreover, these granites are particularly interesting in terms of their mineralogy, petrology and ages. The comprehensive geological and geophysical research of the Gemeric granites can help us to better understand structures and tectonic evolution of the Western Carpathians. Therefore, a new and original 3D density model of the Gemeric granites was created by using the interactive geophysical program IGMAS. The results show clearly that the Gemeric granites represent the most significant upper crustal anomalous low-density body in the structure of the Gemeric Superunit. Their average thickness varies in the range of 5-8 km. The upper boundary of the Gemeric granites is much more rugged in comparison with the lower boundary. There are areas, where the granite body outcrops and/or is very close to the surface and places in which its upper boundary is deeper (on average 1 km in the north and 4-5 km in the south). While the depth of the lower boundary varies from 5-7 km in the north to 9-10 km in the south. The northern boundary of the Gemeric granites along the tectonic contact with the Rakovec and Klátov Groups (North Gemeric Units) was interpreted as very steep (almost vertical). The results of the 3D modelling show that the whole structure of the Gemeric Unit, not only the Gemeric granite itself, has an Alpine north-vergent nappe structure. Also, the model suggests that the Silicicum-Turnaicum and Meliaticum nappe units have been overthrusted onto the Golčatov Group.

  19. Study of Magnetic Fabrics and Deformation across Meta-granite along Heping River, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, E. C.; Yu-Kai, L.; Lee, T. Q.; Chou, Y. M.; Chen, C. C.; Chang, P. Y.

    2015-12-01

    Heping area of Hualien in the NE Taiwan is located at the region of subduction flip of oblique convergence between the Philippine Sea and Eurasian Plates. The ductile deformation in the region is consisted of the development of N65E-striking foliation and N60W-trending stretching lineation with top-to-southeastern shear. Distinguished mylonitic gneissosity is observed near the lithology contact between the marble and meta-granite but the flow occurrence of granite is still found in the downstream area of meta-granite core. To investigate the deformation pattern and the development of mylonization of meta-granite, study of magnetic fabrics across the meta-granite body is conducted via anisotropy of magnetic susceptibility (AMS) to evaluate the strain path of gneissosity development. AMS results show that the attitude of magnetic foliation and lineation is consistent with that of genissosity and stretching lineation. From the core to the lithology contact of meta-granite, generally anisotropy is increasing and susceptibility ellipsoids change from prolate to oblate. However due to different shearing on gneissosity, the anisotropy and magnetic ellipsoid vary pretty much even in the same site. Based on current analyses among meta-granitic and mylonitic samples, it suggested that strain path of mylonitization is evolved from prolate shape with low-anisotropy in the meta-granitic core through oblate shape with low-anisotropy in weakly gneissic samples to various ellipsoids from oblate to prolate with high-anisotropy in mylonitic samples. Our findings provide insights into understanding the deformation pattern across the meta-granite body and further establishing the strain path of mylonitic gneissosity development. Further studies of identifying magnetic carrier(s) and domain size to evaluate influences of magnetic minerals to the AMS pattern are needed.

  20. Vapor phase exsolution as a controlling factor in hydrogen isotope variation in granitic rocks: the Notch Peak granitic stock, Utah

    USGS Publications Warehouse

    Nabelek, P.I.; O'Neil, J.R.; Papike, J.J.

    1983-01-01

    The Notch Peak granitic stock, western Utah, is comprised of three concentric sequentially intruded rock types, from granite at the rim, to quartz monzonite I, to quartz monzonite II at the core. The ??18O values of whole rocks vary about an average of 9.4 (SMOW), irrespective of the rock type and position relative to contact, suggesting that the three magmas had the same parent. The whole rock ??D values in the stock range from -100 to -55. ??D values increase toward the cores of both quartz monzonite I and quartz monzonite II, resulting in concentric contours. The ??D contours of quartz monzonite II cross-cut those of quartz monzonite I, suggesting little isotopic interaction between these bodies and the absence of a late pervasive fluid phase. There is a positive correlation between ??D values and water content of the samples, where samples from each body define a distinct field. The positive correlation is explained by isotopic fractionation attendant on vapor exsolution from the crystallizing magma. An observed increase in ??D with the degree of chloritization, a trend opposite to that observed in systems where participation of meteoric water has been demonstrated, is the result of subsolidus interaction with the exsolved fluids. These results show that large variations in the hydrogen isotope ratios of a granitoid can arise by exsolution of a vapor phase from the melt on crystallization. In general, magmas with larger modal amount of primary hydrous phases will tend to have higher ??D values than those with small amounts of hydrous phases. Furthermore, the relatively high ??D values of chlorites at Notch Peak confirm the applicability of classical concepts of closed-system deuteric alteration to some granitoid bodies. Thus, meteoric water interaction need not be always invoked to explain hydrogen isotope variation and deuteric alteration in granitoids. ?? 1983.

  1. Experiments and Simulations of Penetration into Granite by an Aluminum Shaped Charge

    SciTech Connect

    Murphy, M J; Randers-Pehrson, G; Kuklo, R M; Rambur, T A; Switzer, L L; Summes, M A

    2003-07-27

    This paper describes experimental results and numerical simulations of jet penetration into granite from an aluminum lined shaped charge. Several penetration versus standoff experiments were conducted into an in-situ granite formation located in the Climax Ridge region of the Nevada Test Site. Simulations of the jet penetration were modeled with a two dimensional arbitrary lagrange eulerian hydrocode. The effects of variations in the granite flow stress, porosity, and EOS have been evaluated. The work described in this paper is a continuation of our studies on jet penetration and modeling into high strength concrete.

  2. Geothermal potential of Caledonian granites in Ireland and the Isle of Man: Implications from hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; Buhre, Stephan; McConnell, Brian; The Iretherm Team

    2015-04-01

    Ordovician to Devonian (Caledonian) granites are common in the Iapetus Suture Zone (ISZ) in Ireland and Britain. Some of these, e.g., the buried Kentstown and Glenamaddy granites, are situated beneath Upper Palaeozoic sedimentary basins, and hence are potential geothermal targets. Numerous granites of similar age and related origin (Fritschle et al., 2014) are exposed astride the ISZ. They are considered to be analogous to the buried ones, and their geochemical characteristics are used as a proxy for the buried granites as samples from deep drilling are naturally limited. The whole-rock geochemistry of nine granite intrusions (71 samples, including both hydrothermally altered and unaltered samples) varies significantly, but with no obvious geographical control. The granites are S- and I-Types with ASI (Aluminium Saturation Index) between 0.7 - 1.4. Average heat production rates range from 1.4 μW/m³ for the Leinster Granite to 4.9 μW/m³ for the Drogheda Granite (Fritschle et al., 2015). The heat-producing elements uranium (U), thorium (Th) and potassium (K) and calculated heat production rates generally correlate positively with niobium and rubidium concentrations. However, S-Type compared to I-Type granites show elevated abundances in rubidium (>130 ppm) and usually have a lower Th/U ratio. Altered samples tend to have a higher Th/U ratio compared to unaltered ones. Within individual plutons trends of decreasing heat production rates with increasing Th/U ratios were observed. This trend is attributed to the hydrothermal redistribution of the mobile heat-producing element uranium. This is also implied by uranium-enrichment in hydrothermally generated Ca and Si-veinlets. Metasomatic processes such as hydrothermal alteration appear capable of significantly redistributing mobile elements such as uranium. Hence, these processes may act as a major mechanism controlling the granite's heat production budget, often shaping a pluton's geothermal exploitation potential

  3. Peralkaline and peraluminous granites and related mineral deposits of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Elliott, James E.

    1983-01-01

    Existing geochemical and geologic data for many parts of the Arabian Shield were compiled as a basis for evaluating the resource potential of the granites of the Shield. Commodities associated with granites that have potential for economic mineral deposits include tin, tungsten, molybdenum, beryllium, niobium, tantalum, zirconium, uranium, thorium, rare-earth elements, and fluorite. Prospecting methods useful in discriminating those granites having significant economic potential include reconnaissance geologic mapping, petrographic and mineralogic studies, geochemical sampling of rock and wadi sediment, and radiometric surveying.

  4. The possible bearing of the granite of the UPH Deep Drill Holes, northern Illinois, on the origin of Mississippi Valley ore deposits

    NASA Astrophysics Data System (ADS)

    Doe, B. R.; Stuckless, J. S.; Delevaux, M. H.

    1983-09-01

    The Pb-Pb, Th-Pb, and U-Pb systems of whole-rock drill-core samples of the granite of UPH record at least one postcrystallization event. Treatment of the data on a concordia plot indicate the timing of this disturbance was probably 260 ±35 m.y. ago and probably no older than 400 m.y. ago. The upper intercept age on concordia is 1416±20 m.y and the Pb-Pb isochron age for the four least disturbed rocks plus the four potassium feldspars is 1451±19 m.y. These ages are in close agreement with Rb-Sr whole rock and U-Pb zircon ages determined by others and should be the age of granite formation. Considerable Pb loss is indicated for many of the shallower samples that have a more red rather than pink color, probably to a factor of two to three or more as a result of the disturbance, although the granite remains Pb-rich today (40-80 ppm). In some other studies of disturbed U-Th-Pb systems, the radiogenic lead has been taken up by potassium feldspars; however, the Pb for most samples seems to have been lost from the system for the granite of UPH. One sample with an unusually high Pb content of about 195 ppm has the most radiogenic Pb of any sample but `normal' values of Th-U. This sample has obviously gained radiogenic Pb (by more than a factor of four) and confirms that Pb was indeed mobilized in parts of the system. Within the limits of the uncertainties, equal amounts of Pb were lost or gained in both the U-Pb and Th-Pb systems, which is compatible with mobilization being restricted to lead. There is some tendency, however, for the more affected samples to have lower Th-U values and higher U contents. A complex model in which U is gained, Pb lost, and 208Pb lost preferentially to 207Pb and 206Pb cannot be ruled out. U and Th have somewhat different crystallographic locations and decay energies so that 208Pb might be in more accessible sites than the other Pb isotopes. Fission track mapping of the samples indicates most of the U today is located in submicroscopic sites

  5. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Boiron, Marie-Christine; Dewaele, Stijn; Muchez, Philippe

    2016-02-01

    The identification of a magmatic source for granite-associated rare metal (W, Nb, Ta and Sn) mineralisation in metasediment-hosted quartz veins is often obscured by intense fluid-rock interactions which metamorphically overprinted most source signatures in the vein system. In order to address this recurrent metal sourcing problem, we have studied the metasediment-hosted tungsten-bearing quartz veins of the Nyakabingo deposit of the Karagwe-Ankole belt in Central Rwanda. The vein system (992 ± 2 Ma) is spatiotemporal related to the well-characterised B-rich, F-poor G4 leucogranite-pegmatite suite (986 ± 10 Ma to 975 ± 8 Ma) of the Gatumba-Gitarama area which culminated in Nb-Ta-Sn mineralisation. Muscovite in the Nyakabingo veins is significantly enriched in granitophile elements (Rb, Cs, W and Sn) and show alkali metal signatures equivalent to muscovite of less-differentiated pegmatite zones of the Gatumba-Gitarama area. Pegmatitic muscovite records a decrease in W content with increasing differentiation proxies (Rb and Cs), in contrast to the continuous enrichment of other high field strength elements (Nb and Ta) and Sn. This is an indication of a selective redistribution for W by fluid exsolution and fluid fractionation. Primary fluid inclusions in tourmaline of these less-differentiated pegmatites demonstrate the presence of medium to low saline, H2O-NaCl-KCl-MgCl2-complex salt (e.g. Rb, Cs) fluids which started to exsolve at the G4 granite-pegmatite transition stage. Laser ablation inductively coupled plasma mass-spectrometry shows significant tungsten enrichment in these fluid phases (∼5-500 ppm). Fractional crystallisation has been identified previously as the driving mechanism for the transition from G4 granites, less-differentiated biotite, biotite-muscovite towards muscovite pegmatites and eventually columbite-tantalite mineralised pegmatites. The general absence of tungsten mineralisation in this magmatic suite, including the most differentiated

  6. Extreme fractionation in a granite-pegmatite system documented by quartz chemistry: The case study of Tres Arroyos (Central Iberian Zone, Spain)

    NASA Astrophysics Data System (ADS)

    Garate-Olave, I.; Müller, A.; Roda-Robles, E.; Gil-Crespo, P. P.; Pesquera, A.

    2017-08-01

    The Tres Arroyos granite-pegmatite system is located in the SW margin of the Nisa-Alburquerque Variscan batholith. Two granitic facies (monzogranite and marginal leucogranite) and three types of aplite-pegmatite dykes (barren, intermediate and highly evolved Li-rich), have been distinguished in the area, with a zoned distribution from the granite southwards. Trace elements in quartz from the five facies have been analysed by LA-ICP-MS in order to obtain information about the petrogenetic links among the different lithologies of this system, as well as to better understand the regional and individual fractionation processes that led to the distinct rocks. Aluminium, Ti, Li and Ge show continuous trends from the monzogranite, through the marginal granitic facies, the barren and intermediate aplite-pegmatites, up to the most evolved Li-rich dykes. Titanium and Ge contents, respectively, decrease and increase gradually with fractionation. In contrast, Al and Li show a more complex trend, with an initial descending trend to the marginal granitic facies, and then showing the highest Al and Li contents in the quartz from the most fractionated Li-rich aplite-pegmatites. This suggests the influence of different competing factors controlling the incorporation of these trace elements in quartz, such as the chemical composition of the melt, the P and T conditions and the rate of crystallization. Based on the good correlation between Al and Li, the substitution Si4 + ↔ Al3 + + Li+ seems to be the dominant mechanism of Li incorporation into quartz. The negligible amount of other trace elements suggests that the remaining Al was mainly compensated with H+ ions, via the Si4 + ↔ Al3 + + H+ substitution. A continuous fractionation trend from the monzogranite up to the most fractionated aplite-pegmatites is inferred from geochemical modelling by applying the Rayleigh equation for fractional crystallization. Fractionation rates over 50% are needed to obtain the marginal granite

  7. Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: Implications for the origin of Archean granites

    NASA Astrophysics Data System (ADS)

    Feio, G. R. L.; Dall'Agnol, R.

    2012-12-01

    Four Mesoarchean (2.93 to 2.83 Ga) granite units, which encompass the Canaã dos Carajás, Bom Jesus, Cruzadão and Serra Dourada granites, were recognized in the Canaã dos Carajás area of the Archean Carajás Province. The Mesoarchean units are composed dominantly of biotite leucomonzogranites. They are compared with the Neoarchean Planalto suite (2.73 Ga) which encompasses biotite-hornblende monzogranites to syenogranites. The Canaã dos Carajás, Bom Jesus and the variety of the Cruzadão granite with higher (La/Yb)N are geochemically more akin to the calc-alkaline granites, whereas the other varieties of the Cruzadão granite are transitional between calc-alkaline and alkaline granites. The Serra Dourada granite has an ambiguous geochemical character with some features similar to those of calc-alkaline granites and other peraluminous granites. The Planalto granites have ferroan character, are similar geochemically to reduced A-type granites and show a strong geochemical contrast with the Mesoarchean studied granites. The Mesoarchean granites described in the Canaã dos Carajás area are geochemically distinct to those of the Rio Maria domain of the Carajás Province. The Canaã dos Carajás and Bom Jesus granites are similar to the high-Ca granites, whereas the Cruzadão and Serra Dourada are more akin to the low-CaO granites of the Yilgarn craton. The geochemical characteristics of the Mesoarchean studied granites approach those of the biotite granite group of Dharwar but the latter are enriched in HFSE and HREE compared to the Canaã dos Carajás granites. The Neoarchean Planalto suite granite has no counterpart in the Mesoarchean Rio Maria domain of the Carajás Province, neither in the Yilgarn and Dharwar cratons. Geochemical modeling suggests that partial melting of a source similar in composition to an Archean basaltic andesite of the Carajás Province could give origin to the Bom Jesus and Cruzadão granites. In the case of the Bom Jesus granite the

  8. Plutonium partitioning in three-phase systems with water, colloidal particles, and granites: new insights into distribution coefficients.

    PubMed

    Xie, Jinchuan; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei; Zhou, Guoqing

    2014-03-01

    The traditional sorption experiments commonly treated the colloid-associated species of low-solubility contaminants as immobile species resulted from the centrifugation or ultrafiltration, and then solid/liquid distribution coefficients (Ks/d) were determined. This may lead to significantly underestimated mobility of the actinides in subsurface environments. Accordingly, we defined a new distribution coefficient (Ks/d+c) to more adequately describe the mobile characteristics of colloidal species. The results show that under alkaline aqueous conditions the traditional Ks/d was 2-3 orders of magnitude larger than the Ks/d+c involving the colloidal species of (239)Pu. The colloid/liquid distribution coefficients Kc/d≫0 (∼10(6)mL/g) revealed strong competition of the colloidal granite particles with the granite grains for Pu. The distribution percentages of Pu in the three-phase systems, depending on various conditions such as particle concentrations, Na(+) concentrations, pH and time, were determined. Moreover, we developed the thermodynamic and kinetic complexation models to explore the interaction of Pu with the particle surfaces.

  9. Mortality of Yearling Chinook Salmon Prior to Arrival at Lower Granite Dam, on the Snake River : Progress Report.

    SciTech Connect

    Giorgi, Albert E.

    1991-10-01

    Efforts have been initiated to develop a research plan that will provide insight into causes of, and ultimately solutions to, the apparent excessive mortality of juvenile chinook upstream from Lower Granite Dam on the Snake River. In the context of the proposed salmon stock listings under the Endangered Species Act, issues that potentially affect wild stocks of spring chinook salmon probably warrant immediate consideration and resolution. Mark-recapture data at Lower Granite Dam indicate that few yearling chinook salmon (Oncorhynchus tshawytscha) smolts survive to that site after release from various hatcheries. Upriver stocks of yearling spring and summer chinook exhibit pronounced losses en route to the dam. In 1989 and 1990, only about 8 to 18% of PIT-tagged representatives from McCall or Sawtooth hatchery were detected at the dam. General survival indices for these stocks indicate that perhaps only 15 to 35% of the yearlings survived to that site. This suggests these stocks may sustain as much mortality traversing this unobstructed reach of river as the general population would passing through the entire hydroelectric complex.

  10. Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey - Evidence for southward subduction of Paleotethys

    NASA Astrophysics Data System (ADS)

    Candan, O.; Akal, C.; Koralay, O. E.; Okay, A. I.; Oberhänsli, R.; Prelević, D.; Mertz-Kraus, R.

    2016-06-01

    Carboniferous metagranites with U-Pb zircon crystallization ages of 331-315 Ma crop out in the Afyon zone in the northern margin of the Anatolide-Tauride Block, which is commonly regarded as part of Gondwana during the Late Palaeozoic. They are peraluminous, calc-alkaline and are characterized by increase in Rb and Ba, decrease in Nb-Ta, and enrichment in Sr and high LILE/HFSE ratios compatible with a continental arc setting. The metagranites intrude a metasedimentary sequence of phyllite, metaquartzite and marble; both the Carboniferous metagranites and metasedimentary rocks are overlain unconformably by Lower Triassic metaconglomerates, metavolcanics and Upper Triassic to Cretaceous recrystallized limestones. The low-grade metamorphism and deformation occurred at the Cretaceous-Tertiary boundary. There is no evidence for Carboniferous deformation and metamorphism in the region. Carboniferous arc-type granites and previously described Carboniferous subduction-accretion complexes on the northern margin of the Anatolide-Tauride Block suggest southward subduction of Paleotethys under Gondwana during the Carboniferous. Considering the Variscan-related arc granites in Pelagonian and Sakarya zones on the active southern margin of Laurasia, a dual subduction of Paleotethys can be envisaged between Early Carboniferous and Late Permian. However, the southward subduction was short-lived and by the Late Permian the Gondwana margin became passive.

  11. A felsic MASH zone of crustal magmas - Feedback between granite magma intrusion and in situ crustal anatexis

    NASA Astrophysics Data System (ADS)

    Schwindinger, Martin; Weinberg, Roberto F.

    2017-07-01

    Magma mixing and mingling are described from different tectonic environments and are key mechanisms in the evolution of granitoids. The literature focuses on the interaction between mafic and felsic magmas with only limited research on the interaction between similar magmas. Here, we investigate instead hybridization processes between felsic magmas formed during the 500 Ma Delamerian Orogeny on the south coast of Kangaroo Island. Field relations suggest that a coarse, megacrystic granite intruded and interacted with a fine-grained diatexite that resulted from combined muscovite dehydration and water-fluxed melting of Kanmantoo Group turbidites. The two magmas hybridized during syn-magmatic deformation, explaining the complexity of relationships and variability of granitoids exposed. We suggest that granite intrusion enhanced melting of the turbidites by bringing in heat and H2O. With rising melt fraction, intrusive magmas became increasingly unable to traverse the partially molten terrane, creating a positive feedback between intrusion and anatexis. This feedback loop generated the exposed mid-crustal zone where magmas mixed and homogenized. Thus, the outcrops on Kangaroo Island represent a crustal and felsic melting-assimilation-storage-homogenization (felsic MASH) zone where, instead of having direct mantle magma involvement, as originally proposed, these processes developed in a purely crustal environment formed by felsic magmas.

  12. Kinetic desorption of fluoride in a granitic soil column: Experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2016-12-01

    The transport of fluoride or other contaminants in subsurface largely depends on their interaction with mineral surfaces of contact. Hence, the methods to evaluate and predict the extent of these interactions are of great importance. The commonly used distribution coefficient (Kd) model does not account for temporally and spatially variable geochemical conditions (Curtis et al., 2006). This study aims to investigate the reactive transport of fluoride in a natural soil column by laboratory experiments and solute transport modeling by introducing surface complexation of fluoride to the transport simulation. For our purpose, column experiments for fluoride sorption and desorption under saturated conditions were conducted in the laboratory on a granitic soil from Tsukuba, Japan. Stable isotopes of water (δ18O and δ2H) were used as conservative tracers to evaluate the flow and transport properties. Existence of physical and chemical nonequilibrium during fluoride transport was evaluated by applying stop flow events. Long tailing during fluoride desorption was observed, and the linear Kd model failed to explain this phenomenon. Hence, a geochemical model considering fluoride sorption in soil by surface complexation was developed to explain fluoride transport in the column. The intrinsic surface complexation constants for fluoride sorption reactions and surface site protonation and deprotonation reactions were corrected from that of the optimized results from batch experiments based as suggested by Sverjensky (2003). The model with fluoride sorption defined by surface complexation explained the observed fluoride desorption data quite satisfactorily, especially the long tailing. An overshoot in the breakthrough curve observed by the simulation during early period of desorption could be due to competitive desorption, which need to be further analyzed. References: (1) Curtis, JP, Davis, JA, Nafiz, DL 2006. Wat. Res. Res., 42, W04404, doi:10.1029/2005WR003979; (2

  13. Mantle hydrous-fluid interaction with Archaean granite.

    NASA Astrophysics Data System (ADS)

    Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.

    2012-04-01

    Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with mantle isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 mantle-derived fluids of high water activity. A wet mantle being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric mantle upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the mantle. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (St

  14. A new U-Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian

    NASA Astrophysics Data System (ADS)

    Zieger, J.; Linnemann, U.; Hofmann, M.; Gärtner, A.; Marko, L.; Gerdes, A.

    2017-07-01

    The basement of the Saxo-Thuringian Zone consists of Upper Neoproterozoic (c. 650-570 Ma) Cadomian arc sediments (Lusatian greywackes) and voluminous intrusions of Early Cambrian granitoids with ages of c. 540 Ma (Lausitz Block and Karkonosze-Izera Massif). The latter basement complexes comprise several c. 505 Ma granites, granodiorites, and gneisses emplaced during the change from a collisional tectonic setting to rift-related geotectonics. We present a new age for the Rumburk granite of 504 ± 3 Ma linking Late Cambrian plutonism at the northern margin of Gondwana with the initial phase of a Cambro-Ordovician rift event. Trace element analysis points to a linkage of the Rumburk granite with other Late Cambrian aged rocks of the Karkonosze-Izera Massif. Furthermore, geochemical data also provide evidence of a melting and recycling of Lusatian greywackes by the intrusion of the Rumburk granite. The youngest age peak of the Rumburk granite at c. 504 Ma is considered to be the age of emplacement. Older inherited age populations at c. 540 and c. 610 Ma are present and likely the result of a melting and recycling of Lusatian granitoids and greywackes. The appearance of Neoproterozoic inheritance and Lu-Hf similarities with the Rumburk granite strongly suggest the Lusatian greywackes as source rocks. There is a significant age gap of c. 35 Ma between Cambrian plutonic and volcanic rocks in Saxo-Thuringia. Hence, we consider two distinct pulses of magmatic activity during the transition from the Cadomian orogeny to the opening of the Rheic Ocean.

  15. Slow Slip Events on a 760 mm Long Granite Sample

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Yamashita, F.

    2015-12-01

    We describe slow slip events and dynamic rupture events generated on a newly constructed large-scale biaxial friction apparatus at Cornell University that provide insights into the mechanisms of aseismic and seismic slip. We find that, under nominally similar experimental conditions, the 760 mm long granite sample sometimes slips in dynamic stick-slip events and sometimes relieves accumulated shear stress through slow slip events. To provide insights into this curious behavior and the underlying mechanisms, fault slip and shear stress are each measured at 8 locations along the 760 mm long fault. This allows us to map slow slip fronts and the nucleation and propagation of dynamic fault rupture. The granite sample is also instrumented with an array of piezoelectric sensors that are the laboratory equivalent of a seismic network. When the sample is loaded relatively slowly, at 0.03 MPa/s, slow slip occurs on large sections of the fault and the slow slipping region soon expands to the sample boundary. In this case, stress is released in a slow slip event with peak slip velocities < 2 mm/s. Alternatively, when one end of the sample is loaded rapidly (4 MPa/s), or the sample is allowed to heal in stationary contact for a few minutes, slow slip initiates near the load point and accelerates to slip velocities exceeding 200 mm/s before the slow slipping region expands all the way to the sample boundary. This produces a dynamic slip event (stick-slip). The dynamic slip events radiate seismic waves equivalent to a M = -2.5 earthquake. In contrast, the laboratory-generated slow slip events are predominantly aseismic and produce only bursts of tiny and discrete seismic events (M = -6) reminiscent of swarms of microseismicity. The experiments illustrate how a single fault can slide slowly and aseismically or rapidly and dynamically depending on stress state and loading conditions. We compare the behavior observed on this Cornell apparatus to the behavior of other large

  16. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples.

    PubMed

    El Arabi, A M; Ahmed, N K; Salahel Din, K

    2008-01-01

    External exposures of population to ionising radiation due to naturally occurring radionuclides in sixty-three granite samples from three different locations in south eastern desert of Egypt were considered in this article. Average outdoor gamma dose rates in air were 190, 290 and 330 nGy h(-1) for Elba, Qash Amir and Hamra Dome granites, respectively. The corresponding doses in indoor air are 270, 400 and 470 nGy h(-1), respectively. These average values give rise to annual effective dose (outdoor, indoor and in total) 0.24, 1.4 and 1.6 mSv for Elba granite. For Qash Amir and Hamra Dome granites the corresponding values were 0.35, 2 and 2.3 mSv and 0.41, 2.3 and 2.7 mSv, respectively.

  17. Quasi-static and dynamic mechanical properties of a granite and a sandstone

    SciTech Connect

    Olsson, W.A.

    1989-09-01

    The quasi-static failure criteria, elastic constants, and p-wave velocities have been determined for a granite and a sandstone in which blasting experiments are being carried out by the Advanced Technology Division (6258). In addition, the dynamic strength of the granite was measured using a Kolsky bar. Both rocks show a linear increase in strength with increasing confining pressure. The dynamic strength of the granite is as much as 330% greater than the quasi-static value. The strength of the granite was also dependent on the angle between the foliation and the loading direction. There was a 20% difference in the p-wave velocity between that measured parallel to and perpendicular to the bedding in the sandstone. 4 refs., 4 figs., 5 tabs.

  18. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema

    None

    2016-07-12

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  19. Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    NASA Astrophysics Data System (ADS)

    Ningappa, C.; Sannappa, J.; Chandrashekara, M. S.; Paramesh, L.

    2009-08-01

    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits.

  20. Revisiting the block method for evaluating thermal conductivities of clay and granite

    USDA-ARS?s Scientific Manuscript database

    Determination of thermal conductivities of porous media using the contact method is revisited and revalidated with consideration of thermal contact resistance. Problems that limit the accuracy of determination of thermal conductivities of porous media are discussed. Thermal conductivities of granite...

  1. Ulkan-Dzhugdzhur ore-bearing anorthosite-rapakivi granite-peralkaline granite association, Siberian Craton: Age, tectonic setting, sources, and metallogeny

    NASA Astrophysics Data System (ADS)

    Larin, A. M.

    2014-07-01

    The paper systematizes and integrates the results of geological, isotopic geochronological, and geochemical studies of the igneous rocks that make up the Ulkan-Dzhugdzhur anorthosite-rapakivi granite-peralkaline granite association and related mineralization. This association is a typical example of anorogenic igneous rocks that formed in the within-plate geodynamic setting most likely under effect of the mantle superplume, which was active in the territory of the Siberian Craton 1.75-1.70 Ga ago. The igneous rock association formed in a discrete regime that reflected the pulsatory evolution of a sublithospheric mantle source. The prerift (1736-1727 Ma) and rift proper (1722-1705 Ma) stages and a number of substages are distinguished. All igneous rocks pertaining to this association have mixed mantle-crustal origin. Basic rocks crystallized from the OIB-type basaltic magma, which underwent crustal contamination at various depths. Felsic rocks are products of mantle and crustal magma mixing. The contribution of mantle component progressively increased in a time-dependent sequence: moderately alkaline subsolvus granite → moderately alkaline and alkaline hypersolvus granites → peralkaline hypersolvus granite. All endogenic deposits in the studied district are related to a single source represented by the mantle plume and its derivatives. The Fe-Ti-apatite deposits hosted in anorthosite formed as a result of intense lower crustal contamination of basaltic magma near the Moho discontinuity and two stages of fractional crystallization at lower and upper crustal depth levels. The rare-metal deposits are genetically related to peralkaline granite. Formation of uranium deposits was most likely caused by Middle Riphean rejuvenation of the region, which also involved rocks of the Ulkan-Dzhugdzhur association.

  2. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-12-01

    Many studies of experimental petrology have devoted to partial melting of crustal rocks. In order to provide lithochemical constraints on granite petrogenesis, this paper presents a compilation and synthesis of available experimental data for the major element compositions of felsic melts derived from partial melting of natural or synthetic materials in the compositional range of crustal rocks. The experimental melts are categorized into four types according to the species of hydrous minerals in starting materials: (I) amphibole-bearing; (II) amphibole- and biotite-bearing; (III) biotite-bearing; and (IV) biotite- and muscovite-bearing. If dehydration melting takes place at normal crustal conditions (P = 5-10 kbar, T ≤ 1000 °C), experimental melts are rich in SiO2 but poor in MgO + FeOT except those from amphibole-bearing sources. A comprehensive comparison of compositions between experimental melts and starting materials indicates that geochemical fractionation is variable for different major elements and their ratios. Source composition and melting temperature exert stronger controls on the compositional variations of experimental melts than pressure and fluid. By comparing the experimental melts with natural granites, the following insights into granite petrogenesis can be got: (1) while peritectic assemblage entrainment may be the dominant mechanism for the compositional variations of garnet/cordierite-rich S-type granites, fractional crystallization of diverse melts from heterogeneous metasedimentary precursors probably governs the compositional variations of garnet/cordierite-poor S-type granites; (2) relatively K2O-rich mafic to intermediate rocks are appropriate sources for calc-alkaline I-type granites. The compositional variations of calc-alkaline granites are jointly controlled by peritectic assemblage entrainment and subsequent fractional crystallization; (3) while dehydration melting at T > 950 °C is appropriate for the production of ferroan and

  3. Determination of Granites' Mineral Specific Porosities by PMMA Method and FESEM/EDAX

    SciTech Connect

    Leskinen, A.; Penttinen, L.; Siitari-Kauppi, M.; Alanso, U.; Garcia-Gutierrez, M.; Missana, T.; Patelli, Alessandro

    2007-07-01

    Over extended periods, long-lived radionuclides (RN) or activation products within geologic disposal sites may be released from the fuel and migrate to the geo/biosphere. In the bedrock, contaminants will be transported along fractures by advection and retarded by sorption on mineral surfaces and by molecular diffusion into stagnant pore water in the matrix along a connected system of pores and micro-fissures. The objective of this paper was to determine the connective porosity and mineral-specific porosities for three granite samples by {sup 14}C methyl-methacrylate ({sup 14}C-PMMA) autoradiography. Scanning electron microscopy and energy-dispersive X-ray analyses (FESEM/EDAX) were performed in order to study the pore apertures of porous regions in greater detail and to identify the corresponding minerals. Finally, the porosity results were used to evaluate the diffusion coefficients of RNs from previous experiments which determined apparent diffusion coefficients for the main minerals in three granite samples by the Rutherford Backscattering technique. The total porosity of the Grimsel granite (0.75%) was significantly higher than the porosities of the El Berrocal and Los Ratones granites (0.3%). The porosities of the Grimsel granite feldspars were two to three times higher than the porosities of the El Berrocal and Los Ratones granites feldspars. However, there was no significant difference between the porosities of the dark minerals. A clear difference was found between the various quartz grains. Quartz crystals were non-porous in the El Berrocal and Los Ratones granites when measured by the PMMA method, but the quartz crystals in the Grimsel granite showed 0.5% intra granular porosity. The apparent diffusion coefficients calculated for uranium diffusion within Grimsel granite on different minerals were very similar (2.10{sup -13} {+-} 0.5 m{sup 2}/s), but differences within both Spanish granites were found from one mineral to another (9 {+-} 1.10{sup -14} m

  4. Petrology, major and trace element geochemistry, geochronology, and isotopic composition of granitic intrusions from the vicinity of the Bosumtwi impact crater, Ghana

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Schulz, Toni; Buchwaldt, Robert; Koeberl, Christian

    2013-09-01

    The Bosumtwi crater is 10.5 km in diameter, 1.07 Ma old, well preserved impact structure located in Ghana (centered at 06°30‧N, 01°25‧W). It was excavated in rocks of the Early Proterozoic Birimian Supergroup, part of the West African craton. Here, we present a full and detailed characterization of the three granitoid complexes and one mafic dike in the vicinity of the Bosumtwi crater in terms of petrology, major and trace element geochemistry, geochronology, and isotopic composition. This allows us to characterize magmatic evolution of the West African Craton in this area and better understand the geological framework and target rocks of the impact. This study shows that the similar composition (strongly peraluminous muscovite granites and granodiorites) and age (between 2092 ± 6 Ma and 2098 ± 6 Ma) of all granitic intrusions in the proximity of the Bosumtwi crater suggest that they are co-genetic. Granitoids were probably formed as a result of anatexis of TTGs (or rocks derived from them) at relatively low pressure and temperature. We propose that the intrusions from the Bosumtwi area are genetically related to the Banso granite occurring to the east of the crater and can be classified as basin-type, late-stage granitoids. Also a mafic dike located to the NE of the Bosumtwi crater seems to be genetically related to those felsic intrusions. Based on those findings a revised version of the geological map of the Bosumtwi crater area is proposed.

  5. Assessment of occupational exposure in a granite quarry and processing factory.

    PubMed

    Tejado, J J; Guillén, J; Baeza, A

    2016-09-01

    Workers in the granite industry face an occupational hazard: silicosis due to the crystalline silica present in inhalable dust. As granite can also present a variable, and occasionally significant, content of naturally occurring radionuclides, they may also face a radiological hazard. In order to assess the risk, a granite industry with a quarry and processing factory was selected to assess the occupational exposure. Three main potential pathways were observed: external irradiation, inhalation of granite dust, and radon exposure. The external dose rate was similar to that in a nearby farming area. A slight increment (0.016-0.076 mSv yr(-1)) was observed in the quarry and stockpile, due to quarry faces and granite blocks. The effective dose due to granite dust inhalation was 0.182  ±  0.009 mSv yr(-1) in the worst case scenario (3 mg m(-3) dust load in air and no use of filter masks). Thus, the mean value of the effective dose from these two pathways was 0.26 mSv yr(-1), lower than the reference level of 1 mSv yr(-1) for the general population. The annual mean value of radon concentration in the indoor air was 33 Bq m(-3). However, during granite processing works the radon concentration can increase up to 216 Bq m(-3), due to mechanical operations (sawing, polishing, sanding, etc). This radon concentration was below the 600 Bq m(-3) reference level for action in working places. Therefore, workers in this granite factory face no significant additional radiological exposure, and no-one needs to be designated as occupationally exposed and subject to individual dosimetry.

  6. Effects of magma mingling in the granites of Mount Desert Island, Maine

    SciTech Connect

    Seaman, S.J.; Ramsey, P.C. )

    1992-07-01

    Textures and compositional relationships associated with dark-colored, fine-grained enclaves in the Cadillac Mountain and Somesville granites, Mount Desert Island, Maine, preserve abundant evidence for contamination of host granitic magmas by enclave liquids. Fine-grained enclaves, which apparently represent chilled magmatic droplets, have affected the composition and texture of the host granites by three possible mechanisms: (1) crystallization of feldspar-quartz-hornblende pegmatite pods from fluids of enclave origin in the granite surrounding enclaves, and the disaggregation of the pods and dispersion of crystals into the granite; (2) ionic exchange between enclaves and granitic magmas; (3) the generation around enclaves of rinds consisting of an inner alkali feldspar-quartz zone and an outer zone of hornblende-enriched granite. Thermal calculations suggest that the alkali feldspar-quartz zones of the rinds surrounding enclaves may result from resorption of alkali feldspar and quartz crystals in the granitic magma by heat of cooling and crystallization of enclave material. The interaction between the hot enclave and the alkali feldspar-quartz composition liquid may be analogous to that between a pluton and meteoric water in a hydrothermal system. The segregation of alkali feldspar-quartz and hornblende-rich zones may result from the minimum melt composition fluid migrating toward the enclave, leaving behind unmelted hornblende, as part of a convection circuit set up by the enclave. Alternatively, hornblende-rich zones concentric to and outside of the alkali feldspar-quartz rinds may record limit of movement of a front of hydrous fluid driven from the enclave boundary down a thermal gradient.

  7. Investigation of Naturally Occurring Radio Nuclides in Shir-kuh Granites

    SciTech Connect

    Mazarei, Mohammad Mehdi; Zarei, Mojtaba

    2011-12-26

    One of the principle natural radiation resources is Granite which can be dangerous for human because of its radiations. Based on this fact, in this research we attempt to specify the activity amount of these natural radio nuclides, existing in Shir-kuh Granite of Yazd state. To specify the activity amount of this natural radio nuclides, it has been applied the measurement method of Gamma spectroscopy using high purity Germanium (HPGe) detector.

  8. The transition from an Archean granite-greenstone terrain into a charnockite terrain in southern India

    NASA Technical Reports Server (NTRS)

    Condie, K. C.; Allen, P.

    1983-01-01

    In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.

  9. TIDAL VARIATION OF SEISMIC TRAVEL TIMES IN A MASSACHUSETTS GRANITE QUARRY.

    USGS Publications Warehouse

    Liu, Hsi-Ping; Sembera, Eugene D.; Westerlund, Rober E.; Fletcher, Jon B.; Reasenberg, Paul; Agnew, Duncan C.

    1985-01-01

    A seismic survey was conducted at a Massachusetts granite quary in the intervals (230d 23h, 231d11h) and (231d22h, 233d10h), 1983 (U. T. ) along a 148 m baseline situated in nearly flat topography. Two sets of nearly orthogonal joint systems are observed in the granite. The results are interpreted in terms of the velocity changes of seismic rays as the two joint systems open and close due to the tidal stress. Refs.

  10. Laboratory Particle Velocity Experiments on Indiana Limestone and Sierra White Granite

    DTIC Science & Technology

    1991-10-01

    resemble the pulses generated in Sierra White granite. 27 25o 2. 20 Dry ( Test 598) 20 --- .... Saturated (Test 601) .............. Saturated/Frozen (Test...ps, which is about the same as the wave speed in Sierra White granite. 29 15 0 .........i ......... Dry ( Test 598) - Saturated (Test 601) 120...Comparison of displacement histories at 30-mm range in Indiana limestone (16% porosity) for three different pore conditions. 30 10 Dry ( Test 598

  11. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite

    NASA Astrophysics Data System (ADS)

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-01-01

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.

    PubMed

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-01-28

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  13. Strength and permeability tests on ultra-large Stripa granite core

    SciTech Connect

    Thorpe, R.; Watkins, D.J.; Ralph, W.E.; Hsu, R.; Flexser, S.

    1980-09-01

    This report presents the results of laboratory tests on a 1 meter diameter by 2 meters high sample of granitic (quartz monzonite) rock from the Stripa mine in Sweden. The tests were designed to study the mechanical and hydraulic properties of the rock. Injection and withdrawal permeability tests were performed at several levels of axial stress using a borehole through the long axis of the core. The sample was pervasively fractured and its behavior under uniaxial compressive stress was very complicated. Its stress-strain behavior at low stresses was generally similar to that of small cores containing single healed fractures. However, this large core failed at a peak stress of 7.55 MPa, much less than the typical strength measured in small cores. The complex failure mechanism included a significant creep component. The sample was highly permeable, with flows-per-unit head ranging from 0.11 to 1.55 cm/sup 2//sec. Initial application of axial load caused a decrease in permeability, but this was followed by rapid increase in conductivity coincident with the failure of the core. The hydraulic regime in the fracture system was too intricate to be satisfactorily modeled by simple analogs based on the observed closure of the principal fractures. The test results contribute to the data base being compiled for the rock mass at the Stripa site, but their proper application will require synthesis of results from several laboratory and in situ test programs.

  14. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France).

    PubMed

    Santoni, S; Huneau, F; Garel, E; Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Celle-Jeanton, H

    2016-12-15

    This study aims at identifying the water-rock interactions and mixing rates within a complex granite-carbonate coastal aquifer under high touristic pressure. Investigations have been carried out within the coastal aquifer of Bonifacio (southern Corsica, France) mainly composed of continental granitic weathering products and marine calcarenite sediments filling a granitic depression. A multi-tracer approach combining physico-chemical parameters, major ions, selected trace elements, stable isotopes of the water molecule and (87)Sr/(86)Sr ratios measurements is undertaken for 20 groundwater samples during the low water period in November 2014. 5 rock samples of the sedimentary deposits and surrounding granites are also analysed. First, the water-rock interactions processes governing the groundwater mineralization are described in order to fix the hydrogeochemical background. Secondly, the flow conditions are refined through the quantification of inter aquifer levels mixing, and thirdly, the kinetics of water-rock interaction based on groundwater residence time from a previous study using CFCs and SF6 are quantified for the two main flow lines. A regional contrast in the groundwater recharge altitude allowed the oxygene-18 to be useful combined with the (87)Sr/(86)Sr ratios to differentiate the groundwater origins and to compute the mixing rates, revealing the real extension of the watershed and the availability of the resource. The results also highlight a very good correlation between the groundwater residence time and the spatial evolution of (87)Sr/(86)Sr ratios, allowing water-rock interaction kinetics to be defined empirically for the two main flow lines through the calcarenites. These results demonstrate the efficiency of strontium isotopes as tracers of water-rock interaction kinetics and by extension their relevance as a proxy of groundwater residence time, fundamental parameter documenting the long term sustainability of the hydrosystem. Copyright © 2016

  15. Late Quaternary glacial relief evolution revealed by luminescence thermochronometry (Granite Range, Alaska)

    NASA Astrophysics Data System (ADS)

    Valla, P.; Guralnik, B.; Lowick, S.; Champagnac, J.; Herman, F.; Jain, M.; Murray, A.

    2012-12-01

    Long-term exhumation and topographic evolution of mountain belts arise from complex coupling between tectonics, climate and surface processes. Glacial and periglacial processes are especially potent agents to reshape the alpine landscapes by valley carving and/or limiting topography. The recent development of luminescence thermochronometry (e.g., Herman et al., 2010) and its very low closure temperature (0-60°C) opens a new spatial and temporal "window" for the study of latest stages of rock exhumation and thus to address potential topographic relief changes during the late Quaternary. We apply this new method in the Wrangell-St Elias National Park (Alaska), an alpine landscape that exhibits typical glacial features (U-shaped valleys, cirques, moraines). This setting provides an exceptional opportunity to infer potential differences in relief evolution under a gradient of glacial forcing. The Granite Range presents a consistent and progressive eastward increase in the mean elevation, glacier activity, and topographic relief, while low-temperature thermochonometry data display rather homogeneous, yet largely scattered (apatite (U-Th)/He ages of ~15±7 Ma) throughout the massif (e.g., Spotila and Berger, 2010 and references therein). We sampled four elevation profiles over an 80-km East-West transect across the Granite Range (bounded by Tana River to the West and Chitina River to the North). Feldspar separates from 15 bedrock surface samples were dated using an IR-50 SAR protocol (e.g., Murray et al., 2000), and exhibit good internal reproducibility. Apparent ages vary from ~250 ka in the western part of the range, towards younger ages of ~30 ka in the east, thus supporting the notion of high rates of erosion correlated with intense glacial/periglacial activity. We then use a kinetic model to convert apparent ages in mean cooling histories, and couple it with Pecube model (Braun et al., 2012) to extract tectono-geomorphic scenarios. Our results reveal spatially

  16. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance

    NASA Astrophysics Data System (ADS)

    Zhou, Taofa; Yuan, Feng; Fan, Yu; Zhang, Dayu; Cooke, David; Zhao, Guochun

    2008-12-01

    The Sawuer region is located in the west Junggar, Jimunai County of Altay district and Hefeng County of Tacheng district, Xinjiang Autonomous Region, in northwest China. In the study area granitic intrusions are widespread and can be subdivided into I-type granites (Tasite pluton, Sentasi pluton, Wokensala pluton and Kaerjia pluton) and A-type (A 2) granites (Kuoyitasi pluton and Qiaqihai pluton). The I-type granites consist of granite, adamelite, granodiorite, and the A-type granites are mainly represented by alkali granite. SHRIMP U-Pb dating results indicate that the granites in Sawuer region were formed between 337 Ma and 290.7 Ma (late Carboniferous and early Permian), with the I-type granites being formed between 337 Ma and 302.6 Ma, and the A-type between 297.9 and 290.7 Ma. From the older to the youngest granites, their composition changes from calc-alkalic to high-K calc-alkalic, to alkali series, and from I-type to A-type, based on the characteristics of whole rock trace element and rare earth elements geochemistry. This compositional range is the result of a change in the geodynamic regime from compressional to tensional during the late Paleozoic. Strontium, Nd, Pb, O isotope systematics suggest that both the I-type and A-type granites in Sawuer were sourced from the mantle (DM), but with some crustal contamination for the Kuoyitasi pluton. The I-type granites were formed by equilibrium partial melting, while the A-type granites were formed mainly by fractional crystallization. Based on the Rb-Y + Nb and Nb-Y-Ce discrimination criteria by Eby [Eby G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 20, 641-644] and Pearce [Pearce J.A., 1996. Sources and settings of granitic rocks. Episodes 19, 120-125] and comparisons with granites in other regions of northern Xinjiang, the I-type granites were emplaced during a transition from compressional to extensional settings in a post-collision regime, whereas

  17. Study of the contaminant transport into granite microfractures using nuclear ion beam techniques.

    PubMed

    Alonso, Ursula; Missana, Tiziana; Patelli, Alessandro; Rigato, Valentino; Rivas, Pedro

    2003-03-01

    Hydrated bentonite is a very plastic material and it is expected to enter in the rock microfractures at the granite/bentonite boundary of a deep geological high-level waste repository. This process is enhanced by the high swelling pressure of the clay. Since bentonite has a very good sorption capability for many radionuclides, the displacement of the clay might lead to a "clay-mediated" contaminant transport into the rock. The aim of this work is to study the contaminant transport into granite microfractures using nuclear ion beam techniques, and to determine to what extent the clay can favour it. To do so, bentonite previously doped with uranium, cesium and europium was put in contact with the surface of granite sheets. Granite sheets contacted with non-doped bentonite and with radionuclide solutions were also prepared as references. This allowed analysing the differences in the diffusion behaviour of the three systems: clay, radionuclides and clay plus radionuclides. A combination of Rutherford backscattering spectrometry (RBS) and other nuclear ion-beam techniques such as particle-induced X-ray emission (PIXE) and microPIXE was used to study the depth and lateral distribution of clay and contaminants inside granite. It was also tried to evaluate not only the diffusion depth and diffusion coefficients but also the different areas of the granite where the diffusants have a preferential access.

  18. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution.

    PubMed

    Frey, Beat; Rieder, Stefan R; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-07-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.

  19. {sup 152}Eu depths profiles granite and concrete cores exposed to the Hiroshima atomic bomb

    SciTech Connect

    Shizuma, Kiyoshi; Iwatani, Kazuo; Oka, Takamitsu

    1997-06-01

    Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of {sup 152}Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of {sup 152}Eu reflects incident neutrons not so high but in the epithermal region. 19 refs., 7 figs., 8 tabs.

  20. Cassiterite exsolution with ilmenite lamellae in magnetite from the Huashan metaluminous tin granite in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Ru Cheng; Yu, A.-Peng; Chen, Jun; Xie, Lei; Lu, Jian-Jun; Zhu, Jin-Chu

    2012-05-01

    Sn4+ is generally the dominant form of tin in magnetite-series granites as shown by the presence of cassiterite or its incorporation into Ti-bearing minerals such as biotite and titanite. Little is known about the behavior of tin in magnetite. The Huashan granite is an oxidized tin granite in the Nanling Range, southern China, where it contains magnetite as the dominant Fe oxide mineral. It is included in biotite as an early phase and also as interstitial grains spatially associated with ilmenite, cassiterite, Sn-rich titanite (SnO2 up to 5.9 wt.%), fluorite and apatite. This association indicates that tin enrichment occurred during the late stage of magma crystallization. Ilmenite lamellae display a trellis structure consistent with features of the "oxy-exsolution" process of Sn-bearing titanomagnetite precursor. Micro-inclusions of cassiterite (<1 μm in size) are found only within ilmenite lamellae. This suggests that magnetite with cassiterite inclusions is likely an indicator mineral of oxidized tin granites. Although rare in nature, Sn-bearing magnetite from weathered granites where concentrated in stream sediments, may serve as a strategic tracer for tin exploration in granite districts and in placer deposits, in general.

  1. 152Eu depth profiles in granite and concrete cores exposed to the Hiroshima atomic bomb.

    PubMed

    Shizuma, K; Iwatani, K; Hasai, H; Hoshi, M; Oka, T

    1997-06-01

    Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of 152Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from a pillar top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of 152Eu reflects incident neutrons not so high but in the epithermal region.

  2. Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ghani, Azman A.; Searle, Michael; Robb, Laurence; Chung, Sun-Lin

    2013-10-01

    The dominantly Triassic Main Range Granite of Peninsular Malaysia that occurs west of the Paleo-Tethyan Bentong-Raub suture zone was regarded exclusively as an S-type granite. The Main Range dominantly biotite granites are of batholithic proportion and host one of the world's largest tin provinces. The S-type characteristics include high initial 87Sr/86Sr isotope ratios (>0.710), a narrow range in silica, presence of ilmenite and occasional cordierite and andalusite, and the presence of pelitic or quartzose meta-sedimentary xenoliths. However, the present review shows that the Main Range Granites also have many features that are more characteristic of I-type granites such as the very large scale of plutonism, the presence of primary titanite and amphibole, occurrence of hornblende-bearing mafic enclaves, increasing peraluminosity towards the more differentiated end-members of the suite and decreasing P2O5 with increasing SiO2 contents. The moderately peraluminous nature of the bulk Main Range Granite, without containing cordierite, Fe-Mg garnet or sillimanite, is consistent with derivation from a meta-sedimentary protolith that was itself undersaturated with respect to Al2SiO5.

  3. Petrogenesis of selected A-type granitic intrusions from Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Tharwat; Asran, Asran; Amron, Taha; Hauzenberger, Christoph

    2014-05-01

    The Pan-African orogeny in the Arabian-Nubian Shield was terminated by intrusion of A-type granites (~ 595 Ma; Greenberg, 1981) and its volcanic equivalents. Subsequent to the intrusions of these granitic bodies the shield was exhumed. Eroded A-type granite pebbles were found in the molasse sediments that were deposited in intermountain basins. Therefore the A-type granites provide information about the last stage of the Pan-African geochemical system. Preliminary whole-rock geochemical data of three granitic intrusions (Kadabora, Um Naggat and El shiekh Salem) from the Central Eastern Desert of Egypt; indicate that all of them are peraluminous and with A-type characteristics. These intrusions show low CaO content (average 0.43 %wt), high FeOT/MgO ratio (10.46-121.88), high Na2O+K2O (average 8.04 %wt), marked enrichment of high field strength elements (Y, Nb and Ga except Zr), depletion in MgO (0.01-0.11 %wt) and with low concentration of Sr and Ba. The studied granitoids were emplaced in within plate tectonic regime. References: Greenberg, J.K. (1981): Characteristic and origin of Egyptian younger granites. Bull. Geol. Soc. Am. Part 1, v.92: 224-232.

  4. Granites related to tin mineralization at Mt. Pleasant, New Brunswick, Canada: subvolcanic analogues of topaz rhyolites

    SciTech Connect

    Taylor, R.P.; Sinclair, W.D.

    1985-01-01

    Two type of fluorine-rich (>2000 ppm F) high-silica (>74 wt. % SiO/sub 2/) granite are present in the environs of the Mt. Pleasant Tungsten Mine. Both are subvolcanic in character and Devono-Carboniferous in age. An older fine-grained granite contains biotite (+/-chlorite) and is associated with the earlier W-Mo stockwork/breccia ore bodies. It is intruded by topaz- and fluorite-bearing granite porphyry/porphyritic granite to which later Sn-polymetallic base metal mineralization appears to be related. Major element characteristics (SiO/sub 2/ > 75 wt. %; Na/sub 2/O > 3.2 wt. %; K/sub 2/O/Na/sub 2/O > 1; TiO/sub 2/ < 0.2 wt. %; CaO < 0.7 wt. %; MgO < 0.2 wt. %; P/sub 2/O/sub 5/ < 0.05 wt. %) identify both phases as anorogenic granites. Trace element contents however permit their separation and identify the later granites with Rb > 800 ppm, Li > 100 ppm, Cs > 20 ppm, Ta > 15 ppm, F > 4000 ppm, and distinctive flat REE patterns with large negative Eu anomalies as the intrusive equivalents of topaz rhyolites. Such unique REE distributions suggest that melt depolymerization resulting from the enhanced solubility of fluorine may play a pivotal role in the evolution of these felsic magmas.

  5. Operation of the Lower Granite Dam Adult Trap, 2008.

    SciTech Connect

    Harmon, Jerrel R.

    2009-01-01

    During 2008 we operated the adult salmonid trap at Lower Granite Dam from 7 March through 25 November, except during a short summer period when water temperatures were too high to safely handle fish. We collected and handled a total of 20,463 steelhead Oncorhynchus mykiss and radio-tagged 34 of the hatchery steelhead. We took scale samples from 3,724 spring/summer Chinook salmon O. tshawytscha for age and genetic analysis. We collected and handled a total of 8,254 fall Chinook salmon. Of those fish, 2,520 adults and 942 jacks were transported to Lyons Ferry Hatchery on the Snake River in Washington. In addition, 961 adults and 107 jacks were transported to the Nez Perce Tribal Hatchery on the Clearwater River in Idaho. The remaining 3,724 fall Chinook salmon were passed upstream. Scales samples were taken from 780 fall Chinook salmon tagged with passive integrated transponder (PIT) tags and collected by the sort-by-code system.

  6. Granite rock outcrops: an extreme environment for soil nematodes?

    PubMed

    Austin, Erin; Semmens, Katharine; Parsons, Charles; Treonis, Amy

    2009-03-01

    We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils had lower species richness than forest soils (P < 0.05) and contained more bacterial-feeders and fewer fungal-feeders (P < 0.05). Primitive soils contained either no nematodes (NC) or only a single species (Mesodorylaimus sp., VA). Nematode communities were similar between Mature and Minimal soils, according to trophic group representation, MI, PPI, EI, SI, and CI (P > 0.05). Forest soils had a higher PPI value (P < 0.05), but otherwise community indices were similar to outcrop soils (P > 0.05). Outcrop nematode co