Science.gov

Sample records for curcumin decreased oxidative

  1. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.

    PubMed

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Loredo, María L; Barrera-Oviedo, Diana; Pinzón, Enrique; Rodríguez-Rangel, Daniela Saraí; Pedraza-Chaverri, José

    2016-01-01

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity.

  2. Curcumin Reduces Amyloid Fibrillation of Prion Protein and Decreases Reactive Oxidative Stress

    PubMed Central

    Lin, Chi-Fen; Yu, Kun-Hua; Jheng, Cheng-Ping; Chung, Raymond; Lee, Cheng-I

    2013-01-01

    Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases. PMID:25437204

  3. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats

    PubMed Central

    Morrone, Maurilio da Silva; Schnorr, Carlos Eduardo; Behr, Guilherme Antônio; Gasparotto, Juciano; Bortolin, Rafael Calixto; da Boit Martinello, Katia; Saldanha Henkin, Bernardo; Rabello, Thallita Kelly; Zanotto-Filho, Alfeu; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-01-01

    The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days) in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX) model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n = 8) and one OVX group (n = 11) were treated with vehicle (refined olive oil), and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n = 8/group). OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses) were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause. PMID:26640615

  4. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    PubMed Central

    García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Vega-García, Claudia Cecilia; Pedraza-Chaverrí, José

    2013-01-01

    Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7) in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w.) before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.). Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction. PMID:23956771

  5. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats.

    PubMed

    Tapia, Edilia; Soto, Virgilia; Ortiz-Vega, Karla Mariana; Zarco-Márquez, Guillermo; Molina-Jijón, Eduardo; Cristóbal-García, Magdalena; Santamaría, José; García-Niño, Wylly Ramsés; Correa, Francisco; Zazueta, Cecilia; Pedraza-Chaverri, José

    2012-01-01

    Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8-10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes.

  6. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    PubMed Central

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin. PMID:26783957

  7. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    PubMed

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans.

  8. Protective role of curcumin in oxidative stress of breast cells.

    PubMed

    Calaf, Gloria M; Echiburú-Chau, Carlos; Roy, Debasish; Chai, Yunfei; Wen, Gengyun; Balajee, Adayabalam S

    2011-10-01

    Curcumin (diferuloylmethane) is a well known antioxidant that exerts anti-proliferative and apoptotic effects. The effects of curcumin were evaluated in a breast cancer model that was developed with the immortalized breast epithelial cell line, MCF-10F after exposure to low doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation, and subsequently cultured in the presence of 17β-estradiol (estrogen). This model consisted of human breast epithelial cells in different stages of transformation: i) a control cell line, MCF-10F, ii) an estrogen-treated cell line, named Estrogen, iii) a malignant cell line, named Alpha3 and iv) a malignant and tumorigenic, cell line named Alpha5. Curcumin decreased the formation of hydrogen peroxide in the control MCF-10F, Estrogen and Alpha5 cell lines in comparison to their counterparts. Curcumin had little effect on NFκB (50 kDa) but decreased the protein expression in the Estrogen cell line in comparison to their counterparts. Curcumin enhanced manganese superoxide dismutase (MnSOD) protein expression in the MCF-10F and Alpha3 cell lines. Results indicated that catalase protein expression increased in curcumin treated-Alpha3 and Alpha5 cell lines. Curcumin slightly decreased lipid peroxidation in the MCF-10F cell lines, but significantly (P<0.05) decreased it in the Alpha5 cell line treated with curcumin in comparison to their counterparts as demonstrated by the 8-iso-prostaglandin F2α (8-iso-PGF2α) levels. It can be concluded that curcumin acted upon oxidative stress in human breast epithelial cells transformed by the effect of radiation in the presence of estrogen.

  9. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis

    PubMed Central

    Chen, Jun-Jie; Dai, Lin; Zhao, Lin-Xia; Zhu, Xiang; Cao, Su; Gao, Yong-Jing

    2015-01-01

    Curcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. Neuroinflammation has been recognized to play an important role in the pathogenesis of various diseases in the central nervous system. Here we investigated the anti-nociceptive and anti-neuroinflammatory effect of curcumin on arthritic pain in rats. We found that repeated oral treatment with curcumin, either before or after complete Freund’s adjuvant (CFA) injection, dose-dependently attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, but had no effect on joint edema. Repeated intrathecal injection of curcumin reversed CFA-induced pain hypersensitivity. Furthermore, such a curcumin treatment reduced CFA-induced activation of glial cells and production of inflammatory mediators [interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and monocyte inflammatory protein-1 (MIP-1α)] in the spinal cord. Curcumin also decreased lipopolysaccharide-induced production of IL-1β, tumor necrosis factor-α, MCP-1, and MIP-1α in cultured astrocytes and microglia. Our results suggest that intrathecal curcumin attenuates arthritic pain by inhibiting glial activation and the production of inflammatory mediators in the spinal cord, suggesting a new application of curcumin for the treatment of arthritic pain. PMID:25988362

  10. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage.

    PubMed

    Huang, Han-Chang; Chang, Ping; Dai, Xue-Ling; Jiang, Zhao-Feng

    2012-07-01

    To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed. Neuronal oxidative stress was assessed, including extracellular hydrogen peroxide and intracellular reactive oxygen species. The abilities of curcumin to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation are further assessed and discussed. Curcumin preserves cell viability, which is decreased by Aβ. The results of changed morphology, released Lactate dehydrogenases and cell viability assays indicate that curcumin protects Aβ-induced neuronal damage. Curcumin depresses Aβ-induced up-regulation of neuronal oxidative stress. The treatment sequence impacts the protective effect of curcumin on Aβ-induced neuronal damage. Curcumin shows a more protective effect on neuronal oxidative damage when curcumin was added into cultured neurons not later than Aβ, especially prior to Aβ. The abilities of curcumin to scavenge free radicals and to inhibit the formation of β-sheeted aggregation are both beneficial to depress Aβ-induced oxidative damage. Curcumin prevents neurons from Aβ-induced oxidative damage, implying the therapeutic usage for the treatment of Alzheimer's disease patients.

  11. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    SciTech Connect

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  12. Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Li, Daowen; Zhao, Kena; Xiao, Xilong

    2015-01-01

    Quinocetone (QCT), a new quinoxaline 1,4-dioxides, has been used as antimicrobial feed additive in China. Potential genotoxicity of QCT was concerned as a public health problem. This study aimed to investigate the protective effect of curcumin on QCT-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Cell viability and intracellular reactive oxygen species (ROS), biomarkers of oxidative stress including superoxide dismutase (SOD) activity and glutathione (GSH) level were measured. Meanwhile, comet assay and micronucleus assay were carried out to evaluate genotoxicity. The results showed that, compared to the control group, QCT at the concentration ranges of 2-16 μg/mL significantly decreased L02 cell viability, which was significantly attenuated with curcumin pretreatment (2.5 and 5 μM). In addition, QCT significantly increased cell oxidative stress, characterized by increases of intracellular ROS level, while decreased endogenous antioxidant biomarkers GSH level and SOD activity (all p < 0.05 or 0.01). Curcumin pretreatment significantly attenuated ROS formation, inhibited the decreases of SOD activity and GSH level. Furthermore, curcumin significantly reduced QCT-induced DNA fragments and micronuclei formation. These data suggest that curcumin could attenuate QCT-induced cytotoxicity and genotoxicity in L02 cells, which may be attributed to ROS scavenging and anti-oxidative ability of curcumin. Importantly, consumption of curcumin may be a plausible way to prevent quinoxaline 1,4-dioxides-mediated oxidative stress and genotoxicity in human or animals.

  13. Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II).

    PubMed

    Huang, Han-Chang; Lin, Chang-Jun; Liu, Wen-Juan; Jiang, Rui-Rui; Jiang, Zhao-Feng

    2011-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative disorders. Elevated copper (Cu) ions are thought to link AD pathology. Curcumin is suggested to treat AD because of its high anti-oxidative activity and coordination to transitional metal ions. In this study, the protective effect of curcumin against the Cu(II)-induced oxidative damage was investigated in primary rat cortical neurons. The neuronal damage was assessed by morphological observation, cell viability, and oxidative stress level. The results showed that curcumin at low dosage protected primary cultured neurons from the 20 μM Cu(II)-induced damage. Low dosage of curcumin depressed oxidative stress levels exacerbated by Cu(II). However, high dosage of curcumin failed to decrease the Cu(II)-induced oxidative stress. When Cu(II) was presented in primary neurons, curcumin at high dosage resulted in chromosomal aberration and cell damage. These results suggest that curcumin, in a concentration-dependent manner, plays both anti-oxidative and pro-oxidative roles in primary neurons treated with Cu(II).

  14. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.

    PubMed

    Molina-Jijón, Eduardo; Aparicio-Trejo, Omar Emiliano; Rodríguez-Muñoz, Rafael; León-Contreras, Juan Carlos; Del Carmen Cárdenas-Aguayo, María; Medina-Campos, Omar Noel; Tapia, Edilia; Sánchez-Lozada, Laura Gabriela; Hernández-Pando, Rogelio; Reyes, José L; Arreola-Mendoza, Laura; Pedraza-Chaverri, José

    2016-11-12

    We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •(-) ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.

  15. Reversal of Oxidative Stress in Neural Cells by an Injectable Curcumin/Thermosensitive Hydrogel.

    PubMed

    Lu, Chuan

    2016-01-01

    Curcumin as an antioxidative agent which has been widely used medicinally in India and China. However, rapid metabolism coupled with the instability of curcumin under physiological conditions has greatly limited its applications in vivo. In the present study, a thermosensitive hydrogel with high payload of curcumin was developed by using a co-precipitation method, and its reversion of oxidative stress in Neuro-2a cells was investigated. With an increase in drug loading capacity, the solgel transition temperature of the thermosensitive hydrogel decreased accordingly. The stability of curcumin in phosphate-buffered saline (PBS; pH=7.4) was greatly improved by encapsulation in the thermosensitive hydrogel, as indicated by an in vitro degradation test. An in vitro release study showed that the encapsulated curcumin was rapidly released from the hydrogel within 6 h. A curcumin/F-127 aqueous solution under the threshold concentration of 4μg/mL was non-toxic against Neuro-2a cells after 24-h incubation. A MitoSOX assay indicated that the developed curcumin formulation could attenuate the oxidative damage induced by H2O2 as compared to that of the H2O2 group. All these results suggested that the developed curcumin/thermosensitive hydrogel might have great potential application in the reversion of oxidative stress after traumatic brain injury.

  16. Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    PubMed Central

    2010-01-01

    Background Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction. Methods Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII) were examined by hydroethidine and immunofluorescence, respectively. Results The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O2●-) production. O2●- production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished. Conclusion Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition. PMID:20946622

  17. Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases†

    PubMed Central

    Ketron, Adam C.; Gordon, Odaine N.; Schneider, Claus; Osheroff, Neil

    2013-01-01

    The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane), on the DNA cleavage activities of human topoisomerase IIα and IIβ. Intermediates in the curcumin oxidation pathway increased DNA scission mediated by both enzymes ~4-5–fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons. PMID:23253398

  18. Effects of curcumin on bleomycin‑induced oxidative stress in malignant testicular germ cell tumors.

    PubMed

    Cort, Aysegul; Ozdemir, Evrim; Timur, Mujgan; Ozben, Tomris

    2012-10-01

    Bleomycin is commonly used in the treatment of testicular cancer. Bleomycin generates oxygen radicals, induces the oxidative cleavage of DNA strands and induces cancer cell apoptosis. Curcumin (diferuloylmethane) is a potent antioxidant and chief component of the spice turmeric. No study investigating the effects of curcumin on intrinsic and bleomycin-induced oxidative stress in testicular germ cell tumors has been reported in the literature. For this reason, the present study aimed to examine the effects of curcumin on oxidative stress produced in wild-type NTera-2 and p53-mutant NCCIT testicular cancer cells incubated with bleomycin and the results were compared with cells treated with H2O2 which directly produces oxidative stress. The protein carbonyl content, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), 8-isoprostane, lipid hydroperoxide (LPO) levels and total antioxidant capacity in the two testicular cancer cell lines were determined. Results showed that bleomycin and H2O2 significantly increased protein carbonyl, TBARS, 8-isoprostane and LPO levels in the NTera-2 and NCCIT cell lines. Bleomycin and H2O2 significantly decreased the antioxidant capacity and GSH levels in NTera-2 cells. Curcumin significantly decreased LPO, 8-isoprostane and protein carbonyl content, and TBARS levels increased in cells treated with bleomycin and H2O2. Curcumin enhanced GSH levels and the antioxidant capacity of NTera-2 cells. In conclusion, curcumin inhibits bleomycin and H2O2-induced oxidative stress in human testicular cancer cells.

  19. Curcumin.

    PubMed

    Lestari, Maria L A D; Indrayanto, Gunawan

    2014-01-01

    Curcumin and its two related compounds, that is, demethoxycurcumin and bis-demethoxycurcumin (curcuminoids) are the main secondary metabolites of Curcuma longa and other Curcuma spp. Curcumin is commonly used as coloring agent as well as food additive; curcumin has also shown some therapeutic activities. This review summarizes stability of curcumin in solutions, spectroscopy characteristics of curcumin (UV, IR, Raman, MS, and NMR), polymorphism forms, method of analysis in both of biological and nonbiological samples, and metabolite studies of curcumin. For analysis of curcumin and its related compounds in complex matrices, application of LC-MS/MS is recommended. © 2014 Elsevier Inc. All rights reserved.

  20. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes

    PubMed Central

    Chilelli, Nino Cristiano; Ragazzi, Eugenio; Valentini, Romina; Cosma, Chiara; Ferraresso, Stefania; Lapolla, Annunziata; Sartore, Giovanni

    2016-01-01

    Background: Chronic intensive exercise is associated with a greater induction of oxidative stress and with an excess of endogenous advanced glycation end-products (AGEs). Curcumin can reduce the accumulation of AGEs in vitro and in animal models. We examined whether supplementation with curcumin and Boswellia serrata (BSE) gum resin for 3 months could affect plasma levels of markers of oxidative stress, inflammation, and glycation in healthy master cyclists. Methods. Forty-seven healthy male athletes were randomly assigned to Group 1, consisting of 22 subjects given a Mediterranean diet (MD) alone (MD group), and Group 2 consisted of 25 subjects given a MD plus curcumin and BSE (curcumin/BSE group). Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), high-sensitivity c-reactive protein (hs-CRP), total AGE, soluble receptor for AGE (sRAGE), malondialdehyde (MDA), plasma phospholipid fatty acid (PPFA) composition, and non-esterified fatty acids (NEFA) were tested at baseline and after 12 weeks. Results: sRAGE, NEFA, and MDA decreased significantly in both groups, while only the curcumin/BSE group showed a significant decline in total AGE. Only the changes in total AGE and MDA differed significantly between the curcumin/BSE and MD groups. Conclusions. Our data suggest a positive effect of supplementation with curcumin and BSE on glycoxidation and lipid peroxidation in chronically exercising master athletes. PMID:27879642

  1. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes.

    PubMed

    Chilelli, Nino Cristiano; Ragazzi, Eugenio; Valentini, Romina; Cosma, Chiara; Ferraresso, Stefania; Lapolla, Annunziata; Sartore, Giovanni

    2016-11-21

    Chronic intensive exercise is associated with a greater induction of oxidative stress and with an excess of endogenous advanced glycation end-products (AGEs). Curcumin can reduce the accumulation of AGEs in vitro and in animal models. We examined whether supplementation with curcumin and Boswellia serrata (BSE) gum resin for 3 months could affect plasma levels of markers of oxidative stress, inflammation, and glycation in healthy master cyclists. Forty-seven healthy male athletes were randomly assigned to Group 1, consisting of 22 subjects given a Mediterranean diet (MD) alone (MD group), and Group 2 consisted of 25 subjects given a MD plus curcumin and BSE (curcumin/BSE group). Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), high-sensitivity c-reactive protein (hs-CRP), total AGE, soluble receptor for AGE (sRAGE), malondialdehyde (MDA), plasma phospholipid fatty acid (PPFA) composition, and non-esterified fatty acids (NEFA) were tested at baseline and after 12 weeks. sRAGE, NEFA, and MDA decreased significantly in both groups, while only the curcumin/BSE group showed a significant decline in total AGE. Only the changes in total AGE and MDA differed significantly between the curcumin/BSE and MD groups. Our data suggest a positive effect of supplementation with curcumin and BSE on glycoxidation and lipid peroxidation in chronically exercising master athletes.

  2. Trolox enhances curcumin's cytotoxicity through induction of oxidative stress.

    PubMed

    Zheng, Jie; Payne, Kelsey; Taggart, Jori E; Jiang, Hongchao; Lind, Stuart E; Ding, Wei-Qun

    2012-01-01

    Curcumin, a natural polyphenol in the spice turmeric, has been found to exhibit anticancer activity. Although curcumin is generally considered an antioxidant, it is also able to elicit apoptosis through the generation of ROS, thereby functioning as a pro-oxidant in cancer cells. The present study investigated the effects of antioxidant pretreatment on curcumin-induced cytotoxicity in the human cancer cell lines A2780, MCF-7, and MDA-MB-231. Cytotoxicity was enhanced by trolox, vitamin C or vitamin E; trolox, a water soluble vitamin E derivative, was the most potent. The combination of curcumin (10 μM) and trolox (10-50 μM) induced apoptosis of cancer cells as evidenced by PARP cleavage and caspase-3 activation. Furthermore, expression of the pro-apoptotic protein Bad was up-regulated and expression of the anti-apoptotic proteins Bcl-2 and Bcl-xl was down-regulated in cells that had been treated with trolox plus curcumin. ROS generation was detected in curcumin-treated cells and was significantly enhanced when cells were treated with trolox plus curcumin. Exogenous catalase or SOD1 did not alter cytotoxicity, while over-expression of either catalase or SOD1 did, pointing to the importance of intracellular hydrogen peroxide generation in cell killing. In conclusion, we demonstrated for the first time that antioxidants such as trolox can potentiate cancer cell killing by curcumin, a finding which may help in the development of novel drug combination therapies.

  3. Effect of curcumin on down-expression of thrombospondin-4 induced by oxidized low-density lipoprotein in mouse macrophages.

    PubMed

    Zhou, Zhong-yun; Chen, Yi-qing; Wang, Fei-yan; Tian, Nan; Fan, Chun-lei

    2014-01-01

    This study was designed to investigate the effect of curcumin on the expression of thrombospondin-4 (THBS-4) in mouse macrophages treated with oxidized low-density lipoprotein (oxLDL). The mouse macrophage cell line ANA-1 was treated with oxLDL. Cell viability was measured by MTT assay. ANA-1 cells were divided into five groups: control group, model group, 5 μM curcumin group, 15 μM curcumin group and 25 μM curcumin group. The gene and protein expression levels of THBS-4 in each group were determined by real-time quantitative polymerase chain reaction (PCR) and western blotting, respectively. MTT assay showed that curcumin concentrations up to 25 μM and oxLDL concentrations up to 20 μg/ml had no significant cytotoxic effects on macrophages at 24 h. Real-time quantitative PCR revealed that THBS-4 mRNA expression was markedly reduced by stimulation with oxLDL, but subsequently significantly increased by treatment with curcumin. Western blotting confirmed that curcumin (5, 15, and 25 μM) significantly prevented the decrease in THBS-4 expression induced by oxLDL (20 μg/ml) in macrophages. Curcumin prevents the decrease in THBS-4 expression induced by oxLDL, which may represent one of the anti-atherosclerotic mechanisms of curcumin.

  4. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  5. Effects of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of human serum lipids.

    PubMed

    Ahuja, Kiran D K; Kunde, Dale A; Ball, Madeleine J; Geraghty, Dominic P

    2006-08-23

    The oxidation of low-density lipoprotein (LDL) is believed to be the initiating factor for the development and progression of atherosclerosis. The active ingredients of spices such as chili and turmeric (capsaicin and curcumin, respectively) have been shown to reduce the susceptibility of LDL to oxidation. One of the techniques used to study the oxidation of LDL is to isolate LDL and subject it to metal-induced (copper or iron) oxidation. However, whole serum may represent a closer situation to in vivo conditions than using isolated LDL. We investigated the effects of different concentrations (0.1-3 microM) of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of serum lipoproteins. The lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. The lag time increased, and the rate of oxidation decreased with increasing concentrations of the tested antioxidants (p < 0.05). A 50% increase in lag time (from control) was observed at concentrations between 0.5 and 0.7 microM for capsaicin, dihydrocapsaicin, and curcumin. This study shows that oxidation of serum lipids is reduced by capsaicinoids and curcumin in a concentration-dependent manner.

  6. Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction.

    PubMed

    Tokaç, Mehmet; Taner, Gökçe; Aydın, Sevtap; Ozkardeş, Alper Bilal; Dündar, Halit Ziya; Taşlıpınar, Mine Yavuz; Arıkök, Ata Türker; Kılıç, Mehmet; Başaran, Arif Ahmet; Basaran, Nursen

    2013-11-01

    Curcumin, a most active antioxidant compound, has been suggested to have potential beneficial effects against most metabolic and psychological disorders, including cholestasis. In the present study, the effects of curcumin against oxidative stress and DNA damage induced by bile duct ligation (BDL) in Wistar albino rats for 14 days were investigated. The rats were divided into three following groups: Sham group, the BDL group and the BDL+curcumin group. A daily dose of 50mg/kg curcumin was given to the BDL+curcumin group intragastrically for 14 days. The biomarkers of hepatocellular damage were decreased in the BDL+curcumin group compared to the BDL group, indicating that curcumin recovered the liver functions. DNA damage as assessed by the alkaline comet assay was also found to be low in the BDL+curcumin group. Curcumin significantly reduced malondialdehyde and nitric oxide levels, and enchanced reduced glutathione levels and catalase, superoxide dismutase, and glutathione S-transferase enzymes activities in the livers and kidneys of BDL group. Curcumin treatment in BDL group was found to decrease tumor necrosis factor-alpha levels in the livers of rats. These results suggest that curcumin might have protective effects on the cholestasis-induced injuries in the liver and kidney tissues of rats.

  7. [Curcumin alleviated liver oxidative stress injury of rat induced by paraquat].

    PubMed

    Han, Wenwen; Wu, Dong; Liu, Hong; Lu, Yang; Wang, Lei; Hong, Guangliang; Qiu, Qiaomeng; Lu, Zhongqiu

    2014-05-01

    To investigate the effect of curcumin on liver injury in rats induced by paraquat-mediated oxidative stress and the mechanism underlying its effect. Sixty rats were randomly divided into 4 groups: control group, curcumin control group (curcumin 50 mg/kg), paraquat group (2% paraquat solution 100 mg/kg), and curcumin intervention group (curcumin 50 mg/kg at 15 min, 24 h, or 48 h after paraquat exposure). On days 1, 3, or 7 after paraquat administration, and liver tissue was collected thereafter. The content of malonaldehyde (MDA) and the activities of superoxide dismutase activity (SOD) and catalase (CAT) in the liver tissue were determined by chemical colorimetry. The activities of heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) in the liver tissue were determined by ELISA. The mRNA and protein levels of NF-E2-related factor 2 (Nrf2) were determined by RT-PCR and Western blot, respectively. The pathological changes of liver tissue were examined by optical microscopy. No significant change was observed between the control group and the curcumin control group in any examination of this study (P > 0.05). Both paraquat group and curcumin intervention group showed increase in MDA content, decreases in SOD and CAT activities, increases in HO-1 and NQO-1 activities, and increases in the protein and mRNA levels of Nrf2, in comparison with the control group (P < 0.05 for all except HO-1 activity in paraquat group on day 7). In comparison with the parquet group on the same day, the curcumin intervention group showed decrease in MDA content, increases in the activities of SOD, CAT, HO-1, and NQO-1, and increases in the mRNA and protein levels of Nrf2 on days 1, 3, and 7 (P < 0.05). The pathological examination revealed that the damage of liver tissue in the paraquat group was the most serious on the 3rd day after paraquat exposure, and the damage was consistently alleviated by curcumin intervention on days 1, 3, and 7, as compared with the paraquat group

  8. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    PubMed

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  9. Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals

    PubMed Central

    Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-01-01

    Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334

  10. Antioxidative properties of curcumin in the protection of blood platelets against oxidative stress in vitro.

    PubMed

    Kolodziejczyk, Joanna; Olas, Beata; Saluk-Juszczak, Joanna; Wachowicz, Barbara

    2011-01-01

    The present in vitro study was designed to estimate the antioxidative activity of curcumin in the protection of human blood platelets and plasma against peroxynitrite (ONOO(-))-induced oxidative stress. The effects of curcumin (12.5-50 µg/ml) on ONOO(-)-induced damage of proteins and lipids were determined by the estimation of protein carbonyl groups, 3-nitrotyrosine formation, and thiobarbituric acid reactive substance (TBARS) generation. Exposure of blood platelets and plasma to 100 µM ONOO(-) resulted in an increased level of carbonyl groups, nitration of protein tyrosine residues, and enhanced lipid peroxidation. Curcumin inhibited carbonyl group formation in plasma and in platelet proteins. The highest dose of curcumin (50 µg/ml) reduced blood platelet protein carbonylation by approximately 40%. In the protection of blood plasma protein, the lower doses of curcumin (12.5 and 25 µg/ml) were more effective. Curcumin partially prevented 3-nitrotyrosine formation in plasma proteins; the effect of curcumin was only statistically significant in blood platelets at the highest dose (50 µg/ml). The antioxidative action of curcumin in the protection against lipid peroxidation caused by ONOO(-) was also observed. Curcumin suppressed the formation of TBARS both in blood platelets and in plasma samples. The highest concentration of curcumin (50 µg/ml) decreased the TBARS level by approximately 35% in both blood platelets and plasma samples. In conclusion, the present study demonstrates the antioxidative properties of curcumin and its protective effects against oxidative/nitrative changes of blood platelets and plasma components, especially proteins and lipids.

  11. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway.

    PubMed

    Guo, Shouyu; Long, Mingzhi; Li, Xiuzhen; Zhu, Shushu; Zhang, Min; Yang, Zhijian

    2016-03-01

    Curcumin, which is the effective component of turmeric (Curcuma longa), has previously been shown to exert potent antioxidant, antitumor and anti‑inflammatory activities in vitro and in vivo. However, the mechanism underlying the protective effects of curcumin against oxidative damage in endothelial cells remains unclear. The present study aimed to examine the effects of curcumin on hydrogen peroxide (H2O2)‑induced apoptosis and autophagy in EA.hy926 cells, and to determine the underlying molecular mechanism. Cultured EA.hy926 cells were treated with curcumin (5‑20 µmol/l) 4 h prior to and for 4 h during exposure to H2O2 (200 µmol/l). Oxidative stress resulted in a significant increase in the rate of cell apoptosis, which was accompanied by an increase in the expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), and a decrease in the expression levels of Bcl‑2. Treatment with curcumin (5 or 20 µmol/l) significantly inhibited apoptosis, and reversed the alterations in caspase‑3, Bcl‑2 and Bax expression. Furthermore, curcumin induced autophagy and microtubule‑associated protein 1A/1B‑light chain 3‑Ⅱ expression, and suppressed the phosphorylation of Akt and mammalian target of rapamycin (mTOR). These results indicated that curcumin may protect cells against oxidative stress‑induced damage through inhibiting apoptosis and inducing autophagy via the Akt/mTOR pathway.

  12. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy.

    PubMed

    Jaroonwitchawan, Thiranut; Chaicharoenaudomrung, Nipha; Namkaew, Jirapat; Noisa, Parinya

    2017-01-01

    Paraquat is a neurotoxic agent, and oxidative stress plays an important role in neuronal cell death after paraquat exposure. In this study, we assessed the neuroprotective effect of curcumin against paraquat and explored the underlying mechanisms of curcumin in vitro. Curcumin treatment prevented paraquat-induced reactive oxygen species (ROS) and apoptotic cell death. Curcumin also exerted a neuroprotective effect by increasing the expression of anti-apoptotic and antioxidant genes. The pretreatment of curcumin significantly decreased gene expression and protein production of amyloid precursor protein. The activation of autophagy process was found defective in paraquat-induced cells, indicated by the accumulation and reduction of LC3I/II. Noteworthy, curcumin restored LC3I/II expression after the pretreatment. Collectively, curcumin demonstrated as a prominent suppressor of ROS, and could reverse autophagy induction in SH-SY5Y cells. The consequences of this were the reduction of APP production and prevention of SH-SY5Y cells from apoptosis. Altogether, curcumin potentially serves as a therapeutic agent of neurodegenerative diseases, associated with ROS overproduction and autophagy dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats

    PubMed Central

    IBRAHIM, ZEIN SHABAN; ALKAFAFY, MOHAMED ELSAYED; AHMED, MOHAMED MOHAMED; SOLIMAN, MOHAMED MOHAMED

    2016-01-01

    The progression of diabetic nephropathy (DN) is accelerated by smoking. The current study investigated the ability of curcumin to protect the kidneys against damage from oxidative stress induced by diabetes mellitus (DM) and nicotine (NC). A total of 24 male Wistar rats were divided into four groups of six rats each. DM was induced by a single intraperitoneal injection of streptozotocin 60 mg/kg body weight. DM rats were treated with or without NC in the absence or presence of curcumin for 8 weeks. As compared with the controls, DM rats exhibited reduced serum levels of high density lipoprotein, superoxide dismutase and glutathione peroxidase, and decreased renal mRNA expression levels of synaptopodin, connexin 43 and erythropoietin (EPO), which were further suppressed by NC and restored to normal levels by curcumin treatment. Additionally, DM rats exhibited increases in their lipid profiles (cholesterol, triacylglycerol and phospholipids), oxidative markers (malondialdehyde, γ-glutamyltranspeptidase and nitric oxide), kidney function markers (urea and creatinine) and the mRNA expression levels of vimentin, desmin, SREBP-1, iNOS and TGF-β1. These effects were further enhanced by NC, but counteracted by curcumin treatment. Kidneys from DM rats displayed glomerular hypertrophy, sclerosis and tubulo-interstitial changes represented by tubular lipid deposition, interstitial mononuclear cell infiltration and fibroplasia. Pancreatic islets exhibited cellular vacuolation, morphological irregularity and damaged or reduced in size β-cells. These renal and pancreatic changes became more severe following NC treatment and were ameliorated by curcumin. Therefore, NC-induced DN progression may predominantly operate by increasing oxidative stress, reducing the levels of antioxidants, suppressing EPO levels, and causing perturbations to gap junction and podocyte structure. Curcumin may ameliorate the damaging effects of DM and NC on the kidney through normalization of the m

  14. Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition.

    PubMed

    Yang, Yang; Duan, Weixun; Liang, Zhenxin; Yi, Wei; Yan, Juanjuan; Wang, Ning; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Jin, Zhenxiao; Yi, Dinghua

    2013-03-01

    Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H(2)O(2))-induced OSI and the protective effect of curcumin during (H(2)O(2))-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H(2)O(2) in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H(2)O(2), which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H(2)O(2) treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.

  15. Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats

    PubMed Central

    Badria, Farid A.; Ibrahim, Ahmed S.; Badria, Adel F.; Elmarakby, Ahmed A.

    2015-01-01

    Objectives Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. Design and Methods Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. Results Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. Conclusion Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism. PMID:26230491

  16. Therapeutic role of curcumin in oxidative DNA damage caused by formaldehyde.

    PubMed

    Ciftci, Gulay; Aksoy, Abdurrahman; Cenesiz, Sena; Sogut, Mehtap Unlu; Yarim, Gul Fatma; Nisbet, Cevat; Guvenc, Dilek; Ertekin, Ali

    2015-05-01

    Formaldehyde is a common environmental contaminant that causes oxidative DNA damage in cells by increasing the production of reactive oxygen species. The aim of this study was to investigate the amount of 8-hydroxy-deoxyguanosine (8-OhdG), tumor protein 53(TP53), beta-amyloid[Aß(1-42), Aß (1-40)], total antioxidant capacity (TAC) and malondialdehyde (MDA) and the therapeutic role of curcumin in rat cells with oxidative DNA damage caused by formaldehyde. The control group was given physiological saline for 15 days (i.p.) and the second group was given 37% formaldehyde (i.p.) at a dose of 9 mg/kg group every other day. The third group was given 9 mg/kg formaldehyde (i.p.) every other day and treated therapeutically with 100 mg/kg curcumin every day by gavage. At the end of the trial period, urine, blood, and brain tissue was collected from the rats. The levels of MDA in sera were increased and the TAC, TP53, and Aß (1-40) levels were reduced in the formaldehyde-treated group with respect to the control group (p<0.005). After treatment with curcumin, the levels of sera MDA were significantly reduced, the TAC, TP53, and Aß (1-40) levels were significantly increased (P < 0.05). The levels of whole brain Aß (1-42) and 8-OhdG were increased in the formaldehyde-treated group and reduced after treatment with curcumin (P < 0.05). Urinary 8-OhdG excretion increased in the formaldehyde-treated group (P < 0.05) and decreased after treatment with curcumin (P > 0.05). In conclusion, the oxidative stress caused by formaldehyde exposure was reduced with the application of curcumin. © 2015 Wiley Periodicals, Inc.

  17. Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Galaly, S R; Ahmed, O M; Mahmoud, A M

    2014-12-01

    This study was conducted to assess the preventive effect of two plant constituents, thymoquinone and curcumin, on gentamicin-induced deleterious effect on liver function, integrity and histological architecture. The gentamicin was intraperitoneally injected to rats at dose level of 100 mg/kg b.w. (every other day) for 21 days. The thymoquinone and curcumin were concurrently and orally administered at dose level of 20 mg/kg b.w. (every other day) to gentamicin-injected rats. The present data indicated that thymoquinone and curcumin significantly prevented the gentamicin-induced elevations of serum AST, ALT and LDH activities as well as tumor necrosis factor alpha (TNF-α) and total bilirubin levels. On the other hand, both agents markedly ameliorated the gentamicin-induced decrease in serum total protein, albumin and albumin/globulin ratio. In addition, the gentamicin-induced liver histological alterations including hydropic degeneration of hepatocytes, fatty changes, inflammatory cell infiltration and congestion of portal vein were successfully amended by thymoquinone and curcumin. The elevated proapoptotic proteins caspase 3 and Bax expression in cytoplasm and nucleus of hepatocytes of gentamicin-injected rats were reduced to normal value as a result of thymoquinone and curcumin administration while the lowered expression of antiapoptotic protein Bcl-2 was increased. Based on the previous findings, it can be concluded that thymoquinone and curcumin successfully prevents the deleterious effects on liver function and histological integrity to more or less the same degree by enhancing anti-oxidant defense system, suppression of oxidative stress and attenuation of inflammation and apoptosis.

  18. Curcumin

    PubMed Central

    Chaudhari, Soham P.; Tam, Alison Y.; Barr, Jason A.

    2015-01-01

    Background: Herbal medicines are used by thousands of patients all over the world. However, they can often cause adverse effects. Turmeric, made from the root of Curcuma, longa, is a yellow spice used throughout South Asia for its flavor as well as for its medicinal properties. Curcumin is the main ingredient in turmeric. It is known for downregulating the expression of various proinflammatory cytokines and has been studied for its antiinflammatory mechanism. However, it has also been reported to cause contact dermatitis. Kumkum, a turmeric-based powder applied by Hindu women on their foreheads, has also been found as an allergen. Objective: The authors have reviewed the anti-inflammatory properties of curcumin and reports of contact dermatitis to understand the possible harmful effects of this commonly used spice, while also examining its beneficial role in dermatologic conditions. They aim to increase awareness regarding this common herb and its prevalent use not only in South Asia, but also in North America. Methods: A thorough literature search of the PubMed database was conducted to identify studies that examined the antiinflammatory role of curcumin and its role in contact dermatitis. Results: Eleven studies demonstrate that although curcumin does have antiinflammatory properties, it is an allergen. Conclusion: Curcumin has many valuable properties that can be exploited to treat dermatologic conditions. However, patients and dermatologists must be keen of possible allergic reactions. Further studies are needed to completely understand this widely used herb and its efficacy in dermatology. PMID:26705440

  19. [Curcumin improves learning and memory function through decreasing hippocampal TNF-α and iNOS levels after subarachnoid hemorrhage in rats].

    PubMed

    Qiu, Zhenwei; Yue, Shuangzhu

    2016-03-01

    To investigate the effect of curcumin on learning and memory function of rats with subarachnoid hemorrhage (SAH) and the possible mechanism. A total of 30 male Sprague-Dawley rats were randomly divided into three groups: Sham group, SAH group and curcumin (Cur) therapy group. Experimental SAH rat models were established by injecting autologous blood into the cisterna magna. Neurological deficits of rats were examined at different time points. Spatial learning and memory abilities were tested by Morris water maze test. The hippocampal tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) were detected by ELISA. RESULTS Experimental SAH rat models were established successfully. Neurological scores of the SAH rats were significantly lower than those of the sham group. Curcumin therapy obviously improved the neurological deficits of rats compared with the SAH rats. Morris water maze test showed that SAH caused significant cognitive impairment with longer escape latency compared with the sham group. After treatment with curcumin for 4 weeks, the escape latency decreased significantly. The levels of TNF-α and iNOS in the curcumin-treated group were significantly lower than those of the SAH group. SAH can cause learning and memory impairment in rats. Curcumin can recover learning and memory function through down-regulating hippocampal TNF-α and iNOS levels.

  20. Oxidative metabolism of curcumin-glucuronide by peroxidases and isolated human leukocytes.

    PubMed

    Luis, Paula B; Gordon, Odaine N; Nakashima, Fumie; Joseph, Akil I; Shibata, Takahiro; Uchida, Koji; Schneider, Claus

    2017-05-15

    Conjugation with glucuronic acid is a prevalent metabolic pathway of orally administrated curcumin, the bioactive diphenol of the spice turmeric. The major in vitro degradation reaction of curcumin is autoxidative transformation resulting in oxygenation and cyclization of the heptadienedione chain to form cyclopentadione derivatives. Here we show that curcumin-glucuronide is much more stable than curcumin, degrading about two orders of magnitude slower. Horseradish peroxidase-catalyzed oxidation of curcumin-glucuronide occurred at about 80% of the rate with curcumin, achieving efficient transformation. Using LC-MS and NMR analyses the major products of oxidative transformation were identified as glucuronidated bicyclopentadione diastereomers. Cleavage into vanillin-glucuronide accounted for about 10% of the products. Myeloperoxidase and lactoperoxidase oxidized curcumin-glucuronide whereas tyrosinase and xanthine oxidase were not active. Phorbol ester-activated primary human leukocytes showed increased oxidative transformation of curcumin-glucuronide which was inhibited by the peroxidase inhibitor sodium azide. These studies provide evidence that the glucuronide of curcumin is not an inert product and may undergo further enzymatic and non-enzymatic metabolism. Oxidative transformation by leukocyte myeloperoxidase may represent a novel metabolic pathway of curcumin and its glucuronide conjugate. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice.

    PubMed

    Sompamit, Kwanjit; Kukongviriyapan, Upa; Nakmareong, Saowanee; Pannangpetch, Patchareewan; Kukongviriyapan, Veerapol

    2009-08-15

    Oxidative stress is implicated in various pathological conditions, including septic shock, and other diseases associated with local or systemic inflammation. Curcumin, a major component from turmeric (Curcuma longa), possesses diverse anti-inflammatory, anti-tumour and antioxidant properties. The aim of this study was to investigate the effect of curcumin on modulation of vascular dysfunction and oxidative stress induced by lipopolysaccharide (LPS) in mice. Male ICR mice were treated with curcumin (50 or 100 mg/kg), administered intragastrically, either before or after intraperitoneal injection of LPS (10 mg/kg). Fifteen hours after LPS administration, arterial blood pressure was measured and vascular response to vasoactive agents were assessed. Aortic tissues and blood samples were taken for assays of antioxidant and oxidative stress markers. LPS caused marked hypotension, tachycardia and vascular hyporeactivity. The mean arterial pressures in responses to phenylephrine, acetylcholine, and sodium nitroprusside of LPS-treated mice were significantly decreased when compared with the untreated controls. Curcumin modulated heart rate and restored arterial blood pressure in a dose-dependent manner in both protectively- and therapeutically-treated regimens. Furthermore, the vascular responsiveness of LPS-treated mice was improved by curcumin. Interestingly, the improvements of haemodynamics and vascular response during endotoxaemia were related to alleviation of oxidative stress by reducing aortic-derived superoxide production, suppression of lipid peroxidation and protein oxidation, and decrease in urinary nitric oxide metabolites with preservation of the ratio of glutathione/glutathione disulfide. This study provides the first evidence for the potential role of curcumin in prevention and treatment of vascular dysfunction in mice with endotoxaemia elicited by LPS.

  2. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    PubMed

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  3. Zn(II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism.

    PubMed

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-03-01

    Curcumin can chelate metal ions, forming metallocomplexes. We compared the effects of Zn(II)-curcumin with curcumin against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Oral administration of Zn(II)-curcumin dose-dependently prevented the ethanol-induced elevation of serum malondialdehyde (MDA) content and reductions in glutathione level and superoxide dismutase (SOD) activity. Zn(II)-curcumin also inhibited ethanol-induced liver injury. Additionally, Zn(II)-curcumin dose-dependently inhibited hemorheological abnormalities, including the ethanol-induced elevation of whole blood viscosity, plasma viscosity, blood viscosity at corrected hematocrit (45%), erythrocyte aggregation index, erythrocyte rigidity index and hematocrit. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively elevated SOD activity, ameliorated liver injury and improved hemorheological variables. These results suggest that Zn(II)-curcumin protected the rats from ethanol-induced liver injury and hemorheological abnormalities via the synergistic effect of curcumin and zinc.

  4. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, Z; Tuzcu, M; Sahin, N

    2012-11-01

    Curcumin, a natural polyphenol in the spice turmeric, exhibits antioxidant and antiinflammatory properties. This study was conducted to elucidate the action mode of curcumin alleviation of oxidative stress in heat-stressed quail. A total of 180 birds (10 d old) were assigned randomly to be reared at either 22°C (Thermoneutral) or 34°C (Heat stress) for 8 h/d (0900-1700) until the age of 42 d. Birds in both environments were randomly fed 1 of 3 diets: basal diet and basal diet added with 0, 200 or 400 mg of curcumin per kg of diet. Each of the 2×3 factorially arranged experimental groups was replicated in 10 cages, each containing three birds. In response to increasing supplemental curcumin level, there were linear increases in cumulative feed intake, final body weight, and weight gain, and nuclear factor erythroid 2-related factor two level and heme oxygenase one level; linear decreases in feed efficiency, serum, muscle and liver malondialdehyde level, respectively and inflammatory transcription factor, nuclear factor-κB and heat shock proteins 70 level (P<0.0001 for all). The results indicated that curcumin alleviates oxidative stress through modulating the hepatic nuclear transcription factors and heat shock proteins 70 in heat-stressed quails.

  5. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on Inhibition of LDL Oxidation and Increases in HDL and Paraoxonase Levels in Streptozotocin-Diabetic Rats

    PubMed Central

    Assis, Renata Pires; Arcaro, Carlos Alberto; Gutierres, Vânia Ortega; Oliveira, Juliana Oriel; Costa, Paulo Inácio; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2017-01-01

    Combination therapy using natural antioxidants to manage diabetes mellitus and its complications is an emerging trend. The aim of this study was to investigate the changes promoted by treatment of streptozotocin (STZ)-diabetic rats with yoghurt enriched with the bioactives curcumin, lycopene, or bixin (the latter two being carotenoids). Antioxidants were administered individually, or as mixtures, and biomarkers of metabolic and oxidative disturbances, particularly those associated with cardiovascular risk, were assessed. Treatment of STZ-diabetic rats with natural products individually decreased glycemia, triacylglycerol, total-cholesterol, oxidative stress biomarkers, including oxidized low-density lipoprotein (ox-LDL), and increased the activities of antioxidant enzymes. Individual carotenoids increased both high-density lipoprotein (HDL) and paraoxonase levels, whereas curcumin increased only paraoxonase. Treatments with mixtures of curcumin and lycopene or bixin had combined effects, decreasing biomarkers of carbohydrate and lipid disturbances (curcumin effect), increasing the HDL levels (carotenoids effects) and mitigating oxidative stress (curcumin and carotenoids effects). The combined effects also led to prevention of the LDL oxidation, thereby mitigating the cardiovascular risk in diabetes. These findings provide evidence for the beneficial effect of curcumin and carotenoid mixtures as a supplementation having antioxidant and antiatherogenic potentials, thus appearing as an interesting strategy to be studied as a complementary therapy for diabetic complications. PMID:28333071

  6. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on Inhibition of LDL Oxidation and Increases in HDL and Paraoxonase Levels in Streptozotocin-Diabetic Rats.

    PubMed

    Assis, Renata Pires; Arcaro, Carlos Alberto; Gutierres, Vânia Ortega; Oliveira, Juliana Oriel; Costa, Paulo Inácio; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2017-03-23

    Combination therapy using natural antioxidants to manage diabetes mellitus and its complications is an emerging trend. The aim of this study was to investigate the changes promoted by treatment of streptozotocin (STZ)-diabetic rats with yoghurt enriched with the bioactives curcumin, lycopene, or bixin (the latter two being carotenoids). Antioxidants were administered individually, or as mixtures, and biomarkers of metabolic and oxidative disturbances, particularly those associated with cardiovascular risk, were assessed. Treatment of STZ-diabetic rats with natural products individually decreased glycemia, triacylglycerol, total-cholesterol, oxidative stress biomarkers, including oxidized low-density lipoprotein (ox-LDL), and increased the activities of antioxidant enzymes. Individual carotenoids increased both high-density lipoprotein (HDL) and paraoxonase levels, whereas curcumin increased only paraoxonase. Treatments with mixtures of curcumin and lycopene or bixin had combined effects, decreasing biomarkers of carbohydrate and lipid disturbances (curcumin effect), increasing the HDL levels (carotenoids effects) and mitigating oxidative stress (curcumin and carotenoids effects). The combined effects also led to prevention of the LDL oxidation, thereby mitigating the cardiovascular risk in diabetes. These findings provide evidence for the beneficial effect of curcumin and carotenoid mixtures as a supplementation having antioxidant and antiatherogenic potentials, thus appearing as an interesting strategy to be studied as a complementary therapy for diabetic complications.

  7. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species.

    PubMed

    Gersey, Zachary C; Rodriguez, Gregor A; Barbarite, Eric; Sanchez, Anthony; Walters, Winston M; Ohaeto, Kelechi C; Komotar, Ricardo J; Graham, Regina M

    2017-02-04

    Glioblastoma Multiforme (GBM) is the most common and lethal form of primary brain tumor in adults. Following standard treatment of surgery, radiation and chemotherapy, patients are expected to survive 12-14 months. Theorized cause of disease recurrence in these patients is tumor cell repopulation through the proliferation of treatment-resistant cancer stem cells. Current research has revealed curcumin, the principal ingredient in turmeric, can modulate multiple signaling pathways important for cancer stem cell self-renewal and survival. Following resection, tumor specimens were dissociated and glioblastoma stem cells (GSCs) were propagated in neurosphere media and characterized via immunocytochemistry. Cell viability was determined with MTS assay. GSC proliferation, sphere forming and colony forming assays were conducted through standard counting methods. Reactive oxygen species (ROS) production was examined using the fluorescent molecular probe CM-H2DCFA. Effects on cell signaling pathways were elucidated by western blot. We evaluate the effects of curcumin on patient-derived GSC lines. We demonstrate a curcumin-induced dose-dependent decrease in GSC viability with an approximate IC50 of 25 μM. Treatment with sub-toxic levels (2.5 μM) of curcumin significantly decreased GSC proliferation, sphere forming ability and colony forming potential. Curcumin induced ROS, promoted MAPK pathway activation, downregulated STAT3 activity and IAP family members. Inhibition of ROS with the antioxidant N-acetylcysteine reversed these effects indicating a ROS dependent mechanism. Discoveries made in this investigation may lead to a non-toxic intervention designed to prevent recurrence in glioblastoma by targeting glioblastoma stem cells.

  8. Curcumin attenuates oxidative stress following downhill running-induced muscle damage.

    PubMed

    Kawanishi, Noriaki; Kato, Kouki; Takahashi, Masaki; Mizokami, Tsubasa; Otsuka, Yoshihiko; Imaizumi, Atsushi; Shiva, Daisuke; Yano, Hiromi; Suzuki, Katsuhiko

    2013-11-22

    Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, -15% grade on the treadmill for 150 min. Curcumin (3mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.

  9. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease.

    PubMed

    Khatri, Dharmendra K; Juvekar, Archana R

    Curcumin, a natural polyphenolic compound extracted from rhizomes of Curcuma longa (turmeric), a plant in the ginger family (Zingiberaceae) has been used worldwide and extensively in Southeast Asia. Curcumin exhibited numerous biological and pharmacological activities including potent antioxidant, cardiovascular disease, anticancer, anti-inflammatory effects and neurodegenerative disorders in cell cultures and animal models. Hence, the present study was designed in order to explore the possible neuroprotective role of curcumin against rotenone induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of rotenone (1mg/kg i.p.) for a period of three weeks significantly impaired cognitive function (actophotometer, rotarod and open field test), oxidative defense (increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and reduced glutathione level) and mitochondrial complex (II and III) enzymes activities as compared to normal control group. Three weeks of curcumin (50, 100 and 200mg/kg, p.o.) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to negative control (rotenone treated) group. Curcumin treated mice also mitigated enhanced acetylcholine esterase enzyme level as compared to negative control group. We found that curcumin restored motor deficits and enhanced the activities of antioxidant enzymes suggesting its antioxidant potential in vivo. The findings of the present study conclude neuroprotective role of curcumin against rotenone induced Parkinson's in mice and offer strong justification for the therapeutic prospective of this compound in the management of PD. Copyright © 2016. Published by Elsevier Inc.

  10. Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

    PubMed Central

    Choudhury, Somsubhra Thakur; Das, Nirmalendu; Ghosh, Swarupa; Ghosh, Debasree; Chakraborty, Somsuta; Ali, Nahid

    2016-01-01

    The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4) causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001) increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4-induced oxidative stress–mediated hepatocellular damage and thereby can be considered as an effective therapeutic strategy. PMID:27274242

  11. Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells.

    PubMed

    Mahakunakorn, Pramote; Tohda, Michihisa; Murakami, Yukihisa; Matsumoto, Kinzo; Watanabe, Hiroshi; Vajaragupta, Opa

    2003-05-01

    The ability of curcumin, a natural antioxidant isolated from Curcuma longa, to inhibit hydrogen peroxide (H(2)O(2))-induced cell damage in NG108-15 cells was examined. When added simultaneously with 500 microM H(2)O(2), curcumin (25-100 microM) effectively protected cells from oxidative damage. However, when the cells were pretreated with curcumin (25-100 microM) for 1.5 h before H(2)O(2) exposure, curcumin was unable to inhibit H(2)O(2)-induced cell damage. Instead, it caused a significant concentration-dependent decrease in cell viability after H(2)O(2) exposure. This dual action of curcumin suggests that pretreatment with curcumin by itself did not have any significant effect on the viability of the NG108-15 cells, but it sensitized them to oxidative damage induced by H(2)O(2) under our experimental conditions. It appears that these events may not relate to the antioxidant and free radical scavenging activities of curcumin.

  12. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    PubMed Central

    Khorsandi, Layasadat; Mansouri, Esrafil; Orazizadeh, Mahmoud; Jozi, Zahra

    2016-01-01

    Background: Zinc oxide nanoparticles (NZnO) are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur) against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL) method. Results: NZnO induced a significant increase in plasma AST (2.8-fold), ALT (2.7-fold) and ALP (1.97-fold) activity in comparison to the control group (p<0.01). NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01). Pre-treatment of Cur significantly reduced lipid peroxidation (39%), increased SOD (156%) and GPx (26%) activities, and attenuated ALT (47%), AST (41%) and ALP (30%) activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05). Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  13. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics.

    PubMed

    Aparicio-Trejo, Omar Emiliano; Tapia, Edilia; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Macías-Ruvalcaba, Norma Angélica; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; García-Arroyo, Fernando E; Cristóbal, Magdalena; Sánchez-Lozada, Laura Gabriela; Pedraza-Chaverri, José

    2016-11-01

    Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 00(00):000000, 2016.

  14. Relief of Oxidative Stress Using Curcumin and Glutathione Functionalized ZnO Nanoparticles in HEK-293 Cell Line.

    PubMed

    Kumar, Amit; Zafaryab, Md; Umar, Ahmad; Rizvi, M M A; Fouad, H; Ansari, Z A; Ansari, S G

    2015-11-01

    To elucidate the effect of zinc oxide nanoparticles (ZnO-NPs) with different surface modifications in relieving the oxidative stress in cultured human embryonic kidney cells (HEK-293) following investigation was performed. Oxidative stress was artificially induced by hydrogen peroxide in HEK-293 cell culture and its management was studied. Alkyl amines modified ZnO-NPs with curcumin and reduced glutathione (GSH) functionalization was used in managing oxidative stress and had shown promising results. ZnO-NPs used in this study were synthesized via non-aqueous sol-gel method and FESEM characterisation showed them of spherical shape of about 20-50 nm size with amine, curcumin and GSH functionalization. UV-visible and FTIR spectroscopic characterizations confirmed functionalization of ZnO-NPs. Decrease in oxidative stress was found with the dose-dependent culture of HEK-293 cells with these functionalized ZnO-NPs. Cell viability and morphology, as observed using AFM and inverted microscope, was retained with the prescribed dosages of the functionalized nanoparticles while at higher dosages they caused cytotoxicity and death. Diethylamine (DEA) modified ZnO-NPs and their functionalization with GSH and curcumin were found more effective in managing oxidative stress in cells. Present study could help in designing economical and bio-compatible functionalized non-toxic nanoparticles designed for managing oxidative stress leading to possible therapeutical and medicinal uses.

  15. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress.

    PubMed

    Reyes-Gordillo, Karina; Segovia, José; Shibayama, Mineko; Vergara, Paula; Moreno, Mario G; Muriel, Pablo

    2007-06-01

    Curcumin, an anti-inflammatory and antioxidant compound, was evaluated for its ability to suppress acute carbon tetrachloride-induced liver damage. Acute hepatotoxicity was induced by oral administration of CCl4 (4 g/kg, p.o.). Curcumin treatment (200 mg/kg, p.o.) was given before and 2 h after CCl4 administration. Indicators of necrosis (alanine aminotransferase) and cholestasis (gamma-glutamyl transpeptidase and bilirubins) resulted in significant increases after CCl4 intoxication, but these effects were prevented by curcumin treatment. As an indicator of oxidative stress, GSH was oxidized and the GSH/GSSG ratio decreased significantly by CCl4, but was preserved within normal values by curcumin. In addition to its antioxidants properties, curcumin is capable of preventing NF-kappaB activation and therefore to prevent the secretion of proinflammatory cytokines. Therefore, in this study we determined the concentrations of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) mRNA, and NF-kappaB activation. CCl4-administered rats depicted significant increases in TNF-alpha, IL-1beta, and IL-6 production, while curcumin remarkably suppressed these mediators of inflammation in liver damage. These results were confirmed by measuring TNF-alpha, and IL-1beta protein production using Western Blot analysis. Accordingly, these proteins were increased by CCl4 and this effect was abolished by curcumin. Administration of CCl4 induced the translocation of NF-kappaB to the nucleus; CCl4 induced NF-kappaB DNA binding activity was blocked by curcumin treatment. These findings suggest that curcumin prevents acute liver damage by at least two mechanisms: acting as an antioxidant and by inhibiting NF-kappaB activation and thus production of proinflammatory cytokines.

  16. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study.

    PubMed

    Al-Rubaei, Z M Malik; Mohammad, Taghreed U; Ali, Layla Karim

    2014-12-01

    Plants have been one of the important sources of medicine even since the-dawn of human civilization. Curcumin has been found to possess tremendous therapeutic potency as antiinflammatory, antioxidant and antimicrobial agent. The present study was designed to examine possible potential therapeutic and protective effect of curcumin from oxidative stress and on total antioxidant capacity in liver damage. The study was conducted using H2O2 as inducing agent of oxidative stress in vivo. Rats were randomly divided into five groups, where n = 20 for each group. Group 1 (G1) rats served as control group. Group 2 (G2) rats subjected to experimentally induced oxidative stress by the ad libitum supply of drinking water containing 0.5% H2O2(v/v) was prepared daily over entire 60 days. Group 3 (G3) rats received H2O2 for sixty days followed by giving 200 mg kg(-1) of curcumin for 30 days. Group 4 (G4) was simultaneously given curcumin (200 mg kg(-1)) for 15 days then followed by receiving H2O2 with curcumin for sixty days. Group 5 (G5) rats was received H2O2 for sixty days followed by giving 200 mg kg(-1) of N-acetyl 1-cystine as standard drug for 30 days. Levels of marker enzymes (ALT, AST and ALP), uric acid, Total Protein (TP) and tumor necrosis factor (α-TNF) were assessed in serum for all studied groups. Malondialdehyde (MDA), 8-hydroxy-2-deoxyguinosine, Total Antioxidant Capacity (TAC), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) were assayed in liver homogenates for all studied groups. The results revealed significant increase (p < 0.05) in levels of ALT, AST, ALP, uric acid and α-TNF while there are significant decrease (p < 0.05) in levels of TP in G2 comparing to G1. Also there are significant differences (p < 0.05) between G3 and G4 comparing to G2 and between G3, G4 and G5 which curcumin elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation. The results also revealed a

  17. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats.

    PubMed

    Acar, Abdullah; Akil, Esref; Alp, Harun; Evliyaoglu, Osman; Kibrisli, Erkan; Inal, Ali; Unan, Fatma; Tasdemir, Nebahat

    2012-07-01

    To date, there have not been enough studies about the effects of curcumin against oxidative stress on sciatic nerves caused by streptozotocin (STZ) in diabetic rats. Therefore, this study was undertaken to determine whether curcumin, by virtue of its antioxidant properties, could affect the oxidant/antioxidant balance in the sciatic nerve and brain tissues of streptozotocin (STZ)-induced diabetic rats. A total of 28 rats were randomly divided into four groups of seven rats each: normal controls, only curcumin treated, diabetic controls, and diabetics treated with curcumin. Biomarkers-malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and NO levels-for oxidative stress in the brain and sciatic nerve tissues of the rats were measured. We found a significant increase in MDA, NO, TOS, and OSI, along with a reduction in TAS levels in the brains and sciatic nerves of the STZ-induced diabetic rats (for both parameters p < 0.05). The MDA, TOS, OSI, and NO levels in these tissues were significantly reduced in the curcumin-treated diabetic group compared to the untreated diabetic group. In conclusion, the results of this study suggested that curcumin exhibits neuroprotective effects against oxidative damage in the brain and sciatic tissues of diabetic rats.

  18. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage.

    PubMed

    Han, Jing; Pan, Xue-Yang; Xu, Yan; Xiao, Yuan; An, Yu; Tie, Lu; Pan, Yan; Li, Xue-Jun

    2012-05-01

    Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.

  19. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases.

    PubMed

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Zachariah, Bobby

    2016-01-25

    Emerging evidence suggests that high fructose consumption may be a potentially important factor responsible for the rising incidence of insulin resistance and diabetes worldwide. The present study investigated the preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high fructose fed male Wistar rats at the molecular level. Fructose feeding for 10 weeks caused oxidative stress, inflammation and insulin resistance. Curcumin treatment attenuated the insulin resistance by decreasing IRS-1 serine phosphorylation and increasing IRS-1 tyrosine phosphorylation in the skeletal muscle of high fructose fed rats. It also attenuated hyperinsulinemia, glucose intolerance and HOMA-IR level. Curcumin administration lowered tumor necrosis factor alpha (TNF-α), C reactive protein (CRP) levels and downregulated the protein expression of cyclo-oxygenase 2 (COX-2), protein kinase theta (PKCθ). In addition, inhibitor κB alpha (IκBα) degradation was prevented by curcumin supplementation. Treatment with curcumin inhibited the rise of malondialdehyde (MDA), total oxidant status (TOS) and suppressed the protein expression of extracellular kinase ½ (ERK ½), p38 in the skeletal muscle of fructose fed rats. Further, it enhanced Glutathione Peroxidase (GPx) activity in the muscle of fructose fed rats. At the molecular level, curcumin inhibited the activation of stress sensitive kinases and inflammatory cascades. Our findings conclude that curcumin attenuated glucose intolerance and insulin resistance through its antioxidant and anti-inflammatory effects. Thus, we suggest the use of curcumin as a therapeutic adjuvant in the management of diabetes, obesity and their associated complications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of curcumin and tannic acid on the aluminum- and lead-induced oxidative neurotoxicity and alterations in NMDA receptors.

    PubMed

    Tüzmen, Münire Nalan; Yücel, Nilgün Candan; Kalburcu, Tülden; Demiryas, Nazan

    2015-02-01

    Exposure to aluminum (Al) and lead (Pb) can cause brain damage. Also, Pb and Al exposure alters N-methyl-d-aspartate receptor (NMDAR) subunit expression. Polyphenols such as tannic acid and curcumin are very efficient chelator for metals. The effects of curcumin and tannic acid (polyphenols) on Al(3+)- and Pb(2+)-induced oxidative stress were examined by investigating lipid peroxidation (LPO) levels, antioxidant enzyme activities, acetyl cholinesterase (AChE) activity and also NMDA receptor subunits 2A and 2B concentrations in the brain tissue of rats sub-chronically. Rats were divided into seven groups as control, Al, Pb, aluminum-tannic acid treatment (AlT), aluminum-curcumin treatment (AlC), lead-tannic acid treatment (PbT) and lead-curcumin treatment (PbC). After 16 weeks of treatment, LPO levels in the brain and hippocampus were higher in Al(3+)-exposed rats than that of Pb(2+)-exposed group. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in brain tissue of Al- and Pb-exposed rats increased significantly compared with control, while catalase (CAT) and AChE activities decreased. It was observed that metal exposure affected NR2A concentrations more than NR2B concentrations and also that polyphenol treatments increased these receptor protein concentrations.

  1. Curcumin Protects Retinal Cells from Light- and Oxidant Stress-induced Cell Death

    PubMed Central

    Mandal, Md Nawajes A.; Patlolla, Jagan M.R.; Zheng, Lixin; Agbaga, Martin-Paul; Tran, Julie-Thu A.; Wicker, Lea; Kasus-Jacobi, Anne; Elliott, Michael H.; Rao, Chinthalapally V.; Anderson, Robert E.

    2009-01-01

    Age-related macular degeneration (AMD) is a complex disease that has potential involvement of inflammatory and oxidative stress-related pathways in its pathogenesis. In search of effective therapeutic agents, we tested curcumin, a naturally-occurring compound with known anti-inflammatory and anti-oxidative properties, in rat model of light induced retinal degeneration (LIRD) and in retina derived cell lines. We hypothesized that any compound effective against LIRD, which involves significant oxidative stress and inflammation, would be a candidate for further characterization for its potential application in AMD. We observed significant retinal neuroprotection in rats fed diets supplemented with curcumin (0.2% in diet) for 2 weeks. The mechanism of retinal protection from LIRD by curcumin involves inhibition of NF-κB activation and down-regulation of cellular inflammatory genes. When tested on retina-derived cell lines (661W and ARPE-19), pre-treatment of curcumin protected these cells from H2O2-induced cell death by up-regulating cellular protective enzymes, such as HO-1, thioredoxin. Since, curcumin with its pleiotropic activities can modulate the expression and activation of many cellular regulatory proteins such as NF-κB, AKT, NRF2 and growth factors, which in turn inhibit cellular inflammatory responses and protect cells; we speculate that curcumin would be an effective nutraceutical compound for preventive and augmentative therapy of AMD. PMID:19121385

  2. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats.

    PubMed

    Ahmida, Mohamed H S

    2012-03-01

    Vancomycin (VAN) is a glycopeptide antibiotic which is active against gram positive bacteria including methicillin resistant Staphylococci. Free radicals are involved in the pathogenesis of vancomycin-induced nephrotoxicity. Therefore, the present study was conducted to investigate the antioxidant potential of curcumin (CUR) against the nephrotoxicity of vancomycin in male rats. Animals used in this study were divided into four groups; the first group was used as control, the second, third and fourth groups were treated orally with curcumin (200 mg/kg BW/day), vancomycin (200 mg/kg BW/day, i.p.), vancomycin plus curcumin, respectively. Curcumin was administered 2 weeks before and 1 week simultaneously with vancomycin. Results showed that thiobarbituric acid reactive substances (TBARS) in plasma and kidney tissue were significantly increased after vancomycin administration. While, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in plasma and kidney tissue and the content of glutathione (GSH) in kidney tissue were decreased compared to control. Vancomycin significantly increased the levels of urea and creatinine. The presence of curcumin with vancomycin caused reduction in induction levels of TBARS in plasma and kidney, urea and creatinine. It ameliorated vancomycin-induced decrease in the activities of antioxidant enzymes and GSH. The presence of curcumin with vancomycin alleviated its nephrotoxic effects. It can be concluded that curcumin has beneficial influences and could be able to antagonize vancomycin nephrotoxicity. Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells.

    PubMed

    Kim, Ji Young; Cho, Tae Jin; Woo, Bok Hee; Choi, Kyung Un; Lee, Chang Hun; Ryu, Mi Heon; Park, Hae Ryoun

    2012-08-01

    Curcumin, a major active component of turmeric Curcuma longa, has been shown to have inhibitory effects on cancers. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effects of curcumin is unclear. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, little data are available regarding the role of autophagy in oral cancers. In this study, we have shown that curcumin has anticancer activity against oral squamous cell carcinoma (OSCC). Induction of autophagy, marked by autophagic vacuoles formation, was detected by acridine orange staining and monodansylcadaverine (MDC) dye after exposure to curcumin. Conversion of LC3-I to LC3-II, a marker of active autophagosome formation, was also detectable by Western blot following curcumin treatment. We have also observed that curcumin induced reactive oxygen species (ROS) production and autophagic vacuoles formation by curcumin was almost completely blocked in the presence of N-acetylcystein (NAC), an antioxidant. Rescue experiments using an autophagy inhibitor suppressed curcumin-induced cell death in OSCC, confirming that autophagy acts as a pro-death signal. Furthermore, curcumin shows anticancer activity against OSCC via both autophagy and apoptosis. These findings suggest that curcumin may potentially contribute to oral cancer treatment and provide useful information for the development of a new therapeutic agent.

  4. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma

    PubMed Central

    Shakeri, Farzaneh; Soukhtanloo, Mohammad; Boskabady, Mohammad Hossein

    2017-01-01

    Objective(s): The effects of Curcuma longa (C. longa) and curcumin on total and differential WBC count and oxidant, antioxidant biomarkers, in rat model of asthma were evaluated. Materials and Methods: Total and differential WBC count in the blood, NO2, NO3, MDA, SOD, CAT and thiol levels in serum were examined in control, asthma, Asthmatic rats treated with C. longa (0.75, 1.50, and 3.00 mg/ml), curcumin (0.15, 0.30, and 0.60 mg/ml), and dexamethasone (1.25 μg/ml) rats. Results: Total and most differential WBC count, NO2, NO3 and MDA were increased but lymphocytes, SOD, CAT and thiol were decreased in asthmatic animals compared to controls (P<0.001). Total WBC, NO2 and NO3 were significantly reduced in treated groups with dexamethasone and all concentrations of C. longa and curcumin compared to asthmatic group (P<0.001 for all cases). MDA was significantly decreased, but SOD, CAT and thiol increased in treated asthma animals with dexamethasone and two higher concentrations of C. longa and curcumin (P<0.01 to P<0.001). There were significant improvement in eosinophil percentage due to treatment of highest concentration of the extract and curcumin, neutrophil and monocyte due to highest concentration of curcumin and lymphocyte due to highest concentration of the extract and two higher concentrations of curcumin compared to asthmatic group (P<0.01 to P<0.001). Dexamethasone treatment improved monocyte (P<0.001) and lymphocyte (P<0.01) percentages. Conclusion: Antioxidant and anti-inflammatory effects of C. longa extract and its constituent curcumin in animal model of asthma was observed which suggest a therapeutic potential for the plant and its constituent on asthma. PMID:28293392

  5. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    SciTech Connect

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  6. Antifungal curcumin promotes chitin accumulation associated with decreased virulence of Sporothrix schenckii.

    PubMed

    Huang, Lilin; Zhang, Jing; Song, Tianzhang; Yuan, Liyan; Zhou, Junjie; Yin, Hongling; He, Tailong; Gao, Wenchao; Sun, Yao; Hu, Xuchu; Huang, Huaiqiu

    2016-05-01

    Curcumin, a yellow polyphenol compound, is known to possess antifungal activity for a range of pathogenic fungi. However, the fungicidal mechanism of curcumin (CUR) has not been identified. We have occasionally found that chitin redistributes to the cell wall outer layer of Sporothrix schenckii (S. schenckii) upon sublethal CUR treatment. Whether CUR can affect chitin synthesis via the protein kinase C (PKC) signaling pathway has not been investigated. This study describes a direct fungicidal activity of CUR against S. schenckii demonstrated by the results of a checkerboard microdilution assay and, for the first time, a synergistic effect of CUR with terbinafine (TRB). Furthermore, the results of real-time PCR showed that sublethal CUR upregulated the transcription of PKC, chitin synthase1 (CHS1), and chitin synthase3 (CHS3) in S. schenckii. The fluorescence staining results using wheat germ agglutinin-fluorescein isothiocyanate (WGA-FITC) and calcofluor white (CFW) consistently showed that chitin exposure and total chitin content were increased on the conidial cell wall of S. schenckii by sublethal CUR treatment. A histopathological analysis of mice infected with CUR-treated conidia showed dampened inflammation in the local lesion and a reduced fungal burden. The ELISA results showed proinflammatory cytokine secretion at an early stage from macrophages stimulated by the CUR-treated conidia. The present data led to the conclusion that CUR is a potential antifungal agent and that its fungicidal mechanism may involve chitin accumulation on the cell wall of S. schenckii, which is associated with decreased virulence in infected mice.

  7. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.

    PubMed

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando

    2006-02-01

    The pervasive action of oxidative stress on neuronal function and plasticity after traumatic brain injury (TBI) is becoming increasingly recognized. Here, we evaluated the capacity of the powerful antioxidant curry spice curcumin ingested in the diet to counteract the oxidative damage encountered in the injured brain. In addition, we have examined the possibility that dietary curcumin may favor the injured brain by interacting with molecular mechanisms that maintain synaptic plasticity and cognition. The analysis was focused on the BDNF system based on its action on synaptic plasticity and cognition by modulating synapsin I and CREB. Rats were exposed to a regular diet or a diet high in saturated fat, with or without 500 ppm curcumin for 4 weeks (n = 8/group), before a mild fluid percussion injury (FPI) was performed. The high-fat diet has been shown to exacerbate the effects of TBI on synaptic plasticity and cognitive function. Supplementation of curcumin in the diet dramatically reduced oxidative damage and normalized levels of BDNF, synapsin I, and CREB that had been altered after TBI. Furthermore, curcumin supplementation counteracted the cognitive impairment caused by TBI. These results are in agreement with previous evidence, showing that oxidative stress can affect the injured brain by acting through the BDNF system to affect synaptic plasticity and cognition. The fact that oxidative stress is an intrinsic component of the neurological sequel of TBI and other insults indicates that dietary antioxidant therapy is a realistic approach to promote protective mechanisms in the injured brain.

  8. Curcumin Ameliorates Kidney Function and Oxidative Stress in Experimental Chronic Kidney Disease.

    PubMed

    Ali, Badreldin H; Al-Salam, Suhail; Al Suleimani, Yousuf; Al Kalbani, Jamila; Al Bahlani, Shadia; Ashique, Mohammed; Manoj, Priyadarsini; Al Dhahli, Buthaina; Al Abri, Nadia; Naser, Heba T; Yasin, Javed; Nemmar, Abderrahim; Al Za'abi, Mohammed; Hartmann, Christina; Schupp, Nicole

    2017-05-31

    Chronic kidney disease (CKD) is known to involve inflammation, oxidative stress and apoptosis. Here, we investigated the impact of curcumin (diferuloyl methane, a phenolic turmeric pigment), which has strong antioxidant, anti-inflammatory and anti-apoptotic activities on kidney structure and function in rats with adenine-induced CKD. Rats were treated for 5 weeks with adenine to induce CKD-like renal damage and combined with three doses of curcumin. Markers of kidney function and oxidative stress were quantified in plasma, urine, renal homogenates and on kidney tissue. Curcumin was found to significantly abate adenine-induced toxic effects such as reduced creatinine clearance, elevated neutrophil gelatinase-associated lipocalin levels and raised urinary N-acetyl-β-D-glucosaminidase activities. Curcumin markedly reduced renal morphological damage and histopathological markers of inflammation, fibrosis and apoptosis. Curcumin further reduced adenine-induced hypertension, urinary albumin, the inflammatory cytokines IL-1β, IL-6 and TNF-α, cystatin C and adiponectin. It restored plasma sclerostin concentrations and lowered oxidative stress in renal homogenates. In animals treated with the two higher curcumin concentrations, alone or in combination with adenine, an increased expression of the antioxidative transcription factor Nrf2 was found as well as up-regulation of the activity of its direct target glutathione reductase, and of an indirect target, the glutathione level. In conclusion, curcumin exhibits salutary effects against adenine-induced CKD in rats by reducing inflammation and oxidative stress via up-regulation of the transcription factor Nrf2. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. The biological effects of vanadyl curcumin and vanadyl diacetylcurcumin complexes: the effect on structure, function and oxidative stability of the peroxidase enzyme, antibacterial activity and cytotoxic effect.

    PubMed

    Hamidi, Akram; Hassani, Leila; Mohammadi, Fakhrossadat; Jahangoshayi, Parisa; Mohammadi, Khosro

    2016-12-01

    Curcumin has multiple pharmacological effects, but it has poor stability. Complexation of curcumin with metals improves its stability. Here, the effects of vanadyl curcumin and vanadyl diacetylcurcumin on the function and structure of horseradish peroxidase enzyme were evaluated by spectroscopic techniques. Cytotoxic effect of the complexes was also assessed on MCF-7 breast cancer, bladder and LNCaP prostate carcinoma cell line. The results showed that the complexes improve catalytic activity of HRP, and also increase its tolerance against the oxidative condition. The result also indicated that the affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism and fluorescence spectroscopies showed that compactness of the enzyme structure around the catalytic heme group and the distance between the heme group and tryptophan residue decreases after the binding. The antibacterial and cytotoxic results indicated that the complexes have anticancer potential, but they have no considerable antibacterial activity.

  10. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes.

    PubMed

    Rashid, Kahkashan; Chowdhury, Sayantani; Ghosh, Sumit; Sil, Parames C

    2017-11-01

    The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg(-1)body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg(-1) body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: role of TNF-α, NF-κB, and oxidative stress.

    PubMed

    Kelany, Mohamed Elsayed; Hakami, Tahir M; Omar, Adel H

    2017-02-01

    This study aimed to investigate effects of curcumin on high fructose diet (HFD)-induced metabolic syndrome (MetS) in rats and the possible mechanisms involved. MetS was induced in male albino rats (n = 20), over 8 weeks, by 65% HFD. For 8-week experiment period, rats were assigned to 2 equal groups: curcumin-treated rats received curcumin (200 mg/kg, p.o, once daily) along with HFD, and untreated rats were fed with HFD only. We evaluated body mass (BM), systolic blood pressure (SBP), homeostasis model assessment of insulin resistance (HOMA-IR), and serum levels of glucose, insulin, leptin, total cholesterol (TC), triglycerides (TGs), uric acid, malondialdehyde (MDA; lipid peroxidation product), and tumor necrosis factor-α (TNF-α; inflammatory cytokine), and serum catalase (endogenous antioxidant) activity and immunohistochemical expression of nuclear factor κB (NF-κB; inflammation-related transcription factor) in hepatocytes. HFD produced increases in BM, SBP, HOMA-IR, and serum levels of glucose, insulin, leptin, TC, TGs, uric acid, MDA, and TNF-α, a decrease in catalase activity, and strong positive expression of NF-κB in hepatocytes. Curcumin, in presence of HFD, produced significant improvements in all glucose and fat metabolism parameters, and in oxidative stress and inflammation biomarkers. Curcumin may potentially be useful in the treatment of MetS through its ability to modulate oxidation stress status and inflammation cascades.

  12. Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus.

    PubMed

    Al-Omar, Fadhel A; Nagi, Mahmoud N; Abdulgadir, Mustafa M; Al Joni, Khalda S; Al-Majed, Abdulhakeem A

    2006-05-01

    Oxidative stress is believed to contribute to neurodegeneration following ischemic injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of curcumin (Cur) on neuronal death of hippocampal CA1 neurons following transient forebrain ischemia in rat. Treatment of Cur (200 mg/kg/day, i.p.) at three different times (immediately, 3 h and 24 h after ischemia) significantly (P<0.01) reduced neuronal damage 7 days after ischemia. Also, treatment of ischemic rats with Cur decreased the elevated levels of MDA and increased GSH contents, catalase and SOD activities to normal levels. In the in vitro, Cur was as potent as antioxidant (IC(50) = 1 microM) as butylated hydroxytoluene. The present study demonstrates that curcumin treatment attenuates forebrain ischemia-induced neuronal injury and oxidative stress in hippocampal tissue. Thus treatment with curcumin immediately or even delayed until 24 h may have the potential to be used as a protective agent in forebrain ischemic insult in human.

  13. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    PubMed Central

    Chang, Chi-Huang; Chen, Hua-Xin; Yü, George

    2014-01-01

    Summary Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12) cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM) upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway. PMID:27904320

  15. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma

    PubMed Central

    Vitadello, Maurizio; Germinario, Elena; Ravara, Barbara; Libera, Luciano Dalla; Danieli-Betto, Daniela; Gorza, Luisa

    2014-01-01

    Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force–frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting. PMID:24710058

  16. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    SciTech Connect

    Lim, Han Wern; Lim, Hwee Ying; Wong, Kim Ping

    2009-11-06

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F{sub 0}F{sub 1}-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 {mu}M, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F{sub 0}F{sub 1}-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  17. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    PubMed Central

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  18. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms

    PubMed Central

    de Paula Aguiar, Daniela; Brunetto Moreira Moscardini, Mayara; Rezende Morais, Enyara; Graciano de Paula, Renato; Ferreira, Pedro Manuel; Afonso, Ana; Belo, Silvana; Tomie Ouchida, Amanda; Curti, Carlos; Cunha, Wilson Roberto; Rodrigues, Vanderlei

    2016-01-01

    Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR), a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD) increased, whereas the activity of Glutathione-S-Transferase (GST), Glutathione reductase (GR), and Glutathione peroxidase (GPX) decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them. PMID:27875592

  19. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice.

    PubMed

    Koiram, Prabhakar R; Veerapur, Veeresh P; Kunwar, Amit; Mishra, Beena; Barik, Atanu; Priyadarsini, Indira K; Mazhuvancherry, Unnikrishnan K

    2007-05-01

    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 min before gamma-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like GSH, GST, catalase, SOD, TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals.

  20. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis.

    PubMed

    Wang, Nan; Wang, Feng; Gao, Youshui; Yin, Peipei; Pan, Chenhao; Liu, Wei; Zhou, Zubin; Wang, Jiaxiang

    2016-11-01

    The detrimental effects of oxidative stress on the skeletal system have been documented, and understanding the mechanisms is important to design a therapeutic strategy. As an antioxidant and anti-inflammatory agent, the active ingredient of turmeric curcumin has been used as medication for numerous complications including bone loss. However, it is unclear if curcumin could influence the osteogenic potential of mesenchymal stem cells (MSCs), particularly in oxidative injuries. Here we demonstrate that curcumin treatment protects cell death caused by hydrogen peroxide (H2O2) exposure in human adipose-derived MSCs in vitro. Importantly, curcumin is able to enhance the osteoblast differentiation of human adipose-derived MSCs that is inhibited by H2O2. Notably, both oxidative stress and the inhibition of Wnt/β-catenin signaling are attenuated by curcumin treatment. These results suggest that curcumin can promote osteoblast differentiation of MSCs and protect the inhibitory effect elicited by oxidative injury. The findings support potential use of curcumin or related antioxidants in MSC-based bone regeneration for disease related with oxidative stress-induced bone loss.

  1. Comparative cytotoxicity and ROS generation by curcumin and tetrahydrocurcumin following visible-light irradiation or treatment with horseradish peroxidase.

    PubMed

    Atsumi, Toshiko; Tonosaki, Keiichi; Fujisawa, Seiichiro

    2007-01-01

    In order to clarify the cytotoxic mechanism of curcumin, a well-known chemopreventive agent, the cytotoxicity (by MTT method), intracellular glutathione (using GSH detection kit) and intracellular reactive oxygen species (ROS) levels (with a flow cytometer), were measured in curcumin- and tetrahydrocurcumin (TH-curcumin)-treated cancer (HSG) and normal (HGF) cells under two different oxidation conditions: irradiation with visible light (VL) and enzymatic oxidation with horseradish peroxidase (HRP)/H2O2. The cytotoxicity of curcumin was highly enhanced by VL-irradiation, whereas that of TH-curcumin was enhanced by HRP/H2O2 treatment. The cytotoxicity of curcumin against HGF cells was greater than that against HSG cells. Curcumin significantly reduced the intracellular GSH level significantly under VL-irradiation, and increased it under HRP/H2O2, whereas TH-curcumin had no effect with either oxidation treatment. HRP/H2O2 treatment of TH-curcumin enhanced generation of ROS; in contrast, VL-irradiation of curcumin was considered to produce ROS preferably. In conclusion, curcumin was highly photo-toxic, caused a decrease in GSH and mediated ROS generation. In contrast, the cytotoxicity of TH-curcumin was enhanced by enzymatic oxidation. A low-level pro-oxidant intracellular milieu induced by TH-curcumin could be effectively useful for cancer prevention.

  2. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death.

    PubMed

    Tu, Zhi-Shan; Wang, Qi; Sun, Dan-Dan; Dai, Fang; Zhou, Bo

    2017-04-05

    Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy.

  3. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.

    PubMed

    Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao

    2013-12-01

    Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.

  4. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities.

    PubMed

    Jahangoshaei, Parisa; Hassani, Leila; Mohammadi, Fakhrossadat; Hamidi, Akram; Mohammadi, Khosro

    2015-10-01

    Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity.

  5. The role of curcumin as an inhibitor of oxidative stress caused by ischaemia re-perfusion injury in tetralogy of Fallot patients undergoing corrective surgery.

    PubMed

    Sukardi, Rubiana; Sastroasmoro, Sudigdo; Siregar, Nurjati C; Djer, Mulyadi M; Suyatna, Fransciscus D; Sadikin, Mohammad; Ibrahim, Nurhadi; Rahayuningsih, Sri E; Witarto, Arief B

    2016-03-01

    Cardiopulmonary bypass during tetralogy of Fallot corrective surgery is associated with oxidative stress, and contributes to peri-operative problems. Curcumin has been known as a potent scavenger of reactive oxygen species, which enhances the activity of antioxidants and suppresses phosphorylation of transcription factors involved in inflamation and apoptosis. To evaluate the effects of curcumin as an antioxidant by evaluating the concentrations of malondialdehyde and glutathione, activity of nuclear factor-kappa B, c-Jun N-terminal kinase, caspase-3, and post-operative clinical outcomes. Tetralogy of Fallot patients for corrective surgery were randomised to receive curcumin (45 mg/day) or placebo orally for 14 days before surgery. Malondialdehyde and glutathione concentrations were evaluated during the pre-ischaemia, ischaemia, re-perfusion phases, and 6 hours after aortic clamping-off. Nuclear factor-kappa B, c-Jun N-terminal kinase, and caspase-3, taken from the infundibulum, were assessed during the pre-ischaemia, ischaemia, and re-perfusion phases. Haemodynamic parameters were monitored until day 5 after surgery. In all the observation phases, malondialdehyde and glutathione concentrations were similar between groups. There was no significant difference in nuclear factor-kappa B activity between the groups for three observations; however, in the curcumin group, c-Jun N-terminal kinase significantly decreased from the pre-ischaemia to the re-perfusion phases, and caspase-3 expression was lower in the ischaemia phase. Patients in the curcumin group had lower temperature and better ventricular functions, but no significant differences were found in mechanical ventilation day or length of hospital stay in the two groups. Cardioprotective effects of curcumin may include inhibition of the c-Jun N-terminal kinase pathway and caspase-3 in cardiomyocytes, particularly in the ischaemia phase.

  6. Curcumin improves liver damage in male mice exposed to nicotine

    PubMed Central

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2015-01-01

    The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  7. Biomimetic oxidation of curcumin with hydrogen peroxide catalyzed by 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides in dichloromethane.

    PubMed

    Chauhan, Shive Murat Singh; Kandadai, Appan Srinivas; Jain, Nidhi; Kumar, Anil

    2003-11-01

    The biomimetic oxidation of curcumin, a main turmeric pigment with hydrogen peroxide catalyzed by different 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides [TAPFe(III)Cl] in dichloromethane has been studied to give a C-C coupled curcumin dimer in 40-70% yield. The structure of the dimer has been elucidated by (1)H-, (13)C-NMR, IR and FAB-Mass spectroscopic data.

  8. Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage.

    PubMed

    Yu, Linsheng; Yi, Jipu; Ye, Guanghua; Zheng, Yuanyuan; Song, Zhijian; Yang, Yanmei; Song, Yulong; Wang, Zhenyuan; Bao, Qiyu

    2012-09-26

    This study examines the preventive and therapeutic effects of curcumin on brain edema after hypoxic-ischemic brain damage (HIBD) in a rat model. Male Sprague-Dawley rats were divided into four groups: a sham group (SH), a hypoxic-ischemic group (HI) without drug treatment, a hypoxic-ischemic group (CU) with curcumin injection, and a hypoxic-ischemic group with DMSO injection (solvent control, SC). HIBD treatment led to edema and ultrastructural changes in the hippocampus, increased the activity levels of nitric oxide synthase (NOS) in the brain (P<0.05), and raised the expression of water channel protein 4 (Aquaporin-4, AQP-4) in the blood-brain barrier (BBB) (P<0.05). Curcumin injection, but not the control DMSO injection, partially reversed HIBD-induced brain edema and morphological changes, as well as HIBD-induced increase in NOS activities and AQP-4 expression (P<0.05). In conclusion, our results showed that BBB ultrastructural changes may play an important role in the formation and development of brain edema after HIBD. Curcumin may protect the BBB ultrastructure and thus decrease brain edema following HIBD by down-regulating HIBD-induced increase in NOS activities and AQP-4 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study.

    PubMed

    Hejazi, Jalal; Rastmanesh, Reza; Taleban, Forough-Azam; Molana, Seyed-Hadi; Hejazi, Ehsan; Ehtejab, Golamreza; Hara, Noboru

    2016-01-01

    Curcumin is an antioxidant agent with both radiosensitizing and radioprotective properties. The aim of the present study was to evaluate the effect of curcumin supplementation on oxidative status of patients with prostate cancer who undergo radiotherapy. Forty patients treated with radiotherapy for prostate cancer were randomized to the curcumin (CG, n = 20) or placebo group (PG, n = 20). They received curcumin (total 3 g/day) or placebo during external-beam radiation therapy of up to 74 Gy. Plasma total antioxidant capacity (TAC) and activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) were measured at baseline and 3 mo after radiotherapy completion. Analysis of covariance was used to compare the variables between groups following the intervention. Serum PSA levels and MRI/MRS images were investigated. In CG, TAC significantly increased (P < 0.001) and the activity of SOD decreased (P = 0.018) after radiotherapy compared with those at baseline. In CG, however, the activity of SOD had a significant reduction (P = 0.026) and TAC had a significant increase (P = 0.014) compared with those in PG. PSA levels were reduced to below 0.2 ng/ml in both groups, 3 mo after treatment, however, no significant differences were observed between the 2 groups regarding treatment outcomes.

  10. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats.

    PubMed

    Sankar, Palanisamy; Telang, Avinash Gopal; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Suresh, Subramaniyam; Kesavan, Manickam

    2016-03-01

    Arsenic exposure through drinking water causes oxidative stress and tissue damage in the kidney and brain. Curcumin (CUR) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, which can be overcome by the encapsulation of CUR with nanoparticles (NPs). The present study investigates the therapeutic efficacy of free CUR and NP-encapsulated CUR (CUR-NP) against sodium arsenite-induced renal and neuronal oxidative damage in rat. The CUR-NP prepared by emulsion technique and particle size ranged between 120 and 140 nm, with the mean particle size being 130.8 nm. Rats were divided into five groups (groups 1-5) with six animals in each group. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in Group 2; however, these animals were also administered with empty NPs, CUR (100 mg/kg body weight), and CUR-NP (100 mg/kg), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic exposure significantly increased serum urea nitrogen and creatinine levels. Arsenic increased lipid peroxidation (LPO), reduced glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were depleted significantly in both kidney and brain. Treatment with free CUR and CUR-NP decreased the LPO and increased the enzymatic and nonenzymatic antioxidant system in kidney and brain. Histopathological examination showed that kidney and brain injury mediated by arsenic was ameliorated by treatment. However, the amelioration percentage indicates that CUR-NP had marked therapeutic effect on arsenic-induced oxidative damage in kidney and brain tissues.

  11. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  12. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    SciTech Connect

    Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu; Xu Jianhua; Hu Dongping; Liu Weimin; Zhang Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L.; Ding, Ivan M.D.

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.

  13. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines.

    PubMed

    Okunieff, Paul; Xu, Jianhua; Hu, Dongping; Liu, Weimin; Zhang, Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L; Ding, Ivan

    2006-07-01

    To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-alpha, and lymphotoxin-beta) or fibrogenic cytokines (transforming growth factor [TGF]-beta) during the same acute and chronic phases. Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-alpha, and lymphotoxin-beta) and the fibrogenic cytokine, TGF-beta, in cutaneous tissues at 21 days postradiation. Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.

  14. Curcumin Protects Mitochondria and Cardiomyocytes from Oxidative Damage and Apoptosis Induced by Hemiscorpius Lepturus Venom.

    PubMed

    Naserzadeh, Parvaneh; Mehr, Sara Nekhoee; Sadabadi, Zeinab; Seydi, Enayatollah; Salimi, Ahmad; Pourahmad, Jalal

    2017-10-10

    The main aim of the current study was to determine cardio-toxicity mechanisms of H. lepturus and protective effect of curcumin against this toxin in rats, using isolated heart mitochondria and cardiomyocytes. Our findings indicated that H. lepturus venom caused significantly ((P<0.05) cytotoxicity and caspase 3 activation in cardiomyocytes and mitochondrial dysfunction including increased mitochondrial ROS level, swelling in the mitochondria, decline in the mitochondria membrane potential (MMP), decrease in the cytochrome-c oxidase activity (complex IV), decrease ATP level and finally mitochondrial outer membrane (MOM) rupture in isolated mitochondria. Our results showed that the administration of curcumin efficiently decreased (P<0.05) cytotoxicity and caspase 3 activation, ROS formation, MMP collapse, mitochondrial swelling and mitochondrial outer membrane (MOM) rupture. Our findings suggest H. lepturus venom cusses a disruptive effect on mitochondrial respiratory chain, especially on complex II, and IV that predispose cardiomyocytes to ATP depletion and death signaling that could be protected with administration of curcumin. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice

    PubMed Central

    Xiong, Zhang E; Dong, Wei Guo; Wang, Bao Ying; Tong, Qiao Yun; Li, Zhong Yan

    2015-01-01

    Objective: This study aimed to investigate the protective effect of curcumin on chronic ethanol-induced liver injury in mice and to explore its underlying mechanisms. Materials and Methods: Ethanol-exposed Balb/c mice were simultaneously treated with curcumin for 6 weeks. Liver injury was evaluated by biochemical and histopathological examination. Lipid peroxidation and anti-oxidant activities were measured by spectrophotometric method. Anti-oxidative genes expression such as NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD) were determined by real-time polymerase chain reaction. The nuclear factor E2-related factor 2 (Nrf2) and the phosphorylation states of specific proteins central to intracellular signaling cascades were measured by western blotting. Results: Curcumin treatment protected liver from chronic ethanol-induced injury through reducing serum alanine aminotransferase and aspartate aminotransferase activities, improving liver histological architecture, and reversing lipid disorders indicated by decrease of triglyceride, total cholesterol and low-density lipoprotein-cholesterol levels and increase of High-density lipoprotein-cholesterol levels. Meanwhile, curcumin administration attenuated oxidative stress via up-regulating SOD and glutathione peroxidase activities, leading to a reduction of lipid hydroperoxide production. In addition, curcumin increased Nrf2 activation and anti-oxidative genes expressions such as NQO1, HO-1, and SOD through inducing extracellular signal-regulated kinase (ERK) and p38 phosphorylation. Conclusion: Our data suggested that curcumin protected the liver from chronic-ethanol induced injury through attenuating oxidative stress, at least partially, through ERK/p38/Nrf2-mediated anti-oxidant signaling pathways. PMID:26600714

  16. Oxidative Stress Induced by Zearalenone in Porcine Granulosa Cells and Its Rescue by Curcumin In Vitro

    PubMed Central

    Qin, Xunsi; Cao, Mingjun; Lai, Fangnong; Yang, Fan; Ge, Wei; Zhang, Xifeng; Cheng, Shunfeng; Sun, Xiaofeng; Qin, Guoqing; Shen, Wei; Li, Lan

    2015-01-01

    Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative

  17. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    PubMed Central

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  18. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  19. Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage.

    PubMed

    Lu, Wen-Ping; Mei, Xue-Ting; Wang, Yu; Zheng, Yan-Ping; Xue, Yun-Fei; Xu, Dong-Hui

    2015-03-01

    The poor bioavailability and stability of curcumin limit its clinical application. A novel Zn(II)-curcumin complex was synthesized and its effects against cyclophosphamide (CP)-induced reproductive damage were compared with curcumin. Oral administration of Zn(II)-curcumin significantly prevented CP-induced elevation of malondialdehyde (MDA) level and reductions in superoxide dismutase (SOD) activity and glutathione (GSH) content in mouse testis. Zn(II)-curcumin significantly ameliorated CP-induced reductions in body and reproductive organs weights. Zn(II)-curcumin dose-dependently ameliorated CP-induced reproductive system impairments, by improving sperm parameters (sperm count, viability, motility) and reducing serum testosterone and histological alterations. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively alleviated CP-induced reproductive injury, leading to a reduced severity of testicular pathologic changes, lower MDA level, elevated SOD activity and GSH content, and increased sperm parameters and serum testosterone. These results suggest Zn(II)-curcumin more effectively protects against CP-induced reproductive damage than curcumin alone due to a synergistic reduction in oxidative stress.

  20. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  1. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson's disease.

    PubMed

    Harish, G; Venkateshappa, C; Mythri, Rajeswara Babu; Dubey, Shiv Kumar; Mishra, Krishna; Singh, Neetu; Vali, Shireen; Bharath, M M Srinivas

    2010-04-01

    Oxidative stress is implicated in mitochondrial dysfunction associated with neurodegeneration in Parkinson's disease (PD). Depletion of the cellular antioxidant glutathione (GSH) resulting in oxidative stress is considered as an early event in neurodegeneration. We previously showed that curcumin, a dietary polyphenol from turmeric induced GSH synthesis in experimental models and protected against oxidative stress. Here we tested the effect of three bioconjugates of curcumin (involving diesters of demethylenated piperic acid, valine and glutamic acid) against GSH depletion mediated oxidative stress in dopaminergic neuronal cells and found that the glutamic acid derivative displayed improved neuroprotection compared to curcumin.

  2. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin.

    PubMed

    Kukongviriyapan, Upa; Apaijit, Kwanjit; Kukongviriyapan, Veerapol

    2016-05-01

    Cadmium (Cd) is a non-essential heavy metal with high toxicity potential. Humans are exposed to Cd present in diet, polluted air, and cigarette smoke. Cd exposure has been associated with increased risk of chronic diseases, including hypertension, atherosclerosis, diabetes, and nephropathy, all of which could be attributable to dysfunctional endothelial and smooth muscle cells. Cd toxicity is correlated with increased reactive oxygen formation and depletion of antioxidants, resulting in an oxidative stress. Chelation of Cd has proved useful in the removal of the Cd burden. However, several chelating agents cause side effects in clinical usage. Recent studies have shown that the antioxidant compounds curcumin and tetrahydrocurcumin can alleviate vascular dysfunction and high blood pressure caused by Cd toxicity. In chronic Cd exposure, these antioxidants protect vascular endothelium by increasing nitric oxide (NO•) bioavailability and improving vascular function. Antioxidant activity against Cd intoxication results directly and/or indirectly through free radical scavenging, metal chelation, enhanced expression of the antioxidant defense system, regulation of inflammatory enzymes, increase in NO• bioavailability, and reduction of gastrointestinal absorption and tissue Cd accumulation. This review summarizes current knowledge of Cd-induced oxidative stress and cardiovascular dysfunction and a possible protective effect conferred by the antioxidants curcumin and tetrahydrocurcumin.

  3. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.

    PubMed

    Zhao, Wei-Cheng; Zhang, Bin; Liao, Mei-Juan; Zhang, Wen-Xuan; He, Wan-You; Wang, Han-Bing; Yang, Cheng-Xiang

    2014-02-07

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (P<0.05) in the spinal cord. Both curcumin and apocynin ameliorated diabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress

    PubMed Central

    Santos-Parker, Jessica R.; Strahler, Talia R.; Bassett, Candace J.; Bispham, Nina Z.; Chonchol, Michel B.; Seals, Douglas R.

    2017-01-01

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBFACh; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBFACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBFACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function. PMID:28070018

  5. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  6. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line.

    PubMed

    Li, Hui; van Berlo, Damien; Shi, Tingming; Speit, Günter; Knaapen, Ad M; Borm, Paul J A; Albrecht, Catrin; Schins, Roel P F

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1beta) and tumour necrosis factor-alpha (TNFalpha). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  7. Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat.

    PubMed

    Lakshmanan, Arun Prasath; Watanabe, Kenichi; Thandavarayan, Rajarajan A; Sari, Flori R; Meilei, Harima; Soetikno, Vivian; Arumugam, Somasundaram; Giridharan, Vijayasree V; Suzuki, Kenji; Kodama, Makoto

    2011-07-01

    Oxidative stress has been strongly implicated in the pathogenesis of diabetic encephalopathy (DE). Numerous studies have demonstrated a close relationship between oxidative stress and AMPK activation in various disorders, including diabetes-related brain disorders. Since curcumin has powerful antioxidant properties, this study investigated its effects on hyperglycaemia-mediated oxidative stress and AMPK activation in rats with DE. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ-55 mg/kg BW). The diabetic rats were then orally administered curcumin (100 mg/kg BW) or vehicle for 8 weeks. The cerebra of the diabetic rats displayed upregulated protein expression of AdipoR1, p-AMPKα1, Tak1, GLUT4, NADPH oxidase sub-units, caspase-12 and 3-NT and increased lipid peroxidation in comparison with the controls and all of these effects were significantly attenuated with curcumin treatment, except for the increase in AdipoR1 expressions. These results provide a new insight into the beneficial effects of curcumin on hyperglycaemia-mediated DE, which are produced through the down-regulation of AMPK-mediated gluconeogenesis associated with its anti-oxidant property.

  8. Periodontal treatment decreases plasma oxidized LDL level and oxidative stress.

    PubMed

    Tamaki, Naofumi; Tomofuji, Takaaki; Ekuni, Daisuke; Yamanaka, Reiko; Morita, Manabu

    2011-12-01

    Periodontitis induces excessive production of reactive oxygen species in periodontal lesions. This may impair circulating pro-oxidant/anti-oxidant balance and induce the oxidation of low-density lipoprotein (LDL) in blood. The purpose of this study was to monitor circulating oxidized LDL and oxidative stress in subjects with chronic periodontitis following non-surgical periodontal treatment. Plasma levels of oxidized LDL and oxidative stress in 22 otherwise healthy non-smokers with chronic periodontitis (mean age 44.0 years) were measured at baseline and at 1 and 2 months after non-surgical periodontal treatment. At baseline, chronic periodontitis patients had higher plasma levels of oxidized LDL and oxidative stress than healthy subjects (p < 0.001). Periodontal treatment was associated with a significant reduction in plasma levels of oxidized LDL (oxLDL)(p < 0.001) and oxidative stress (p < 0.001). At 2 months after periodontal treatment, the degree of change in the oxLDL was positively correlated with that in the oxidative stress (r = 0.593, p = 0.004). These observations indicate that periodontitis patients showed higher levels of circulating oxLDL and oxidative stress than healthy subjects. In addition, improved oral hygiene and non-surgical periodontal treatment were effective in decreasing oxLDL, which was positively associated with a reduction in circulating oxidative stress.

  9. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    PubMed

    Xiao, Zijian; Zhang, Aiwu; Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  10. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    PubMed

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  12. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  13. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles.

    PubMed

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J Zach

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe3O4 nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. Copyright © 2016. Published by Elsevier B.V.

  14. LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: suppression by curcumin.

    PubMed

    Yang, Dejun; Li, Tianxia; Liu, Zhaohui; Arbez, Nicolas; Yan, Jianqun; Moran, Timothy H; Ross, Christopher A; Smith, Wanli W

    2012-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. The pathogenesis of PD is believed to involve both genetic susceptibility and environmental factors. Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD, and the LRRK2 locus contributes to sporadic PD. Environmental toxins are believed to act in part by causing oxidative stress. Here we employed cell and Drosophila models to investigate the interaction between LRRK2 genetic mutations and oxidative stress. We found that H(2)O(2) increased LRRK2 kinase activity and enhanced LRRK2 cell toxicity in cultured cells and mouse primary cortical neurons. Furthermore, a sub-toxic dose of H(2)O(2) significantly shortened the survival of LRRK2 transgenic flies and augmented LRRK2-induced locomotor defects and dopamine neuron loss. Treatment with a LRRK2 kinase inhibitor (GW5074) or an anti-oxidant (curcumin) significantly suppressed these PD-like phenotypes in flies. Moreover, curcumin significantly reduced LRRK2 kinase activity and the levels of oxidized proteins, and thus acted as not only an antioxidant but also a LRRK2 kinase inhibitor. These results indicate that LRRK2 genetic alterations can interact with oxidative stress, converging on a pathogenic pathway that may be related to PD. These studies also identified curcumin as a LRRK2 kinase inhibitor that may be a useful candidate for LRRK2-linked PD intervention.

  15. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells.

    PubMed

    Lee, Hui-Mei; Patel, Vyomesh; Shyur, Lie-Fen; Lee, Wai-Leng

    2016-11-15

    Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment. Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin. We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting. Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone. Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in

  16. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application.

    PubMed

    Li, Xingyi; Chen, Shuo; Zhang, Binjun; Li, Mei; Diao, Kai; Zhang, Zhaoliang; Li, Jie; Xu, Yu; Wang, Xianhuo; Chen, Hao

    2012-11-01

    In this paper, an in situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate as a novel wound dressing was successfully developed for the dermal wound repair application. Nano-curcumin with improved stability and similar antioxidant efficiency compared with that of unmodified curcumin was developed by using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) copolymer (MPEG-PCL) as carrier followed by incorporating into the N,O-carboxymethyl chitosan/oxidized alginate hydrogel (CCS-OA hydrogel). In vitro release study revealed that the encapsulated nano-curcumin was slowly released from CCS-OA hydrogel with the diffusion-controllable manner at initial phase followed by the corrosion manner of hydrogel at terminal phase. In vivo wound healing study was performed by injecting hydrogels on rat dorsal wounds. Histological study revealed that application of nano-curcumin/CCS-OA hydrogel could significantly enhance the re-epithelialization of epidermis and collagen deposition in the wound tissue. DNA, protein and hydroxyproline content in wound tissue from each group were measured on 7th day of post wounding and the results also indicated that combined using nano-curcumin and CCS-OA hydrogel could significantly accelerate the process of wound healing. Therefore, all these results suggested that the developed nano-curcumin/CCS-OA hydrogel as a promising wound dressing might have potential application in the wound healing. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Effect of the phytochemicals curcumin, cinnamaldehyde, thymol and carvacrol on the oxidative stability of corn and palm oils at frying temperatures.

    PubMed

    İnanç Horuz, Tuğba; Maskan, Medeni

    2015-12-01

    Several active components naturally available in plants are strongly considered as good antioxidants to retard the lipid oxidation. Response surface methodology was used to investigate the effects of frying temperature (150-180 °C) and concentration of four plant-based active components (60-350 mg/kg oil); curcumin, cinnamaldehyde, thymol and carvacrol on oxidative stability of corn and palm oils. According to induction time values, the stability of oils drastically decreased with increasing temperature. Curcumin and cinnamaldehyde showed no significant effect (p > 0.05) on both oils. Carvacrol significantly increased induction times of corn and palm oils, but thymol was effective in palm oil only (p < 0.05). An actual frying experiment was carried out with only corn oil to confirm efficiency of carvacrol. The free fatty acid (%), peroxide value (meq/kg), para-anisidine, and total polar component values (%) of the fresh oil were 0.080, 2.55, 2.85, and 7.5, respectively. These values changed to 0.144, 1.47, 12.01, 10.0, respectively for the control oil; 0.138, 2.27, 11.49, 10.0 for BHT-added oil; 0.132, 1.42, 5.66, 9.5 for carvacrol-added oil after 30 frying cycles. Therefore, carvacrol could be considered as a good alternative to BHT for preservation of oils at frying temperatures.

  18. Overdose Intake of Curcumin Initiates the Unbalanced State of Bodies.

    PubMed

    Qiu, Peiyu; Man, Shuli; Li, Jing; Liu, Jing; Zhang, Liming; Yu, Peng; Gao, Wenyuan

    2016-04-06

    Curcumin is the major active component of turmeric and widely used as a spice and coloring agent in food. However, its safety evaluation has been little investigated. To evaluate the 90-day subchronic toxicity of curcumin in rats, its general observation, clinical biochemistry, pathology, and metabolomics were evaluated. The results showed that curcumin induced liver injury through the generation of the overexpression of reactive oxygen species (ROS) and pro-inflammatory cytokines IL-6 and the decreases of the levels of antioxidant enzyme SOD and detoxified enzyme GST. Meanwhile, for the self-protection of rats, curcumin treatment activated the transcription of Nrf-2 and elevated the expression of HO-1 to reduce tissue damage. Furthermore, curcumin significantly increased key mRNA levels of HK2, PKM2, LDHA, CES, Cpt1, Cpt2, FASN, and ATP5b and decreased levels of GLUT2 and ACC1 to enhance glycolysis and inhibit lipid metabolism and TCA cycle. Therefore, overdose or long-term intake of curcumin could initiate the unbalanced state of bodies through oxidative stress, inflammation, and metabolic disorders, which induces liver injury. Intermittent administration of curcumin is necessary in our daily lives.

  19. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling.

    PubMed

    Zhong, Wenhui; Qian, Kejian; Xiong, Jibin; Ma, Ke; Wang, Aizhong; Zou, Yan

    2016-10-01

    In many liver disorders, oxidative stress-related inflammation and apoptosis are important pathogenic components, finally resulting in acute liver failure. Erythropoietin and its analogues are well known to influence the interaction between apoptosis and inflammation in brain and kidney. The study is to clarify the effect of curcumin, a natural plant phenolic food additive, on lipopolysaccharides (LPS)-induced acute liver injury of mice with endotoxemia and associated molecular mechanism from inflammation, apoptosis and oxidative stress levels. And curcumin, lowered serum cytokines, including Interleukin 1beta (IL-1β), Interleukin 6 (IL-6) and tumor necrosis factor (TNF-α), and improved liver apoptosis through suppressing phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and inhibiting Cyclic AMP-responsive element-binding protein (CREB)/Caspase expression, and decreased oxidative stress-associated protein expression, mainly involving 2E1 isoform of cytochrome P450/nuclear factor E2-related factor 2/reactive oxygen species (CYP2E/Nrf2/ROS) signaling pathway, as well as liver nitric oxide (NO) production in LPS-induced mice. Moreover, curcumin regulated serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP), accelerated liver antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-px) levels, and inhibited activation of the mitogen-activated protein kinases/c-Jun NH2-terminal kinase (P38/JNK) cascade in the livers of LPS-induced rats. Thus, curcumin treatment attenuates LPS-induced PI3K/AKT and CYP2E/Nrf2/ROS signaling and liver injury. Strategies to inhibit inflammation and apoptosis signaling may provide alternatives to the current clinical approaches to improve oxidative responses of endotoxemia.

  20. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress.

    PubMed

    Chang, Yun-Ching; Chang, Wei-Chao; Hung, Kuo-Hsuan; Yang, Der-Ming; Cheng, Yung-Hsin; Liao, Yi-Wen; Woung, Lin-Chung; Tsai, Ching-Yao; Hsu, Chih-Chien; Lin, Tai-Chi; Liu, Jorn-Hon; Chiou, Shih-Hwa; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-01-01

    Age-related macular degeneration (AMD) is one retinal aging process that may lead to irreversible vision loss in the elderly. Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE) cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration. In this study, we have reprogrammed T cells from patients with dry type AMD into induced pluripotent stem cells (iPSCs) via integration-free episomal vectors and differentiated them into RPE cells that were used as an expandable platform for investigating pathogenesis of the AMD and in-vitro drug screening. These patient-derived RPEs with the AMD-associated background (AMD-RPEs) exhibited reduced antioxidant ability, compared with normal RPE cells. Among several screened candidate drugs, curcumin caused most significant reduction of ROS in AMD-RPEs. Pre-treatment of curcumin protected these AMD-RPEs from H2O2-induced cell death and also increased the cytoprotective effect against the oxidative stress of H2O2 through the reduction of ROS levels. In addition, curcumin with its versatile activities modulated the expression of many oxidative stress-regulating genes such as PDGF, VEGF, IGFBP-2, HO1, SOD2, and GPX1. Our findings indicated that the RPE cells derived from AMD patients have decreased antioxidative defense, making RPE cells more susceptible to oxidative damage and thereby leading to AMD formation. Curcumin represented an ideal drug that can effectively restore the neuronal functions in AMD patient-derived RPE cells, rendering this drug an effective option for macular degeneration therapy and an agent against aging-associated oxidative stress.

  1. Radiation-induced surge of macrophage foam cell formation, oxidative damage, and cytokine release is attenuated by a nanoformulation of curcumin.

    PubMed

    Soltani, Behrooz; Bodaghabadi, Narges; Ghaemi, Nasser; Sadeghizadeh, Majid

    2017-03-01

    We examined the potential of a dendrosomal nanoformulation of curcumin (DNC) for intervention of ionizing radiation (IR)-induced damage (particularly leading to atherosclerosis), employing an irradiated THP-1 macrophage model. Differentiated THP-1 macrophages were irradiated and treated with curcumin or DNC nanoformulation (and oxidized low density lipoprotein, ox-LDL, to promote foam cells). Chemical, biochemical, and genetics tools including viability and apoptosis, multiple ELISA, real-time PCR, Western blotting, enzyme activity, and fluorimetry assays were employed to illustrate IR damage as well as the DNC intervention potential. DNC per se at 10 μM exerted no cytotoxic effects on macrophages. However, it caused apoptosis in 2 Gy-irradiated macrophages which were treated with ox-LDL, chiefly through a caspase-dependent pathway involving caspase-3. Concurrently, 10 μM DNC prevented the IR-induced rise in lipid accumulation (72% decrease compared to IR control, p < .0001), dil-oxLDL uptake (78% decrease, p < .005), protein and mRNA expression of cholesterol influx genes, CD36 and SR-A, NF-κB activation (81% less binding activity, p < .001; and lower nuclear presence of p65), cytokine (monocyte chemoattractant protein-1 and interleukin-1β) release, reactive oxygen species (ROS), and oxidative damage to DNA (37% decrease in 8-OHdG, p < .05) and lipids (62% decrease in 8-isoprostane, p < .005). DNC facilitated the uptake of curcumin in irradiated macrophages, increased glutathione peroxidase expression and activity, restored glutathione (GSH) level, and upregulated the expression of a cholesterol efflux gene, ABCA1. Two other antioxidants, resveratrol and N-acetyl cycteine (NAC), could simulate some of the beneficial effects of DNC against IR-induced CD36 expression and lipid accumulation, which were obviated by buthionine sulfoximine (BSO) pre-treatment of macrophages. However, some modulatory effects of DNC, particularly on lipid accumulation and

  2. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts.

    PubMed

    Hsuuw, Yan-Der; Chang, Chen-Kang; Chan, Wen-Hsiung; Yu, Jau-Song

    2005-12-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Elevated MG levels in diabetes patients are believed to contribute to diabetic complications. MG is cytotoxic through induction of apoptosis. Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties. In the present study, we examined the effect of curcumin on apoptotic biochemical events caused by incubation of ESC-B5 cells with MG. Curcumin inhibited the MG-induced DNA fragmentation, caspase-3 activation, cleavage of PARP, mitochondrial cytochrome c release, and JNK activation. Importantly, curcumin also inhibited the MG-stimulated increase of reactive oxygen species (ROS) in these cells. In addition, we demonstrated that curcumin prevented the MG-induced apoptosis of mouse blastocysts isolated from pregnant mice. Moreover, curcumin significantly reduced the MG-mediated impairment of blastocyst development from mouse morulas. The results support the hypothesis that curcumin inhibits MG-induced apoptosis in mouse ESC-B5 cells and blastocysts by blocking ROS formation and subsequent apoptotic biochemical events.

  3. Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis.

    PubMed

    Liu, Jianfeng; Zhu, Ping; Song, Peng; Xiong, Weiping; Chen, Haixu; Peng, Wenhui; Wang, Shuxia; Li, Shan; Fu, Zhiqing; Wang, Yutang; Wang, Haibin

    2015-01-01

    The poor survival rate of transplanted stem cells in ischemic myocardium has limited their therapeutic efficacy. Curcumin has potent antioxidant property. This study investigates whether prior curcumin treatment protects stem cells from oxidative stress injury and improves myocardial recovery following cells transplantation. Autologous Sprague-Dawley rat adipose derived mesenchymal stem cells (ADSCs) were pretreated with or without curcumin. The hydrogen peroxide/serum deprivation (H2O2/SD) medium was used to mimic the ischemic condition in vitro. Cytoprotective effects of curcumin on ADSCs were evaluated. Curcumin pretreatment significantly increased cell viability and VEGF secretion, and decreased cell injury and apoptosis via regulation of PTEN/Akt/p53 and HO-1 signal proteins expression. The therapeutic potential of ADSCs implantation was investigated in myocardial ischemia-reperfusion injury (IRI) model. Transplantation of curcumin pretreated ADSCs not only resulted in better heart function, higher cells retention, and smaller infarct size, but also decreased myocardial apoptosis, promoted neovascularization, and increased VEGF level in ischemic myocardium. Together, priming of ADSCs with curcumin improved tolerance to oxidative stress injury and resulted in enhancement of their therapeutic potential of ADSCs for myocardial repair. Curcumin pretreatment is a promising adjuvant strategy for stem cells transplantation in myocardial restoration.

  4. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.

    PubMed

    Kant, Vinay; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surendra K; Kumar, Dinesh

    2014-06-01

    Prolonged inflammation and increased oxidative stress impairs healing in diabetics and application of curcumin, a well known antioxidant and anti-inflammatory agent, could be an important strategy in improving impaired healing in diabetics. So, the present study was conducted to evaluate the cutaneous wound healing potential of topically applied curcumin in diabetic rats. Open excision skin wound was created in streptozotocin induced diabetic rats and wounded rats were divided into three groups; i) control, ii) gel-treated and iii) curcumin-treated. Pluronic F-127 gel (25%) and curcumin (0.3%) in pluronic gel were topically applied in the gel- and curcumin-treated groups, respectively, once daily for 19 days. Curcumin application increased the wound contraction and decreased the expressions of inflammatory cytokines/enzymes i.e. tumor necrosis factor-alpha, interleukin (IL)-1beta and matrix metalloproteinase-9. Curcumin also increased the levels of anti-inflammatory cytokine i.e. IL-10 and antioxidant enzymes i.e. superoxide dismutase, catalase and glutathione peroxidase. Histopathologically, the curcumin-treated wounds showed better granulation tissue dominated by marked fibroblast proliferation and collagen deposition, and wounds were covered by thick regenerated epithelial layer. These findings reveal that the anti-inflammatory and antioxidant potential of curcumin caused faster and better wound healing in diabetic rats and curcumin could be an additional novel therapeutic agent in the management of impaired wound healing in diabetics.

  5. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia

  6. Antioxidant activities of curcumin in allergic rhinitis.

    PubMed

    Altıntoprak, Niyazi; Kar, Murat; Acar, Mustafa; Berkoz, Mehmet; Muluk, Nuray Bayar; Cingi, Cemal

    2016-11-01

    We investigated the antioxidant effects of curcumin in an experimental rat model of allergic rhinitis (AR). Female Wistar albino rats (n = 34) were divided randomly into four groups: healthy rats (control group, n = 8), AR with no treatment (AR + NoTr group, n = 10), AR with azelastine HCl treatment (AR + Aze group, n = 8), and AR with curcumin treatment (AR + Curc group, n = 8). On day 28, total blood IgE levels were measured. For measurement of antioxidant activity, the glutathione (GSH) level and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were measured in both inferior turbinate tissue and serum. Malondialdehyde (MDA) levels were measured only in inferior turbinate tissue, and paraoxonase (PON) and arylesterase (ARE) activities were measured only in serum. Statistically significant differences were found for all antioxidant measurements (GSH levels and CAT, SOD, GSH-Px activities in the serum and tissue, MDA levels in the tissue, and PON and ARE activities in the serum) between the four groups. In the curcumin group, serum SOD, ARE, and PON and tissue GSH values were higher than the control group. Moreover, tissue GSH levels and serum GSH-Px activities in the curcumin group were higher than in the AR + NoTr group. In the azelastine group, except MDA, antioxidant measurement values were lower than in the other groups. Curcumin may help to increase antioxidant enzymes and decrease oxidative stress in allergic rhinitis. We recommend curcumin to decrease oxidative stress in allergic rhinitis.

  7. Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles.

    PubMed

    Li, Jing; Zhou, Yu; Zhang, Wei; Bao, Cuiyu; Xie, Zhigang

    2017-02-21

    In this work, the influence of curcumin nanoparticles (CUR-NPs) on NADPH oxidase-related reactive oxygen species (ROS) production and cardiac apoptosis, together with the modulation of protein signaling pathways, were investigated in detail by using cardiomyocytes. The exposure of cardiomyocytes to palmitate (PA) led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly inhibited by CUR-NPs. CUR-NPs treatment remarkably suppressed the increased activity of Rac1, as well as the enhanced expression of p22(phox), p47(phox), p67(phox) and gp91(phox) induced by PA. Lipid peroxidation and SOD were reversed in the presence of CUR-NPs. Furthermore, CUR-NPs treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by PA exposure. CUR-NPs significantly increased GRP78 and CHOP expression in cardiomyocytes. Pravastatin (a known ERS inhibitor) blocked the effects of CUR-NPs on cardiomyocytes exposure to PA. These results demonstrated that CUR-NPs attenuated PA-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress, and this protective effect is possibly mediated by endoplasmic reticulum stress (ERS)-related signaling pathway.

  8. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways

    PubMed Central

    Aldebasi, Yousef H; Aly, Salah M; Rahmani, Arshad H

    2013-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of diabetes mellitus that affects the blood vessels of the retina, leading to blindness. The current approach of treatment based on anti-inflammatory, anti-angiogenesis drugs and laser photocoagulation are effective but also shows adverse affect in retinal tissues and that can even worsen the visual abilities. Thus, a safe and effective mode of treatment is needed to control or delaying the DR. Based on the earlier evidence of the potentiality of natural products as anti-oxidants, anti-diabetic and antitumor, medicinal plants may constitute a good therapeutic approach in the prevention of DR. Curcumin, constituents of dietary spice turmeric, has been observed to have therapeutic potential in the inhibition or slow down progression of DR. In this review, we summarize the therapeutic potentiality of curcumin in the delaying the DR through antioxidant, anti-inflammatory, inhibition of Vascular Endothelial Growth and nuclear transcription factors. The strength of involvement of curcumin in the modulation of genes action creates a strong optimism towards novel therapeutic strategy of diabetic retinopathy and important mainstay in the management of diabetes and its complications DR. PMID:24379904

  9. One pot synthesis, structural and spectral analysis of some symmetrical curcumin analogues catalyzed by calcium oxide under microwave irradiation.

    PubMed

    Elavarasan, S; Bhakiaraj, D; Chellakili, B; Elavarasan, T; Gopalakrishnan, M

    2012-11-01

    A series of sixteen number of curcumin analogues have been synthesized under microwave irradiation using calcium oxide as a catalyst. The synthesized compounds have been characterized using FT-IR, MS, elemental analysis, (1)H and (13)C NMR spectroscopic techniques. The UV-Vis absorption studies for these compounds have been studied in order to provide the electronic transitions taking place in the molecule. When compared to the curcumin ((1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one), the absorption maxima, λ(max) for all the synthesized curcumin analogues with a variety of substituents gets blue shifted i.e., hypsochromic shift was observed. This shift may be assigned to the change of dipole moment within the solvated molecule. Theoretical calculations regarding the optimization of the synthesized molecules, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and mapped electron density surface diagrams were done. The geometrical energy, dipole moments and heat of formation values have also been calculated using the ArgusLab package by AM1 semi-empirical method. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Potential anticancer properties and mechanisms of action of curcumin.

    PubMed

    Vallianou, Natalia G; Evangelopoulos, Angelos; Schizas, Nikos; Kazazis, Christos

    2015-02-01

    Curcumin, a yellow substance belonging to the polyphenols superfamily, is the active component of turmeric, a common Indian spice, which is derived from the dried rhizome of the Curcuma longa plant. Numerous studies have demonstrated that curcumin possesses anti-oxidant, anti-inflammatory and anticancerous properties. The purpose of this review is to focus on the anti-tumor effects of curcumin. Curcumin inhibits the STAT3 and NF-κB signaling pathways, which play key-roles in cancer development and progression. Also, inhibition of Sp-1 and its housekeeping gene expressions may serve as an important hypothesis to prevent cancer formation, migration, and invasion. Recent data have suggested that curcumin may act by suppressing the Sp-1 activation and its downstream genes, including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in a concentration-dependent manner in colorectal cancer cell lines; these results are consistent with other studies, which have reported that curcumin could suppress the Sp-1 activity in bladder cancer and could decrease DNA binding activity of Sp-1 in non-small cell lung carcinoma cells. Recent data advocate that ER stress and autophagy may as well play a role in the apoptosis process, which is induced by the curcumin analogue B19 in an epithelial ovarian tumor cell line and that autophagy inhibition could increase curcumin analogue-induced apoptosis by inducing severe ER stress. The ability of curcumin to induce apoptosis in tumor cells and its anti-angiogenic potential will be discussed in this review. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. The effect of curcumin (turmeric) on Alzheimer's disease: An overview

    PubMed Central

    Mishra, Shrikant; Palanivelu, Kalpana

    2008-01-01

    This paper discusses the effects of curcumin on patients with Alzheimer's disease (AD). Curcumin (Turmeric), an ancient Indian herb used in curry powder, has been extensively studied in modern medicine and Indian systems of medicine for the treatment of various medical conditions, including cystic fibrosis, haemorrhoids, gastric ulcer, colon cancer, breast cancer, atherosclerosis, liver diseases and arthritis. It has been used in various types of treatments for dementia and traumatic brain injury. Curcumin also has a potential role in the prevention and treatment of AD. Curcumin as an antioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with AD. A growing body of evidence indicates that oxidative stress, free radicals, beta amyloid, cerebral deregulation caused by bio-metal toxicity and abnormal inflammatory reactions contribute to the key event in Alzheimer's disease pathology. Due to various effects of curcumin, such as decreased Beta-amyloid plaques, delayed degradation of neurons, metal-chelation, anti-inflammatory, antioxidant and decreased microglia formation, the overall memory in patients with AD has improved. This paper reviews the various mechanisms of actions of curcumin in AD and pathology. PMID:19966973

  12. Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: Effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines.

    PubMed

    El-Azab, Mona F; Attia, Fadia M; El-Mowafy, Abdalla M

    2011-05-01

    Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. The present study was undertaken to investigate the therapeutic potential of curcumin, a dietary spice with antioxidant activity, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Diabetes was induced in mice by multiple low doses of streptozotocin. After the onset of diabetes, mice were treated with curcumin (10 mM; 100 μl/mouse, i.p., for 28 days) or received a single bone marrow transplantation (10(6) un-fractionated bone marrow cells), or both. Parameters of diabetes, integrity of pancreatic islets, pancreatic oxidative stress markers, and serum pro-inflammatory cytokines, were evaluated. Treatment with either curcumin or bone marrow transplantation significantly reversed streptozotocin-induced hyperglycemia/glucose intolerance, hypoinsulinemia, and damage of pancreatic islets. Interestingly, combination of curcumin and bone marrow transplantation elicited the most profound alleviation of such streptozotocin-evoked anomalies; including islet regeneration/insulin secretion. On the other hand, curcumin, either alone or combined with bone marrow transplantation, blunted the pancreatic lipid-peroxidation, up-regulated activities of the antioxidant enzymes, and suppressed serum levels of TNF-α and IL-1β. Curcumin and single bone marrow transplantation proved their therapeutic potential in reversing diabetes when used in combination. Curcumin, via its antioxidant and anti-inflammatory effects, evidently enhanced the ability of bone marrow transplantation to regenerate functional pancreatic islets. Hence, the use of natural antioxidants combined with other therapeutic regimens to induce pancreatic regeneration is a promising strategy in the management of diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat.

    PubMed

    Yousef, Mokhtar I; Omar, Sahar A M; El-Guendi, Marwa I; Abdelmegid, Laila A

    2010-11-01

    The present study was carried out to evaluate the potential protective role of quercetin and curcumin against paracetamol-induced oxidative injury, liver damage and impairment of kidney function, as well as haematotoxicity in rats. Also, N-acetylcysteine was used to evaluate the potency of quercetin and curcumin. Paracetamol caused an elevation in thiobarbituric acid-reactive substances (TBARS) paralleled with significant decline in glutathione peroxidase, glutathione S-transferase, superoxide dismutase and catalase activities (in plasma, brain, lung, heart, liver, kidney and testes) and glutathione content (in lung, liver and kidney). The apparent oxidative injury was associated with evident hepatic necrosis confirmed in histological examination, elevated plasma transmainases, alkaline phosphatase and lactate dehydrogenase. Paracetamol reduced plasma total protein, albumin and globulin, while increased bilirubin, urea and creatinine, and induced haematotoxicity. The presence of quercetin or curcumin with paracetamol successfully mitigated the rise in TBARS and restored the activities of antioxidant enzymes compared to the group treated with both paracetamol and N-acetylcysteine. They also protected liver histology, normalized liver and kidney functions, which was more pronounced with curcumin. Therefore, it can be concluded that concomitant administration of quercetin or curcumin with paracetamol may be useful in reversing the toxicity of the drug compared to N-acetylcysteine.

  14. Therapeutic Applications of Curcumin Nanoformulations.

    PubMed

    Yallapu, Murali M; Nagesh, Prashanth K Bhusetty; Jaggi, Meena; Chauhan, Subhash C

    2015-11-01

    Curcumin (diferuloylmethane) is a bioactive and major phenolic component of turmeric derived from the rhizomes of curcuma longa linn. For centuries, curcumin has exhibited excellent therapeutic benefits in various diseases. Owing to its anti-oxidant and anti-inflammatory properties, curcumin plays a significant beneficial and pleiotropic regulatory role in various pathological conditions including cancer, cardiovascular disease, Alzheimer's disease, inflammatory disorders, neurological disorders, and so on. Despite such phenomenal advances in medicinal applications, the clinical implication of native curcumin is hindered due to low solubility, physico-chemical instability, poor bioavailability, rapid metabolism, and poor pharmacokinetics. However, these issues can be overcome by utilizing an efficient delivery system. Active scientific research was initiated in 2005 to improve curcumin's pharmacokinetics, systemic bioavailability, and biological activity by encapsulating or by loading curcumin into nanoform(s) (nanoformulations). A significant number of nanoformulations exist that can be translated toward medicinal use upon successful completion of pre-clinical and human clinical trials. Considering this perspective, current review provides an overview of an efficient curcumin nanoformulation for a targeted therapeutic option for various human diseases. In this review article, we discuss the clinical evidence, current status, and future opportunities of curcumin nanoformulation(s) in the field of medicine. In addition, this review presents a concise summary of the actions required to develop curcumin nanoformulations as pharmaceutical or nutraceutical candidates.

  15. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  16. Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells.

    PubMed

    Sun, Yueliu; Hu, Xiaorong; Hu, Gangying; Xu, Changwu; Jiang, Hong

    2015-01-01

    Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. Curcumin, a natural phenol, possesses antioxidant and anti-inflammatory properties. However, the effect of curcumin on endothelial senescence is unclear. This study explores the effect of curcumin on hydrogen peroxide (H2O2)-induced endothelial premature senescence and the mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were cultured, and premature senescence was induced with 100 µM H2O2. Results showed that pretreatment with curcumin significantly attenuated the H2O2-induced HUVECs' premature senescence, which was evidenced by a decreased percentage of senescence-associated β-galactosidase positive cells, improved cell division and decreased expression of senescence-associated protein p21 (all p<0.05). Pretreatment with curcumin decreased oxidative stress and apoptosis in H2O2-treated HUVECs. Treatment of HUVECs with H2O2 also down-regulated the phosphorylation of endothelial nitric oxide synthase (eNOS), decreased the level of nitric oxide in the culture medium, and inhibited the protein expression and enzymatic activity of silent information regulator 1 (SIRT1), while pretreatment with curcumin partly reversed these effects (all p<0.05). Treatment with curcumin alone enhanced the enzymatic activity of SIRT1, but didn't affect cellular senescence, cell growth or apoptosis compared to the Control. The inhibition of SIRT1 using SIRT1 short interfering RNA (siRNA) could decrease the expression and phosphorylation of eNOS and abrogate the protective effect of curcumin on H2O2-induced premature senescence. These findings suggest that curcumin could attenuate oxidative stress-induced HUVECs' premature senescence via the activation of SIRT1.

  17. Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells.

    PubMed

    Pizzo, Paola; Scapin, Cristina; Vitadello, Maurizio; Florean, Cristina; Gorza, Luisa

    2010-04-01

    Curcumin is a non-toxic polyphenol with pleiotropic activities and limited bioavailability. We investigated whether a brief exposure to low doses of curcumin would induce in the myogenic C2C12 cell line an endoplasmic reticulum (ER) stress response and protect against oxidative stress. A 3-hr curcumin administration (5-10 microM) increased protein levels of the ER chaperone Grp94, without affecting those of Grp78, calreticulin and haeme-oxygenase-1 (HO-1). Exposure of cells to hydrogen peroxide 24 hrs after the curcumin treatment decreased caspase-12 activation, total protein oxidation and translocation of NF-kappaB to the nucleus, compared with untreated cells. Grp94 overexpression, achieved by means of either stable or transient trasfection, induced comparable cytoprotective effects to hydrogen peroxide. The delayed cytoprotection induced by curcumin acted through Grp94, because the curcumin-induced increase in Grp94 expression was hampered by either stable or transient transfection with antisense cDNA; in these latter cells, the extent of total protein oxidation, as well as the translocation of NF-kappaB to the nucleus, and the percentage of apoptotic cells were comparable to those observed in both curcumin-untreated wild-type and empty vector transfected cells. Defining the mechanism(s) by which Grp94 exerts its antioxidant defence, the determination of cytosolic calcium levels in C2C12 cells by fura-2 showed a significantly reduced amount of releasable calcium from intracellular stores, both in conditions of Grp94 overexpression and after curcumin pre-treatment. Therefore, a brief exposure to curcumin induces a delayed cytoprotection against oxidative stress in myogenic cells by increasing Grp94 protein level, which acts as a regulator of calcium homeostasis.

  18. A review of therapeutic effects of curcumin.

    PubMed

    Noorafshan, Ali; Ashkani-Esfahani, Soheil

    2013-01-01

    There is a growing interest in herbal medicine. Scientific studies have demonstrated the beneficial pharmacological effects of curcumin. Curcumin is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been proven that curcumin is a highly pleiotropic molecule which can be a modulator of intracellular signaling pathways that control cell growth, inflammation, and apoptosis. Curcumin might be a potential candidate for the prevention and/or treatment of some diseases due to its anti-oxidant, antiinflammatory activities and an excellent safety profile. We present an updated concise review of currently available animal and clinical studies demonstrating the therapeutic effect of curcumin.

  19. Strategy to Suppress Oxidative Damage-Induced Neurotoxicity in PC12 Cells by Curcumin: the Role of ROS-Mediated DNA Damage and the MAPK and AKT Pathways.

    PubMed

    Fu, Xiao-yan; Yang, Ming-feng; Cao, Ming-zhi; Li, Da-wei; Yang, Xiao-yi; Sun, Jing-yi; Zhang, Zong-yong; Mao, Lei-lei; Zhang, Shuai; Wang, Feng-ze; Zhang, Feng; Fan, Cun-dong; Sun, Bao-liang

    2016-01-01

    Oxidative damage plays a key role in causation and progression of neurodegenerative diseases. Inhibition of oxidative stress represents one of the most effective ways in treating human neurologic diseases. Herein, we evaluated the protective effect of curcumin on PC12 cells against H2O2-induced neurotoxicity and investigated its underlying mechanism. The results indicated that curcumin pre-treatment significantly suppressed H2O2-induced cytotoxicity, inhibited the loss of mitochondrial membrane potential (Δψm) through regulation of Bcl-2 family expression, and ultimately reversed H2O2-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage, DNA damage, and accumulation of reactive oxygen species (ROS) all confirmed its protective effects. Moreover, curcumin markedly alleviated the dysregulation of the MAPK and AKT pathways induced by H2O2. Taken together, our findings suggest that the strategy of using curcumin could be a highly effective way in combating oxidative damage-mediated human neurodegenerative diseases.

  20. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion

    PubMed Central

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  1. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion.

    PubMed

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  2. Oxidative Stress Markers and Histological Analysis in Diverse Organs from Rats Treated with a Hepatotoxic Dose of Cr(VI): Effect of Curcumin.

    PubMed

    García-Niño, Wylly Ramsés; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Vega-García, Claudia Cecilia; Tapia, Edilia; Pedraza-Chaverri, José

    2015-09-01

    Hexavalent chromium [Cr(VI)] compounds are extremely toxic and carcinogenic. Despite the vast quantity of reports about Cr(VI) toxicity, the information regarding its effects when it is intraperitoneally (i.p.) administered is still limited. In contrast, it has been shown that curcumin prevents hepatotoxicity induced by a single intraperitoneal injection of 15 mg/kg body weight (b.w.) of potassium dichromate (K2Cr2O7). This study aims to evaluate oxidative stress markers, the activity of antioxidant enzymes, and the potential histological injury in brain, heart, lung, kidney, spleen, pancreas, stomach, and intestine from rats treated with a hepatotoxic dose of K2Cr2O7 (15 mg/kg b.w.), and the effect of curcumin pretreatment. Rats were divided into four groups: control, curcumin, K2Cr2O7, and curcumin+K2Cr2O7. At the end of the treatment, plasma and ascites fluid were collected and target organs were dissected out for biochemical and histological analysis. K2Cr2O7 induced hepatotoxicity but failed to induce in all the other studied organs either oxidative or histological injury, since levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD), catalase (CAT), and related GSH enzymes were unchanged. As expected, curcumin was safe. Lack of K2Cr2O7-induced toxicity in those target organs could be due to the following: (1) route of administration, (2) absorption through the portal circulation, (3) lower dose than needed, (4) short time of exposure, or (5) repeated doses are required to produce damage. Thus, the intraperitoneal injection of 15 mg/kg of K2Cr2O7, that is able to induce hepatotoxicity, was unable to induce histological and oxidative damage in other target organs.

  3. Curcumin-ER Prolonged Subcutaneous Delivery for the Treatment of Non-Small Cell Lung Cancer.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Gdowski, Andrew; Helson, Lawrence; Bouchard, Annie; Majeed, Muhammed; Vishwanatha, Jamboor K

    2016-04-01

    Non-small-cell lung cancer therapy is a challenge due to poor prognosis and low survival rate. There is an acute need for advanced therapies having higher drug efficacy, low immunogenicity and fewer side effects which will markedly improve patient compliance and quality of life of cancer patients. The purpose of this study was to develop a novel hybrid curcumin nanoformulation (Curcumin-ER) and evaluate the therapeutic efficacy of this formulation on a non-small cell lung cancer xenograft model. Use of curcumin, a natural anticancer agent, is majorly limited due to its poor aqueous solubility and hence it's low systemic bioavailability. In this paper, we carried out the nanoformulation of Curcumin-ER, optimized the formulation process and determined the anticancer effects of Curcumin-ER against human A549 non-small cell lung cancer using in vitro and in vivo studies. Xenograft tumors in nude mice were treated with 20 mg/kg subcutaneous injection of Curcumin-ER and liposomal curcumin (Lipocurc) twice a week for seven weeks. Results showed that tumor growth was suppressed by 52.1% by Curcumin-ER treatment and only 32.2% by Lipocurc compared to controls. Tumor sections were isolated from murine xenografts and histology and immunohistochemistry was performed. A decrease in expression of NFκB-p65 subunit and proliferation marker, Ki-67 was observed in treated tumors. In addition, a potent anti-angiogenic effect, characterized by reduced expression of annexin A2 protein, was observed in treated tumors. These results establish the effectiveness of Curcumin-ER in regressing human non-small cell lung cancer growth in the xenograft model using subcutaneous route of administration. The therapeutic efficacy of Curcumin-ER highlights the potential of this hybrid nanoformulation in treating patients with non-small cell lung cancer.

  4. The short-time treatment with curcumin sufficiently decreases cell viability, induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells.

    PubMed

    Lu, Jin-Jian; Cai, Yu-Jun; Ding, Jian

    2012-01-01

    The anti-cancer activities of curcumin (CUR), a polyphenol derived from the plant Curcuma longa, has been extensively studied. In the present study, we found that CUR displayed anti-multidrug-resistant (MDR) activity in K562/A02 cells. A short-time treatment with CUR sufficiently and equally induced DNA damage, decreased cell viability, and triggered apoptosis in parent K562 and MDR K562/A02 cells. The short-time treatment with CUR also caused decrease of pro-caspase 3 in both cell lines and decrease of pro-caspase 9, increase of PARP cleavage and the ratio of Bax/Bcl-xL in MDR K562/A02 cells. Further experiment revealed that CUR was capable of down-regulating P-glycoprotein in MDR K562/A02 cells. Moreover, we observed that Cu(2+) enhanced CUR-mediated apoptosis which was blocked by antioxidants N-acetyl-cysteine and catalase. In summary, the short-time treatment with CUR sufficiently induced DNA damage, decreased cell viability and triggered apoptosis in MDR K562/A02 cells and Cu(2+) enhanced CUR-mediated apoptosis which due to reactive oxygen species generation.

  5. Curcumin Downregulates Phosphate Carrier and Protects against Doxorubicin Induced Cardiomyocyte Apoptosis

    PubMed Central

    Junkun, Lu; Erfu, Chu; Tony, Hasahya; Xin, Li; Sudeep, K. C.; Mingliang, Zhang; Yanqin, Wang; XiangQian, Qi

    2016-01-01

    Aim. To explore the effects of curcumin on phosphate carrier (PiC) and its role in protection against doxorubicin induced myocyte toxicity. Methods. Using H9c2 cell line, the cardiotoxic effect of doxorubicin and its mitigation by curcumin were studied. H9c2 cells were cultured with doxorubicin and/or curcumin at various concentrations. Analysis for apoptosis of H9c2 was done using flow cytometry. Confocal laser scanning microscopy was used to record the fluorescence intensity ratios and to determine the mitochondrial permeability transition pore (MPTP) opening state. Oxidative stress was measured using glutathione level, superoxide dismutase activities, and malondialdehyde content. The effect of doxorubicin and curcumin on PiC gene expression was measured by real-time PCR. Results. Curcumin decreased mRNA of PiC and was partly protective against oxidative stress, loss of mitochondrial transmembrane potential, and apoptosis induced by doxorubicin. Interestingly, the effect was not clearly dose dependent and the concentration of 12 mg/L was more efficient than 15 and 10 mg/L. Conclusion. Curcumin downregulates PiC and partly protects against doxorubicin induced oxidative stress and myocyte apoptosis. PMID:27127780

  6. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies.

    PubMed

    Mirzaei, Hamed; Shakeri, Abolfazl; Rashidi, Bahman; Jalili, Amin; Banikazemi, Zarrin; Sahebkar, Amirhossein

    2017-01-01

    Curcumin, a hydrophobic polyphenol, is the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric). Curcumin is known as a strong anti-oxidant and anti-inflammatory agent that has different pharmacological effects. In addition, several studies have demonstrated that curcumin is safe even at dosages as high as 8g per day; however, instability at physiological pH, low solubility in water and rapid metabolism results in a low oral bioavailability of curcumin. The phytosomal formulation of curcumin (a complex of curcumin with phosphatidylcholine) has been shown to improve curcumin bioavailability. Existence of phospholipids in phytosomes leads to specific physicochemical properties such as amphiphilic nature that allows dispersion in both hydrophilic and lipophilic media. The efficacy and safety of curcumin phytosomes have been shown against several human diseases including cancer, osteoarthritis, diabetic microangiopathy and retinopathy, and inflammatory diseases. This review focuses on the pharmacokinetics as well as pharmacological and clinical effects of phytosomal curcumin.

  7. Effects of curcumin on bleomycin-induced apoptosis in human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Ozben, Tomris

    2013-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.

  8. Preventive effects of curcumin on different aspiration material-induced lung injury in rats.

    PubMed

    Guzel, Ahmet; Kanter, Mehmet; Aksu, Burhan; Basaran, Umit Nusret; Yalçin, Omer; Guzel, Aygul; Uzun, Hafise; Konukoğlu, Dildar; Karasalihoglu, Serap

    2009-01-01

    We have studied whether curcumin protects different pulmonary aspiration material-induced lung injury in rats. The experiments were designed in 60 Sprague-Dawley rats, randomly allotted into one of six groups (n=10): normal saline (NS, control), enteral formula (Biosorb Energy Plus, BIO), hydrochloric acid (HCl), NS+curcumin-treated, BIO+curcumin-treated, and HCl+curcumin-treated. NS, BIO, HCl were injected in to the lungs. The rats received curcumin twice daily only for 7 days. Seven days later, both lungs in all groups were examined histopathologically, immunohistochemically, and biochemically. Histopathologic examination was performed according to the presence of peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, interstitial fibrosis, granuloma, and necrosis formation. Immunohistochemical assessments were examined for the activity of inducible nitric oxide synthase (iNOS) and the expression of surfactant protein D (SP-D). Malondialdehyde (MDA), hydroxyproline (HP), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity were measured in the lung tissue. Our findings show that curcumin inhibits the inflammatory response reducing significantly (P<0.05) all histopathological parameters in different pulmonary aspiration models. Pulmonary aspiration significantly increased the tissue HP content, MDA levels and decreased the antioxidant enzyme (SOD, GSH-Px) activities. Curcumin treatment significantly decreased the elevated tissue HP content, and MDA levels and prevented inhibition of SOD, and GSH-Px enzymes in the tissues. Furthermore, our data suggest that there is a significant reduction in the activity of iNOS and a rise in the expression of SP-D in lung tissue of different pulmonary aspiration models with curcumin therapy. Our findings support the use of curcumin as a potential therapeutic agent in acute lung injury.

  9. Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin.

    PubMed

    Alghasham, Abdullah; Salem, Tarek A; Meki, Abdel-Raheim M

    2013-09-01

    The present study was designed to investigate the effect of CdCl₂-polluted drinking water (40 mg CdCl₂/L) on the level of TNF-α and IL-6, as well as oxidative status biomarkers in plasma of rats. The possible protective effect of oral administration of curcumin (50 mg/kg body weight/day) was assessed. Results illustrated that Cd exposure significantly elevated the plasma levels of TNF-α and IL-6 (p<0.001) as compared to normal rats. Also, Cd administration resulted in a significant elevation in the lipid peroxidation and markedly reduction in the activities of SOD and catalase as well as the level of glutathione and total antioxidant capacity in plasma. The co-treatment of Cd with curcumin significantly reduced the levels of TNF-α and IL-6 and ameliorated the alteration in oxidative status biomarkers induced by Cd. Negative correlation between IL-6 or TNF-α was and the plasma activities of catalase, SOD and the level of total antioxidant capacity were found in rats exposed to Cd. Cadmium toxicity induced the release of TNF-α and IL-6 which is associated with systemic oxidative stress. This may be involved in the mechanism of the Cd toxicity. On the other hand, the findings suggest the curative action of curcumin against Cd toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    PubMed

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  11. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  12. Epigenetic impact of curcumin on stroke prevention.

    PubMed

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2015-04-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering epigenetic changes but its role as an epigenetic agent in cerebral stroke has not been much explored. Although curcumin possesses remarkable medicinal properties, the bioavailability of curcumin has limited its success in epigenetic studies and clinical trials. The present review is therefore designed to look into epigenetic mechanisms that could be induced with curcumin during stroke, along with its molecular designing with different moieties that may increase its bioavailability. Curcumin has been shown to be encapsulated in exosomes, nano-vesicles (<200 nm), thereby showing its therapeutic effects in brain diseases. Curcumin delivered through nanoparticles has been shown to be neuroregenerative but the use of nanoparticles in brain has limitations. Hence, curcumin-encapsulated exosomes along with curcumin-primed exosomes (exosomes released by curcumin-treated cells) are much needed to be explored to broadly look into their use as a novel therapy for stroke.

  13. Curcumin and β-caryophellene attenuate cadmium quantum dots induced oxidative stress and lethality in Caenorhabditis elegans model system.

    PubMed

    Srivastava, Swati; Pant, Aakanksha; Trivedi, Shalini; Pandey, Rakesh

    2016-03-01

    Curcumin (CUR) and β-caryophellene (BCP) are well known bioactive phytomolecules which are known to reduce oxidative stress in living organisms. Therefore, the present study was envisaged to explore the possible effects of CUR and BCP in suppression of cadmium quantum dots (CdTe QDs) induced toxicity in Caenorhabditis elegans. CdTe QD are luminescent nanoparticles extensively exploited for in vivo imaging, but long term bioaccumulation confer deleterious effects on living organisms. The 24-h LC50 and LC100 of CdTe QD were found to be 18.40 μg/ml and 100 μg/ml respectively. The CdTe QD exposure elevated HSP-16.2 expression mediating induction of the stress response. The CdTe QD lethality was due to increment in ROS and decline in SOD and GST expression. The present study demonstrates improved survival in BCP (50 μM) and CUR (20 μM) treated worms by over 60% (P<0.01) and 50% (P<0.029) in CdTe QD (100 μg/ml) exposed worms. Furthermore, BCP and CUR attenuate oxidative stress triggered by QD. The present study for the first time demonstrates CdTe QD toxicity remediation via BCP and CUR. The future investigations can unravel underlying protective effects of phytomolceules for remediating cyotoxicolgical effects of QDs.

  14. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention

    PubMed Central

    McFadden, Rita-Marie T.; Larmonier, Claire B.; Shehab, Kareem W.; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A.; Besselsen, David G.; Chase, John H.; Caporaso, J. Gregory; Jobin, Christian; Ghishan, Fayez K.; Kiela, Pawel R.

    2015-01-01

    Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology. PMID:26218141

  15. Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats

    PubMed Central

    Arcaro, Carlos Alberto; Gutierres, Vânia Ortega; Assis, Renata Pires; Moreira, Thais Fernanda; Costa, Paulo Inácio; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2014-01-01

    Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation. PMID:25469699

  16. Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

    PubMed

    Öner-İyidoğan, Yildiz; Tanrıkulu-Küçük, Sevda; Seyithanoğlu, Muhammed; Koçak, Hikmet; Doğru-Abbasoğlu, Semra; Aydin, A Fatih; Beyhan-Özdaş, Şule; Yapişlar, Hande; Koçak-Toker, Necla

    2014-10-01

    High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant-antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague-Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

  17. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics.

    PubMed

    Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan

    2017-03-08

    N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.

  18. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    PubMed

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD(+)-dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Attenuation of arsenic neurotoxicity by curcumin in rats

    SciTech Connect

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  20. Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol

    PubMed Central

    Banerjee, Bhaswati; Chakraborty, Supriya; Ghosh, Debidas; Raha, Sanghamitra; Sen, Parimal C.; Jana, Kuladip

    2016-01-01

    Benzo(a)pyrene (B(a)P) is an environmental toxicant that induces male germ cell apoptosis. Curcumin and resveratrol are phytochemicals with cytoprotective and anti-oxidative properties. At the same time resveratrol is also a natural Aryl hydrocarbon Receptor (AhR) antagonist. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted the synergistic protective effect of curcumin and resveratrol against B(a)P induced p53 mediated germ cell apoptosis. Curcumin-resveratrol significantly prevented B(a)P induced decrease in sperm cell count and motility, as well as increased serum testosterone level. Curcumin-resveratrol co-treatment actively protected B(a)P induced testicular germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3, 8 and 9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, and Apaf1. B(a)P induced testicular reactive oxygen species (ROS) generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 (Cytochrome P4501A1) expression. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ

  1. Combination curcumin and vitamin E treatment attenuates diet-induced steatosis in Hfe-/- mice

    PubMed Central

    Heritage, Mandy; Jaskowski, Lesley; Bridle, Kim; Campbell, Catherine; Briskey, David; Britton, Laurence; Fletcher, Linda; Vitetta, Luis; Subramaniam, V Nathan; Crawford, Darrell

    2017-01-01

    AIM To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe-/- high calorie diet model of steatohepatitis. METHODS Hfe-/- C57BL/6J mice were fed either a high calorie diet or a high calorie diet with 1 mg/g curcumin; 1.5 mg/g vitamin E; or combination of 1 mg/g curcumin + 1.5 mg/g vitamin E for 20 wk. Serum and liver tissue were collected at the completion of the experiment. Liver histology was graded by a pathologist for steatosis, inflammation and fibrosis. RNA and protein was extracted from liver tissue to examine gene and protein expression associated with fatty acid oxidation, mitochondrial biogenesis and oxidative stress pathways. RESULTS Hfe-/- mice fed the high calorie diet developed steatohepatitis and pericentral fibrosis. Combination treatment with curcumin and vitamin E resulted in a greater reduction of percent steatosis than either vitamin E or curcumin therapy alone. Serum alanine aminotransferase and non-alcoholic fatty liver disease (NAFLD) activity score were decreased following combination therapy with curcumin and vitamin E compared with high calorie diet alone. No changes were observed in inflammatory or fibrosis markers following treatment. Epididymal fat pad weights were significantly reduced following combination therapy, however total body weight and liver weight were unchanged. Combination therapy increased the mRNA expression of AdipoR2, Ppar-α, Cpt1a, Nrf-1 and Tfb2m suggesting enhanced fatty acid oxidation and mitochondrial biogenesis. In addition, combination treatment resulted in increased catalase activity in Hfe-/- mice. CONCLUSION Combination curcumin and vitamin E treatment decreases liver injury in this steatohepatitis model, indicating that combination therapy may be of value in NAFLD. PMID:28573069

  2. Combination curcumin and vitamin E treatment attenuates diet-induced steatosis in Hfe(-/-) mice.

    PubMed

    Heritage, Mandy; Jaskowski, Lesley; Bridle, Kim; Campbell, Catherine; Briskey, David; Britton, Laurence; Fletcher, Linda; Vitetta, Luis; Subramaniam, V Nathan; Crawford, Darrell

    2017-05-15

    To investigate the synergistic hepato-protective properties of curcumin and vitamin E in an Hfe(-/-) high calorie diet model of steatohepatitis. Hfe(-/-) C57BL/6J mice were fed either a high calorie diet or a high calorie diet with 1 mg/g curcumin; 1.5 mg/g vitamin E; or combination of 1 mg/g curcumin + 1.5 mg/g vitamin E for 20 wk. Serum and liver tissue were collected at the completion of the experiment. Liver histology was graded by a pathologist for steatosis, inflammation and fibrosis. RNA and protein was extracted from liver tissue to examine gene and protein expression associated with fatty acid oxidation, mitochondrial biogenesis and oxidative stress pathways. Hfe(-/-) mice fed the high calorie diet developed steatohepatitis and pericentral fibrosis. Combination treatment with curcumin and vitamin E resulted in a greater reduction of percent steatosis than either vitamin E or curcumin therapy alone. Serum alanine aminotransferase and non-alcoholic fatty liver disease (NAFLD) activity score were decreased following combination therapy with curcumin and vitamin E compared with high calorie diet alone. No changes were observed in inflammatory or fibrosis markers following treatment. Epididymal fat pad weights were significantly reduced following combination therapy, however total body weight and liver weight were unchanged. Combination therapy increased the mRNA expression of AdipoR2, Ppar-α, Cpt1a, Nrf-1 and Tfb2m suggesting enhanced fatty acid oxidation and mitochondrial biogenesis. In addition, combination treatment resulted in increased catalase activity in Hfe(-/-) mice. Combination curcumin and vitamin E treatment decreases liver injury in this steatohepatitis model, indicating that combination therapy may be of value in NAFLD.

  3. Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes.

    PubMed

    Hirzel, Estelle; Lindinger, Peter W; Maseneni, Swarna; Giese, Maria; Rhein, Véronique Virginie; Eckert, Anne; Hoch, Matthias; Krähenbühl, Stephan; Eberle, Alex N

    2013-10-01

    Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.

  4. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  5. Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy.

    PubMed

    Xie, Maobin; Fan, Dejun; Zhao, Zheng; Li, Zhi; Li, Gang; Chen, Yufeng; He, Xiaowen; Chen, Aizheng; Li, Jiashen; Lin, Xiaofen; Zhi, Min; Li, Yi; Lan, Ping

    2015-12-30

    Curcumin (CM) possesses multiple biological activities. However, poor water solubility and low bioavailability limit its application in biomedical fields. CM nanoparticles (NPs) (230-240nm) were prepared by solution-enhanced dispersion via supercritical CO2 (SEDS) (22-22.5MPa pressure, 31-32.5°C temperature) and its biological functions were evaluated in this study. The Minimum inhibitory concentration of CM NPs against S. aureus (∼250μg/mL) was lower than CM-DMSO (∼500μg/mL). Meanwhile, CM NPs showed effective anti-oxidant ability at a concentration raging from 125 to 2000μg/mL. CM NPs showed time-dependent intracellular internalization ability, resulting in an enhanced anti-cancer effect on colorectal cancer cells (HCT116), and the mechanism could be explained by cell cycle arrest in G2/M phase associated with inducing apoptotic cells. Moreover, CM NPs exhibited reduced cytotoxicity on normal cells (NCM460) compared to CM-DMSO and 5-Fu. In conclusion, CM NPs prepared via SEDS showed potentials in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thymoquinone and curcumin attenuate gentamicin-induced renal oxidative stress, inflammation and apoptosis in rats

    PubMed Central

    Mahmoud, Ayman M; Ahmed, Osama M; Galaly, Sanaa R

    2014-01-01

    The present study was aimed to investigate the possible protective effects of thymoquinone (TQ) and curcumin (Cur) on gentamicin (GM)-induced nephrotoxicity in rats. Rats were divided into four groups as follows: group 1 received normal saline and served as normal controls, group 2 received GM only, group 3 concurrently received GM and TQ and group 4 concurrently received GM and Cur. At day 21, rats were sacrificed and samples were collected for assaying serum tumor necrosis factor alpha (TNF-α), urea and creatinine levels, and renal lipid peroxidaion, glutathione (GSH) content as well as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. In addition, kidneys were collected for histopathological examination and immunohistochemical determination of the antiapoptotic protein, B-cell lymphoma 2 (Bcl-2). The biochemical results showed that GM-induced nephrotoxicity was associated with a significant increase in serum TNF-α, urea and creatinine as well as renal lipid peroxidation. On the other hand, renal GSH content and GPx and SOD activities were significantly declined. Concomitant administration of either TQ or Cur efficiently alleviated the altered biochemical and histopathological features. In conclusion, both TQ and Cur showed more or less similar marked renoprotective effect against GM-induced nephrotoxicity through their antioxidant, anti-inflammatory and anti-apoptotic efficacies. PMID:26417245

  7. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  8. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: evidence of its antioxidant property.

    PubMed

    Naik, Suresh R; Thakare, Vishnu N; Patil, Snehal R

    2011-07-01

    The present study investigates the protective effects of curcumin on experimentally induced inflammation, hepatotoxicity, and cardiotoxicity using various animal models with biochemical parameters like serum marker enzymes and antioxidants in target tissues. In addition, liver and cardiac histoarchitecture changes were also studied. Curcumin treatment inhibited carrageenin and albumin induced edema, cotton pellet granuloma formation. The increased relative weight of liver and heart in CCl(4) induced liver injury and isoproterenol induced cardiac necrosis were also reduced by curcumin treatment. Elevated serum marker enzymes, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) increased lipid peroxidation, decreased gluthione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in edematous, granulomatus, liver and heart tissues during inflammation, liver injury and cardiac necrosis, respectively. Curcumin treatment reversed all these above mentioned biochemical changes significantly in all animal models studied. Even histoarchitecture alterations observed in liver injury and cardiac necrosis observed were partially reversed (improved) by curcumin treatments. In in vitro experiments too curcumin inhibited iron catalyzed lipid peroxidation in liver homogenates, scavenged nitric oxide spontaneously generated from nitroprusside and inhibited heat induced hemolysis of rat erythrocytes. The present in vitro and in vivo experimental findings suggest the protective effect of curcumin on experimentally induced inflammation, hepatotoxicity, and cardiotoxicity in rats.

  9. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion.

    PubMed

    Aditya, N P; Aditya, Sheetal; Yang, Hanjoo; Kim, Hye Won; Park, Sung Ook; Ko, Sanghoon

    2015-04-15

    Curcumin and catechin are naturally occurring phytochemicals with extreme sensitivity to oxidation and low bioavailability. We fabricated a water-in-oil-in-water (W/O/W) double emulsion encapsulating hydrophilic catechin and hydrophobic curcumin simultaneously. The co-loaded emulsion was fabricated using a two-step emulsification method, and its physicochemical properties were characterised. Volume-weighted mean size (d43) of emulsion droplets was ≈3.88 μm for blank emulsions, whereas it decreased to ≈2.8-3.0 μm for curcumin and/or catechin-loaded emulsions, which was attributed to their capacity to act as emulsifiers. High entrapment efficiency was observed for curcumin and/or catechin-loaded emulsions (88-97%). Encapsulation of catechin and curcumin within an emulsion increased their stability significantly in simulated gastrointestinal fluid, which resulted in a four-fold augmentation in their bioaccessibility compared to that of freely suspended curcumin and catechin solutions. Co-loading of curcumin and catechin did not have adverse effects on either compound's stability or bioaccessibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Curcumin suppresses ovalbumin-induced allergic conjunctivitis

    PubMed Central

    Chung, So-Hyang; Choi, Seong Hyun; Choi, Jin A.; Chuck, Roy S.

    2012-01-01

    Purpose Allergic conjunctivitis (AC) from an allergen-driven T helper 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Because curcumin has shown anti-allergic activity in an asthma and contact dermatitis laboratory models, we examined whether administration of curcumin could affect the severity of AC and modify the immune response to ovalbumin (OVA) allergen in an experimental AC model. Methods Mice were challenged with two doses of topical OVA via the conjunctival sac after systemic sensitization with OVA in aluminum hydroxide (ALUM). Curcumin was administered 1 h before OVA challenge. Several indicators for allergy such as serum immunoglubulin E (IgE) antibodies production, eosinophil infiltration into the conjunctiva and Th2 cytokine production were evaluated in mice with or without curcumin treatment. Results Mice challenged with OVA via the conjunctival sac following systemic sensitization with OVA in ALUM had severe AC. Curcumin administration markedly suppressed IgE-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice administered curcumin had less interleukin-4 (IL-4) and interleukin-5 (IL-5) (Th2 type cytokine) production in conjunctiva, spleen, and cervical lymph nodes than mice in the non-curcumin-administered group. OVA challenge resulted in activation of the production of inducible nitric oxide (iNOS), and curcumin treatment inhibited iNOS production in the conjunctiva. Conclusions We believe our findings are the first to demonstrate that curcumin treatment suppresses allergic conjunctival inflammation in an experimental AC model. PMID:22876123

  11. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.

    PubMed

    Bengmark, Stig

    2006-01-01

    The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.

  12. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  13. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-02-21

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  14. Preparation and Characterization of PEGylated Iron Oxide-Gold Nanoparticles for Delivery of Sulforaphane and Curcumin.

    PubMed

    Danafar, Hossein; Sharafi, Ali; Askarlou, Sonia; Manjili, Hamidreza Kheiri

    2017-07-24

    Natural products have been used for the treatment of various diseases such as cancer. Curcumin (CUR) and sulforaphane (SF) have anti-cancer effects, but their application is restricted because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an advanced delivery of SF and CUR with PEGylated gold coated Fe3O4 magnetic nanoparticles (PEGylated Fe3O4@Au NPs) to endorse SF and CUR maintenance as an effective and promising antitumor drugs. The structure of the synthesized nanocarrieris evaluated by, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that the size of NPs was 20 nm. They were mono-dispersed in water, with high drug-loading capacity and stability. CUR and SF were encapsulated into NPs with loading capacity of 16.32±0.023% and 15.74±0.015% and entrapment efficiency of 74.57±0.14% and 72.20±0.18% respectively. The in-vitro study of SF and CUR loaded PEGylated Fe3O4@Au NPs on human breast adenocarcinoma cell line (SK-BR-3) confirmed that cytotoxicity of SF and CUR can enhance when they are loaded on PEGylated Fe3O4@Au NPs in comparison to Free SF and void CUR. The results of flow cytometry and real-time PCR shown that nano-carriers can increase therapeutic effects of SF and CUR by apoptosis and necrosis induction as well as inhibiting of migration in SK-BR-3 cell line. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    PubMed

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability.

  16. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    PubMed

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Curcumin as a wound healing agent.

    PubMed

    Akbik, Dania; Ghadiri, Maliheh; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2014-10-22

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model.

    PubMed

    Abdel-Moneim, Ashraf M; El-Toweissy, Mona Y; Ali, Awatef M; Awad Allah, Abd Allah M; Darwish, Hanaa S; Sadek, Ismail A

    2015-11-01

    This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.

  19. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  20. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study.

    PubMed

    Di Pierro, F; Bressan, A; Ranaldi, D; Rapacioli, G; Giacomelli, L; Bertuccioli, A

    2015-11-01

    This randomized, controlled study aims to evaluate the tolerability and the efficacy of curcumin in overweight subjects affected from metabolic syndrome, with a focus on impaired glucose intolerance and android-type fat accumulation. Forty-four subjects, selected among those who after 30 days of diet and intervention lifestyle have shown a weight loss < 2%, have been treated for further 30 days either with curcumin complexed with phosphatidylserine in phytosome form or with pure phosphatidylserine. Outcomes concerning anthropometric measurements and body composition were analyzed at enrollment and after 30 and 60 days. Curcumin administration increased weight loss from 1.88 to 4.91%, enhanced percentage reduction of body fat (from 0.70 to 8.43%), increased waistline reduction (from 2.36 to 4.14%), improved hip circumference reduction from 0.74 to 2.51% and enhanced reduction of BMI (from 2.10 to 6.43%) (p < 0.01 for all comparisons). Phosphatidylserine did not show any statistical significant effect. Tolerability was very good for both treatments, and no drop-out was reported. Although preliminary, our findings suggest that a bioavailable form of curcumin is well-tolerated and can positively influence weight management in overweight people.

  1. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. Copyright © 2016. Published by Elsevier B.V.

  2. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress.

    PubMed

    Li, Hai-Yu; Yang, Mei; Li, Ze; Meng, Zhe

    2017-05-01

    Angiotensin II (AngII)-induced production of inflammatory factors and proliferation in vascular smooth muscle cells (VSMCs) play an important role in the progression of atherosclerotic plaques. Growing evidence has demonstrated that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) effectively attenuates AngII-induced inflammation and intercellular reactive oxygen species (iROS) production. Curcumin (Cur) inhibits inflammatory responses by enhancing PPAR-γ activity and reducing oxidative stress in various tissues. The aim of the present study was to ascertain whether Cur inhibits AngII-induced inflammation and proliferation, and its underlying molecular mechanism, in VSMCs. Enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to measure the protein and mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Nitric oxide (NO) production was measured by Griess reaction. Western blot analysis and a DNA-binding assay were used to measure PPAR-γ activity. iROS production was measured using the DCFH-DA method. In rat VSMCs, Cur attenuated AngII‑induced expression of IL-6 and TNF-α mRNA and protein in a concentration-dependent manner, inhibited NO production by suppressing inducible NO synthase (iNOS) activity, and suppressed proliferation of VSMCs. This was accompanied by increased PPAR-γ expression and activation in Cur-pretreated VSMCs. GW9662, a PPAR-γ antagonist, reversed the anti-inflammatory effect of Cur. Moreover, Cur attenuated AngII-induced oxidative stress by downregulating the expression of p47phox, which is a key subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, Cur inhibited the expression of IL-6 and TNF-α, decreased the production of NO, and suppressed the proliferation of VSMCs, by elevating PPAR-γ activity and suppressing oxidative stress, leading to attenuated AngII-induced inflammatory responses in VSMCs.

  3. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Kucuksayan, Ertan; Ozben, Tomris

    2012-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols used for testicular cancer; however, side-effects are common. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has been demonstrated to induce apoptosis in a number of malignancies. However, to date no study has been carried out to elucidate its anticancer activity and interaction with bleomycin in testicular cancer cells. In this study, we investigated and compared the effects of curcumin, bleomycin and hydrogen peroxide (H2O2) on apoptotic signaling pathways. Curcumin (20 µM), bleomycin (400 µg/ml) and H2O2 (400 µM) incubation for 24 h decreased the viability of NTera-2 cells, and increased caspase-3, -8 and -9 activities, Bax and cytoplasmic cytochrome c levels and decreased Bcl-2 levels. The concurrent use of curcumin with bleomycin induced caspase-3, -8 and -9 activities to a greater extent in NTera-2 cells than the use of each drug alone. Our observations suggest that the effects of curcumin and bleomycin on apoptotic signaling pathways are synergistic. Therefore, we propose to use curcumin together with bleomycin to decrease its therapeutic dose and, therefore, its side-effects.

  4. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    PubMed

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.

  5. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge.

    PubMed

    Rajput, N; Ali, S; Naeem, M; Khan, M A; Wang, T

    2014-01-01

    1. An experiment was performed to evaluate the effectiveness of the antioxidants curcumin (CRM) and lutein (LTN) on the quality of meat from coccidiosis-infected broilers. A total of 200 one-day-old Arbor Acre chicks were randomly assigned to a treatment group with 5 replicates. The treatments included a basal diet without carotenoid supplementation (control), with 300 mg/kg CRM, with 300 mg/kg LTN or with a combination (C + L) of 150 mg/kg CRM and 150 mg/kg LTN. All chickens were challenged with Eimeria maxima at 21 d old. 2. The results revealed that the coccidiosis reduced redness of meat, while supplementation with carotenoids improved the fresh meat's redness (a*) and yellowness (b*) and contributed to colour stability maintenance after storage (1 month at -18°C and 3 d at 4°C). 3. Coccidiosis did not produce lipid and protein oxidation in fresh meat, but after storage for one month, the malondialdehyde levels and carbonyl contents were lower in the CRM and C + L birds and the sulfhydryl contents were higher in C + L birds. 4. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis banding pattern showed equivalent myosin chain fragmentations in all treatment groups, whereas lower intensity actin bands were observed in the control group (CONT). Moreover, myofibril protein denaturation (differential scanning calorimetry) profiles showed a reduction in the CONT myosin and actin peaks. Coccidiosis reduced the meat's water holding capacity in non-supplemented chicken meat and was improved by natural carotenoid. 5. These results emphasise that coccidiosis did not decrease the eating quality of fresh meat, that natural carotenoids are efficient antioxidants and that CRM (300 mg/kg) fed individually or combined with LTN was the most effective supplemented antioxidant compound.

  6. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles.

    PubMed

    Adahoun, Mo'ath Ahmad; Al-Akhras, Mohammed-Ali Hassan; Jaafar, Mohamad Suhaimi; Bououdina, Mohamed

    2017-02-01

    Background Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has demonstrated that these polyphenols play an important role in the maintenance of health and prevention of diseases, in addition to its therapeutic benefits such as anti-tumor, anti-inflammatory, and anti-oxidant activities. Materials and methods This study is devoted to the enhancement of the solubility and bioavailability of curcumin nanoparticles prepared by a process based on a wet-milling technique and then examine in vitro against prostate cancer cell line 3 (PC3), human embryonic kidney cell line (HEK), human erythrocytes (red blood cells (RBCs)), and against fourth different bacterial strains two gram-positive (Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 29213), two gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853). Results The cell viability curve, the half maximal inhibitory concentration (IC50), and the minimum bactericidal concentration (MBC) were evaluated. Nanocurcumin displayed significant activity against cancer cell line (PC3) and low toxicity against normal cells (HEK) compared with parent curcumin in favor of PC3 (P < 0.05). In addition, it was found that the efficiency of toxicity for nanocurcumin against PC3 (E% = 59.66%) was much better than HEK (E% = 36.07%) compared with parent curcumin. The results also demonstrate that, although nanocurcumin has a little more ability to lays RBCs than parent curcumin after incubated 60 min, but the hemolysis % remained very low and there was no significant difference between hemolysis % of nanocurcumin and parent curcumin (P > 0.05). On the other hand, the results demonstrate that, the MBCs of nanocurcumin were lower than curcumin for all different bacterial strains. Moreover, the selected gram-positive bacteria had higher sensitivity than the selected gram-negative bacteria for both

  7. New perspectives of curcumin in cancer prevention

    PubMed Central

    Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.

    2013-01-01

    Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484

  8. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.

    PubMed

    Sun, Yan Ping; Gu, Jun Fei; Tan, Xiao Bin; Wang, Chun Fei; Jia, Xiao Bin; Feng, Liang; Liu, Ji Ping

    2016-02-01

    Methylglyoxal (MGO)-induced carbonyl stress and pro-inflammatory responses have been suggested to contribute to endothelial dysfunction. Curcumin (Cur), a polyphenolic compound from Curcuma longa L., may protect endothelial cells against carbonyl stress-induced damage by trapping dicarbonyl compounds such as MGO. However, Cur-MGO adducts have not been studied in depth to date and it remains to be known whether Cur-MGO adducts are able to attenuate endothelial damage by trapping MGO. In the present study, 1,2-diaminobenzene was reacted with MGO to ensure the reliability of the reaction system. Cur was demonstrated to trap MGO at a 1:1 ratio to form adducts 1, 2 and 3 within 720 min. The structures of these adducts were identified by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. The kinetic curves of Cur (10(-7), 10(-6) and 10(-5) M) were measured from 0-168 h by fluorescent intensity. Cur significantly inhibited the formation of advanced glycation end products (AGEs). The differences in oxidative damage and the levels of pro-inflammatory cytokines following MGO + HSA or Cur-MGO treatment were investigated in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to the Cur-MGO reaction adducts significantly reduced the intracellular ROS levels and improved cell viability compared with MGO alone. Furthermore, there was a significant reduction in the expression levels of transforming growth factor-β1 and intercellular adhesion molecule(-1) following treatment with Cur-MGO adducts compared with MGO alone. These results provide further evidence that the trapping of MGO by Cur inhibits the formation of AGEs. The current study indicates that the protective effect of Cur on carbonyl stress and pro-inflammatory responses in endothelial damage occurs via the trapping of MGO.

  9. Curcumin as a potential treatment for Alzheimer's disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein.

    PubMed

    Wang, Yunliang; Yin, Honglei; Wang, Lin; Shuboy, Adam; Lou, Jiyu; Han, Bing; Zhang, Xiaoxi; Li, Jinfeng

    2013-01-01

    Curcumin, an agent traditionally utilized for its preventative action against tumorigenesis, oxidation, inflammation, apoptosis and hyperlipemia, has also been used in the treatment of Alzheimer's disease (AD). Recent advances in the study of AD have revealed astrocytes (AS) as being key factors in the early pathophysiological changes in AD. Glial fibrillary acidic protein (GFAP), a marker specific to AS, is markedly more manifest during morphological modifications and neural degeneration signature during the onset of AD. Several studies investigating the functionality of curcumin have shown that it not only inhibits amyloid sedimentation but also accelerates the disaggregation of amyloid plaque. Thus, we are interested in the relationship between curcumin and spatial memory in AD. In this study, we intend to investigate the effects of curcumin in amyloid-β (Aβ(1-40)) induced AD rat models on both the behavioral and molecular levels, that is to say, on their spatial memory and on the expression of GFAP in their hippocampi. Our results were statistically significant, showing that the spatial memory of AD rats improved following curcumin treatment (p < 0.05), and that the expression of GFAP mRNA and the number of GFAP positive cells in the curcumin treated rats was decreased relative to the AD group rats (p < 0.05). Furthermore, the expression level of GFAP mRNA in hippocampal AS in the AD rats significantly increased when compared with that in the sham control (p < 0.05). Taken together, these results suggest that curcumin improves the spatial memory disorders (such disorders being symptomatic of AD) in Aβ(1-40)-induced rats by down regulating GFAP expression and suppressing AS activity.

  10. On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity.

    PubMed

    Barclay, L R; Vinqvist, M R; Mukai, K; Goto, H; Hashimoto, Y; Tokunaga, A; Uno, H

    2000-09-07

    [reaction: see structure] The antioxidant activity of curcumin (1, 7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) was determined by inhibition of controlled initiation of styrene oxidation. Synthetic nonphenolic curcuminoids exhibited no antioxidant activity; therefore, curcumin is a classical phenolic chain-breaking antioxidant, donating H atoms from the phenolic groups not the CH(2) group as has been suggested (Jovanovic et al. J. Am. Chem. Soc. 1999, 121, 9677). The antioxidant activities of o-methoxyphenols are decreased in hydrogen bond accepting media.

  11. Curcumin and Health.

    PubMed

    Pulido-Moran, Mario; Moreno-Fernandez, Jorge; Ramirez-Tortosa, Cesar; Ramirez-Tortosa, Mcarmen

    2016-02-25

    Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.

  12. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  13. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  14. Oxidative stress decreases microtubule growth and stability in ventricular myocytes.

    PubMed

    Drum, Benjamin M L; Yuan, Can; Li, Lei; Liu, Qinghang; Wordeman, Linda; Santana, L Fernando

    2016-04-01

    Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.

  15. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation

    PubMed Central

    Chhunchha, Bhavana; Fatma, Nigar; Kubo, Eri; Rai, Prerana; Singh, Sanjay P.

    2013-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumin's neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O2 or CoCl2 treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl2 displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress. PMID:23364261

  16. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    SciTech Connect

    Raza, Haider John, Annie; Brown, Eric M.; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.

  17. Protective mechanism of curcumin against Vibrio vulnificus infection.

    PubMed

    Na, Hee Sam; Cha, Mi Hye; Oh, Dool-Ri; Cho, Cheong-Weon; Rhee, Joon Haeng; Kim, Young Ran

    2011-12-01

    Curcumin, a natural polyphenolic flavonoid extracted from the rhizome of Curcuma longa L., has many beneficial biological activities. However, there are relatively few reports of the effects of curcumin on pathogen infections. This study examined the effect of curcumin on a Vibrio vulnificus infection. The cytotoxicity of V. vulnificus to HeLa cells was significantly inhibited by curcumin (at 10 or 30 μM). To further examine the inhibitory mechanism of curcumin against V. vulnificus-mediated cytotoxicity, the level of bacterial growth, bacterial motility, cell adhesion, RTX toxin expression and host cell reactions were evaluated. Curcumin inhibited V. vulnificus growth in HI broth. Curcumin inhibited both bacterial adhesion and RTX toxin binding to the host cells, which can be considered the major protective mechanisms for the decrease in V. vulnificus cytotoxicity. Curcumin also inhibited host cell rounding and actin aggregation, which are the early features of cell death caused by V. vulnificus. In addition, curcumin decreased the V. vulnificus-induced NF-κB translocation in HeLa cells. Finally, curcumin protected mice from V. vulnificus-induced septicemia. In conclusion, curcumin may be an alternative antimicrobial agent against fatal bacterial infections. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Decreased nitric oxide serum level after pituitary adenoma resection.

    PubMed

    Babula, Daniel; Horecka, Anna; Luchowska-Kocot, Dorota; Kocot, Joanna; Kurzepa, Jacek

    2017-09-22

    Nitric oxide (NO) is synthesized by the conversion of Arginine (Arg) into the NO and Citrulline (Cit). Although the NO is involved into the pathogenesis of several physiological and pathological processes, the role of NO in pituitary adenomas (PA) progres-sion is not determined. Our purpose was to evaluate the relationship between NO and PA as well as the effect of tumor resection on NO metabolites level in serum. The study group consisted of 21 patients with PA, 18 patients with macroade-nomas and 3 with microadenomas. Venous blood samples were collected at two time-points; 1) before the surgery and 2) 3-5 days after PA resection. Arg and Cit levels were determined by the automated ion-exchange chromatography with usage of Amino Acids Analyser (AAA 400). Commercially available kit for the evaluation of nitrate/nitrite serum levels was applied for indirect assessment of serum NO level. Significant decrease in NO concentration after the surgery was observed in com-parison with the time-point 1. Arg level did not significantly change during the study period. Cit level was ranged below the detection limit of applied method. The decrease of NO level after the pituitary adenoma resection indicates the relationship between NO synthesis and PA occurrence.

  19. Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats.

    PubMed

    Bansal, Shyam S; Kausar, Hina; Vadhanam, Manicka V; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N; Gupta, Ramesh C

    2014-04-01

    Curcumin is widely known for its antioxidant, anti-inflammatory, and antiproliferative activities in cell-culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvent oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female Augustus Copenhagen Irish (ACI) rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2 cm; 200 mg each; 20% drug load) 4 days before grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Curcumin implants were changed after 4.5 months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months, and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2 ± 1 vs. 5 ± 3; P = 0.001) and tumor volume (184 ± 198 mm(3) vs. 280 ± 141 mm(3); P = 0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity, whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in the presence of E2. Because CYP1A and CYP3A4 metabolize most of the E2 to its noncarcinogenic 2-OH metabolite, and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by high-performance liquid chromatography showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered.

  20. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway.

  1. Anti-Inflammatory Effects of Curcumin on Insulin Resistance Index, Levels of Interleukin-6, C-Reactive Protein, and Liver Histology in Polycystic Ovary Syndrome-Induced Rats.

    PubMed

    Mohammadi, Shima; Karimzadeh Bardei, Latifeh; Hojati, Vida; Ghorbani, Azita Ghorbani; Nabiuni, Mohammad

    2017-10-01

    Curcumin protects the liver against injury and fibrosis through suppressing hepatic inflammation, attenuating hepatic oxidative stress (OS), and inhibiting hepatic stellate cells (HSCs) activation. Non-alcoholic fatty liver disease (NAFLD) and polycystic ovary syndrome (PCOS) are considered as common metabolic disorders. Low-grade chronic inflammation with different markers, such as elevated C-reactive protein (CRP) and interleukin-6 (IL-6) levels, play a crucial role in PCOS. This study aimed to evaluate the therapeutic effects of curcumin on IL-6 and CRP levels as well as insulin resistance (IR) index on liver function in PCOS rats. In this experimental study, 90 adult Wistar rats were divided into control (n=18), sham (n=18), PCOS (n=18) and curcumin-treated PCOS groups (n=36). PCOS group was injected subcutaneously with 2 mg estradio-valerate (E2V). After 60 days, PCOS group was treated with curcumin [100 and 300 mg/kg body weight (BW)] for 14 days and anesthetized by chloroform. Blood and liver samples were collected for histological and serological analyses. Data were analyzed using In-Stat 3 via one-way analysis of variance (ANOVA). Histological and serological analyses showed a reduction in number of necrotic cells, IR index, as well as IL-6 and CRP levels in PCOS rats that were treated with various concentrations of curcumin. In this study, curcumin decreased liver inflammation by induction of insulin sensitivity and reduction of hepatic necrosis. Therefore, curcumin may be considered as protective factor against inflammatory state of PCOS.

  2. Curcumin (diferuloylmethane) delivery methods: a review.

    PubMed

    Helson, Lawrence

    2013-01-01

    Curcumin interacts with a large number of extra- and intracellular targets in a biphasic dose-dependent manner. It controls inflammation, oxidative stress, cell survival, cell secretion, homeostasis, and proliferation. Its mechanisms of action are generally directed toward cells that exhibit disordered physiology or blatant mutation-based abnormal states. Optimizing preventative or therapeutic applications require delivering appropriate quantities of curcumin to lesioned cellular targets. Since diseased conditions anatomically are located from topical to systemic sites, efficient application of curcumin requires specific lesion-oriented delivery methods, representatives of which are here reviewed. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  3. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways.

    PubMed

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Zhong, Caiyun

    2017-03-12

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemicals. Accumulating evidence indicates that exposure to BPA contributes to insulin resistance through diverse mechanism including inflammation and oxidative stress. Previous studies have suggested curcumin as a safe phytochemical which can improve obesity-related insulin resistance, inflammation and oxidative stress. The present study aimed to investigate the ability of curcumin to prevent BPA-induced insulin resistance in vitro and the underlying mechanism. Following the establishmet of in vitro insulin resistance via BPA treatment in human liver HepG2 cells, the protective effects of curcumin were determiend. We showed that treatment of HepG2 cells with 100nM BPA for 5days induced significantly decreased glucose consumption, impaired insulin signaling, elevation of pro-inflammatory cytokines and oxidative stress, and activation of signaling pathways; inhibition of JNK and p38 pathways, but not ERK nor NF-κB pathways, improved glucose consumption and insulin signaling in BPA-treated HepG2 cells. Moreover, we revealed that curcumin effectively attenuated the spectrum of effects of BPA-triggered insulin resistance, whereas pretreatment with JNK and p38 agonist anisomycin could significantly compensate the effects caused by curcumin. These data illustrated the role of JNK/p38 activation in BPA-induced insulin resistance and suggested curcumin as a promising candidate for the intervention of BPA-induced insulin resistance.

  4. Curcumin as a potential protective compound against cardiac diseases.

    PubMed

    Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang

    2017-03-06

    Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.

  5. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective.

    PubMed

    Shome, Soumitra; Talukdar, Anupam Das; Choudhury, Manabendra Dutta; Bhattacharya, Mrinal Kanti; Upadhyaya, Hrishikesh

    2016-12-01

    Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness. © 2016 Royal Pharmaceutical Society.

  6. Lead Exposure in Different Organs of Mammals and Prevention by Curcumin-Nanocurcumin: a Review.

    PubMed

    Pal, Mili; Sachdeva, Meenu; Gupta, Niharika; Mishra, Priyanka; Yadav, Mahavir; Tiwari, Archana

    2015-12-01

    Chronic lead exposure is related to many health diseases in mammals. Exposure to lead forms reactive oxygen species reducing body antioxidant enzymes inflicting injury to numerous macromolecules or cell necrosis. Recent studies have revealed oxidative stress as the vital mechanism for lead toxicity. Lead is found to be toxic to several organ systems such as hematopoietic, skeletal, renal, cardiac, hepatic, and reproductive systems and extremely toxic to the central nervous system (CNS). Curcumin, an active ingredient of the dietary spice, and nanocurcumin, a nanoform of curcumin, are found to decrease toxicity due to lead in various organ systems in mouse models. Higher bioavailability, chelating property, and retention time of nanocurcumin over bulk curcumin may pave the way to expand the utility of nanocurcumin to remove lead toxicity from various organ systems within humans.

  7. Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats.

    PubMed

    Kant, Vinay; Kumar, Dinesh; Prasad, Raju; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surender K

    2017-05-15

    Our earlier studies demonstrated that topically applied substance P (SP) or curcumin on excision skin wound accelerated the wound healing in streptozotocin-induced diabetic rats. In the present study, we aimed to evaluate the wound healing potential of combination of SP and curcumin in diabetic rats. Open cutaneous excision wound was created on the back of each of the 60 diabetic rats. Wound-inflicted rats were equally divided into three groups namely, control, gel treated, and SP + curcumin treated. Normal saline, pluronic gel, and SP (0.5 × 10(-6)M) + curcumin (0.15%) were topically applied once daily for 19 d to these control, gel-treated, and SP + curcumin groups, respectively. SP + curcumin combination significantly accelerated wound closure and decreased messenger RNA expressions of tumor necrosis factor-alpha, interleukin-1beta, and matrix metalloproteinase-9, whereas the combination markedly increased the expressions of interleukin-10, vascular endothelial growth factor, transforming growth factor-beta1, hypoxia-inducible factor 1-alpha, stromal cell-derived factors-1alpha, heme oxygenase-1 and endothelial nitric oxide synthase, and activities of superoxide dismutase, catalase, and glutathione peroxidase in granulation-healing tissue, compared with control and gel-treated groups. In combination group, granulation tissue was better, as was evidenced by improved fibroblast proliferation, collagen deposition, microvessel density, growth-associated protein 43-positive nerve fibers, and thick regenerated epithelial layer. The combination of SP and curcumin accelerated wound healing in diabetic rats and both the drugs were compatible at the doses used in this study. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Curcumin Attenuates Titanium Particle-Induced Inflammation by Regulating Macrophage Polarization In Vitro and In Vivo

    PubMed Central

    Li, Bin; Hu, Yan; Zhao, Yaochao; Cheng, Mengqi; Qin, Hui; Cheng, Tao; Wang, Qiaojie; Peng, Xiaochun; Zhang, Xianlong

    2017-01-01

    Periprosthetic inflammatory osteolysis and subsequent aseptic loosening are commonly observed in total joint arthroplasty. Other than revision surgery, few approved treatments are available for this complication. Wear particle-induced inflammation and macrophage polarization state play critical roles in periprosthetic osteolysis. We investigated the effects of curcumin, a polyphenol extracted from Curcuma longa, on titanium (Ti) particle-induced inflammation and macrophage polarization in vitro using the murine cell line RAW 264.7 and in vivo using a murine air pouch model. The expression of specific macrophage markers was qualitatively analyzed by immunofluorescence (inducible nitric oxide synthase and CD206) and quantitatively analyzed by flow cytometry (CCR7 and CD206), representing M1 and M2 macrophages, respectively. Our results show that curcumin induced a higher percentage of M2 macrophages together with a higher concentration of anti-inflammatory cytokine IL-10, and a lower percentage of M1 macrophages with a lower concentration of pro-inflammatory cytokines (TNF-α and IL-6). The genes encoding CD86 (M1) and CD163 (M2), two additional markers, were shifted by curcumin toward an M2 phenotype. C57BL/J6 mice were injected with air and Ti particles to establish an air pouch model. Curcumin reduced cell infiltration in the pouch membrane and decreased membrane thickness. The analysis of exudates obtained from pouches demonstrated that the effects of curcumin on macrophage polarization and cytokine production were similar to those observed in vitro. These results prove that curcumin suppresses Ti particle-induced inflammation by regulating macrophage polarization. Thus, curcumin could be developed as a new therapeutic candidate for the prevention and treatment of inflammatory osteolysis and aseptic loosening. PMID:28197150

  9. Curcumin Attenuates Titanium Particle-Induced Inflammation by Regulating Macrophage Polarization In Vitro and In Vivo.

    PubMed

    Li, Bin; Hu, Yan; Zhao, Yaochao; Cheng, Mengqi; Qin, Hui; Cheng, Tao; Wang, Qiaojie; Peng, Xiaochun; Zhang, Xianlong

    2017-01-01

    Periprosthetic inflammatory osteolysis and subsequent aseptic loosening are commonly observed in total joint arthroplasty. Other than revision surgery, few approved treatments are available for this complication. Wear particle-induced inflammation and macrophage polarization state play critical roles in periprosthetic osteolysis. We investigated the effects of curcumin, a polyphenol extracted from Curcuma longa, on titanium (Ti) particle-induced inflammation and macrophage polarization in vitro using the murine cell line RAW 264.7 and in vivo using a murine air pouch model. The expression of specific macrophage markers was qualitatively analyzed by immunofluorescence (inducible nitric oxide synthase and CD206) and quantitatively analyzed by flow cytometry (CCR7 and CD206), representing M1 and M2 macrophages, respectively. Our results show that curcumin induced a higher percentage of M2 macrophages together with a higher concentration of anti-inflammatory cytokine IL-10, and a lower percentage of M1 macrophages with a lower concentration of pro-inflammatory cytokines (TNF-α and IL-6). The genes encoding CD86 (M1) and CD163 (M2), two additional markers, were shifted by curcumin toward an M2 phenotype. C57BL/J6 mice were injected with air and Ti particles to establish an air pouch model. Curcumin reduced cell infiltration in the pouch membrane and decreased membrane thickness. The analysis of exudates obtained from pouches demonstrated that the effects of curcumin on macrophage polarization and cytokine production were similar to those observed in vitro. These results prove that curcumin suppresses Ti particle-induced inflammation by regulating macrophage polarization. Thus, curcumin could be developed as a new therapeutic candidate for the prevention and treatment of inflammatory osteolysis and aseptic loosening.

  10. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles.

    PubMed

    Leung, Mandy H M; Harada, Takaaki; Dai, Sheng; Kee, Tak W

    2015-10-27

    Curcumin-encapsulated polyester nanoparticles (Cur-polyester NPs) of approximately 100 nm diameter with a negatively charged surface were prepared using a one-step nanoprecipitation method. The Cur-polyester NPs were prepared using polylactic acid, poly(D,L-lactic-co-glycolic acid) and poly(ϵ-caprolactone) without any emulsifier or surfactant. The encapsulation of curcumin in these polyester NPs greatly suppresses curcumin degradation in the aqueous environment due to its segregation from water. In addition, the fluorescence of curcumin in polyester NPs has a quantum yield of 4 to 5%, which is higher than that of curcumin in micellar systems and comparable to those in organic solvents, further supporting the idea that the polyester NPs are capable of excluding water from curcumin. Furthermore, the results from femtosecond fluorescence upconversion spectroscopy reveal that there is a decrease in the signal amplitude corresponding to solvent reorganization of excited state curcumin in the polyester NPs compared with curcumin in micellar systems. The Cur-polyester NPs also show a lack of deuterium isotope effect in the fluorescence lifetime. These results indicate that the interaction between curcumin and water in the polyester NPs is significantly weaker than that in micelles. Therefore, the aqueous stability of curcumin is greatly improved due to highly effective segregation from water. The overall outcome suggests that the polyester NPs prepared using the method reported herein are an attractive system for encapsulating and stabilizing curcumin in the aqueous environment.

  11. Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion

    PubMed Central

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Tamarapu Parthasarathy, Prasanna; Mandry, Maria; Cho, Young; Lockey, Richard; Kolliputi, Narasaiah

    2015-01-01

    Background Inflammation is a key hallmark of ALI and is mediated through ungoverned cytokine signaling. One such cytokine, interleukin-1beta (IL-1β) has been demonstrated to be the most bioactive cytokine in ALI patients. Macrophages are the key players responsible for IL-1β secretion into the alveolar space. Following the binding of IL-1β to its receptor, “activated” alveolar epithelial cells show enhanced barrier dysfunction, adhesion molecule expression, cytokine secretion, and leukocyte attachment. More importantly, it is an important communication molecule between the macrophage and alveolar epithelium. While the molecular determinants of this inflammatory event have been well documented, endogenous resolution processes that decrease IL-1β secretion and resolve alveolar epithelial cell activation and tissue inflammation have not been well characterized. Lipid mediator Aspirin-Triggered Resolvin D1 (AT-RvD1) has demonstrated potent pro-resolutionary effects in vivo models of lung injury; however, the contribution of the alveoli to the protective benefits of this molecule has not been well documented. In this study, we demonstrate that AT-RvD1 treatment lead to a significant decrease in oxidant induced macrophage IL-1β secretion and production, IL-1β-mediated cytokine secretion, adhesion molecule expression, leukocyte adhesion and inflammatory signaling. Methods THP-1 macrophages were treated with hydrogen peroxide and extracellular ATP in the presence or absence of AT-RvD1 (1000–0.1 nM). A549 alveolar-like epithelial cells were treated with IL-1β (10 ng/mL) in the presence or absence of AT-RvD1 (0.1 μM). Following treatment, cell lysate and cell culture supernatants were collected for Western blot, qPCR and ELISA analysis of pro-inflammatory molecules. Functional consequences of IL-1β induced alveolar epithelial cell and macrophage activation were also measured following treatment with IL-1β ± AT-RvD1. Results Results demonstrate that

  12. Curcumin, Silybin Phytosome(®) and α-R-Lipoic Acid Mitigate Chronic Hepatitis in Rat by Inhibiting Oxidative Stress and Inflammatory Cytokines Production.

    PubMed

    Ali, Shimaa O; Darwish, Hebatallah A; Ismail, Nabila A

    2016-05-01

    Chronic hepatitis is recognized as a worldwide health problem that gradually progresses towards cirrhosis and hepatocellular carcinoma. Despite the large number of experiments using animal models for allergic hepatitis, it is still difficult to produce a picture of chronic hepatitis. Therefore, this study was conducted to introduce an animal model approximating to the mechanism of chronicity in human hepatitis. The study also aimed to examine the hepatoprotective effects of curcumin, silybin phytosome(®) and α-R-lipoic acid against thioacetamide (TAA)-induced chronic hepatitis in rat model. TAA was administered intraperitoneally at a dose of 200 mg/kg three times weekly for 4 weeks. At the end of this period, a group of rats was killed to assess the development of chronic hepatitis in comparison with their respective control group. TAA administration was then discontinued, and the remaining animals were subsequently allocated into four groups. Group 1 was left untreated, whereas groups 2-4 were allowed to receive daily oral doses of curcumin, silybin phytosome(®) or α-R-lipoic acid, respectively, for 7 weeks. Increases in hepatic levels of malondialdehyde associated with TAA administration were inhibited in groups receiving supplements. Furthermore, glutathione depletion, collagen deposition, macrophage activation and nuclear factor κappa-B expression as well as tumour necrosis factor-α and interleukin-6 levels were significantly decreased in response to supplements administration. Serological analysis of liver function and liver histopathological examination reinforced the results. The above evidence collectively indicates that the antioxidant and anti-inflammatory activities of curcumin, silybin phytosome(®) and α-R-lipoic acid may confer therapeutic efficacy against chronic hepatitis. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Effects of nanoparticle-encapsulated curcumin on arsenic-induced liver toxicity in rats.

    PubMed

    Sankar, Palanisamy; Gopal Telang, Avinash; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Manikam, Kesavan; Sarkar, Souvendra Nath

    2015-01-01

    We investigated the therapeutic effectiveness of the nanoparticle-encapsulated curcumin (CUR-NP) against sodium arsenite-induced hepatic oxidative damage in rats. The CUR-NP prepared by emulsion technique was spherical in shape with an encapsulation efficiency of 86.5%. The particle size ranged between 120 and 140 nm with the mean particle size being 130.8 nm. Rats were divided into five groups of six each. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in group 2, however, they were administered, empty nanoparticles, curcumin (100 mg/kg bw) and CUR-NP (100 mg/kg bw), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic increased the activities of serum alanine aminotransferase and aspartate aminotransferase and caused histological alterations in liver indicating hepatotoxicity. Arsenic increased lipid peroxidation, depleted reduced glutathione and decreased the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in liver. All these effects of arsenic were attenuated with both curcumin and CUR-NP. However, the magnitude of amelioration was more pronounced with CUR-NP. The results indicate that curcumin given in nano-encapsulated form caused better amelioration than free curcumin. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 628-637, 2015. © 2013 Wiley Periodicals, Inc.

  14. Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function.

    PubMed

    Liu, Zun-Jing; Liu, Hong-Qiang; Xiao, Cheng; Fan, Hui-Zhen; Huang, Qing; Liu, Yun-Hai; Wang, Yu

    2014-11-01

    The turmeric derivative curcumin protects against cerebral ischemic injury. We previously demonstrated that curcumin activates peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor involved in both neuroprotective and anti-inflammatory signaling pathways. This study tested whether the neuroprotective effects of curcumin against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of rat cortical neurons are mediated (at least in part) by PPARγ. Curcumin (10 μM) potently enhanced PPARγ expression and transcriptional activity following OGD/R. In addition, curcumin markedly increased neuronal viability, as evidenced by decreased lactate dehydrogenase release and reduced nitric oxide production, caspase-3 activity, and apoptosis. These protective effects were suppressed by coadministration of the PPARγ antagonist 2-chloro-5-nitrobenzanilide (GW9662) and by prior transfection of a small-interfering RNA (siRNA) targeting PPARγ, treatments that had no toxic effects on healthy neurons. Curcumin reduced OGD/R-induced accumulation of reactive oxygen species and inhibited the mitochondrial apoptosis pathway, as indicated by reduced release of cytochrome c and apoptosis-inducing factor and maintenance of both the mitochondrial membrane potential and the Bax/Bcl-2 ratio. Again, GW9662 or PPARγ siRNA transfection mitigated the protective effects of curcumin on mitochondrial function. Curcumin suppressed IκB kinase phosphorylation and IκB degradation, thereby inhibiting nuclear factor-κ B (NF-κB) nuclear translocation, effects also blocked by GW9662 or PPARγ siRNA. Immunoprecipitation experiments revealed that PPARγ interacted with NF-κB p65 and inhibited NF-κB activation. The present study provides strong evidence that at least some of the neuroprotective effects of curcumin against OGD/R are mediated by PPARγ activation.

  15. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.

    PubMed

    Afrin, Rejina; Arumugam, Somasundaram; Rahman, Azizur; Wahed, Mir Imam Ibne; Karuppagounder, Vengadeshprabhu; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Suzuki, Kenji; Yoneyama, Hiroyuki; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-03-01

    Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation.

  16. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    PubMed Central

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  18. RETRACTED: Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity.

    PubMed

    Carmona-Ramírez, Iván; Santamaría, Abel; Tobón-Velasco, Julio C; Orozco-Ibarra, Marisol; González-Herrera, Irma G; Pedraza-Chaverrí, José; Maldonado, Perla D

    2013-01-01

    Neurological diseases comprise a group of heterogeneous disorders characterized by progressive brain dysfunction and cell death. In the next years, these diseases are expected to constitute a world-wide health problem. Because excitotoxicity and oxidative stress are involved in neurodegenerative diseases, it becomes relevant to describe pharmacological therapies designed to activate endogenous cytoprotective systems. Activation of transcription factor Nrf2 stimulates cytoprotective vitagenes involved in antioxidant defense. In this work, we investigated the ability of the antioxidant curcumin to induce transcription factor Nrf2 in a neurodegenerative model induced by quinolinic acid in rats. Animals were administered with curcumin (400 mg/kg, p.o.) for 10 days, and then intrastriatally infused with quinolinic acid (240 nmol) on day 10 of treatment. Curcumin prevented rotation behavior (6 days post-lesion), striatal morphological alterations (7 days post-lesion) and neurodegeneration (1 and 3 days post-lesion) induced by quinolinic acid. Curcumin also reduced quinolinic acid-induced oxidative stress (measured as protein carbonyl content) at 6 h post-lesion. The protective effects of curcumin were associated to its ability to prevent the quinolinic acid-induced decrease of striatal intra-nuclear Nrf2 levels (30 and 120 min post-lesion), and total superoxide dismutase and glutathione peroxidase activities (1 day post-lesion). Therefore, results of this study support the concept that neuroprotection induced by curcumin is associated with its ability to activate the Nrf2 cytoprotective pathway and to increase the total superoxide dismutase and glutathione peroxidase activities. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Curcumin blocks brain tumor formation.

    PubMed

    Purkayastha, Sudarshana; Berliner, Alexandra; Fernando, Suraj Shawn; Ranasinghe, Buddima; Ray, Indrani; Tariq, Hussnain; Banerjee, Probal

    2009-04-17

    Turmeric, an essential ingredient of culinary preparations of Southeast Asia, contains a major polyphenolic compound, named curcumin or diferuloylmethane, which eliminates cancer cells derived from a variety of peripheral tissues. Although in vitro experiments have addressed its anti-tumor property, no in vivo studies have explored its anti-cancer activity in the brain. Oral delivery of this food component has been less effective because of its low solubility in water.We show that a soluble formulation of curcumin crosses the blood–brain barrier but does not suppress normal brain cell viability. Furthermore, tail vein injection, or more effectively, intracerebral injection through a cannula, blocks brain tumor formation in mice that had already received an intracerebral bolus of mouse melanoma cells (B16F10).While exploring the mechanism of its action in vitro we observed that the solubilized curcumin causes activation of proapoptotic enzymes caspase 3/7 in human oligodendroglioma (HOG) and lung carcinoma (A549) cells, and mouse tumor cells N18(neuroblastoma), GL261 (glioma), and B16F10. A simultaneous decrease in cell viability is also revealed by MTT [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide]assays. Further examination of the B16F10 cells showed that curcumin effectively suppresses Cyclin D1, P-NF-kB, BclXL, P-Akt, and VEGF, which explains its efficacy in blocking proliferation, survival, and invasion of the B16F10 cells in the brain. Taken together,solubilized curcumin effectively blocks brain tumor formation and also eliminates brain tumor cells. Therefore, judicious application of such injectable formulations of curcumin could be developed into a safe therapeutic strategy for treating brain tumors.

  20. Oxidative stress decreases with elevation in the lizard Psammodromus algirus.

    PubMed

    Reguera, Senda; Zamora-Camacho, Francisco J; Trenzado, Cristina E; Sanz, Ana; Moreno-Rueda, Gregorio

    2014-06-01

    Oxidative stress is considered one of the main ecological and evolutionary forces. Several environmental stressors vary geographically and thus organisms inhabiting different sites face different oxidant environments. Nevertheless, there is scarce information about how oxidative damage and antioxidant defences vary geographically in animals. Here we study how oxidative stress varies from lowlands (300-700 m asl) to highlands (2200-2500 m asl) in the lizard Psammodromus algirus. To accomplish this, antioxidant enzymatic activity (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, DT-diaphorase) and lipid peroxidation were assayed in tissue samples from the lizards' tail. Lipid peroxidation was higher in individuals from lowlands than from highlands, indicating higher oxidative stress in lowland lizards. These results suggest that environmental conditions are less oxidant at high elevations with respect to low ones. Therefore, our study shows that oxidative stress varies geographically, which should have important consequences for our understanding of geographic variation in physiology and life-history of organisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Curcumin and aging

    USDA-ARS?s Scientific Manuscript database

    Curcumin has been used commonly as a spice, food additive, and an herbal medicine worldwide. Known as a bioactive polyphenolic, curcumin has a broad range of beneficial properties to human health. Recently, active research on curcumin with respect to aging and related traits in model organisms has d...

  2. The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model.

    PubMed

    Akar, İlker; İnce, İlker; Arici, Akgül; Benli, İsmail; Aslan, Cemal; Şenol, Sefa; Demir, Osman; Altunkas, Fatih; Altındeger, Nuray; Akbas, Ali

    2017-07-01

    The purpose of this study is to investigate the neurological, biochemical, and histopathologic effects of both the acute and maintenance treatment of curcumin on an experimental spinal cord ischemia-reperfusion injury model in rats. The animals were randomly divided into 4 groups: (1) Sham, (2) ischemia-reperfusion (IR), (3) curcumin, and (4) solvent. Spinal cord ischemia was induced by clamping the aorta with minivascular clamps at a position just below the left renal artery and just proximal to the aortic bifurcation for 45 min. After 72 hr of reperfusion, neurological function was evaluated with a modified Tarlov score. In spinal cords, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and nitric oxide (NO) levels were detected biochemically. Immunohistochemical staining was performed by antibodies against interleukin-6 (IL-6) and myeloperoxidase. Histopathologic changes were examined with hematoxylin and eosin staining. Although MDA tissue levels were elevated significantly in the IR group compared with the sham group, SOD and GPx levels decreased. After the administration of curcumin, MDA levels in the spinal cord decreased, and SOD and GPx levels increased. Those changes were statistically significant. There was no significance at NO levels. Among all groups, there was no difference in IL-6 and myeloperoxidase immunostaining. Histopathological analysis showed that histopathological changes in the IR group were improved by curcumin treatment. In the curcumin group, neurological outcome scores were significantly better statistically when compared with the IR group. We believe that curcumin possesses antioxidant, antiproliferative, and anticarcinogenic properties and may be an effective drug for the prevention of spinal cord IR injury in light of the neurologic, biochemical, and histopathological data of this study and published scientific literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anti-Inflammatory Effects of Novel Standardized Solid Lipid Curcumin Formulations.

    PubMed

    Nahar, Pragati P; Slitt, Angela L; Seeram, Navindra P

    2015-07-01

    Inflammation and the presence of pro-inflammatory cytokines are associated with numerous chronic diseases such as type-2 diabetes mellitus, cardiovascular disease, Alzheimer's disease, and cancer. An overwhelming amount of data indicates that curcumin, a polyphenol obtained from the Indian spice turmeric, Curcuma longa, is a potential chemopreventive agent for treating certain cancers and other chronic inflammatory diseases. However, the low bioavailability of curcumin, partly due to its low solubility and stability in the digestive tract, limits its therapeutic applications. Recent studies have demonstrated increased bioavailability and health-promoting effects of a novel solid lipid particle formulation of curcumin (Curcumin SLCP, Longvida(®)). The goal of this study was to evaluate the aqueous solubility and in vitro anti-inflammatory effects of solid lipid curcumin particle (SLCP) formulations using lipopolysaccharide (LPS)-stimulated RAW 264.7 cultured murine macrophages. SLCPs treatment significantly decreased nitric oxide (NO) and prostaglandin-E2 (PGE2) levels at concentrations ranging from 10 to 50 μg/mL, and reduced interleukin-6 (IL-6) levels in a concentration-dependent manner. Transient transfection experiments using a nuclear factor-kappa B (NF-κB) reporter construct indicate that SLCPs significantly inhibit the transcriptional activity of NF-κB in macrophages. Taken together, these results show that in RAW 264.7 murine macrophages, SLCPs have improved solubility over unformulated curcumin, and significantly decrease the LPS-induced pro-inflammatory mediators NO, PGE2, and IL-6 by inhibiting the activation of NF-κB.

  4. Anti-Inflammatory Effects of Novel Standardized Solid Lipid Curcumin Formulations

    PubMed Central

    Nahar, Pragati P.

    2015-01-01

    Abstract Inflammation and the presence of pro-inflammatory cytokines are associated with numerous chronic diseases such as type-2 diabetes mellitus, cardiovascular disease, Alzheimer's disease, and cancer. An overwhelming amount of data indicates that curcumin, a polyphenol obtained from the Indian spice turmeric, Curcuma longa, is a potential chemopreventive agent for treating certain cancers and other chronic inflammatory diseases. However, the low bioavailability of curcumin, partly due to its low solubility and stability in the digestive tract, limits its therapeutic applications. Recent studies have demonstrated increased bioavailability and health-promoting effects of a novel solid lipid particle formulation of curcumin (Curcumin SLCP, Longvida®). The goal of this study was to evaluate the aqueous solubility and in vitro anti-inflammatory effects of solid lipid curcumin particle (SLCP) formulations using lipopolysaccharide (LPS)-stimulated RAW 264.7 cultured murine macrophages. SLCPs treatment significantly decreased nitric oxide (NO) and prostaglandin-E2 (PGE2) levels at concentrations ranging from 10 to 50 μg/mL, and reduced interleukin-6 (IL-6) levels in a concentration-dependent manner. Transient transfection experiments using a nuclear factor-kappa B (NF-κB) reporter construct indicate that SLCPs significantly inhibit the transcriptional activity of NF-κB in macrophages. Taken together, these results show that in RAW 264.7 murine macrophages, SLCPs have improved solubility over unformulated curcumin, and significantly decrease the LPS-induced pro-inflammatory mediators NO, PGE2, and IL-6 by inhibiting the activation of NF-κB. PMID:25490740

  5. Radio-protective effect of some new curcumin analogues.

    PubMed

    El-Gazzar, Marwa G; Zaher, Nashwa H; El-Hossary, Ebaa M; Ismail, Amel F M

    2016-09-01

    In the present study, novel symmetrical curcumin analogues (2-7) have been synthesized by substituting the phenolic OH of curcumin with different linkers providing additional keto-enol tautomerism, very essential for radioprotective activity. The structures of the synthesized compounds (2-7) were elucidated by elemental analysis, IR, (1)H-NMR, (13)C-NMR and mass spectral data and were found consistent with the assigned structures. The curative effect of these new compounds, against the oxidative stress due to exposure of rats to the whole body γ-irradiation (7Gy) was investigated. Gamma-irradiated rats exhibited elevations of ALT, AST activities, urea, creatinine, triglycerides, total cholesterol, malondialdehyde (MDA), nitric oxide (NO), Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Nuclear Factor-kappa B (NF-κB) levels. Contrariwise, the total protein, albumin, total calcium level, SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Treatment of gamma-irradiated rats with the new curcumin analogues (2-7) showed significant amelioration in the in-vivo antioxidant status, liver and kidney functions, as well as the anti-inflammatory markers (IL-6, TNF-α and NF-κB). Inhibition of NF-κB could be responsible for the improvement of the antioxidant and anti-inflammatory status in gamma-irradiated animals, by down-regulation of IL-1β and TNF-α level. In conclusion, the new curcumin analogues (2-7) exhibited post-protective effect on gamma-irradiation, by NF-κB inhibition.

  6. Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6.

    PubMed

    Singh, Ajeet Kumar; Vinayak, Manjula

    2015-03-01

    Reactive oxygen species are signaling mediators of nociceptive pathways. Exogenous administrations of antioxidants show anti-hyperalgesic effect. However, very little is known about the role of endogenous antioxidant defense system in pain pathology. Curcumin is a dietary antioxidant which shows ameliorative effect on thermal hypersensitivity, however detailed study is lacking. Present study was aimed to analyze the changes in oxidative stress, modulation of antioxidant enzymes and pro-inflammatory cytokines in complete Freund's adjuvant induced inflammatory hyperalgesia and the effect of curcumin on antioxidant defense system and pro-inflammatory cytokines. Anti-hyperalgesic activity of curcumin was evidenced after 6 h of treatment. Oxidative stress was evidenced in paw skin and spinal cord of hyperalgesic rats by high level of lipid peroxidation. A decrease in activity of antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and an increase in level of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in paw skin was observed as compared to normal rats. However, activity of antioxidant enzymes was enhanced in spinal cord. The changes were brought towards normal level after curcumin treatment. The results suggest that modulation of antioxidant defense system is early event in initiation of inflammatory hyperalgesia which might lead to initiation of other signaling pathways mediated by lipid peroxide, TNF-α, IL-1β and IL-6. Decrease in oxidative stress and down regulation of these cytokines by curcumin is suggested to be involved in its anti-hyperalgesic effect.

  7. Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.

    PubMed

    Topcu-Tarladacalisir, Yeter; Akpolat, Meryem; Uz, Yesim Hulya; Kizilay, Gulnur; Sapmaz-Metin, Melike; Cerkezkayabekir, Aysegul; Omurlu, Imran Kurt

    2013-04-01

    The present study evaluated the effects of curcumin on epithelial cell apoptosis, the immunoreactivity of the phospho-c-Jun N-terminal kinase (JNK) and phospho-p38 mitogen-activated protein kinases (MAPKs) in inflamed colon mucosa, and oxidative stress in a rat model of ulcerative colitis induced by acetic acid. Rats were randomly divided into three groups: control, acetic acid, and acetic acid+curcumin. Curcumin (100 mg/kg per day, intragastrically) was administered 10 days before the induction of colitis and was continued for two additional days. Acetic acid-induced colitis caused a significant increase in the macroscopic and microscopic tissue ranking scores as well as an elevation in colonic myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, and the number of apoptotic epithelial cells in colon tissue compared to controls. In the rat colon, immunoreactivity of phospho-p38 MAPK was increased, whereas the phospho-JNK activity was decreased following the induction of colitis. Curcumin treatment was associated with amelioration of macroscopic and microscopic colitis sores, decreased MPO activity, and decreased MDA levels in acetic acid-induced colitis. Furthermore, oral curcumin supplementation clearly prevented programmed cell death and restored immunreactivity of MAPKs in the colons of colitic rats. The results of this study suggest that oral curcumin treatment decreases colon injury and is associated with decreased inflammatory reactions, lipid peroxidation, apoptotic cell death, and modulating p38- and JNK-MAPK pathways.

  8. Cytoprotective mechanism of action of curcumin against cataract.

    PubMed

    Raman, Thiagarajan; Ramar, Manikandan; Arumugam, Munusamy; Nabavi, Seyed Mohammad; Varsha, Mosur Kumaraswamy Nagarajan Sai

    2016-06-01

    This review discusses the relationship between oxidative stress and cataract formation, molecular mechanism of curcumin action and potential benefits of treatment with the antioxidant curcumin. The first section deals with curcumin and endogenous antioxidants. The second section focuses on the action of curcumin on lipid peroxidation. Calcium homeostasis and curcumin will be discussed in the third section. The fourth section discusses the role of crystallin proteins that are responsible for maintaining lens transparency and the role of curcumin in regulating crystallin expression. The interaction of curcumin with transcription factors will be dealt in the fifth section. The final section will focus on the effect of curcumin on aldose reductase, which is associated with hyperglycemia and cataract. One of the strongest antioxidants is curcumin which has been shown to be very effective against cataract. This compound is better than other antioxidants in preventing cataract but its limited bioavailability can be addressed by employing nanotechnology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease.

    PubMed

    Chen, Shang-Ying; Chen, Yuan; Li, Yan-Ping; Chen, Shu-Han; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu

    2011-09-15

    A series of novel curcumin analogues were designed, synthesized, and evaluated as potential multifunctional agents for the treatment of AD. The in vitro studies showed that these compounds had better inhibitory properties against Aβ aggregation than curcumin. Superior anti-oxidant properties (better than the reference compound Trolox) of these compounds were observed by the oxygen radical absorbance capacity (ORAC) method and a cell-based assay using DCFH-DA as a probe. In addition they were able to chelate metals such as iron and copper and decrease metal-induced Aβ aggregation. The structure-activity relationships were discussed. The results suggested that our curcumin analogues could be selected as multifunctional agents for further investigation of AD treatment.

  10. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  11. Dietary supplementation with a natural carotenoid mixture decreases oxidative stress.

    PubMed

    Kiokias, S; Gordon, M H

    2003-09-01

    To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. A randomised double-blind crossover dietary intervention. Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P=0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P=0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta-Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P=0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid

  12. In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN.

    PubMed

    Huang, Chu Zhu; Huang, Wei Zhe; Zhang, Ge; Tang, Dan Ling

    2013-10-01

    In this study we investigated the effects of curcumin, derived from plant Curcuma longa, on oxidative toxicity, and the possible molecular mechanism of antitumour of curcumin in liver cancer rats. Results showed that blood levels of Gamma-glutamyltransferase, aspartate aminotransferase, alanine aminotransferase, glutathione S-transferase, and liver level of MD were significantly decreased after curcumin feeding. Levels of the liver malondialdehyde MDA, nitric oxide and antioxidant enzymes were significantly increased. Moreover, RT-PCR and Western blot analysis results showed that curcumin treatment significantly decreased liver vascular endothelial growth factor (VEGF), CyclinD1 and CDK4 mRNA expression levels and CyclinD1 and CDK4 proteins levels in liver cancer rats. These findings were confirmed by histopathology. It is concluded that curcumin can protect the liver from the damage caused by N-nitrosodiethylamine. Moreover, curcumin has the potential to be used in a therapy for liver cancer. The present data provide evidence to support the presence of free radicals and VEGF, CyclinD1 and CDK4 mRNA in rat tumour cells. Studies are in progress in order to further characterize the role of VEGF, CyclinD1 and CDK4 mRNA in liver cancer cells and in hepatic therapeutics.

  13. Combined effects of curcumin and vitamin C to protect endothelial dysfunction in the iris tissue of STZ-induced diabetic rats.

    PubMed

    Patumraj, Suthiluk; Wongeakin, Natchaya; Sridulyakul, Patarin; Jariyapongskul, Amporn; Futrakul, Narisa; Bunnag, Srichitra

    2006-01-01

    This study was aimed to evaluate the combined effect of curcumin with vitamin C supplementation on hyperglycemic and dyslipidemia conditions and endothelial cell dysfunction induced in diabetic rats. Wistar Furth rats were used and divided into four groups: control (single injection of 0.9% sterile saline), STZ (streptozotocin, Sigma, 55 mg/kg.BW, i.v.), STZ-vitC (1 g/l ascorbic acid mixed in drinking water), STZ-cur (daily oral treatment of 300 mg/kg.BW curcumin; Cayman Chemical Co., USA), and STZ-cur+vitC (1 g/l ascorbic acid mixed in drinking water and oral treatment of 300 mg/kg.BW curcumin). On 8th week after STZ-injection, the microcirculation in the iris tissue was observed using intravital fluorescence videomicroscopy, and also leukocyte adhesion in the venule was examined for each group. Blood glucose (BG), lipid profiles, glycosylated hemoglobin (HbA1c) were measured in blood samples collected at the end of each experiment. The contents of liver malondialdehyde (MDA) were also quantified for each group. Feeding curcumin (STZ-cur) could decrease BG, HbA1c, dyslipidemia, and MDA significantly, compared to STZ. In cases of feedings curcumin with vitamin C, these results were more effective in all aspects, including leukocyte adhesion. In conclusion, curcumin might increase the effect of vitamin C in protecting the function of endothelial cells through its anti-oxidant with hypoglycemic and hypolipidemic actions.

  14. Hepatoprotective effects of curcumin in rats after bile duct ligation via downregulation of Rac1 and NOX1.

    PubMed

    Ghoreshi, Zohreh-Al-Sadat; Kabirifar, Razieh; Safari, Fatemeh; Karimollah, Alireza; Moradi, Ali; Eskandari-Nasab, Ebrahim

    2017-04-01

    New evidence has proven the hepatoprotective activity of curcumin; however, its underlying mechanisms remain to be elucidated. The aim of this study was to investigate the protective effect of curcumin on hepatic damage by measuring the antioxidant capacity and expression level of Rho-related C3 botulinum toxin substrate (Rac1), Rac1-Guanosine triphosphate (Rac1-GTP), and NADPH oxidase 1(NOX1) in biliary duct-ligated (BDL)-fibrotic rat model. Wistar rats weighing 200 to 250 g were divided into four groups (n = 8 for each): sham group, sham+Cur group (received curcumin 100 mg/kg daily), BDL+Cur group, and BDL group. The mRNA and protein expression levels of Rac1, Rac1-GTP, and NOX1 were measured by real-time polymerase chain reaction and Western blotting, respectively. Curcumin treatment of BDL rats reduced liver injury, as verified by improvement of hepatic cell histologic alterations, and by reduction of hepatic enzymes. Moreover, the increase in the expression of Rac1, Rac1-GTP, and NOX1 observed in BDL rats was precluded and reversed back toward normalcy by curcumin treatment (P < 0.05). We also observed an escalation of protein thiol groups, increased enzyme activity of serum antioxidant markers (e.g., superoxide dismutase) and a decrease of carbonylation in curcumin-treated BDL rats compared with BDL rats (P < 0.05). Curcumin attenuated liver damage through the downregulation of Rac1, Rac1-GTP, and NOX1 as well as reduced oxidative stress in the serum and liver tissue of BDL rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Curcumin Protects Intestinal Mucosal Barrier Function of Rat Enteritis via Activation of MKP-1 and Attenuation of p38 and NF-κB Activation

    PubMed Central

    Meng, Fan-Su; Zhang, Qing-Hua; Zeng, Jian-Ying; Xiao, Li-Ping; Yu, Xin-Pei; Peng, Dan-dan; Su, Lei; Xiao, Bing; Zhang, Zhen-Shu

    2010-01-01

    Background Intestinal mucosa barrier (IMB) dysfunction results in many notorious diseases for which there are currently few effective treatments. We studied curcumin's protective effect on IMB and examined its mechanism by using methotrexate (MTX) induced rat enteritis model and lipopolysaccharide (LPS) treated cell death model. Methodology/Principal Findings Curcumin was intragastrically administrated from the first day, models were made for 7 days. Cells were treated with curcumin for 30 min before exposure to LPS. Rat intestinal mucosa was collected for evaluation of pathological changes. We detected the activities of D-lactate and diamine oxidase (DAO) according to previous research and measured the levels of myeloperoxidase (MPO) and superoxide dismutase (SOD) by colorimetric method. Intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were determined by RT-PCR and IL-10 production was determined by ELISA. We found Curcumin decreased the levels of D-lactate, DAO, MPO, ICAM-1, IL-1β and TNF-α, but increased the levels of IL-10 and SOD in rat models. We further confirmed mitogen-activated protein kinase phosphatase-1 (MKP-1) was activated but phospho-p38 was inhibited by curcumin by western blot assay. Finally, NF-κB translocation was monitored by immunofluorescent staining. We showed that curcumin repressed I-κB and interfered with the translocation of NF-κB into nucleus. Conclusions/Significance The effect of curcumin is mediated by the MKP-1-dependent inactivation of p38 and inhibition of NF-κB-mediated transcription. Curcumin, with anti-inflammatory and anti-oxidant activities may be used as an effective reagent for protecting intestinal mucosa barrier and other related intestinal diseases. PMID:20885979

  16. The effect of curcumin on the stability of Aβ dimers.

    PubMed

    Zhao, Li Na; Chiu, See-Wing; Benoit, Jérôme; Chew, Lock Yue; Mu, Yuguang

    2012-06-28

    Aβ oligomers are potential targets for the diagnosis and therapy of Alzheimer's disease (AD). On the other hand, the molecule curcumin has been shown to possess significant therapeutic potential in many areas. In this paper, we use all-atom explicit solvent molecular dynamics simulations to study the effect of curcumin on the stability of Aβ amyloid protein oligomers. We observed that curcumin decreases the β-sheet secondary structural content within the Aβ oligomers without reducing the contacts between the monomers. The breaking of the β-sheet is found to be preceded by a deformation of the β-sheet structure due to hydrophobic interaction from the nearby curcumin. Furthermore, the π-stacking interaction between curcumin (keto ring and enol ring) and the aromatic residues of Aβ, which exists throughout the simulations, has also contributed to the diminishing of the β-sheet structure. Our analysis of the underwrapped amide-carbonyl hydrogen bonds reveals several stable dehydrons of the oligomer, especially the dehydron pair 34L and 41I, which curcumin tends to hover over. We have examined the paths of curcumin on the Aβ proteins and determined the common routes where curcumin lingers as it traverses around the Aβ. In consequence, our study has provided a detailed interaction picture between curcumin and the Aβ oligomers.

  17. Photodynamic effect of curcumin on Vibrio parahaemolyticus.

    PubMed

    Wu, Juan; Mou, Haijin; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is currently a major cause of bacterial diarrhoea associated with seafood consumption. The objective of this study was to determine the inactivation effect of curcumin-mediated photodynamic action on V. parahaemolyticus. First of all, V. parahaemolyticus suspended in PBS buffer was irradiated by a visible light from a LED light source with an energy density of 3.6J/cm(2). Colony forming units (CFU) were counted and the viability of V. parahaemolyticus cells was calculated after treatment. Singlet oxygen ((1)O2) production after photodynamic action of curcumin was evaluated using 9,10-Anthracenediyl-bis (methylene) dimalonic acid (ADMA). Bacterial outer membrane protein was extracted and analyzed using electrophoresis SDS-PAGE. DNA and RNA of V. parahaemolyticus were also extracted and analyzed using agarose gel electrophoresis after photodynamic treatment. Finally, the efficacy of photodynamic action of curcumin was preliminarily evaluated in the decontamination of V. parahaemolyticus in oyster. Results showed that the viability of V. parahaemolyticus was significantly decreased to non-detectable levels over 6.5-log reductions with the curcumin concentration of 10 and 20μM. Photodynamic action of curcumin significantly increased the singlet oxygen level with the curcumin concentration of 10μM. Notable damage was found to bacterial outer membrane proteins and genetic materials after photodynamic treatment. Photodynamic action of curcumin reduced the number of V. parahaemolyticus contaminating in oyster to non-detectable level. Our findings demonstrated that photodynamic action of curcumin could be a potentially good method to inactivate Vibrio parahaemolyticus contaminating in oyster.

  18. Curcumin and lung cancer--a review.

    PubMed

    Mehta, Hiren J; Patel, Vipul; Sadikot, Ruxana T

    2014-12-01

    Curcumin (diferuloylmethane) is the most important component of the spice turmeric and is derived from the rhizome of the East Indian plant Curcuma longa. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including antioxidant, analgesic, anti-inflammatory, and antiseptic activities. Recently, curcumin has been widely studied for its anticancer properties via its effects on a variety of biological pathways involved in apoptosis, tumor proliferation, chemo- and radiotherapy sensitization, tumor invasion, and metastases. Curcumin can be an effective adjunct in treating solid organ tumors due to its properties of regulating oncogenes like p53, egr-1, c-myc, bcl-XL, etc.; transcription factors like NF-kB, STAT-3, and AP-1; protein kinases like MAPK; and enzymes like COX and LOX. Lung cancer is the most common malignancy worldwide and a leading cause of cancer-related deaths. Seventy-five percent of lung cancer presents at an advanced stage where the existing treatment is not very effective and may result in tremendous patient morbidity. As a result, there is a significant interest in developing adjunctive chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo studies of curcumin in lung cancer.

  19. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study.

    PubMed

    Appendino, G; Belcaro, G; Cornelli, U; Luzzi, R; Togni, S; Dugall, M; Cesarone, M R; Feragalli, B; Ippolito, E; Errichi, B M; Pellegrini, L; Ledda, A; Ricci, A; Bavera, P; Hosoi, M; Stuard, S; Corsi, M; Errichi, S; Gizzi, G

    2011-09-01

    The aim of the present study was to evaluate the improvement of diabetic microangiopathy in patients suffering from this condition since at least five years, and whose disease was managed without insulin. Curcumin, the orange pigment of turmeric, has recently received increasing attention because of its antioxidant properties, mediated by both direct oxygen radical quenching and by induction of anti-oxidant responses via Nrf2 activation. This aspect, combined with the beneficial effects on endothelial function and on tissue and plasma inflammatory status, makes curcumin potentially useful for the management of diabetic microangiopathy. To further evaluate this, Meriva, a lecithinized formulation of curcumin, was administered at the dosage of two tablets/day (1 g Meriva/day) to 25 diabetic patients for four weeks. A comparable group of subjects followed the best possible management for this type of patients. All subjects in the treatment and control group completed the follow-up period; there were no dropouts. In the treatment group, at four weeks, microcirculatory and clinical evaluations indicated a decrease in skin flux (P<0.05) at the surface of the foot, a finding diagnostic of an improvement in microangiopathy, the flux being generally increased in patients affected by diabetic microangiopathy. Also, a significant decrease in the edema score (P<0.05) and a corresponding improvement in the venoarteriolar response (P<0.05) were observed. The PO2 increased at four weeks (P<0.05), as expected from a better oxygen diffusion into the skin due to the decreased edema. These findings were present in all subjects using Meriva, while no clinical or microcirculatory effects were observed in the control group. Meriva was, in general, well tolerated, and these preliminary findings suggest the usefulness of this curcumin formulation for the management of diabetic microangiopathy, opening a window of opportunities to be evaluated in more prolonged and larger studies. The

  20. Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction

    PubMed Central

    Mu, Yang; Yan, Wen-Jie; Yin, Tai-Lang; Yang, Jing

    2016-01-01

    Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti-inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high-fat diet (HFD)-induced spermatogenesis dysfunction. Sprague-Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B-cell lymphoma (Bcl)-xl, Bcl-associated X protein (Bax) and cleaved-caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved-caspase 3, as well as increased expression of Bcl-xl. In conclusion, the present study revealed that curcumin treatment reduced HFD-induced spermatogenesis dysfunction in male rats. PMID:27600729

  1. Curcumin: a natural substance with potential efficacy in Alzheimer's disease.

    PubMed

    Potter, Pamela E

    2013-01-01

    Curcumin is a component of turmeric, a spice used in many types of cooking. Epidemiological evidence suggesting that populations that eat food with a substantial amount of curcumin were at lower risk of Alzheimer's disease (AD) led to the idea that this compound might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory effects, and is being used as a potential preventative agent or treatment for many types of cancer. There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved in these animal models. Clinical trials of curcumin in AD have not been very promising. It is possible that this is due to poor oral bioavailability of curcumin in humans, and thus several approaches are being developed to improve delivery systems or to create analogs that will mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in humans with AD may also result from treating for too short a time or starting treatment too late in the course of the disease, where substantial neuronal death has already occurred and cannot be reversed. Curcumin may be beneficial in protecting against development or progression of AD if taken over the long term and started before symptoms of AD become apparent.

  2. Heterocyclic Curcumin Derivatives of Pharmacological Interest: Recent Progress.

    PubMed

    Martinez-Cifuentes, Maximiliano; Weiss-Lopez, Boris; Santos, Leonardo S; Araya-Maturana, Ramiro

    2015-01-01

    Curcumin, a natural yellow polyphenol, is isolated from the herb Curcuma longa L. (turmeric), a member of the ginger family. It has been extensively studied due to their multiple pharmacological properties. Nevertheless, curcumin has disadvantages such as poor water solubility, poor bioavailability and rapid metabolism, which has prompted the search for analogues that overcome these shortcomings while maintaining or improving their good pharmacological properties. Among the main curcumin analogues that have been developed, the heterocyclic curcuminoids show a high interest. In this review, we describe recent progress in the synthesis and pharmacological properties of new heterocyclic curcumin derivatives. The most recent developments in anti-cancer, anti-Alzheimer, anti-bacterial and anti-oxidants heterocyclic curcumin derivatives are covered.

  3. Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats

    PubMed Central

    Yadav, Preeti; Jadhav, Sunil E.; Kumar, Vinesh; Kaul, Kirtee K.; Pant, Satish C.; Flora, Swaran J.S.

    2012-01-01

    The effect of 2- pyridine aldoxime methyl chloride (2-PAMCl) and atropine with or without curcumin was investigated in dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP) induced toxicity in rats. Rats were exposed to DDVP (2 mg/kg sub-cutaneously) once daily for the period of 21 days. Post DDVP exposure, rats were further treated with 2-PAMCl (50 mg/kg intramuscular, once daily) + atropine (10 mg/kg, i.m. once daily) with or without curcumin (200 mg/kg; oral; once daily) for further 21 days. We observed a significant increase in lipid peroxidation (LPO), reactive oxygen species (ROS), oxidized glutathione (GSSG), while there was a significant decrease in antioxidant enzymes, brain acetylcholinesterase (AChE) and 5-hydroxy tryptamine (5-HT) activity on DDVP exposure of rats. These alterations were restored significantly by co-administration of 2-PAMCl + atropine in DDVP exposed rats. Curcumin when co-supplemented with 2-PAMCl + atropine also significantly protected serum aspartate aminotransferase (AST) and restored brain AChE activity and 5-HT level in animals sub-chronically exposed to DDVP. Histopathological observations along with biochemical changes in rat blood and tissues revealed significant protection offered by 2-PAMCl + atropine against DDVP. The results indicate that DDVP-induced toxicity can be significantly protected by co-administration of 2-PAMCl + atropine individually, however, curcumin co-supplementation with 2-PAMCl + atropine provides more pronounced protection, concerning particularly neurological disorders. PMID:22783142

  4. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats.

    PubMed

    Kakkar, Vandita; Muppu, Sravan Kumar; Chopra, Kanwaljit; Kaur, Indu Pal

    2013-11-01

    To evaluate curcumin loaded solid lipid nanoparticles (C-SLNs) in the experimental paradigm of cerebral ischemia (BCCAO model) in rats. Oral administration of free curcumin and C-SLNs (25 and 50 mg/kg) was started 5 days prior and continued for 3 days after BCCAO. Alleviation in behavioral, oxidative and nitrosative stress, acetylcholinesterase, mitochondrial enzyme complexes, and physiological parameters were assessed. Confirmation of effective brain delivery of C-SLNs (p.o) was done using biodistribution studies in mice and confocal microscopy of rat brain section. There was an improvement of 90% in cognition and 52% inhibition of acetylcholinesterase versus cerebral ischemic group (I/R). Neurological scoring improved by 79%. Levels of superoxide dismutase, catalase, glutathione, and mitochondrial complex enzyme activities were significantly increased, while lipid peroxidation, nitrite, and acetylcholinesterase levels decreased (p<0.05) after C-SLNs administration. It is noteworthy to report the restoration of SOD, GSH, catalase, and mitochondrial complex enzyme levels equivalent to sham control values. Gamma-scintigraphic studies show 16.4 and 30 times improvement in brain bioavailability (AUC) upon oral and i.v administration of C-SLNs versus solubilized curcumin (C-S). Study indicates protective role of curcumin against cerebral ischemic insult; provided it is packaged suitably for improved brain delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment.

    PubMed

    Bondì, Maria Luisa; Emma, Maria Rita; Botto, Chiara; Augello, Giuseppa; Azzolina, Antonina; Di Gaudio, Francesca; Craparo, Emanuela Fabiola; Cavallaro, Gennara; Bachvarov, Dimcho; Cervello, Melchiorre

    2017-02-22

    Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.

  6. Challenges associated with curcumin therapy in Alzheimer disease.

    PubMed

    Belkacemi, Abdenour; Doggui, Sihem; Dao, Lé; Ramassamy, Charles

    2011-11-04

    Curcumin, the phytochemical agent in the spice turmeric, which gives Indian curry its yellow colour, is also a traditional Indian medicine. It has been used for millennia as a wound-healing agent and for treating a variety of ailments. The antioxidant, anti-inflammatory, antiproliferative and other properties of curcumin have only recently gained the attention of modern pharmacology. The mechanism of action of curcumin is complex and multifaceted. In part, curcumin acts by activating various cytoprotective proteins that are components of the phase II response. Over the past decade, research with curcumin has increased significantly. In vitro and in vivo studies have demonstrated that curcumin could target pathways involved in the pathophysiology of Alzheimer disease (AD), such as the β-amyloid cascade, tau phosphorylation, neuroinflammation or oxidative stress. These findings suggest that curcumin might be a promising compound for the development of AD therapy. However, its insolubility in water and poor bioavailability have limited clinical trials and its therapeutic applications. To be effective as a drug therapy, curcumin must be combined with other drugs, or new delivery strategies need to be developed.

  7. Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium.

    PubMed

    Manikandan, Ramar; Thiagarajan, Raman; Beulaja, Sivagnanam; Sudhandiran, Ganapasam; Arumugam, Munuswamy

    2010-02-15

    The generation of free radicals has been implicated in the causation of cataract, and compounds that can scavenge free radicals ameliorate the disease process. This study investigated the possible free radical scavenging potential of curcumin at a dose of 75 mg/kg body wt on selenium-induced cataract in rat pups. Intraperitoneal injection of sodium selenite (15 micromol/kg body wt) into 8- to 10-day-old rat pups led to severe oxidative stress in the eye lens as evidenced by increased nitric oxide, superoxide anion, and hydroxyl radical generation and inducible nitric oxide synthase expression that probably led to cataract formation. Selenium exposure also caused an increase in total calcium in the eye lens and significantly inhibited the activity of Ca(2+) ATPase but not Na(+)/K(+) ATPase or Mg(2+) ATPase. On the other hand, pretreatment with curcumin, but not simultaneous or posttreatment, led to a decrease in oxidative stress and also rescued the selenium-mediated increase in lens Ca(2+) and inhibition of Ca(2+) ATPase activity in the eye lens. The results of this study demonstrate that an increase in free radical generation triggered by selenium could cause inactivation of lens Ca(2+) ATPase leading to Ca(2+) accumulation. This enhanced Ca(2+) can cause activation of calpain-mediated proteolysis in the lens, resulting in lens opacification. Curcumin in this study was able to prevent selenium-induced oxidative stress leading to activation of Ca(2+) ATPase and inhibition of lens opacification. Thus, curcumin has the potential to function as an anticataractogenic agent, possibly by preventing free radical-mediated accumulation of Ca(2+) in the eye lens.

  8. Synergic Antibacterial Effect of Curcumin with Ampicillin; Free Drug Solutions in Comparison with SLN Dispersions

    PubMed Central

    Alihosseini, Faezeh; Azarmi, Shirzad; Ghaffari, Solmaz; Haghighat, Setareh; Rezayat Sorkhabadi, Seyed Mahdi

    2016-01-01

    Purpose: This study was designed to investigate benefit of using nanotechnology on increasing of synergic antibacterial effect of natural and chemical antibacterial agents. Methods: At first the MIC and MBC of Curcumin and Ampicillin as selected antibacterial agents was determined, after that Solid Lipid Nanoparticles (SLNs) of each active ingredients as well as Curcumin-Ampicillin loaded SLNs were prepared using high pressure homogenization technique. Characterization of prepared SLNs was done, then MIC, MBC and contact killing time were investigated for Curcumin-Ampicillin loaded SLNs in comparison with free Curcumin and Ampicillin solutions as well as Ampicillin and Curcumin SLNs. Results: Based on results nanoparticles with the size of 150 nm show much more decreased MIC and MBC when Ampicillin and Curcumin were loaded together on SLNs than solutions in which free Ampicillin and Curcumin were mixed. Conclusion: It seems that using nanotechnology could cause decrease the dosage of antibiotics and risk of having antibiotic resistance bacteria strains. PMID:27766232

  9. Synergic Antibacterial Effect of Curcumin with Ampicillin; Free Drug Solutions in Comparison with SLN Dispersions.

    PubMed

    Alihosseini, Faezeh; Azarmi, Shirzad; Ghaffari, Solmaz; Haghighat, Setareh; Rezayat Sorkhabadi, Seyed Mahdi

    2016-09-01

    Purpose: This study was designed to investigate benefit of using nanotechnology on increasing of synergic antibacterial effect of natural and chemical antibacterial agents. Methods: At first the MIC and MBC of Curcumin and Ampicillin as selected antibacterial agents was determined, after that Solid Lipid Nanoparticles (SLNs) of each active ingredients as well as Curcumin-Ampicillin loaded SLNs were prepared using high pressure homogenization technique. Characterization of prepared SLNs was done, then MIC, MBC and contact killing time were investigated for Curcumin-Ampicillin loaded SLNs in comparison with free Curcumin and Ampicillin solutions as well as Ampicillin and Curcumin SLNs. Results: Based on results nanoparticles with the size of 150 nm show much more decreased MIC and MBC when Ampicillin and Curcumin were loaded together on SLNs than solutions in which free Ampicillin and Curcumin were mixed. Conclusion: It seems that using nanotechnology could cause decrease the dosage of antibiotics and risk of having antibiotic resistance bacteria strains.

  10. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    PubMed

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Turmeric (curcumin) remedies gastroprotective action.

    PubMed

    Yadav, Santosh Kumar; Sah, Ajit Kumar; Jha, Rajesh Kumar; Sah, Phoolgen; Shah, Dev Kumar

    2013-01-01

    The purpose of this review is to summarize the pertinent literature published in the present era regarding the antiulcerogenic property of curcumin against the pathological changes in response to ulcer effectors (Helicobacter pylori infection, chronic ingestion of non-steroidal anti-inflammatory drugs, and exogenous substances). The gastrointestinal problems caused by different etiologies was observed to be associated with the alterations of various physiologic parameters such as reactive oxygen species, nitric oxide synthase, lipid peroxidation, and secretion of excessive gastric acid. Gastrointestinal ulcer results probably due to imbalance between the aggressive and the defensive factors. In 80% of the cases, gastric ulcer is caused primarily due to the use of non-steroidal anti-inflammatory category of drug, 10% by H. pylori, and about 8-10% by the intake of very spicy and fast food. Although a number of antiulcer drugs and cytoprotectants are available, all these drugs have side effects and limitations. In the recent years a widespread search has been launched to identify new antiulcer drugs from synthetic and natural resources. An Indian dietary derivative (curcumin), a yellow pigment found in the rhizome of Curcuma longa, has been widely used for the treatment of several diseases. Epidemiologically, it was suggested that curcumin might reduce the risk of inflammatory disorders, such as cancer and ulcer. These biological effects are attributed to its anti-inflammatory and antioxidant activities. It can, therefore, be reported from the literature that curcumin PRevents gastrointestinal-induced ulcer and can be recommended as a novel drug for ulcer treatment.

  12. Exceedingly Higher co-loading of Curcumin and Paclitaxel onto Polymer-functionalized Reduced Graphene Oxide for Highly Potent Synergistic Anticancer Treatment

    PubMed Central

    Muthoosamy, Kasturi; Abubakar, Ibrahim Babangida; Bai, Renu Geetha; Loh, Hwei-San; Manickam, Sivakumar

    2016-01-01

    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI < 1) and is highly potent towards lung, A549 (IC50 = 13.24 μg/ml) and breast, MDA-MB-231 (IC50 = 1.450 μg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific. PMID:27597657

  13. Curcumin Resource Database

    PubMed Central

    Kumar, Anil; Chetia, Hasnahana; Sharma, Swagata; Kabiraj, Debajyoti; Talukdar, Narayan Chandra; Bora, Utpal

    2015-01-01

    Curcumin is one of the most intensively studied diarylheptanoid, Curcuma longa being its principal producer. This apart, a class of promising curcumin analogs has been generated in laboratories, aptly named as Curcuminoids which are showing huge potential in the fields of medicine, food technology, etc. The lack of a universal source of data on curcumin as well as curcuminoids has been felt by the curcumin research community for long. Hence, in an attempt to address this stumbling block, we have developed Curcumin Resource Database (CRDB) that aims to perform as a gateway-cum-repository to access all relevant data and related information on curcumin and its analogs. Currently, this database encompasses 1186 curcumin analogs, 195 molecular targets, 9075 peer reviewed publications, 489 patents and 176 varieties of C. longa obtained by extensive data mining and careful curation from numerous sources. Each data entry is identified by a unique CRDB ID (identifier). Furnished with a user-friendly web interface and in-built search engine, CRDB provides well-curated and cross-referenced information that are hyperlinked with external sources. CRDB is expected to be highly useful to the researchers working on structure as well as ligand-based molecular design of curcumin analogs. Database URL: http://www.crdb.in PMID:26220923

  14. Therapeutic potential of curcumin in digestive diseases

    PubMed Central

    Dulbecco, Pietro; Savarino, Vincenzo

    2013-01-01

    Curcumin is a low-molecular-weight hydrophobic polyphenol that is extracted from turmeric, which possesses a wide range of biological properties including anti-inflammatory, anti-oxidant, anti-proliferative and anti-microbial activities. Despite its diverse targets and substantial safety, clinical applications of this molecule for digestive disorders have been largely limited to case series or small clinical trials. The poor bioavailability of curcumin is likely the major hurdle for its more widespread use in humans. However, complexation of curcumin into phytosomes has recently helped to bypass this problem, as it has been demonstrated that this new lecithin formulation enables increased absorption to a level 29-fold higher than that of traditional curcuminoid products. This allows us to achieve much greater tissue substance delivery using significantly lower doses of curcumin than have been used in past clinical studies. As curcumin has already been shown to provide good therapeutic results in some small studies of both inflammatory and neoplastic bowel disorders, it is reasonable to anticipate an even greater efficacy with the advent of this new technology, which remarkably improves its bioavailability. These features are very promising and may represent a novel and effective therapeutic approach to both functional and organic digestive diseases. PMID:24409053

  15. Therapeutic potential of curcumin in gastrointestinal diseases

    PubMed Central

    Rajasekaran, Sigrid A

    2011-01-01

    Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin’s therapeutic potential for preventing and treating various cancers is being recognized. As curcumin’s therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin’s anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers. PMID:21607160

  16. Physico-chemical state influences in vitro release profile of curcumin from pectin beads.

    PubMed

    Nguyen, An Thi-Binh; Winckler, Pascale; Loison, Pauline; Wache, Yves; Chambin, Odile

    2014-09-01

    Curcumin is a polyphenolic compound with diverse effects interesting to develop health benefit products but its formulation in functional foods or in food supplement is hampered by its poor water solubility and susceptibility to alkaline conditions, light, oxidation and heat. Encapsulation of curcumin could be a mean to overcome these difficulties. In this paper, curcumin was encapsulated by ionotropic gelation method in low methoxyl pectin beads associated with different surfactants: Solutol(®), Transcutol(®) and sodium caseinate. After encapsulation, physico-chemical properties of encapsulated curcumin such as its solubility, physical state, tautomeric forms and encapsulation efficiency as well as encapsulation yield were characterized. In vitro dissolution of curcumin from beads displayed different kinetic profiles according to bead composition due to different matrix network. As Solutol(®) was a good solvent for curcumin, the drug was present into amorphous form in these beads inducing a rapid release of curcumin in the simulated digestive fluids. In contrast, drug release was slower from sodium caseinate beads since curcumin was not totally dissolved during the manufacturing process. Moreover, the FLIM studies showed that a part of curcumin was encapsulated in caseinate micelles and that 34% of this drug was in keto form which may delay the curcumin release. The Transcutol beads showed also a slow drug release because of the low curcumin solubility and the high density of the matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus.

    PubMed

    Teow, Sin-Yeang; Ali, Syed Atif

    2015-11-01

    This study evaluated the synergistic antibacterial activity of Curcumin with 8 different antibiotic groups. Two reference, one clinical and ten environmental strains of Staphylococcus aureus (S. aureus) were tested. Disc diffusion assay with 25 μg/mL Curcumin demonstrated synergism in combination with a majority of tested antibiotics against S. aureus. However, checkerboard micro dilution assay only showed synergism, fractional inhibitory concentration index (FICI) <0.5 in three antibiotics i.e. Gentamicin, Amikacin, and Ciprofloxacin. Other antibiotics showed indifferent interactions but no antagonism was observed. In time-kill curve, appreciable reduction of bacterial cells was also observed in combination therapy (Curcumin + antibiotics) compared to monotherapy (Curcumin or antibiotic(s) alone). The antibiotics with higher synergistic interaction with Curcumin are arranged in a decreasing order: Amikacin > Gentamicin > Ciprofloxacin.

  18. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    PubMed Central

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  19. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity.

    PubMed

    Yadav, Abhishek; Lomash, Vinay; Samim, M; Flora, Swaran J S

    2012-07-30

    Water-soluble nanoparticles of curcumin were synthesized, characterized and applied as a stable detoxifying agent for arsenic poisoning. Chitosan nanoparticles of less than 50 nm in diameter containing curcumin were prepared. The particles were characterized by TEM, DLS and FT-IR. The therapeutic efficacy of the encapsulated curcumin nanoparticles (ECNPs) against arsenic-induced toxicity in rats was investigated. Sodium arsenite (2mg/kg) and ECNPs (1.5 or 15 mg/kg) were orally administered to male Wistar rats for 4 weeks to evaluate the therapeutic potential of ECNPs in blood and soft tissues. Arsenic significantly decreased blood δ-aminolevulinic acid dehydratase (δ-ALAD) activity, reduced glutathione (GSH) and increased blood reactive oxygen species (ROS). These changes were accompanied by increases in hepatic total ROS, oxidized glutathione, and thiobarbituric acid-reactive substance levels. By contrast, hepatic GSH, superoxide dismutase and catalase activities significantly decreased on arsenic exposure, indicative of oxidative stress. Brain biogenic amines (dopamine, norepinephrine and 5-hydroxytryptamine) levels also showed significant changes on arsenic exposure. Co-administration of ECNPs provided pronounced beneficial effects on the adverse changes in oxidative stress parameters induced by arsenic. The results indicate that ECNPs have better antioxidant and chelating potential (even at the lower dose of 1.5 mg/kg) compared to free curcumin at 15 mg/kg. The significant neurochemical and immunohistochemical protection afforded by ECNPs indicates their neuroprotective efficacy. The formulation provides a novel therapeutic regime for preventing arsenic toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats.

    PubMed

    Gazal, Marta; Valente, Matheus R; Acosta, Bruna A; Kaufmann, Fernanda N; Braganhol, Elizandra; Lencina, Claiton L; Stefanello, Francieli M; Ghisleni, Gabriele; Kaster, Manuella P

    2014-02-05

    Bipolar disorder (BD) is a chronic and debilitating illness characterized by recurrent manic and depressive episodes. Our research investigates the protective effects of curcumin, the main curcuminoid of the Indian spice turmeric, in a model of mania induced by ketamine administration in rats. Our results indicated that ketamine treatment (25 mg/kg, for 8 days) induced hyperlocomotion in the open-field test and oxidative damage in prefrontal cortex (PFC) and hippocampus (HP), evaluated by increased lipid peroxidation and decreased total thiol content. Moreover, ketamine treatment reduced the activity of the antioxidant enzymes superoxide dismutase and catalase in the HP. Pretreatment of rats with curcumin (20 and 50 mg/kg, for 14 days) or with lithium chloride (45 mg/kg, positive control) prevented behavioral and pro-oxidant effects induced by ketamine. These findings suggest that curcumin might be a good compound for preventive intervention in BD, reducing the episode relapse and the oxidative damage associated with the manic phase of this disorder.

  1. Curcumin-functionalized silk biomaterials for anti-aging utility.

    PubMed

    Yang, Lei; Zheng, Zhaozhu; Qian, Cheng; Wu, Jianbing; Liu, Yawen; Guo, Shaozhe; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David L

    2017-02-02

    Curcumin is a natural antioxidant that is isolated from turmeric (Curcuma longa) and exhibits strong free radical scavenging activity, thus functional for anti-aging. However, poor stability and low solubility of curcumin in aqueous conditions limit its biomedical applications. Previous studies have shown that the anti-oxidation activity of curcumin embedded in silk fibroin films could be well preserved, resulting in the promoted adipogenesis from human mesenchymal stem cells (hMSCs) cultured on the surface of the films. In the present study, curcumin was encapsulated in both silk fibroin films (silk/cur films) and nanoparticles (silk/cur NPs), and their anti-aging effects were compared with free curcumin in solution, with an aim to elucidate the mechanism of anti-aging of silk-associated curcumin and to better serve biomedical applications in the future. The morphology and structure of silk/cur film and silk/cur NP were characterized using SEM, FTIR and DSC, indicating characteristic stable beta-sheet structure formation in the materials. Strong binding of curcumin molecules to the beta-sheet domains of silk fibroin resulted in the slow release of curcumin with well-preserved activity from the materials. For cell aging studies, rat bone marrow mesenchymal stem cells (rBMSCs) were cultured in the presence of free curcumin (FC), silk/cur film and silk/cur NP, and cell proliferation and markers of aging (P53, P16, HSP70 gene expression and β-Galactosidase activity) were examined. The results indicated that cell aging was retarded in all FC, silk/cur NP and silk/cur film samples, with the silk-associated curcumin superior to the FC.

  2. A Potential Role of the Curry Spice Curcumin in Alzheimer’s Disease

    PubMed Central

    Ringman, John M.; Frautschy, Sally A.; Cole, Gregory M.; Masterman, Donna L.; Cummings, Jeffrey L.

    2005-01-01

    There is substantial in-vitro data indicating that curcumin has antioxidant, anti-inflammatory, and anti-amyloid activity. In addition, studies in animal models of Alzheimer’s disease (AD) indicate a direct effect of curcumin in decreasing the amyloid pathology of AD. As the widespread use of curcumin as a food additive and relatively small short-term studies in humans suggest safety, curcumin is a promising agent in the treatment and/or prevention of AD. Nonetheless, important information regarding curcumin bioavailability, safety and tolerability, particularly in an elderly population is lacking. We are therefore performing a study of curcumin in patients with AD to gather this information in addition to data on the effect of curcumin on biomarkers of AD pathology. PMID:15974909

  3. A potential role of the curry spice curcumin in Alzheimer's disease.

    PubMed

    Ringman, John M; Frautschy, Sally A; Cole, Gregory M; Masterman, Donna L; Cummings, Jeffrey L

    2005-04-01

    There is substantial in-vitro data indicating that curcumin has antioxidant, anti-inflammatory, and anti-amyloid activity. In addition, studies in animal models of Alzheimer's disease (AD) indicate a direct effect of curcumin in decreasing the amyloid pathology of AD. As the widespread use of curcumin as a food additive and relatively small short-term studies in humans suggest safety, curcumin is a promising agent in the treatment and/or prevention of AD. Nonetheless, important information regarding curcumin bioavailability, safety and tolerability, particularly in an elderly population is lacking. We are therefore performing a study of curcumin in patients with AD to gather this information in addition to data on the effect of curcumin on biomarkers of AD pathology.

  4. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

    PubMed Central

    2011-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9). In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent. PMID:21299897

  5. Protective Role of Curcumin against N-Nitrosodiethylamine (NDEA)-Induced Toxicity in Rats

    PubMed Central

    Ali, Fahad; Rahul; Jyoti, Smita; Fatima, Ambreen; Khanam, Saba; Naz, Falaq; Siddique, Yasir Hasan

    2016-01-01

    The present investigation was aimed at studying the possible role of curcumin against N-nitrosodiethylamine (NDEA)-induced toxicity in albino rats. Administration of NDEA to rats at a concentration of 0.1 mg/ml in drinking water ad libitum for 21 days produced toxicity in them, which was evident from histopathological changes in the rat livers, and increased levels of blood serum enzyme markers, i.e. aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase. In addition, the levels of oxidative stress markers like lipid peroxidation (LPO), protein carbonyl (PCC), and glutathione-S-transferase (GST) activity were elevated and the total glutathione (GSH) content was reduced in the livers. The administration of curcumin to rats at concentrations of 10, 20, and 40 mg/ml in drinking water along with 0.1 mg/ml of NDEA for 21 days effectively suppressed NDEA-induced toxicity and also resulted in a dose-dependent reduction in the levels of blood serum enzyme markers (AST, ALT, ALP, and LDH). Moreover, LPO, PCC, and GST activity were reduced and the GSH level was increased upon the administration of curcumin along with NDEA. The results obtained for the comet assay in rat hepatocytes and blood lymphocytes showed a significant dose-dependent decrease in the mean tail length. The micronucleus assay performed on rat hepatocytes also showed a dose-dependent reduction in the frequency of micronucleated cells along with curcumin administration. These results suggest that curcumin has a protective role against NDEA-induced toxicity in albino rats. PMID:27222610

  6. Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis.

    PubMed

    Cao, Hongwen; Yu, Hongjie; Feng, Yigeng; Chen, Lei; Liang, Fang

    2017-05-01

    Curcumin is a potent antitumor agent. The objective of this study was to explore the interaction between curcumin and PGK1, an oncogene in the FOXD3/miR-143 axis, in prostate cancer therapy. MiRNA microarray analysis was used to identify miRNAs upregulated by curcumin treatment. MiR-143 was dramatically upregulated by curcumin. Cells were treated with antimiR-143 in combination to curcumin, followed by examining cell viability and migration. Bioinformatics analysis was used to investigate target genes of miR-143. The interaction between miR-143 and PGK1 was evaluated with dual-luciferase assay. Since FOXD3 is important in the regulation of miR-143, we explored whether curcumin regulated FOXD3 expression. FOXD3 was also ectopically overexpressed to investigate its effects on curcumin's regulation of miR-143. Curcumin treatment significantly upregulated miR-143 and decreased prostate cancer cell proliferation and migration. Those effects were attenuated by anti-miR-143 transfection. Both miR-143 overexpression and curcumin treatment inhibited PGK1 expression and ectopic expression of PGK1 antagonized curcumin's antitumor effects. FOXD3 was upregulated by miR-143. Ectopic expression of FOXD3 synergized with curcumin in upregulating miR-143 expression. Curcumin inhibits prostate cancer by upregulating miR-143. PGK1 is downregulated by miR-143, and FOXD3 upregulation is essential for the antitumor effect of curcumin.

  7. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  8. Curcumin and neurodegenerative diseases

    PubMed Central

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  9. Curcumin in inflammatory diseases.

    PubMed

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future.

  10. Localization and dynamics of the anticarcinogenic curcumin with GM1 and other miceller assemblies.

    PubMed

    Patra, Malay; Mandal, Manoj; Chakrabarti, Abhijit; Mukhopadhyay, Chaitali

    2017-04-01

    Structural transitions involving shape changes play an important role in cellular physiology and enhance the bioavailability of the natural food like curcumin in surfactant aggregates. In this work, we have studied the localization, dynamics and stability of curcumin in various miceller assemblies using a combination of absorbance and fluorescence spectroscopic approaches. The measurements of absorption and fluorescence spectra of curcumin revealed that the nature of interactions of ionic and nonionic surfactants and the glycosphingolipid, GM1 with curcumin is significantly different with surfactant concentrations. At low concentrations of SDS and the GM1 the head group of SDS and GM1 binds to the central β-diketone group of curcumin to form SDS-curcumin or GM1-curcumin complexes. At high concentrations, both formed micelles with curcumin completely solubilized inside. Cucurmin is solubilized in the stern layer of SDS micelles. Compared to spherical micelles, rod shaped micelles allow more curcumin to bind through hydrophobic interactions indicated by higher absorption and fluorescence, enhanced partition coefficient and stability. Whereas curcumin associates with GM1 micelles with lower partition coefficient, solubility and remain closer to aqueous phase decreasing its bioavailability and stability. While cucurmin is solubilized in the palisade layer of deoxycholate and octyl glucopyranoside micelles through the alkyl chains providing more hydrophobic microenvironment to curcumin with enhanced stability and bioavailability. Graphical abstract Schematic diagram of the two different types of detergent micelles and larger GM1 micelles.

  11. Oxidation of proline decreases immunoreactivity and alters structure of barley prolamin.

    PubMed

    Huang, Xin; Sontag-Strohm, Tuula; Stoddard, Frederick L; Kato, Yoji

    2017-01-01

    Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins.

  12. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts.

    PubMed

    Ilyas, Ermita I Ibrahim; Nur, Busjra M; Laksono, Sonny P; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity.

  13. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts

    PubMed Central

    Ilyas, Ermita I. Ibrahim; Nur, Busjra M.; Laksono, Sonny P.; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D.; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity. PMID:26904113

  14. Pre-administration of curcumin prevents neonatal sevoflurane exposure-induced neurobehavioral abnormalities in mice.

    PubMed

    Ji, Mu-Huo; Qiu, Li-Li; Yang, Jiao-Jiao; Zhang, Hui; Sun, Xiao-Ru; Zhu, Si-Hai; Li, Wei-Yan; Yang, Jian-Jun

    2015-01-01

    Sevoflurane, a commonly used inhaled anesthetic, can induce neuronal apoptosis in the developing rodent brain and correlate with functional neurological impairment later in life. However, the mechanisms underlying these deleterious effects of sevoflurane remain unclear and no effective treatment is currently available. Herein, the authors investigated whether curcumin can prevent the sevoflurane anesthesia-induced cognitive impairment in mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane 2h daily for 3 consecutive days and were treated with curcumin at the dose of 20 mg/kg or vehicle 30 min before the sevoflurane anesthesia from postnatal days 6 (P6) to P8. Cognitive functions were evaluated by open field, Morris water maze, and fear conditioning tests on P61, P63-69, and P77-78, respectively. In another separate experiment, mice were killed on day P8 or P78, and the brain tissues were harvested and then subjected to biochemistry studies. Our results showed that repeated neonatal sevoflurane exposure led to significant cognitive impairment later in life, which was associated with increased neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, and decreased memory related proteins. By contrast, pre-administration of curcumin ameliorated early neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, memory related proteins, and later cognitive dysfunction. In conclusion, our data suggested that curcumin pre-administration can prevent the sevoflurane exposure-induced cognitive impairment later in life, which may be partly attributed to its ability to attenuate the neural apoptosis, inflammation, and oxidative nitrosative stress in mouse brain.

  15. Aluminium-Induced Oxidative Stress, Apoptosis and Alterations in Testicular Tissue and Sperm Quality in Wistar Rats: Ameliorative Effects of Curcumin.

    PubMed

    Cheraghi, Ebrahim; Golkar, Alireza; Roshanaei, Kambiz; Alani, Behrang

    2017-10-01

    Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. No studies have evaluated the possible effects of curcumin (CUR) on Al-induced reproductive dysfunction. Therefore, this study investigated the effects of CUR treatment on Al-induced reproductive damage. In this experimental study, 40 male Wistar rats were allocated to the five groups (n=8) based on the treatment they received: no treatment (control), solvent [dimethyl sulfoxide (DMSO) or distilled water], CUR 10 mg/kg body weight (BW), Al chloride 10 mg/kg BW, and CUR+Al chloride (10 mg/kg BW/each alone). Treatments were performed by intraperitoneal (IP) injections for 28 days. The left testis was assessed for histopathological analysis as well as the incidence of germ cell apoptosis. One-way analysis of variance (ANOVA) followed by the Tukey's test was used. P<0.05 was considered significant. Significant reductions in body and testis weight; plasma testosterone and luteinizing hormone levels; sperm count, motility, morphology, and viability; germinal epithelium thickness; seminiferous tubules diameter; as well as, superoxide dismutase activity were observed in rats treated with Al. Moreover, Al exposure caused significant increments in the lumen diameter of tubules, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and malondialdehyde (MDA) levels compared to the control group. However, in rats receiving CUR+Al, CUR significantly reversed the adverse effects of Al on testis and sperm quality. No significant differences in follicle-stimulating hormone (FSH) levels and nuclear diameter of spermatogonia were detected among all groups. It can be concluded that Al causes reproductive dysfunction by creating oxidative damage. CUR, on the other hand, reduces the toxic effects of Al and improves the antioxidant status and sperm quality in male rats.

  16. DNA damage in mouse lymphocytes exposed to curcumin and copper.

    PubMed

    Urbina-Cano, Patricia; Bobadilla-Morales, Lucina; Ramírez-Herrera, Mario A; Corona-Rivera, Jorge R; Mendoza-Magaña, Maria L; Troyo-Sanromán, Rogelio; Corona-Rivera, Alfredo

    2006-01-01

    Dietary polyphenolics, such as curcumin, have shown antioxidant and anti-inflammatory effects. Some antioxidants cause DNA strand breaks in excess of transition metal ions, such as copper. The aim of this study was to evaluate the in vitro effect of curcumin in the presence of increasing concentrations of copper to induce DNA damage in murine leukocytes by the comet assay. Balb-C mouse lymphocytes were exposed to 50 microM curcumin and various concentrations of copper (10 microM, 100 microM and 200 microM). Cellular DNA damage was detected by means of the alkaline comet assay. Our results show that 50 microM curcumin in the presence of 100-200 microM copper induced DNA damage in murine lymphocytes. Curcumin did not inhibit the oxidative DNA damage caused by 50 microM H2O2 in mouse lymphocytes. Moreover, 50 microM curcumin alone was capable of inducing DNA strand breaks under the tested conditions. The increased DNA damage by 50 mM curcumin was observed in the presence of various concentrations of copper, as detected by the alkaline comet assay.

  17. Curcumin nanodisks: formulation and characterization

    PubMed Central

    Ghosh, Mistuni; Singh, Amareshwar T. K.; Xu, Wenwei; Sulchek, Todd; Gordon, Leo I.; Ryan, Robert O.

    2010-01-01

    Nanodisks (ND) are nanoscale, disk-shaped phospholipid bilayers whose edge is stabilized by apolipoproteins. In the present study, ND were formulated with the bioactive polyphenol, curcumin, at a 6:1 phospholipid:curcumin molar ratio. Atomic force microscopy revealed that curcumin-ND are particles with diameters <50 nm and thickness of a phospholipid bilayer. When formulated in ND, curcumin is water-soluble and gives rise to a characteristic absorbance spectrum with a peak centered at 420 nm. Fluorescence spectroscopy of curcumin-ND provided evidence of self-quenching. Incubation of curcumin-ND with empty-ND relieved the self-quenching, indicating redistribution of curcumin between curcumin loaded- and empty-ND. In HepG2 cells, curcumin-ND mediated enhanced cell growth inhibition compared to free curcumin. In a cell culture model of mantle cell lymphoma, curcumin-ND were a more potent inducer of apoptosis than free curcumin. The nanoscale size of the complexes, combined with their ability to solubilize curcumin, indicates ND may have in vivo therapeutic applications. PMID:20817125

  18. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-05-01

    Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Mice were randomly divided into four groups: control, cisplatin, cisplatin + curcumin and curcumin. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without curcumin treatment (100 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). Serum and renal tumor necrosis factor (TNF)-alpha and renal monocyte chemoattractant protein (MCP)-1 concentrations, intercellular adhesion molecule-1 (ICAM-1) mRNA expression in kidney, renal function and histological changes were determined 72 h after cisplatin injection. Serum TNF-alpha concentration in the cisplatin + curcumin group significantly decreased compared with that in the cisplatin group. Renal TNF-alpha and MCP-1 concentrations and ICAM-1 mRNA expression in kidney in the cisplatin + curcumin group also significantly decreased compared with those in the cisplatin group. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis scores were attenuated by curcumin treatment. These results indicate that curcumin acts to reduce cisplatin-induced nephrotoxicity through its anti-inflammatory effects. Thus, curcumin may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  19. Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways.

    PubMed

    Doggui, Sihem; Belkacemi, Abdenour; Paka, Ghislain Djiokeng; Perrotte, Morgane; Pi, Rongbiao; Ramassamy, Charles

    2013-09-01

    The aim of the present study was to examine the neuroprotective effect of curcumin against the toxicity induced by acrolein and to identify its cellular mechanisms and targets. Human neuroblastoma cells SK-N-SH were treated with acrolein. Curcumin, from 5 μM, was able to protect SK-N-SH cells against acrolein toxicity. The addition of curcumin restored the expression of γ-glutamylcysteine synthetase, reactive oxygen species, and reactive nitrogen species levels but had no effect on the decrease of glutathione (GSH) and on the elevation of protein carbonyls. Acrolein induced the activity of Nrf2, NF-κB, and Sirt1. These activations were prevented by the presence of curcumin. Acrolein also induced a decrease of the pAkt, which was counteracted by curcumin. To increase its solubility, we have encapsulated curcumin in a biodegradable poly(lactide-co-glycolide) based nanoparticulate formulation (Nps-Cur). Our results showed that 0.5 μM of Nps-Cur can protect neuronal cells challenged with acrolein while free curcumin was not able to display neuroprotection. Our results provided evidence that curcumin was able to protect SK-N-SH cells against acrolein toxicity. This protection is mediated through the antioxidant, the redox, and the survival regulated pathways by curcumin. Moreover, our results demonstrated that Nps-Cur had higher capacity than curcumin to protect SK-N-SH cells against acrolein. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity.

  1. Targets of curcumin

    PubMed Central

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  2. Transdermal delivery of curcumin via microemulsion.

    PubMed

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55.

  3. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes.

    PubMed

    Sarika, P R; James, Nirmala Rachel; Kumar, P R Anil; Raj, Deepa K

    2016-05-01

    Galactosylated alginate-curcumin conjugate (LANH2-Alg Ald-Cur) is synthesized for targeted delivery of curcumin to hepatocytes exploiting asialoglycoprotein receptor (ASGPR) on hepatocytes. The synthetic procedure includes oxidation of alginate (Alg), modification of lactobionic acid (LA), grafting of targeting group (modified lactobinic acid, LANH2) and conjugation of curcumin to alginate. Alginate-curcumin conjugate (Alg-Cur) without targeting group is also prepared for the comparison of properties. LANH2-Alg Ald-Cur self assembles to micelle with diameter of 235 ± 5 nm and zeta potential of -29 mV in water. Cytotoxicity analysis demonstrates enhanced toxicity of LANH2-Alg Ald-Cur over Alg-Cur on HepG2 cells. Cellular uptake studies confirm that LANH2-Alg Ald-Cur can selectively recognize HepG2 cells and shows higher internalization than Alg-Cur conjugate. Results indicate that LANH2-Alg Ald-Cur conjugate micelles are suitable candidates for targeted delivery of curcumin to HepG2 cells.

  4. Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study.

    PubMed

    Gimeno, Amparo; García-Giménez, José Luis; Audí, Laura; Toran, Nuria; Andaluz, Pilar; Dasí, Francisco; Viña, José; Pallardó, Federico V

    2014-01-01

    Down Syndrome is the most common chromosomal disease and is also known for its decreased incidence of solid tumors and its progeroid phenotype. Cellular and systemic oxidative stress has been considered as one of the Down Syndrome phenotype causes. We correlated, in a preliminary study, the fibroblast proliferation rate and different cell proliferation key regulators, like Rcan1 and the telomere length from Down Syndrome fetuses, with their oxidative stress profile and the Ribonucleic acid and protein expression of the main antioxidant enzymes together with their activity. Increased oxidized glutathione/glutathione ratio and high peroxide production were found in our cell model. These results correlated with a distorted antioxidant shield. The messenger RNA (SOD1) and protein levels of copper/zinc superoxide dismutase were increased together with a decreased mRNA expression and protein levels of glutathione peroxidase (GPx). As a consequence the [Cu/ZnSOD/(catalase+GPx)] activity ratio increases which explains the oxidative stress generated in the cell model. In addition, the expression of thioredoxin 1 and glutaredoxin 1 is decreased. The results obtained show a decreased antioxidant phenotype that correlates with increased levels of Regulator of calcineurin 1 and attrition of telomeres, both related to oxidative stress and cell cycle impairment. Our preliminary results may explain the proneness to a progeroid phenotype. © 2013.

  5. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  6. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    Curcumin is a phenolic compound derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used traditionally in Ayurvedic medicine as it has therapeutic properties including being anti-inflammatory, anti-oxidant and anti-microbial. The present study investigated the effects...

  7. Biological evaluation of curcumin and related diarylheptanoids.

    PubMed

    Abas, Faridah; Hui, Lim Siang; Ahmad, Syahida; Stanslas, Johnson; Israf, D A; Shaari, Khozirah; Lajis, Nordin H

    2006-01-01

    Nine derivatives of three natural diarylheptanoids, curcumin, demethoxycurcumin and bisdemethoxycurcumin, were prepared. Their antioxidant, free radical scavenging, nitric oxide (NO) inhibitory and cytotoxic activities were evaluated and compared with those of the respective natural compounds. Curcumin (1), demethoxycurcumin (2), demethyldemethoxy-curcumin (C3), diacetyldemethoxycurcumin (AC2) and triacetyldemethylcurcumin (AC5) exhibited higher antioxidant activity than quercetin while products from demethylation of 1 and 2 exhibited higher free radical scavenging activity. Compounds AC2 and AC5 were found to be most active in inhibiting breast cancer cells (MCF-7) proliferation with IC50 values of 6.7 and 3.6 microM, respectively. The activity of AC2 is almost doubled and of AC5 almost tripled as compared to curcumin. Their selectivity towards different cell lines is also more noticeable. Compounds AC2 and AC5 also showed increased activity against a human prostate cancer cell line (DU-145) and non-small lung cancer cell line (NCI-H460) with IC50 values of 20.4, 16.3 and 18.3, 10.7 microM, respectively.

  8. Comparative analysis of protective effects of curcumin, curcumin-β-cyclodextrin nanoparticle and nanoliposomal curcumin on unsymmetrical dimethyl hydrazine poisoning in mice.

    PubMed

    Li, Wei; Zhou, Mengzhou; Xu, Ning; Hu, Yong; Wang, Chao; Li, Deyuan; Liu, Liegang; Li, Dongsheng

    2016-09-02

    The aim of this study was to compare the protective effects of curcumin, curcumin-β-cyclodextrin nanoparticle curcumin (BCD-CUR) and nanoliposomal curcumin (NLC) on unsymmetrical dimethylhydrazine (UDMH) induced poison in mice. Curcumin, BCD-CUR, and NLC were prepared and their properties of zeta potential, particle size, encapsulation efficiency, and loading capacity were characterized. Eighty-eight male ICR mice on normal chow diet were randomly divided into 11 groups, and intraperitoneally injected with UDMH alone, or together with different doses of curcumin, BCD-CUR or NLC daily for up to 10 d. Enzyme activities of serum alanine transaminase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were analyzed by fully-automatic analyzer and neurotransmitter levels were determined with high performance liquid chromatography (HPLC). 150 mg/kg curcumin treatment alone significantly reduced levels of serum ALT and LDH that were induced by UDMH and markedly increased level of γ-amino butyric acid (GABA) that were reduced by UDMH in the hippocampus. 150 mg/kg BCD-CUR not only decreased significantly the increase of ALT, LDH and glutamate (Glu) but also recovered levels of AST and GABA. 150 mg/kg NLC recovered profoundly levels of AST and GABA while decreased remarkably the UDMH induced increase of ALT, LDH, Glu and 5-hydroxytryptamine (5-HT). In addition, treatments with all tested doses of NLC significantly reduced the UMDH induced dopamine (DA), the monoamine neurotransmitter. NLC had more profound protective effects against liver and central nervous system injury induced by UDMH than a suspension of BCD-CUR or curcumin did in mice.

  9. Multitargeting by curcumin as revealed by molecular interaction studies.

    PubMed

    Gupta, Subash C; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J; Priyadarsini, Indira K; Aggarwal, Bharat B

    2011-11-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  10. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis.

  11. Curcumin and curcumin-like molecules: from spice to drugs.

    PubMed

    Marchiani, A; Rozzo, C; Fadda, A; Delogu, G; Ruzza, P

    2014-01-01

    Curcumin is the major yellow pigment extracted from turmeric, a commonly used spice in Asian cuisine and extensively employed in ayurvedic herbal remedies. A number of studies have shown that curcumin can be a prevention and a chemotherapeutic agent for colon, skin, oral and intestinal cancers. Curcumin is also well known for its antiinflammatory and antioxidant properties, showing high reactivity towards peroxyl radicals, and thus acting as a free radical scavenger. Recently, experimental studies have demonstrated that curcumin might be used in the prevention and the cure of Alzheimer's disease. Indeed, curcumin injected peripherally in vivo into aged Tg mice crossed the blood-brain barrier and bound to amyloid plaques, reducing amyloid levels and plaque formation decisively. The present review will resume the most recent developments in the medicinal chemistry of curcumin and curcumin-like molecules.

  12. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19

    PubMed Central

    Liu, Gao; Xiang, Tian; Wu, Quan-Feng; Wang, Wei-Xing

    2016-01-01

    Curcumin, a major phytochemical in turmeric, inhibits the proliferation of many types of solid cancer cells by enhancing p53 expression. However, the long non-coding RNA H19 directly inhibits p53 activation and thus promotes gastric cancer progression. The aim of this study was to assess the role of H19 in curcumin-induced proliferative inhibition of gastric cancer. The gastric cancer cell line SGC-7901 was treated with curcumin at different concentrations and time points. The effect of curcumin on proliferation was assessed using cell counting kit-8 assays and flow cytometry with Ki67 staining. In addition, H19 expression was quantified by reverse transcription-quantitative polymerase chain reaction, and apoptosis was evaluated by flow cytometric detection of Annexin V and propidium iodide double staining. The protein expression of p53, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax) and c-Myc in curcumin-treated cells was detected by western blotting. The present study demonstrated that curcumin inhibited the proliferation of SGC7901 cells and suppressed H19 expression in a concentration-dependent manner, while p53 expression was enhanced. Ectopic expression of H19 in SGC7901 cells reversed curcumin-induced proliferative inhibition and downregulated p53 expression. Furthermore, while curcumin induced cell apoptosis and enhanced the expression ratio of Bax/Bcl-2, which are downstream molecules of p53, ectopic expression of H19 inhibited curcumin-induced cell apoptosis. In addition, curcumin decreased the expression of the c-Myc oncogene, and exogenous c-Myc protein reversed the curcumin-induced downregulation of H19 expression. These results suggested that curcumin inhibits the proliferation of gastric cancer cells by downregulating the c-Myc/H19 pathway. Therefore, curcumin may be considered a novel therapeutic strategy to inhibit gastric cancer cell growth. PMID:28105222

  13. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  14. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    PubMed Central

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  15. Black tea extract supplementation decreases oxidative damage in Jurkat T cells.

    PubMed

    Erba, D; Riso, P; Foti, P; Frigerio, F; Criscuoli, F; Testolin, G

    2003-08-15

    The purpose of this study was to investigate the protective effect of black tea (BT) extract against induced oxidative damage in Jurkat T-cell line. Cells supplemented with 10 or 25 mg/L BT were subjected to oxidation with ferrous ions. Malondialdehyde (MDA) production as marker of lipid peroxidation, DNA single strand breaks as marker of DNA damage, and modification of the antioxidant enzyme activity, glutathione peroxidase (GPX) were measured. Results show the efficacy of BT polyphenols to decrease DNA oxidative damage and to affect GPX activity (P<0.05), while no effect was shown on MDA production. The succeeding investigation of the activity of caffeine and epigallocatechin gallate demonstrated their antioxidant potential with respect to the cellular markers evaluated. In conclusion, this study supports the protective effect of BT against ferrous ions induced oxidative damage to DNA and the ability of BT to affect the enzyme antioxidant system of Jurkat cells.

  16. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses.

    PubMed

    Aggarwal, Bharat B; Deb, Lokesh; Prasad, Sahdeo

    2014-12-24

    Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties.

  17. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    PubMed

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of

  18. Curcumin and autoimmune disease.

    PubMed

    Bright, John J

    2007-01-01

    The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.

  19. REVIEW: Curcumin and Alzheimer's disease.

    PubMed

    Hamaguchi, Tsuyoshi; Ono, Kenjiro; Yamada, Masahito

    2010-10-01

    Curcumin has a long history of use as a traditional remedy and food in Asia. Many studies have reported that curcumin has various beneficial properties, such as antioxidant, antiinflammatory, and antitumor. Because of the reported effects of curcumin on tumors, many clinical trials have been performed to elucidate curcumin's effects on cancers. Recent reports have suggested therapeutic potential of curcumin in the pathophysiology of Alzheimer's disease (AD). In in vitro studies, curcumin has been reported to inhibit amyloid-β-protein (Aβ) aggregation, and Aβ-induced inflammation, as well as the activities of β-secretase and acetylcholinesterase. In in vivo studies, oral administration of curcumin has resulted in the inhibition of Aβ deposition, Aβ oligomerization, and tau phosphorylation in the brains of AD animal models, and improvements in behavioral impairment in animal models. These findings suggest that curcumin might be one of the most promising compounds for the development of AD therapies. At present, four clinical trials concerning the effects of curcumin on AD has been conducted. Two of them that were performed in China and USA have been reported no significant differences in changes in cognitive function between placebo and curcumin groups, and no results have been reported from two other clinical studies. Additional trials are necessary to determine the clinical usefulness of curcumin in the prevention and treatment of AD.

  20. Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin

    NASA Astrophysics Data System (ADS)

    Mondal, Satyajit; Ghosh, Soumen

    2017-04-01

    Interaction of a globular protein, myoglobin and different surfactants has been studied in the absence and presence of curcumin in phosphate buffer at pH = 7.4 by UV-VIS spectrophotometry, fluorimetry and fluorescence polarization anisotropy methods. Results show that heme environment of myoglobin is changed by cationic cetyltrimethylammonium bromide (CTAB) and sodium N-dodecanoyl sarcosinate (SDDS). In the presence of curcumin, CTAB cannot change the heme; but SDDS can make change. Nonionic surfactant N-decanoyl-N-methylglucamine (Mega 10) cannot change the heme environment. Protein is unfolded by the surfactant. Curcumin can prevent the unfolding of protein in the low concentration region of ionic surfactants such as CTAB and SDDS. In nonionic surfactant media, curcumin accelerates the denaturation process. Due to myoglobin-curcumin complex formation, rotational motion of curcumin decreases in surfactant media and so anisotropy increases.

  1. Mechanism of curcumin-induced trypsin inhibition: Computational and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Kang, Yi-Jun; Gu, Yun-Lan; Cao, Jian

    2016-03-01

    In the present study, the experimental and theoretical methods were used to analyze the binding interaction of food dye, curcumin with trypsin. The results of fluorescence spectroscopic measurements indicated that curcumin binding resulted in the obviously intrinsic fluorescence quenching with the increase concentration of curcumin. This binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being -15.70 kJ mol-1 and 40.25 J mol-1 K-1, respectively. Hydrogen bonds and hydrophobic forces played an important role in the complex formation between curcumin and trypsin. Moreover, curcumin could enter into the primary substrate-binding pocket and makes the activity of trypsin decrease remarkably with the increasing concentration of curcumin.

  2. Ameliorative Effects of Curcumin on Artesunate-Induced Subchronic Toxicity in Testis of Swiss Albino Male Mice

    PubMed Central

    Rajput, Dhrupadsinh K.; Patel, Pragnesh B.; Highland, Hyacinth N.

    2015-01-01

    India is one of the endemic areas where control of malaria has become a formidable task. Artesunate is the current antimalarial drug used to treat malaria, especially chloroquine resistant. The objective of the present study was to investigate the dose-dependent effect of oral administration of artesunate on the oxidative parameters in testes of adult male Swiss albino mice and ameliorative efficacy of curcumin, a widely used antioxidant. An oral dose of 150 mg/kg body weight (bwt; low dose) and 300 mg/kg bwt (high dose) of artesunate was administered for a period of 45 days to male mice, and ameliorative efficacy of curcumin was also assessed. The results revealed that artesunate caused significant alteration in oxidative parameters in dose-dependent manner. Administration of artesunate brought about significant decrease in activities of superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase, whereas lipid peroxidation and glutathione-S-transferase activity were found to be significantly increased. The results obtained show that oxidative insult is incurred upon the intracellular antioxidant system of testis tissue by artesunate treatment. Further, administration of curcumin at the dose level of 80 mg/kg bwt along with both doses of artesunate attenuated adverse effects in male mice. PMID:26673878

  3. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's disease?

    PubMed

    Narlawar, Rajeshwar; Pickhardt, Marcus; Leuchtenberger, Stefanie; Baumann, Karlheinz; Krause, Sabine; Dyrks, Thomas; Weggen, Sascha; Mandelkow, Eckhard; Schmidt, Boris

    2008-01-01

    Curcumin binds to the amyloid beta peptide (Abeta) and inhibits or modulates amyloid precursor protein (APP) metabolism. Therefore, curcumin-derived isoxazoles and pyrazoles were synthesized to minimize the metal chelation properties of curcumin. The decreased rotational freedom and absence of stereoisomers was predicted to enhance affinity toward Abeta(42) aggregates. Accordingly, replacement of the 1,3-dicarbonyl moiety with isosteric heterocycles turned curcumin analogue isoxazoles and pyrazoles into potent ligands of fibrillar Abeta(42) aggregates. Additionally, several compounds are potent inhibitors of tau protein aggregation and depolymerized tau protein aggregates at low micromolar concentrations.

  4. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage.

    PubMed

    Sahu, Bidya Dhar; Kuncha, Madhusudana; Sindhura, G Jeevana; Sistla, Ramakrishna

    2013-03-15

    Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Neuroprotective properties of curcumin in Alzheimer's disease--merits and limitations.

    PubMed

    Chin, Dawn; Huebbe, Patricia; Pallauf, Kathrin; Rimbach, Gerald

    2013-01-01

    As demographics in developed nations shift towards an aging population, neurodegenerative pathologies, especially dementias such as Alzheimer's disease, pose one of the largest challenges to the modern health care system. Since there is yet no cure for dementia, there is great pressure to discover potential therapeutics for these diseases. One popular candidate is curcumin or diferuloylmethane, a polyphenolic compound that is the main curcuminoid found in Curcuma longa (family Zingiberaceae). In recent years, curcumin has been reported to possess anti-amyloidogenic, antiinflammatory, anti-oxidative, and metal chelating properties that may result in potential neuroprotective effects. Particularly, the hydrophobicity of the curcumin molecule hints at the possibility of blood-brain barrier penetration and accumulation in the brain. However, curcumin exhibits extremely low bioavailability, mainly due to its poor aqueous solubility, poor stability in solution, and rapid intestinal first-pass and hepatic metabolism. Despite the many efforts that are currently being made to improve the bioavailability of curcumin, brain concentration of curcumin remains low. Furthermore, although many have reported that curcumin possesses a relatively low toxicity profile, curcumin applied at high doses, which is not uncommon practice in many in vivo and clinical studies, may present certain dangers that in our opinion have not been addressed sufficiently. Herein, the neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations will be discussed in detail.

  6. Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin

    PubMed Central

    Barzegar, Abolfazl; Moosavi-Movahedi, Ali A.

    2011-01-01

    Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H2O2, HO•, ROO•. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm. PMID:22016801

  7. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi.

    PubMed

    Marathe, Sandhya A; Kumar, Rupesh; Ajitkumar, Parthasarathi; Nagaraja, Valakunja; Chakravortty, Dipshikha

    2013-01-01

    Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RT-PCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon γ (IFNγ), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumin's ability to hinder the bactericidal action of ciprofloxacin and IFNγ might significantly augment Salmonella pathogenesis.

  8. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-07-16

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  9. Molecular Mechanisms of Anti-metastatic Activity of Curcumin.

    PubMed

    Deng, Y I; Verron, Elise; Rohanizadeh, Ramin

    2016-11-01

    Cancer is the leading cause of death worldwide. Although cancer occurs as a localized disease, its morbidity and mortality rates remain high due to the ability of cancer cells to break-off from the primary tumor and spread to distant organs. Currently, chemotherapy is the main treatment for cancer; however, the increase in proportion of drug-resistant cancer cells and unpleasant side-effects of chemotherapy are still the major challenges in cancer therapy. Curcumin is a natural polyphenol compound and the main bioactive constituent of Indian spice turmeric, widely used in Indian and Chinese medicines. Curcumin has well-known therapeutic actions, including anti-inflammatory, anti-microbial, anti-oxidant and anti-cancer properties. Curcumin induces cancer cell apoptosis through regulating various signaling pathways and arresting tumor cell cycle. Curcumin's therapeutic/ preventative actions on metastatic cancers have not been yet fully understood and studied. The present review explores the potential anti-metastatic mechanisms of curcumin, including inhibition of transcription factors and their signaling pathways (e.g., NF-κB, ApP-1 and STAT3), inflammatory cytokines (e.g., CXCL1, CXCL2, IL-6, IL-8), multiple proteases (e.g., uPA, MMPs), multiple protein kinases (e.g., MAPKs, FAK), regulation of miRNAs (e.g., miR21, miR181b) and heat shock proteins (HLJ1). In addition, possible synergistic actions of combination therapy of curcumin with current chemotherapies are discussed in this review.

  10. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  11. Curcumin: a natural product for diabetes and its complications.

    PubMed

    Nabavi, Seyed Fazel; Thiagarajan, Raman; Rastrelli, Luca; Daglia, Maria; Sobarzo-Sánchez, Eduardo; Alinezhad, Heshmatollah; Nabavi, Seyed Mohammad

    2015-01-01

    Curcumin is the yellow-colored bioactive constituent of the perennial plant, Curcuma longa L., which possesses a wide range of physiological and pharmacological properties such as antioxidant, anti-inflammatory, anticancer, neuroprotective and anti-diabetic activities. Anti-diabetic activity of curcumin may be due to its potent ability to suppress oxidative stress and inflammation. Moreover, it shows a beneficial role on the diabetesinduced endothelial dysfunction and induces a down-regulation of nuclear factor-kappa B. Curcumin possesses a protective role against advanced glycation as well as collagen crosslinking and through this way, mitigates advanced glycation end products-induced complications of diabetes. Curcumin also reduces blood glucose, and the levels of glycosylated hemoglobin in diabetic rat through the regulation of polyol pathway. It also suppresses increased bone resorption through the inhibition of osteoclastogenesis and expression of the AP-1 transcription factors, c-fos and c-jun, in diabetic animals. Overall, scientific literature shows that curcumin possesses anti-diabetic effects and mitigates diabetes complications. Here we report a systematical discussion on the beneficial role of curcumin on diabetes and its complications with emphasis on its molecular mechanisms of actions.

  12. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  13. Enhanced Systemic Bioavailability of Curcumin Through Transmucosal Administration of a Novel Microgranular Formulation.

    PubMed

    Latimer, Brian; Ekshyyan, Oleksandr; Nathan, Neil; Moore-Medlin, Tara; Rong, Xiaohua; Ma, Xiaohui; Khandelwal, Alok; Christy, Hunter T; Abreo, Fleurette; McClure, Gloria; Vanchiere, John A; Caldito, Gloria; Dugas, Tammy; McMartin, Kenneth; Lian, Timothy; Mehta, Vikas; Nathan, Cherie-Ann O

    2015-12-01

    Curcumin is a promising nutraceutical for chemoprevention of head and neck squamous cell carcinoma (HNSCC). Capsular formulations of curcumin demonstrate low systemic bioavailability. We aimed to determine if curcumin levels were higher in healthy volunteers and cancer patients with microgranular curcumin that allows for transmucosal absorption and identify a consistent biomarker. Eight healthy volunteers and 15 HNSCC patients completed the trials. Serum levels of curcumin were measured by HPLC. Biological activity of curcumin was assessed with Multiplex Immunoassay and immunohistochemistry. We achieved higher serum levels of curcumin compared to trials using capsular formulation. In cancer patients a significant decrease in expression of fibroblast growth factor-2 (FGF-2) in post-biopsy samples and decreased serum levels of FGF-2, granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) (p<0.05) was observed. Transmucosal administration of microgranular curcumin leads to enhanced curcumin bioavailability that is associated with significant biological effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    PubMed

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  15. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    PubMed

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury.

    PubMed

    McNally, Stephen J; Harrison, Ewen M; Ross, James A; Garden, O James; Wigmore, Stephen J

    2006-02-27

    Preconditioning treatments hold significant potential for improving outcomes in solid organ transplantation. Protective phenotypes can be induced using certain drugs. Curcumin is a biologically active component of turmeric and has been reported to induce stress proteins in certain cell lines, leading to cell protection. This study investigates in detail the effect of curcumin on the stress-response in human hepatocytes, in particular its effect on heme oxygenase 1 (HO-1) and its cytoprotective effect. Pretreatment with curcumin protected hepatocytes in a model of oxidative injury and this protection was mediated through HO-1. In a model of cold preservation injury, curcumin pretreatment resulted in elevation of HO-1 throughout the cold storage and rewarming period, and was cytoprotective against oxidative injury. This is the first study to demonstrate that curcumin induces HO-1 in human hepatocytes, and that the protective effects of curcumin pretreatment may have clinical potential in hepatic transplantation.

  17. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    PubMed

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (P<0.05) protein expression of NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) , 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P<0.05) the abnormalities in protein expressions of p47(phox) , gp91(phox) (but not p67(phox) ) and 4-HNE, but only slightly (P>0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in

  18. Targeting NADPH Oxidase Decreases Oxidative Stress in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F.; Burnett, Arthur L.

    2012-01-01

    Introduction Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. Aims We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. Methods SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67phox, p47phox, and gp91phox), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Main Outcome Measures Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Results Relative to hemi mice, SCD increased (P < 0.05) protein expression of NADPH oxidase subunits p67phox, p47phox, and gp91phox, 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P < 0.05) the abnormalities in protein expressions of p47phox, gp91phox (but not p67phox) and 4-HNE, but only slightly (P > 0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. Conclusion NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a

  19. Effect of curcumin and paclitaxel on breast carcinogenesis.

    PubMed

    Quispe-Soto, Edgar Teddy; Calaf, Gloria M

    2016-12-01

    Global cancer burden increased to 14.1 million new cases in 2012; and breast cancer is the most common cancer in women worldwide, with nearly 1.7 million new cases diagnosed in 2012. Curcumin is the major bioactive ingredient extracted from the rhizome of the plant Curcuma longa (turmeric). Paclitaxel is a microtubule-stabilizing agent originally isolated from the bark of Taxus brevifolia. Curcumin and paclitaxel were evaluated with two human breast cancer cell lines as the luminal MCF-7 and the basal-like MDA-MB-231 that are either positive or negative for hormonal receptors estrogen receptor, progesterone receptor and HER2, respectively. Results indicated that curcumin combined with paclitaxel decreased c-Ha-Ras, Rho-A, p53 and Bcl-xL gene expression in comparison to control and substances alone in MCF-7 cell line. These two substances alone and combined decreased gene expression of Bcl-2 and NF-κB. However, CCND1 increased when both substances were combined in MCF-7 cells. Such substances decreased Bcl-2 and increased Bax protein expression. However, curcumin alone decreased IκBα and Stat-3 gene expression. Paclitaxel alone and combined increased IκBα and Stat-3. Curcumin alone and combined with paclitaxel increased p53, Bid, caspase-3, caspase-8 and Bax gene expression in MDA-MB-231, whereas Bcl-xL decreased such expression in MDA-MB-231 cells. When paclitaxel and curcumin were combined the expression of Bcl-2 protein was decreased. However, either substance alone and combined increased Bax protein expression corroborating the apoptotic effect of these substances. It can be concluded that curcumin may be of considerable value in synergistic therapy of breast cancer reducing the associated toxicity with use of drugs.

  20. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model.

    PubMed

    Mulik, Rohit S; Mönkkönen, Jukka; Juvonen, Risto O; Mahadik, Kakasaheb R; Paradkar, Anant R

    2010-06-07

    Beta amyloid plays a main role in the pathophysiology of Alzheimer's disease by inducing oxidative stress in the brain. Curcumin, a natural antioxidant, is known to inhibit beta amyloid and beta amyloid induced oxidative stress. However, low bioavailability and photodegradation are the major concerns for the use of curcumin. In the present study, we have formulated apolipoprotein E3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin (ApoE3-C-PBCA) to provide photostability and enhanced cell uptake of curcumin by targeting. Prepared nanoparticles were characterized for particle size, zeta potential, entrapment efficiency and in vitro drug release. The entrapment of curcumin inside the nanoparticles was confirmed by X-ray diffraction analysis. Physicochemical characterization confirmed the suitability of the method of preparation. The photostability of curcumin was increased significantly in nanoparticles compared to plain curcumin. In vitro cell culture study showed enhanced therapeutic efficacy of ApoE3-C-PBCA against beta amyloid induced cytotoxicity in SH-SY5Y neuroblastoma cells compared to plain curcumin solution. Beta amyloid is known to induce apoptosis in neuronal cells, therefore antiapoptotic activity of curcumin was studied using flow cytometry assays. From all the experiments, it was found that the activity of curcumin was enhanced with ApoE3-C-PBCA compared to plain curcumin solution suggesting enhanced cell uptake and a sustained drug release effect. The synergistic effect of ApoE3 and curcumin was also studied, since ApoE3 also possesses both antioxidant and antiamyloidogenic activity. It was found that ApoE3 did indeed have activity against beta amyloid induced cytotoxicity along with curcumin. Hence, ApoE3-C-PBCA offers great advantage in the treatment of beta amyloid induced cytotoxicity in Alzheimer's disease.

  1. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  2. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler

    PubMed Central

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  3. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler.

    PubMed

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  4. Curcuma longa Linn. extract and curcumin protect CYP 2E1 enzymatic activity against mercuric chloride-induced hepatotoxicity and oxidative stress: A protective approach.

    PubMed

    Joshi, Deepmala; Mittal, Deepak Kumar; Shukla, Sangeeta; Srivastav, Sunil Kumar; Dixit, Vaibhav A

    2017-03-20

    The present investigation has been conducted to evaluate the therapeutic potential of Curcuma longa (200mgkg(-1), po) and curcumin (80mgkg(-1), po) for their hepatoprotective efficacy against mercuric chloride (HgCl2: 12μmolkg(-1), ip; once only) hepatotoxicity. The HgCl2 administration altered various biochemical parameters, including transaminases, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transferase, triglycerides and cholesterol contents with a concomitant decline in protein and albumin concentration in serum which were restored towards control by therapy of Curcuma longa or curcumin. On the other hand, both treatments showed a protective effect on drug metabolizing enzymes viz. aniline hydroxylase (AH) and amidopyrine-N-demethylase (AND), hexobarbitone induced sleep time and BSP retention. Choleretic, 1,1-diphenyl-2-picryl-hydrazil (DPPH)-free radical scavenging activities and histological studies also supported the biochemical findings. The present study concludes that Curcuma longa extract or curcumin has the ability to alleviate the hepatotoxic effects caused by HgCl2 in rats.

  5. Evaluation of in vitro antileishmanial activity of curcumin and its derivatives "gallium curcumin, indium curcumin and diacethyle curcumin".

    PubMed

    Fouladvand, M; Barazesh, A; Tahmasebi, R

    2013-12-01

    Leishmania parasites are intracellular haemoflagellates that infect macrophages of the skin and viscera to produce diseases in their vertebrates hosts. Antileishmania therapy is based on pentavalent antimony compounds which toxicity of these agents and the persistence of side effects are severe. Curcumin was identified to be responsible for most of the biological effects of turmeric. Turmeric plant extracts (curcumin and other derivatives) have anti-inflammatory, anti-arthritic, antioxidant, anti-microbial, antileishmanial, hepato protective, anti-cancer, anti-ulcer and anti diabetic activity. Stock solutions of curcumin, indium curcumin, diacetylcurcumin and Gallium curcumin were made up in DMSO. From the each stock solution serial dilutions were made with phosphate buffered saline and 100 µl of each prepared concentration was added to each well of 96-well micro plate. All tests were performed in triplicate. Negative control only received RPMI-1640 medium with a parasite density of 106 parasites /ml and the positive control contained varying concentrations of standard antileishmania compound, Amphotericine B. MTT solution was prepared as 5 mg/ml in RPMI-1640 and 20 µl of this concentration was added to each well. Antileishmania effects of test agents and control were evaluated by using the MTT assay. Mean growth inhibition of triplicate for each concentration of test agents and control were measured. The IC50 values for curcumin, gallium curcumin [ga (CUR) 3], indium curcumin [in (CUR)3], Diacethyle Curcumin (DAC ) and Amphotericine B were 38 µg/ml, 32 µg/ml, 26 µg/ml, 52 µg/ml and 20 µg/ml respectively. Indium curcumin [in (CUR) 3] with IC50 values of 26 µg/ml was more effective than other three test agents against Leishmania. Mean growth inhibition of triplicate for Amphotericine B as control drug, was 20 µg/ml. Indium curcumin and Gallium curcumin complex showed more antileishmanial activity than curcumin and diacetylcurcumin and could be suitable

  6. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  7. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    PubMed Central

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  8. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design

    PubMed Central

    Silkstone, Gary G.A.; Silkstone, Rebecca S.; Wilson, Michael T.; Simons, Michelle; Bülow, Leif; Kallberg, Kristian; Ratanasopa, Khuanpiroon; Ronda, Luca; Mozzarelli, Andrea; Reeder, Brandon J.; Cooper, Chris E.

    2016-01-01

    Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the β-subunit (F41). We therefore replaced this residue with a tyrosine (βF41Y, Hb Mequon). The βF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, βF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the β-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in βF41Y. NO bioavailability was enhanced in βF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the β-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product. PMID:27470146

  9. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease.

    PubMed

    Mathew, Anila; Fukuda, Takahiro; Nagaoka, Yutaka; Hasumura, Takashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Venugopal, Kizhikkilot; Kumar, D Sakthi

    2012-01-01

    Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease.

  10. Curcumin Loaded-PLGA Nanoparticles Conjugated with Tet-1 Peptide for Potential Use in Alzheimer's Disease

    PubMed Central

    Mathew, Anila; Fukuda, Takahiro; Nagaoka, Yutaka; Hasumura, Takashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Venugopal, Kizhikkilot; Kumar, D. Sakthi

    2012-01-01

    Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease. PMID:22403681

  11. Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis.

    PubMed

    Hail, Numsen

    2008-04-01

    Curcumin exhibits anticancer activity in vivo and triggers tumor cell apoptosis in vivo and in vitro. Several in vitro studies suggest that curcumin-induced apoptosis is associated with reactive oxygen species (ROS) production and/or oxidative stress in transformed cells. This study compared and contrasted the effects of curcumin on human skin cancer cells and their respiration-deficient (rho0) clones to characterize the prospective oxidative stress signaling responsible for initiating apoptosis. Curcumin promoted a dose-and time-dependent G2/M cell cycle arrest and/or apoptosis in COLO 16 cells. Apoptosis induction in COLO 16 cells was associated with DNA fragmentation, cell shrinkage, the externalization of cell membrane phosphatidylserine, and mitochondrial disruption, which were preceded by an increase in intracellular ROS production. Pharmacologically lowering the mitochondrial bioenergetic capacity, as well as the constitutive ROS levels, in COLO 16 cells suppressed the cytotoxic effects of curcumin. Correspondingly, the rho0 counterparts of COLO 16 cells were markedly resistant to ROS production, mitochondrial disruption, and DNA fragmentation following curcumin exposure. These observations implied that the diminution of mitochondrial ROS production protected cells against the cytotoxic effects of curcumin, and support the notion that mitochondrial respiration and redox tone are pivotal determinants in apoptosis signaling by curcumin in human skin cancer cells.

  12. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise.

    PubMed

    Silva, Luciano A; Silveira, Paulo C L; Ronsani, Merieli M; Souza, Priscila S; Scheffer, Débora; Vieira, Lílian C; Benetti, Magnus; De Souza, Cláudio T; Pinho, Ricardo A

    2011-01-01

    Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical-mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE). Twenty-four male rats were divided into the following groups (n = 6): control; EE; EE plus taurine (EE + Taurine); EE plus saline (EE + Saline). Taurine was administered as a 1-ml 300 mg kg(-1) per body weight (BW) day(-1) solution in water by gavage, for 15 consecutive days. Starting on the 14th day of supplementation, the animals were submitted to one 90-min downhill run session and constant velocity of 1·0 km h(-1) . Forty-eight hours after the exercise session, the animals were killed and the quadriceps muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, total thiol content and antioxidant enzyme were analysed. Taurine supplementation was found to decrease superoxide radical production, CK, lipoperoxidation and carbonylation levels and increased total thiol content in skeletal muscle, but it did not affect antioxidant enzyme activity after EE. The present study suggests that taurine affects skeletal muscle contraction by decreasing oxidative stress, in association with decreased superoxide radical production.

  13. Curcumin attenuates osteogenic differentiation and calcification of rat vascular smooth muscle cells.

    PubMed

    Hou, Menglin; Song, Yan; Li, Zhenlin; Luo, Chufan; Ou, Jing-Song; Yu, Huimin; Yan, Jianyun; Lu, Lihe

    2016-09-01

    Vascular calcification has been considered as a biological process resembling bone formation involving osteogenic differentiation. It is a major risk factor for cardiovascular morbidity and mortality. Previous studies have shown the protective effects of curcumin on cardiovascular diseases. However, whether curcumin has effects on osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) has not been reported. In the present study, we used an in vitro model of VSMC calcification to investigate the role of curcumin in the progression of rat VSMC calcification. Curcumin treatment significantly reduced calcification of VSMCs in a dose-dependent manner, detected by alizarin red staining and calcium content assay. Similarly, ALP activity and expression of bone-related molecules including Runx2, BMP2, and Osterix were also decreased in VSMCs treated with curcumin. In addition, flow cytometry analysis and caspase-3 activity assay revealed that curcumin treatment significantly suppressed apoptosis of VSMCs, which plays an important role during vascular calcification. Furthermore, we found that pro-apoptotic molecules including p-JNK and Bax were up-regulated in VSMCs treated with calcifying medium, but they were reduced in VSMCs after curcumin treatment. However, curcumin treatment has no effect on expression of NF-κB p65. Taken together, these findings suggest that curcumin attenuates apoptosis and calcification of VSMCs, presumably via inhibition of JNK/Bax signaling pathway.

  14. Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability.

    PubMed

    Wegiel, Lindsay A; Zhao, Yuhong; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2014-12-01

    We have investigated the physical stability of amorphous curcumin dispersions and the role of curcumin-polymer intermolecular interactions in delaying crystallization. Curcumin is an interesting model compound as it forms both intra and intermolecular hydrogen bonds in the crystal. A structurally diverse set of amorphous dispersion polymers was investigated; poly(vinylpyrrolidone), Eudragit E100, carboxymethyl cellulose acetate butyrate, hydroxypropyl methyl cellulose (HPMC) and HPMC-acetate succinate. Mid-infrared spectroscopy was used to determine and quantify the extent of curcumin-polymer interactions. Physical stability under different environmental conditions was monitored by powder X-ray diffraction. Curcumin chemical stability was monitored by UV-Vis spectroscopy. Isolation of stable amorphous curcumin was difficult in the absence of polymers. Polymers proved to be effective curcumin crystallization inhibitors enabling the production of amorphous solid dispersions; however, the polymers showed very different abilities to inhibit crystallization during long-term storage. Curcumin intramolecular hydrogen bonding reduced the extent of its hydrogen bonding with polymers; hence most polymers were not highly effective crystallization inhibitors. Overall, polymers proved to be crystallization inhibitors, but inhibition was limited due to the intramolecular hydrogen bonding in curcumin, which leads to a decrease in the ability of the polymers to interact at a molecular level.

  15. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice.

    PubMed

    Amano, Chie; Minematsu, Hideki; Fujita, Kazuyo; Iwashita, Shinki; Adachi, Masaki; Igarashi, Koichi; Hinuma, Shuji

    2015-01-01

    To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice.

  16. Decomposition Behavior of Curcumin during Solar Irradiation when Contact with Inorganic Particles

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Riza, L. S.

    2017-03-01

    Curcumin is one of materials which have been widely used in medicine, Asian cuisine, and traditional cosmetic. Therefore, understanding the stability of curcumin has been widely studied. The purpose of this study was to investigate the stability of curcumin solution against solar irradiation when making contact with inorganic material. As a model for the inorganic material, titanium dioxide (TiO2) was used. In the experimental method, the curcumin solution was irradiated using a solar irradiation. To confirm the stability of curcumin when contact with inorganic material, we added TiO2 micro particles with different concentrations. The results showed that the concentration of curcumin decreased during solar irradiation. The less concentration of curcumin affected the more decomposition rate obtained. The decomposition rate was increased greatly when TiO2 was added, in which the more TiO2 concentration added allowed the faster decomposition rate. Based on the result, we conclude that the curcumin is relatively stable as long as using higher concentration of curcumin and is no inorganic material existed. Then, the decomposition can be minimized by avoiding contact with inorganic material.

  17. Protective Effects of Curcumin, Vitamin C, or their Combination on Cadmium-Induced Hepatotoxicity

    PubMed Central

    Tarasub, Naovarat; Junseecha, Thongbai; Tarasub, Chinnawat; Na Ayutthaya, Watcharaporn Devakul

    2012-01-01

    Curcumin, a biologically active compound from turmeric, and vitamin C act as a natural antioxidant and potent chemopreventive agent. The objective of the study was to investigate whether the combined pretreatment with curcumin and vitamin C offers more beneficial effects than that provided by either of them alone in reversing cadmium (Cd)- induced hepatotoxicity. For this purpose, 64 adult male Wistar rats, equally divided into control and seven treated groups, received either Cd (as CdCl2 5 mg/kg), curcumin 400 mg/kg, curcumin 200 or 400 mg/kg + CdCl2, vitamin C 100 mg/kg + CdCl2, curcumin 200 or 400 mg/kg + vitamin C + CdCl2. All groups were treated by gavage for 27 days. The results showed that Cd treatment increased significantly lipid peroxidation levels,decreased significantly the glutathione levels, increased significantly on metallothionein (MT) expressions including the degenerative changes of liver histological tissues were observed. The treatment of Cd-exposed rats with curcumin or vitamin C alone could not reverse Cd-induced the above changes. The combined treatment with curcumin along with vitamin C before Cd intoxication was more effective than that with either of them alone in reducing such changes and reverse the changes almost similar to that of control. In conclusion, the results demonstrated that the combined pretreatment with curcumin along with vitamin C could recover the alterations and offer more protection than curcumin or vitamin C alone against Cd hepatotoxicity. PMID:24826037

  18. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice

    PubMed Central

    Amano, Chie; Minematsu, Hideki; Fujita, Kazuyo; Iwashita, Shinki; Adachi, Masaki; Igarashi, Koichi; Hinuma, Shuji

    2015-01-01

    To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice. PMID:26361331

  19. Curcumin (Turmeric) and cancer.

    PubMed

    Unlu, Ahmet; Nayir, Erdinc; Dogukan Kalenderoglu, Muhammed; Kirca, Onder; Ozdogan, Mustafa

    2016-01-01

    Curcumin is a substance obtained from the root of the turmeric plant, which has the feature of being a yellow or orange pigment. It is also the main component of curry powder commonly used in Asian cuisine. Curcumin, a substance that has had an important place in traditional Indian and Chinese medicines for thousands of years, has been the center of interest for scientific studies especially in the field of cancer treatment for several years. Laboratory studies have presented some favorable results in terms of curcumin's antioxidant, antiinflammatory and anticancer properties in particular. However, since such findings have yet to be confirmed in clinical studies, its effect on humans is not clearly known. Therefore, when its advantages in terms of toxicity, cost and availability as well as the favorable results achieved in laboratory studies are considered, it would not be wrong to say that curcumin is a substance worth being studied. However, for now the most correct approach is to abstain from its use for medical purposes due to lack of adequate reliable evidence obtained from clinical studies, and because of its potential to interfere with other drugs.

  20. Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosis in vivo and in vitro.

    PubMed

    Chen, Zhiguang; Xue, Jinqi; Shen, Tao; Ba, Gen; Yu, Dongdong; Fu, Qin

    2016-02-01

    Curcumin, an active component of the rhizomes of Curcumin longa L., possesses broad anti-inflammation and anti-cancer properties. Curcumin was previously reported to be capable of protecting ovariectomized rats against osteoporosis. However, the effect of curcumin on glucocorticoid-induced osteoporosis (GIO) is not yet clear. The present study investigated the effects of curcumin on dexamethasone (Dex)-induced osteoporosis in vivo and Dex-induced osteoblast apoptosis in vivo and in vitro. The GIO rat model was induced by subcutaneous injection of Dex for 60 days and verified to be successful as evidenced by the significantly decreased bone mineral density (BMD) determined using dual X-ray absorptiometry. Subsequently, curcumin administration (100 mg/kg) for 60 days obviously increased BMD and bone-alkaline phosphatase, decreased carboxy-terminal collagen cross links, enhanced bone mechanical strength, and improved trabecular microstructure, thereby alleviating Dex-induced osteoporosis. Mechanically, curcumin remarkably reversed Dex-induced femoral osteoblast apoptosis in vivo. In cultured primary osteoblasts, pretreatment with curcumin concentration-dependently decreased the number of Dex-induced apoptotic osteoblasts by down-regulating the ratio of Bax/Bcl-2 as well as the levels of cleaved caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Moreover, curcumin pretreatment activated extracellular signal regulated kinase (ERK) signalling in Dex-induced osteoblasts by up-regulating the expression level of p-ERK1/2. Taken together, our study demonstrated that curcumin could ameliorate GIO by protecting osteoblasts from apoptosis, which was possibly related to the activation of the ERK pathway. The results suggest that curcumin may be a promising drug for prevention and treatment of GIO.

  1. Immune response modulation by curcumin in a latex allergy model

    PubMed Central

    Kurup, Viswanath P; Barrios, Christy S; Raju, Raghavan; Johnson, Bryon D; Levy, Michael B; Fink, Jordan N

    2007-01-01

    Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L) on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens. PMID:17254346

  2. Curcumin prevents paracetamol-induced liver mitochondrial alterations.

    PubMed

    Granados-Castro, Luis Fernando; Rodríguez-Rangel, Daniela Sarai; Fernández-Rojas, Berenice; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Medina-Campos, Omar Noel; Eugenio-Pérez, Dianelena; Pinzón, Enrique; Pedraza-Chaverri, José

    2016-02-01

    In the present study was evaluated if curcumin is able to attenuate paracetamol (PCM)-induced mitochondrial alterations in liver of mice. Mice (n = 5-6/group) received curcumin (35, 50 or 100 mg/kg bw) 90 min before PCM injection (350 mg/kg bw). Plasma activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was measured; histological analyses were done; and measurement of mitochondrial oxygen consumption, mitochondrial membrane potential, ATP synthesis, aconitase activity and activity of respiratory complexes was carried out. Curcumin prevented in a dose-dependent manner PCM-induced liver damage. Curcumin (100 mg/kg) attenuated PCM-induced liver histological damage (damaged hepatocytes from 28.3 ± 7.7 to 8.3 ± 0.7%) and increment in plasma ALT (from 2300 ± 150 to 690 ± 28 U/l) and AST (from 1603 ± 43 to 379 ± 22 U/l) activity. Moreover, curcumin attenuated the decrease in oxygen consumption using either succinate or malate/glutamate as substrates (evaluated by state 3, respiratory control ratio, uncoupled respiration and adenosine diphosphate/oxygen ratio), in membrane potential, in ATP synthesis, in aconitase activity and in the activity of respiratory complexes I, III and IV. These results indicate that the protective effect of curcumin in PCM-induced hepatotoxicity is associated with attenuation of mitochondrial dysfunction. © 2016 Royal Pharmaceutical Society.

  3. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats.

    PubMed

    He, Liyu; Peng, Xiaofei; Zhu, Jiefu; Liu, Guoyong; Chen, Xian; Tang, Chengyuan; Liu, Hong; Liu, Fuyou; Peng, Youming

    2015-04-01

    Gentamicin-induced nephrotoxicity is one of the most common causes of acute kidney injury (AKI). The phenotypic alterations that contribute to acute kidney injury include inflammatory response and oxidative stress. Curcumin has a wide range biological functions, especially as an antioxidant. This study was designed to evaluate the renoprotective effects of curcumin treatment in gentamicin-induced AKI. Gentamicin-induced AKI was established in female Sprague-Dawley rats. Rats were treated with curcumin (100 mg/kg body mass) by intragastric administration, once daily, followed with an intraperitoneal injection of gentamicin sulfate solution at a dose of 80 mg/kg body mass for 8 consecutive days. At days 3 and 8, the rats were sacrificed, and the kidneys and blood samples were collected for further analysis. The animals treated with gentamicin showed marked deterioration of renal function, together with higher levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) in the plasma as compared with the controls. Animals that underwent intermittent treatment with curcumin exhibited significant improvements in renal functional parameters. We also observed that treatment with curcumin significantly attenuated renal tubular damage, apoptosis, and oxidative stress. Curcumin treatment exerted anti-apoptosis and anti-oxidative effects by up-regulating Nrf2/HO-1 and Sirt1 expression. Our data clearly demonstrate that curcumin protects kidney from gentamicin-induced AKI via the amelioration of oxidative stress and apoptosis of renal tubular cells, thus providing hope for the amelioration of gentamicin-induced nephrotoxicity.

  4. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome.

    PubMed

    Balderas-Villalobos, Jaime; Molina-Muñoz, Tzindilu; Mailloux-Salinas, Patrick; Bravo, Guadalupe; Carvajal, Karla; Gómez-Viquez, Norma L

    2013-11-01

    Ca(+) mishandling due to impaired activity of cardiac sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) has been associated with the development of left ventricular diastolic dysfunction in insulin-resistant cardiomyopathy. However, the molecular causes underlying SERCA2a alterations induced by insulin resistance and related metabolic disorders, such as metabolic syndrome (MetS), are not completely understood. In this study, we used a sucrose-fed rat model of MetS to test the hypothesis that decreased SERCA2a activity is mediated by elevated oxidative stress produced in the MetS heart. Production of ROS and cytosolic Ca(2+) concentration were recorded in left ventricular myocytes using confocal imaging. The level of SERCA2a oxidation was determined in left ventricular homogenates by biotinylated iodoacetamide labeling. Compared with control rats, sucrose-fed rats exhibited several characteristics of MetS, including central obesity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia. Moreover, relative to myocytes from control rats, myocytes from MetS rats exhibited elevated basal production of ROS accompanied by slowed cytosolic Ca(2+) removal, reflected by prolonged Ca(2+) transients. The slowed cytosolic Ca(2+) removal was associated with a significant decrease in SERCA2a-mediated Ca(2+) reuptake and increased SERCA2a oxidation. Importantly, myocytes from MetS rats treated with the antioxidant N-acetylcysteine showed normal ROS levels and SERCA2a-mediated Ca(2+) reuptake as well as accelerated cytosolic Ca(2+) removal. These data suggest that elevated oxidative stress may induce oxidative modifications on SERCA2a leading to abnormal function of this protein in the MetS heart.

  5. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats.

    PubMed

    Khalil, Najeh Maissar; do Nascimento, Thuane Castro Frabel; Casa, Diani Meza; Dalmolin, Luciana Facco; de Mattos, Ana Cristina; Hoss, Ivonete; Romano, Marco Aurélio; Mainardes, Rubiana Mara

    2013-01-01

    The aim of this study was to assess the potential of nanoparticles to improve the pharmacokinetics of curcumin, with a primary goal of enhancing its bioavailability. Polylactic-co-glycolic acid (PLGA) and PLGA-polyethylene glycol (PEG) (PLGA-PEG) blend nanoparticles containing curcumin were obtained by a single-emulsion solvent-evaporation technique, resulting in particles size smaller than 200 nm. The encapsulation efficiency was over 70% for both formulations. The in vitro release study showed that curcumin was released more slowly from the PLGA nanoparticles than from the PLGA-PEG nanoparticles. A LC-MS/MS method was developed and validated to quantify curcumin in rat plasma. The nanoparticles were orally administered at a single dose in rats, and the pharmacokinetic parameters were evaluated and compared with the curcumin aqueous suspension. It was observed that both nanoparticles formulations were able to sustain the curcumin delivery over time, but greater efficiency was obtained with the PLGA-PEG nanoparticles, which showed better results in all of the pharmacokinetic parameters analyzed. The PLGA and PLGA-PEG nanoparticles increased the curcumin mean half-life in approximately 4 and 6h, respectively, and the C(max) of curcumin increased 2.9- and 7.4-fold, respectively. The distribution and metabolism of curcumin decreased when it was carried by nanoparticles, particularly PLGA-PEG nanoparticles. The bioavailability of curcumin-loaded PLGA-PEG nanoparticles was 3.5-fold greater than the curcumin from PLGA nanoparticles. Compared to the curcumin aqueous suspension, the PLGA and PLGA-PEG nanoparticles increased the curcumin bioavailability by 15.6- and 55.4-fold, respectively. These results suggest that PLGA and, in particular, PLGA-PEG blend nanoparticles are potential carriers for the oral delivery of curcumin. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Decreased oxidative stress in prehepatic portal hypertensive rat livers following the induction of diabetes.

    PubMed

    Evelson, P; Llesuy, S; Filinger, E; Rodriguez, R R; Lemberg, A; Scorticati, C; Susemihl, M; Villareal, I; Polo, J M; Peredo, H; Perazzo, J C

    2004-03-01

    1. Oxidative stress (OS) is a biological entity indicated as being responsible for several pathologies, including diabetes. Diabetes can also be associated with human cirrhosis. Portal hypertension (PH), a major syndrome in cirrhosis, produces hyperdynamic splanchnic circulation and hyperaemia. The present study was designed to investigate the occurrence of OS in prehepatic PH rat livers following the induction of diabetes. 2. Five groups of rats were used: control, sham operated, chronic diabetes (induced with a single dose of streptozotocin at 60 mg/kg, i.p.), prehepatic PH and chronic diabetic plus prehepatic PH. The occurrence of OS was determined in liver homogenates by measuring hydroperoxide-initiated chemiluminescence and the activity of anti-oxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). 3. Prehepatic PH produced a significant increase in hydroperoxide-initiated chemiluminescence in the liver compared with control and sham-operated rats, whereas the liver in chronic diabetic rats showed no difference. However, chemiluminescence values decreased almost by 50% in the chronic diabetic plus prehepatic PH group. Concomitantly, the activities of the anti-oxidant enzymes in chronic diabetes, prehepatic PH and chronic diabetic plus prehepatic PH groups were decreased (P < 0.05 vs control and sham-operated groups). 4. Livers from the chronic diabetic group did not show any evidence of the occurrence of OS, whereas the prehepatic PH group showed the occurrence of OS. The association of PH and chronic diabetes resulted in a significant decrease in the occurrence of OS, which could be explained by an anti-oxidant response to an OS.

  7. 4 Hz magnetic field decreases oxidative stress in mouse brain: a chemiluminescence study.

    PubMed

    Park, Won-Hee; Soh, Kwang-Sup; Lee, Byung-Cheon; Pyo, Myoung-Yun

    2008-01-01

    We investigated the effects of delta and theta brain wave frequency magnetic fields (3, 4, and 5) on mouse brain by detecting photonic oxidative stress makers; spontaneous photon emission (SPE) and lucigenin and tert-butyl hydroperoxide (TBHP) induced chemiluminescences (CL). For this purpose, Balb/C mice were exposed to 3, 4, and 5 Hz magnetic fields (MF) at 0.7 mT for 3 h, respectively. After that we monitored SPE and lucigenin and TBHP-induced CL of the homogenates of mice brains. There was a significant decrease in SPE in the 4 Hz MF-exposed group. Lucigenin-induced CL was also significantly decreased only in the 4 Hz MF-exposed group. TBHP-induced CL was also distinctively decreased by all frequencies, 3, 4, and 5 Hz MF exposures. These results showed that oxidative stress in a mouse brain was decreased by 4 Hz MF. We suggest that the application of 4 Hz MF will contribute to magnetic field therapy.

  8. [Curcumin promotes apoptosis of esophageal squamous carcinoma cell lines through inhibition of NF-kappaB signaling pathway].

    PubMed

    Tian, Fang; Song, Min; Xu, Pei-Rong; Liu, Hong-Tao; Xue, Le-Xun

    2008-06-01

    Activation of NF-kappaB signaling pathway plays a critical role in the initiation and progression of carcinogenesis. However, the role of NF-kappaB pathway in esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. Studies have shown that curcumin possesses anti-infection and anti-oxidation effects. This study was to evaluate whether curcumin could induce apoptosis through inhibition of NF-kappaB signaling pathway in ESCC cells. Expressions of pIkappaBalpha and Bcl-2 were detected using Western blott after incubation of ESCC cells with curcumin (50 micromol/L) at different time points. Apoptosis and the number of viable ESCC cells were analyzed using flow cytometry and MTT, respectively, after the treatment of curcumin, 5-FU, or the combination of curcumin and 5-FU. In two ESCC cell lines, EC9706 and Eca109,curcumin inhibited IkappaBalpha phosphorylation and Bcl-2 in a time-dependent manner; curcumin alone increased cell apoptosis (P<0.05), and the effect became more prominent when it was combined with 5-FU (P<0.05); curcumin plus 5-FU exerted a stronger inhibition effect on cell proliferation than curcumin alone (P<0.05) or 5-FU alone (P<0.05). Curcumin inhibits the phosphorylation of IkappaBalpha, leading to suppression of proliferation, induction of apoptosis and an increase of the sensitivity of ESCC cell lines towards 5-FU.

  9. Curcumin protects bleomycin-induced lung injury in rats.

    PubMed

    Venkatesan, N; Punithavathi, V; Chandrakasan, G

    1997-01-01

    The present study was designed to determine the protective effects of curcumin against bleomycin (BLM)-induced inflammatory and oxidant lung injury. The data indicate that BLM-mediated lung injury resulted in increases in lung lavage fluid biomarkers such as total protein, angiotensin-converting enzyme (ACE), lactate dehydrogenase (LDH), N-acetyl-beta-D-glucosaminidase (NAG), lipid peroxidation (LPO) products, superoxide dismutase (SOD) and catalase. Bleomycin administration also resulted in increased levels of malondialdehyde (MDA) in bronchoalveolar lavage fluid (BALF) and bronchoalveolar lavage (BAL) cells and greater amounts of alveolar macrophage (AM) superoxide dismutase activity. By contrast, lower levels of reduced glutathione (GSH) were observed in lung lavage fluid, BAL cells and AM. Stimulated superoxide anion and hydrogen peroxide release by AM from BLM rats were found to be higher. Curcumin treatment resulted in a significant reduction in lavage fluid biomarkers. In addition, curcumin treatment resulted in the restoration of antioxidant status in BLM rats. These data suggest that curcumin treatment reduces the development of BLM-induced inflammatory and oxidant activity. Therefore, curcumin offers the potential for a novel pharmacological approach in the suppression of drug or chemical-induced lung injury.

  10. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats

    PubMed Central

    Punithavathi, Durairaj; Venkatesan, Narayanan; Babu, Mary

    2000-01-01

    Curcumin, an anti-inflammatory, antioxidant, was evaluated for its ability to suppress bleomycin (BLM)-induced pulmonary fibrosis in rats. A single intratracheal instillation of BLM (0.75 U 100−1 g, sacrificed 3, 5, 7, 14 and 28 days post-BLM) resulted in significant increases in total cell numbers, total protein, and angiotensin-converting enzyme (ACE), and alkaline phosphatase (AKP) activities in bronchoalveolar lavage fluid. Animals with fibrosis had a significant increase in lung hydroxyproline content. Alveolar macrophages from BLM-administered rats elaborated significant increases in tumour necrosis factor (TNF)-α release, and superoxide and nitric oxide production in culture medium. Interestingly, oral administration of curcumin (300 mg kg−1 10 days before and daily thereafter throughout the experimental time period) inhibited BLM-induced increases in total cell counts and biomarkers of inflammatory responses in BALF. In addition, curcumin significantly reduced the total lung hydroxyproline in BLM rats. Furthermore, curcumin remarkably suppressed the BLM-induced alveolar macrophage production of TNF-α, superoxide and nitric oxide. These findings suggest curcumin as a potent anti-inflammatory and anti-fibrotic agent against BLM-induced pulmonary fibrosis in rats. PMID:10991907

  11. Structure-Activity Relationship of Curcumin: Role of the Methoxy Group in Anti-inflammatory and Anticolitis Effects of Curcumin.

    PubMed

    Yang, Haixia; Du, Zheyuan; Wang, Weicang; Song, Mingyue; Sanidad, Katherine; Sukamtoh, Elvira; Zheng, Jennifer; Tian, Li; Xiao, Hang; Liu, Zhenhua; Zhang, Guodong

    2017-06-07

    Curcumin, a dietary compound from turmeric, has beneficial effects on inflammatory diseases such as inflammatory bowel disease. Most previous studies have focused on the structure-activity relationship of the thiol-reactive α,β-unsaturated carbonyl groups of curcumin, so little is known about the roles of methoxy groups in biological activities of curcumin. Here we synthesized a series of curcumin analogues with different substitution groups (R = H-, Br-, Cl-, F-, NO2-, CH3-, and OH-) to replace the methoxy group and evaluated their biological effects in vitro and in vivo. Curcumin, Cur-OH, and Cur-Br (25 μM) suppressed 74.91 ± 0.88, 77.75 ± 0.89, and 71.75 ± 0.90% of LPS-induced NO production, respectively (P < 0.05). Similarly, these compounds also decreased iNOS expression, COX-2 expression, and NF-κB signaling in RAW 264.7 macrophage cells (P < 0.05). However, other analogues, especially Cur-NO2, were inactive (P > 0.05). In the dextran sulfate sodium (DSS)-induced colitis mouse model, the Cur-Br analogue also showed a beneficial effect the same as curcumin (P < 0.05), whereas the Cur-NO2 analogue had no effect in the animal model (P > 0.05). Together, the analogues have dramatically different effects on inflammation, supporting that the substitution group on the methoxy position plays an important role in the anti-inflammatory effects of curcumin. The methoxy group is a potential structural candidate for modification to design curcumin-based drugs for inflammatory diseases.

  12. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  13. B vitamins deficiency and decreased anti-oxidative state in patients with liver cancer.

    PubMed

    Lin, Chun-che; Yin, Mei-chin

    2007-08-01

    This study examined the status of oxidative stress and B vitamins in hepatocellular carcinoma (HCC) patients in different tumor-node-metastasis stages. Patients were divided into two groups as I + II (n = 21) and III + IV (n = 19). Plasma levels of lipid oxidation, alpha-tocopherol, beta-carotene, vitamin C, glutathione and the activity of antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase, and xanthine oxidase) were determined for evaluating oxidative status. Blood B vitamins (B(1), B(2), B(6), B(12), and folate) and serum ghrelin were analyzed, and the relationship between serum ghrelin and vitamins B(2) (or B(6)) was evaluated. HCC patients at III + IV stage showed significantly lower ghrelin, higher cholesterol, triglyceride, and uric acid than patients at I + II stage and healthy subjects (P < 0.05). Plasma lipid oxidation level in HCC patients was significantly greater than healthy subjects (P < 0.05). The activity of glutathione peroxidase, superoxide dismutase or catalase was significantly decreased, but xanthine oxidase activity was significantly elevated in HCC patients (P < 0.05). Plasma level of glutathione and vitamin C, not alpha-tocopherol and beta-carotene, in HCC patients was significantly lower (P < 0.05). Vitamins B(2) and B(6) levels in red blood cells from these HCC patients were significantly lower (P < 0.05). This study provided novel clinical findings regarding the status of oxidative stress and B vitamins in HCC patients. Plasma glutathione level may be a proper biomarker for evaluating oxidative status for HCC patients. Our data indicate that HCC patients might need B vitamins supplementation. The increased serum level of triglyceride and cholesterol might be a consequence of an impaired hepatic fat metabolism, and might be improved by a lower fat administration to these patients.

  14. High-Relaxivity Superparamagnetic Iron Oxide Nanoworms with Decreased Immune Recognition and Long-Circulating Properties

    PubMed Central

    Wang, Guankui; Inturi, Swetha; Serkova, Natalie J.; Merkulov, Sergey; McCrae, Keith; Russek, Stephen E.; Banda, Nirmal K.; Simberg, Dmitri

    2015-01-01

    One of the core issues of nanotechnology involves masking the foreignness of nanomaterials to enable in vivo longevity and long-term immune evasion. Dextran-coated superparamagnetic iron oxide nanoparticles are very effective magnetic resonance imaging (MRI) contrast agents, and strategies to prevent immune recognition are critical for their clinical translation. Here we prepared 20 kDa dextran-coated SPIO nanoworms (NWs) of 250 nm diameter and a high molar transverse relaxivity rate R2 (~400 mM−1 s−1) to study the effect of cross-linking-hydrogelation with 1-chloro-2,3-epoxypropane (epichlorohydrin) on the immune evasion both in vitro and in vivo. Cross-linking was performed in the presence of different concentrations of NaOH (0.5 to 10 N) and different temperatures (23 and 37 °C). Increasing NaOH concentration and temperature significantly decrease the binding of anti-dextran antibody and dextran-binding lectin conconavalin A to the NWs. The decrease in dextran immunoreactivity correlated with the decrease in opsonization by complement component 3 (C3) and with the decrease in the binding of the lectin pathway factor MASP-2 in mouse serum, suggesting that cross-linking blocks the lectin pathway of complement. The decrease in C3 opsonization correlated with the decrease in NW uptake by murine peritoneal macrophages. Optimized NWs demonstrated up to 10 h circulation half-life in mice and minimal uptake by the liver, while maintaining the large 250 nm size in the blood. We demonstrate that immune recognition of large iron oxide nanoparticles can be efficiently blocked by chemical cross-linking-hydrogelation, which is a promising strategy to improve safety and bioinertness of MRI contrast agents. PMID:25419856

  15. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance.

    PubMed

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N(1)-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H(2)O(2) and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  16. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    PubMed Central

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N 1-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H2O2 and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance. PMID:22899900

  17. Moderate Weight Loss Decreases Oxidative Stress and Increases Antioxidant Status in Patients with Metabolic Syndrome

    PubMed Central

    Del Ben, Maria; Angelico, Francesco; Cangemi, Roberto; Loffredo, Lorenzo; Carnevale, Roberto; Augelletti, Teresa; Baratta, Francesco; Polimeni, Licia; Pignatelli, Pasquale; Violi, Francesco

    2012-01-01

    Background. Oxidative stress is enhanced in metabolic syndrome (MetS) and believed to contribute to accelerated atherosclerosis. Weight loss is associated with lowered oxidative stress. Methods. We performed a cross-sectional study in 92 consecutive patients with metabolic syndrome and 80 without. A dietary intervention with moderately low-calorie diet (600 calories/day negative energy balance) was carried out in 53 of metabolic syndrome patients. Oxidative stress, assessed by sNOX2-dp and urinary 8-iso-PGF2α, and antioxidant status, assessed by serum levels of vitamin E and adiponectin, were measured before and after 6 months. Results. Serum vitamin E/cholesterol ratio was significantly lower in metabolic syndrome compared to controls (P < 0.001) and decreased by increasing the number of metabolic syndrome components (P < 0.001). After six months, 23 and 30 patients showed >5% (group A) or <5% (group B) weight loss, respectively. Urinary 8-iso-PGF2α (−39.0%), serum sNOX2-dp (−22.2%), adiponectin (+125%), and vitamin E/cholesterol ratio (+129.8%) significantly changed only in A group. Changes in body weight and in serum adiponectin were independent predictors of vitamin E/cholesterol ratio variation. Conclusion. Our findings show that in metabolic syndrome moderate weight loss is associated with multiple health benefits including not only oxidative stress reduction but also enhancement of antioxidant status. PMID:24533215

  18. Decreased levels of serum nitric oxide in different forms of dementia.

    PubMed

    Corzo, Lola; Zas, Raquel; Rodríguez, Susana; Fernández-Novoa, Lucía; Cacabelos, Ramón

    2007-06-15

    Nitric oxide is involved in normal physiological functions and also in pathological processes leading to tissue damage due, in part, to its free radical nature (oxidative stress). Oxidative stress and vascular dysfunction have been recognized as contributing factors in the pathogenesis of Alzheimer disease (AD) and vascular dementia (VD). In order to study the possible links between these processes and dementia, we have analysed plasma amyloid-beta(1-42) levels (Abeta) and total nitric oxide (NOx), apolipoprotein E (ApoE), lipids, vitamin B12, and folate concentrations in the serum of 99 patients with dementia and 55 age-matched non-demented controls. Both nitrate and nitrite levels were measured by a colorimetric method using Griess Reagent and plasma Abeta levels were analysed by a hypersensitive ELISA method. Our data showed a significant decrease of serum NOx levels in dementia, especially in probable AD and VD patients, as compared with controls. We observed a weak correlation between serum NOx levels and cognitive deterioration in dementia; however, NOx levels were not associated with ApoE and Abeta levels. In dementia and controls, a similar correlation pattern between HDL-cholesterol versus NOx was found. No apparent association between NOx, Abeta and AD-related genes [APOE (apolipoprotein E), PSEN1 (Presenilin 1)] was observed. Our data suggest that NOx may contribute to the pathogenesis of dementia through a process mediated by HDL-cholesterol.

  19. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    PubMed

    Grama, Charitra N; Suryanarayana, Palla; Patil, Madhoosudan A; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M N V Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ) induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  20. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  1. Protective Role of Curcumin and Flunixin Against Acetic Acid-Induced Inflammatory Bowel Disease via Modulating Inflammatory Mediators and Cytokine Profile in Rats.

    PubMed

    Gopu, Boobalan; Dileep, Rasakatla; Rani, Matukumalli Usha; Kumar, C S V Satish; Kumar, Matham Vijay; Reddy, Alla Gopala

    2015-01-01

    Ulcerative colitis is a chronically recurrent inflammatory bowel disease of unknown origin. The present study is to evaluate the effect of flunixin and curcumin in experimentally induced ulcerative colitis in rats. Animals were randomly divided into four groups, each consisting of 12 animals: normal control group, acetic acid group, curcumin-treated group, and flunixin-treated group. Induction of colitis by intracolonic administration of 4% acetic acid produced severe macroscopic inflammation in the colon, 14 days after acetic acid administration as assessed by the colonic damage score. Microscopically, colonic tissues showed ulceration, edema, and inflammatory cells infiltration. Biochemical studies revealed increased serum levels of lactate dehydrogenase (LDH), colonic alkaline phosphatase (ALP), and myeloperoxidase (MPO). Oxidative stress was indicated by elevated lipid peroxide formation and depleted reduced glutathione concentrations in colonic tissues. After induction of colitis, treatment with curcumin (50 mg/kg daily, p.o.) and flunixin (2.5 mg/kg daily, s.c.) decreased serum LDH, ALP, interleukin (IL)-1β, and tumor necrosis factor-α levels, as well as colonic MPO and lipid peroxide levels, whereas increased colonic prostaglandin E2 and IL-10 concentrations were observed. Moreover, effective doses of curcumin and flunixin were effective in restoring the histopathological changes induced by acetic acid administration. The findings of the present study provide evidence that flunixin may be beneficial in patients with inflammatory bowel disease.

  2. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  3. Decrease of plasma and urinary oxidative metabolites of acetaminophen after consumption of watercress by human volunteers.

    PubMed

    Chen, L; Mohr, S N; Yang, C S

    1996-12-01

    To investigate the effect of the consumption of watercress (Nasturtium officinale R. Br.), a cruciferous vegetable, on acetaminophen metabolism, the pharmacokinetics of acetaminophen and its metabolites were studied in a crossover trial of human volunteers. A single oral dose of acetaminophen (1 gm) was given 10 hours after ingestion of watercress homogenates (50 gm). In comparison with acetaminophen only, the ingestion of watercress resulted in a significant reduction in the area under the plasma cysteine acetaminophen (Cys-acetaminophen) concentration-time curve and in the peak plasma Cys-acetaminophen concentration by 28% +/- 3% and by 21% +/- 4% (mean +/- SE; n = 7; p < 0.005), respectively. Correspondingly, the Cys-acetaminophen formation rate constant and Cys-acetaminophen formation fraction were decreased by 55% +/- 9% and 52% +/- 7% (p < 0.01), respectively. Consistent with the results obtained from the plasma, the total urinary excretion of Cys-acetaminophen in 24 hours was also reduced. A decrease of mercapturate acetaminophen, a Cys-acetaminophen metabolite, was also shown in the plasma and urine samples. However, the plasma pharmacokinetic processes and the urinary excretions of acetaminophen, acetaminophen glucuronide, and acetaminophen sulfate were not altered significantly by the watercress treatment. These results suggest that the consumption of watercress causes a decrease in the levels of oxidative metabolites of acetaminophen, probably due to inhibition of oxidative metabolism of this drug.

  4. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation

    PubMed Central

    Nicolay, Brandon N.; Danielian, Paul S.; Kottakis, Filippos; Lapek, John D.; Sanidas, Ioannis; Miles, Wayne O.; Dehnad, Mantre; Tschöp, Katrin; Gierut, Jessica J.; Manning, Amity L.; Morris, Robert; Haigis, Kevin; Bardeesy, Nabeel; Lees, Jacqueline A.; Haas, Wilhelm; Dyson, Nicholas J.

    2015-01-01

    The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where RbKO was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, RbKO caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between RbKO tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RBKO cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from 13C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RBKO cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment. PMID:26314710

  5. Curcumin attenuates memory deficits and the impairment of cholinergic and purinergic signaling in rats chronically exposed to cadmium.

    PubMed

    da Costa, Pauline; Gonçalves, Jamile F; Baldissarelli, Jucimara; Mann, Thaís R; Abdalla, Fátima H; Fiorenza, Amanda M; da Rosa, Michelle M; Carvalho, Fabiano B; Gutierres, Jessié M; de Andrade, Cinthia M; Rubin, Maribel A; Schetinger, Maria Rosa C; Morsch, Vera M

    2017-01-01

    This study investigated the protective effect of curcumin on memory loss and on the alteration of acetylcholinesterase and ectonucleotidases activities in rats exposed chronically to cadmium (Cd). Rats received Cd (1 mg/kg) and curcumin (30, 60, or 90 mg/kg) by oral gavage 5 days a week for 3 months. The animals were divided into eight groups: vehicle (saline/oil), saline/curcumin 30 mg/kg, saline/curcumin 60 mg/kg, saline/curcumin 90 mg/kg, Cd/oil, Cd/curcumin 30 mg/kg, Cd/curcumin 60 mg/kg, and Cd/curcumin 90 mg/kg. Curcumin prevented the decrease in the step-down latency induced by Cd. In cerebral cortex synaptosomes, Cd-exposed rats showed an increase in acetylcholinesterase and NTPDase (ATP and ADP as substrates) activities and a decrease in the 5'-nucleotidase activity. Curcumin was not able to prevent the effect of Cd on acetylcholinesterase activity, but it prevented the effects caused by Cd on NTPDase (ATP and ADP as substrate) and 5'-nucleotidase activities. Increased acetylcholinesterase activity was observed in different brain structures, whole blood and lymphocytes of the Cd-treated group. In addition, Cd increased lipid peroxidation in different brain structures. Higher doses of curcumin were more effective in preventing these effects. These findings show that curcumin prevented the Cd-mediated memory impairment, demonstrating that this compound has a neuroprotective role and is capable of modulating acetylcholinesterase, NTPDase, and 5'-nucleotidase activities. Finally, it highlights the possibility of using curcumin as an adjuvant against toxicological conditions involving Cd exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 70-83, 2017.

  6. The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption.

    PubMed

    Sousa-Santos, Ozelia; Neto-Neves, Evandro M; Ferraz, Karina C; Sertório, Jonas T; Portella, Rafael L; Tanus-Santos, Jose E

    2013-11-01

    Acute pulmonary thromboembolism (APT) is a critical condition associated with acute pulmonary hypertension. Recent studies suggest that oxidative stress and hemolysis contribute to APT-induced pulmonary hypertension, possibly as a result of increased nitric oxide (NO) consumption. We hypothesized that the antioxidant tempol could attenuate APT-induced hemolysis, and therefore attenuate APT-induced increases in plasma NO consumption. APT was induced in anesthetized sheep with autologous blood clots. The hemodynamic effects of tempol infused at 1.0mg/kg/min 30 min after APT were determined. Hemodynamic measurements were carried out every 15 min. To assess oxidative stress, serum 8-isoprostanes levels were measured by ELISA. Plasma cell-free hemoglobin concentrations and NO consumption by plasma samples were determined. An in vitro oxidative AAPH-induced hemolysis assay was used to further validate the in vivo effects of tempol. APT caused pulmonary hypertension, and increased pulmonary vascular resistance in proportion with the increases in 8-isoprostanes, plasma cell-free hemoglobin concentrations, and NO consumption by plasma (all P<0.05). Tempol attenuated the hemodynamic alterations by approximately 15-20% and blunted APT-induced increases in 8-isoprostanes, in cell-free hemoglobin concentrations, and the increases in NO consumption by plasma (P<0.05). Tempol dose-dependently attenuated AAPH-induced in vitro hemolysis (P<0.05). Our findings are consistent with the idea that antioxidant properties of tempol decrease APT-induced hemolysis and nitric oxide consumption, thus attenuating APT-induced pulmonary hypertension. © 2013.

  7. Green tea diet decreases PCB 126-induced oxidative stress in mice by upregulating antioxidant enzymes

    PubMed Central

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2013-01-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the upregulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-Isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited five-fold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both mRNA and protein analyses, and it was determined that many genes transcriptionally controlled by AhR and Nrf2 proteins were upregulated in PCB-exposed mice fed the green tea supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126 which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  8. [DOXORUBICIN-INDUCED ALTERATIONS IN PRO-AND ANTIOXIDANT BALANCE AND THEIR CORRECTION BY CURCUMIN IN THE NEONATAL RAT CARDIOMYOCYTES CULTURE].

    PubMed

    Linnik, O O; Drevytska, T I; Gonchar, O O; Chornyy, S A; Kovalyov, O M; Mankovska, I M

    2015-01-01

    It was studied the effect of doxorubicin on the HIF system and the pro-antioxidant balance of neonatal cardiomyocytes as well as the possibility of the oxidative stress correcting using curcumin. It has been revealed that the expression of mRNA HIF-1α using doxorubicin at a dose of 0.5 μM was 2.9 ± 0.8 cu, so it decreased by 20% compared to control--3.6 ± 0.7 cu (P < 0.05). The level of expression of the HIF target gene PDK-1 also significantly decreased (4 times). During the incubation with doxorubicin, the number of live cells decreased by 50.4% relative to control. And after using doxorubicin and curcumin together, the percentage of dead cells decreased by 7,7 compared to doxorubicin only. Doxorubicin intoxication led to a significant increase in the secondary products of lipid peroxidation (TBARS) in cardiomyocytes by 3.6 times and hydrogen peroxide by 64%. Prolonged incubation with doxorubicin reduced the enzymatic activity of Mn-SOD by 32%, while catalase activity increased by 72% compared to control. Adding of curcumin to the cardiomyocyte cell culture contributed to increasing of the Mn-SOD activity by 14%, catalase--by 23%. The level of TBARS increased by 1,4 times compared with the control, and the level of H2O2 increased by 20%. The joint use of doxorubicin and curcumin resulted in a significant reduction of free radical oxidation unlike effect of doxorubicin per se. Specifically, there was lessening of TBARS and H2O2 (at 56.7 and 18.4% respectively), while decreasing of the catalase hyperactivation (19%) and rising of the Mn-SOD activity (35%).

  9. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes.

    PubMed

    Aadinath, W; Bhushani, Anu; Anandharamakrishnan, C

    2016-07-01

    Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC50 value (64.7791μg/ml, p<0.01) compared to conventional curcumin liposome and IONPs, indicating its synergistically enhanced radical scavenging property.

  10. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation.

    PubMed

    Jiang, Apei; Wang, Xuemin; Shan, Xiaoyun; Li, Yuan; Wang, Pengqi; Jiang, Pan; Feng, Qing

    2015-08-01

    Reactivation of tumor suppressor genes by nontoxic bioactive food component represents a promising strategy for cancer chemoprevention. Retinoic acid receptor β (RARβ), one member of the RAR receptor family, is considered as a tumor suppressor. Reduced expression of RARβ has been reported in lung cancer and other solid tumors. DNA hypermethylation of the promoter region of RARβ is a major mechanism for its silencing in tumors. Recently, curcumin has been considered as a potential DNA methyltransferase inhibitor. Herein, we demonstrated that curcumin significantly elevate RARβ expression at the mRNA and protein levels in tested cancer cells. Additionally, curcumin decreased RARβ promoter methylation in lung cancer A549 and H460 cells. Mechanistic study demonstrated that curcumin was able to downregulate the mRNA levels of DNMT3b. In a lung cancer xenograft node mice model, curcumin exhibited protective effect against weight loss because of tumor burden. Tumor growth was strongly repressed by curcumin treatment. As the results from in vitro, RARβ mRNA were increased and DNMT3b mRNA were decreased by curcumin treatment compared with the mice in control group. Altogether, this study reveals a novel molecular mechanism of curcumin as a chemo-preventive agent for lung cancer through reactivation of RARβ. Copyright © 2015 John Wiley & Sons, Ltd.

  11. [Pharmacological researches of curcumin solid dispersions on experimental gastric ulcer].

    PubMed

    Mei, Xueting; Xu, Donghui; Wang, Sheng; Xu, Shibo

    2009-11-01

    To research the pharmacological action of curcumin solid dispersions (SDs, curcumin and polyvinylpyrrolidone (PVP) k30 in the ratio of 1:8) was investigated on experimental gastric ulcer in rats and mice. Animals were randomly divided into several experimental groups. Each group consisted of 10 animals. The control group received PVP vehicle (720 mg x kg(-1), po) throughout the course of the experiments. The treatment groups received different doses of curcumin SDs (equivalent to curcumin 10, 30 and 90 mg x kg(-1), po), and ranitidine (27 mg x kg(-1), po) was used as the positive control. In acetic acid-induced gastric ulcers model, serum NO, plasma ET and gastric ulcer indexes of rats were measured after oral administration for 14 d. In rat ulcer model induced by pylorus-ligature, gastric volume pepsin and gastric ulcer indexes of rats were measured after oral administration for 3 d and pylorus-ligature inducement for 16 h. Gastric ulcer indexes of mice were measurement after oral administration for 3 d and subcutaneous injection reserpine 10 mg x kg(-1). The results showed that curcumin SDs (equivalent to curcumin 30, and 90 mg x kg(-1), po) could reduce the ulcer indexes 4.59 +/- 0.96 and 3.33 +/- 0.93 (P < 0.01), and increase serum NO level (29.75 +/- 5.90) mmol x L(-1) (P < 0.05) and (39.63 +/- 12.73) mmol x L(-1) (P < 0.01), compared to gastric index 5.87 +/- 0.48 and NO level (23.63 +/- 5.73) mmol x L(-1) in control group. Compared to plasma ET (163.65 +/- 63.84) ng x L(-1) in control group, curcumin SDs (equivalent to 90 mg x kg(-1), po) could decrease plasma ET level (104.22 +/- 63.84) ng x L(-1) (P < 0.05). Compared to gastric ulcer indexes 4.25 +/- 0.71 of control group in rat pylorus-ligature model, curcumin SDs (equivalent to curcumin 90 mg x kg(-1)) could reduce gastric ulcer to 2.38 +/- 0.74 (P < 0.01). Compared to gastric volume (14.61 +/- 1.80) mL, acidity of gastric juice (87.70 +/- 9.84) mmol x L(-1), and the activity of pepsin (408.63 +/- 41

  12. The red-vine-leaf extract AS195 increases nitric oxide synthase-dependent nitric oxide generation and decreases oxidative stress in endothelial and red blood cells.

    PubMed

    Grau, Marijke; Bölck, Birgit; Bizjak, Daniel Alexander; Stabenow, Christina Julia Annika; Bloch, Wilhelm

    2016-02-01

    The red-vine-leaf extract AS195 improves cutaneous oxygen supply and the microcirculation in patients suffering from chronic venous insufficiency. Regulation of blood flow was associated to nitric oxide synthase (NOS)-dependent NO (nitric oxide) production, and endothelial and red blood cells (RBC) have been shown to possess respective NOS isoforms. It was hypothesized that AS195 positively affects NOS activation in human umbilical vein endothelial cells (HUVECs) and RBC. Because patients with microvascular disorders show increased oxidative stress which limits NO bioavailability, it was further hypothesized that AS195 increases NO bioavailability by decreasing the content of reactive oxygen species (ROS) and increasing antioxidant capacity. Cultured HUVECs and RBCs from healthy volunteers were incubated with AS195 (100 μmol/L), tert-butylhydroperoxide (TBHP, 1 mmol/L) to induce oxidative stress and with both AS195 and TBHP. Endothelial and red blood cell-nitric oxide synthase (RBC-NOS) activation significantly increased after AS195 incubation. Nitrite concentration, a marker for NO production, increased in HUVEC but decreased in RBC after AS195 application possibly due to nitrite scavenging potential of flavonoids. S-nitrosylation of RBC cytoskeletal spectrins and RBC deformability were increased after AS195 incubation. TBHP-induced ROS were decreased by AS195, and antioxidative capacity was significantly increased in AS195-treated cells. TBHP also reduced RBC deformability, but reduction was attenuated by parallel incubation with AS195. Adhesion of HUVEC was also reduced after AS195 treatment. Red-vine-leaf extract AS195 increases NOS activation and decreases oxidative stress. Both mechanisms increase NO bioavailability, improve cell function, and may thus account for enhanced microcirculation in both health and disease.

  13. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    PubMed Central

    Singh, Prabhakar

    2015-01-01

    Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M) and in vivo (340 and 170 mg/kg b.w., oral) on Na+/K+ ATPase (NKA), Na+/H+ exchanger (NHE) activity, and membrane lipid hydroperoxides (ROOH) in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects. PMID:26421014

  14. Antioxidative and Neuroprotective Effects of Curcumin in an Alzheimer's Disease Rat Model Co-Treated with Intracerebroventricular Streptozotocin and Subcutaneous D-Galactose.

    PubMed

    Huang, Han-Chang; Zheng, Bo-Wen; Guo, Yu; Zhao, Jian; Zhao, Jiang-Yan; Ma, Xiao-Wei; Jiang, Zhao-Feng

    2016-04-05

    Epidemiological data imply links between the increasing incidences of Alzheimer's disease (AD) and type 2 diabetes mellitus. In this study, an AD rat model was established by combining treatments with intracerebroventricular streptozotocin (icv-STZ) and subcutaneous D-galactose, and the effects of curcumin on depressing AD-like symptoms were investigated. In the AD model group, rats were treated with icv-STZ in each hippocampus with 3.0 mg/kg of bodyweight once and then were subcutaneously injected with D-galactose daily (125 mg/kg of bodyweight) for 7 weeks. In the curcumin-protective group, after icv-STZ treatment, rats were treated with D-galactose (the same as in the AD model group) and intraperitoneally injected with curcumin daily (10 mg/kg of bodyweight) for 7 weeks. Vehicle-treated rats were treated as control. Compared with the vehicle control, the amount of protein carbonylation and glutathione in liver, as well as malondialdehyde in serum, were upregulated but glutathione peroxidase activity in blood was downregulated in the AD model group. The shuttle index and locomotor activity of rats in the AD model group were decreased compared with the vehicle control group. Furthermore, AD model rats showed neuronal damage and neuron loss with formation of amyloid-like substances and neurofibrillary tangles, and the levels of both β-cleavage of AβPP and phosphorylation of tau (Ser396) were significantly increased compared with the vehicle control group. Notably, compared with the AD model group, oxidative stress was decreased and the abilities of active avoidance and locomotor activity were improved, as well as attenuated neurodegeneration, in the curcumin-protective group. These results imply the applications of this animal model for AD research and of curcumin in the treatment of AD.

  15. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression.

    PubMed

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J L; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. © 2013.

  16. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    SciTech Connect

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L.; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  17. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway

    PubMed Central

    Xu, Xiaofang; Zhu, Yuping

    2017-01-01

    Human non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in men. Signal transducers and activators of transcription 3 (STAT3) is a potential molecular target in angiogenesis-mediated cancer therapy. In this study, we subcutaneously injected athymic nude mice with NCI-H460 cells to induce ectopic xenograft model, and treated the animals with curcumin (100 mg/kg) or vehicle by oral gavage. Tumor size and tumor weight were significantly reduced by curcumin treatment. Besides, curcumin significantly decreased hemoglobin content and mRNA expression of CD31 and CD105 in tumor tissue, suggesting that curcumin could inhibit angiogenesis in NSCLC xenograft. Similarly, we intrathoracally injected athymic nude mice with H1975 cells to induce orthotopic xenograft model, in which curcumin significantly reduced tumor weight as well as improved the survival rate of mice. STAT3 pathway was involved in curcumin-induced tumor inhibition, in which phosphorylation of STAT3 and JAK in ectopic xenograft were both declined after curcumin treatment, and the STAT3-regulated promoter activation of VEGF, Bcl-xL, Cyclin D1 was also significantly reduced after treatment. In in vitro assays, curcumin significantly inhibited cell migration and tube formation of NCI-H460 cells, but transfection with pMXs-Stat3C, a dominant active mutant, could abolish the inhibitory effects of curcumin on the cells, suggesting curcumin inhibited tumor angiogenesis of NCI-H460 cells through the inactivation of STAT3. All data showed that curcumin could be a potential drug targeting STAT3 to treat NSCLC. PMID:28861154

  18. Vascular Dysfunction in a Mouse Model of Rett Syndrome and Effects of Curcumin Treatment

    PubMed Central

    Panighini, Anna; Duranti, Emiliano; Santini, Ferruccio; Maffei, Margherita; Pizzorusso, Tommaso; Funel, Niccola; Taddei, Stefano; Bernardini, Nunzia; Ippolito, Chiara; Virdis, Agostino; Costa, Mario

    2013-01-01

    Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG–binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2+/− mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment. PMID:23705018

  19. Lipoprotein-associated phospholipase A2 decreases oxidized lipoprotein cellular association by human macrophages and hepatocytes.

    PubMed

    Yang, Ming; Chu, Eugene M; Caslake, Muriel J; Edelstein, Celina; Scanu, Angelo M; Hill, John S

    2010-02-01

    We investigated whether the presence of endogenous or exogenous lipoprotein-associated phospholipase A2 (Lp-PLA2) can modify the cellular association of oxidized low density lipoprotein (oxLDL) and oxidized lipoprotein(a) (oxLp(a)) by human monocyte-derived macrophages (MDM) and hepatocytes (HepG2). Purified recombinant Lp-PLA2 was used as a source of exogenous enzyme whereas Pefabloc (serine esterase inhibitor) was used to inhibit the endogenous Lp-PLA2 activity associated with isolated lipoproteins. Cellular association studies were performed with DiI-labeled oxLDL or oxLp(a) and human monocyte-derived macrophages and HepG2 cells. Active Lp-PLA2 decreased the cellular association of oxLDL and oxLp(a) in macrophages and HepG2 cells by approximately 30-40%, whereas the inactive enzyme did not significantly change oxidized lipoprotein cellular association by either cell type. OxLDL pretreated by Pefabloc increased oxLDL cellular association by MDM and HepG2 cells compared to untreated oxLDL. Therefore, unlike some lipases, Lp-PLA2 did not appear to have any catalytic independent function in oxLDL cellular association. To assess whether the reduced cellular association mediated by Lp-PLA2 was due to the hydrolysis of oxidized phosphatidylcholine (oxPC), we measured the concentration of lysophosphatidylcholine (lysoPC) in lipoprotein fractions after Lp-PLA2 treatment. LysoPC was increased by 20% (0.4 microM) and 87% (0.7 microM) by active Lp-PLA2 compared to inactive Lp-PLA2 for oxLDL and Lp(a), respectively. LysoPC at higher concentration dose-dependently increased the cellular association of oxLDL and oxLp(a) in MDM and HepG2 cells. We conclude that Lp-PLA2 mediates a decrease in oxidized lipoprotein cellular association in human macrophages and HepG2 cells by reducing the concentration of oxPC within these lipoproteins.

  20. Efficacy of a novel water-soluble curcumin derivative versus sildenafil citrate in mediating erectile function.

    PubMed

    Zaahkouk, A M S; Abdel Aziz, M T; Rezq, A M; Atta, H M; Fouad, H H; Ahmed, H H; Sabry, D; Yehia, M H

    2015-01-01

    The present study was conducted to assess the efficacy of a novel curcumin derivative (NCD) versus sildenafil citrate in erectile signaling. The study was conducted on 10 control male rats and 50 diabetic male rats divided into the following groups: diabetic, curcumin, NCD, sildenafil and NCD combined with sildenafil. Cavernous tissue (CC) gene expression levels of heme oxygenase (HO)-1, Nrf2, NF-κβ and p38, enzyme activities of HO and nitric oxide synthase (NOS), cyclic guanosine monophosphate (cGMP) and intracavernosal pressure (ICP) were assessed. Results showed that 12 weeks after induction of diabetes, erectile dysfunction was confirmed by the significant decrease in ICP, a significant decrease in cGMP, NOS, HO enzyme activities, a significant decrease in HO-1 gene and a significant elevation of NF-κβ, p38 genes. Administration of all therapeutic interventions led to a significant elevation in ICP, cGMP levels, a significant increase in HO-1 and NOS enzymes, a significant increase in HO-1 and Nrf2 gene expression, and a significant decrease in NF-κβ, p38 gene expression. NCD or its combination with sildenafil showed significant efficacy and more prolonged duration of action. In conclusion, NCD could enhance erectile function with more efficacy and more prolonged duration of action.

  1. Exhaled Nitric Oxide is Decreased by Exposure to the Hyperbaric Oxygen Therapy Environment

    PubMed Central

    Puthucheary, Zudin A.; Liu, Jia; Bennett, Michael; Trytko, Barbara; Chow, Sharron; Thomas, Paul S.

    2006-01-01

    Exhaled nitric oxide (eNO) detects airway inflammation. Hyperbaric oxygen therapy (HBOT) is used for tissue hypoxia, but can cause lung damage. We measured eNO following inhalation of oxygen at different tensions and pressures. Methods. Part 1, eNO was measured before and after HBOT. Part 2, normal subjects breathed 40% oxygen. Results. Baseline eNO levels in patients prior to HBOT exposure were significantly higher than in normal subjects (P < .05). After HBOT, eNO significantly decreased in patients (15.4 ± 2.0 versus 4.4 ± 0.5 ppb, P < .001), but not in normal subjects, after either 100% O2 at increased pressure or 40% oxygen, 1 ATA. In an in vitro study, nitrate/nitrite release decreased after 90 minutes HBOT in airway epithelial (A549) cells. Conclusion. HBO exposure causes a fall in eNO. Inducible nitric oxide synthase (iNOS) may cause elevated eNO in patients secondary to inflammation, and inhibition of iNOS may be the mechanism of the reduction of eNO seen with HBOT. PMID:17392577

  2. Oxidized low-density lipoprotein decreases VEGFR2 expression in HUVECs and impairs angiogenesis.

    PubMed

    Zhang, Min; Jiang, Li

    2016-12-01

    Atherosclerosis (AS), which is triggered by endothelial cell injury, evolves into a chronic inflammatory disease. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for the development of atherosclerosis; ox-LDL induces atherosclerotic plaque formation via scavenging receptors. The present study used ox-LDL-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of ox-LDL on angiogenesis. ox-LDL decreased HUVEC proliferation by MTT, induced apoptosis by Annexin V-fluorescein isothiocyanate (FITC) staining and markedly suppressed HUVEC tube formation by the Matrigel assay in a dose-dependent manner. Angiogenesis has been correlated with monocyte invasion, plaque instability and atherosclerotic lesion formation. In addition, ox-LDL induced the overproduction of reactive oxygen species using DCFH-DA staining and increased caspase-3 activity. Vascular endothelial growth factor receptor 2 (VEGFR2) were detected by quantitative polymerase chain reaction and western blot analysis and has previously been observed to have a key role in angiogenesis. Furthermore, the present study demonstrated that the abundance of VEGFR2 was decreased in ox-LDL-treated HUVECs. These results suggested that ox-LDL impairs angiogenesis via VEGFR2 degradation, thus suggesting that VEGFR2 may be involved in adaptation to oxidative stress and AS.

  3. Oxidized low-density lipoprotein decreases VEGFR2 expression in HUVECs and impairs angiogenesis

    PubMed Central

    Zhang, Min; Jiang, Li

    2016-01-01

    Atherosclerosis (AS), which is triggered by endothelial cell injury, evolves into a chronic inflammatory disease. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for the development of atherosclerosis; ox-LDL induces atherosclerotic plaque formation via scavenging receptors. The present study used ox-LDL-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of ox-LDL on angiogenesis. ox-LDL decreased HUVEC proliferation by MTT, induced apoptosis by Annexin V-fluorescein isothiocyanate (FITC) staining and markedly suppressed HUVEC tube formation by the Matrigel assay in a dose-dependent manner. Angiogenesis has been correlated with monocyte invasion, plaque instability and atherosclerotic lesion formation. In addition, ox-LDL induced the overproduction of reactive oxygen species using DCFH-DA staining and increased caspase-3 activity. Vascular endothelial growth factor receptor 2 (VEGFR2) were detected by quantitative polymerase chain reaction and western blot analysis and has previously been observed to have a key role in angiogenesis. Furthermore, the present study demonstrated that the abundance of VEGFR2 was decreased in ox-LDL-treated HUVECs. These results suggested that ox-LDL impairs angiogenesis via VEGFR2 degradation, thus suggesting that VEGFR2 may be involved in adaptation to oxidative stress and AS. PMID:28105106

  4. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line.

    PubMed

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar; Blemings, Kenneth P

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 +/- 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.

  5. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    PubMed Central

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress. PMID:20357931

  6. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.

  7. Curcumin: therapeutical potential in ophthalmology.

    PubMed

    Pescosolido, Nicola; Giannotti, Rossella; Plateroti, Andrea Maria; Pascarella, Antonia; Nebbioso, Marcella

    2014-03-01

    Curcumin (diferuloylmethane) is the main curcuminoid of the popular Indian spice turmeric (Curcuma longa). In the last 50 years, in vitro and in vivo experiments supported the main role of polyphenols and curcumin for the prevention and treatment of many different inflammatory diseases and tumors.The anti-inflammatory, antioxidant, and antitumor properties of curcumin are due to different cellular mechanisms: this compound, in fact, produces different responses in different cell types. Unfortunately, because of its low solubility and oral bioavailability, the biomedical potential of curcumin is not easy to exploit; for this reason more attention has been given to nanoparticles and liposomes, which are able to improve curcumin's bioavailability. Pharmacologically, curcumin does not show any dose-limiting toxicity when it is administered at doses of up to 8 g/day for three months. It has been demonstrated that curcumin has beneficial effects on several ocular diseases, such as chronic anterior uveitis, diabetic retinopathy, glaucoma, age-related macular degeneration, and dry eye syndrome. The purpose of this review is to report what has so far been elucidated about curcumin properties and its potential use in ophthalmology.

  8. Comparative absorption of curcumin formulations.

    PubMed

    Jäger, Ralf; Lowery, Ryan P; Calvanese, Allison V; Joy, Jordan M; Purpura, Martin; Wilson, Jacob M

    2014-01-24

    The potential health benefits of curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination. The purpose of this study was the comparative measurement of the increases in levels of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and the metabolite tetrahydrocurcumin after oral administration of three different curcumin formulations in comparison to unformulated standard. The relative absorption of a curcumin phytosome formulation (CP), a formulation with volatile oils of turmeric rhizome (CTR) and a formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants (CHC) in comparison to a standardized curcumin mixture (CS) was investigated in a randomized, double-blind, crossover human study in healthy volunteers. Samples were analyzed by HPLC-MS/MS. Total curcuminoids appearance in the blood was 1.3-fold higher for CTR and 7.9-fold higher for CP in comparison to unformulated CS. CHC showed a 45.9-fold higher absorption over CS and significantly improved absorption over CP (5.8-fold) and CTR (34.9-fold, all p < 0.001). A formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants significantly increases curcuminoid appearance in the blood in comparison to unformulated standard curcumin CS, CTR and CP.

  9. Comparative absorption of curcumin formulations

    PubMed Central

    2014-01-01

    Background The potential health benefits of curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination. The purpose of this study was the comparative measurement of the increases in levels of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and the metabolite tetrahydrocurcumin after oral administration of three different curcumin formulations in comparison to unformulated standard. Methods The relative absorption of a curcumin phytosome formulation (CP), a formulation with volatile oils of turmeric rhizome (CTR) and a formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants (CHC) in comparison to a standardized curcumin mixture (CS) was investigated in a randomized, double-blind, crossover human study in healthy volunteers. Samples were analyzed by HPLC-MS/MS. Results Total curcuminoids appearance in the blood was 1.3-fold higher for CTR and 7.9-fold higher for CP in comparison to unformulated CS. CHC showed a 45.9-fold higher absorption over CS and significantly improved absorption over CP (5.8-fold) and CTR (34.9-fold, all p < 0.001). Conclusion A formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants significantly increases curcuminoid appearance in the blood in comparison to unformulated standard curcumin CS, CTR and CP. PMID:24461029

  10. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress

    PubMed Central

    Fan, Tao; Chen, Lei; Huang, Zhixin; Mao, Zhangfan; Wang, Wei; Zhang, Boyou; Xu, Yao; Pan, Shize; Hu, Hao; Geng, Qing

    2016-01-01

    To study the impact of autophagy on alveolar macrophage apoptosis and its mechanism in the early stages of hypoxia, we established a cell hypoxia-reoxygenation model and orthotopic left lung ischemia-reperfusion model. Rat alveolar macrophages stably expressing RFP-LC3 were treated with autophagy inhibitor (3-methyladenine, 3-MA) or autophagy promoter (rapamycin), followed by hypoxia-reoxygenation treatment 2 h, 4 h or 6 h later. Twenty Sprague-Dawley male rats were randomly divided into four different groups: no blocking of left lung hilum (model group), left lung hilum blocked for 1h with DMSO lavage (control group), left lung hilum blocked for 1 h with 100 ml/kg 3-MA (5 μmol/L) lavage (3-MA group), and left lung hilum blocked for 1 h with 100 ml/kg rapamycin (250 nmol/L) lavage (rapamycin group). Rapamycin decreased the unfolded protein response, which reduced endoplasmic reticulum stress-mediated apoptosis in the presence of oxygen deficiency. Rapamycin increased superoxide dismutase activities and decreased malondialdehyde levels, whereas 3-MA decreased superoxide dismutase activities and increased malondialdehyde levels. Thus, autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress in the early stage of hypoxia in vitro and in vivo. This could represent a new approach to protecting against lung ischemia-reperfusion injury. PMID:27888631

  11. Curcumin, inflammation, and chronic diseases: how are they linked?

    PubMed

    He, Yan; Yue, Yuan; Zheng, Xi; Zhang, Kun; Chen, Shaohua; Du, Zhiyun

    2015-05-20

    It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  12. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  13. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    PubMed

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  14. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer's disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catharine; Mitchell, Andrew; Kandimalla, Ramesh; Kuruva, Chandra Sekhar

    2016-12-01

    The purpose of our study was to investigate the protective effects of a natural product-'curcumin'- in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients.

  15. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    PubMed Central

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  16. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines

    PubMed Central

    2012-01-01

    significant decrease in sensitivity to curcumin when compared with the original lines. Conclusion Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence. PMID:23095512

  17. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model.

    PubMed

    Vidlářová, Lucie; Romero, Gregori B; Hanuš, Jaroslav; Štěpánek, František; Müller, Rainer H

    2016-07-01

    Nanocrystals have received considerable attention in dermal application due to their ability to enhance delivery to the skin and overcome bioavailability issues caused by poor water and oil drug solubility. The objective of this study was to investigate the effect of nanocrystals on the mechanism of penetration behavior of curcumin as a model drug. Curcumin nanocrystals were produced by the smartCrystals® process, i.e. bead milling followed by high pressure homogenization. The mean particle size of the curcumin crystals was about 200nm. Stabilization was performed with alkyl polyglycoside surfactants. The distribution of curcumin within the skin was determined in vitro on cross-sections of porcine skin and visualized by fluorescent microscopy. The skin penetration profile was analyzed for the curcumin nanosuspension with decreasing concentrations (2%, 0.2%, 0.02% and 0.002% by weight) and compared to nanocrystals in a viscous hydroxypropylcellulose (HPC) gel. This study demonstrated there was minor difference between low viscous nanosuspension and the gel, but low viscosity seemed to favor skin penetration. Localization of curcumin was observed in the hair follicles, also contributing to skin uptake. Looking at the penetration of curcumin from formulations with decreasing nanocrystal concentration, formulations with 2%, 0.2% and 0.02% showed a similar penetration profile, whereas a significantly weaker fluorescence was observed in the case of a formulation containing 0.002% of curcumin nanocrystals. In this study we have shown that curcumin nanocrystals prepared by the smartCrystal® process are promising carriers in dermal application and furthermore, we identified the ideal concentration of 0.02% nanocrystals in dermal formulations. The comprehensive study of decreasing curcumin concentration in formulations revealed that the saturation solubility (Cs) is not the only determining factor for the penetration. A new mechanism based also on the concentration of the

  18. Gastroprotective and antidepressant effects of a new zinc(II)-curcumin complex in rodent models of gastric ulcer and depression induced by stresses.

    PubMed

    Mei, Xueting; Xu, Donghui; Xu, Sika; Zheng, Yanping; Xu, Shibo

    2011-07-01

    Curcumin, a yellow pigment found in the rhizome of Curcuma loga, has been used to treat a variety of digestive and neuropsychiatric disorders since ancient times in China. Curcumin can chelate various metal ions to form metallocomplexes of curcumin which show greater effects than curcumin alone. This study investigated the antiulcerogenic and antidepressant effects of a Zn(II)-curcumin complex on cold-restraint stress (CRS)-induced gastric ulcers in rats, and on the forced swimming test (FST), tail suspension test (TST) and 5-hydroxy-l-tryptophan (5-HTP)-induced head twitch test in mice. CRS disrupted the rat mucosal barrier and induced gastric ulcers by decreasing the activities of the antioxidant enzymes, and increasing H(+)-K(+)-ATPase activity and malondialdehyde (MDA) level. Pretreatment with Zn(II)-curcumin (12, 24, and 48mg/kg) dose-dependently reversed these trends, reduced gastric lesions and H(+)-K(+)-ATPase activity, and increased antioxidant activities compared with control groups. Zn(II)-curcumin significantly increased HSP70 mRNA, and attenuated increased iNOS mRNA in the mucosa. Zn(II)-curcumin (17, 34, and 68mg/kg) also significantly decreased immobility time in the FST and TST, and enhanced 5-HTP-induced head twitches in mice. These results demonstrate that the Zn(II)-curcumin complex showed significant gastroprotective and antidepressant effects compared with curcumin alone via a synergistic effect between curcumin and zinc.

  19. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    PubMed Central

    Shen, Ling-ling; Jiang, Ming-liang; Liu, Si-si; Cai, Min-chun; Hong, Zhong-qiu; Lin, Li-qing; Xing, Yan-yan; Chen, Gui-lin; Pan, Rui; Yang, Li-juan; Xu, Ying; Dong, Jun

    2015-01-01

    Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug. PMID:26199609

  20. Liposomal formulation of curcumin attenuates seizures in different experimental models of epilepsy in mice.

    PubMed

    Agarwal, Nidhi Bharal; Jain, Seema; Nagpal, Dheeraj; Agarwal, Nitin Kumar; Mediratta, Pramod K; Sharma, Krishna K

    2013-04-01

    Contemporary research indicates promising anticonvulsant effect of curcumin. However, its poor oral bioavailability is a major hindrance toward its pharmacological action. Thus, this study was carried out to evaluate the acute effect of liposome-entrapped curcumin on increasing current electroshock seizures (ICES) test, pentylenetetrazole (PTZ)-induced seizures, and status epilepticus in mice. Liposome-entrapped curcumin in doses 25 and 50 mg/kg demonstrated significant increase in seizure threshold current and latency to myoclonic and generalized seizures in ICES test and PTZ-induced seizures, respectively. Similarly, liposomal-entrapped curcumin also increased the latency to the onset and decreased the duration of seizures during status epilepticus in mice. To conclude, liposomal-entrapped curcumin possesses anticonvulsant activity against status epilepticus in mice. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  1. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  2. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  3. In vivo effects of curcumin and deferoxamine in experimental endometriosis.

    PubMed

    Kizilay, Gulnur; Uz, Yesim Hulya; Seren, Gulay; Ulucam, Enis; Yilmaz, Ali; Cukur, Ziya; Kayisli, Umit Ali

    2017-01-01

    Endometriosis is one of the most common chronic gynecological diseases. The aim of the study was to examine the effects of curcumin and/or deferoxamine on cell proliferation in a rat model of endometriosis. Thirty female 12-week-old albino Wistar rats, weighing 200-250 g, were used in this study. All the rats underwent ovariectomy and 0.1-mg β-estradiol 17-valerate pellets were placed intraperitoneally. An experimental model of endometriosis was created in all the animals. To create the experimental model, an approximately 1-cm long section of the uterus was taken, primarily from the right horn of the uterus. Autologous fragments were then placed between the peritoneum and muscle. The animals were divided into 3 groups: Group A, treated only with the vehicle used for curcumin and deferoxamine; group B, treated with curcumin (100 mg/kg body weight); and group C, treated with deferoxamine + curcumin (100 mg/kg body weight). After biopsy samples were obtained, the sections were stained with hematoxylin and eosin. Immunostaining for cytokeratin-7 and proliferating cell nuclear antigen (PCNA) was performed. Blood iron levels were measured using a Perkin Elmer AAnalyst 800 Atomic Absorption Spectrophotometer. The endometrial implant size increased in Group A, but treatment with curcumin (p = 0.01) and deferoxamine + curcumin (p = 0.007) reduced the implant size. In ectopic endometrial epithelial cells, there were significant decreases in PCNA immunoreactivity between groups A and B (p = 0.044) and between groups A and C (p = 0.033). Treatment with curcumin alone and/or in combination with deferoxamine contributed to a reduction in implant size and cell proliferation in a rat endometriosis model. Iron-chelating agents may act in the same manner when used in women with endometriosis; however, further studies from different perspectives are still needed.

  4. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal.

    PubMed

    Biswas, Jaydip; Sinha, Dona; Mukherjee, Sutapa; Roy, Soumi; Siddiqi, Maqsood; Roy, Madhumita

    2010-06-01

    Groundwater arsenic contamination has been a health hazard for West Bengal, India. Oxidative stress to DNA is recognized as an underlying mechanism of arsenic carcinogenicity. A phytochemical, curcumin, from turmeric appears to be potent antioxidant and antimutagenic agent. DNA damage prevention with curcumin could be an effective strategy to combat arsenic toxicity. This field trial in Chakdah block of West Bengal evaluated the role of curcumin against the genotoxic effects of arsenic. DNA damage in human lymphocytes was assessed by comet assay and fluorescence-activated DNA unwinding assay. Curcumin was analyzed in blood by high performance liquid chromatography (HPLC). Arsenic induced oxidative stress and elucidation of the antagonistic role of curcumin was done by observation on reactive oxygen species (ROS) generation, lipid peroxidation and protein carbonyl. Antioxidant enzymes like catalase, superoxide dismutase, glutathione reductase, glutathioneS-transferase, glutathione peroxidase and non-enzymatic glutathione were also analyzed. The blood samples of the endemic regions showed severe DNA damage with increased levels of ROS and lipid peroxidation. The antioxidants were found with depleted activity. Three months curcumin intervention reduced the DNA damage, retarded ROS generation and lipid peroxidation and raised the level of antioxidant activity. Thus curcumin may have some protective role against the DNA damage caused by arsenic.

  5. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells

    PubMed Central

    Jiang, Jun; Lü, Jian-Ming; Chai, Hong; Wang, Xinwen; Lin, Peter H.; Yao, Qizhi

    2010-01-01

    Resistin is a newly discovered adipocyte-derived cytokine that may play an important role in insulin resistance, diabetes, adipogenesis, inflammation, and cardiovascular disease. However, it is largely unknown whether resistin impairs endothelial functions by affecting the endothelial nitric oxide synthase (eNOS) system. In this study, we determined the effect of human recombinant resistin protein on eNOS expression and regulation in human coronary artery endothelial cells (HCAECs). When cells were treated with clinically relevant concentrations of resistin (40 or 80 ng/ml) for 24 h, the levels of eNOS mRNA, protein, and activity and eNOS mRNA stability were significantly reduced. Cellular nitric oxide levels were also decreased. In addition, the cellular levels of reactive oxygen species (ROS), including superoxide anion, were significantly increased in resistin-treated HCAECs. Mitochondrial membrane potential and the activities of catalase and superoxide dismutase were reduced. Three antioxidants, seleno-l-methionine, ginsenoside Rb1, and MnTBAP (superoxide dismutase mimetic), effectively blocked resistin-induced eNOS downregulation. Meanwhile, resistin activated the mitogen-activated protein kinases