Stieghorst, Jan; Majaura, Daniel; Wevering, Hendrik; Doll, Theodor
2016-03-01
The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.
3D silicone rubber interfaces for individually tailored implants.
Stieghorst, Jan; Bondarenkova, Alexandra; Burblies, Niklas; Behrens, Peter; Doll, Theodor
2015-01-01
For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.
Preparation of Ultraviolet Curing Type Silicone Rubbers Containing Mesoporous Silica Fillers.
Abdullah, Nawfel; Hossain, Md Shahriar A; Fatehmulla, Amanullah; Farooq, Wazirzada Aslam; Islam, Md Tofazzal; Miyamoto, Nobuyoshi; Bando, Yoshio; Kamachi, Yuichiro; Malgras, Victor; Yamauchi, Yusuke; Suzuki, Norihiro
2018-01-01
Here we have been focusing on mesoporous silica (MPS) as inorganic filler material to improve the mechanical strength of silicone rubbers. The MPS particles are more effective in reducing the coefficient of thermal expansion (CTE) and hardening silicone rubber composites when compared to commercially available nonporous silica particles. In this study, we utilize ultraviolet curing type silicone rubbers and prepare MPS composites according to a simple single-step method. From an industrial viewpoint, simplifying the fabrication processes is critical. The thermal stability and mechanical strength are examined in detail in order to showcase the effectiveness of MPS particles as filler materials.
Method for forming a glove attachment
NASA Technical Reports Server (NTRS)
Dawn, Frederic S. (Inventor); Guy, Walter W. (Inventor); Kosmo, Joseph (Inventor); Drennan, Arthur P. (Inventor); Tschirch, Richard P. (Inventor)
1995-01-01
An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.
NASA Technical Reports Server (NTRS)
Velega, D.
1983-01-01
Rubber impressions viewed with optical comparator. Simple mold constructed from aluminum sheet or any other easily shaped material compatible with silicone rubber ingredients. Mold placed over surface to be measured. Newly-mixed silicone rubber compound poured in mold and allowed to cure.
Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture
NASA Technical Reports Server (NTRS)
Steinbach, John (Inventor)
1989-01-01
A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.
al-Omari, W M; Jones, J C; Hart, P
1998-09-01
The antimicrobial efficacy of four commercially available disinfectants (Haz-tabs, chlorhexidine, Virkon and C&J Algisept Spray) was investigated. It was shown that all were effective in decontaminating the impressions whilst those placed only in sterile water, used as a control, showed variable levels of bacterial growth. Moreover, alginate appeared to carry significantly higher numbers of bacteria than addition cured silicone rubber.
Method for Molding Structural Parts Utilizing Modified Silicone Rubber
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); Baucom, Robert M. (Inventor); Snoha, John J. (Inventor)
1998-01-01
This invention improves upon a method for molding structural parts from preform material. Preform material to be used for the part is provided. A silicone rubber composition containing entrained air voids is prepared. The silicone rubber and preform material assembly is situated within a rigid mold cavity used to shape the preform material to die desired shape. The entire assembly is heated in a standard heating device so that the thermal expansion of the silicone rubber exerts the pressure necessary to force the preform material into contact with the mold container. The introduction of discrete air voids into the silicone rubber allows for accurately controlled pressure application on the preform material at the cure temperature.
Product evaluation : Dow Corning 888
DOT National Transportation Integrated Search
1986-07-10
This report contains a product evaluation of Dow Corning 888 joint sealant. Dow Corning 888 is a one-part silicone material that cures to a low modulus silicone rubber upon exposure to atmospheric moisture. Its uses include transverse and longitudina...
Adjustable-Pressure Mandrel For Making Composite Tubes
NASA Technical Reports Server (NTRS)
Jacoy, Paul J.; Schmitigal, Wesley P.
1993-01-01
Inflatable inner mandrel enables application of any desired pressure (within reasonable limits) during curing stage in fabrication of fiber/matrix composite tube. Consists mainly of sheath of silicone rubber sealed on aluminum tube. Composite material laid up on mandrel and enclosed in rigid outer die. Sheath on inner mandrel inflated to requisite pressure and regulated during curing. Assembly then placed in oven and cured at specified temperature.
A review on the cords & plies reinforcement of elastomeric polymer matrix
NASA Astrophysics Data System (ADS)
Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.
2016-06-01
Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.
Fixture for mounting small parts for processing
Foreman, Larry R.; Gomez, Veronica M.; Thomas, Michael H.
1990-01-01
A fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing.
Fixture for mounting small parts for processing
Foreman, L.R.; Gomez, V.M.; Thomas, M.H.
1990-05-29
A fixture for mounting small parts, such as fusion target spheres or microelectronic components is disclosed. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.
NASA Technical Reports Server (NTRS)
Hare, David A.; Moore, Thomas C., Sr.
2000-01-01
The Langley Research Center uses strain gages in a wide variety of demanding test environments. Strain gage installations, depending on the testing scenario, may see high temperatures, cryogenic temperature, moisture accumulation, mechanical abuse, or any combination of these conditions. At Langley, there is often a need to provide protection for strain gages against moisture and mechanical abuse, especially when large-scale, harsh environment testing is to be encountered. This technical memorandum discusses the evaluation of a room temperature curing silicone rubber sealant manufactured by the General Electric Company for consideration as a moisture-barrier for certain strain gage installations.
Potting procedure for electronic components
NASA Technical Reports Server (NTRS)
Rubino, A. G.; Zimmerman, J.
1977-01-01
Potting process is modified to effect a match more closely between embedded electronic components, potting mediums, and thermal environment. Application of room-temperature vulcanizing silicone rubber band cured in modified thermal cycle minimizes coil-to-resin adhesion and thus lowers stresses between transformer and potting compound.
Metal-Filled Adhesives Amenable To X-Ray Inspection
NASA Technical Reports Server (NTRS)
Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer
1994-01-01
Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.
PLA and two components silicon rubber blends aiming for frozen foods packaging applications
NASA Astrophysics Data System (ADS)
Meekum, Utai; Khiansanoi, Apichart
2018-03-01
Designing of PLA and two components silicone rubber blends was studies. Frozen food packaging application is the main ultimate aim. The statistical method using 23 DOE was conducted. The standard testing methods, in particular impact testing at sub-zero temperature, were performed. The preliminary blend formula comprised 1.0 phr of silane and polyester polyols, respectively, was initially resolved. Then, the optimize the silicone portion in the blends was determined. Blending formula using 8.0 phr of silicone with respect to PLA matrix gave rise to the overall satisfactory properties. 3. TETA was used as the silicone curing agent and reactively blended onto the ingredients. TETA at 0.4 phr, with respect to the silicone, enhanced the mechanical properties, especially flexibility and toughness, of the PLA/silicone blend. Exceeding the optimal TETA loading would cause the chain scission and also the dilution effects. Hence, marginal inferior properties of the blends were be experienced. The preliminary biodegradability investigation found that the PLA/silicone blend initially triggered at the second week. Its degradation rate was likely to be faster than neat PLA.
NASA Astrophysics Data System (ADS)
Liu, Tian; Zeng, Xingrong; Fang, Weizhen; Lai, Xuejun; Li, Hongqiang
2017-11-01
A novel hydantoin-containing silane, [3-(5,5-dimethylhydantoinurethano) propyl] ethoxyallyloxysilane (DMHURPAS), was synthesized and the structure was characterized by FTIR and 1H NMR. The effect of DMHURPAS was investigated on the anti-tracking and antibacterial properties of addition-cure liquid silicone rubber (ALSR) after surface chlorination. It was found that ALSR containing only 1.5 phr of DMHURPAS passed 1A 4.5 kV level and erosion mass decreased from 0.843 g to 0.037 g. The thermal stability of ALSR was significantly improved and the mechanical properties were also enhanced. From thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), ALSR/DMHURPAS showed significant decrease of carbonyl compounds and cyclic oligomers but increase of CH4 and CO2 during thermal degradation, indicating that DMHURPAS could inhibit oxidation of methyl groups and unzipping reaction, and promote the cleavage of methyl groups in ALSR. The antibacterial rates of ALSR containing 2.0 phr of DMHURPAS against Escherichia coli and Staphylococcus aureus were 95.7% and 83.4%, respectively.
Trapped rubber processing for advanced composites
NASA Technical Reports Server (NTRS)
Marra, P. J.
1976-01-01
Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.
Development of Silicone Rubbers for Use at Temperatures Down to -100 deg F
1950-05-01
The properties of the cured stocks vary greatly, the tensile strength range being about ten-fold. The effective - ness of the pigments does not...the pigments (such as degassing at 1000°C. and 0.0001 .Tim. Hg, coating with a silicone film, etc.) has little effect on the results, leads to a...charges on the pigments and qn the gum. £ f The effect of variable volume loading has been determined for some of the most promising materials. Stocks
Mechanochromic behavior of a luminescent silicone rubber under tensile deformation
NASA Astrophysics Data System (ADS)
Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon
2016-09-01
A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.
Flooded Cell Permeation Testing of Elastomers
1994-03-01
cured hydrin (EC) elastomer 3. oxide cured neoprene (CR) 4. sulphur cured styrene-butadiene rubber (SBR) 5. sulphur cured nitrile rubber ( NBR ) 6. cured...Road Adelphi, MD 20783-1197 11. SUPPLEMENTARY NOTES Presented at the meeting of the American Chemical Society, Rubber Division, Orlando, Florida, 26 Oct...6 2. Permeation rate-time curve for DMSO through natural rubber ............................... 6 3. Permeation rate-time curve for DMSO through
Effect of superhydrophobicity on surface damage of silicone rubber under AC voltage
NASA Astrophysics Data System (ADS)
Li, Yufeng; Jin, Haiyun; Nie, Shichao; Tong, Cheng; Gao, Naikui
2018-03-01
In this paper, the influence of superhydrophobicity on the surface damage of silicone rubber is studied. On a common silicone rubber surface, a droplet can become elongated, and arc discharge induced by the droplet can cause tracking on the silicone rubber surface. However, for a superhydrophobic silicone rubber surface, a droplet can leave the silicone rubber due to the low adhesion of the superhydrophobic surface. Accordingly, arc discharge caused by the droplet does not occur, and the surface of the silicone rubber is not affected. Results demonstrate that using a superhydrophobic surface has a significant effect on limiting the surface damage of silicone rubber.
Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber
NASA Astrophysics Data System (ADS)
Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping
2017-06-01
In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.
The outgassing characteristic research of the silicone rubber in high power laser system
NASA Astrophysics Data System (ADS)
Wu, Qipeng; Lv, Haibing; Dong, Meng; Fu, Zhaohui
2016-11-01
The outgassing characteristic of the silicone rubber which is the main material of non-metallic materials in high power laser system was studied outgassing rates of the silicone rubber and the baked-out silicone rubber which was performed at 80°C4 hours were measured by the constant volume process method and outgassing properties of them were analyzed by the quadrupole mass spectrometer. The results show that the outgassing rate of the silicone rubber and the baked-out silicone rubber is 2.69×10-7 Pa·m3s-1cm-2 and 6.47×10-8 Pa·m3s-1cm-2 respectively. All of them give out condensable volatile matter in vacuum. The outgassing rate and condensable volatile matter of the baked-out silicone rubber are less an order of magnitude compared with the silicone rubber, and the outgassing rate of the silicone rubber is less than 1×10-7 Pa·m3s-1cm-2, which is fit for non-metallic material of the high power laser system. This paper also discusses the method of reducing the outgassing rate and condensable volatile matter of the silicone rubber in high power laser system.
NASA Astrophysics Data System (ADS)
Indrajati, I. N.; Dewi, I. R.
2017-07-01
The objective of this study was to evaluate the performance of maleated castor oil (MACO) as plasticizer on natural rubber (NR), ethylene propylene diene monomer (EPDM), and nitrile butadiene rubber (NBR). The parameter studied were involving rheological, curing and swelling properties. The MACOs were prepared by an esterification reaction between castor oil (CO) and maleic anhydride (MAH) with the help of xylene as water entrainer to improve water removal. Resulting oils then applied as a plasticizer in each of those rubbers within a fixed loading of 5 phr. Comparison has been made to evaluate the performance of MACO and conventional plasticizer (paraffinic oil for NR and EPDM, DOP for NBR) on each rubber. Rheology, curing characteristic and swelling of each rubber were studied. The results showed that rubber (NR/EPDM/NBR) plasticized with MACO had given similar flow characteristic to conventional plasticizers. MACO exhibited slow curing, confirmed by higher t90, but the scorch safety was of the same magnitude. MAH loading tended to decrease the flow properties and curing rate, while scorch time (ts2) was independent.
NASA Astrophysics Data System (ADS)
El Labban, A.; Mousseau, P.; Bailleul, J. L.; Deterre, R.
2007-04-01
Although numerical simulation has proved to be a useful tool to predict the rubber vulcanization process, few applications in the process control have been reported. Because the end-use rubber properties depend on the state of cure distribution in the parts thickness, the prediction of the optimal distribution remains a challenge for the rubber industry. The analysis of the vulcanization process requires the determination of the thermal behavior of the material and the cure kinetics. A nonisothermal vulcanization model with nonisothermal induction time is used in this numerical study. Numerical results are obtained for natural rubber (NR) thick-section part curing. A controlled gradient of the state of cure in the part thickness is obtained by a curing process that consists not only in mold heating phase, but also a forced convection mold cooling phase in order to stop the vulcanization process and to control the vulcanization distribution. The mold design that allows this control is described. In the heating phase, the state of cure is mainly controlled by the chemical kinetics (the induction time), but in the cooling phase, it is the heat diffusion that controls the state of cure distribution. A comparison among different cooling conditions is shown and a good state of cure gradient control is obtained.
Tomofuji, Takaaki; Kusano, Hiroki; Azuma, Tetsuji; Ekuni, Daisuke; Yamamoto, Tatsuo; Watanabe, Tatsuo; Kishimoto, Takashi
2004-12-01
Toothbrushing promotes gingival cell proliferation, which may occur as the result of the physical stimulation of the gingiva. The present study evaluated the effects of temperature and silicone rubber bristles of a sonic toothbrush on gingival cell proliferation in dogs. During the 5-week experimental period, one quadrant in each of eight dogs received a different toothbrushing regimen: a manual toothbrush or a sonic toothbrush with 1) nylon, 2) silicone rubber, or 3) warmed silicone rubber bristles. The proliferative activity of gingival cells was evaluated based on expression of proliferating cell nuclear antigen (PCNA). Use of the sonic toothbrushes produced a higher density of PCNA-positive and total fibroblasts than did use of a manual toothbrush. The warm silicone rubber bristles resulted in a higher density of PCNA-positive fibroblasts compared with the cooler silicone rubber bristle. The number of PCNA-positive basal cells in the junctional epithelium also increased following electric toothbrushing with warmed silicone rubber bristles. The sonic toothbrush with silicone rubber bristles induced gingival fibroblast proliferation to a greater degree than a manual toothbrush. Warming the silicone rubber bristles increased their stimulatory effects on the proliferative activity of gingival cells.
Modified Silicone-Rubber Tooling For Molding Composite Parts
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Snoha, John J.; Weiser, Erik S.
1995-01-01
Reduced-thermal-expansion, reduced-bulk-modulus silicone rubber for use in mold tooling made by incorporating silica powder into silicone rubber. Pressure exerted by thermal expansion reduced even further by allowing air bubbles to remain in silicone rubber instead of deaerating it. Bubbles reduce bulk modulus of material.
NASA Astrophysics Data System (ADS)
Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.
2017-07-01
This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.
Research on the Dielectric Properties of Nano-ZnO/Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Wang, Fei-feng; Yan, Dan-dan; Su, Yi; Lu, Yu-feng; Xia, Xiao-fei; Huang, Hui-min
2017-09-01
The samples of 1%, 2%, 3% and 4% Zinc Oxide (ZnO) nano-composite silicone rubber were prepared by mechanical method. The dielectric properties of each sample were measured by dielectric spectroscopy. The experimental results showed that the dielectric constant of the silicone rubber composite increases with the increase of the content of nano-ZnO. The breakdown test results showed that with the increase of the content of nano-ZnO, the breakdown strength of silicone rubber composites increased first and then decreased. The breakdown test results indicate that the nano-ZnO can reduce the breakdown strength of silicone rubber. The hydrophobic test results showed that nano-ZnO will reduce the hydrophobic of silicone rubber.
In-house manufacturing of cylindrical silicone models for hemodynamic research
NASA Astrophysics Data System (ADS)
Denisenko, Nikita S.; Kulik, Viktor M.
2017-10-01
Laboratory studies of fluid motion in artificial vessels modeling a distinct part of circulatory system of human are of a great importance for fundamental biomechanics and for medical applications. In the medicine they are used for advancing known and developing new methods for curing cardiovascular diseases. In biomechanics, the phantoms of blood vessels are used for studying the fluid motion. However, they are quite expensive. Therefore, a development of technique for in-house manufacturing of phantoms is quite attractive. In this paper methods of manufacturing cylindrical channels of silicone rubbers (the model of the straight part of an artery) and determination of their elastic properties are described. A specially developed acrylic mold is used for this purpose. The phantoms are cast from a mixture of SKTN-A silicone and PMS-5 oil (Penta-91, Novosibirsk, Russia). The oil is used for changing elasticity properties of the silicone.
High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin
2018-06-01
A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.
Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert
2017-12-01
Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm-1 and also up to 130 V μm-1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.
Labruyère, Céline; Monteverde, Fabien; Alexandre, Michaël; Dubois, Philippe
2009-04-01
Poly(dimethylsiloxane) (PDMS)/montmorillonite (MMT) composites have been prepared using a newly synthesized omega-ammonium functionalized poly(dimethylsiloxane) compatibilizer coupled with a dispersion technique in water. The organoclay containing the new siloxane surfactant was characterized by TGA and XRD. For the first time, a nanoscopic dispersion of MMT nanoplatelets in the PDMS composite cured by hydrosilylation and a good compatibility between clay layers and matrix were obtained. The beneficial effect of both the surfactant and the water onto clay nanoplatelet dispersion was evaluated by different microscopy techniques and by measuring different properties such as the viscosity of the uncured PDMS/MMT nanodispersions, and the swelling rate and Young's modulus of the cured PDMS/MMT nanocomposites.
Characterization of some selected vulcanized and raw silicon rubber materials
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-06-01
Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.
Jonsson, Ulf; Lindahl, Olof; Andersson, Britt
2014-12-01
To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.
NASA Astrophysics Data System (ADS)
Slobodzinsky, A.
Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.
Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...
Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber.
Fundeanu, Irina; van der Mei, Henny C; Schouten, Arend J; Busscher, Henk J
2008-07-15
Silicone rubber is a frequently used biomaterial in biomedical devices and implants, yet highly prone to microbial adhesion and the development of a biomaterial-centered infection. Effective coating of silicone rubber to discourage microbial adhesion has thus far been impossible due to the hydrophobic character of its surface, surface deterioration upon treatment and instability of coatings under physiological conditions. Here we present a method to successfully grow polyacrylamide (PAAm) brushes from silicone rubber surfaces after removal of low molecular weight organic molecules (LMWOM), such as silane oligomers. PAAm brush coating did not cause any surface deterioration and discouraged microbial adhesion, even after 1-month exposure to physiological fluids. The method presented opens many new avenues for the use of silicone rubber as a biomaterial, without the risk of developing a biomaterial-centered infection.
Successful repair of a ventricular assist system percutaneous lead.
Pantalos, G M; Marks, J D; Richardson, E E; Nelson, K E; Long, J W
1999-01-01
A patient with an implanted, electrically powered, ventricular assist device (Thermo Cardiosystems VE HeartMate) experienced a partial break of the percutaneous lead 5 months after implantation. The break (limited to the Silicone rubber tube) occurred at the junction of the lead with the Y-connector to the controller and vent, leaving approximately 5 cm of exposed lead from the skin exit site to the connector. Electronic and pumping functions of the pump continued, but the opening in the lead (which went more that half way around the circumference) prevented the use of pneumatic actuation as a back-up mode for pump operation, and placed the pump at risk for contamination. Repair of the lead without surgical intervention was desirable, with ease of repair and minimal risk to the patient being the top priorities. The use of multiple layers of heat-shrink tubing or external metal stents was ruled out in favor of a three stage repair procedure. The first stage involved the removal of the Dacron velour in-growth material from the lead to expose the underlying Silicone rubber tube. While the opening in the tube was held shut, a coating of medical grade Silicone rubber adhesive was applied to the tube, then wrapped with a woven Dacron mesh, followed by two layers of plastic wrapping material to protect the adhesive. This initial layer was secured by an external stent of tubing with cable ties. After several days to allow for complete curing of the adhesive, the adhesive coating with mesh was repeated. The final step involved a double layer wrap of a 1 mm thick Silicone rubber sheeting with mesh incorporation and adhesive secured in place with cable ties. After completion of the repair and verification of the ability to operate the device with pneumatic actuation, the patient was discharged with no recurrence of the problem after 8 months of weekly follow-up. This experience demonstrates the need to clinically anticipate component repair or replacement without total device replacement in future implantable blood pump systems.
Wettability of naturally aged silicone and EPDM composite insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubanski, S.M.; Vlastos, A.E.
1990-07-01
This paper reports the wettability of aged surfaces and of the bulk of naturally aged silicone and EPDM insulator housings and of silicone elastomer insulator coatings studied. The samples were taken either directly from the insulators or treated by exposing them to corona discharges and/or to saline pollution. The results show that the contact angles of the silicone rubber insulator surfaces are larger than the contact angles of the RTV silicone rubber coating and of the EPDM rubber insulator surfaces, especially when the surfaces are aged. When the insulators were exposed to corona discharges, the contact angles of the siliconemore » rubber insulators are reduced but after the exposure they recover with time. The contact angles of the EPDM rubber insulators, however, after the exposure, continue to reduce. When exposed to artificial saline pollution, the silicone rubber insulators show a limited recovery of their contact angles with time, while, when exposed to corona discharge, they show a recovery of the contact angle after the exposure. The time for recovery is dependent on the exposure time to the corona discharges.« less
NASA Astrophysics Data System (ADS)
Husnan, M. A.; Ismail, H.; Shuib, R. K.
2018-02-01
Recently, the interest of polymer industry researchers have grown rapidly on the use of specific techniques which can reduce cost and utilize rubber waste into the processing form. The increasing of cognizance in environmental matters and the desire to sustain the resources had fortified the practice of recycling waste materials. In this work, the effect of carbon black loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (NBRv/NBRr) blends were studied. Cure time (t90), scorch time (tS2) and swelling percentage decreased but minimum torque (ML) and maximum torque (MH) increased with increasing carbon black (CB) loading in the blends. Increasing CB loading also increased tensile strength, tensile modulus (M100), hardness and compression set but decreased elongation at break (Eb) of NBRv/NBRr blends.
Effect of organo-clay on the dielectric relaxation response of silicone rubber
NASA Astrophysics Data System (ADS)
Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.
2010-02-01
Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.
NASA Astrophysics Data System (ADS)
Tikhomirov, S. G.; Pyatakov, Y. V.; Karmanova, O. V.; Maslov, A. A.
2018-03-01
The studies of the vulcanization kinetics of elastomers were carried out using a Truck tyre tread rubber compound. The formal kinetic scheme of vulcanization of rubbers sulfur-accelerator curing system was used which generalizes the set of reactions occurring in the curing process. A mathematical model is developed for determining the thermal parameters vulcanizable mixture comprising algorithms for solving direct and inverse problems for system of equations of heat conduction and kinetics of the curing process. The performance of the model is confirmed by the results of numerical experiments on model examples.
Network Formation in Piperidine-Cured Epoxy and Epoxy-Rubber Systems: Effects of Cure Time.
NASA Astrophysics Data System (ADS)
D'Oyen, Raquel M.; Carr, Stephen H.
1996-03-01
The system, piperidine-cured diglycidyl ether of bisphenol-A (DGEBA) to which various amounts of carboxyl terminated acrylonitrile-butadiene (CTBN) have been added, is used as a model rubber modified thermoset. The glass transition temperatures (T_g) of a low molecular weight (374 g/eq) epoxy, cured with piperidine at 120 degC, have been measured by differential scanning calorimetry in order to follow the curing process. The maximum Tg is found after curing for 16 hours. Systems that have been modified with varied concentrations of an adducted CTBN, also show Tg maxima at this time. Addition of 5-20in long-time T_gs, indicating complete segregation of the rubber. The T_gs of the CTBN modified systems at short times are higher than in the unmodified epoxy. This acceleration of the initial stage of cure indicates that the CTBN acts as a diluent, increasing the initial rate of reaction by changing the mobility of the reactive sites. The mechanical properties--toughness, yield and modulus--are related to the CTBN content and to the degree of cure of the system.
Compounding of Phosphazenes for Military Applications
1986-10-01
Filler Evaluation Sulfur-Cured Phosphazene Rubber Polymer Kl7621 by Batch Number (in grams) Properties of Polyphosphazene Films Low Temperature...different compounding ingredients, bin aging , and different curing cycles . Some of these compounds recipes are defined in Table A-1 in the Appendix.S... rubber , and butyl rubber can compete, and these polymers have other deficienci es such as l ack of oi l resistance and/or flammability. Terpolymer. Test
Rubber-Modified Epoxies. I. Cure, Transitions, and Morphology.
1984-10-01
thermosetting systems has been developed. An aromatic tetrafunctional diamine-cured diglycidyl ether of bis- phenol A epoxy resin [maximum glass transition...systems has been developed. An aromatic tetrafunctional diamine-cured digly- cidyl ether of bisphenol A epoxy resin [maximum glass transition...epoxy resins are brittle materials. The crack resistance can be improved by the addition of reactive liquid rubber to uncured neat epoxy systems (1-3
NASA Astrophysics Data System (ADS)
Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang
2017-08-01
Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.
Ziraki, Sahar; Zebarjad, Seyed Mojtaba; Hadianfard, Mohammad Jafar
2016-04-01
Metacarpophalangeal joint implants have been usually made of silicone rubber. In the current study, silica nano particles and polypropylene fibers were added to silicone rubber to improve silicone properties. The effect of the addition of silica nano particles and polypropylene fibers on the tensile behavior of the resultant composites were investigated. Composite samples with different content of PP fibers and Silica nano particles (i. e. 0, 1 and 2wt%) as well as the hybrid composite of silicone rubber with 1wt% SiO2 and 1wt% PP fiber were prepared. Tensile tests were done at constant cross head speed. To study the body fluid effect on the mechanical properties of silicone rubber composites, samples soaked in simulated body fluid (SBF) at 37°C were also tested. The morphology of the samples were studied by scanning electron microscope. Results of analysis revealed that an increase in PP fibers and silica nano particles content to 2wt%, increases the tensile strength of silicone rubber of about 75% and 42% respectively. It was found out that the strength of the samples decreases after being soaked in simulated body fluid, though composites with PP fibers as the reinforcement showed less property degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dan, Haruka; Azuma, Teruaki; Hayakawa, Fumiyo; Kohyama, Kaoru
2005-05-01
This study was designed to examine human subjects' ability to discriminate between spatially different bite pressures. We measured actual bite pressure distribution when subjects simultaneously bit two silicone rubber samples with different hardnesses using their right and left incisors. They were instructed to compare the hardness of these two rubber samples and indicate which was harder (right or left). The correct-answer rates were statistically significant at P < 0.05 for all pairs of different right and left silicone rubber hardnesses. Simultaneous bite measurements using a multiple-point sheet sensor demonstrated that the bite force, active pressure and maximum pressure point were greater for the harder silicone rubber sample. The difference between the left and right was statistically significant (P < 0.05) for all pairs with different silicone rubber hardnesses. We demonstrated for the first time that subjects could perceive and discriminate between spatially different bite pressures during a single bite with incisors. Differences of the bite force, pressure and the maximum pressure point between the right and left silicone samples should be sensory cues for spatial hardness discrimination.
[Study on the effect of different impression methods on the marginal fit of all-ceramic crowns].
Zhan, Lilin; Zeng, Liwei; Chen, Ping; Liao, Lan; Li, Shiyue; Liu, Renying
2015-08-01
To investigate the effect of three different impression methods on the marginal fit of all-ceramic crowns. The three methods include scanning silicone rubber impression, cast models, and direct optical impression. The polymethyl methacrylate (PMMA) material of a mandibular first molar in standard model was prepared with 16 models duplicated. The all-ceramic crowns were prepared using three different impression methods. Accurate impressions were made using silicone rubber, and the cast models were obtained. The PMMA models, silicone rubber impressions, and cast models were scanned, and digital models of three groups were obtained to produce 48 zirconia all-ceramic crowns with computer aided design/computer aided manufacture. The marginal fit of these groups was measured by silicone rubber gap impression. Statistical analysis was performed with SPSS 17.0 software. The marginal fit of direct optical impression groups, silicone rubber impression groups, cast model groups was (69.18±9.47), (81.04±10.88), (84.42±9.96) µm. A significant difference was observed in the marginal fit of the direct optical impression groups and the other groups (P<0.05). No statistically significant difference was observed in the marginal fit of the silicone rubber impression groups and the cast model groups (P>0.05). All marginal measurement sites are clinically acceptable by the three different impression scanning methods. The silicone rubber impression scanning method can be used for all-ceramic restorations.
NASA Astrophysics Data System (ADS)
Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam
2015-10-01
Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.
USDA-ARS?s Scientific Manuscript database
Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...
Nanostructured magnesium oxide as cure activator for polychloroprene rubber.
Kar, Sritama; Bhowmick, Anil K
2009-05-01
The aim of this research was to synthesize magnesium oxide nanoparticles and to use them as cure activator for polychloroprene rubber (CR). The effects of counterions of magnesium salts on the homogeneous phase precipitation reaction to control size, monodispersity, crystallinity, and morphology of Mg(OH)2 nanoparticles were also investigated. Magnesium oxide nanoparticles were synthesized by optimizing the calcination temperature of Mg(OH)2 nanoparticles. Finally, the MgO nanoparticles were dispersed in polychloroprene rubber (CR) solution along with zinc oxide (ZnO) powder. The influence of MgO nanoparticles on the mechanical, dynamic mechanical and thermal properties of the resulting nanocomposites was quantified. The modulus and strength of ZnO-cured polychloroprene rubber with 4% MgO nanoparticles appeared to be superior to those with ZnO particles or ZnO with rubber grade MgO particles. These composites were further characterized by transmission electron microscopy and infrared spectroscopy in order to understand the morphology of the resulting system and the load transfer mechanism.
NASA Astrophysics Data System (ADS)
Surya, Indra; Fauzi Siregar, Syahrul; Ismail, Hanafi
2018-03-01
Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.
NASA Astrophysics Data System (ADS)
Wu, W. L.; Chen, Z.
A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
Sulfur Mustard Penetration of Thermoplastic Elastomers
2008-10-01
blend of polypropylene and finely dispersed, highly vulcanised EPDM rubber [4]. However its exact composition is a trade secret. The Santoprene grade... rubber or silicone rubber . Compared to thermoplastic elastomers, these thermosetting elastomers are expensive and difficult to process. Therefore a...the last few decades, CBR respirators have generally been manufactured from either butyl rubber (as in the British and Australian S10), or silicone
Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K
2010-01-01
Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers
Zhang, Huiping; Annich, Gail M; Miskulin, Judiann; Osterholzer, Kathryn; Merz, Scott I; Bartlett, Robert H; Meyerhoff, Mark E
2002-03-01
Nitric oxide (NO) releasing silicone rubbers (SR) are prepared via a three-step reaction scheme. A diamino triaminoalkyltrimethoxysilane crosslinker is used to vulcanize hydroxyl terminated polydimethylsiloxane (PDMS) in the presence of ambient moisture and a dibutyltin dilaurate catalyst so that the respective diamine triamine groups are covalently linked to the cured SR structure. These amine sites are then diazeniumdiolated, in situ, when the cured SR is reacted with NO at elevated pressure (80 psi). Although nitrite species are also formed during the NO addition reaction, in most cases the diazeniumdiolated polymer is the major product within the final SR matrix. Temperature appears to be the major driving force for the dissociation of the attached diazeniumdiolate moieties, whereas the presence of bulk water bathing the SR materials has only minimal effect on the observed NO release rate owing to the low water uptake of the SR matrices. The resulting SR films/coatings release NO at ambient or physiological temperature for up to 20 d with average fluxes of at least 4 x 10(10) mol x cm(-2) x min(-1) (coating thickness > or = 600 microm) over first 4 h, comparable to the NO fluxes observed from stimulated human endothelial cells. The NO loading and concomitant NO release flux of the SR material are readily adjustable by altering the diamine triamine loading and film/coating thickness. The new NO releasing SR materials are shown to exhibit improved thromboresistance in vivo, as demonstrated via reduced platelet activation on the surface of these polymers when used to coat the inner walls of SR tubings employed for extracorporeal circulation in a rabbit model.
Neutron absorbing room temperature vulcanizable silicone rubber compositions
Zoch, Harold L.
1979-11-27
A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.
Rotaru, Iuliana; Bujoreanu, Carmen; Bele, Adrian; Cazacu, Maria; Olaru, Dumitru
2014-09-01
This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. Copyright © 2014 Elsevier B.V. All rights reserved.
Lei, Ze-Yuan; Liu, Ting; Li, Wei-Juan; Shi, Xiao-Hua; Fan, Dong-Li
Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced biocompatibility and reduced capsule formation. Thus, this approach to the modification of silicone rubber, in combination with C-ion implantation, should be considered for further investigation and application.
Reduced adherence of Candida to silane-treated silicone rubber.
Price, C L; Williams, D W; Waters, M G J; Coulthwaite, L; Verran, J; Taylor, R L; Stickler, D; Lewis, M A O
2005-07-01
Silicone rubber is widely used in the construction of medical devices that can provide an essential role in the treatment of human illness. However, subsequent microbial colonization of silicone rubber can result in clinical infection or device failure. The objective of this study was to determine the effectiveness of a novel silane-treated silicone rubber in inhibiting microbial adherence and material penetration. Test material was prepared by a combination of argon plasma discharge treatment and fluorinated silane coupling. Chemicophysical changes were then confirmed by X-ray photoelectron spectroscopy, contact-angle measurement, and atomic force microscopy. Two separate adherence assays and a material penetration assay assessed the performance of the new material against four strains of Candida species. Results showed a significant reduction (p < 0.01) of Candida albicans GDH 2346 adherence to silane-treated silicone compared with untreated controls. This reduction was still evident after the incorporation of saliva into the assay. Adherence inhibition also occurred with Candida tropicalis MMU and Candida krusei NCYC, although this was assay dependent. Reduced penetration of silane-treated silicone by Candida was evident when compared to untreated controls, plaster-processed silicone, and acrylic-processed silicone. To summarize, a novel silicone rubber material is described that inhibits both candidal adherence and material penetration. The clinical benefit and performance of this material remains to be determined. Copyright 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Russell, Bobby Glenn
Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.
Characterization of curing behavior of UV-curable LSR for LED embedded injection mold
NASA Astrophysics Data System (ADS)
Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.
2016-11-01
For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.
Fluorination of silicone rubber by plasma polymerization
NASA Astrophysics Data System (ADS)
Fielding, Jennifer Chase
Plasma polymerized fluorocarbon (PPFC) films were deposited onto various silicone rubber substrates, including O-rings, to decrease oil uptake. Depositions were performed using a radio frequency (rf)-powered plasma reactor and various fluorocarbon monomers, such as C2F6, C2F 5H, C3F6, and 1H,1H,2H-perfluoro-1-dodecene. PPFC films which were most promising for inhibiting oil uptake were deposited with 1H,1H,2H-perfluoro-1-dodecene, and were composed predominantly of perfluoromethylene (CF2) species. These films displayed low critical surface energies (as low as 2.7 mJ/m2), and high contact angles with oil (84°), which were correlated with the amount of CF2 species present in the film. For the films with the highest degree of CF2 (up to 67%), CF2 chains may have been oriented slightly perpendicular to the substrate and terminated by CF3 species. Adhesion of the PPFC films directly to silicone rubber was found to be poor. However, when a plasma polymerized hydrocarbon interlayer was deposited on the silicone rubber prior to the fluorocarbon films, adhesion was excellent. O-rings coated with multilayer fluorocarbon films showed 2.6% oil uptake after soaking in oil for 100 hrs at 100°C. Due to variability in data, and the low quality of the industrial grade silicone rubber, the oil uptake mechanism was determined to be from oil flowing through flaws in the film due to defects within the substrate, not from generalized diffusion through the film. This mechanism was confirmed using higher quality silicone rubber, which showed little or no oil diffusion. Therefore, this film may perform well as an oil-repelling barrier when deposited on a high quality silicone rubber.
NASA Astrophysics Data System (ADS)
Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi
2009-12-01
Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.
Health aspects of the curing of synthetic rubbers.
Fraser, D A; Rappaport, S
1976-01-01
A commonly used tread rubber formulation was cured in the laboratory under conditions simulating vulcanization in the Bag-O-Matic press. Volatile emissions were collected on charcoal and analyzed by combined GC-mass spectrometry. The compounds identified were either contaminants present in the raw material or reaction products. Some of these compounds were also identified in charcoal tube samples collected in the atmosphere of the industrial operations. Estimates based on the loss of weight of rubber during curing were used to predict airborne concentrations and compared to the concentrations actually found. The literature of the toxicity of raw materials and effluents was reviewed, and no acute or chronic toxicological effects would be anticipated. Information concerning potential carcinogenicity was not available and could not be evaluated. PMID:1026417
Low frequency acoustic properties of a honeycomb-silicone rubber acoustic metamaterial
NASA Astrophysics Data System (ADS)
Gao, Nansha; Hou, Hong
2017-04-01
In order to overcome the influence of mass law on traditional acoustic materials and obtain a lightweight thin-layer structure which can effectively isolate the low frequency noises, a honeycomb-silicone rubber acoustic metamaterial was proposed. Experimental results show that the sound transmission loss (STL) of acoustic metamaterial in this paper is greatly higher than that of monolayer silicone rubber metamaterial. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed honeycomb-silicone rubber structure was analyzed from a new perspective, which had been validated experimentally. Side length of honeycomb structure and thickness of the unit structure would affect STL in damping control zone. Relevant conclusions and design method provide a new concept for engineering noise control.
An original architectured NiTi silicone rubber structure for biomedical applications.
Rey, T; Le Cam, J-B; Chagnon, G; Favier, D; Rebouah, M; Razan, F; Robin, E; Didier, P; Heller, L; Faure, S; Janouchova, K
2014-12-01
This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interests of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhesion promoter or plasma treatment. However, adhesion promoters are often not biocompatible. Hence, plasma treatment is favored to be used in the present study. Three different gases were tested; air, argon and oxygen. The effects of these treatments on the maximum force required to pull-out a NiTi wire from the silicone rubber matrix were investigated by means of pull-out tests carried out with a self-developed device. Among the three gases, a higher maximum force was obtained for argon gas in the plasma treatment. A tube shaped architectured NiTi/silicone rubber structure was then produced using this treatment. The composite was tested by means of a bulge test. Results open a new way of investigations for architectured NiTi-silicone structures for biomechanical applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Ambient Temperature on Hydrophobic Recovery Behavior of Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Peng, Xiangyang; Li, Zijian; Zheng, Feng; Zhang, Ni; Huang, Zhen; Fang, Pengfei
A series of silicone rubber samples with different cyclosiloxanes contents have been successfully prepared, and their hydrophobic recovery behaviors and mechanism were investigated in detail. The gas chromatography-mass spectroscopy technique after Soxhlet extraction was utilized to examine the low molecular weight siloxanes in the sample, SEM was used to observe the surface morphology of the silicone rubber influenced by plasma treatment, and contact angle measurement was applied to probe the hydrophobic recovery of the sample surface after plasma treatment at different storage temperatures. The storage time-dependent contact angle of water can be well fitted by the diffusion model calculated from Fick’s second law. The results imply that the hydrophobic recovery of silicone rubber is related to the diffusion of low molecular weight siloxanes, while larger content or higher temperature can induce faster hydrophobic recovery.
Brisbois, Elizabeth J; Major, Terry C; Goudie, Marcus J; Bartlett, Robert H; Meyerhoff, Mark E; Handa, Hitesh
2016-06-01
Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Biocompatibility of platinum-metallized silicone rubber: in vivo and in vitro evaluation.
Vince, V; Thil, M A; Veraart, C; Colin, I M; Delbeke, J
2004-01-01
Silicone rubber is commonly used for biomedical applications, including implanted cuff electrodes for both recording and stimulation of peripheral nerves. This study was undertaken to evaluate the consequences of a new platinum metallization method on the biocompatibility of silicone rubber cuff electrodes. This method was introduced in order to allow the manufacture of spiral nerve cuff electrodes with a large number of contacts. The metallization process, implying silicone coating with poly(methyl methacrylate) (PMMA), its activation by an excimer laser and subsequent electroless metal deposition, led to a new surface microtexture. The neutral red cytotoxicity assay procedure was first applied in vitro on BALB/c 3T3 fibroblasts in order to analyze the cellular response elicited by the studied material. An in vivo assay was then performed to investigate the tissue reaction after chronic subcutaneous implantation of the metallized material. Results demonstrate that silicone rubber biocompatibility is not altered by the new platinum metallization method.
The Study of the Interaction between Silica Filler and Silicone Rubber
NASA Astrophysics Data System (ADS)
Liu, Jiesheng; Gong, Xiaoqiang; Zhang, Rongtang
2018-01-01
The interaction between silica filler and silicone rubber was studied by swelling ratio, Kraus curve and crosslinking density test. The results showed that lower values of Vro/Vrf and swelling ratio in modified filler system suggests good filler-matrix interactions. The composites with silane coupling agents show higher crosslink-density compared that of untreated ones. In the light of the above statement, it can be concluded that modification of filler is the crucial factor in creating a good interaction between the filler and silicone rubber.
NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.
ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.
Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian
2016-01-01
In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-07-01
A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electronmore » Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.« less
Cure-in-place process for seals
Hirasuna, Alan R.
1981-01-01
A cure-in-place process which allows a rubber seal element to be deformed to its service configuration before it is cross-linked and, hence, is a plastic and does not build up internal stress as a result of the deformation. This provides maximum residual strength to resist the differential pressure. Furthermore, the process allows use of high modulus formulations of the rubber seal element which would otherwise crack if cured and then deformed to its service configuration, resulting in a seal which has better gap bridging capability. Basically, the process involves positioning an uncured seal element in place, deforming it to its service configuration, heating the seal element, curing it in place, and then fully seating the seal.
A green procedure using ozone for Cleaning-in-Place in the beverage industry.
Nishijima, Wataru; Okuda, Tetsuji; Nakai, Satoshi; Okada, Mitsumasa
2014-06-01
Cleaning-in-Place (CIP) in the beverage industry is typically carried out in production lines with alkaline and acidic solutions with detergents. This cleaning not only produces alkaline and acidic wastewater with detergents but also takes significant time. One of the important targets for CIP is adsorbed odorous compounds on gaskets, hence, we have tried to establish a rapid and green CIP process to remove traces of such compounds, especially d-limonene, an odorous component of orange juice, using two approaches; an ozone cleaning method and a change of gasket material from ethylene propylene diene monomer (EPDM) rubber to silicone rubber. By changing the gasket material from EPDM rubber to silicone rubber, the removability of d-limonene by typical alkaline and acidic cleanings with detergents was improved. However, complete removal of 4 mg g(-1) of d-limonene on both EPDM and silicone gaskets could not be achieved even using a series of conventional cleaning procedures that included alkaline and acidic cleaning for 220 min. Ozone treatment dramatically improved the removability of d-limonene, removing 87% from the EPDM gasket at 60 min and 100% from the silicone gasket at 30 min. The combination of the silicone gasket and ozone treatment resulted in the most effective cleaning. The main removal mechanism for ozone treatment was confirmed to be oxidation by molecular ozone. Effectiveness of changing the gasket material from EPDM rubber to silicone rubber in reducing residual amounts of odorous compounds adsorbed on the gaskets was also confirmed for furfural and 4-vinylguaiacol. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new directly moulded patellar-tendon-bearing socket.
Boot, D A; Young, N J
1985-08-01
Silicone rubbers and casting tapes individually have previously been used in the manufacture of sockets (Swanson, 1972; Sweitzer, 1973; Ruder, 1977; Graves, 1980; Aqualite, 1982). The authors believe that the present combination of these materials to manufacture a directly moulded socket with a complete silicone rubber lining of variable thickness has not previously been described. The new socket, after addition of the modular components, allows fitting of an aligned below-knee prosthesis within three hours. The socket (Fig. 1.) is made directly on the below-knee stump, can be completed with experience in an hour and does not require the use of specialized equipment. The socket consists of an outer supportive Scotchflex layer inside which is a lining of soft smooth biocompatible silicone rubber of deliberately variable thickness to allow pressure tolerant areas to accept more load and pressure sensitive areas to accept less load (Fig.2). The thicker areas of silicone are produced by applying carefully cut Plastazote pads to the pressure sensitive areas. The thickness and extent of the pads is individually assessed according to the estimated sensitivity of the particular area (Fig. 3). The Scotchflex socket is then manufactured directly on the below-knee stump with these pads applied. The pads are then removed prior to insertion of a semi-liquid silicone rubber. Thus, when the socket with the liquid silicone rubber is re-applied to the stump, the space produced by the pads is filled by the rubber which then sets at room temperature. In this way a layer of variable thickness is produced.(ABSTRACT TRUNCATED AT 250 WORDS)
Rodrigues, L R; Banat, I M; van der Mei, H C; Teixeira, J A; Oliveira, R
2006-03-01
The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonasaeruginosa DS10-129 was studied. The ability of rhamnolipid biosurfactant to inhibit adhesion of micro-organisms to silicone rubber was investigated in a parallel-plate flow chamber. The anti-adhesive activity of the biosurfactant at different concentrations was significant against all the strains and depended on the micro-organism tested. The results showed an effective reduction in the initial deposition rates, and the number of bacterial cells adhering after 4 h, for all micro-organisms tested at the 4 g l(-1) undiluted rhamnolipid solution. Maximum initial reduction of adhesion rate (an average of 66%) occurred for Streptococcus salivarius GB 24/9 and Candida tropicalis GB 9/9. The number of cells adhering after 4 h on silicone rubber conditioned with biosurfactant was reduced to 48% for Staphylococcus epidermidis GB 9/6, Strep. salivarius GB 24/9, Staphylococcus aureus GB 2/1 and C. tropicalis GB 9/9 in comparison to controls. Perfusing the flow chamber with biosurfactant containing solution followed by the passage of a liquid-air interface, to investigate detachment of micro-organisms adhering to silicone rubber, produced high detachment (96%) of adhered cells for all micro-organisms studied, except for Staph. aureus GB 2/1 (67%). It is concluded that biosurfactant represent suitable compounds that should be considered in developing future strategies to prevent the microbial colonization of silicone rubber voice prostheses.
Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.
Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H
2011-02-17
Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.
Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes
Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.
2011-01-01
Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573
Thermally conductive metal wool-silicone rubber material can be used as shock and vibration damper
NASA Technical Reports Server (NTRS)
Hough, W. W.
1964-01-01
Bronze wool pads, impregnated with silicon rubber, meet the requirement for a thermally conductive, shock and vibration absorbing material. They serve as spacers in equipment mounting and are resistant to high temperatures.
NASA Astrophysics Data System (ADS)
Feng, Wenlai
This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink density, cure behavior, dynamic properties and mechanical properties were measured. Good mechanical properties of revulcanized rubber were achieved by blending devulcanized rubber with the carbon black filled virgin butyl rubber. The structural characteristics of devulcanized butyl rubber were simulated using the Dobson-Gordon theory of rubber network statistics. A fairly good agreement between experimental data and theoretical prediction on normalized gel fraction vs. normalized crosslink density was achieved. The simulation of devulcanized butyl rubber indicated that the rate of crosslink rupture is much higher than that of the main chain.
The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally c...
Mechanical and biological comparison of latex and silicone rubber bands.
Hwang, Chung-Ju; Cha, Jung-Yul
2003-10-01
Latex rubber bands are routinely used to supply orthodontic force. However, because the incidence of allergic reactions to latex is rising, the use of nonlatex alternatives is increasing, and assessing the mechanical properties of the replacement products is becoming more important. The purposes of this study were to compare the mechanical properties of latex and silicone orthodontic rubber bands through static testing under dry and wet conditions, and to compare their biologic (cytotoxic) properties. Three brands of latex and 1 brand of silicone rubber bands were tested. When extended to 300% of the lumen diameter, the silicone group had an initial force equal to 83% of the product specifications; this was the lowest of the 4 groups. All 4 brands showed notable amounts of force degradation at the 300% extension when subjected to saliva immersion; this approximated a 30% force decay over 2 days. The latex bands all followed a similar pattern of force degradation, whereas the silicone bands showed a greater increase in force decay as the extension length increased. The silicone bands were less cytotoxic than 2 of the 3 types of latex. Although the silicone bands showed the least discrepancy of force degradation between air and saliva conditions, the amount of the force decay was the greatest. Therefore, great improvements in the physical properties of the silicone band are required before they can be considered an acceptable replacement for latex.
Silicone rubber band for laparoscopic tubal sterilization.
Ansari, A H; Sealey, R M; Gay, J W; Kang, I
1977-12-01
In 1974, Yoon and associates (Am J Obstet Gynecol 120:132, 1974) described a new approach in which laparoscopic tubal occlusion was accomplished by utilizing the silicone rubber band technique. Recognizing the great advantages of the new technique in eliminating potential thermal injury associated with electrocoagulation, the authors have utilized the Yoon silicone rubber band technique in these institutions over the past 20 months. Thus far the procedure has been performed in 304 patients without any major complications. In the hope of eliminating and/or reducing possible pregnancy-failure rates, in 110 cases. In addition to application of the silicone band, the tube within the band was transected with non-electrical Seigler biopsy forceps. This, we believe, should provide an interesting long-term comparative study.
Rubber-Modified Epoxies: Transitions and Morphology.
1980-09-01
Hill. New Jersey 07974 i .i -2- INTRODUCTION Low levels of carboxyl-terminated reactive liquid rubber copolymers of butadiene and acrylonitrile ( CTBN ...parts per hundred parts resin (phr) of CTBN , and 5 phr piperidine is homo- geneous at the start of cure if the cure temperature is above some critical...solubility temperature (which is designated Tso). In the presence of piperidine there is a rapid reaction of the carboxyl end groups of the CTBN with
Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites
NASA Astrophysics Data System (ADS)
Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza
In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.
Solubilization and spore recovery from silicone polymers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsiao, Y. C.
1974-01-01
A non-sporicidal technique for solvent degradation of cured silicone polymers was developed which involves chemical degradation of cured silicone polymers by amine solvents at room temperature. Substantial improvements were obtained in the recovery of seeded spores from room temperature cured polymers as compared to the standard recovery procedures, which indicates that the curing process is not sufficiently exothermic to reduce spore viability. The dissolution reaction of cured silicone polymers whith amine solvents is proposed to occur by bimolecular nucleophilic displacement. The chemical structure of silicone polymers was determined by spectroscopic methods. The phenyl to methyl ratio, R/Si ratio, molecular weight, and hydroxyl content of the silicone resins were determined.
Schuettler, M; Stiess, S; King, B V; Suaning, G J
2005-03-01
A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.
Bell, Zane William [Oak Ridge, TN; Brown, Gilbert Morris [Knoxville, TN; Maya, Leon [Knoxville, TN; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor [Oak Ridge, TN
2009-10-20
A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.
A study of the role of fillers in silicone rubber compounds for outdoor insulation
NASA Astrophysics Data System (ADS)
Meyer, Luiz Henrique
Polymeric materials are being used as a housing material on high voltage outdoor insulation as an alternative to porcelain or glass in line insulators, surge arresters, station posts, and bushings. Among the polymeric materials in use, silicone rubber has proven to have good aging performance under polluted conditions by keeping low levels of leakage current by virtue of its hydrophobicity. However, the exposure of polymeric materials to contaminated and humid environments can lead to certain surface conditions that reduces hydrophobicity increasing leakage current levels, giving rise to dry band arcing. Dry band arcing produces heat, which can result in tracking or erosion of the housing material. Although this dry band arcing does not harm porcelain or glass housings, it will erode pure silicone rubber to such an extent that its application in outdoor environments is not, practical. Fillers are added to silicone rubber to improve tracking and erosion resistance. Among the filler choices, alumina trihydrate (ATH) and silica have been extensively adopted in the compounding of polymeric housings. ATH is a flame retardant that has a molecular water in its formulation. Whenever the surface temperature of an ATH filled polymer reaches approximately 220°C, the water of hydration is released from the ATH molecule, what is recognized as an efficient way to cool down the surface, for example, in the case of dry band arcing. Alternatively, silica has very good bonding with the polymer backbone, imparting mechanical strength to the composite matrix. In addition, fillers such as ATH or silica increase the thermal conductivity of silicone rubber composites, which facilitates moving the heat away from its source, that is, from the origin of dry band arcing. Although heat is considered to be the main degradation factor when dry band arcing occurs, very little information is available on the thermal performance of filled silicone rubber. The standard methods available to test tracking and erosion resistance of filled silicone rubber do not allow to delineate the fundamentals of the thermal degradation, where the heat from the dry band arcing is the main degradation factor. In this work, a thermal imaging camera is used to investigate the thermal performance of filled silicone rubber in an inclined plane test. Infrared laser based techniques are developed to study the material performance. Furthermore, this thesis addresses the measurement of the thermal conductivity, based on infrared laser and thermal imaging, but using simple concepts. Theoretical and empirical models are developed in support of the experimental investigation.
Pregnancy after tubal sterilization with silicone rubber band and spring clip application.
Peterson, H B; Xia, Z; Wilcox, L S; Tylor, L R; Trussell, J
2001-02-01
To determine risk factors for pregnancy after tubal sterilization with silicone rubber bands or spring clips. A total of 3329 women sterilized using silicone rubber bands and 1595 women sterilized using spring clips were followed for up to 14 years as part of a prospective cohort study conducted in medical centers in nine US cities. We assessed the risk of pregnancy by cumulative life-table probabilities and proportional hazards analysis. The risk of pregnancy for women who had silicone rubber band application differed by location of band application and study site. The 10-year cumulative probabilities of pregnancy varied from a low of 0.0 per 1000 procedures at one study site to a high of 42.5 per 1000 procedures in the four combined sites in which fewer than 100 procedures per site were performed. The risk of pregnancy for women who had spring clip application varied by location of clip application, study site, race or ethnicity, tubal disease, and history of abdominal or pelvic surgery. The probabilities across study sites ranged from 7.1 per 1000 procedures at 10 years to 78.0 per 1000 procedures at 5 years (follow-up was limited to 5 years at that site). The 10-year cumulative probability of pregnancy after silicone rubber band and spring clip application is low but varies substantially by both clinical and demographic characteristics.
Silicone rubber casts of the respiratory tract are used in morphological studies of the human, baboon, rhesus monkey, dog, rabbit, guinea pig, rat, hamster, and mouse. n these studies, the trachea of the specimen was opened by tracheotomy, and silicone rubber (734 RTV) was introd...
Zeković, Ivana; Marinović-Cincović, Milena
2014-01-01
Opalized white tuff (OWT) with 40 μm average particle size and 39.3 m2/g specific surface area has been introduced into polyisoprene rubber (NR). Their reinforcing effects were evaluated by comparisons with those from precipitated silica (PSi). The cure characteristic, apparent activation energy of cross-link (E ac) and reversion (E ar), and mechanical properties of a variety of composites based on these rubbers were studied. This was done using vulcanization techniques, mechanical testing, and scanning electron microscopy (SEM). The results showed that OWT can greatly improve the vulcanizing process by shortening the time of optimum cure (t c90) and the scorch time (t s2) of cross-linked rubber composites, which improves production efficiency and operational security. The rubber composites filled with 50 phr of OWT were found to have good mechanical and elastomeric properties. The tensile strengths of the NR/OWT composites are close to those of NR/PSi composites, but the tear strength and modulus are not as good as the corresponding properties of those containing precipitated silica. Morphology results revealed that the OWT is poorly dispersed in the rubber matrix. According to that, the lower interactions between OWT and polyisoprene rubber macromolecules are obtained, but similar mechanical properties of NR/OWT (100/50) rubber composites compared with NR/PSi (100/50) rubber composites are resulted. PMID:24672391
ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems
NASA Technical Reports Server (NTRS)
Hodgson, James R.; McCool, Alex (Technical Monitor)
2001-01-01
Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.
Akers, D L; Fowl, R J; Kempczinski, R F; Davis, K; Hurst, J M; Uhl, S
1991-07-01
Management of patients after operative repair of abdominal aortic aneurysms can be further complicated if primary closure of the abdominal wall cannot be technically accomplished or is associated with profound increases in intraabdominal and peak inspiratory pressures. We recently treated five patients with ruptured abdominal aortic aneurysms and one patient with a ruptured thoracoabdominal aneurysm whose abdominal incisions had to be closed with a Dacron reinforced, silicone sheet. All patients were hemodynamically unstable either at admission to the hospital or became so during operation. Four patients required the insertion of a silicone rubber sheet at the primary operation because of massive retroperitoneal hematoma or edema of the bowel wall or both. Incisions in two patients were closed primarily, but the patients required reexploration and secondary closure with silicone rubber sheets because of the development of marked increases in peak inspiratory pressures, intraabdominal pressures, and decreased urinary output. Four of the six patients subsequently underwent successful removal of the silicone rubber sheets with delayed primary closure of the abdominal wall, and two others died before removal. The patient with the ruptured thoracoabdominal aneurysm died on postoperative day 20 because of pulmonary sepsis but had a healed abdominal incision. The three surviving patients have been discharged. A silicone rubber sheet may be necessary for closure of the abdominal wall after repair of ruptured abdominal aortic aneurysm in patients where primary abdominal wall closure is impossible or where it results in compromise in respiratory or renal function.
Prediction of packaging seal life using thermoanalytical techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.
1997-11-01
In this study, Thermogravimetric Analysis (TGA) has been used to study silicone, Viton and Ethylene Propylene (EPDM) rubber. The studies have shown that TGA accurately predicts the relative order of thermo-oxidative stability of these three materials from the calculated activation energies. As expected, the greatest thermal stability was found in silicone rubber followed by Viton and EPDM rubber. The calculated lifetimes for these materials were in relatively close agreement with published values. The preliminary results also accurately reflect decreased thermal stability and lifetime for EPDM rubber exposed to radiation and chemicals. These results suggest TGA provides a rapid method tomore » evaluate material stability.« less
ScienceCast 83: NASA's Cure for a Common Phobia
2012-11-08
NASA has an unusual candidate for the astronaut corps--a rubber chicken. Seriously. Camilla the rubber chicken has been training in fighter jets, flying to the edge of space, and visiting classrooms around the country.
Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Warasitthinon, Nuthathai
Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with CNTs. It was observed that bound rubber content decreased with increase in CNT content for NBR/CB/CNTs nanocomposites above a loading of 1 phr CNT. In the fourth chapter, the effect of another carbon filler, fullerene, on the properties of HNBR was studied. Fullerenes are conductive and thermally stable due to their three dimensional aromaticity and high reactivity. In this work, the effect of fullerenes (C60) on the properties of HNBR rubber for potential use in aggressive environments was investigated. The vulcanized HNBR rubber with different filler loadings of fullerenes was compared with carbon black (N330). The static mechanical, dynamic mechanical and rheological behavior of the compounds was investigated, along with the vulcanization kinetics study. Increased filler loading of both carbon black and fullerene gave higher modulus and strength. The fullerene filled materials showed improved failure properties.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Milani, Federico
2012-12-01
The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.
Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng
2018-01-01
α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( 1H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1, with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst. PMID:29757263
Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng
2018-05-13
α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( ¹H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10 −4 s −1 to 7.6 × 10 −4 s −1 , with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.
NASA Astrophysics Data System (ADS)
Suntako, R.
2018-01-01
Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.
Single Stage Silicone Border Molded Closed Mouth Impression Technique-Part II.
Solomon, E G R
2011-09-01
Functioning of a complete denture depends to a great extent on the impression technique. Several impression techniques have been described in the literature since the turn of this century when Greene [Clinical courses in dental prothesis, 1916] brothers introduced the first scientific system of recording dental impression. Advocates of each technique have their own claim of superiority over the other. The introduction of elastomeric impression materials [Skinner and Cooper, J Am Dent Assoc 51:523-536, 1955] has made possible new techniques of recording impression for complete denture construction. These rubber like materials are of two types; one has a polysulfide base and is popularily known as polysulfide rubber (Thiokol and Mercaptan). The other variety has a silicone base known as silicone rubber or silicone elastomer. Silicone elastomers are available in four different consistencies; a thin easy flowing light bodied material,a creamy medium bodied material, a highly viscous heavy bodied material and a kneadable putty material. This paper describes an active closed mouth impression technique with one stage border molding using putty silicone material as a substitute for low fusing compound.
Tissue response to silicone rubber when used as a root canal filling.
Kasman, F G; Goldman, M
1977-04-01
To test the tissue compatibility of silicone rubber when it is used as a root canal filler, excess material was intentionally forced into the apical tissues in primates. The tissue response was one of general acceptance, with the usual response being fibrotic encapsulation. A low degree of inflammation was noted. Further studies are in progress.
Erratum to: Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
Preparation and Characterization of Ceramizable Kaolin/VMQ and Kaolin/ZB/VMQ Composites
NASA Astrophysics Data System (ADS)
Zhang, X.; Qin, Y.; Pei, Y.; Huang, Z. X.
Ceramizable silicone-based composite was prepared by using methyl vinyl silicone rubber (VMQ) as matrix, calcined Kaolin and zinc borate (ZB) as additives. This composition can form interpenetrating network structures after crosslinking, and then improve heat-resistant properties by firing in air. The results of different formulations were investigated by FTIR. TG-DTG SEM and XRD. It showed that when the temperature above 600°C. the fillers and silicon rubber started to transform from organic to inorganic and internal microstructure became denser.
Nishigawa, G; Sato, T; Suenaga, K; Minagi, S
1998-02-01
Tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, lowers the retention of the impression materials to the impression modeling plastics, as some ingredients of tray adhesive make the impression modeling plastic soft and tacky. The efficacy of tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, on the adhesion between elastomer rubber impression material and impression modeling plastic was investigated. Four silicone rubber impression materials (two addition reaction types and two condensation reaction types), two polysulfide rubber impression materials, and one impression modeling plastic were used in this study. Tensile strength between elastomer rubber impression material and impression modeling plastic with or without the application of tray adhesive was evaluated. Although tray adhesives for both addition reaction type and both condensation reaction type of silicone impression materials and one tray adhesive for polysulfide rubber impression material increased the tensile strength between the impression material and impression modeling plastic, one tray adhesive for polysulfide rubber impression material decreased the tensile strength when sufficient drying time was not applied.
The Shock and Vibration Digest. Volume 14, Number 10
1982-10-01
temperatures. An equation for predicting the temper- ature sensitivity of the elastic modulus is presented. Some dynamic data on EPDM rubbers have been...presented [23, 24]. The effects of oil type, carbon black level, and a cure system for an EPDM rubber were studied (23); six commercial EPDM rubbers ...Behavior of EPDM Rubbers ," J. Appl. Poly. Sei., 23 (6), p 1607 (Mar 15,1979). 25. Darlow, M.S., Smalley, A.J., and Cunningham, R.E., "Dynamic Properties
NASA Astrophysics Data System (ADS)
Annen, Hans Philipp; Fu, Ling; Leutz, Ralf; González, Luis; Mbakop, Jehu
2011-09-01
The CPV community is still undecided on one critical issue: what material to use best for Fresnel lens parquets. Reliability and longevity are the most important, but all other properties play roles as well. We have developed and manufactured Fresnel lenses with the two commonly used materials: PMMA (Polymethylmethacrylate) and silicone on glass (SOG). Both lenses are designed for the same optical train for best comparability. This allows for better understanding the pros and cons of the materials and making an informed choice for a specific CPV module. While PMMA lenses are embossed from pre-fab sheets in a hot-cold process, the silicone lenses are cast from a heat-curing silicone rubber at moderate temperatures, reducing the energy consumption. PMMA allows for the inclusion of custom low-profile 3D (2.5D) structures for module assembly and mechanical alignment, a feature not possible in silicone due to its low rigidity. Both lenses suffer from thermal expansion and refractive index change. While PMMA parquets expand isotropically, SOG prisms deform due to the difference of expansion coefficients between the glass and the silicone. SOG lenses are prone to delamination of the silicone film. The adhesive strength of the film to the glass can be measured using a modified blister test that we developed. The results show large difference with different materials and confirm the necessity of controlling this issue closely. While the small thermal expansion of the glass sheets allows for larger parquet sizes, the deformation of the prisms with temperature may cause a performance hit.
Coating Characterization with the Quartz Crystal Microbalance
NASA Astrophysics Data System (ADS)
Sturdy, Lauren F.
The quartz crystal microbalance is a sensitive tool that can be used to measure the mass, modulus and phase angle of films of appropriate thicknesses. It is can be applied to systems with very varied properties, from liquid to solid, and under many different conditions. In this thesis its capabilities have been used to study the properties of several different systems of relevance to the coatings, art conservation, and rubber communities, in the process of which new techniques and tools were developed to analyze data and improve QCM data collection and experimental design. Alkyd resins, which have been used in artists' paints since the twentieth century, are the subject of the first studies. Alkyds are oil-modified polyesters. These resins are of interest because of their relatively recent use in art and how little is known of the mechanical properties in the early stages of cure. The QCM was shown to be sensitive to the curing process, changes in temperature, and mass change due to exposure to water. Kinetic studies during the first days of curing showed that the curing process can be divided into three regions. The first is dominated by solvent evaporation. In the second, oxygen absorption dominates and the mechanical properties change rapidly. The final stage extends from when the film is touch dry after about a day to years and is characterized by mass loss and continued increases in the modulus. Studying the curing at different temperatures revealed that the reactions do proceed much more rapidly at higher temperatures and an overall energy of activation was calculated for the curing process. The mechanical properties of alkyd resins containing zinc oxide, a white pigment, were studied with the QCM, nanoindentation and dynamic mechanical analysis. These measurements showed increases in the modulus with the inclusion of zinc oxide, and the QCM data showed that the second region started at earlier times as the pigment concentration was increased. Linseed oil is one of the starting materials for many alkyd resins and should cure similarly since the primary curing mechanisms are the same. It takes longer to cure than alkyds because it begins with no initial polymerization. Linseed oil was harder to study, as obtaining even films was difficult, multiple peaks at a single harmonic were observed, and the material properties during the early stages of curing led to a region where viscoelastic properties could not be calculated. To facilitate studying linseed oil, a multiple peak fitting method was developed to extract data from unusual peak shapes. With this ability, measurements at short times could be obtained despite poor film quality. Although linseed oil begins as a softer material than alkyds, its curing follows the same patterns as alkyd resins, exhibiting mass gain followed by mass loss, and sharp increases in modulus and decreases in phase angle during the early stages of curing. Having demonstrated the ability of the QCM to monitor curing, the QCM was also applied to uncrosslinked rubber systems. Rubbers, like the drying oils, contain double bonds which can react with oxygen, so first the oxidation of these materials was studied. In further studies oxidation was undesirable, so protocols were developed to limit oxidation. Measurements were made of homopolymers at different temperatures and the QCM measurements appear to be consistent with time-temperature superposition results obtained at lower frequencies. Blends of the various rubbers were studied and compared with models. The mechanical properties measured by the QCM were between the Voigt and Reuss predictions for most blends studied. Modeling the expected QCM response of layered rubbers matched the predictions of the Reuss model but not the measured values of the rubber blends, suggesting that the QCM is sensitive to different morphologies. Measurements with the QCM expanded our understanding of a variety of systems and proved to be a useful tool to measure mechanical changes during processes which are difficult to study by other methods.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
NASA Astrophysics Data System (ADS)
Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.
2012-02-01
The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.
Economic status, smoking, occupational exposure to rubber, and lung cancer: a case-cohort study.
Li, Ke; Yu, Shunzhang
2002-05-01
Recent studies tend consistently to confirm the presence of a moderate excess risk of lung cancer in the rubber industry. However, the agent responsible for the excess of lung cancer is still obscure. Also, analyses without regard to the modifying effects of sex, economic status, and smoking habit are less than satisfactory. To explore these questions, we have conducted a case-cohort study using the data of 51 lung cancer deaths in 1973-1997 and a random sample (sub-cohort) of 188 from among 1598 subjects in a rubber factory in Shanghai, China. We computed the risks of lung cancer by economic status, smoking habit, coal fumes in home, and year of first employment. We assessed lung cancer risks for occupational exposures, unadjusted and adjusted for economic status and smoking. After confounding effects of smoking and economic status were controlled, we found that rate ratios were 1.43 (95% confidence interval (CI) 0.43-4.69), 1.79 (95% CI 0.64-5.03), and 3.76 (95% CI 1.44-9.86) for 1-14, 15-29, and 30-45 exposure-years in curing department, respectively. The data showed significant trends in increased risk of lung cancer with duration of exposure in tire-curing department (score test for trend:, P = 0.004). However, in front rubber processing (weighing and mixing, calendering, extruding, and milling), no significant excess risk of lung cancer was found. If it can be confirmed that nitrosamines are mainly generated in back rubber processing (curing and vulcanizing), it would be reasonable to conclude that excess risk of lung cancer in rubber industry is attributable, at least partially, to exposure to nitrosamines.
Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C
2010-11-01
Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian
2016-01-01
We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.
Yang, Jun; Charif, Andrea C.; Puskas, Judit E.; Phillips, Hannah; Shanahan, Kaitlyn J.; Garsed, Jessica; Fleischman, Aaron; Goldman, Ken; Luebbers, Matthew T.; Dombrowski, Stephen M.; Luciano, Mark G.
2015-01-01
This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix™ that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix™ was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat model with 60-day implant duration. A bare silicon chip was also implanted. The results showed similar cellular distribution in the brain-implant boundary and surrounding tissues. Quantitative analysis of neuron and glia density did not show significant difference between implants. Through histological and immunohistochemical evaluation we conclude that Arbomatrix™ is well tolerated by the brain. Due to its exceptional barrier properties Arbomatrix™ has already been shown to be an excellent protective coating for new ICP monitoring chip. PMID:25688030
NASA Astrophysics Data System (ADS)
Surya, I.; Hayeemasae, N.; Ginting, M.
2018-03-01
The effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber (NR) compounds were investigated. The kaolin filler was incorporated into NR compounds with a fixed loading, 30.0 phr. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS), a waste product of cooking oil production, and diethanolamine. The ALK is an oily material and added into the filled NR compounds as a rubber additive at different loadings, 0.0, 3.0, 5.0 and 7.0. The kaolin-filled NR compounds with and without ALK were vulcanized using a semi-efficient vulcanization system. It was found that ALK decreased the scorch and cure times and improved filler dispersion of the kaolin-filled NR compounds. The higher the ALK loading, the shorter were the scorch and cure times. It was also found that ALK increased the crosslink density of kaolin-filled NR compound up to 5.0 phr of loading. Due to its oily properties, The ALK acted as an internal plasticizer which decreased the minimum torque and improved the degree of kaolin dispersion in NR phases. The higher the ALK loading; the lower the minimum torque and better the filler dispersion.
Smoking, occupational exposure to rubber, and lung cancer.
Zhang, Z F; Yu, S Z; Li, W X; Choi, B C
1989-01-01
A cohort of 1624 employees (957 men, 667 women) in a rubber factory in Shanghai have been followed up since 1972 and their 12 year mortality experience is presented. The relative risk of lung cancer for smokers was 8.5 for men and 11.4 for women and for rubber workers exposed to curing agents or talc powder 3.2 for men and 4.6 for women. PMID:2920138
Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
NASA Astrophysics Data System (ADS)
Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua
2013-11-01
A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.
Study on the impedance of aligned carbon microcoils embedded in silicone rubber matrix
NASA Astrophysics Data System (ADS)
Zhu, Ya-Bo; Zhang, Lin; Guo, Li-Tong; Xiang, Dong-Hu
2010-12-01
This paper reports that carbon microcoils are grown through a chemical vapour deposit process, they are then embedded in silicone rubber, and manipulated to parallel with each other along their axes in the resulting composite. The impedance |Z| as well as phase angle θ of both the original carbon microcoil sheets and the aligned carbon microcoil/silicone rubber composites are measured. The results illustrate that carbon microcoils in different forms show different alternating current electric properties. The aligned carbon microcoils in the composites show stable parameters for f < 104 Hz but a sharp decrease in both |Z| and θ for frequencies > 104 Hz, which will also change as the carbon microcoils are extended. But, the original sheets have a pure resistance with their parameters stable throughout the entire alternating current frequency range investigated.
NASA Astrophysics Data System (ADS)
Bezdomnikov, A. A.; Emel'yanenko, A. M.; Emel'yanenko, K. A.; Boinovich, L. B.
2018-01-01
A method is proposed for fabricating textured superhydrophobic surfaces of silicone rubber with mechanical resistance toward liquid or freezing aqueous solutions. The anti-icing characteristics of silicone rubber samples that differ in the wetting characteristics and mechanical stability of their micro- and nanotextures are derived by analyzing the delays in the freezing of supercooled sessile water drops deposited on the sample surface. The longest delay in freezings are observed for sessile water drops on superhydrophobic surfaces prepared by laser texturing with subsequent application of a layer of a hydrophobic agent to consolidate the textural elements. Delay in freezings can be as long as tens of hours on such surfaces at T = -18°C. The prepared superhydrophobic surfaces exhibit greater anti-icing ability with respect to aqueous salt solutions than to deionized water.
Nonlinear Conductive Behaviour of Silver Nanowires/Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Lu, Pin; Qu, Zhaoming; Wang, Qingguo; Bai, Liyun; Zhao, Shiyang
2018-01-01
Silver nanowires with an average length of 10 μm and diameter of about 90 nm have been synthesized by polyol reduction of silver nitrate in the presence of polyvinylpyrrolidone(PVP). Silver nanowires (AgNWs)/silicone rubber (SR) composites have been made by mixing silver nanowires into silicone rubber. The nonlinear response of AgNWs/SR composites under high electric field is investigated. The nonlinear Conductive behavior of composites is considered as a competitive process of several effects. From the perspective of the microstructure of composites, the conductive path is established by the quantum tunnel effect between silver nanowires. The influence factors on the conductivity of composites are discussed and analyzed. The results show that the AgNWs/SR composites with nonlinear conductive properties are of great potential application in electromagnetic protection of electron device and system.
Nitric Oxide Generating Polymeric Coatings for Subcutaneous Glucose Sensors
2008-10-14
polymers for RSe immobilization. They both are thermoplastic poly(ether) polyurethanes but differ in composition of soft segments, hydrophobicity...thin layers of silicone rubber and Teflon AF, and the resulting device has yielded excellent NO sensitivity, high selectivity over NO2- and NH4Cl...layers over the sensor represent PDADM, 1% silicone rubber, and Teflon AF, respectively. This sensor can be coated with polymers containing RSe
Neu, T R; Verkerke, G J; Herrmann, I F; Schutte, H K; Van der Mei, H C; Busscher, H J
1994-05-01
Silicone rubber voice prostheses are implants which are inserted in a non-sterile environment and therefore become quickly colonized by micro-organisms. The micro-organisms exist on the medical grade silicone rubber as mixed biofilms of bacteria and yeasts. A total of 79 bacterial and 39 yeast strains were isolated from these biofilms by soft ultrasonic treatment. Gram-positive/catalase-negative and Gram-positive/catalase-positive cocci represented the dominant bacterial strains. The yeasts were mainly Candida species. Further characterization of cell surface properties such as hydrophobicity by microbial adhesion to hexadecane and electrophoretic mobility showed a distinct difference when the bacterial strains were compared with the yeasts. The bacterial hydrophobicities ranged from 0 to 100% adhesion to hexadecane, whereas the yeast strains, especially the Candida albicans strains, all had markedly hydrophilic cell surfaces. A comparison of the electrophoretic mobilities showed also differences between bacteria and yeast. The values for the bacteria were found to be between -2.5 to -0.5 (10(-8) m2 V-1 s-1), whereas for the yeasts electrophoretic mobilities were more positive. Based on the adhesive properties of the isolated micro-organisms, strategies can now be developed to modify the properties of the silicone rubber to reduce biofilm formation on such prostheses.
Organic filler from golden apple snails shells to improve the silicone rubber insulator properties
NASA Astrophysics Data System (ADS)
Tepsila, Sujirat; Suksri, Amnart
2018-02-01
This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.
Butyl rubber O-ring seals: Revision of test procedures for stockpile materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domeier, L.A.; Wagter, K.R.
1996-12-01
Extensive testing showed little correlation between test slab and O-ring performance. New procedures, comparable to those used with the traditional test slabs, were defined for hardness, compression set, and tensile property testing on sacrificial O-ring specimens. Changes in target performance values were made as needed and were, in one case, tightened to reflect the O-ring performance data. An additional study was carried out on O-ring and slab performance vs cure cycle and showed little sensitivity of material performance to large changes in curing time. Aging and spectra of certain materials indicated that two sets of test slabs from current vendormore » were accidently made from EPDM rather than butyl rubber. Random testing found no O-rings made from EPDM. As a result, and additional spectroscope test will be added to the product acceptance procedures to verify the type of rubber compound used.« less
Silicone rubber band treatment of rectal prolapse.
Jackaman, F R; Francis, J N; Hopkinson, B R
1980-09-01
Fifty-two patients with rectal prolapse have been treated by the silicone rubber band perianal suture technique and satisfactory results have been obtained in 46 (89%). Eleven patients required reoperation to achieve this result. The procedure is a minor one, with little morbidity and no mortality. Provided that faecal impaction can be avoided in patients having this operation a successful outcome, can be expected. It is recommended especially for the frail and elderly with rectal prolapse.
Anyszka, Rafał; Bieliński, Dariusz M; Jędrzejczyk, Marcin
2013-12-01
Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.
Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles
NASA Technical Reports Server (NTRS)
Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)
1981-01-01
A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.
Surface structural changes of naturally aged silicone and EPDM composite insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlastos, A.E.; Gubanski, S.M.
1991-04-01
In a long-term outdoor test with high direct and alternating voltages, silicone and EPDM rubber composite insulators have, at the beginning, shown a superior performance to that of glass and porcelain insulators. In the long-term test, however, the silicone rubber composite insulator has, in spite of the ageing of both insulator types, kept its good performance, while the performance of the EPDM rubber composite insulator was drastically deteriorated. In order to get a better insight into results obtained, the wettability and the surface structural changes of the insulators were studied by the drop deposition method (using a goniometer) and bymore » advanced techniques such as SEM, ESCA, FTIR and SIMS respectively. The results show that the differences in performance have to be found in the differences in the surface structural changes and in the dynamic ability of the surface to compensate the ageing.« less
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS
Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M
2009-01-01
A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques. PMID:19595622
Development of a Cavitation Erosion Resistant Advanced Material System
2005-11-01
Sheet EPD M results .............................................................................. 47 Figure 5.11 - EPDM rubber samples, sheet (left...Testing The long test times of EPDM rubber and other durable elastomer samples created a need for overnight testing capability. In the original test setup...seals, adhesives and molded flexible parts. Common examples of elastomers include natural and synthetic rubber , silicone, neoprene, EPDM , polyurethane
NASA Astrophysics Data System (ADS)
Gross, Jürgen H.
2015-03-01
Direct analysis in real time-mass spectrometry (DART-MS) enables screening of articles of daily use made of polydimethylsiloxanes (PDMS), commonly known as silicone rubber, to assess their tendency to release low molecular weight silicone oligomers. DART-MS analyses were performed on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Flexible silicone baking molds, a watch band, and a dough scraper, as baby articles different brands of pacifiers, nipples, and a teething ring have been examined. While somewhat arbitrarily chosen, the set can be regarded as representative of household items, baby articles, and other objects made of silicone rubber. For comparison, two brands of silicone septa and as blanks a glass slide and a latex pacifier were included. Differences between the objects were mainly observed in terms of molecular weight distribution and occasional release of other compounds in addition to PDMS. Other than that, all objects made of silicone rubber released significant amounts of PDMS during DART analysis. To provide a coarse quantification, a calibration based on silicone oil was established, which delivered PDMS losses from 20 μg to >100 μg during the 16-s period per measurement. Also, the extraction of baking molds in rapeseed oil demonstrated a PDMS release at the level of 1 μg mg-1. These findings indicate a potential health hazard from frequent or long-term use of such items. This work does not intend to blame certain brands of such articles. Nonetheless, a higher level of awareness of this source of daily silicone intake is suggested.
Gross, Jürgen H
2015-03-01
Direct analysis in real time-mass spectrometry (DART-MS) enables screening of articles of daily use made of polydimethylsiloxanes (PDMS), commonly known as silicone rubber, to assess their tendency to release low molecular weight silicone oligomers. DART-MS analyses were performed on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Flexible silicone baking molds, a watch band, and a dough scraper, as baby articles different brands of pacifiers, nipples, and a teething ring have been examined. While somewhat arbitrarily chosen, the set can be regarded as representative of household items, baby articles, and other objects made of silicone rubber. For comparison, two brands of silicone septa and as blanks a glass slide and a latex pacifier were included. Differences between the objects were mainly observed in terms of molecular weight distribution and occasional release of other compounds in addition to PDMS. Other than that, all objects made of silicone rubber released significant amounts of PDMS during DART analysis. To provide a coarse quantification, a calibration based on silicone oil was established, which delivered PDMS losses from 20 μg to >100 μg during the 16-s period per measurement. Also, the extraction of baking molds in rapeseed oil demonstrated a PDMS release at the level of 1 μg mg(-1). These findings indicate a potential health hazard from frequent or long-term use of such items. This work does not intend to blame certain brands of such articles. Nonetheless, a higher level of awareness of this source of daily silicone intake is suggested.
Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.
Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou
2018-01-01
Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.
Modification of Propellant Binder Network for Improvement of Mechanical Properties
1984-12-01
skeletal atoms) is more beneficial than 22 mole % of the shorter PEG 3350 (230 skeletal atoms) or 25 mole % of shorter PCP 0260 (180 skeletal atoms). One...of the reasons may be that a higher degree of strain-induced crystalliza- tion of PEG 8000 occurs compared with PEG 3350 or PCP 0260. 4.8 Effect of...prepolymer rubbers. Also, the stress capability of the cured rubbers is improved compared to the long chain prepolymer rubbers. Polyethylene glycol 8000 ( PEG
NASA Technical Reports Server (NTRS)
Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.
1973-01-01
Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.
Particulate contamination from siliconized rubber closures for freeze drying.
Gebhardt, U; Grumbridge, N A; Knoch, A
1996-01-01
It can be shown that siliconized closures for freeze drying may cause the opalescence and turbidity observed in freeze-dried products after reconstitution. Closures of different rubber composition show different intensities of turbidity when treated identically with the same quantity and type of silicone oil. Clear solutions are obtained after reconstitution if ETFE-coated closures are used instead of siliconized closures. Samples stored at 4 degrees C for up to 6 months show no change in the intensity of turbidity, while the turbidity of samples manufactured with siliconized closures and stored at higher temperatures increase with time. Samples with ETFE-coated closures show clear solutions when stored at 25 degrees C and 37 degrees C for up to 6 months and at 45 degrees C for 3 months. After 6 months only a very weak opalescence could be observed in these samples.
Silicone rubber band treatment of rectal prolapse.
Jackaman, F. R.; Francis, J. N.; Hopkinson, B. R.
1980-01-01
Fifty-two patients with rectal prolapse have been treated by the silicone rubber band perianal suture technique and satisfactory results have been obtained in 46 (89%). Eleven patients required reoperation to achieve this result. The procedure is a minor one, with little morbidity and no mortality. Provided that faecal impaction can be avoided in patients having this operation a successful outcome, can be expected. It is recommended especially for the frail and elderly with rectal prolapse. PMID:7002011
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Wang, Hai; Zhu, Yali
2018-01-01
This work presents the design, fabrication, and measurement of a piezoresistive device with a carbon black (CB) particle network in a highly flexible silicone rubber for large deformation and wide range strain sensing. The piezoresistive composite film was fabricated with a mixture of silicone rubber and CB filler particles. The test results showed that the CB particle network in the silicone rubber strongly affected the resistance of the device during the process of drawing and its recovery. We found that the 50% volume ratio of CB filler particles showed a lower relative resistance than the 33.3% volume ratio of CB filler particles, but with an advantage of good resistance recovery stability and a smaller perturbation error (smaller changed resistance) during the periodic back and forth linear motor test. With both having a 50% volume ratio of CB filler particles and a 33.3% volume ratio of CB filler particles, one can reach up to 200% strain with resistances 18 kΩ and 110 kΩ, respectively. We also found that the relative resistance increased in an approximately linear relationship corresponding to the value of step-increased instantaneous length for the reported device. Moreover, an application test through hand drawing was used to demonstrate the piezoresistive performance of the device, which showed that the reported device was capable of measuring the instantaneous length with large deformation.
Martin, Alexis; Margoum, Christelle; Coquery, Marina; Randon, Jérôme
2016-10-01
Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene-co-N-vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol-water partition coefficients ranging from 2.3 to 5.5. We named this composite material "Polar/Apolar Composite Silicone Rubber". A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back-extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the "Polar/Apolar Composite Silicone Rubber" meet most of the criteria for use as a receiving phase for the passive sampling of pesticides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orientated Nano-Composites: Relationships Between Nano-Structure and Mechanical Properties
2004-11-01
The rubber-modified epoxy formulation used 9% by mass of carboxyl-terminated butadiene ( CTBN ). The specimens were cured for 1 hour at 90°C plus 2...200%, to 315J/m2. A rubber-modified epoxy formulation, with 9% by mass of carboxyl-terminated butadiene ( CTBN ), (i.e. ‘hycar’ from Noveon, USA
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.
Shimada, Kunio; Mochizuki, Osamu; Kubota, Yoshihiro
2017-04-19
The aim of this study is to investigate the effect of particles as filler in soft rubber sensors installed in artificial skin. We examine sensors made of natural rubber (NR-latex) that include magnetic particles of Ni and Fe₃O₄ using magnetic compound fluid (MCF). The 1-mm thickness of the electrolytically polymerized MCF rubber makes production of comparatively thin rubber sensors feasible. We first investigate the effect of magnetic particles Ni and Fe₃O₄ on the curing of MCF rubber. Next, in order to adjust the electric properties of the MCF rubber, we adopt Al₂O₃ dielectric particles. We investigate the effect of Al₂O₃ particles on changes in electric current, voltage and temperature of electrolytically polymerized MCF rubber liquid, and on the electric properties under the application of normal and shear forces. By adjusting the ratio of Ni, Fe₃O₄, Al₂O₃ and water in MCF rubber with Al₂O₃, it is possible to change the electric properties.
WATER STABILITY OF FILLED ELASTOMERS,
ELECTRICAL INSULATION, *BUTYL RUBBER , ELASTOMERS, STABILITY, STABILITY, HYDROLYSIS, CURING AGENTS, ADDITIVES, WATER, ABSORPTION, THICKNESS, ELECTRICAL RESISTANCE, LEAKAGE(ELECTRICAL), DIFFUSION, TALC, ELECTRIC CABLES.
NASA Astrophysics Data System (ADS)
Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.
2017-09-01
A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.
Thein-Han, W W; Shah, J; Misra, R D K
2009-09-01
A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials.
NASA Astrophysics Data System (ADS)
Flores-Rojas, G. G.; Bucio, E.
2016-10-01
Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.
1980-02-01
propylene rubber) EPDM Brake valve parts and seals 80 EPDM (SAE, RM 69) Referee test slabs 70L VITON 0-rings 70 TN4 -i______ - -.- . .J....... TABLE 2...separated. The volume and hardness of two rubber test specimens was determined. One specimen was placed in the lower fluid layer (conventional fluid...and one specimen was suspended horizontally in the top fluid layer (silicone). The jar was stored on the laboratory shelf at ambient temperature. The
Application of long-period grating sensors to respiratory function monitoring
NASA Astrophysics Data System (ADS)
Allsop, Thomas D.; Earthrowl, Tim; Revees, Richard; Webb, David J.; Miller, Martin; Jones, Barrie W.; Bennion, Ian
2004-12-01
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso showing reasonable agreement with a spirometer used simultaneously to record the volume at the mouth during breathing. The curvature sensors are based upon long period gratings written in a progressive three layered fibre that are insensitive to refractive index changes. The sensor platform consists of the long period grating laid upon a carbon fibre ribbon, which is encapsulated in a low temperature curing silicone rubber. An array of sensors is also used to reconstruct the shape changes of a resuscitation manikin during simulated respiration. The data for reconstruction is obtained by two methods of multiplexing and interrogation: firstly using the transmission spectral profile of the LPG's attenuation bands measured using an optical spectrum analyser; secondly using a derivative spectroscopy technique.
Thermal and Kinetic Modelling of Elastomer Flow—Application to an Extrusion Die
NASA Astrophysics Data System (ADS)
Launay, J.; Allanic, N.; Mousseau, P.; Deterre, R.
2011-05-01
This paper reports and discusses the thermal and kinetic behaviour of elastomer flow inside an extrusion die. The reaction progress through the runner was modeled by using a particle tracking technique. The aim is to analyze viscous dissipation phenomena to control scorch arisen, improve the rubber compound curing homogeneity and reduce the heating time in the mould using the progress of the induction time. The heat and momentum equations were solved in three dimensions with Ansys Polyflow. A particle tracking technique was set up to calculate the reaction progress. Several simulations were performed to highlight the influence of process parameters and geometry modifications on the rubber compound thermal and cure homogeneity.
Controlled release from a composite silicone/hydrogel membrane.
Hu, Z; Wang, C; Nelson, K D; Eberhart, R C
2000-01-01
To enhance the drug uptake and release capacity of silicone rubber (SR), N-isopropylacrylamide (NIPA) hydrogel particles have been incorporated into a SR membrane. The NIPA particles were thoroughly blended with uncured SR with a certain ratio at room temperature. The mixture was then cast in a Petri dish to 1 mm thickness and cured 10 hours at 90 degrees C. The SR/NIPA composite gel can absorb water approximately equal to its dry weight. Brilliant blue, used as a mock drug, was loaded into the composite gel. Drug release increased exponentially to a final value that is temperature dependent: low at T> =34 degrees C, and high at T< 34 degrees C. This finding is because the hydrophobicity of NIPA changes with temperature. Pulsed release in response to temperature switching between 20 and 39 degrees C has been achieved. Drug uptake and release capability strongly depends upon the structure of the composite gel. The optimal range of NIPA composition is between 75 and 87% by volume. In the cited range, the NIPA particles form an interconnected network that provides a channel for diffusion of drug solution. The SR/NIPA composite gel has promising attributes as a wound dressing and other uses.
Liu, Jiayu; Zhu, Denglin; Chen, Hualing
2018-01-01
This paper reports a new technique involving the design, fabrication, and characterization of an ionic polymer-metal composite- (IPMC-) embedded active tube, which can achieve multidegree-of-freedom (MODF) bending motions desirable in many applications, such as a manipulator and an active catheter. However, traditional strip-type IPMC actuators are limited in only being able to generate 1-dimensional bending motion. So, in this paper, we try to develop an approach which involves molding or integrating rod-shaped IPMC actuators into a soft silicone rubber structure to create an active tube. We modified the Nafion solution casting method and developed a complete sequence of a fabrication process for rod-shaped IPMCs with square cross sections and four insulated electrodes on the surface. The silicone gel was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D printing technology. By applying differential voltages to the four electrodes of each IPMC rod-shaped actuator, MDOF bending motions of the active tube can be generated. Experimental results show that such IPMC-embedded tube designs can be used for developing robotic-assisted manipulation. PMID:29770160
Wang, Yanjie; Liu, Jiayu; Zhu, Denglin; Chen, Hualing
2018-01-01
This paper reports a new technique involving the design, fabrication, and characterization of an ionic polymer-metal composite- (IPMC-) embedded active tube, which can achieve multidegree-of-freedom (MODF) bending motions desirable in many applications, such as a manipulator and an active catheter. However, traditional strip-type IPMC actuators are limited in only being able to generate 1-dimensional bending motion. So, in this paper, we try to develop an approach which involves molding or integrating rod-shaped IPMC actuators into a soft silicone rubber structure to create an active tube. We modified the Nafion solution casting method and developed a complete sequence of a fabrication process for rod-shaped IPMCs with square cross sections and four insulated electrodes on the surface. The silicone gel was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D printing technology. By applying differential voltages to the four electrodes of each IPMC rod-shaped actuator, MDOF bending motions of the active tube can be generated. Experimental results show that such IPMC-embedded tube designs can be used for developing robotic-assisted manipulation.
NASA Astrophysics Data System (ADS)
Favre, Audrey
Rubber composites are widely used in several engineering fields, such as automotive, and more recently for inflatable dams and other innovative underwater applications. These rubber materials are composed by an elastomeric matrix while the reinforcing phase is a synthetic fabric. Since these components are expected to operate several years in water environment, their durability must be guaranteed. The use of rubber materials immersed in water is not new, in fact, these materials have been studied for almost one century. However, the knowledge on reinforced rubber composites immersed several years in water is still limited. In this work, investigations on reinforced rubbers were carried out in the framework of a research project in partnership with Alstom and Hydro-Quebec. The objective of this study was to identify rubber composites that could be used under water for long periods. Various rubber composites with ethylene-propylene-diene monomer (EPDM), silicone, EPDM/silicone and polychloroprene (Neoprene) matrices reinforced with E-glass fabric were studied. Thus, these materials were exposed to an accelerated ageing at 85 °C underwater for periods varying from 14 to 365 days. For comparison purposes, they were also immersed and aged one year at room temperature (21 °C). The impact of accelerated aging was estimated through three different characterization methods. Scanning electron microscopy (SEM) was first used to assess the quality of fiber-matrix interface. Then, water absorption tests were performed to quantify the rate of water absorption during immersion. Finally the evolution of the mechanical properties was followed by the determination of Young's modulus (E) and ultimate stress (sigmau) using a dedicated traction test. This analysis allowed to point out that the quality of the fiber-matrix interface was the main factor influencing the drop of the mechanical properties and their durability. Moreover, it was noticed that this interface could be improved by using appropriate coupling agent as confirmed by the silicone composite with treated fabric. It was also observed that fiber-matrix interface could be a place where high stresses were localized because of differential swelling leading to an important loss of mechanical properties. The results revealed very different behaviors from one composite to another. The accelerated aging of EPDM/silicone and Neoprene composites led to a rapid diminution of mechanical properties in only 14 days. Conversely, silicone composites showed a 20 % increase of mechanical properties after 75 days of immersion. EPDM composites exhibited an important variability from one sample to another. It can be concluded from this study that composites made from silicone matrix with treated E-glass result in a better durability underwater. Keywords: composite elastomer, accelerated ageing, immersion in the water
Wang, Yue; Gregory, Cherry; Minor, Mark A
2018-06-01
Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.
Practical application of thermoreversibly Cross-linked rubber products
NASA Astrophysics Data System (ADS)
Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.
2017-07-01
Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.
NASA Astrophysics Data System (ADS)
Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir; Rizuan, Mohd Ismail Rifdi
2017-09-01
This research was carried out as to develop hybrid filler reinforced into the blend of natural rubber (NR) and styrene butadiene rubber (SBR). The NR/SBR blend was reinforced using carbon black (CB) and nano calcium carbonate (NCC). The NCC content varied from 2-10 phr which was incorporated into the NR/SBR blend filled with fixed 50 phr of CB. The main aim of this project was to study the synergistic effect of NCC and CB reinforced NR/SBR blends towards the curing characteristics using cure rheometer, the viscosity of uncured NR/SBR compounds, physical and mechanical property blends. From the results obtained, the optimum ratio of blending was identified at 4 phr of NCC loading. Tensile strength, elongation at break, modulus and hardness increased progressively with increasing the NCC loading from 0 phr up to a maximum value at 4 phr. This increment occurs due to consolidation of the network structure of the polymer chains with the increasing NCC content. Up to the optimum amount of NCC, the tendency for NCC particles to form aggregate was very high and hence reduces the properties of rubber blends. It proved that NCC acts as a co-reinforcing agent for CB to improve the performance in the NR/SBR blends.
Development of Bushing Compounds for Tracked Vehicles
1990-10-01
unwanted stepchild - part of called anti patented NBR -12 formulation the family (system), but devoid of needed indicated that service life could be...as Development and Engineering Center’s long. Bushings currently used in the M I track Rubber and Coated Fabrics Research Group assembly typically fail...formulations of should be improved. Numerous selected candidate natural rubber , propylene formulations-based on natural rubber , oxide, and silicone
Functional buckling behavior of silicone rubber shells for biomedical use.
van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J
2013-12-01
The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ahmed, Khalil
2015-11-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.
Ahmed, Khalil
2014-01-01
Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917
Hernández, M; Grande, A M; van der Zwaag, S; García, S J
2016-04-27
Broadband dielectric spectroscopy (BDS) is introduced as a new and powerful technique to monitor network and macroscale damage healing in an elastomer. For the proof of concept, a partially cured sulfur-cured natural rubber (NR) containing reversible disulfides as the healing moiety was employed. The forms of damage healed and monitored were an invisible damage in the rubber network due to multiple straining and an imposed macroscopic crack. The relaxation times of pristine, damaged, and healed samples were determined and fitted to the Havriliak-Negami equation to obtain the characteristic polymer parameters. It is shown that seemingly full mechanical healing occurred regardless the type of damage, while BDS demonstrates that the polymer architecture in the healed material differs from that in the original one. These results represent a step forward in the understanding of damage and healing processes in intrinsic self-healing polymer systems with prospective applications such as coatings, tires, seals, and gaskets.
Shimada, Kunio; Mochizuki, Osamu; Kubota, Yoshihiro
2017-01-01
The aim of this study is to investigate the effect of particles as filler in soft rubber sensors installed in artificial skin. We examine sensors made of natural rubber (NR-latex) that include magnetic particles of Ni and Fe3O4 using magnetic compound fluid (MCF). The 1-mm thickness of the electrolytically polymerized MCF rubber makes production of comparatively thin rubber sensors feasible. We first investigate the effect of magnetic particles Ni and Fe3O4 on the curing of MCF rubber. Next, in order to adjust the electric properties of the MCF rubber, we adopt Al2O3 dielectric particles. We investigate the effect of Al2O3 particles on changes in electric current, voltage and temperature of electrolytically polymerized MCF rubber liquid, and on the electric properties under the application of normal and shear forces. By adjusting the ratio of Ni, Fe3O4, Al2O3 and water in MCF rubber with Al2O3, it is possible to change the electric properties. PMID:28422061
O-Ring Installation for Underwater Components and Applications
1982-04-15
cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon
NASA Astrophysics Data System (ADS)
Valencia-Mora, Ricardo A.; Zavala-Lagunes, Edgar; Bucio, Emilio
2016-07-01
The modification of silicone rubber films (SR) was performed by radiation-induced graft polymerization of thermosensitive poly(N-vinylcaprolactam) (PNVCL) using gamma rays from a Co-60 source. The graft polymerization was obtained by a direct radiation method with doses from 5 to 70 kGy, at monomer concentrations between 5% and 70% in toluene. Grafting was confirmed by infrared, differential scanning calorimetry, thermogravimetric analysis, and swelling studies. The lower critical solution temperature (LCST) of the grafted SR was measured by swelling and differential scanning calorimetry.
Mundry, T; Surmann, P; Schurreit, T
2000-12-01
The siliconization of pharmaceutical glass containers is an industrially frequently applied procedure. It is done by spreading an aqueous silicone oil emulsion film on the inner surface and successive heat curing treatment at temperatures above 300 degrees C for 10-30 min. It was often proposed that a covalent bonding of PDMS to the glass or branching of the linear PDMS occurs during heat treatment. The present study was performed for a detailed investigation of the glass and silicone (polydimethylsiloxane = PDMS) chemical state before and after heat-curing treatment and analysis of the bond nature. Combined X-ray excited photoelectron (XPS) and Auger electron spectroscopy as well as angle resolved XPS-measurements were used for analysis of the glass samples. The silicon surface atoms of the borosilicate container glass were transformed to a quartz-like compound whereas the former linear PDMS had a branched, two-dimensional structure after the heat curing treatment. It was concluded that the branching indicates the formation of new siloxane bonds to the glass surface via hydroxyl groups. Further evidence for the presence of bonded PDMS at the glass surface can be found in the valence band spectra of the siliconized and untreated samples. However, this bond could not be detected directly due to its very similar nature to the siloxane bonds of the glass matrix and the organosilicon backbone of PDMS. Due to the high variation of data from the siliconized samples it was concluded, that the silicone film is not homogeneous. Previously raised theories of reactions during heat-curing glass siliconization are supported by the XPS data of this investigation. Yet, the postulation of fixing or baking the silicone on the glass surface is only partially true since the bonded layer is very thin and most of the silicone originally on the surface after heat curing can be removed by suitable solvents. This fraction can therefore still interact with drug products being in contact to the siliconized container wall.
Mechanisms to improve the mechanical performance of surgical gloves
NASA Astrophysics Data System (ADS)
Watkins, Michelle Hoyt
1997-11-01
The use of gloves as a barrier to cross infection in the medical industry has increased substantially due to the heightened awareness of viral transmission, especially the human immunodeficiency virus and the hepatitis B virus. The glove must allow for tactile sensation, comfort and long use times, while providing equally critical mechanical performance. The majority of surgical gloves are made of natural rubber latex which do not give a critical level of cut-resistance or puncture-resistance. Natural rubber latex gloves are also known to cause latex allergy with hypersensitivity reactions ranging from mild skin rashes to more severe bronchial asthma, anaphylactic reactions, and even death. It has been postulated natural rubber latex (NRL) proteins cause these allergic reactions. The research that has been conducted comprises two approaches that have been explored for improving the cut-resistance of surgical gloves. The first method involves an integral fiber-latex structure that possesses the combination of high reversible extensibility, barrier performance and retention of tactile sense. Improvement in mechanical properties in excess of 85% has been achieved as well as an improvement in cut-resistance. The second method involves the incorporation of a low concentration of ultra high molecular weight (UHMW) polyacrylamide. Although the initial premise for using a UHMW polymer was that it would bridge the latex compound particulates to improve strength, an entirely different mechanism for the enhancement of strength was explored through a parallel investigation of the release of proteins from cured natural rubber. However, no mechanism was conclusively identified. To address the allergy aspects of NRL, a thorough examination of the release of naturally-occurring latex proteins from cured natural rubber latex glove material was conducted in order to identify mechanisms for eliminating and/or reducing the potential allergens. The initial study examined the release of loaded proteins from cured NR and NR that contained PA in the initial latex compound and the results showed the likelihood of binding between proteins and PA.
Effect of organo clay on curing, mechanical and dielectric properties of NR/SBR blends
NASA Astrophysics Data System (ADS)
Ravikumar, K.; Joseph, Reji; Ravichandran, K.
2018-04-01
Natural rubber (NR) and styrene butadiene rubber (SBR) based elastomeric blends reinforced with organically modified Sodium bentonite clay were prepared by two roll mills. Vulcanization parameters such as minimum and maximum torque values scorch and cure times are measured by Oscillating Disc Rheometer. Mechanical properties such as Tensile strength, modulus at 100%, 200% and 300% elongation and elongation at break and Hardness were measured by Universal testing machine and Durometer Shore A hardness meter respectively. Dielectric properties such as dielectric constant (ε’), dissipation factor (tanδ) and volume resistivity (ρv) were measured at room temperature. The curing studies show that torque values are increasing in NR/SBR blends by increase NR content. The scorch and optimum cure time in NR/SBR blends reinforced organo modified clay was found through increase in the SBR content. This may be due to better processing safety of the NR/SBR blends reinforced with organo modified clay. Mechanical properties show that addition of SBR in blends, tensile strength, elongation modulus increases, but 100% modulus slightly increases and no change was observed in Hardness. Dielectric studies show that dielectric constant of NR and SBR rubbers are almost same, it may due to their non-polar nature. But addition of SBR in NR/SBR blend, dielectric constant gradually increases and maximum value observed at 50/50 ratio. But no considerable change was observed in dissipation factor. Frequency dependant resistivity shows that volume resistivity was not changed with respect to frequency up to 3.5 kHz and beyond that the frequency dependence resistivity was found.
Research on the conductivity of a haptic sensor, especially with the sensor under extended condition
NASA Astrophysics Data System (ADS)
Zheng, Yaoyang; Shimada, Kunio
2008-11-01
The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.
Crumb Rubber Recycling in Enhancing Damping Properties of Concrete
NASA Astrophysics Data System (ADS)
Sugapriya, P.; Ramkrishnan, R.
2018-02-01
Damping plays a major role in the design of roadside structures that gets affected due to vibrations transmitted from moving traffic. In this study, fine aggregates were partially replaced with crumb rubber in concrete, at varying percentages of 5, 10, 15 and 20% by weight. Three different sets of concrete, mixed with crumb rubber were prepared using raw rubber, treated rubber and treated rubber with partial replacement of cement. Cement was partially replaced with Ultra-Fine Ground Granulated Blast furnace Slag (UFGGBS) for this study. Samples were cast, cured and tested for various properties on the 7th and 28th day. The damping ratio and frequency of the peak value from a number of waves in rubber incorporated beams were found out using a FFT Analyser along with its Strength, Damping and Sorptivity characteristics. SEM analysis was conducted to analyse the micro structural bonding between rubber and concrete. The mode shapes of pavement slabs were modelled and analysed using a FEM tool, ANSYS. From the results, the behaviour of the three sets of rubberized concrete were compared and analysed, and an optimum percentage for crumb rubber and UFGGBS was proposed to achieve best possible damping without compromising the strength properties.
Gold nanorods-silicone hybrid material films and their optical limiting property
NASA Astrophysics Data System (ADS)
Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang
2015-10-01
As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.
Effect of rheological parameters on curing rate during NBR injection molding
NASA Astrophysics Data System (ADS)
Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam
2013-04-01
In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.
Elastomer Compound Developed for High Wear Applications
NASA Technical Reports Server (NTRS)
Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.
1993-01-01
The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ansell, M. P.; Smedley, D.
2006-09-01
Results of an experimental investigation into the thermal behavior and mechanical properties of a room-temperature-cured epoxy adhesive (diglycidyl ether of bisphenol A, DGEBA) cross-linked with polyetheramines and filled with different fillers, namely nanosilica, liquid rubber (CTBN), and clay, are reported. The nanosilica and liquid rubber increased the flexural strength and elastic modulus of the adhesive systems; the addition of clay particles raised the elastic modulus significantly, but embrittled the adhesive. Establishing a correct cure time is very important for bonded-in timber structures, as it will affect the bond strength. A study on the effect of cure time on the flexural strength was carried out, from which it follows that the adhesives should be cured for at least 20 days at room temperature. The damping characteristics and the glass-transition temperature of the adhesives were determined by using a dynamic mechanical thermal analysis. The results showed that the filled adhesives had a higher storage modulus, which was in agreement with the elastic moduli determined from static bending tests. The introduction of the fillers increased its glass-transition temperature considerably.
Improvement of silicone rubber properties by addition of nano-SiO2 particles.
Wu, Lianfeng; Wang, Xianming; Ning, Liang; Han, Jianjun; Wan, Zhong; Lu, Min
2016-07-04
To improve the comprehensive performances of a one-part room temperature vulcanized silicone rubber(RTV-1 SiR), Nano-SiO2 particles are employed as the reinforcing agent. The SiO2/RTV-1 SiR composite is prepared using PDMS, ND42, D-60 and HMDS-modified SiO2 particles by mixing method. And then, the mechanical and electrical properties, including shear strength, tensile strength, hardness Shore A and volume resistivity, are investigated using experimental method. The addition of nano-SiO2 particles can improve the properties of the SiO2/RTV-1 SiR composite in different degrees. And, the incorporation of 25~30 phr nano-SiO2 particles is found to be reasonable for silicone rubber composite with the best comprehensive performances. The significant improvement of mechanical properties and electrical insulation of SiO2 may be contributed to the addition of modified nano-SiO2 particles. Additionally, the excellent comprehensive performances of SiO2/RTV-1 SiR composite guarantee a potential applications as electrical-insulating adhesives.
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Nihmath, A.; Francis, Joseph
2013-06-01
Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki,S.; Minouchi, N.; Sics, I.
2008-01-01
The tensile strength of rubber depends on a combination of contributions, in particular on the finite extensibility of chain segments between network points and on strain-induced crystallization. In order to achieve high tensile strength at high strain at break, we optimized the composition and processing parameters to gain high molecular flexibility by the cure conditions, to acquire high flexibility of sulfur bridges by the accelerator, and to increase the modulus level without losing rubber molecule flexibility by carbon black. As a result, our formula performed a tensile strength of 42.5 MPa at 25 C under ISO-37, as officially measured bymore » the Society of Rubber Industry, Japan, in 2004.« less
NASA Astrophysics Data System (ADS)
Meekum, Utai; Khiansanoi, Apichart
2018-06-01
The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.
Funatsu, Takayuki; Kawashima, Akitsugu; Mochizuki, Yuichi; Kikuta, Yoshichika; Imanaka, Kousuke; Okada, Yoshikazu
2015-10-01
Intracranial arterial microanastomosis remains an important neurosurgical technique. Intimal dissection of donor or recipient arteries can cause bypass failure. We used a silicone rubber stent while performing arterial microanastomoses, and achieved an excellent postoperative patency rate. In this study, we evaluated the efficacy of the stent in cases of extensive intimal dissection. In 5 cases involving extensive intimal dissection of vessels out of a total of 856 microanastomoses that were performed between November 2000 and August 2014, we placed a silicone rubber stent in the lumen of the recipient artery for donor to recipient suturing. Surgery was performed in 3 cases of cerebrovascular atherosclerotic disease and in 2 cases requiring cerebral revascularization for the treatment of aneurysm recurrence. In one of the 5 cases in which arterial microanastomosis was performed in the spasm period after subarachnoid hemorrhage, a patent anastomosis could not be confirmed. We observed the following advantages of silicone stent use: clear visualization of the orifice created in the vessel, avoidance of suturing or damaging the contralateral side vessel edges, and maintenance of the shape of the anastomosed vessel segment. These advantages made it easier to visualize the intima and to achieve fixation by using tacking sutures.
NASA Astrophysics Data System (ADS)
Mazlan, N.; Jaafar, M.; Aziz, A.; Ismail, H.; Busfield, J. J. C.
2016-10-01
In this work, two different processing techniques were approached to identify the properties of the multi-walled carbon nanotubes (MWCNT) reinforced polydimethylsiloxane (PDMS). The MWCNT was dispersed in the polymer by using the ultrasonic and twin screw extruder mixer. The final composite showed different manner of dispersed tubes in the silicone rubber matrix. High shear twin screw extruder tends to fragment the tubes during processing compound, which can be observed by scanning electron microscope (SEM). Tensile strength of the extrusion MWCNT/PDMS nanocomposites was found to be higher compared to ultrasonic MWCNT/PDMS nanocomposites.
NASA Astrophysics Data System (ADS)
Zivkovic, I.; Murk, A.
2012-06-01
In this paper, we examine carbonyl iron composites in silicone rubber and epoxy matrices. Transmission measurements were performed at W (70 to 110 GHz) and Ka (26 to 40 GHz) bands and effective permittivity and permeability of composites with 10% volume fraction of carbonyl iron powder (CIP) were extracted at these frequencies. To extract permittivity and permeability of carbonyl iron powder in W and Ka bands, we use Looyenga formula. We extract permittivity and permeability of CIP from both silicone rubber and epoxy based composites and good agreement is achieved.
Mechanical behaviour of cerclage material consisting of silicon rubber.
Hinrichsen, G; Eberhardt, A; Springer, H
1979-09-01
Silicon rubber specimens of circular or rectangular cross-section (cross-section area between ca. 2 and 7 mm2) are used as cerclage bands. A series of commercial cerclage elements was investigated for mechanical characteristics, such as stress-strain behaviour and modulus of elasticity, using a tensile-testing machine. Large differences in these properties exist among the various specimens. Moreover, time-dependent effects, such as stress-relaxation, retardation, and creep, were analysed by the present investigations. One has to take into consideration that the initial length and stress of the cerclage band vary significantly with time after the operation.
Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan
2016-01-01
Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.
NASA Astrophysics Data System (ADS)
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-01
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-06
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-01
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from −30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications. PMID:26733315
[Total analysis of organic rubber additives].
He, Wen-Xuan; Robert, Shanks; You, Ye-Ming
2010-03-01
In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
Quantitation of buried contamination by use of solvents
NASA Technical Reports Server (NTRS)
Pappas, S. P.; Hsiao, P.; Hill, L. W.
1972-01-01
Solubilization studies were carried out on various cured silicone resins. A solvent spectrum was prepared. It was found that complete dissolution of cured silicone resins could be achieved without extensive physical degradation of samples. Based on the solubilization results, amine solvents were selected for spore viability studies.
Plasma immersion ion implantation modification of surface properties of polymer material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husein, I.F.; Zhou, Y.; Qin, S.
1997-12-01
The use of plasma immersion ion implantation (PIII) as a novel method for the treatment of polymer surfaces is investigated. The effect of PIII treatment on the coefficient of friction, contact angle modification, and surface energy of silicone and EPDM (ethylene-propylene-diene monomer) rubber are investigated as a function of pulse voltage, treatment time, and gas species. Low energy (0--8 keV) and high dose ({approximately}10{sup 17}--10{sup 18} ions/cm{sup 2}) implantation of N{sub 2}, Ar, and CF{sub 4} is performed using an inductively coupled plasma source (ICP) at low pressure (0.2 mTorr). PIII treatment reduces the coefficient of friction ({micro}) of siliconemore » rubber from {mu} = 0.464 to the range {mu} = 0.176--0.274, and {mu} of EPDM rubber decreases from 0.9 to the range {mu} = 0.27--0.416 depending on processing conditions. The contact angle of water and diiodomethylene decreases after implantation and increases at higher doses for both silicone and EPDM rubber.« less
Sapphire Multiple Filament and Large Plate Growth Processes
1972-10-01
This is necessary to obtain proper belt tracking. The belts themselves are a silicone / glass fabric manufactured by Dodge Industries, Hoosick Falls...New York. This material is an extremely fine weave fiberglass cloth which is impregnated with silicone rubber. Its properties include high yield...by bonding together (with a silicone adhesive) two 0.010-in. thick strips of Dodge M301 silicone /glass fabric terminating in an angled butt joint to
Thermal degradation and morphological studies on raw and reinforced polyacrylic rubbers
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-05-01
Poly acrylate rubbers (ACM) of today are saturated copolymers of monomeric acrylic esters and reactive cure site monomers. ACM elastomer have also found use in vibration damping due to its excellent resilience. Other applications include textiles, adhesives, and coatings. Two state of Poly acrylic raw and reinforced Rubber are analyzed using FTIR spectroscopy, Optical Microscopy, DSC and TGA measurements. With the objective of determined the mechanical strength, Thermal analysis on TGA and DSC studies show that, the thermal degradation temperature Tg of the sample material is obtained and activation energy is also calaulated by Broido, Horowitz - Metzger, Piloyan-Novikova and Coats Redfern methods which are found.
Martin, Alexis; Margoum, Christelle; Jolivet, Antoine; Assoumani, Azziz; El Moujahid, Bachir; Randon, Jérôme; Coquery, Marina
2018-04-01
There is a need to determine time-weighted average concentrations of polar contaminants such as pesticides by passive sampling in environmental waters. Calibration data for silicone rubber-based passive samplers are lacking for this class of compounds. The calibration data, sampling rate (R s ), and partition coefficient between silicone rubber and water (K sw ) were precisely determined for 23 pesticides and 13 candidate performance reference compounds (PRCs) in a laboratory calibration system over 14 d for 2 water flow velocities, 5 and 20 cm s -1 . The results showed that an in situ exposure duration of 7 d left a silicone rubber rod passive sampler configuration in the linear or curvilinear uptake period for 19 of the pesticides studied. A change in the transport mechanism from polymer control to water boundary layer control was observed for pesticides with a log K sw of approximately 3.3. The PRC candidates were not fully relevant to correct the impact of water flow velocity on R s . We therefore propose an alternative method based on an overall resistance to mass transfer model to adjust R s from laboratory experiments to in situ hydrodynamic conditions. We estimated diffusion coefficients (D s ) and thickness of water boundary layer (δ w ) as adjustable model parameters. Log D s values ranged from -12.13 to -10.07 m 2 s -1 . The estimated δ w value showed a power function correlation with water flow velocity. Environ Toxicol Chem 2018;37:1208-1218. © 2017 SETAC. © 2017 SETAC.
Pintado-Herrera, Marina G; Lara-Martín, Pablo A; González-Mazo, Eduardo; Allan, Ian J
2016-09-01
There is a growing interest in assessing the concentration and distribution of new nonregulated organic compounds (emerging contaminants) in the environment. The measurement of freely dissolved concentrations using conventional approaches is challenging because of the low concentrations that may be encountered and their temporally variable emissions. Absorption-based passive sampling enables the estimation of freely dissolved concentrations of hydrophobic contaminants of emerging concern in water. In the present study, calibration was undertaken for 2 polymers, low-density polyethylene (LDPE) and silicone rubber for 11 fragrances, 5 endocrine-disrupting compounds, 7 ultraviolet (UV) filters, and 8 organophosphate flame retardant compounds. Batch experiments were performed to estimate contaminant diffusion coefficients in the polymers (Dp ), which in general decreased with increasing molecular weight. The values for fragrances, endocrine-disrupting compounds, and UV filters were in ranges similar to those previously reported for polycyclic aromatic hydrocarbons, but were 1 order of magnitude lower for organophosphate flame retardant compounds. Silicone rubber had higher Dp values than LDPE and was therefore selected for further experiments to calculate polymer/water partition coefficients (KPW ). The authors observed a positive correlation between log KPW and log octanol/water partition coefficient values. Field testing of silicone rubber passive samplers was undertaken though exposure in the River Alna (Norway) for an exposure time of 21 d to estimate freely dissolved concentration. Some fragrances and UV filters were predominant over other emerging and regulated contaminants, at levels up to 1600 ng L(-1) for galaxolide and 448 ng L(-1) for octocrylene. Environ Toxicol Chem 2016;35:2162-2172. © 2016 SETAC. © 2016 SETAC.
Evaluation of a Lightweight Protective Mask Concept for Respiratory Protection System 21
1992-01-01
In addition, the LPM should provide a comfortable fit to reduce the physiological burden on the solder. The M40 mask is molded of silicone rubber ...for low temperature flexibility and romfort even though this material doesn’t providr. a good chemical agent barrier. Also, the M40 uses thick rubber ...Latex BL-100 (Appeadix D, no. 32) with natural rubber latex 1041, (Firestone), and by evenly mixing polyisobutylene latem I (PIB-5C) with natural
Toughening of thermosetting polyimides
NASA Technical Reports Server (NTRS)
Gollob, D. S.; Mandell, J. F.; Mcgarry, F. J.
1979-01-01
Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30.
Fast-Acting Rubber-To-Coated-Aluminum Adhesive
NASA Technical Reports Server (NTRS)
Comer, Dawn A.; Novak, Howard; Vazquez, Mark
1991-01-01
Cyanoacrylate adhesive used to join rubber to coated aluminum easier to apply and more effective. One-part material applied in single coat to aluminum treated previously with epoxy primer and top coat. Parts mated as soon as adhesive applied; no drying necessary. Sets in 5 minutes. Optionally, accelerator brushed onto aluminum to reduce setting time to 30 seconds. Clamping parts together unnecessary. Adhesive comes in four formulations, all based on ethyl cyanoacrylate with various amounts of ethylene copolymer rubber, poly(methyl methacrylate), silicon dioxide, hydroquinone, and phthalic anhydride.
Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.
Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan
2018-05-16
Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, R.S.
The effects of heat strip time, heat strip temperature, catalyst ratio, mold cure time, post cure time, and post cure temperature on a hybrid (UCC/SE-54/497XL) cellular silicone molding compound are reported.
Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.
Yilmaz, Arin; Degirmenci, Nurhayat
2009-05-01
The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.
Mechanical properties of concrete containing a high volume of tire-rubber particles.
Khaloo, Ali R; Dehestani, M; Rahmatabadi, P
2008-12-01
Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.
Elastomer toughened polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L. (Inventor)
1983-01-01
A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.
Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds
NASA Astrophysics Data System (ADS)
Klunder, Gregory L.; Russo, Richard E.
1995-03-01
A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.
Triplex molecular layers with nonlinear nanomechanical response
NASA Astrophysics Data System (ADS)
Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.
2002-06-01
The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
NASA Astrophysics Data System (ADS)
Amijoyo Mochtar, Andi
2018-02-01
Applications of robotics have become important for human life in recent years. There are many specification of robots that have been improved and encriched with the technology advances. One of them are humanoid robot with facial expression which closer with the human facial expression naturally. The purpose of this research is to make computation on facial expressions and conduct the tensile strength for silicone rubber as artificial skin. Facial expressions were calculated by determining dimension, material properties, number of node elements, boundary condition, force condition, and analysis type. A Facial expression robot is determined by the direction and the magnitude external force on the driven point. The expression face of robot is identical with the human facial expression where the muscle structure in face according to the human face anatomy. For developing facial expression robots, facial action coding system (FACS) in approached due to follow expression human. The tensile strength is conducting due to check the proportional force of artificial skin that can be applied on the future of robot facial expression. Combining of calculated and experimental results can generate reliable and sustainable robot facial expression that using silicone rubber as artificial skin.
Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements
NASA Technical Reports Server (NTRS)
Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.
2008-01-01
The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.
Leak rate of seals: Effective-medium theory and comparison with experiment.
Lorenz, B; Persson, B N J
2010-02-01
Seals are extremely useful devices to prevent fluid leakage. We present an effective-medium theory of the leak rate of rubber seals, which is based on a recently developed contact mechanics theory. We compare the theory with experimental results for seals consisting of silicon rubber in contact with sandpaper and sand-blasted PMMA surfaces.
Effect of concentrated epoxidised natural rubber and silica masterbatch for tyre application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azira, A. A., E-mail: azira@lgm.gov.my; Kamal, M. M., E-mail: mazlina@lgm.gov.my; Verasamy, D., E-mail: devaraj@lgm.gov.my
The availability of concentrated epoxidised natural rubber (ENR-LC) has provided a better opportunity for using epoxidised natural rubber (ENR) with silica to reinforce natural rubber for tyre application. ENR-LC mixed directly with silica to rubber by high speed stirrer without using any coupling agent. Some rubber compounds were prepared by mixing a large amount of precipitated amorphous white silica with natural rubber. The silica was prepared in aqueous dispersion and the filler was perfectly dispersed in the ENR-LC. The performance of the composites was evaluated in this work for the viability of ENR-LC/Si in tyre compounding. Compounding was carried outmore » on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. C-ENR/Si showed efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers compared to ENR latex. Overall improvement in the mechanical properties for the ENR-LC over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the polymeric matrix phase.« less
Effect of concentrated epoxidised natural rubber and silica masterbatch for tyre application
NASA Astrophysics Data System (ADS)
Azira, A. A.; Verasamy, D.; Kamal, M. M.
2016-07-01
The availability of concentrated epoxidised natural rubber (ENR-LC) has provided a better opportunity for using epoxidised natural rubber (ENR) with silica to reinforce natural rubber for tyre application. ENR-LC mixed directly with silica to rubber by high speed stirrer without using any coupling agent. Some rubber compounds were prepared by mixing a large amount of precipitated amorphous white silica with natural rubber. The silica was prepared in aqueous dispersion and the filler was perfectly dispersed in the ENR-LC. The performance of the composites was evaluated in this work for the viability of ENR-LC/Si in tyre compounding. Compounding was carried out on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. C-ENR/Si showed efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers compared to ENR latex. Overall improvement in the mechanical properties for the ENR-LC over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the polymeric matrix phase.
Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting.
Xiao, Tian Xiao; Jiang, Tao; Zhu, Jian Xiong; Liang, Xi; Xu, Liang; Shao, Jia Jia; Zhang, Chun Lei; Wang, Jie; Wang, Zhong Lin
2018-01-31
Triboelectric nanogenerator (TENG) has been proven to be efficient for harvesting water wave energy, which is one of the most promising renewable energy sources. In this work, a TENG with a silicone rubber/carbon black composite electrode was designed for converting the water wave energy into electricity. The silicone-based electrode with a soft texture provides a better contact with the dielectric film. Furthermore, a spring structure is introduced to transform low-frequency water wave motions into high-frequency vibrations. They together improve the output performance and efficiency of TENG. The output performances of TENGs are further enhanced by optimizing the triboelectric material pair and tribo-surface area. A spring-assisted TENG device with the segmented silicone rubber-based electrode structure was sealed into a waterproof box, which delivers a maximum power density of 2.40 W m -3 , as triggered by the water waves. The present work provides a new strategy for fabricating high-performance TENG devices by coupling flexible electrodes and spring structure for harvesting water wave energy.
Piezoresistive strain sensing of carbon black /silicone composites above percolation threshold
NASA Astrophysics Data System (ADS)
Shang, Shuying; Yue, Yujuan; Wang, Xiaoer
2016-12-01
A series of flexible composites with a carbon black (CB) filled silicone rubber matrix were made by an improved process in this work. A low percolation threshold with a mass ratio of 2.99% CB was achieved. The piezoresistive behavior of CB/silicone composites above the critical value, with the mass ratio of carbon black to the silicone rubber ranging from 0.01 to 0.2, was studied. The piezoresistive behavior was different from each other for the composites with different CB contents. But, the composites show an excellent repeatability of piezoresistivity under cyclic compression, no matter with low filler content or with high filler content. The most interesting phenomena were that the plots of gauge factor versus strain of the composites with different CB contents constructed a master curve and the curve could be well fitted by a function. It was showed that the gauge factor of the composites was strain-controlled showing a promising prospect of application.
Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan
2016-01-01
Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs. PMID:27463805
Study on epoxy resin modified by polyether ionic liquid
NASA Astrophysics Data System (ADS)
Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.
2017-06-01
Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.
Murphy, Diarmaid J; Boyd, Peter; McCoy, Clare F; Kumar, Sandeep; Holt, Jonathon D S; Blanda, Wendy; Brimer, Andrew N; Malcolm, R Karl
2016-03-28
Despite a long history of incorporating steroids into silicone elastomers for drug delivery applications, little is presently known about the propensity for irreversible drug binding in these systems. In this study, the ability of the contraceptive progestin levonorgestrel to bind chemically with hydrosilane groups in addition-cure silicone elastomers has been thoroughly investigated. Cure time, cure temperature, levonorgestrel particle size, initial levonorgestrel loading and silicone elastomer type were demonstrated to be key parameters impacting the extent of levonorgestrel binding, each through their influence on the solubility of levonorgestrel in the silicone elastomer. Understanding and overcoming this levonorgestrel binding phenomenon is critical for the ongoing development of a number of drug delivery products, including a multi-purpose technology vaginal ring device offering simultaneous release of levonorgestrel and dapivirine - a lead candidate antiretroviral microbicide - for combination HIV prevention and hormonal contraception. Copyright © 2016 Elsevier B.V. All rights reserved.
Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests
NASA Technical Reports Server (NTRS)
Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.
1976-01-01
Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.
NASA Technical Reports Server (NTRS)
Clancy, H. M.
1972-01-01
Vacuum stability screening tests were performed on the Apollo 15 Scientific Instrument Module (SIM) bay nonmetallic materials in accordance with the NASA document SP-R-0022. The testing was necessary to support the evaluation to determine the effect material outgassing contamination would have on the SIM bay optical lenses and sensing devices. The Apollo 15 SIM experiments were highly successful, therefore, it is assumed that contamination due to the outgassing of nonmetallic materials did not affect equipment operation. A related problem, the reversion of a silicone rubber grommet which affected an electrical motor switch operation is also reported.
Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2016-08-03
Five different water passive samplers were calibrated under laboratory conditions for measurement of 124 legacy and current used pesticides. This study provides a protocol for the passive sampler preparation, calibration, extraction method and instrumental analysis. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for silicone rubber, polar organic chemical integrative sampler POCIS-A, POCIS-B, SDB-RPS and C18 disk. The uptake of the selected compounds depended on their physicochemical properties, i.e., silicone rubber showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW) > 5.3), whereas POCIS-A, POCIS-B and SDB-RPS disk were more suitable for hydrophilic compounds (log KOW < 0.70).
Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials
Ba, Abdoulaye; Kovalenko, Artem; Aristégui, Christophe; Mondain-Monval, Olivier; Brunet, Thomas
2017-01-01
Soft porous silicone rubbers are demonstrated to exhibit extremely low sound speeds of tens of m/s for these dense materials, even for low porosities of the order of a few percent. Our ultrasonic experiments show a sudden drop of the longitudinal sound speed with the porosity, while the transverse sound speed remains constant. For such porous elastomeric materials, we propose simple analytical expressions for these two sound speeds, derived in the framework of Kuster and Toksöz, revealing an excellent agreement between the theoretical predictions and the experimental results for both longitudinal and shear waves. Acoustic attenuation measurements also complete the characterization of these soft porous materials. PMID:28054661
Contact of a spherical probe with a stretched rubber substrate
NASA Astrophysics Data System (ADS)
Frétigny, Christian; Chateauminois, Antoine
2017-07-01
We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.
Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam; Himmelhuber, Roland; DeRose, Christopher T; Trotter, Douglas C; Starbuck, Andrew L; Pomerene, Andrew; Lentine, Anthony L; Norwood, Robert A
2017-09-04
Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.
A Durable Airfield Marking System.
1985-06-01
Resin is Mixed with the Black Curing Agent to Form the Epoxy Adhesive ..... ........... 17 14 The Gray Adhesive (White Resin Mixed with Black Curing...rubber 100 0 Polyester (peroxide-catalyzed) 100 0 Urethane 100 0 Epoxy polyamide 100 0 Acrylic latex (TT-P-1952) 100 0 Thermoplastic Tapes Type 1 100 0...suzmarrizes cost data co1parisons for traffic marking tapes, CAS tiles, fluorocarbon composites (Teflon ),and acrylic latex paint TT-P-1952. 8 -p °’. TABLE 2
NASA Astrophysics Data System (ADS)
Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin
2013-09-01
The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.
Erosion and intrusion of silicone rubber scleral buckle. Presentation and management.
Nguyen, Q D; Lashkari, K; Hirose, T; Pruett, R C; McMeel, J W; Schepens, C L
2001-01-01
To describe the clinical presentation and management of erosion and intrusion of silicone rubber implants that are used in scleral buckling procedures for the treatment of retinal detachment. The authors identified four patients from their practices during the last 20 years (1978-1998) who had erosion or intrusion of silicone rubber scleral buckles that were used to manage retinal detachment. Approximately 4400 scleral buckling procedures were performed during this period. A retrospective review of the medical records of all patients was performed. Factors that influenced management decisions concerning the intruding buckle are emphasized. All four patients had myopia. The interval between placement of the scleral buckle and development of intrusion ranged from 1 to 20 years. The buckles were intrascleral in three cases and episcleral in one. Recurrent detachment and vitreous hemorrhage were indications for surgical intervention in three cases. After the surgical removal of buckling elements, visual acuity stabilized in all patients and the retina remained attached in all cases. Erosion and intrusion of scleral buckle are rare complications of scleral buckling procedures. The intruding buckle may be left intact unless there is significant threat to the integrity of ocular structures, recurrent detachment, or hemorrhage. Manipulation of the encircling band or buckle does not necessarily alter the visual acuity or the status of the retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vroomen, G.L.M.; Visser, G.W.; Gehring, J.
1991-11-01
Normally EPDM rubbers are vulcanized by systems based on sulphur, resin or peroxide. The common feature of these systems is that they all require activator energy in the form of heat. The (extremely) high temperatures (approximately 180C) have the disadvantage that the final properties of the finished product may be affected in one way or another by a variety of uncontrolled side reactions which may occur. Radiation curing, on the other hand, is a process which differs from those mentioned above in that the final curing is carried out at about 20C under closely controlled conditions (such as radiation dose,more » penetration depth, etc.), and this form of curing ultimately results in a more well-defined end product. In the rubber industry, this technique is used by large rubber processors (for example, in roof sheeting and cable production). Its widespread use is, however, impeded by the high investment costs. One way of avoiding these high costs is to arrange for the products to be irradiated by contractors. The optimum radiation dose for EPDM is determined by the required pattern of properties. From this study it may be concluded that the network is primarily built up at a radiation dose of up to approximately 100 kGy. The degree to which it is built up depends partly on the coactivator used and the EPDM type used. In choosing the coactivator, allowance has to be made for its solubility in EPDM. The type of oil chosen and any stabilizer additions will affect the crosslinking efficiency. Contrary to studies published earlier, in this study it was found that when EDMA is used as a coactivator, no difference can be detected between a DCPD type (4%) and an ENB type (4%), provided both have an identical molecular weight distribution. Increasing the ENB content has less effect on the final crosslink density than using a type having a broader molecular weight distribution.« less
Sonar Transducer Reliability Improvement Program FY 80.
1980-04-01
transducers has shown that tricresvl Dhosvhate has 2 promise for use where a careful selection of rubber is possible. See Section 2.3. * Information...impedance and are frequently incompatible with the various plastics and rubbers in the transducer. Further research is necessary to find and qualify fill...have excellent or good compatibility with Viton, butyl, chlorobutyl, silicone, and EPDM elastomers. TCP shows marginal compatibility with natural
Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L
2002-02-01
An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.
Jeon, Jin-Hun; Lee, Kyung-Tak; Kim, Hae-Young; Kim, Ji-Hwan
2013-01-01
PURPOSE The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (α=.05). RESULTS The discrepancy between the impressions for the canine, premolar, and molar teeth were 6.3 µm (95% confidence interval [CI], 5.4-7.2), 6.4 µm (95% CI, 5.3-7.6), and 8.9 µm (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: 26.7 µm (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, 16.3 µm (95% CI, 15.3-17.3), and 14.0 µm (95% CI, 12.3-15.7), respectively. CONCLUSION The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between 6.3 µm and 8.9 µm, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions. PMID:24353885
High-silica ZSM 5 zeolites were incorporated into poly(dimethyl siloxane) (PDMS) polymers to form mixed matrix membranes for ethanol removal from water via pervaporation. Membrane formulation and preparation parameters were varied to determine the effect on pervaporation perform...
Production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustion on...
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L. (Inventor)
1985-01-01
A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.
The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry.
Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco
2016-08-25
A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified with furfurylamine to graft furan groups to the rubber backbone. These pendant furan groups are then cross-linked with a bis-maleimide via a Diels-Alder coupling reaction. Both reactions can be performed under a broad range of experimental conditions and can easily be applied on a large scale. The material properties of the resulting Diels-Alder cross-linked rubbers are similar to a peroxide-cured ethylene/propylene/diene rubber (EPDM) reference. The cross-links break at elevated temperatures (> 150 °C) via the retro-Diels-Alder reaction and can be reformed by thermal annealing at lower temperatures (50-70 °C). Reversibility of the system was proven with infrared spectroscopy, solubility tests and mechanical properties. Recyclability of the material was also shown in a practical way, i.e., by cutting a cross-linked sample into small parts and compression molding them into new samples displaying comparable mechanical properties, which is not possible for conventionally cross-linked rubbers.
Shimada, Kunio
2017-01-01
Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor. PMID:28375182
Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber
NASA Astrophysics Data System (ADS)
Yang, In-Hyung; Yoon, Ji-Hyun; Jeong, Jae-Eun; Jeong, Un-Chang; Kim, Jin-Su; Chung, Kyung Ho; Oh, Jae-Eung
2013-01-01
A magnetorheological elastomer (MRE) is a smart material that has a reversible and variable modulus in a magnetic field. Natural rubber, which has better physical properties than silicone matrices, was used as a matrix in the fabrication of the MREs used in this study. Carbonyl iron powder (CIP), which has a rapid magnetic reaction, was selected as a magnetic material to generate the magnetic-field-dependent modulus in the MREs. The MRE specimens were cured in an anisotropic mold, which could be used to induce a uniaxial magnetic field via permanent magnets, to control the orientation of the CIP, and the shear modulus of the MREs was evaluated under a magnetic field induced by using a magnetic flux generator (MFG). Because the use of a conventional evaluation system to determine the magnetic-field-dependent shear modulus of the MREs was difficult, an evaluation system based on single degree-of-freedom vibration and electromagnetics that included an MFG, which is a device that generates a magnetic field via a variable induced current, was designed. An electromagnetic finite element method (FEM) analysis and design of experiments (DoE) techniques were employed to optimize the magnetic flux density generated by the MFG. The optimized system was verified over the range to determine the magnetic flux density generated by the MFG in order to use a magnetic circuit analysis to identify the existence of magnetic saturation. A variation in the shear modulus was observed with increasing CIP volume fraction and induced current. The experimental results revealed that the maximum variation in the shear modulus was 76.3% for 40 vol% CIP at an induced current of 4 A. With these results, the appropriate CIP volume fraction, induced current, and design procedure of the MFG can be proposed as guidelines for applications of MREs based on natural rubber.
Multilayer graphene rubber nanocomposites
NASA Astrophysics Data System (ADS)
Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas
2016-05-01
Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.
Thin Film Composite Materials, Phase 2
1987-01-01
were Kevlar coated with silicone, EPDM , or neoprene rubber , with the following results: 1. Tensile testing of coated Kevlar fabric is very difficult...Monte, CA, but the samples were not large enough for our testing program. e. EPDM . This is a rubber compound which consists of ;n ethylene propylene...materials. 2. A method was developed for measuring water vapor permeability. Neoprene and EPDM are promising as coatings with good water resistance; however
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.
2008-09-01
The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.
Locating a silane coupling agent in silica-filled rubber composites by EFTEM.
Dohi, Hidehiko; Horiuchi, Shin
2007-11-20
A silane coupling agent (SA) was added to silica/rubber composites at different mixing temperatures and the formation of a coupling layer at the silica/rubber interface was investigated by energy-filtering transmission electron microscopy. Bis(triethoxysilypropyl)tetrasulfane (TESPT), which was used as the SA, reacted with the silanol groups on the silica surface and with styrene-butadiene rubber to form an interfacial coupling layer. The silicon and sulfur elemental distributions were analyzed by electron energy loss spectroscopy (EELS) and elemental mapping. The amount of TESPT trapped in the rubber matrix could be qualitatively estimated by EELS, and the in situ formed coupling layer could be characterized by elemental mapping. The result indicated that the formation of the coupling layer was affected by the mixing temperature. The technique described here will contribute to the study of interface-property relationships and the evaluation of the role of SAs in polymeric composites.
A Simple Band for Gastric Banding.
Broadbent
1993-08-01
The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation.
NASA Astrophysics Data System (ADS)
Cai, Dengke; Neyer, Andreas; Kuckuk, Rüdiger; Heise, H. Michael
2010-07-01
Special siloxane polymers have been produced via an addition reaction from commercially available two-component addition materials by thermal curing. Polydimethylsiloxane (PDMS) based polymers have already been used in the optical communication field, where passive polymer multimode waveguides are required for short-distance datacom optical applications. For such purpose, materials with low intrinsic absorption losses within the spectral region of 600-900 nm wavelengths are essential. For vibrational absorption band assignments, especially in the visible and short-wave near-infrared region, the mid-infrared and Raman spectra were investigated for fundamental vibrations of the siloxane materials, shedding light onto the chemistry before and after material polymerization. Within the near-infrared and long-wave visible spectral range, vibrational C sbnd H stretching overtone and combination bands dominate the spectra, rendering an optical characterization of core and clad materials. Such knowledge also provides information for the synthesis and optical characterization, e.g., of deuterated derivatives with less intrinsic absorption losses from molecular vibrations compared to the siloxane materials studied.
Arnold, Robert W; Leman, Rachel E
2007-01-01
Kenneth Wright developed a technique for graded weakening of the superior oblique by increasing the effective length of this extraocular muscle's long tendon with a piece of silicone rubber retinal encircling band commonly used by eye surgery for retinal detachment repairs. In the absence of any specific retinal bands in our Children's Hospital, the following technique was developed affording a non-invasive ability to monitor, which was less intricate than the technique so well described by Demer. We substituted the "Mini Vessel Loop" (by Maaxxim Medical or Henley International). It is an elastic smooth silicone rubber cord that is radio-opaque, and can easily be seen on X-rays and CT scans. It is not an ophthalmologic medical device but it rather is designed to loop around and identify and gently retract blood vessels and nerves in any form of surgery where needed. We demonstrated success similar to that achieved by Wright in 43 patients using these radio-opaque, silicon Mini Vessel loops.
Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials
NASA Astrophysics Data System (ADS)
Ihara, I.; Takahashi, M.
2008-02-01
A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.
Silicone rubber selection for passive sampling of pesticides in water.
Martin, A; Margoum, C; Randon, J; Coquery, M
2016-11-01
Silicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g. pesticides. Silicone rubbers (SRs) with various characteristics have been successfully used in sorptive methods for water sample extraction in the laboratory (SPME, SBSE), and for passive sampling in aquatic environments. However, only few studies have evaluated variability in organic compound sorption due to the origin of SRs, particularly for pesticides. The aim of this study was to select an SR for the extraction of pesticides from water samples by passive sampling. To this end we measured the impact of seven SR formulations on sorption capacity, defined by the partition coefficient (Ksw). Kinetic experiments and sorption isotherms were performed to determine extraction recovery as a selection criterion for SRs, and pesticide partition coefficients. Very large differences in affinity for pesticides were found between two kinds of SRs: "Polymerized SR kits" and "Manufactured SRs". One SR was chosen among the "Manufactured SRs", and the Ksw values of 21 pesticides were determined, filling a gap in the literature (1.50
NASA Astrophysics Data System (ADS)
Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.
2018-01-01
Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.
Fluid-Structure Interaction of Channel Driven Cavity Flow
2016-06-01
3 32 ") thick neoprene rubber sheet. The sheet was bonded to the acrylic using 3M Scotch- Weld Neoprene High Performance Rubber and Gasket Adhesive...TABLES Table 1. Natural Frequencies of the 0.5 mm (0.02”) Thick Aluminum Plate ..........19 Table 2. Mean Normalized Strains...1300. A bead of 100% silicone was applied on the bond to prevent water from infiltrating the adhesive. The 3M Scotch- Weld 1300 adhesive kept the
Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold
2011-03-01
Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.
The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-10-01
The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less
de Oliveira, Aline Carlos; dos Santos, Sidney Xavier; Cavalheiro, Eder Tadeu Gomes
2008-01-15
Composite electrodes were prepared using graphite powder and silicone rubber in different compositions. The use of such hydrophopic materials interned to diminish the swallowing observed in other cases when the electrodes are used in aqueous solutions for a long time. The composite was characterized for the response reproducibility, ohmic resistance, thermal behavior and active area. The voltammetric response in relation to analytes with known voltammetric behavior was also evaluated, always in comparison with the glassy carbon. The 70% (graphite, w/w) composite electrode was used in the quantitative determination of hydroquinone (HQ) in a DPV procedure in which a detection limit of 5.1x10(-8)molL(-1) was observed. HQ was determined in a photographic developer sample with errors lower then 1% in relation to the label value.
New dielectric elastomers with improved properties for energy harvesting and actuation
NASA Astrophysics Data System (ADS)
Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina
2015-02-01
New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric
Compatibility testing of vacuum seal materials
NASA Astrophysics Data System (ADS)
Foster, P. A.; Rodin, W. A.
1993-05-01
Small scale materials compatibility testing was conducted for three elastomers considered for use as vacuum seal materials: Adiprene MOCA-cured; Adiprene Cyanacured; and Sylgard silastic rubber. The tests were conducted using orthogonal array designed experiments for each of the elastomers placed in contact with three materials commonly used during weapon disassembly operations: Duxseal, Sylgard 186 grease, and 2-propyl alcohol. The test results indicated that only the 2-propyl alcohol had a significant effect on the elastomer hardness and physical properties. The alcohol had the largest effect on the two Adiprene materials, and the silastic rubber was the least affected.
Templeton, J L; Spence, R A; Kennedy, T L; Parks, T G; Mackenzie, G; Hanna, W A
1983-01-01
One hundred and thirty seven previously untreated out-patients with first and second degree haemorrhoids were allocated at random to treatment by infrared coagulation (n=66) or rubber band ligation (n=71). Complete follow up was obtained in 122 patients (60 who had undergone infrared coagulation (group 1), and 62 rubber band ligation (group 2)) at periods from three months to one year after completion of treatment. Infrared coagulation produced a satisfactory outcome in 51 patients (85%): 34 were rendered asymptomatic and 17 improved. Rubber band ligation produced a satisfactory outcome in 57 patients (92%): 33 were rendered asymptomatic and 24 improved. Both methods were equally effective in first and second degree haemorrhoids. The incidence of side effects, particularly discomfort, during and after treatment was significantly higher in those treated by rubber band ligation (p less than 0.001). This appeared to be an appreciable deterrent to future patient compliance. The number of patients losing more than 24 hours from work was higher after rubber band ligation than after infrared coagulation. The number of treatments necessary to cure symptoms did not differ significantly between the two methods. Infrared coagulation was significantly faster than rubber band ligation (p less than 0.001). Infrared coagulation is a simple, fast, and effective outpatient method for the treatment of first and second degree haemorrhoids with fewer troublesome side effects and higher patient acceptability than rubber band ligation. PMID:6404471
Copper foil provides uniform heat sink path
NASA Technical Reports Server (NTRS)
Phillips, I. E., Jr.; Schreihans, F. A.
1966-01-01
Thermal path prevents voids and discontinuities which make heat sinks in electronic equipment inefficient. The thermal path combines the high thermal conductivity of copper with the resiliency of silicone rubber.
Toughened epoxy resin system and a method thereof
Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.
1998-03-10
Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.
Toughened epoxy resin system and a method thereof
Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.
1998-01-01
Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.
Poly (ricinoleic acid) based novel thermosetting elastomer.
Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi
2008-01-01
A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.
Kuchel, Philip W; Chapman, Bogdan E; Müller, Norbert; Bubb, William A; Philp, David J; Torres, Allan M
2006-06-01
NMR spectra of (23)Na(+) and (133)Cs(+) in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 degrees C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to approximately 2-fold. After constituting the gel in buffers containing NaCl and CsCl, both (23)Na and (133)Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B(0), of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.
NASA Astrophysics Data System (ADS)
Kuchel, Philip W.; Chapman, Bogdan E.; Müller, Norbert; Bubb, William A.; Philp, David J.; Torres, Allan M.
2006-06-01
NMR spectra of 23Na + and 133Cs + in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 °C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to ˜2-fold. After constituting the gel in buffers containing NaCl and CsCl, both 23Na and 133Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B0, of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.
ERIC Educational Resources Information Center
Wright, Michael D.; And Others
1992-01-01
Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)
Development of tough, moisture resistant laminating resins
NASA Technical Reports Server (NTRS)
Brand, R. A.; Harrison, E. S.
1982-01-01
Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.
NASA Astrophysics Data System (ADS)
Ramadhan, A.; Fathurrohman, M. Irfan; Falaah, A. F.; Setyawan, N.; Soegijono, B.
2017-07-01
The interlayer basal spacing of organoclay (OC) could be increased with stearic acid (SA) added, thus OC changed into expanded organoclay by SA (OCSA). The effect of various loadings of OCSA on the curing, mechanical and swelling properties of natural rubber (NR) nanocomposites were studied. The natural rubber/expanded organoclay (NR/OCSA) nanocomposites were prepared by melt intercalation using a laboratory open mill. The curing characteristics of NR compounds were determined using a Moving Die Rheometer (MDR). The X-ray Diffraction (XRD), Attenuated Total Reflectance Infrared (ATR-IR) Spectroscopy and Field Emission Scanning Electron Microscopy (FESEM) were used to study the dispersion of OCSA in the NR matrix. The mechanical properties of NR/OCSA nanocomposites such as tensile strength, elongation at break and hardness were determined using ISO standard and swelling of NR/OCSA nanocomposites in toluene were determined using ISO 1817. The results showed that the SA intercalated into the gallery of OC and reacted with the hydroxyl groups in OC. It was indicated with the shifting of the negative peak 1,700 to 1,723 cm-1 in the ATR-IR spectrum and increase the d-spacing of OC. The adding of various loadings of OCSA into NR could increase the torque and accelerate the curing of nanocomposites and it also could increase the mechanical and swelling properties of nanocomposites. The change in modulus at 100% elongation significantly increased with increasing the OCSA load until maximum loading at 10 phr. This trend was same with the hardness and modulus at 300% elongation. Meanwhile, the improvement of tensile strength and elongation at break was higher at 4 phr OCSA compared with the other loading. The increase of mechanical and swelling properties of NR/OCSA nanocomposites was due to intercalation/exfoliation of OCSA in NR matrix. It was revealed by appearing of the out-of-plane Si-O-(Al) stretch with peak value 1080 cm-1 in the ATR-IR spectrum and the peaks of OCSA in the XRD pattern was disappeared until the loading of OCSA 8 phr and the thickness of morphology of OCSA below 100 nm.
Application of Lignin as Antioxidant in Styrene Butadiene Rubber Composite
NASA Astrophysics Data System (ADS)
Liu, Shusheng; Cheng, Xiansu
2010-11-01
Lignin isolated from enzymatic hydrolyzed cornstalks (EHL) is a renewable natural polymer, and rubber is one of the most important polymer materials. The application of EHL in rubber industry is of great significance. The influence of EHL and antioxidant RD on the vulcanizing characteristics, thermal oxidative aging stability under free condition, and water extraction resistance of styrene-butadiene rubber (SBR) were investigated. The effect of EHL/antioxidant D composite antioxidant on the thermal oxidative ageing of SBR was also evaluated. Results showed that the protection of SBR from thermal oxidative aging by EHL/antioxidant D composite antioxidant was superior to that of antioxidant D. This is because EHL molecules have hindered phenol group and have excellent auxiliary antioxidant role with antioxidant D. Moreover, the influence of EHL on the vulcanizing characteristics of SBR compounds was better than that of antioxidant RD, and EHL can reduce the cure rate and increase the optimum cure time. It is because that the EHL molecules have hindered phenol group and methoxy group, which can form a special structure to capture free radical and terminate the chain reaction. The retained tensile strength of SBR compounds with EHL was similar to that of the samples with antioxidant RD, while the retained elongation at break of SBR compounds with EHL was higher than that of the samples with antioxidant RD. In addition, the SBR compounds with EHL have a good water extraction resistance property, which was similar to the samples with antioxidant RD. This is because EHL have large molecular weight, good stability and low solubility in water. In conclusion, due to the low price, abundant resources, non-toxic and pollution-free, etc., EHL will have broad application prospect.
Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian
2016-01-01
Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite’s char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance. PMID:28773846
Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian
2016-08-24
Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite's char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance.
Tool for Taking Clay Impressions
NASA Technical Reports Server (NTRS)
Duncan, R. S.
1984-01-01
Clay impression of small parts taken with tool consisting of hollow tube closed at one end. Slots at other end admit part short distance into tube. Impression used to make silicone rubber mold for examination.
Emelyanenko, Alexandre M; Boinovich, Ludmila B; Bezdomnikov, Alexey A; Chulkova, Elizaveta V; Emelyanenko, Kirill A
2017-07-19
We present a simple method for fabricating the superhydrophobic coatings on composite silicone rubber used for electrical outdoor applications. The coating is characterized by contact angles as high as 170° and is mechanically durable in contact with the aqueous phase. We discuss the impact of mechanical durability of the surface texture on the anti-icing performance of the coating on the basis of the experimental data on freezing delay of sessile aqueous droplets. A set of complementary data obtained in laboratory and outdoor experiments on freezing delay time, variation of wettability and practical work of adhesion for supercooled aqueous sessile droplets, impacting behavior of droplets at low negative temperatures, as well as the results of snow and ice accumulation in outdoor experiments indicate the very prospective icephobic properties of the developed coating.
Strategies to improve electrode positioning and safety in cochlear implants.
Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M
1999-03-01
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Pino-Ramos, Victor H.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2017-01-01
Abstract A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli. PMID:29491777
Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study.
Neu, T R; Van der Mei, H C; Busscher, H J; Dijk, F; Verkerke, G J
1993-05-01
Silicone voice prostheses used for rehabilitation of speech after total laryngectomy are inserted in an non-sterile habitat. Deposits on explanted Groningen Button voice prostheses revealed a biofilm, due to heavy colonization of the silicone surface by bacteria and yeasts. Furthermore, it was demonstrated by scanning electron microscopy on sectioned explants that the silicone material was deteriorated by filamentous and vegetative yeast cells. The different explants showed a variety of sharp-edged, discrete yeast colonies. The yeasts grew just under the silicone surface and up to 700 microns into the silicone material. Finally, nine different types of defects in the silicone material created by the yeasts are described. This deterioration of the silicone by yeasts seems to be the main reason for the failure and the frequent replacement of the prostheses. The mechanisms of silicone deterioration are still hypothetical.
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-07-29
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials.
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-01-01
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials. PMID:28773762
Circular, explosion-proof lamp provides uniform illumination
NASA Technical Reports Server (NTRS)
1966-01-01
Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.
Submersed sensing electrode used in fuel-cell type hydrogen detector
NASA Technical Reports Server (NTRS)
Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.
1971-01-01
Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.
Chen, Wan Juan; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Fang, Wei Zhen; Hou, Fei
2016-08-17
How to effectively improve the tracking and erosion resistance of silicone rubber (SR) was an urgent topic in the field of high-voltage insulation. In this work, the tracking and erosion resistance of SR was significantly improved by incorporating platinum (Pt) catalyst and nitrogen-containing silane (NS). The suppression effect and mechanism of Pt/NS on tracking and erosion were studied by inclined plane (IP) test, thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry, laser Raman spectroscopy, and scanning electron microscopy. It revealed that when 1.4 phr of NS and 6.7 ppm of Pt were added, the tracking resistance of SR was improved from 2.5 to 4.5 kV level in the IP test, and the eroded mass was significantly reduced. This might be attributed to the synergistic effect of Pt/NS on silicone chains. At a high temperature produced by arc discharge, Pt/NS would catalyze radical cross-linking, meanwhile suppressing oxidation and depolymerization of silicone chains. Hence, a tightly cross-linked network was formed and protected inner materials from arc ablation. Moreover, carbon deposit during pyrolysis was suppressed by Pt/NS, which served as the secondary mechanism of tracking suppression.
Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development
NASA Technical Reports Server (NTRS)
Gentz, Steve; Taylor, Robert; Nettles, Mindy
2015-01-01
The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.
NASA Astrophysics Data System (ADS)
Mali, Manoj N.; Arakh, Amar A.; Dubey, K. A.; Mhaske, S. T.
2017-02-01
Utilization of waste from tire industry as reclaimed tire rubber (RTR) by formation of blends with high density polyethylene (HDPE) is great area to be focused. Enhancement of properties by the addition of triallyl cyanurate (TAC) as a co-agent with 1%, 3% and 5% to blend of HDPE 50 wt% and RTR 50 wt% in presence of gamma irradiation curing were investigated. Specifically, mechanical and thermal properties were studied as a function of amount of TAC and gamma irradiation dose in range of 50-200 kGy. The resultant blends were evaluated for the values of impact strength, gel content, thermal stability, tensile properties, rheological properties and morphological properties with increasing irradiation dosage and TAC loading. The mechanical properties tensile strength, hardness, impact strength of blend containing 3% of TAC were substantially increased with increasing irradiation dosage up to 150 KGy. Rheological analysis has shown increase in viscosity with increase in TAC loading up to 3% and 150 KGy irradiation dosages. 3% loading of TAC lead to better set of properties with150 KGy gamma irradiation dosage.
On-demand tuned hazard free elastomeric composites: A green approach.
Manoharan, Partheban; Chandra Das, Narayan; Naskar, Kinsuk
2017-07-01
Rising ecological concerns and depletion of the potentially harmful environmental impacts caused by rubber products, are of prime importance in the industry. Therefore, implementation of sustainable greener materials is required to minimize the detrimental influences. In this research, we investigated the beneficial influence of naturally derived bio-resin toward the effects of association with Zinc Oxide Nanoparticles in highly dispersible silica (HDS) reinforced Natural rubber (NR)/Epoxidized Natural Rubber (ENR)-based composites. This novel green composite offers impressive properties which were analyzed based on bound rubber content, transmission electron microscopy, physico-mechanical, dynamic mechanical, and cure characteristics. Nanoindentation studies demonstrated the enhanced hysteresis phenomenon of the green composites. The small angle X-ray scattering (SAXS) characterization has been studied by using a Beaucage model and results corroborates that the insertion of bio-resin exhibits ameliorated state of silica dispersion in the green composites. Overall, the study with the bio-resin has provided the impetus in employing it as an alternative to the expensive synthetic route of silane coupling agent and toxic process oil. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kimel'blat, V. I.; Volfson, S. I.; Chebotareva, I. G.; Malysheva, T. V.
1998-09-01
Pressure relaxation was examined in the cylinder of an MPT Monsanto processability tester after stopping the piston. The experimental function of the pressure drop F(t) was smoothed over and approximated by cubic splines. The spectra of pressure relaxation times (SPRT) were obtained according to the method of Schwarzl-Staverman. The SPRT method served well for estimating the spectra of the molecular-mass distribution (MMD) of polymers close in their physical sense to the SPRT. The correlation of the characteristic relaxation times and average molecular mass of ethylene-propylene rubbers and polyethylenes obtained by gel permeation chromatography was approximated by optimum models used for calculating the the molecular mass of rubbers according to the measurement results of the relaxation pressure of melts. The SPRT and characteristic relaxation times were used to analyze the significant technical properties of compositions based on polyethylene and rubber. The SPRT method was used to examine the failure of the cure network of butyl rubber and the dependence of the mechanical properties of thermoplastic elastomers on the molecular features of the decomposite.
Silicone absorption of elastomeric closures--an accelerated study.
Degrazio, F L; Hlobik, T; Vaughan, S
1998-01-01
There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.
Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants
NASA Astrophysics Data System (ADS)
Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi
2018-02-01
Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.
Silicone-Rubber Microvalves Actuated by Paraffin
NASA Technical Reports Server (NTRS)
Svelha, Danielle; Feldman, Sabrina; Barsic, David
2004-01-01
Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally open and normally closed valves according to the proposal. In each valve, an arch cross section defining a channel having dimensions of the order of tens of micrometers would be formed in a silicone-rubber sheet about 40 m thick. The silicone rubber sheet would be hermetically sealed to a lower glass plate that would define the sealing surface and to an upper glass plate containing a well. The well would be filled with paraffin and capped with a rigid restraining layer of epoxy. In the normally open valve, the paraffin would have a melting temperature above ambient (e.g., 40 C) and the wall of the well would be coated with a layer of titanium that would serve as an electric heater. In the normally closed valve, the paraffin would have a melting temperature below ambient (e.g.-5 C). Instead of a heater in the well, the normally closed valve would include a thermoelectric cooler on top of the epoxy cap.
Implantable drug therapy device: A concept
NASA Technical Reports Server (NTRS)
Feldstein, C.
1972-01-01
Design is described of small, rechargeable, implantable infusor which contains fluid medicament stored under pressure and which dispenses fluid continuously through catheter. Body of infusor is covered by pliable silicone rubber sheath attached to suture pad for securing device.
A Prototype Tactile Sensor Array.
1982-09-15
Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial
Towards Multifunctional Characteristics of Embedded Structures With Carbon Nanotube Yarns
NASA Technical Reports Server (NTRS)
Hernandez, Corey D.; Gates, Thomas S.; Kahng, Seun K.
2006-01-01
This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10-20 m. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.
1977-01-01
The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.
Adhesives, fillers and potting compounds. Second progress report, December 1, 1967--April 1, 1968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichte, H.W.; Akst, I.B.
1968-12-31
Progress in the development program whose immediate purpose is to reduce set time of a silicone compound is described. Data are presented showing that a formulation of a current RTV silicone rubber with dibutyltin diacetate has a profitably lower set time than the same rubber in the present formulation which uses dibutyltin dilaurate, without increase in probability of either reversion or penalty to other weapons components. Time to set sufficiently to allow the next assembly step is 2 to 4 hours, compared to the 16 to 24 hours presently allowed or the 8 to 12 hours minimum attainable with themore » present formulation. The reduction is of the magnitude set as a goal, the attainment of which would increase production capacity enough to reduce the amount of new construction planned to accommodate weapons assembly programs.« less
A study of tape adhesive strength on endotracheal tubes.
Fenje, N; Steward, D J
1988-03-01
A method of assessing the adhesive bond of tapes used to secure endotracheal (ET) tubes is described. Five kinds of tape and six different ET tubes including two silicone rubber, wire-reinforced tubes were tested. There are significant differences in the adhesive strength of different tapes, and in the adhesive bond formed by different ET tube materials. On the Portex clear ET tube, silk tape adhered best (p less than 0.001), followed by waterproof, cloth, dermiclear, and micropore tapes. Adhesive bonding by silk tape was significantly greater (p less than 0.001) for the three clear ET tubes (Portex clear, NCC clear, and Portex ivory) than for the Portex blue and the silicone rubber, wire-reinforced ET tubes. All tapes showed very poor or negligible adhesion to the Sheridan and Portex reinforced ET tubes. Adhesion to these tubes was greatly improved by wrapping them tightly with an "op site" dressing prior to applying tape.
Impregnation of soft biological specimens with thermosetting resins and elastomers.
von Hagens, G
1979-06-01
A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.
A silicone rubber mould of the heart.
Torrent-Guasp, F F; Whimster, W F; Redmann, K
1997-04-01
The macroscopical structure of the ventricular myocardium has been an unsolved problem since the XVIth century, when Anatomy started as an authentic science. Since then the spatial organization of the myocardial fibres has represented, as Pettigrew says, "an arrangement so unusual and perplexing, that it has long been considered as forming a kind of Gordian knot in Anatomy. Of the complexity of the arrangement I need not speak further than to say that Vesalius, Albinus, Haller and De Blainville, all confessed their-inability to unravel it". What is shown in the present paper is the result of an anatomical work, developed over 43 years, by means of which it has been shown that the ventricular myocardial mass consists of a band, curled in a helical way, which extends from the pulmonary artery to the aorta. This is illustrated by a silicone rubber model cast from an actual unrolled myocardial band.
Mechanical evaluation of a ruptured Swedish adjustable gastric band.
Reijnen, Michael M P J; Naus, J H; Janssen, Ignace M C
2004-02-01
Leakage of a laparoscopically placed Swedish adjustable gastric band (SAGB) was observed 2 1/2 years after placement. The band was evaluated for mechanical inaccuracies by a laboratory. The ruptured SAGB was investigated microscopically and wall thicknesses were measured. An unused SAGB was tested, both empty and filled, for mechanical deformity after exposure to saline solution. A permanent transformation of the silicone rubber was found, caused by bowing of the device. 2 tears were present at the end of a kink. The mean wall thickness was within acceptable limits. Exposure of the gastric band to saline solution did not cause any sign of permanent deformity of the silicone rubber. The rupture of the gastric band did not seem to be caused by a production error. Long-term deformity, in combination with a continuous dynamic load, may increase the risk of tearing. Long-term follow up is recommended for patients treated with this device.
In vitro action of progestogens on sperm migration in human cervical mucus;.
Kesserü, E; Camacho-Ortega, P; Laudahn, G; Schopflin, G
1975-01-01
The presence of progestogens in the cervical mucus suppresses and arrests sperm penetration. Using the Kremer technique, the effects of in vitro released progesterone, d-norgestrel, and cyproterone acetate were studied by inserting silicone rubber threads bearing the respective compounds into capillary tubes containing cervical mucus. Control tubes were fitted with nonmedicated silicone rubber threads. After 24 hours of incubation, the sperm migration test was carried out to evaluate penetration depth, qualitative motility, and proportion of motile forms. Progesterone produced the greatest alterations. Migration was arrested within 30 minutes, the distance reached was consistently less than 2 cm, and sperm were completely immobile at 24 hours. D-norgestrel also exhibited a distinct spermiostatic effect, but it was not as intense as that of progesterone. Cyproterone acetate was practically effective during the first 120 minutes and produced alterations only in the qualitative and proportional motility.
Liravi, Farzad; Vlasea, Mihaela
2018-06-01
The data included in this article provides additional supporting information on our recent publication (Liravi et al., 2018 [1]) on a novel hybrid additive manufacturing (AM) method for fabrication of three-dimensional (3D) structures from silicone powder. A design of experiments (DoE) study has been carried out to optimize the geometrical fidelity of AM-made parts. This manuscript includes the details of a multi-level factorial DOE and the response optimization results. The variation in the temperature of powder-bed when exposed to heat is plotted as well. Furthermore, the effect of blending ratio of two parts of silicone binder on its curing speed was investigated by conducting DSC tests on a silicone binder with 100:2 precursor to curing agent ratio. The hardness of parts fabricated with non-optimum printing conditions are included and compared.
1981-11-01
Showing Wire . 99 Impregnanted Silicone Rubber Contacts, Chip Carrier, ard Lid 35. Technit Connector For 68-Pad JEDEC Type A Leadless . . 100 Chip Carrier...Points of Various . . . . 124 Solders 4. Composition of Alloys Employed in Dual-In-Line . . . . 128 Package Pins and Plating by Mass Spectrographic...swings, and subnanosecond gate delays and risetimes. Presently, emitter coupled logic (ECL) and current mode logic (CML), both fabricated with silicon tech
Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M
2008-01-01
Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.
Wang, Fang; Xu, Juan; Luo, Heyi; Wang, Jinggang; Wang, Qian
2009-10-12
Practical adhesion of rubber to aluminum is measured for various aluminum silanization treatments. In this study, 6-(3-triethoxysilylpropylamino)-1,3,5-triazine-2,4-dithiol (TES) was used as the coupling agent for preparing self-assembly monolayers (SAMs) on an aluminum surface. The structure and chemical composition of the SAMs were analyzed using Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The changes in the surface features of the aluminum surface due to TES treatment were investigated by atomic force microscopy (AFM). The adhesive properties of the silanized aluminum surface and EPDM rubber have been evaluated by a T-peel strength test. The results suggested that the Si-O-Al bonding at aluminum TES interface existed and a TES self-assembly monolayer was formed on the aluminum surface. More than 6.0 KN/m adhesion strength is obtained when the aluminum is silanized with 2.5 mmol/dm(3) TES, cured at 160 degrees C and vulcanized with EPDM rubber at 160 degrees C for 30 min. It is suggested that the TES self-assembly monolayer is bound to aluminum through its ethoxysilyl functional group, and the thiol function group is strongly crosslinked to EPDM rubber, respectively.
Toughening mechanism in elastometer-modified epoxy resins: Part 1
NASA Technical Reports Server (NTRS)
Yee, A. F.; Pearson, R. A.
1983-01-01
Several plaques of Epon 828, cured with piperidine, modified with hycar(r) CTBN 1300X8, Hycar(R) CTBN 1300X13, and Hycar(R) CTBN 1300x15, and in some cases modified with biphenol A (BPA), yielded properly toughened epoxies with rubber particle diameters ranging from 0.1 to 10 microns. Fracture toughness experiments indicate that toughness was more a function of rubber content than the rubber particle size. Tensile volumetric behavior of the near resin exhibits two regions: an initial region where the increase in volume strain was due to the Poisson's effect, and a second region where a slower rate of increase in volume strain was due to shear deformation. Tensile volumetric deformation of an elastomer-modified epoxy exhibits the same type of behavior to that of the neat resin at low rates ( 3.2x0.01 sec(-1)). But at very high strain rates, which correspond more closely to the strain rates at the crack tip, there exists an increase in volume strain beyond the Poisson's effect. TEM, SEM and OM studies indicate that the rubber particles had voided. When a thin section from the deformed region is viewed under crossed-polarized light, shear bands are seen connecting voided rubber particles. From this information cavitation and enhanced shear band formation is proposed as the toughening mechanism.
Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica
NASA Astrophysics Data System (ADS)
Syakur, Abdul; Hermawan; Sutanto, Heri
2017-04-01
Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.
A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimi, H.R.
This study examines several mechanisms by which the fatigue crack propagation (FCP) resistance of shear-yielding thermoset polymers can be improved. Specifically, this research has four objectives as follows: first, to develop a mechanistic understanding of the FCP behavior of rubber-modified thermoset polymers; second, to understand the effect of strength and shape of the inorganic fillers on the FCP resistance and micromechanisms in filled epoxy polymers; third, to elucidate the nature of the interactions among the crack-tip shielding mechanisms in thermoset polymers subjected to cyclic loading and synergistically toughened with both rubber and inorganic particles (i.e., hybrid composites); fourth, to studymore » the role of interfaces on the synergistic interactions in FCP behavior of hybrid composites. The model - matrix material consists of a diglycidyl ether of bisphenol A (DGEBA) based type epoxy cured with piperidine. Parallel to the first objective, the epoxy matrix was modified with rubber while changing volume fraction, type, and size of the rubber particles. To accomplish the second goal, the epoxy polymers were modified by a total 10 volume percent of either one of the following three types of inorganic modifiers: hollow glass spheres (HGS); solid glass spheres (SGS); and short glass fibers (SGF). The third goal was met by processing three different systems of hybrid epoxy composites modified by (1) CTBN rubber and HGS, (2) CTBN rubber and SGS, and (3) CTBN rubber and SGF. The total volume fraction of the two modifiers in each hybrid system was kept constant at 10 percent while systematically changing their ratio. To meet the fourth objective, the surface properties of the SGS particles in the hybrid system were altered using adhesion promoter. A mechanistic understanding of the FCP behavior of rubber-modified epoxies was achieved by relating fractographs to observed FCP behavior.« less
"Easy-on, Easy-off" Blanket Fastener
NASA Technical Reports Server (NTRS)
Kolecki, Ronald E.; Clatterbuck, Carroll H.
1992-01-01
Fasteners hold flexible blanket on set of posts on supporting structure. Disk of silicone rubber cast on disk of Mylar, fastened to blanket and press-fit over post to nest securely in groove. No tools needed for installation or removal.
Electroformed screens with uniform hole size
NASA Technical Reports Server (NTRS)
Schaer, G. R.
1968-01-01
Efficient method electroforms fine-mesh nickel screens, or plagues, with uniform hole size and accurate spacing between holes. An electroformed nickel mandrel has nonconducting silicone rubber projections that duplicate the desired hole size and shape in the finished nickel screen.
Characterization of Adhesives for Attaching Reusable Surface Insulation on Space Shuttle Vehicles
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1973-01-01
An extensive development and testing program on adhesive systems shows that: (1) A closed cell silicone rubber sponge bonded to substrates with thin bond lines of glass filled adhesive exhibits density and modulus values approximately one third that of solid silicone adhesives; (2) utilization of glass or phenolic microballoons as fillers in silicone adhesives reduces density but increases moduli of the vulcanized materials; (3) the silicone elastomer based adhesives appear to be complex systems rather than homogeneous, isotropic materials. Tensile, shear, and compression properties plotted versus temperature verify this conjecture; and (4) constant strain-stress relaxation tests on glass-filled adhesive show that stress relaxation is most pronounced near the glass transition temperature.
Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A
2014-09-01
The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p < 0.05) and a posteriori Mann-Whitney U test with Bonferroni correction (p < 0.0167) revealed a significant reduction of enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.
NASA Astrophysics Data System (ADS)
Seguchi, Tadao
2000-03-01
Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping
2016-04-01
To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...
2016-07-12
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Biocompatible materials developments for new medical implants.
Hodgins, Diana; Wasikiewicz, J M; Grahn, M F; Paul, D; Roohpour, N; Vadgama, P; Silmon, Angela M; Cousins, Bernard; Verdon, Brian
2007-10-01
Recent work on modifying silicone rubber to improve water permeability and biocompatibility is described. In addition, modifications to the interface between an active implanted device and the body are reported, which have led to reduced power consumption and improved device performance.
New rubber qualification for the igniter adapter
NASA Technical Reports Server (NTRS)
Humpherys, Mark A.
1994-01-01
Kirkhill Rubber Company (KRC) has informed Thiokol Corporation that two raw materials used in the asbestos and silica filled acrylonitrile butadience rubber (NBR) formulation per STW 2621 are no longer available from their vendors. Agerite White (Di-beta-naphthyl-paraphenylene diamine), manufactured by B. F. Goodrich, is an antioxidant used in NBR. This raw material makes up roughly 1-2 percent of the finished product. KRC proposed that this raw material be replaced by Agerite Stalite S (mixture of octylated diphenylamines) distributed by R. T. Vanderbilt Co. Protox-166 zinc oxide, manufactured by Zinc Corporation of America, is an activator currently used in NBR. This material also makes up about 1-2 percent of the finished material. Protox-166 is an American process grade zinc oxide. It is proposed by KRC to replace Protox-166 with Kadox-930C, a French process grade zinc oxide. American process grades have an ASTM minimum purity of 99.0 percent; the French process grades have a minimum purity of 99.5 percent. Previous testing per WTP-0270 has demonstrated that the mechanical and thermal properties of the rubber with the new ingredients are comparable to the 'old' rubber. The test results are reported in TWR-61790. One igniter adapter, Part no. 7U77562-02 serial no. 2 was insulated per ETP-1206 using the new rubber formulation and a modified lay up and cure method to demonstrate that there is no impact on this process. The results of this demonstration are reported.
Landi, S; Held, H R
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily.The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives.We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol.
Landi, S.; Held, H. R.
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily. The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives. We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol. ImagesFIG. 2 PMID:5294923
Natural Rubber Nanocomposite with Human-Tissue-Like Mechanical Characteristic
NASA Astrophysics Data System (ADS)
Murniati, Riri; Novita, Nanda; Sutisna; Wibowo, Edy; Iskandar, Ferry; Abdullah, Mikrajuddin
2017-07-01
The blends of synthetic rubber and natural rubber with nanosilica were prepared using a blending technique in presence of different filler volume fraction. The effect of filler on morphological and mechanical characteristics was studied. Utilization of human cadaver in means of medical study has been commonly used primarily as tools of medical teaching and training such as surgery. Nonetheless, human cadaver brought inevitable problems. So it is necessary to find a substitute material that can be used to replace cadavers. In orthopaedics, the materials that resemble in mechanical properties to biological tissues are elastomers such as natural rubber (latex) and synthetic rubber (polyurethanes, silicones). This substitution material needs to consider the potential of Indonesia to help the development of the nation. Indonesia is the second largest country producer of natural rubber in the world. This paper aims to contribute to adjusting the mechanical properties of tissue-mimicking materials (TMMs) to the recommended range of biological tissue value and thus allow the development of phantoms with greater stability and similarity to human tissues. Repeatability for the phantom fabrication process was also explored. Characteristics were then compared to the control and mechanical characteristics of different human body part tissue. Nanosilica is the best filler to produce the best nanocomposite similarities with human tissue. We produced composites that approaching the properties of human internal tissues.
Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost effective, long life solar cell modules are identified, and evaluated. Ethylene vinyl acetate lamination pottant studies are conducted with respect to the time/temperature cure requirements for successful use of this compound. The time needed to produce successful gel contents are redetermined at a variety of temperatures and are related to the peroxide half life temperature curve. Formulation of the butyl acrylate syrup casting pottant is complete. The formulation contains an ultraviolet stabilizer system and is cured with an initiator that presents no shipping or handling hazards. The catalyzed syrup is stable at room temperature and has a pot life of at least an eight hour period of time. The syrup cures to a transparent rubber in 18 minutes at a temperature of 60 C.
In-situ measurement of thermoset resin degree of cure using embedded fiber optic
NASA Astrophysics Data System (ADS)
Breglio, Giovanni; Cusano, Andrea; Cutolo, Antonello; Calabro, Antonio M.; Cantoni, Stefania; Di Vita, Gandolfo; Buonocore, Vincenzo; Giordano, Michele; Nicolais, Luigi, II
1999-12-01
In this work, a fiber optic sensor based on Fresnel principle is presented. It is used to monitor the variations of the refractive index due to the cure process of an epoxy based resin. These materials are widely used in polymer- matrix composites. The process of thermoset matrix based composite involves mass and heat transfer coupled with irreversible chemical reactions inducing physical changes: the transformation of a fluid resin into a rubber and then into a solid glass. To improve the quality and the reliability of these materials key points are the cure monitoring and the optimization of the manufacturing process. To this aim, the fiber optic embedded sensor has been designed, developed and tested. Preliminary results on sensor capability to monitor the cure kinetics are shown. Correlation between the sensor output and conversion advancement has been proposed following the Lorentz-Lorenz law. Isothermal data form the sensor have been compared with calorimetric analysis of an epoxy based resin.
Heintze, Siegward Dietmar; Forjanic, Monika
2008-10-01
To evaluate the effect of the multiple-use of a three-step rubber-based polishing system on the polishing performance with and without a disinfection/sterilization protocol with prolonged disinfection (overnight). The three-step polishing system Astropol was applied under standardized contact pressure of 2 N on 320 grit pre-roughened flat composite specimens of Tetric EvoCeram for 10 seconds (F and P disc) and 30 seconds (HP disc) respectively. After each polishing step, the surface gloss and roughness were measured with a glossmeter and an optical sensor (FRT MicroProf), respectively. Material loss of the composite specimens and polishing instruments were measured after each step with a high precision digital scale. For all four variables (surface gloss, surface roughness, composite loss, loss of rubber material) the mean percentage of change compared to the reference was calculated. Already after the first use, the instruments which were used without disinfection or sterilization demonstrated a statistically significantly reduced polishing performance in all polishing steps compared to the reference (new polishing system) (t-test, P < 0.05). In addition, this loss in performance further increased with the second and third re-use. Especially the third component (Astropol HP) was affected by performance loss. By contrast, the multiple-use of the instruments which were subjected to prolonged disinfection did not result in a reduced polishing performance. For the P disc, a statistically significant improvement of the polishing performance could be observed throughout almost all multiple-use sessions (ANOVA, P < 0.05). The improved polishing performance was, however, accompanied by an increased loss of the silicone rubber material of the P and F polishing discs; the HP discs were not affected by this loss. Furthermore, particles of the rubber material also adhered to the composite. The polishing performance of the discs which were only subjected to the sterilization process was not statistically significantly different to the polishing performance of the control group in terms of surface roughness; but the surface gloss was worse than that of the control group. No loss of rubber material or adherence to the composite was observed in this group.
NASA Astrophysics Data System (ADS)
Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.
2018-05-01
In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
Reusable autoclavable silicone rubber dish for insect dissection
J.D. Podgwaite; R.D. Neely; R.T. Zerillo
1974-01-01
During a disease-diagnosis study which involved a large number of gypsy moth larvae, Porthetria dispar (L.),it became necessary to develop a dissecting dish that, while possessing the positive attributes of conventional wax and paraffin dishes, also could be sterilized and reused.
Evaluation of SRM flex bearing materials and processes
NASA Technical Reports Server (NTRS)
Wood, T. E.
1980-01-01
Tensile, peel, and shear testing was performed on combinations of primers, adhesives, tycements and rubber compounds cured at various times and temperatures. The materials used in the fabrication of the solid rocket motor flex bearing as well as in other systems were evaluated. A compatibility study between adhesives and tycements was initiated. The flex bearing mold design was reviewed by our tooling experts.
[Chromosome aberration frequency in workers in tire and industrial ruber manufacture].
Aleksandrov, S E
1982-01-01
A cytogenetic study was carried out with the view to analyse blood and embryonic tissue cultures taken from female workers of various shops of tyre and rubber industry. In workers of preparation shops the level of chromosome aberrations in blood was equal to 2.63%, while in embryonic tissues the value was 6.33%. The number of aberrations on blood and embryonic tissue exhibited by workers of chemical shops was equal to 1.34 and 2.79%, respectively. No specific differences were observed in the sub-group of women having been in frequent contacts with gasoline or curing gases, as compared with the group on the whole. Curing accelerators which are ingredients of toxic dust in preparation shops of tyre and rubber industry cause a sharp increase in the number of chromosome aberrations both in blood and in the embryonic tissues of women. Data on induced abortions may be used for evaluation of the influence of chemicals on the developing fetus and can serve as a test models of mutagenic and embryotoxic effect. They also may be regarded as a part of the general system of the evaluation of mutagenic effects of chemicals in humans.
A prospective study of outcome from rubber band ligation in third degree haemorrhoids.
Khan, Asma Niaz; Khan, Naveed Ali
2010-11-01
To evaluate the efficacy and effectiveness of rubber band ligation on 3rd degree haemorrhoids. Study was done at Surgical Unit, Civil Hospital Karachi, during a period of 19 months from December 2006 to July 2008. Out of 344 patients 80 patients were included in the study with 3rd degree internal haemorrhoids and were treated with Rubber band ligation (RBL). Outcome data was recorded for success of treatment. Among 80 patients, 77 (96.25%) were symptom free. After completion of treatment, 1 (16.66%) out of 5 patients had the complaint of pain, 2 (2.85%) out of 70 had complaints of constipation. Before start of treatment 5 (6.25%) patients complained of bleeding per rectum and 73 (91.25%) complained of manually reducible/prolapsed haemorrhoids. Both complaints were cured 100% after treatment. RBL is an efficient, cost-effective and simple out patient procedure for symptomatic third degree haemorrhoids with minimum complications. RBL is a reliable, safe procedure requiring no hospitalization and no use of any anaesthetic drugs.
NASA Technical Reports Server (NTRS)
Wingard, Charles D.
1999-01-01
Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM of each of the two Solid Rocket Boosters (SRBs) on the Space Shuttle. Each cured insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive, and some of the curved areas in the rubber may have significant residual stresses. A number of recently bonded NBR insulators have shown fine surface cracks, and stressed insulator areas may be aging at a faster rate than unstressed areas, thus hastening the surface cracking. Thermal analysis data on both vendor insulators by Dynamic Mechanical Analysis (DMA) through a temperature/frequency sweep from 24 to 74 C have shown a higher flexural storage modulus and Arrhenius activation energy for the stressed area than for the unstressed area. Other thermal analysis techniques are being used to study the insulator surface vs. bulk interior for better understanding this anomaly.
"Professor" Charles Tyrrell and his ideal sight restorer.
Ferry, A P
1986-09-01
Charles A. Tyrrell was a masseur who obtained his MD degree at age 57 in 1900. In addition to his private practice he was editor of several pseudomedical magazines. He also owned two proprietary ventures that he conducted on a mail order basis. One of these involved production and sale of the The Ideal Sight Restorer, a U-shaped device consisting of a rubber bulb at the base, from which on both sides arose an arm of rubber tubing capped by an ivory eye piece. The eye cups were applied to the closed eyelids and the intermittent suction produced by squeezing the rubber bulb was claimed to provide a form of ocular massage capable of curing serious eye diseases (eg. cataract and glaucoma), as well as doing away with the need for spectacles. Although his fraudulent activities and deceptive advertising practices were described on several occasions in the Journal of the American Medical Association, Dr. Tyrrell persisted in his enterprises until he died in 1918.
Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman
2014-07-01
Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.
Zhang, Yi-ming; Wang, Shao-liang; Lei, Ze-yuan; Fan, Dong-li
2009-09-01
Although silicone rubber (SR) implants are most commonly used and effective for soft-tissue augmentation, they still have been implicated in many adverse reactions. To overcome this problem, a novel composite beta-tricalcium phosphate/silicone rubber (beta-TCP/SR) was prepared by adding beta-TCP into a SR matrix. This study was to evaluate its application potential by investigating the mechanical properties and biocompatibility of beta-TCP/SR. Mechanical properties, including Shore A hardness and tensile strength, were evaluated with 3-mm-thick samples and a universal testing machine. Cytocompatibility tests were conducted in vitro using 0.2-mm-thick beta-TCP/SR samples by seeding fibroblasts onto different samples. Soft-tissue response to beta-TCP/SR and pull-out measurements were investigated 4 weeks and 24 weeks after implantation. The main mechanical properties were all significantly changed after mixing beta-TCP into the SR matrix, except for tearing strength. The cytocompatibility test showed enhanced adhesion and proliferation of fibroblasts onto beta-TCP/SR. Fibrous tissue ingrowth after resorption of beta-TCP was observed by in vivo histologic analysis. The peri-implant capsules in the beta-TCP/SR group were thinner than in the SR group 24 weeks after implantation. In a 24-week test, the maximum force required to pull out the beta-TCP/SR sheet was about six times greater than that needed for SR. Although some mechanical properties were significantly changed, the results of the cytocompatibility test and in vivo animal study still suggest that beta-TCP/SR may be more suitable as a soft-tissue implant than SR and has the potential to be used in plastic surgery.
Gilly, H; Weindlmayr-Goettel, M; Köberl, G; Steinbereithner, K
1992-10-01
The amounts of halothane and isoflurane trapped after exposure for up to 3 h at 2 MAC in commonly used anaesthesia circuit tubing were quantitated by gas chromatography. The decontaminating effects of procedures such as flushing with oxygen, thermal disinfection and/or routine storage were assessed in a similar way. After halothane exposure, anaesthetic content was highest in silicone (398 +/- 55 mg 100 g-1). Lower quantities were found in all other tubings investigated (electrically conductive latex: 64 +/- 4, conductive rubber: 62 +/- 4, polyethylene-vinyl-acetate (PEVA): 293 +/- 10 and 149 +/- 17 for non-conductive corrugated and spiral tubes, respectively, polysulfone (Hytrel): 155 +/- 10 mg 100 g-1). The isoflurane contents were substantially lower (silicone: 278 +/- 23; others: 55 +/- 7, 61 +/- 6, 163 +/- 9 and 86 +/- 8, 74 +/- 4 mg 100 g-1). The tubings' content did not correlate with the material's partition coefficient as full saturation was not achieved during exposure. Decontamination procedures reduced the content of volatile anaesthetics to a variable extent. Conductive latex and rubber showed the highest residual content, even after thermal disinfection and subsequent storage. Twenty-minute flushing with oxygen (8 l min-1) decreased effluent gas concentrations below 5 p.p.m. in all tubings. With silicone, after 1 h flushing, halothane concentrations still exceeded 10 p.p.m. (isoflurane: 8 p.p.m.). It is concluded that urgent decontamination by a 20-min flush warrants the safe re-use of previously 'contaminated' conductive rubber and latex as well as polysulfone tubings in critical situations, e.g. in malignant hyperthermia patients if disposable tubing is not immediately available.(ABSTRACT TRUNCATED AT 250 WORDS)
Silicon strain gages bonded on stainless steel using glass frit for strain sensor applications
NASA Astrophysics Data System (ADS)
Zhang, Zongyang; Cheng, Xingguo; Leng, Yi; Cao, Gang; Liu, Sheng
2014-05-01
In this paper, a steel pressure sensor using strain gages bonded on a 17-4 PH stainless steel (SS) diaphragm based on glass frit technology is proposed. The strain gages with uniform resistance are obtained by growing an epi-silicon layer on a single crystal silicon wafer using epitaxial deposition technique. The inorganic glass frits are used as the bonding material between the strain gages and the 17-4 PH SS diaphragm. Our results show that the output performances of sensors at a high temperature of 125 °C are almost equal those at room temperature, which indicates that the glass frit bonding is a good method and may lead to a significant advance in the high temperature applicability of silicon strain gage sensors. Finally, the microstructure of the cured organic adhesive and the fired glass frit are compared. It may be concluded that the defects of the cured organic adhesive deteriorate the hysteresis and repeatability errors of the sensors.
Current status and prospects of radiation processing studies in Taiwan, R. O. C.
NASA Astrophysics Data System (ADS)
Fu, Ying-Kai
The research on radiation processing in past 5 years in Taiwan covers industrial application of radiation-induced polymerization and curing, medical application of radiosterilization of medical supplies, chemicals, and amniotic membrane for wound dressing as well as agricultural application of food irradiation and genogenesis etc. Radiation-induced polymerization applied on wood and bamboo plastic composite of methyl methacrylate, radiation curing on polyurethane and silicon rubber for biomedical material using to separate oxygen from nitrogen and on crosslinking of pp and ps for artificial skin for wound dressing were all success. Radio-sterilization of disposable medical supplies appears for immediate application after the studies of the dose requirement of several radioresistant microorganisms, dose distribution measured by chemical dosimeters of ceric sulfate and Fricke dosimeter as well as quality control system were completed. The radiosterilization study of tetracycline - HCl and few detoxic agents like atropine sulfate and toxogonin has shown the promising results on radiosterilization of chemicals, the radiosterilization of amniotic membrane for wound dressing are also success. Food irradiation on sprouting inhibition of potatoes, garlic etc, on radiodisinfestation of cereal insects, tobacco bettles, soybean insects, and flour beetles, as well as on frog legs and porks have been also discussed. The legislation on radiosterilization of medical supplies and food irradiation of 14 items has been approved by National Health Administration, R.O.C. in July of 1982 and January of 1985 respectively. Even 24 hrs-operation of 1 Mega curie irradiation plant at INER can not satisfy the requirement of radiosterilization of medical supplies. A private commercial irradiation plant is urgently needed in Taiwan other than at INER now.
NASA Astrophysics Data System (ADS)
Razavizadeh, Mahmoud; Jamshidi, Masoud
2016-01-01
Fiber to rubber adhesion is an important subject in rubber composite industry. It is well known that surface physical, mechanical and chemical treatments are effective methods to improve interfacial bonding. Ultra violet (UV) light irradiation is an efficient method which is used to increase interfacial interactions. In this research UV assisted chemical modification of PET fabric was used to increase its bonding to nitrile rubber (NBR). NBR is perfect selection to produce fuel and oil resistant rubber parts but it has weak bonding to fabrics. For this purpose at first, the PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was reacted and grafted to carboxylated PET. T-peel test was used to evaluate PET fabric to NBR bonding strength. Attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR-AT) was used to assess surface modifications of the PET fabrics. The chemical composition of the PET surfaces before and after carboxylation and MDI grafting was investigated by X-ray photoelectron spectroscopy (XPS). It was found that at vulcanizing temperature of 150 °C, carboxylation in contrary to MDI grafting, improved considerably PET to NBR adhesion. Finally effect of curing temperature on PET to NBR bonding strength was determined. It was found that increasing vulcanizing temperature to 170 °C caused considerable improvement (about 134%) in bonding strength.
Work environments and exposure to hazardous substances in korean tire manufacturing.
Lee, Naroo; Lee, Byung-Kyu; Jeong, Sijeong; Yi, Gwang Yong; Shin, Jungah
2012-06-01
The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Workers were exposed to rubber fume that exceeded 0.6 mg/m(3), the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to 28.1℃ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was 2.7℃ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.
NASA Astrophysics Data System (ADS)
Surya, I.; Ismail, H.
2018-02-01
The effects of Alkanolamide (ALK) addition on swelling, rheometric and tensile properties of unfilled chloroprene rubber (CR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and -together with magnesium and zinc oxides- incorporated into the CR compounds. The ALK loadings were 0.5, 1.0, 1.5 and 2.0 phr. It was found that ALK enhanced the cure rate and torque difference of the CR compounds. ALK also enhanced the tensile modulus and tensile strength; especially up to a 1.5 phr loading. The swelling test proved that the 1.5 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength.
A nonaffine network model for elastomers undergoing finite deformations
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2013-08-01
In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.
Polydimethyl siloxane (PDMS) and zeolite incorporated mixed matrix materials are gaining importance in a variety of applications including membrane separation. PDMS based membranes are used in pervaporation (PV), a membrane technology, for the selective removal of organics such ...
Fermentative organisms produce a range of compounds in addition to the desired product. For example, in addition to ethanol, standard yeast produce longer straight-chained and branched alcohols and organic acids. Additionally, biomass pretreatment process, particularly acid-bas...
Quality evaluation of radiographic contrast media in large-volume prefilled syringes and vials.
Sendo, T; Hirakawa, M; Yaginuma, M; Aoyama, T; Oishi, R
1998-06-01
The authors compared the particle contaminations of radiographic contrast media packaged in large-volume prefilled syringes and vials. Particle counting was performed for four contrast media packaged in large-volume prefilled syringes (iohexol, ioversol, ioversol for angiography, and ioxaglate) and three contrast media packaged in vials (iohexol, ioversol, and ioxaglate). X-ray emission spectrometry was performed to characterize the individual particles. The amount of silicone oil in the syringe was quantified with infrared spectrophotometry. The particle contamination in syringes containing ioversol was higher than that in syringes containing iohexol or ioxaglate. Particle contamination in the vials was relatively low, except with ioxaglate. X-ray emission spectrometry of the components of the syringe and vial showed that the source of particles was internal material released from the rubber stopper or inner surface. The particle counts for contrast media packaged in syringes and vials varied considerably among the different contrast media and were related to the amount of silicone oil on the inner surface and rubber piston of the syringe.
Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties
NASA Astrophysics Data System (ADS)
Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio
2015-05-01
Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.
Study on Elastic Helical TDR Sensing Cable for Distributed Deformation Detection
Tong, Renyuan; Li, Ming; Li, Qing
2012-01-01
In order to detect distributed ground surface deformation, an elastic helical structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This special sensing cable consists of three parts: a silicone rubber rope in the center; a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the sensing cable. By analyzing the relationship between the impedance and the structure of the sensing cable, the impedance model shows that the sensing cable impedance will increase when the cable is stretched. This specific characteristic is verified in the cable stretching experiment which is the base of TDR sensing technology. The TDR experiment shows that a positive reflected signal is created at the stretching deformation point on the sensing cable. The results show that the deformation section length and the stretching elongation will both affect the amplitude of the reflected signal. Finally, the deformation locating experiments show that the sensing cable can accurately detect the deformation point position on the sensing cable. PMID:23012560
Three-axis particle impact probe
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.
Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu
2015-09-18
Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang
2013-02-01
Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1-18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum -11.85 dB at 1.5 mm and -15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band.
Reaction cured glass and glass coatings
NASA Technical Reports Server (NTRS)
Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)
1978-01-01
The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).
NASA Astrophysics Data System (ADS)
Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.
2014-06-01
In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.
3-D PARTICLE TRANSPORT WITHIN THE HUMAN UPPER RESPIRATORY TRACT
In this study trajectories of inhaled particulate matter (PM) were simulated within a three-dimensional (3-D) computer model of the human upper respiratory tract (URT). The airways were described by computer-reconstructed images of a silicone rubber cast of the human head, throat...
Solenoid Valve With Self-Compensation
NASA Technical Reports Server (NTRS)
Woeller, Fritz H.; Matsumoto, Yutaka
1987-01-01
New solenoid-operated miniature shutoff valve provides self-compensation of differential pressure forces that cause jamming or insufficient valve closure as in single-seal valves. Dual-seal valve is bidirectional. Valve simultaneously seals both inlet and outlet tubes by pressing single disk of silicone rubber against ends of both.
In traditional pervaporation systems, the permeate vapor is completely condensed to obtain a liquid permeate stream. For example, in the recovery of ethanol from a 5-wt% aqueous stream (such as a biomass fermentation broth), the permeate from a silicone rubber pervaporation membr...
Effect of light energy density on conversion degree and hardness of dual-cured resin cement.
Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço
2010-01-01
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.
Leunisse, C; van Weissenbruch, R; Busscher, H J; van der Mei, H C; Dijk, F; Albers, F W
2001-01-01
After total laryngectomy, voice can be restored with a silicone rubber tracheoesophageal voice prosthesis. However, biofilm formation and subsequent deterioration of the silicone material of the prosthesis will limit device life by impairing valve function. To simulate the natural process of biofilm development under dynamic nutrient conditions, a modified Robbins device was used to evaluate the biofilm-related valve dysfunction of the Groningen, Provox2, Blom-Singer indwelling, and VoiceMaster voice prostheses. Obstruction of the semicircular slit-valved Groningen prosthesis leading to increased airway resistance was caused not only by a buildup of deposits on the esophageal flange and valve hat, but also by accumulation of deposits on the semicircular valve seating. The hinged flap valved Provox2 and indwelling Blom-Singer prostheses failed to close sufficiently because of biofilm formation on the valve seating. The esophageal flange of the VoiceMaster prosthesis was affected, but the tripod structure of the ball valve was fully colonized up to the titanium sleeve, which interfered with proper valve opening and closure. These findings on biofilm formation could be used for the further development and modification of critical design features of voice prostheses to facilitate tracheoesophageal speech. Copyright 2001 John Wiley & Sons, Inc.
The application of a long period grating sensors to human respiratory plethysmography
NASA Astrophysics Data System (ADS)
Allsop, T.; Carroll, K.; Webb, D. J.; Bennion, I.; Miller, Martin
2007-07-01
A series of nine in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration for application to Human Respiratory Plethysmography. These results are used to obtain volumetric tidal changes of the human torso which show agreement with data from a spirometer used simultaneously to recorded the inspired and expired volume at the mouth during both rhythmic and transient breathing patterns. The curvature sensors are based upon long period gratings which are written in a progressive three layered fibre to render them insensitive to refractive index changes. The sensor consists of the long period grating laid upon a carbon fibre ribbon, with this then encapsulated in a low temperature curing silicone rubber. The sensing array is multiplexed and interrogated using a derivative spectroscopy based technique to monitor the response of the LPGs' attenuation bands to curvature. The versatility of this scheme is demonstrated by applying the same garment and sensors to various human body types and sizes. It was also found from statistical analysis of the sensing array data, in conjunction with the measurements taken with a spirometer, that 11 to 12 sensors should be required to obtain an absolute volumetric error of 5%.
Application of long-period-grating sensors to respiratory plethysmography.
Allsop, Thomas; Carroll, Karen; Lloyd, Glynn; Webb, David J; Miller, Martin; Bennion, Ian
2007-01-01
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from approximately 7-nm m to approximately 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%.
Heat Lamps Solder Solar Array Quickly
NASA Technical Reports Server (NTRS)
Coyle, P. J.; Crouthamel, M. S.
1982-01-01
Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.
Fermentative organisms produce a range of compounds in addition to the desired product. For example, in addition to ethanol, standard yeast produces longer straight-chained and branched alcohols and organic acids. Additionally, biomass pretreatment process, particularly acid-base...
Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal.
Göncü, F; Luding, S; Bertoldi, K
2012-06-01
The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles' mechanical properties.
NASA Astrophysics Data System (ADS)
Gao, Jiangshan; He, Yan; Gong, Xiubin
2018-06-01
The original equipment and method for orienting multi-walled carbon nanotubes (MWCNTs) in natural rubber (NR) by alternating current (AC) electric field were reported in the present study. MWCNTs with various volume fractions were dispersed in the mixture latex which composed of natural rubber, additives and methylbenzene. The application of AC electric field during nanocomposites curing process was used to induce the formation of aligned conductive nanotube networks between the electrodes. The aligned MWCNTs in the composites have a better orientation performance and dispersion quality than these of random MWCNTs by analyzing TEM and SEM images. The effects of MWCNTs anisotropy on thermal conductivity, dielectric properties, and dynamic mechanical properties of NR were studied. The mean value of thermal conductivity of composites loading with aligned MWCNTs was 8.67% higher than that of composites with random MWCNTs due to the anisotropy of aligned MWCNTs. The compounds with aligned MWCNTs possessed low dielectric constant, loss tangents and conductivity, namely a good insulativity. The compounds loading with aligned MWCNTs had lower loss modulus and better dynamic mechanical properties than those with random MWCNTs. This method can make full use of the high thermal conductivity of MWCNTs axis, and expand the application areas of natural rubber like conducting heat in a certain direction with a high efficiency.
NASA Astrophysics Data System (ADS)
Mohammed Reffai, Syed Ismail Syed; Chatterjee, Tuhin; Naskar, Kinsuk
2018-07-01
This paper reports the heat and oil resistant hydrogenated acrylonitrile butadiene rubber (HNBR)/Polyamide 12 (PA12) blends prepared by electron beam irradiation. Electron beam irradiated blends are characterized by processing behaviour like thermoplastic at elevated temperature and performance properties of vulcanized rubber at ambient temperature. In the present work, a new class of blends based on Hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA12) has been developed. The blends are cured with different radiation dosage at a fixed blend ratio (70:30) of (HNBR/PA12). The blend having the 75 kGy shows the highest level of mechanical properties as well as superior thermal stability. Dynamic mechanical analysis (DMA) also demonstrates the tanδ values of all the blends are lower and the storage modules are higher for HE-75 kGy blend system compared to other blend system. Heat aging, oil aging, oil swelling and cross-link density study have also been carried out in details to understand the performance behaviour of these blends at service condition (150 °C). These blends are considered to find potential application in automotive sector especially for automotive under-the-hood-applications.
Experimental Design on Laminated Veneer Lumber Fiber Composite: Surface Enhancement
NASA Astrophysics Data System (ADS)
Meekum, U.; Mingmongkol, Y.
2010-06-01
Thick laminate veneer lumber(LVL) fibre reinforced composites were constructed from the alternated perpendicularly arrayed of peeled rubber woods. Glass woven was laid in between the layers. Native golden teak veneers were used as faces. In house formulae epoxy was employed as wood adhesive. The hand lay-up laminate was cured at 150° C for 45 mins. The cut specimen was post cured at 80° C for at least 5 hours. The 2k factorial design of experimental(DOE) was used to verify the parameters. Three parameters by mean of silane content in epoxy formulation(A), smoke treatment of rubber wood surface(B) and anti-termite application(C) on the wood surface were analysed. Both low and high levels were further subcategorised into 2 sub-levels. Flexural properties were the main respond obtained. ANOVA analysis of the Pareto chart was engaged. The main effect plot was also testified. The results showed that the interaction between silane quantity and termite treatment is negative effect at high level(AC+). Vice versa, the interaction between silane and smoke treatment was positive significant effect at high level(AB+). According to this research work, the optimal setting to improve the surface adhesion and hence flexural properties enhancement were high level of silane quantity, 15% by weight, high level of smoked wood layers, 8 out of 14 layers, and low anti termite applied wood. The further testes also revealed that the LVL composite had superior properties that the solid woods but slightly inferior in flexibility. The screw withdrawn strength of LVL showed the higher figure than solid wood. It is also better resistance to moisture and termite attack than the rubber wood.
NASA Astrophysics Data System (ADS)
Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam M.; Himmelhuber, Roland; DeRose, Christopher T.; Pomerene, Andrew; Lentine, Tony L.; Norwood, Robert A.
2017-02-01
Electronic interconnects are reaching their limit in terms of speed, dimensions and permissible power consumption. This has been a major concern in data centers and large scale computing platforms, creating limits to their scalability especially with respect to power consumption. Silicon photonic-electronic integration is viewed as a viable alternative that enables reliability, high efficiency, low cost and small footprint. In particular, silicon with its high refractive index, has enabled the integration a many individual optical elements (ring resonators) in small areas. Though silicon has a high thermo-optic coefficient (1.8×10^-4/°C) compared to silica, small thermal fluctuations can affect the optical performance especially for WDM applications. Therefore, a passive athermal solution for silicon photonic devices is required in order to reduce thermal sensitivity and power consumption. We have achieved this goal by replacing the silica top cladding with negative thermo-optic coefficient (TOC) materials. While polymers and titanium dioxide(titania) have a negative TOC, polymers can't handle high temperature processing and titania needs very tight thickness control and expensive deposition under vacuum. In this work we propose to use a sol-gel inorganic-organic hybrid material that has the benefits of both worlds. We were able to find optimum curing conditions to athermalize ring resonators by studying various sol-gel curing times and curing temperatures. Our athermal rings operate in a wide temperature range from 5C - 100C with thermal shifts below 1pm/C and low loss. Furthermore, we demonstrate that our athermal approach does not deleteriously effect critical device parameters, such as insertion loss and resonator Q factors.
Mixing formula for tissue-mimicking silicone phantoms in the near infrared
NASA Astrophysics Data System (ADS)
Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg
2015-03-01
The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.
Material morphology and electrical resistivity differences in EPDM rubbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nancy Y. C.; Domeier, Linda A.
2008-03-01
Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side inmore » contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.« less
Occupational exposure to NDMA and NMor in the European rubber industry.
de Vocht, F; Burstyn, I; Straif, K; Vermeulen, R; Jakobsson, K; Nichols, L; Peplonska, B; Taeger, D; Kromhout, H
2007-03-01
Many nitrosamines are suspected of being human carcinogens, with the highest concentrations in the environment being measured in the rubber industry. Time trends of personal exposure to N-nitrosodimethylamine (NDMA) and to N-nitrosomorpholine (NMor) during the past two decades in the German rubber industry were analysed and compared with cross-sectional studies in the same period in the Netherlands, Poland, the UK and Sweden. In the majority of the surveyed departments exposures reduced over time, but considerable heterogeneity was present between departments and sectors. Significant reductions were primarily found in curing and post-treating departments and ranged from -3% year(-1) to -19% year(-1). In contrast, NDMA levels increased (+13% year(-1)) in maintenance and engineering in the tyres industry. Average NDMA-levels in general rubber goods (GRG) and NMor-levels in tyre production in Germany did not decrease significantly in the past two decades, whereas NDMA-levels in tyre production (-10% year(-1)) and NMor-levels in GRG (-7% year(-1)) declined significantly after the introduction of an exposure limit for total nitrosamines in Germany in 1988. Confidence intervals of average exposures in other studied countries largely overlap trends observed in Germany. Exposure to N-nitrosamines decreased on average two-to-five fold in the German rubber industry with comparable concentration levels in other European countries. Although average levels are well below the current limits exposure has not been eliminated, and incidental high exposures do still occur.
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
Pattern of occupational allergic dermatitis in the Dermatology Clinic, Hospital Kuala Lumpur.
Rohna, R; Ganesapillai, T; Salbiah, D; Zaiton, I
1999-03-01
A two years retrospective analysis of patients diagnosed as contact allergic dermatitis with positive patch test attending the Dermatology clinic was performed. Of the 346 patients with a positive patch test, 14% had occupational dermatitis. This condition affected mainly young and inexperienced workers. An inverse relationship was seen between age and prevalence of occupational allergic dermatitis. Allergic hand dermatitis was the commonest presentation in occupational allergic dermatitis. This was followed by dermatitis of the exposed skin (face, neck, hands and forearms). The common sensitising agents identified were rubber chemicals and nickel. The two main groups at risk were factory workers and medical personnel. The common allergens found in factory workers were epoxy resin, pewter, nickel and rubber chemicals. Exposure dermatitis occurred in patients working in the pewter industry. Two thirds of medical personnel with hand dermatitis were allergic to rubber gloves. One year follow up after patch testing showed that 19% of patients still suffered from chronic dermatitis. Dermatitis improved in 34% of patients. Forty-seven percent were cured and stopped attending the clinic after patch testing and adequate counselling.
Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete
NASA Astrophysics Data System (ADS)
Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.
2017-11-01
In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.
NASA Astrophysics Data System (ADS)
Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.
2016-05-01
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.
22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia
2015-08-24
Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
Geissbühler, Jonas; Werner, Jérémie; Nicolas, Silvia Martin de; ...
2015-08-24
Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. Furthermore, we circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark
2004-01-01
The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.
Development of design allowables data for adhesives for attaching reusable surface insulation
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1972-01-01
Results are presented from tests to establish design allowables data for the following room temperature vulcanizing (RTV) silicone rubber based adhesives: (1) General Electric's RTV-560; (2) Dow Corning's 93-046; and (3) Martin Marietta's SLA-561. These adhesives are being evaluated for attaching reusable surface insulation to space shuttle structure.
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
21 CFR 522.1350 - Melatonin implant.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of use...
The production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustio...
Shuttle orbiter TPS flight repair kit development
NASA Technical Reports Server (NTRS)
1979-01-01
The design and application of a TPS repair kit is presented. The repair kit is designed for on orbit use by a crew member working in the manned maneuvering unit (MMU). The kit includes the necessary equipment and materials to accomplish the repair tasks which include the following: HRSI emittance coating repair, damaged tile repair, missing tile repair, and multiple tile repair. Two types of repair materials required to do the small area repair and the large area repair are described. The materials area cure in place, silicone base ablator for small damaged areas and precured ablator tile for repair of larger damaged areas is examined. The cure in place ablator is also used as an adhesive to bond the precured tiles in place. An applicator for the cure in place ablator, designed to contain a two-part silicon compound, mix the two components at correct ratio, and dispense the materials at rates compatible with mission timelines established for the EVA is described.
Influence of Relative Humidity on AC Corona Discharge from Algae Attached on the Silicone Rubber
NASA Astrophysics Data System (ADS)
Sato, Daisuke; Hara, Yoshiaki; Kokufu, Morihide; Higashiyama, Yoshio
To make clear the influence of algae growth at the surface of a polymer insulator in a practical transmission line, the characteristics of ac corona discharge from an aggregate algae particle were investigated. The aggregate algae particle was made of Protococcus viridis. Corona onset voltage from an aggregate algae particle was decreased as relative humidity increased. Under the condition of relatively higher relative humidity, luminous channel of corona discharge became more strongly and the number of corona pulses in the current waveform was increased. For an aggregate algae particle contaminated with sea salt including MgCl2, corona onset voltage decreased drastically at relative humidity above 40%. This property would result from deliquescence of MgCl2. Corona discharge was strongly affected by existence of MgCl2 in an aggregate algae particle. Surface resistance of algae attached to the surface of the silicone rubber sheet decreased in fourth figures for relative humidity from 20 to 90%. Therefore, the existence of algae on the polymer insulator inevitably affects the electric property and the surface property of the polymer insulator.
NASA Astrophysics Data System (ADS)
Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.
2011-01-01
Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.
The use of diamond-filled polymers as thermally conductive composites
NASA Astrophysics Data System (ADS)
Morlidge, Christopher Patrick
A need for a material that combines excellent thermal conductivity with high electrical resistivity has been identified in the electrical industry. As many materials currently exist that conduct both materials the investigation was carried out into a ceramic filled polymer. Diamond was chosen as the filling material due to its exceptionally high thermal conductivity. Three polymer materials were investigated as matrices for this material. The materials used were silicone rubber, polyester and a paint based on poly vinyl chloride. A study of method of production and mixing was first carried out to find the best route to produce the composite by ensuring even dispersion and ease of application. Various examination techniques were employed to find the success of the different processes. These methods were calibrated and optimised. The best methods of mixing and choice of filling material was established. Thermal conductivity tests carried out on the composite materials showed that there was a marked increase in the thermal conductivity of the materials. The strength and thermal expansion of the silicone rubber based material were also increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue
Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistancemore » to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.« less
Prokeš, Roman; Vrana, Branislav; Klánová, Jana
2012-07-01
Dissolved waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of one year at five sampling sites in a model industrial region in the Czech Republic using silicone rubber passive samplers. The spatial variability of POPs in the studied region in water was small and diffusive pollution sources predominate. Concentrations of the most volatile PAHs decreased with increasing water temperature in the whole region, which reflects the seasonality in atmospheric deposition. The dissolved concentrations of more hydrophobic PAHs, PCBs and OCPs in and downstream the industrial zone are related to desorption from suspended particles. Upstream the industrial area, a positive correlation of dissolved and particle-bound contamination was observed only for DDT metabolites and hexachlorobenzene. Calculated fugacities in water and bottom sediment indicated a fair degree of equilibrium between these compartments for OCPs and PCBs, whereas sediment represented a potential source of PAHs. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanai, Hiroshi; Hasegawa, Hideyuki; Imamura, Kohsuke
2006-05-01
It is essential for the diagnosis of heart diseases to noninvasively measure instantaneous myocardial movability and transition properties during one cardiac cycle. This study proposes a novel method of noninvasively perturbing left ventricle (LV) internal pressure by remotely actuating the brachium artery with sinusoidal vibration for the diagnosis of myocardial movability. By attaching an actuator to the brachium artery and driving it with a sinusoidal wave of f0 Hz, the internal pressure of the artery is perturbed. The perturbation propagates along the artery to the LV of the heart and the sinusoidal perturbation of the LV internal pressure is induced. Using an ultrasound-based phased tracking method, the resultant minute motion of the heart wall can be noninvasively measured. Because the vibration mode of the heart wall depends on actuation frequency, by phantom experiments using a spherical shell made of silicone rubber, to which a silicone rubber tube is connected, the vibration mode was identified from the measurement of the spatial distribution of the motions by scanning with an ultrasonic beam. From an in vivo experiment, the principle of remote actuation was confirmed.
Subcutaneous electrode structure
NASA Technical Reports Server (NTRS)
Lund, G. F. (Inventor)
1980-01-01
A subcutaneous electrode structure suitable for a chronic implant and for taking a low noise electrocardiogram of an active animal, comprises a thin inflexible, smooth disc of stainless steel having a diameter as of 5 to 30 mm, which is sutured in place to the animal being monitored. The disc electrode includes a radially directed slot extending in from the periphery of the disc for approximately 1/3 of the diameter. Electrical connection is made to the disc by means of a flexible lead wire that extends longitudinally of the slot and is woven through apertures in the disc and held at the terminal end by means of a spot welded tab. Within the slot, an electrically insulative sleeve, such as silicone rubber, is placed over the wire. The wire with the sleeve mounted thereon is captured in the plane of the disc and within the slot by means of crimping tabs extending laterally of the slot and over the insulative wire. The marginal lip of the slot area is apertured and an electrically insulative potting material such as silicone rubber, is potted in place overlaying the wire slot region and through the apertures.
NASA Astrophysics Data System (ADS)
Hozumi, Naohiro; Nishioka, Koji; Suematsu, Takeshi; Murakami, Yoshinobu; Nagao, Masayuki; Sakata, Hiroshi
Feasibility of self-healing insulation system was studied. A silicone rubber without filler was mounted on a glass substrate with a needle electrode. An ac voltage with 4 kV in rms was applied. The voltage was cut off when the tree had propagated into 150 micrometers in length. After the cut-off, the partial discharge inception voltage was periodically observed. The partial discharge inception voltage had once reduced into as low as 2 kV. However, it gradually increased with time, and finally exceeded the tree inception voltage (4 kV) when 30 - 60 hours had passed. It was also observed by optical microscope that the tree gradually disappeared in parallel with the recovery of the partial discharge inception voltage. The same phenomenon was observed even if 1 kV ac voltage had been continuously applied during the process of the recovery. A simulation using a needle-shaped void was performed in order to clarify the mechanism of the self-healing effect. It was observed that the tip of the needle-shaped void gradually got wet with a liquid material. It would be the result of "bleed-out" of the low molecular component included in the rubber. The tip of the void was finally filled with the liquid, however, the rest of the needle-shaped void stayed without being filled. In this type of tree, it was suggested that the self-healing effect is expected if the diameter of the tree did not exceed ca. 5 micrometers.
Thermoelastic analysis of solar cell arrays and their material properties
NASA Technical Reports Server (NTRS)
Salama, M. A.; Rowe, W. M.; Yasui, R. K.
1973-01-01
A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.
Resistivity changes in conductive silicone sheets under stretching.
González-Correa, C A; Screaton, G; Hose, D R; Brown, B H; Avis, N J; Kleinermann, F
2002-02-01
This paper reports a preliminary finding associated with an investigation of how tissues respond to mechanical stress. The stress distribution within the tissue may be the result of normal function, for example, joint forces, or it may result from interventions such as tissue suturing during or after surgery. We sought to combine electrical and mechanical computational models in order to better understand the interaction between the two. For example, if mechanical stress is applied to tissue this may change the cell arrangements within the tissue matrix and hence change the electrical properties. If this interaction could be determined, then it should be possible to use electrical impedance tomography measurements to identify stress patterns in tissues. Measurements of resistivity changes have been made in conductive silicone rubber sheets when subject to a uniaxial stress of up to 10%. Relatively large changes in resistivity are produced (up to 200%). These changes are far larger than those predicted arising from topological changes alone. It is suggested that under stress the conductive islands of carbon within the silicone rubber sheet undergo a reversible disassociation from their neighbours and that the material's electrical properties change under load. If similar stress-resistivity relationships occur within biological materials it may be possible to recover the stress fields within tissues from transfer impedance measurements and thereby predict if actions such as inappropriate suture tension will compromise tissue viability.
Braun, Ulrike; Lorenz, Edelgard; Weimann, Christiane; Sturm, Heinz; Karimov, Ilham; Ettl, Johannes; Meier, Reinhard; Wohlgemuth, Walter A; Berger, Hermann; Wildgruber, Moritz
2016-12-01
Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved Devices for Collecting Sweat for Chemical Analysis
NASA Technical Reports Server (NTRS)
Feeback, Daniel L.; Clarke, Mark S. F.
2011-01-01
Improved devices have been proposed for collecting sweat for biochemical analysis especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca2+ and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca2+ content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca2+ content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat available to other analytical instruments for measuring concentrations of substances other than Ca2+.
Improved Devices for Collecting Sweat for Chemical Analysis
NASA Technical Reports Server (NTRS)
Feedback, Daniel L.; Clarke, Mark S. F.
2011-01-01
Improved devices have been proposed for collecting sweat for biochemical analysis - especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca(2+) and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca(2+) content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca(2+) content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat available to other analytical instruments for measuring concentrations of substances other than Ca(2+).
Analysis of algal chlorophylls and carotenoids
NASA Astrophysics Data System (ADS)
Bidigare, Robert R.
Water samples should be collected with Go-Flo bottles to avoid the contamination problems associated with the latex rubber closure mechanism of Niskin bottles [Williams and Robertson, 1989]. Price et al. [1986] have documented that latex rubber is extremely toxic to marine phytoplankton. It is recommended that only silicone tubing be used to dispense seawater into sample bottles. Seawater is dispensed into opaque Nalgene sample bottles to avoid light shock to deep-living phytoplankton assemblages. If pigment samples are collected to examine the dynamics of the diatoxanthin-diadinoxanthin (DT-DN) xanthophyll cycle, then casts should be performed quickly, i.e. less than 6 minutes, to minimize DT-DN interconversion prior to filtration [Welschmeyer and Hoepffner, in press; Welschmeyer, personal communication, 1990].
Integrated circuit package with lead structure and method of preparing the same
NASA Technical Reports Server (NTRS)
Kennedy, B. W. (Inventor)
1973-01-01
A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.
Kaur, Harsimran; Datta, Kusum
2015-01-01
To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA) were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P) and rest 80 to heat-cured resilient liner (Molloplast B). Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm) in the space provided by a spacer of 3 mm, thermocycled (5-55°C) for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student's t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B) increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.G.; Baron, J.J.; Moffat, T.A.
1996-08-01
Types S31600 and S31254 stainless steel heat exchanger plates have suffered crevice corrosion and stress corrosion cracking under gaskets in rich amine service in a sour gas plant. The gasket material, ethylene-propylene-diene monomer (EPDM), has been used successfully for many years at other sour gas plants. Laboratory testing has duplicated the corrosion observed and shown that the mechanism is synergistic sulfide-halide attack. The use of a bromine plus chlorine-activated curing system for the EPDM rubber gaskets provided the necessary halides. Laboratory testing identified some nickel-based superalloys which were resistant to this corrosion and also demonstrated that essentially halogen-free, peroxide-cured EPDMmore » gaskets do not cause attack of S31600 or S31254. The heat exchanger packs were replaced with S31600 plates and peroxide-cured EPDM gaskets having a specified total halogen concentration of 200 ppm maximum. Field operating experience has been excellent.« less
PIXE Analysis of Artificial Turf
NASA Astrophysics Data System (ADS)
Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael
2017-09-01
In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.
Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)
NASA Astrophysics Data System (ADS)
Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.
2017-03-01
Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).
Tracheobronchial Cast Production and Use in an Undergraduate Human Anatomy Course
ERIC Educational Resources Information Center
Cope, Lee Anne
2008-01-01
Silastic E RTV silicone was used to produce tracheobronchial cast for use in an undergraduate human anatomy course. Following air-drying, the trachea and lungs were injected with E RTV silicone and allowed to cure for 24 hr. The parenchyma was then removed from the tracheobronchial cast by maceration and boiling and then whitened in a 10% solution…
Development of Nonelectronic Part Cyclic Failure Rates
1977-12-01
Schilling, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976 40. Schneider, C., "Military Relay Reliability," Bell Telephone...polyimide B Diallyl phthalate, melamine , -55 to 200 fluorosilicone, silicone rubber, polysulfone, epoxy resin C Polytetrafluoroethylene (teflon) -55 to 125...propagation, solid state sciences, microwave physics and electronic reliability, maintainabilitg andcompatibility. .,% -UT104, , 8. g z
Zhou, Hua; Wang, Hongxia; Niu, Haitao; Gestos, Adrian; Wang, Xungai; Lin, Tong
2012-05-08
A superhydrophobic fabric coating made of a crosslinked polydimethylsiloxane elastomer, containing well-dispersed hydrophobic silica nanoparticles and fluorinated alkyl silane, shows remarkable durability against repeated machine washes, severe abrasion, strong acid or base, boiling water or beverages and excellent stain resistance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multiple length scale description of the mechanism of elastomer stretching
Neuefeind, Joerg C.; Skov, Anne L.; Daniels, John E.; ...
2016-10-03
Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method for providing data on the structure of rubbers in the 2–50 Å range. First results relate to the elongation of a silicone rubber. We identify several non-entropic contributions to the free energy and describe the associated structural changes. By far the largest contribution comes from structural changes within the individual monomers, but amongmore » the contributions is also an elastic strain, acting between chains, which is 3–4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. We find this may be due to trapped entanglements relaxing to positions close to the covalent crosslinks.« less
A multiple length scale description of the mechanism of elastomer stretching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuefeind, Joerg C.; Skov, Anne L.; Daniels, John E.
Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method for providing data on the structure of rubbers in the 2–50 Å range. First results relate to the elongation of a silicone rubber. We identify several non-entropic contributions to the free energy and describe the associated structural changes. By far the largest contribution comes from structural changes within the individual monomers, but amongmore » the contributions is also an elastic strain, acting between chains, which is 3–4 orders of magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer chains in the direction perpendicular to the stretch. We find this may be due to trapped entanglements relaxing to positions close to the covalent crosslinks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soerqvist, T.; Vlastos, A.E.
1996-12-31
The hydrophobicity of polymeric insulators is crucial for their performance. This paper reports the hydrophobicity and the peak leakage current statistics of one porcelain, two ethylene-propylene-diene monomer (EPDM) and four silicone rubber (SIR) commercially available insulators. The insulators have been energized with 130 kV rms phase-to-ground AC voltage under identical outdoor conditions for more than seven years. The results presented show that under wet and polluted conditions the hydrophilic EPDM rubber insulators develop high leakage currents and substantial arcing. During a typical salt-storm the arcing amplitude of the EPDM rubber insulators is at least twice as high as that ofmore » the porcelain insulator. The SIR insulators, on the other hand, preserve a high degree of hydrophobicity after more than seven years in service and maintain very low leakage currents. However, the results show that during heavy salt contaminated conditions a highly stressed SIR insulator can temporarily lose its hydrophobicity and thereby develop considerable surface arcing.« less
Polyurethanes from fluoroalkyl propyleneglycol polyethers
NASA Technical Reports Server (NTRS)
Trischler, F. D. (Inventor)
1969-01-01
A description is given of highly stable polyurethane polymers prepared by reacting a polyether with a diisocyanate. Compounded stocks of these polymers may be shaped and cured in conventional equipment used in the rubber industry. The solutions are dispersed gels prepared from the polymers and may be used for forming supported or unsupported films for coating fabrics or solid surfaces, and for forming adhesive bonds between a wide variety of plastics, elastomers, fabrics, metals, wood, leather, ceramics and the like.
[About Cryptophthalmos (2nd Czech Study)].
Krásný, J; Čakrtová, M; Kletenský, J; Novák, V; Šach, J
To get acquainted with the 2nd Czech study about cryptophthamos and with self-surgical methods. The boy with unilateral complete cryptophthalmos of left eye was treated from 2 to 20 years. The girls was treated from 4 month to 5 year yet for right abortive cryptophthalmos with microblepharon and left complete type still waiting for solutions.Surgical methods and results: Authors present a surgical procedures for correction of the upper and lower eyelids and ocular anomalies both patients studied. Successful reconstruction of palpebral fissure took place in several stages at the boy. The surgical procedure gradually contained: the insertion of gradually increased convex concave circular-shaped implant (silicone ruber) due a modeling of palpebral fissure, an enucleation of rudimentary eye, a reconstruction of bottom palpebral fissure by retro-auricular skin graf and a releasing of the lower transitory fold by the cul-de-sac method. An adequate depth of palpebral fissure to allow perfect position of an aesthetic protesis. Enucleated eye was atypically shaped, remiding partly sand-glass clock. The cornea was replaced by thick fibrous membrane, the iris and the lens were not revealed. Gliomatic retina was detached nearly totaly and the optic nerv was rudimental. The repairing the upper lid coloboma of girl by a lid rotation flap reconstruction using the inferior eyelid was performed at the age 17 month. Corneal dermoid simultaneously removed (histologically verified). Upper conjunctival fornix was formed using the spherical covering foil (silicone rubber) before and after the reconstruction of the lid. Plastic reconstructions required the need for patient access without trying immediate effect. An important role played silicone rubber implants (elastomer medical grade) which used temporarily. cryptophthalmos, microblepharon, relief surgery, silicon ruber implants.
Campeau, Marc-Antoine; Lortie, Audrey; Tremblay, Pierrick; Béliveau, Marc-Olivier; Dubé, Dominic; Langelier, Ève; Rouleau, Léonie
2017-07-14
Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184 ® . Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell adhesion and function, they should be more thoroughly assessed by research groups that perform such mechanobiological studies using silicone.
Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1993-01-01
Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.
Radiation prevulcanized natural rubber latex: Cytotoxicity and safety evaluation on animal
NASA Astrophysics Data System (ADS)
Keong, C. C.; Zin, W. M. Wan; Ibrahim, P.; Ibrahim, S.
2010-05-01
Radiation prevulcanized natural rubber latex (RVNRL) was claimed to be more user friendly than natural rubber latex prevulcanized by sulphur curing system. The absence of Type IV allergy inducing chemicals in RVNRL make it a suitable material for manufacturing of many kinds of latex products, especially those come into direct contact with users. This paper reveals and discusses the findings of cytotoxicity test and safety evaluation on animal for RVNRL. The test was done on RVNRL films prepared by coagulant dipping method and RVNRL dipped products produced by latex dipped product manufacturers. Cytotocixity test was carried out on mammalian cell culture American Type Culture Collection CCL 81, Vero. Results indicated that no cytotoxic effect from RVNRL films and products was found on the cell culture. Two animal studies, namely dermal sensitization study and primary skin irritation study, were done on gloves made from RVNRL. Albino white guinea pigs were used as test subjects in dermal sensitization study and results showed no sensitization induced by the application of test material in the guinea pigs. Primary skin irritation study was done on New Zealand white rabbits and results showed that the product tested was not corrosive and was not a primary irritant
Hot air vulcanization of rubber profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, J.
1995-07-01
Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish.more » Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.« less
Rubber band ligation of haemorrhoids in the out-patient clinic.
Kumar, N.; Paulvannan, S.; Billings, P. J.
2002-01-01
Rubber band ligation (RBL) is an effective treatment for symptomatic haemorrhoids but carries significant morbidity. We performed a prospective study of 98 consecutive patients treated by RBL in the out-patient clinic. Immediate, intermediate (within 2 weeks) and late (within 2 months) complications were recorded. Immediate complications occurred in 66 (67.3%) patients. Pain was the predominant symptom in 50 patients (51%). Fifteen (15.3%) patients had vasovagal attacks and 1 (1%) had bleeding. Twenty-five patients (25.5%) were unable to perform normal activities on the day of RBL. One patient needed hospital admission for control of pain. Seventy four (75.5%) patients would have RBL if they needed further treatment for haemorrhoids. Symptomatic cure was achieved in 71 patients (72.4%). RBL is an effective treatment but with significant complications. Patients should be adequately warned, especially of pain and vasovagal attacks. PMID:12092868
Insulation Reformulation Development
NASA Technical Reports Server (NTRS)
Chapman, Cynthia; Bray, Mark
2015-01-01
The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.
NASA Astrophysics Data System (ADS)
Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong
2016-01-01
A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.
Asphaltenes-based polymer nano-composites
Bowen, III, Daniel E
2013-12-17
Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.
A tubular silicone rubber membrane is evaluated as a gas-liquid separator for the determination of arsenic in saline waters via HG-ICP-MS. The system was optimized in terms of NaBH and HCI concentrations. The intermediate gas and carrier gas were optimized in terms of sensitiity ...
Topography of aortic heart valves. [applied to the development of a prosthetic heart valve
NASA Technical Reports Server (NTRS)
Karara, H. M.
1974-01-01
The cooperative effort towards the development of a tri-leaflet prosthetic heart valve is described. The photogrammetric studies were conducted on silicone rubber molds. Information on data acquisition and data reduction phases is given, and certain accuracy aspects of the project are explained. The various outputs which are discussed include digital models, profiles, and contour maps.
Vermeltfoort, Pit B J; van der Mei, Henny C; Busscher, Henk J; Hooymans, Johanna M M; Bruinsma, Gerda M
2004-11-15
The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating the lenses in a bacterial suspension for 30 min. The contaminated lenses were put on a glass, poly(methylmethacrylate), or silicone rubber substratum, shaped to mimic the eye. After 2 and 16 h, lenses were separated from the substrata and bacteria were swabbed off from the respective surfaces and resuspended in saline. Appropriate serial dilutions of these suspensions were made, from which aliquots were plated on agar for enumeration. Bacterial transfer varied between 4 and 60%, depending on the combination of strain, contact time, contact lens, and substratum surface. For P. aeruginosa No. 3, transfer was significantly higher after 16 h than after 2 h, whereas less increase with time was seen for S. aureus 835. Bacterial transfer from all tested contact lenses was least to silicone rubber, the most hydrophobic and roughest substratum surface included. (c) 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU
2018-05-01
In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1977-01-01
Several dummy tubes imitating the IUE Camera System design were encapsulated with Solithane 2, Conathane EN-11, Green and Black Hysols and SMRD 432. Various flaws were purposefully placed in some of these. Partial discharge testing in vacuum under direct voltage conditions was carried once a week for 12 weeks, 15 kv dc being applied during normal working hours for 40 hours duration per week. None of the units showed much damage during this time judging by the P.D. energy histograms. A more complete mathematical presentation is given on diffusion and permeation than previously. Measurements of diffusion constants for various silicone rubbers are carried out by the Time-Lag method and compared to other determinations in the literature. Calculations of the time required for diffusion through a thick wall are demonstrated in the long time approximation and for dimensions pertaining to void and wall sizes of a delamination problem in the LANDSAT-C vidicon tubes. An actual delaminated LANDSAT-C tube and some facsimiles are immersed in vacuum for long periods and tested for catastrophic breakdown due to diffusion of gas, by application of high voltage.
Mannermaa, J P; Muttonen, E; Yliruusi, J; Juppo, A
1992-01-01
The effect of sterilization on the number of particles released from five different types of rubber stoppers, as well as on their surface roughness and elemental composition before and after sterilization is described. The stoppers were immersed in 200 ml of 0.9% sodium chloride solution in conical flasks. The number of particles released into the sodium chloride solution was measured by Coulter Counter. The surface roughness and the elemental composition of the stoppers were determined by SEM/EDX. All measurements were made both before and after sterilization at 121 degrees C to F0 15 mins. The number of particles released from a stopper during sterilization varies considerably between different stoppers and even between different batches of the same stopper. The only non-siliconized stopper in this study performed well. The absence of surface siliconization may have contributed to this performance. The scanning electron micrographs revealed well the differences in the surface roughness of the stoppers. The sterilization generally increases the surface roughness of the samples. The x-ray microanalysis revealed that the elemental composition of the stoppers may vary not only between different types of stoppers but also between different batches of the same stopper.
An Adhesive for Field Repair of Composites
1988-06-01
epoxy. Epon 828. toughened with carboxy terminated butadiene nitrile rubber, ( CTBN ). and cured with a cycloaliphatic diamine, diamino dicycohexyl methane...adhesives were made by mixing 80 grams of EPON 828. 18 grams CTBN and between .28 and 3.4 grams of PACM-20. The mixture was heated to 160°C at which time .2...grams of PACM-20 with between 1 and 12 grams of the 828- CTBN mixture. This adduct was allowed to react overniqht at room temperature. A second set of
Application of the Virtual Fields Method to a relaxation behaviour of rubbers
NASA Astrophysics Data System (ADS)
Yoon, Sung-ho; Siviour, Clive R.
2018-07-01
This paper presents the application of the Virtual Fields Method (VFM) for the characterization of viscoelastic behaviour of rubbers. The relaxation behaviour of the rubbers following a dynamic loading event is characterized using the dynamic VFM in which full-field (two dimensional) strain and acceleration data, obtained from high-speed imaging, are analysed by the principle of virtual work without traction force data, instead using the acceleration fields in the specimen to provide stress information. Two (silicone and nitrile) rubbers were tested in tension using a drop-weight apparatus. It is assumed that the dynamic behaviour is described by the combination of hyperelastic and Prony series models. A VFM based procedure is designed and used to produce the identification of the modulus term of a hyperelastic model and the Prony series parameters within a time scale determined by two experimental factors: imaging speed and loading duration. Then, the time range of the data is extended using experiments at different temperatures combined with the time-temperature superposition principle. Prior to these experimental analyses, finite element simulations were performed to validate the application of the proposed VFM analysis. Therefore, for the first time, it has been possible to identify relaxation behaviour of a material following dynamic loading, using a technique that can be applied to both small and large deformations.
Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture
NASA Astrophysics Data System (ADS)
Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor
2016-11-01
Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.
Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior
Ahmed, Khalil
2013-01-01
In this assessment, hybrid composites were prepared from the combination of industrial waste, as marble waste powder (MWP) with conventional fillers, carbon black (CB) as well as silica as reinforcing material, incorporated with natural rubber (NR). The properties studied were curing, mechanical and swelling behavior. Assimilation of CB as well as silica into MWP containing NR compound responded in decreasing the scorch time and cure time besides increasing in the torque. Additionally, increasing the CB and silica in their respective NR hybrid composite increases the tensile, tear, modulus, hardness, and cross-link density, but decreases the elongation and swelling coefficient. The degradation property e.g., thermal aging of the hybrid composite was also estimated. The overall behavior at 70 °C aging temperature signified that the replacement of MS by CB and silica improved the aging performance. PMID:25750756
Effect of retinal detachment surgery on the course of preexisting open-angle glaucoma.
Friedman, Z; Neumann, E
1975-10-01
In 11 of 12 eyes with chronic simple glaucoma after surgery for retinal detachment, intraocular pressures were decreased for one to 5 1/2 years without any antiglaucomatous treatment. No further deterioration in the state of the optic disks or the visual fields occurred in any of these eyes. In all 12 fellow eyes antiglaucomatous treatment is still being administered. The operation employed in nine of the 11 cases consisted of an encircling silicone rubber band shortened by 15 to 20% of its length when placed around the eyeball before tapping subretinal fluid. An episcleral silicone implant was placed under the encircling ban in seven of these eyes. Kinking and possibly narrowing of the long posterior ciliary arteries by the encircling silicone band probably caused the ciliary hyposecretion and the resultant hypotony.
Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy
2008-01-01
and slag formed on the upper weld surface by the FSW process and the remnant laser weld bead on the underside of the FSW surface were removed from...using 3M brand ‘Super 77’ spray adhesive and then hand sanding against a mechanically flat ceramic backing surface using silicon 32 carbide...weld surface using Loctite brand “5-minute Epoxy” and allowing to cure. Following the required cure period, the aluminum grating glass backing was
NASA Astrophysics Data System (ADS)
Smith, Ryan Scott
As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness increases with UV exposure for all mode mixes. The sub-critical fracture toughness was measured in Mode I and found to be insensitive to UV cure. A simple reaction rate model is used to explain the difference in critical and sub-critical fracture toughness.
NASA Astrophysics Data System (ADS)
Dupas-Bruzek, C.; Dréan, P.; Derozier, D.
2009-10-01
Chronic nerve recording and stimulation became possible through the use of implanted electrodes cuffs. In particular, self-sizing spiral electrode cuffs limit mechanical damage to the tissue: these have been shown to be suitable for long term implantation in animal and in man. However, up to now, such electrode cuffs were handmade and were hardly reproducible. They possessed a small number of electrodes (dot contacts), each being linked to its own wire. In order to improve the selectivity of nerve recording and/or stimulation (functional electrical stimulation), the numbers of electrodes and tracks have to be increased within the same electrode cuff surface. To fulfill this requirement, we have developed a fabrication process that uses an UV laser to induce surface modification, which activates the silicone rubber and is used with a mask to give high definition tracks and electrodes. After this primary step, silicone rubber is immersed in a Pt autocatalytic bath leading to a selective Pt metallization of the laser activated tracks and electrodes. We report our process as well as the results on the Pt metallization, including its morphology, how the DC resistance of Pt tracks depends on the laser used and the irradiation conditions, and also the electrical resistance of Pt tracks submitted to Scotch tape tests or to imposed strains. We show that (i) the type of laser and the irradiation conditions have a strong influence on the nucleation and growth rate of platinum and thus on the DC resistance of the tracks, (ii) the tracks of width 400 μm and thickness 10 μm have a sheet resistivity of 0.2 Ω/sq, (iii) DC resistance does not change much during a 6 month soak in saline, (iv) strains above 2% breaks the track continuity, and (v) when strains below 53% are relaxed, the DC resistance returns to a low value. This recovery from large tensile strains means that nerve cuffs with such metallization could be handled by the surgeon without great care before and during implantation.
Evaluation of advanced bladder technology
NASA Technical Reports Server (NTRS)
Christensen, M. V.; Pasternak, R. A.
1972-01-01
Research conducted during this period is reported. Studies presented include: (1) diffusion and permeation of CO2, O2, N2, and NO2 through polytetra fluoroethylene; (2) diffusion, permeation and solubility of simple gases (CO2, O2, N2, CH4, C2H6, C3H8, and C2H4) through a copolymer of hexafluoro propylene and tetrafluoro ethylene (FEP); (3) viscous flow and diffusion of gases throug small apertures; (4) diffusion and permeation of O2, N2, CO2, CH4, C2H6, and C3H8 through nitroso rubber; and (5) results of gas transport studies with carborane siloxane, nitroso rubber, silicone membrane, krytox coating on teflon, and FEP coated glass cloth. Publications generated under this program are listed.
NASA Technical Reports Server (NTRS)
Haas, D. W.; Gerler, V. M.
1972-01-01
The labor costs and techniques associated with the maintenance of a bonded-on ablator thermal protection system (TPS) concept, suitable for Space Shuttle application are examined. The baseline approach to TPS attachment involves bonding reusable surface insulation (RSI) and/or ablators to the structural skin of the vehicle. The RSI and/or ablators in the form of either flat or contoured panels can be bonded to the skin of the primary structure directly or by way of an intermediate silicone foam rubber pad. The use of foam rubber pads permits the use of buckling skins and protruding heat rivets on the primary structure, minimizing structural weight and fabrication costs. In the case of the RSI, the foam rubber pad serves as a required strain isolator. For purpose of comparison, test data were obtained for an installation with and without the use of a strain isolator. The refurbishment aspects of a bonded-on RSI concept (without a strain isolator) were examined experimentally along with several externally removable panel concepts employing both ablator and RSI TPS. The various concepts are compared.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.
Pneumatically Actuated Miniature Peristaltic Vacuum Pumps
NASA Technical Reports Server (NTRS)
Feldman, Sabrina; Feldman, Jason; Svehla, Danielle
2003-01-01
Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric pressure or to a partial vacuum source. The design would be such that the higher pneumatic pressure would be sufficient to push the silicone arches down onto the substrates, blocking the channels. Thus, by connecting pneumatic- actuation channels to the two pneumatic sources in spatial and temporal alternation, waves of opening and closing, equivalent to peristalsis, could be made to move along the pump channels. A pump according to this concept could be manufactured inexpensively. Pneumatic sources (compressors and partial vacuum sources) similar those needed for actuation are commercially available; they typically have masses of .100 g and power demands of the order of several W. In a design-optimization effort, it should be possible to reduce masses and power demands below even these low levels and to integrate pneumatic sources along with the proposed pumps into miniature units with overall dimensions of no more than a few centimeters per side.
Peters, R; van Duin, M; Tonoli, D; Kwakkenbos, G; Mengerink, Y; van Benthem, R A T M; de Koster, C G; Schoenmakers, P J; van der Wal, Sj
2008-08-08
The dicumyl-peroxide-initiated addition and combination reactions of mixtures of alkanes (n-octane, n-decane) and alkenes [5,6-dihydrodicyclopentadiene (DCPDH), 5-ethylidene-2-norbornane (ENBH) and 5-vinylidene-2-norbornane (VNBH)] were studied to mimic the peroxide cross-linking reactions of terpolymerised ethylene, propylene and a diene monomer (EPDM). The reaction products of the mixtures were separated by both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The separated compounds were identified from their mass spectra and their GC and GCxGC elution pattern. Quantification of the various alkyl/alkyl, alkyl/allyl and allyl/allyl combination products shows that allylic-radicals comprise approximately 60% of the substrate radicals formed. The total concentration of the products formed by combination is found to be independent of the concentration and the type of alkene. The total concentration of the products formed by addition to the alkene increases with increasing concentration of alkene. In addition, the total concentration of the formed addition products depends strongly on the type of the alkene used, viz. VNBH>ENBH approximately DCPDH, which is a consequence of differences in steric hindrance of the unsaturation. The peroxide curing efficiency, defined as the number of moles of cross-linked products formed per mol of peroxide, is 173% using 9% (w/w) 5-vinylidene-2-norbornane (VNBH). This indicates that the addition reaction is recurrent. All these findings are consistent with experimental studies on peroxide curing of EPDM rubber. In addition, the present results provide more-detailed structural information, increasing the understanding of the mechanism of peroxide curing of EPDM. The described approach to use low-molecular-weight model compounds followed by GC-mass spectrometry (MS) and GCxGC-MS analysis is proven to be a very powerful tool to study the cross-linking of EPDM.
Image guided constitutive modeling of the silicone brain phantom
NASA Astrophysics Data System (ADS)
Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan
2005-04-01
The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.
Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System
NASA Astrophysics Data System (ADS)
Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.
2006-03-01
A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.
NASA Technical Reports Server (NTRS)
Lawrence, W. H.
1980-01-01
In chamber thermodegradation procedures were used to access the lethality to rats of the pyrolysis/combustion products of three foams, an adhesive backed metallic tape and RTV silicone rubber adhesive sealant used in spacecraft construction. The role of carbon monoxide in the overall pyrolysate toxicity was also investigated. Post exposure observation of the rats, histological evaluation of selected organs, carbon monoxide concentration in the chamber atmosphere during exposure and the percent carboxyhemoglobin in the animals expiring in the chamber are discussed. Thermogravimetric analysis and dosage response results are given. The lethal effect of the RTV silicon appears to be due to physical obstruction of the respiratory system by particulate matter from pyrolysis.
Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre
NASA Astrophysics Data System (ADS)
Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.
2012-06-01
Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.
Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun
2014-11-26
In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mini-RPV Launch System Conceptual Study
1978-12-01
are discussed later. Although shock cord has not found extensive use in aerospace in recent years, the technology of elastomers and braids has advanced...considerably beyond the off-the-shelf material (MIL-C-5651B) on which this study is based. Special elastomers , such as silicone rubber, and braid ...STUDIES .... .......... 36 7.1 Elastic, Concept 1-1 ... ............ 36 7.1.1 Introduction ...... ....... ... 36 7.1.2 Elastomeric (Shock Cord), Concept I
Enhanced softgoods structures for spacesuit micrometeoroid/debris protective systems
NASA Technical Reports Server (NTRS)
Remington, Brian; Cadogan, David; Kosmo, Joseph
1992-01-01
A lightweight, flexible thermal micrometeoroid garment (TMG) design for enhanced space suit micrometeoroid/debris (M/D) protection is described. It will consist of an outer layer comprised of orthofabric, multilayers of aluminized Mylar, and a layer of silicone rubber loaded with micron sized particles of tungsten. The shield layers would fragment and/or vaporize the M/D projectile while the backup sheet would stop the resultant debris cloud.
Command History OPNAV 5750-1, Fiscal Year 2004
2006-05-04
Equipment allocation and distribution finalized. • 6-week plan developed for material production and testing. This project will have two primary...which has proven to be successful in the Navy’s past efforts to apply the proprietary technology to such materials as silicon- and carbon-based rubbers...and gels, epoxy resins, polyurethanes, etc. We will evaluate and select candidate materials and enlist the cooperation of suppliers and CRADA
Photonic Jets for Strained-Layer Superlattice Infrared Photodetector Enhancement
2014-06-25
top of a 40 µm photodetector fixed into position using a silicone rubber . As illustrated in Fig. 2, the spectral response was characterized before and...midwave-infrared spectral band (3-5 ?m). We optimized the design of these structures and experimentally demonstrated the increased sensitivity compared to...midwave-infrared spectral band (3-5 ?m). We optimized the design of these structures and experimentally demonstrated the increased sensitivity
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-01-01
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR. PMID:28787891
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-02-02
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.
M, Bindu; G, Unnikrishnan
2017-09-27
We report the transport characteristics of silicone rubber/nano-hydroxylapatite (SR/n-HA) systems at room temperature with reference to the effects of n-HA loading, morphology and penetrant nature, using toluene, xylene, ethyl acetate and butyl acetate in the liquid phase and methanol, ethanol, 1-propanol, 2-propanol and butanol in the vapour phase as probe molecules. The interaction between the n-HA particles and SR matrix has been confirmed by FTIR analysis. As the n-HA content in the SR matrix increased, the penetrant uptake has been found to decrease. The observations have been correlated with the density and void content of the systems. Scanning electron microscopy images have been found to be complementary to the observed transport features. The reinforcement effect of n-HA particles on the SR matrix has been verified by Kraus equation. Molecular mass between the cross links has been observed to decrease with an increase in n-HA loading. The results have been compared with affine, phantom network, parallel, series and Maxwell models. The transport data have been complemented by observations on biological fluid uptake with urea, d-glucose, KI, saline water, phosphate buffer and artificial urine as the media.
NASA Astrophysics Data System (ADS)
He, Yan; Gao, Jiangshan; Gong, Xiubin; Xu, Jin
80/20 natural rubber (NR)/butadiene rubber (BR) blends in which the carbon black (CB) was replaced partially by multi-walled carbon nanotubes (MWCNTs) according to the ratios m (CNTs): m (decreasing amount of CB) = 1: X (X was varied from 1 to 6), was prepared by blending of internal mixer and the two-roll mill at the mill opening of 0.5 mm for 10 times. SEM and TEM were used to investigate the filler networks and the good dispersion of fillers. The compounds containing 5 phr CNTs/27.5 phr CB exhibited the best abrasion resistance which was increased by 12.69% compared that without CNTs. 3D morphology images of wear surfaces and tensile fracture surfaces being similar to the layered map of the geography, which match the abrasion resistance and tensile properties, were observed by 3D measuring laser microscope. The uncured blend with 5 phr CNTs/35 phr CB showed the shortest cure time, the highest modulus and level of crosslink density. Significant improvement in mechanical properties were achieved by incorporating 5 phr CNTs and 35 phr CB, and the tear strength, 100% and 300% modulus of the vulcanizate were enhanced by 36.36%, 61.29% and 31.63% compared with the composite with 0 phr CNTs/40 phr CB, respectively. Additionally, compared with the composite without CNTs, the thermal conductivity of the composites with 5 phr CNTs/35 phr CB is increased by an average of 6.15% at three different temperatures. These considerable reinforcements resulted from the synergistic effect of CNTs and CB.
NASA Astrophysics Data System (ADS)
Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zuo, Jing; Liu, Xiangrong
2016-07-01
The modification of epoxy (EP) resin with carboxyl-terminated polybutadiene (CTPB) liquid rubber was carried out in this work. The chemical reaction between the oxirane ring of EP and the carboxyl group of CTPB and kinetic parameters were investigated by Fourier transform infrared and differential scanning calorimetry. The resulting pre-polymers were cured with methyl hexahydrophthalic anhydride. Scanning electron microscopic observations indicate that the micro-sized CTPB particles dispersed uniformly in the EP matrix formed a two-phase morphology, mainly contributing to the improved toughness of the modified network. The best overall mechanical performance was achieved with 20 phr CTPB; above it, a fall in the strength and modulus was observed. The storage modulus and loss declined with the CTPB concentration due to its lower modulus and plasticizing effect from dynamic mechanical analysis measurements. Moreover, due to the weak polarity and excellent electrical insulation of CTPB, the CTPB-modified EP presented higher electrical resistivities and breakdown strength, and low dielectric permittivity and loss compared with neat EP.
NASA Astrophysics Data System (ADS)
Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.
2017-07-01
Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.
NASA Technical Reports Server (NTRS)
Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)
2000-01-01
Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.
Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.
2005-01-01
Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.
Economical processing of fiber-reinforced components with thermal expansion molding
NASA Technical Reports Server (NTRS)
Schneider, K.
1979-01-01
The concept of economical fabrication of fiber-reinforced structural components is illustrated with an example of a typical control surface (aileron). The concept provides for fabricating struts, ribs, and a cover plate as an integral structure in a hardening device and then joining the closure cover plate mechanically. Fabrication of the integral structure is achieved by the 'thermal expansion molding' technique. The hardening pressure is produced by silicone rubber cores which expand under the influence of temperature. Test results are presented for several rubber materials as well as for various structural pieces. The technique is demonstrated extensively for an aileron, consisting of five ribs, struts, and a cover plate. Economically, for a large scale technical production of an aileron, cost savings of twenty-five percent can be realized compared to those for a sheet metal structure.
Soft silicone rubber in phononic structures: Correct elastic moduli
NASA Astrophysics Data System (ADS)
Still, Tim; Oudich, M.; Auerhammer, G. K.; Vlassopoulos, D.; Djafari-Rouhani, B.; Fytas, G.; Sheng, P.
2013-09-01
We report on a combination of experiments to determine the elastic moduli of a soft poly (dimethylsiloxane) rubber that was utilized in a smart experiment on resonant phononic modes [Liu , ScienceSCIEAS0036-807510.1126/science.289.5485.1734 289, 1734 (2000)] and whose reported moduli became widely used as a model system in theoretical calculations of phononic materials. We found that the most peculiar hallmark of these values, an extremely low longitudinal sound velocity, is not supported by our experiments. Anyhow, performing theoretical band structure calculations, we can reproduce the surprising experimental findings of Liu even utilizing the correct mechanical parameters. Thus, the physical conclusions derived in the theoretical works do not require the use of an extremely low longitudinal velocity, but can be reproduced assuming only a low value of the shear modulus, in agreement with our experiments.
Double layer adhesive silicone dressing as a potential dermal drug delivery film in scar treatment.
Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Żebrowska, Maria; Mikolaszek, Barbara; Sznitowska, Małgorzata
2015-03-15
The present studies focused on the evaluation of design of an adhesive silicone film intended for scar treatment. Developed silicone double layer film was examined in terms of its future relevance to therapy and applicability on the human skin considering properties which included in vitro permeability of water vapor and oxygen. In order to adapt the patches for medical use in the future there were tested such properties as in vitro adhesion and occlusion related to in vivo hydration. From the silicone rubbers double layer silicone film was prepared: a non-adhesive elastomer as a drug carrier (the matrix for active substances - enoxaparin sodium - low molecular weight heparin) and an adhesive elastomer, applied on the surface of the matrix. The novel adhesive silicone film was found to possess optimal properties in comparison to commercially available silicone dressing: adhesion in vivo, adhesion in vitro - 11.79N, occlusion F=85% and water vapor permeability in vitro - WVP=105g/m(2)/24h, hydration of stratum corneum in vivoH=61-89 (RSD=1.6-0.9%), oxygen permeation in vitro - 119-391 cm(3)/m(2)/24 (RSD=0.17%). In vitro release studies indicated sufficient LMWH release rate from silicone matrix. Developed novel adhesive silicone films were considered an effective treatment of scars and keloids and a potential drug carrier able to improve the effectiveness of therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Silver-Teflon coating improvement
NASA Technical Reports Server (NTRS)
Reed, M. W.
1976-01-01
Approximately forty adhesives were subjected to laboratory screening. Seven candidate adhesives were selected from the screening tests and evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on epoxide, polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint-on or spray-on adhesives. The panels were tested in a space environmental simulation laboratory chamber during the July 9-20, 1973 time span.
Epoxy Pipelining Composition and Method of Manufacture.
1994-12-14
exemplary curing agent blend was prepared by reacting azelaic acid 3 (nonanedioic acid ), hexanoic acid , triethylene tetramine 4 (NH 2CH2CH2NHCH2CH2NHCH2CH...2NH2; TETA) and benzyl alcohol. The exemplary 5 curing agent blend was prepared as follows: 6 (a) Azelaic acid (solid; 90.9 gm.; 0.483 moles; C 9H 16 0...heated to 230 ’C over 10 - 20 11 minutes in a silicone oil bath. As the azelaic acid melted into a liquid, the 12 reaction mixture was stirred using a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A.; Weisgraber, T. H.; Gee, R. H.
M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned aboutmore » are: compression set, load retention, and stress-strain response (modulus).« less
Influence of porosity on thermophysical properties of a composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishaeva, N. Yu., E-mail: anohina@mail2000.ru; Ljukshin, B. A., E-mail: lba2008@yandex.ru; Bochkareva, S. A., E-mail: svetlanab7@yandex.ru
2015-10-27
In many modern information systems, the heat generated during the operation of electronic devices is usually dissipated by heat-conductive pads between the casing of the respective equipment and a massive base (platform). For newly developed pads, the promising materials are composites on the basis of various types of silicone rubber. At the same time, during the production of the pads without a vacuum setup, the material can contain air bubbles, which causes the porosity potentially negative for the thermal properties of the material. This work studies the thermal conductivity depending on the degree of silicone matrix filling by copper particles,more » introduced to improve thermal conductivity, and by air bubbles that are considered as reinforcing inclusions.« less
Thin Fresnel zone plate lenses for focusing underwater sound
NASA Astrophysics Data System (ADS)
Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.
2015-07-01
A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.
Thin Fresnel zone plate lenses for focusing underwater sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael
A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less
Development of hand exoskeleton for rehabilitation of post-stroke patient
NASA Astrophysics Data System (ADS)
Zaid, Amran Mohd; Chean, Tee Chu; Sukor, Jumadi Abdul; Hanafi, Dirman
2017-10-01
Degenerative muscle diseases characterized by loss of strength in human hand significantly affect the physical of affected individuals. A soft assistive exoskeleton glove is designed to help post-stroke patient with their rehabilitation process. The glove uses soft bending actuator which has a rubber like tender characteristic. Due to its rubber like characteristic, flexion of finger can be achieved easily through pneumatic air without considering other hand motions. The application involves a post-stroke patient to wear the soft exoskeleton glove on his paralyzed hand and control the actuation of the glove by using pneumatic air source. The fabrication of the soft bending actuator involves silicone rubber Mold Star® 15 SLOW which falls within the soft category of shore A hardness scale. The soft bending actuator is controlled by Arduino Mega 2560 as main controller board and relay module is used to trigger the 3/2-way single solenoid valve by switching on the 24VDC power supply. The actuation of the soft bending actuator can be manipulated by setting delay ON and OFF for the relay switching. Thus, the repetition of the bending motion can be customized to fulfil the rehabilitation needs of the patient.
Abbasi, Yasser; Mannaerts, Chris M
2018-05-18
Passive sampling techniques can improve the discovery of low concentrations by continuous collecting the contaminants, which usually go undetected with classic and once-off time-point grab sampling. The aim of this study was to evaluate organochlorine pesticide (OCP) residues in the aquatic environment of the Lake Naivasha river basin (Kenya) using passive sampling techniques. Silicone rubber sheet and Speedisk samplers were used to detect residues of α-HCH, β-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, pp-DDE, endrin, dieldrin, α-endosulfan, β-endosulfan, pp-DDD, endrin aldehyde, pp-DDT, endosulfan sulfate, and methoxychlor in the Malewa River and Lake Naivasha. After solvent extraction from the sampling media, the residues were analyzed using gas chromatography electron capture detection (GC-ECD) for the OCPs and gas chromatography-mass spectrometry (GC-MS) for the PCB reference compounds. Measuring the OCP residues using the silicone rubber samplers revealed the highest concentration of residues (∑OCPs of 81 (± 18.9 SD) μg/L) to be at the Lake site, being the ultimate accumulation environment for surficial hydrological, chemical, and sediment transport through the river basin. The total OCP residue sums changed to 71.5 (± 11.3 SD) μg/L for the Middle Malewa and 59 (± 12.5 SD) μg/L for the Upper Malewa River sampling sites. The concentration sums of OCPs detected using the Speedisk samplers at the Upper Malewa, Middle Malewa, and the Lake Naivasha sites were 28.2 (± 4.2 SD), 31.3 (± 1.8 SD), and 34.2 (± 6.4 SD) μg/L, respectively. An evaluation of the different pesticide compound variations identified at the three sites revealed that endosulfan sulfate, α-HCH, methoxychlor, and endrin aldehyde residues were still found at all sampling sites. However, the statistical analysis of one-way ANOVA for testing the differences of ∑OCPs between the sampling sites for both the silicone rubber sheet and Speedisk samplers showed that there was no significant difference from the Upper Malewa to the Lake site (P < 0.05). Finally, the finding of this study indicated that continued monitoring of pesticides residues in the catchment remains highly recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenguang, E-mail: zhwg@sjtu.edu.cn; Ma, Yakun; Li, Zhengwei
Purpose: The application of neural probes in clinic has been challenged by probes’ short lifetime when implanted into brain tissue. The primary goal is to develop an evaluation system for testing brain tissue injury induced by neural probe’s insertion using microscope based digital image correlation method. Methods: A brain tissue phantom made of silicone rubber with speckle pattern on its surface was fabricated. To obtain the optimal speckle pattern, mean intensity gradient parameter was used for quality assessment. The designed testing system consists of three modules: (a) load module for simulating neural electrode implantation process; (b) data acquisition module tomore » capture micrographs of speckle pattern and to obtain reactive forces during the insertion of the probe; (c) postprocessing module for extracting tissue deformation information from the captured speckle patterns. On the basis of the evaluation system, the effects of probe wedge angle, insertion speed, and probe streamline on insertion induced tissue injury were investigated. Results: The optimal quality speckle pattern can be attained by the following fabrication parameters: spin coating rate—1000 r/min, silicone rubber component A: silicone rubber component B: softener: graphite = 5 ml: 5 ml: 2 ml: 0.6 g. The probe wedge angle has a significant effect on tissue injury. Compared to wedge angle 40° and 20°, maximum principal strain of 60° wedge angle was increased by 40.3% and 87.5%, respectively; compared with a relatively higher speed (500 μm/s), the maximum principle strain within the tissue induced by slow insertion speed (100 μm/s) was increased by 14.3%; insertion force required by probe with convex streamline was smaller than the force of traditional probe. Based on the experimental results, a novel neural probe that has a rounded tip covered by a biodegradable silk protein coating with convex streamline was proposed, which has both lower insertion and micromotion induced tissue injury. Conclusions: The established evaluation system has provided a simulation environment for testing brain tissue injury produced by various insertion conditions. At the same time, it eliminates the adverse effect of biological factors on tissue deformation during the experiment, improving the repeatability of measurement results. As a result, the evaluation system will provide support on novel neural probe design that can reduce the acute tissue injury during the implantation of the probe.« less
Friction and wear study of NR/SBR blends with Si3N4Filler
NASA Astrophysics Data System (ADS)
GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.
2018-04-01
The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.
Experimenting With Baroreceptor Reflexes
NASA Technical Reports Server (NTRS)
Eckberg, Dwain L.; Goble, Ross L.
1988-01-01
Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.
NASA Technical Reports Server (NTRS)
1986-01-01
Engineering Development Laboratory developed a system for the cardiovascular study of weightless astronauts. This was designed to aid people with congestive heart failure and diabetes. While in space, astronauts' blood pressure rises, heart rate becomes unstable, and there are sometimes postflight lightheadedness or blackouts. The Baro-Cuff studies the resetting of blood pressure. When a silicone rubber chamber is strapped to the neck, the Baro-Cuff stimulates the carotid arteries by electronically controlled pressure application. Blood pressure controls in patients may be studied.
1982-02-08
S82-26645 (March 1982) --- Spacesuit inner gloves consist of pressure bladders covered by Beta Cloth. EVA outer gloves are made of Beta Cloth, Mylar and a metallic mesh hand area. The thumb and fingertips of the glove are molded of silicone rubber to permit a degree of sensitivity. The inner gloves attach to the suit by pressure sealing rings, similar to these used in helmet-to-suit connections. The outer gloves served as a cover to protect from micrometeorites, abrasions and heat.
Anthropometric Sizing, Fit-Testing and Evaluation of the MBU-12/P Oral-Nasal Oxygen Mask
1979-08-01
Engineering Company, Sierra Madre , California, has a low profile single-unit facepiece in which a deformable silicone rubber face form is bonded to a...Churchill & Truett, 1957; Hertzberg et al., 1954). This comparison indicated that the 1967 sample was, on the average, older (2.64 years), taller (1.78...Support Special Projects Office, Wright-Patterson Air Force Base, Ohio, which, in turn, contracted with Sierra Engineering Company, Sierra Madre , California
NASA Technical Reports Server (NTRS)
Baucom, R. M. (Inventor)
1983-01-01
An X-ray transparent and biological inert medical clip for treating aneurisms and the like is described. A graphite reinforced composite film is molded into a unitary structure having a pair of hourglass-like cavities hinged together with a pair of jaws for grasping the aneurism extending from the wall of one cavity. A silicone rubber pellet is disposed in the other cavity to exert a spring force through the hinge area to normally bias the jaws into contact with each other.
Reconstruction of facial deformities with alloplastic material.
Schultz, R C
1981-12-01
The two most ideal and versatile foreign materials for reconstruction of facial bone deformities are silicone rubber and methyl methacrylate. Their biomechanical characteristics are uniquely suited to facial implantation for reconstruction of complex, irregular bony defects. The advantages and disadvantages of each are discussed, along with specific indications for their use. Surgical approaches and various methods of fabrication and fixation are presented and illustrated. The hazards and potential disappointments in the use of these and other alloplastic implants are reviewed.
Heat Transfer in the LCCM Thermal Reserve Battery
2009-09-01
and Molded Sheet 3M Corporation, Elkhart IN 46516 Microtherm Sheet Microtherm Inc., Alcoa TN 37701 AR5401 Flexible Blanket Aspen Aerogels, Inc...heated Microtherm side wall and axial thermal insulation 90.9 GPS9I 04/27/07 All batteries after GPS9H used six silicone rubber gaskets to form...pressure before ignition. Thin Microtherm side wrap next to cell stack. No pre- compression of any side wall insulation or side wall heat paper (– 40
Measurement of the traction force of biological cells by digital holography
Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.
2011-01-01
The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175
[Three-dimensional finite element analysis on cell culture membrane under mechanical load].
Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai
2002-01-01
A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.
Predictive aging results for cable materials in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.; Clough, R.L.
1990-11-01
In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less
Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling
NASA Astrophysics Data System (ADS)
Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei
2017-07-01
Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.
Zarnowski, R; Felske, A; Ellis, R J; Geuns, J M C; Pietr, S J
2002-01-01
The primary goals of this study were to isolate, identify and characterize culturable bacteria living in a close association with microalgae within green crusts covering silicone rubber electric insulators in Tanzania. Twenty-four bacterial colonies were isolated from an Apatococcus crust. Characterization by statistical analyses of total cellular protein profiles demonstrated that they were highly similar to one another. Final identification was achieved using 16S rDNA sequencing and fatty acid methyl ester profiling. These analyses revealed the presence of microbes with high similarity to Methylobacterium radiotolerans. The selected isolate, A1, displayed strong inhibitory activity against Rhizoctonia solani and was found to be resistant to relatively high concentrations of zinc in the growth medium. This study revealed the presence of M. radiotolerans bacteria in a novel environment--within algal crusts formed on electrical insulators in Africa. Moreover, this bacterium was found to be a predominant culturable species within those complex algal-microbial associations. The isolate also shared some traits of biotechnological importance with other members of the Methylobacterium genus. The data presented provide a valuable contribution concerning the formation and function of associations between green microalgae and bacteria. This study also provides some information about the utility of bacteria from the genus Methylobacterium in biotechnological applications, such as biocontrol of rhizoctoniosis and bioremediation of heavy metal-contaminated soils.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same
NASA Technical Reports Server (NTRS)
Rhein, R. A.; Ingham, J. D. (Inventor)
1978-01-01
Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.
Release characteristics of reattached barnacles to non-toxic silicone coatings.
Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J
2008-01-01
Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.
Pressure-volume characteristics of dielectric elastomer diaphragms
NASA Astrophysics Data System (ADS)
Tews, Alyson M.; Pope, Kimberly L.; Snyder, Alan J.
2003-07-01
With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.
Meyer, Brian K; Vargas, Diego
2006-01-01
The following study was conducted to determine the effect of different preservatives commonly used in the biopharmaceutical industry on the product-specific bubble point of sterilizing-grade filters when used to filter product processed with different types of tubing. The preservatives tested were 0.25% phenol, m-cresol, and benzyl alcohol. The tubing tested was Sani-Pure (platinum-cured silicone tubing), Versilic (peroxide-cured silicone tubing), C-Flex, Pharmed, and Cole-Parmer (BioPharm silicone tubing). The product-specific bubble point values of sterilizing grade filters were measured after the recirculation of product through the filter and tubing of different types of materials for a total contact time of 15 h. When silicone tubing was used, the post-recirculation product-specific bubble point was suppressed on average 13 psig when compared to the pre- recirculation product-specific bubble point. Suppression was also observed with C-Flex, but to a much lesser extent than with silicone tubing. Suppression was not observed with Pharmed or BioPharm tubing. Alcohol extractions performed on the filters that experienced suppressed bubble points followed by Fourier transform infrared spectroscopy analysis indicated the filters contained poly(dimethylsiloxane). Direct addition of poly(dimethlysiloxane) to solutions filtered through sterilizing-grade filters suppressed the filter bubble points when tested for integrity. Silicone oils most likely reduced the surface tension of the pores in the membrane, resulting in the ability of air (or nitrogen) to pass more freely through the membrane, causing suppressed bubble point test values. The results of these studies indicate that product-specific bubble point of a filter determined with only product may not reflect the true bubble point for preservative-containing products that are recirculated or contacted with certain tubing for 15 h or greater. In addition, tubing material placed in contact with products containing preservatives should be evaluated for impact to the product-specific bubble point when being utilized with sterilizing-grade filters.
Treatment to Control Adhesion of Silicone-Based Elastomers
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.
2013-01-01
Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.
Design and Test of a Soft Plantar Force Measurement System for Gait Detection
Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan
2012-01-01
This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558
Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina
2003-01-01
To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.
Exploration of photosensitive polyimide as the modification layer in thin film microcircuit
NASA Astrophysics Data System (ADS)
Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin
2018-02-01
Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.
Studies on the structural changes during curing of epoxy and its blend with CTBN
NASA Astrophysics Data System (ADS)
Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak
2018-01-01
Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20 weight percent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500 cm- 1 which might be due to the presence of phenolic hydroxyl group and sbnd OH group of the opened epoxide. Pure epoxy resin showed peaks near 856 cm- 1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples.
Studies on the structural changes during curing of epoxy and its blend with CTBN.
Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak
2018-01-05
Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20weightpercent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500cm -1 which might be due to the presence of phenolic hydroxyl group and OH group of the opened epoxide. Pure epoxy resin showed peaks near 856cm -1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation curing: Science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappas, S.P.
1992-01-01
The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chaptersmore » 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems.« less
Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid
2013-01-01
A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484
Semipermeable Elastic Microcapsules for Gas Capture and Sensing.
Nabavi, Seyed Ali; Vladisavljević, Goran T; Gu, Sai; Manović, Vasilije
2016-09-27
Monodispersed microcapsules for gas capture and sensing were developed consisting of elastic semipermeable polymer shells of tunable size and thickness and pH-sensitive, gas selective liquid cores. The microcapsules were produced using glass capillary microfluidics and continuous on-the-fly photopolymerization. The inner fluid was 5-30 wt % K2CO3 solution with m-cresol purple, the middle fluid was a UV-curable liquid silicon rubber containing 0-2 wt % Dow Corning 749 fluid, and the outer fluid was aqueous solution containing 60-70 wt % glycerol and 0.5-2 wt % stabilizer (poly(vinyl alcohol), Tween 20, or Pluronic F-127). An analytical model was developed and validated for prediction of the morphology of the capsules under osmotic stress based on the shell properties and the osmolarity of the storage and core solutions. The minimum energy density and UV light irradiance needed to achieve complete shell polymerization were 2 J·cm(-2) and 13.8 mW·cm(-2), respectively. After UV exposure, the curing time for capsules containing 0.5 wt % Dow Corning 749 fluid in the middle phase was 30-40 min. The CO2 capture capacity of 30 wt % K2CO3 capsules was 1.6-2 mmol/g depending on the capsule size and shell thickness. A cavitation bubble was observed in the core when the internal water was abruptly removed by capillary suction, whereas a gradual evaporation of internal water led to buckling of the shell. The shell was characterized using TGA, DSC, and FTIR. The shell degradation temperature was 450-460 °C.
Post-Cure Studies on Solid Silicone Elastomer: DC745U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Acosta, Denisse; Janicke, Michael T.; Yoder, Jacob
DC745U is a silicone elastomer originally manufactured by Dow Corning under the name of Silastic® DC745U at their manufacturing facility in Kendaville, Indiana. Currently DC745U is available through Xiameter® or Dow Corning’s distributor R. D. Abbott Company. This silicone elastomer is used in numerous parts of weapon systems, including outer pressure pads, aft cap support in W80 and pressure pad in the B61. DC745U is a proprietary formulation and limited information about its composition and properties is provided to the customer. Thus, Los Alamos National Laboratory and Lawrence Livermore National Laboratory have performed a variety of characterization experiments on thismore » material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Railsback, Justin; Pearce, Ryan; Sarac, Mehmet
Vertically aligned carbon nanofibers (VACNFs) are synthesized on 3003 aluminum substrates by direct current plasma enhanced chemical vapor deposition. Chemically synthesized nickel nanoparticles were used as the catalyst for growth. The silicon containing coating (SiNx) typically produced when VACNFs are grown on silicon was produced by adding silicon microparticles prior to growth. The fiber array was transferred to PDMS by spin casting a layer on the grown substrates, curing the PDMS, and etching away the aluminum in KOH. Energy dispersive x-ray spectroscopy, scanning electron microscopy, and fluorescence microscopy data are provided. The free standing array in PDMS was then loadedmore » with pVENUS-C1 plasmid and human brain microcapillary endothelial cells (HCMECHBMEC)/d3 cells were successfully impalefected with the plasmid.« less
Slow Decomposition of Silicone Rubber.
1982-09-01
6i 0 20 0 0 -c CA soa ,~ I -- 00 N - C,,l I 21. DYN 6181 DISTRIBUTION LIST No. Cooies No. Cooies Dr. L.V. Schmidt 1 Or. F. Roberto 1 Assistant...Scientific Dr. A.L. Slafkosky 1 Research Scientific Advisor Directorate of Aerosoace Sciences Commandant of the Marine Corps Bolling Air Force Base Code...Research Research Code 413 Directorate of Chemical Sciences Arlington, VA 22217 Bolling Air Force Base Washington, D.C. 20332 M r . Da v id S i e g e lD r J
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
2000-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.