Dandl, R.A.
1961-09-19
A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.
Ming Gu; Chakrabartty, Shantanu
2014-06-01
This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.
Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere
NASA Astrophysics Data System (ADS)
Chkalov, V. G.
An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.
High temperature current mirror amplifier
Patterson, III, Raymond B.
1984-05-22
A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.
A low-noise current-sensitive amplifier-discriminator system for beta particle counting.
Sephton, J P; Johansson, L C; Williams, J M
2008-01-01
NPL has developed a low-noise current amplifier/discriminator system for radionuclides that emit low-energy electrons and X-rays. The new beta amplifier is based on the low-noise Amptek A-250 operational amplifier. The design has been configured for optimum signal to noise ratio. The new amplifier is described and results obtained using primarily electron-capture decaying radionuclides are presented. The new amplifier gives rise to higher particle detection efficiency than the previously used Atomic Energy of Canada Limited-designed amplifier. This is shown by measurements of (54)Mn and (65)Zn. The counting plateaux are significantly longer and have reduced gradients.
High temperature current mirror amplifier
Patterson, R.B. III.
1984-05-22
Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.
High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.
Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng
2018-04-01
2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.
High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures
Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng
2018-01-01
Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428
Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William
2012-01-01
The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-05-19
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-01-01
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382
A high efficiency PWM CMOS class-D audio power amplifier
NASA Astrophysics Data System (ADS)
Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei
2009-02-01
Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.
A Laser Interferometric Miniature Seismometer
2008-09-01
zero bias, convert the photodiode currents to voltages with transimpedance amplifiers based on operational amplifiers (op amps) and produce a...light is collected at the photodiodes and transimpedance amplifiers convert the photocurrent to a voltage, and the seismic signal is the difference... transimpedance amplifiers . CONCLUSIONS AND RECOMMENDATIONS Achieving LNM resolution in a seismic sensor is a very strong challenge. While we have built
A Graphical Approach to Teaching Amplifier Design at the Undergraduate Level
ERIC Educational Resources Information Center
Assaad, R. S.; Silva-Martinez, J.
2009-01-01
Current methods of teaching basic amplifier design at the undergraduate level need further development to match today's technological advances. The general class approach to amplifier design is analytical and heavily based on mathematical manipulations. However, the students mathematical abilities are generally modest, creating a void in which…
A wide bandwidth free-electron laser with mode locking using current modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kur, E.; Dunning, D. J.; McNeil, B. W. J.
2011-01-20
A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Shingla, Vidhi; Csáthy, G. A.
2017-03-01
We present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/√{Hz}. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures. In particular, we demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3.25 kΩ resistor down to 16 mK. Our circuit is a useful alternative to the commonly used High Electron Mobility Transistor-based amplifiers, but in contrast to the latter, it offers a much reduced 1/f noise. In comparison to SQUIDs interfaced with cryogenic current comparators, our circuit has similar low noise levels, but it is easier to build and to shield from magnetic pickup.
NASA Astrophysics Data System (ADS)
He, Haizhen; Luo, Rongming; Hu, Zhenhua; Wen, Lei
2017-07-01
A current-mode field programmable analog array(FPAA) is presented in this paper. The proposed FPAA consists of 9 configurable analog blocks(CABs) which are based on current differencing transconductance amplifiers (CDTA) and trans-impedance amplifier (TIA). The proposed CABs interconnect through global lines. These global lines contain some bridge switches, which used to reduce the parasitic capacitance effectively. High-order current-mode low-pass and band-pass filter with transmission zeros based on the simulation of general passive RLC ladder prototypes is proposed and mapped into the FPAA structure in order to demonstrate the versatility of the FPAA. These filters exhibit good performance on bandwidth. Filter's cutoff frequency can be tuned from 1.2MHz to 40MHz.The proposed FPAA is simulated in a standard Charted 0.18μm CMOS process with +/-1.2V power supply to confirm the presented theory, and the results have good agreement with the theoretical analysis.
An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.
Korzun, A M; Rozinov, S V; Abashin, G I
1997-01-01
The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.
Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A
2015-10-01
Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.
Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers
DeGeronimo, Gianluigi
2006-02-14
A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe
2015-01-01
Purpose To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. Methods The resonant detection coil is connected in parallel with the gate of a HEMT transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor’s source to a negative resistance on its gate. Results High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 µW, 14 dB gain was obtained with excellent noise performance. Conclusion An integrated current amplifier based on a High Electron Mobility Transistor (HEMT) can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. PMID:26192998
Wideband pulse amplifiers for the NECTAr chip
NASA Astrophysics Data System (ADS)
Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.
2012-12-01
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier
NASA Technical Reports Server (NTRS)
Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward
2016-01-01
The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong
2006-12-01
It is well known that the gain-clamped semiconductor optical amplifier (GC-SOA) based on lasing effect is subject to transmission rate restriction because of relaxation oscillation. The GC-SOA based on compensating effect between signal light and amplified spontaneous emission by combined SOA and fiber Bragg grating (FBG) can be used to overcome this problem. In this paper, the theoretical model on GC-SOA based on compensating light has been constructed. The numerical simulations demonstrate that good gain and noise figure characteristics can be realized by selecting reasonably the FBG insertion position, the peak reflectivity of FBG and the biasing current of GC-SOA.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers
Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055
Direct Current Amplifier. Report No. 92; AMPLIFICADOR DE CORRIENTE CONTINUA. Informe No. 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marazzi, C.
1963-01-01
A direct-current amplifier with low zero current and solid-state chopper for input is described. This amplifier can be used in control circuits and for general applications such as temperature measurement in thermocouples, amplifier for a photo-sensitive element, or zero amplifier in control systems. The input impedance is relatively low, serving principally as current amplifier. It is possible to obtain a symmetry characteristic for positive and negative values of the output voltage with respect to the input. (tr-auth)
Improved Signal Chains for Readout of CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas
2009-01-01
An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.
Schorstein, Kai; Popescu, Alexandru; Göbel, Marco; Walther, Thomas
2008-01-01
Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter. PMID:27873842
OFCC based voltage and transadmittance mode instrumentation amplifier
NASA Astrophysics Data System (ADS)
Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant
2017-07-01
The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.
A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Thoutam, Laxman Raju
2015-04-10
In this article we report an analog small signal amplifier based on semiconducting black phosphorus (BP), the most recent addition to the family of two dimensional crystals. The amplifier, consisting of a BP load resistor and a BP field effect transistor (FET) was integrated on a single flake. The gain of the amplifier was found to be ~9 and it remained undistorted for input signal frequencies up to 15 kHz. In addition, we also report record high ON current of 200 µA/µm at V DD = -0.5V in BP FETs. Our results demonstrates the possibility for the implementation of BPmore » in the future generations of analog devices.« less
Cryogenic, high-resolution x-ray detector with high count rate capability
Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.
2003-03-04
A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.
Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.
Ferrari, Giorgio; Sampietro, Marco
2007-09-01
This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
STABILIZED TRANSISTOR AMPLIFIER
Noe, J.B.
1963-05-01
A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)
High temperature charge amplifier for geothermal applications
Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.
2015-12-08
An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.
Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe
2016-06-01
To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. The resonant detection coil is connected in parallel with the gate of a high electron mobility transistor (HEMT) transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor's source to a negative resistance on its gate. High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 μW, 14 dB gain was obtained with excellent noise performance. An integrated current amplifier based on a HEMT can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. Magn Reson Med 75:2573-2578, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015 This article is a U.S. Government work and is in the public domain in the USA.
Low phase noise oscillator using two parallel connected amplifiers
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L.
1987-01-01
A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.
Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H
2015-01-01
Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671
Gudino, Natalia; Heilman, Jeremiah A; Riffe, Matthew J; Heid, Oliver; Vester, Markus; Griswold, Mark A
2013-07-01
A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability, and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D amplifier output stage and a voltage mode class-D preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the current mode class-D stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. Copyright © 2012 Wiley Periodicals, Inc.
Low-noise current amplifier based on mesoscopic Josephson junction.
Delahaye, J; Hassel, J; Lindell, R; Sillanpää, M; Paalanen, M; Seppä, H; Hakonen, P
2003-02-14
We used the band structure of a mesoscopic Josephson junction to construct low-noise amplifiers. By taking advantage of the quantum dynamics of a Josephson junction, i.e., the interplay of interlevel transitions and the Coulomb blockade of Cooper pairs, we created transistor-like devices, Bloch oscillating transistors, with considerable current gain and high-input impedance. In these transistors, the correlated supercurrent of Cooper pairs is controlled by a small base current made up of single electrons. Our devices reached current and power gains on the order of 30 and 5, respectively. The noise temperature was estimated to be around 1 kelvin, but noise temperatures of less than 0.1 kelvin can be realistically achieved. These devices provide quantum-electronic building blocks that will be useful at low temperatures in low-noise circuit applications with an intermediate impedance level.
Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.
Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus
2016-09-19
We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
NASA Astrophysics Data System (ADS)
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Active lamp pulse driver circuit. [optical pumping of laser media
NASA Technical Reports Server (NTRS)
Logan, K. E. (Inventor)
1983-01-01
A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.
NASA Astrophysics Data System (ADS)
Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo
This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.
Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop
2016-03-20
This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.
Gm-Realization of Controlled-Gain Current Follower Transconductance Amplifier
Tangsrirat, Worapong
2013-01-01
This paper describes the conception of the current follower transconductance amplifier (CFTA) with electronically and linearly current tunable. The newly modified element is realized based on the use of transconductance cells (G m s) as core circuits. The advantage of this element is that the current transfer ratios (i z/i p and i x/i z) can be tuned electronically and linearly by adjusting external DC bias currents. The circuit is designed and analyzed in 0.35 μm TSMC CMOS technology. Simulation results for the circuit with ±1.25 V supply voltages show that it consumes only 0.43 mw quiescent power with 70 MHz bandwidth. As an application example, a current-mode KHN biquad filter is designed and simulated. PMID:24381513
Transistor circuit increases range of logarithmic current amplifier
NASA Technical Reports Server (NTRS)
Gilmour, G.
1966-01-01
Circuit increases the range of a logarithmic current amplifier by combining a commercially available amplifier with a silicon epitaxial transistor. A temperature compensating network is provided for the transistor.
Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drung, D.; Krause, C.; Becker, U.
2015-02-15
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less
NASA Astrophysics Data System (ADS)
Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
Gudino, N.; Heilman, J.A; Riffe, M. J.; Heid, O.; Vester, M.; Griswold, M.A.
2016-01-01
A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D (CMCD) amplifier output stage and a voltage mode class-D (VMCD) preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the CMCD stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5 T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. PMID:22890962
Two-electrode non-differential biopotential amplifier.
Dobrev, D
2002-09-01
A circuit is proposed for a non-differential two-electrode biopotential amplifier, with a current source and a transimpedance amplifier as a potential equaliser for its inputs, fully emulating a differential amplifier. The principle of operation is that the current in the input of the transimpedance amplifier is sensed and made to flow with the same value in the other input. The circuit has a simple structure and uses a small number of components. The current source maintains balanced common-mode interference currents, thus ensuring high signal input impedance. In addition, these currents can be tolerated up to more than 10 microA per input, at a supply voltage of +/- 5 V. A two-electrode differential amplifier with 2 x 10 Mohm input resistances to the reference point allows less than 0.5 microA per input. The circuit can be useful in cases of biosignal acquisition by portable instruments, using low supply voltages, from subjects in areas of high electromagnetic fields. Examples include biosignal recordings in electric power stations and electrically powered locomotives, where traditionally designed input amplifier stages can be saturated.
High-energy ultra-short pulse thin-disk lasers: new developments and applications
NASA Astrophysics Data System (ADS)
Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas
2016-03-01
We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.
NASA Astrophysics Data System (ADS)
Powolny, F.; Auffray, E.; Brunner, S. E.; Garutti, E.; Goettlich, M.; Hillemanns, H.; Jarron, P.; Lecoq, P.; Meyer, T.; Schultz-Coulon, H. C.; Shen, W.; Williams, M. C. S.
2011-06-01
Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Ω input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 × 3 mm2 SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 × 3 × 15 mm3 LSO crystal coupled to a SiPM. The measured time coincidence precision and the limitations in the overall timing accuracy are interpreted using Monte Carlo/SPICE simulation, Poisson statistics, and geometric effects of the crystal.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
NASA Astrophysics Data System (ADS)
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
Integrated P-channel MOS gyrator
NASA Technical Reports Server (NTRS)
Hochmair, E. S. (Inventor)
1974-01-01
A gyrator circuit is described which is of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 phase reversal, in a circuit having medium Q composed of all field effect transistors of the same conductivity type. The current source to each gyrator amplifier comprises an amplifier which responds to changes in current, with the amplified signals feed back so as to limit current. The feedback amplifier has a large capacitor connected to bypass high frequency components, thereby stabilizing the output. The design makes possible fabrication of circuits with transistors of only one conductivity type, providing economies in manufacture and use.
NASA Technical Reports Server (NTRS)
Jarosik, Norman
1994-01-01
Low frequency gain fluctuations of a 30 GHz cryogenic HEMT amplifier have been measured with the input of the amplifier connected to a 15 K load. Effects of fluctuations of other components of the test set-up were eliminated by use of a power-power correlation technique. Strong correlation between output power fluctuations of the amplifier and drain current fluctuations of the transistors comprising the amplifier are observed. The existence of these correlations introduces the possibility of regressing some of the excess noise from the HEMT amplifier's output using the measured drain currents.
Towards a Narrowband Photonic Sigma-Delta Digital Antenna
2012-02-01
High Speed Photodiode/ Amplifier 26 G no amplifier 50 k transimpedance amplifier N/A 12 ps rise time 50 Ω output impedance HP 8447A Amplifier ......Response for the optical amplifier as a function of input drive current
Analysis and design of continuous class-E power amplifier at sub-nominal condition
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Kai; Zhang, Tianliang
2017-12-01
The continuous class-E power amplifier at sub-nominal condition is proposed in this paper. The class-E power amplifier at continuous mode means it can be high efficient on a series matching networks while at sub-nominal condition means it only requires the zero-voltage-switching condition. Comparing with the classical class-E power amplifier, the proposed design method releases two additional design freedoms, which increase the class-E power amplifier's design flexibility. Also, the proposed continuous class-E power amplifier at sub-nominal condition can perform high efficiency over a broad bandwidth. The performance study of the continuous class-E power amplifier at sub-nominal condition is derived and the design procedure is summarised. The normalised switch voltage and current waveforms are investigated. Furthermore, the influences of different sub-nominal conditions on the power losses of the switch-on resistor and the output power capability are also discussed. A broadband continuous class-E power amplifier based on a Gallium Nitride (GaN) transistor is designed and testified to verify the proposed design methodology. The measurement results show, it can deliver 10-15 W output power with 64-73% power-added efficiency over 1.4-2.8 GHz.
High power pulsed sources based on fiber amplifiers
NASA Astrophysics Data System (ADS)
Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre
2017-11-01
Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.
Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.
Hernandez, Wilmar
2008-01-09
In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.
NASA Astrophysics Data System (ADS)
Paik, Daehwa; Miyahara, Masaya; Matsuzawa, Akira
This paper analyzes a pseudo-differential dynamic comparator with a dynamic pre-amplifier. The transient gain of a dynamic pre-amplifier is derived and applied to equations of the thermal noise and the regeneration time of a comparator. This analysis enhances understanding of the roles of transistor's parameters in pre-amplifier's gain. Based on the calculated gain, two calibration methods are also analyzed. One is calibration of a load capacitance and the other is calibration of a bypass current. The analysis helps designers' estimation for the accuracy of calibration, dead-zone of a comparator with a calibration circuit, and the influence of PVT variation. The analyzed comparator uses 90-nm CMOS technology as an example and each estimation is compared with simulation results.
Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F
2018-05-22
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.
Measurement device for high-precision spectral transmittance of solar blind filter
NASA Astrophysics Data System (ADS)
Wang, Yan; Qian, Yunsheng; Lv, Yang; Feng, Cheng; Liu, Jian
2017-02-01
In order to measure spectral transmittance of solar-blind filter ranging from ultraviolet to visible light accurately, a high-precision filter transmittance measuring system based on the ultraviolet photomultiplier is developed. The calibration method is mainly used to measure transmittance in this system, which mainly consists of an ultraviolet photomultiplier as core of the system and a lock-in amplifier combined with an optical modulator as the aided measurement for the system. The ultraviolet photomultiplier can amplify the current signal through the filter and have the characteristics of low dark current and high luminance gain. The optical modulator and the lock-in amplifier can obtain the signal from the photomultiplier and inhibit dark noise and spurious signal effectively. Through these two parts, the low light passing through the filters can be detected and we can calculate the transmittance by the optical power detected. Based on the proposed system, the limit detection of the transmittance can reach 10-12, while the result of the conventional approach is merely 10-6. Therefore, the system can make an effective assessment of solar blind ultraviolet filters.
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Field effect transistors improve buffer amplifier
NASA Technical Reports Server (NTRS)
1967-01-01
Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.
NASA Astrophysics Data System (ADS)
Castillo-Cabrera, G.; García-Lamont, J.; Reyes-Barranca, M. A.; Moreno-Cadenas, J. A.; Escobosa-Echavarría, A.
2011-03-01
In this report, the performance of a particular pixel's architecture is evaluated. It consists mainly of an optical sensor coupled to an amplifier. The circuit contains photoreceptors such as phototransistors and photodiodes. The circuit integrates two main blocks: (a) the pixel architecture, containing four p-channel transistors and a photoreceptor, and (b) a current source for biasing the signal conditioning amplifier. The generated photocurrent is integrated through the gate capacitance of the input p-channel MOS transistor, then converted to voltage and amplified. Both input transistor and current source are implemented as a voltage amplifier having variable gain (between 10dB and 32dB). Considering characterisation purposes, this last fact is relevant since it gives a degree of freedom to the measurement of different kinds of photo-devices and is not limited to either a single operating point of the circuit or one kind and size of photo-sensor. The gain of the amplifier can be adjusted with an external DC power supply that also sets the DC quiescent point of the circuit. Design of the row-select transistor's aspect ratio used in the matrix array is critical for the pixel's amplifier performance. Based on circuit design data such as capacitance magnitude, time and voltage integration, and amplifier gain, characterisation of all the architecture can be readily carried out and evaluated. For the specific technology used in this work, the spectral response of photo-sensors reveals performance differences between phototransistors and photodiodes. Good approximation between simulation and measurement was obtained.
De Shong, J.A. Jr.
1957-12-31
A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.
Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers.
Walls, F L; Ferre-Pikal, E S; Jefferts, S R
1997-01-01
In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieux, G.; Cipiccia, S.; Grant, D. W.
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Vieux, G.; Cipiccia, S.; Grant, D. W.; ...
2017-05-25
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
Wade, E.J.; Stone, R.S.
1959-03-10
Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.
Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un
2007-01-01
Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements.
Bengtsson, Lars E
2012-07-01
This paper presents a novel approach to the design of a digital ohmmeter with a resolution of <60 μΩ based on a general-purpose microcontroller and a high-impedance instrumentation amplifier only. The design uses two digital I/O-pins to alternate the current through the sample resistor and combined with a proper firmware routine, the design is a lock-in detector that discriminates any signal that is out of phase/frequency with the reference signal. This makes it possible to selectively detect the μV drop across sample resistors down to 55.6 μΩ using only the current that can be supplied by the digital output pins of a microcontroller. This is achieved without the need for an external reference signal generator and does not rely on the computing processing power of a digital signal processor.
Industrial universal electrometer
Cordaro, Joseph V [Martinez, GA; Wood, Michael B [Aiken, SC
2012-07-03
An electrometer for use in measuring current is provided. The electrometer includes an enclosure capable of containing various components of the electrometer. A pre-amplifier is present and is one of the components of the electrometer. The pre-amplifier is contained by the enclosure. The pre-amplifier has a pre-amplifier enclosure that contains the pre-amplifier and provides radio frequency shielding and magnetic shielding to the pre-amplifier.
Design of transient light signal simulator based on FPGA
NASA Astrophysics Data System (ADS)
Kang, Jing; Chen, Rong-li; Wang, Hong
2014-11-01
A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.
NASA Astrophysics Data System (ADS)
Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther
2016-03-01
A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.
Bio-isolated DC operational amplifier
NASA Technical Reports Server (NTRS)
Lee, R. D.
1974-01-01
Possibility of shocks from leakage currents can be reduced by use of isolated preamplifiers. Amplifier consists of battery-powered operational amplifier coupled by means of light-emitting diodes to another amplifier which may be grounded and operated from ac power mains or separate battery supply.
Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.
Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor
2014-01-01
This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.
Valente, Virgilio; Dai Jiang; Demosthenous, Andreas
2015-08-01
This paper presents the preliminary design and simulation of a flexible and programmable analog front-end (AFE) circuit with current and voltage readout capabilities for electric impedance spectroscopy (EIS). The AFE is part of a fully integrated multifrequency EIS platform. The current readout comprises of a transimpedance stage and an automatic gain control (AGC) unit designed to accommodate impedance changes larger than 3 order of magnitude. The AGC is based on a dynamic peak detector that tracks changes in the input current over time and regulates the gain of a programmable gain amplifier in order to optimise the signal-to-noise ratio. The system works up to 1 MHz. The voltage readout consists of a 2 stages of fully differential current-feedback instrumentation amplifier which provide 100 dB of CMRR and a programmable gain up to 20 V/V per stage with a bandwidth in excess of 10MHz.
Power Conditioning for MEMS-Based Waste Vibrational Energy Harvester
2015-06-01
circuits ...........................................................................................18 Figure 18. Full-wave passive MOSFET rectifier...ABBREVIATIONS AC Alternative Current AlN Aluminum Nitride DC Direct Current LIA Lock-In Amplifier MEMS Microelectromechanical Systems MOSFET ...efficiency is achieved when input voltage is over 2–3 V [14]. Using metal-oxide-semiconductor field-effect transistors ( MOSFETs ) in a rectifier instead of
High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.
Proctor, J E; Smith, A W; Jung, T M; Woods, S I
2015-07-01
We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.
Ultra-low current biosensor output detection using portable electronic reader
NASA Astrophysics Data System (ADS)
Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.
2017-09-01
Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.
Von Eschen, R.L.; Scheele, P.F.
1962-04-24
A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.
Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C
2012-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems
Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.
2013-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-06-14
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-01-01
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250
NASA Astrophysics Data System (ADS)
Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan
2016-03-01
A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.
Phase-Locked Optical Generation of mmW/THz Signals
2009-11-01
22 6.2. TIA (Trans-Impedance Amplifier ...24 6.3. Variable gain Amplifier ...loop architectures. Generate models including detector impulse response, feedback amplifier impulse response and laser current tuning response
Series transistors isolate amplifier from flyback voltage
NASA Technical Reports Server (NTRS)
Banks, W.
1967-01-01
Circuit enables high sawtooth currents to be passed through a deflection coil and isolate the coil driving amplifier from the flyback voltage. It incorporates a switch consisting of transistors in series with the driving amplifier and deflection coil. The switch disconnects the deflection coil from the amplifier during the retrace time.
Field-effect transistor improves electrometer amplifier
NASA Technical Reports Server (NTRS)
Munoz, R.
1964-01-01
An electrometer amplifier uses a field effect transistor to measure currents of low amperage. The circuit, developed as an ac amplifier, is used with an external filter which limits bandwidth to achieve optimum noise performance.
Naval electrochemical corrosion reducer
Clark, Howard L.
1991-10-01
A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2010-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2011-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Aoki, Ichiro (Inventor); Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor)
2013-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2008-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
A low-power CMOS operational amplifier IC for a heterogeneous paper-based potentiostat
NASA Astrophysics Data System (ADS)
Bezuidenhout, P.; Land, K.; Joubert, T.-H.
2016-02-01
Electrochemical biosensing is used to detect specific analytes in fluids, such as bacterial and chemical contaminants. A common implementation of an electrochemical readout is a potentiostat, which usually includes potentiometric, amperometric, and impedimetric detection. Recently several researchers have developed small, low-cost, single-chip silicon-based potentiostats. With the advances in heterogeneous integration technology, low-power potentiostats can be implemented on paper and similar low cost substrates. This paper deals with the design of a low-power paper-based amperometric front-end for a low-cost and rapid detection environment. In amperometric detection a voltage signal is provided to a sensor system, while a small current value generated by an electrochemical redox reaction in the system is measured. In order to measure low current values, the noise of the circuit must be minimized, which is accomplished with a pre-amplification front-end stage, typically designed around an operational amplifier core. An appropriate circuit design for a low-power and low-cost amperometric front-end is identified, taking the heterogeneous integration of various components into account. The operational amplifier core is on a bare custom CMOS chip, which will be integrated onto the paper substrate alongside commercial off-the-shelf electronic components. A general-purpose low-power two-stage CMOS amplifier circuit is designed and simulated for the ams 350 nm 5 V process. After the layout design and verification, the IC was submitted for a multi-project wafer manufacturing run. The simulated results are a bandwidth of 2.4 MHz, a common-mode rejection ratio of 70.04 dB, and power dissipation of 0.154 mW, which are comparable with the analytical values.
A Design Methodology for Optoelectronic VLSI
2007-01-01
current gets converted to a CMOS voltage level through a transimpedance amplifier circuit called a receiver. The output of the receiver is then...change the current flowing from the diode to a voltage that the logic inputs can use. That circuit is called a receiver. It is a transimpedance amplifier ...incorpo- rate random access memory circuits, SRAM or dynamic RAM (DRAM). These circuits use weak internal analog signals that are amplified by sense
Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer
2008-10-01
commercially available dual-channel transimpedance amplifier circuit boards (Boston Electronics, TWAMP). Preliminary results with the imaging probe...connected to a current amplifier via a coaxial cable for diffuse reflectance measurements. This new probe is named P4-3 and schematics of the system and...probe. With the single pixel device a single-channel current amplifier (Terahertz Technologies, PDA-750) could easily read and collect the photocurrent
Scalable Low-Power Deep Machine Learning with Analog Computation
2013-07-19
transimpedance amplifier (TIA) that measures the output current 7 V Cf Vbias MP1 MN1 Vdd = 3 V 2.5 V 2.6 V + − Vox = 4.4 V 0.1 V + − 7 V Cf Vbias MP1 MN1 Vddt... amplifier . The amplifier has Cf as its feedback capacitor and the FG voltage Vfg as its input. The two MUXs at the sources of MP1 and MP2 control the...as a simple operational transconductor amplifier (OTA), converts voltage Vout to output current Iout. Vref determines the nominal voltage of Vout
LOW-LEVEL DIRECT CURRENT AMPLIFIER
Kerns, Q.A.
1959-05-01
A d-c amplifier is described. Modulation is provided between a d-c signal and an alternating current to give an output signal proportional to the d- c signal. The circuit has high sensitivity and accuracy. (T.R.H.)
Low noise charge ramp electrometer
Morgan, John P.; Piper, Thomas C.
1992-01-01
An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit.
Low noise charge ramp electrometer
Morgan, J.P.; Piper, T.C.
1992-10-06
An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit. 2 figs.
High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom
Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN
2010-09-21
A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.
Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN
2012-02-14
A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.
A high gain wide dynamic range transimpedance amplifier for optical receivers
NASA Astrophysics Data System (ADS)
Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang
2014-01-01
As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.
USDA-ARS?s Scientific Manuscript database
A database of Louisiana sugarcane molecular identity has been constructed and is being updated annually using FAM or HEX or NED fluorescence- and capillary electrophoresis (CE)-based microsatellite (SSR) fingerprinting information. The fingerprints are PCR-amplified from leaf DNA samples of current ...
Research and Development of Laser Diode Based Instruments for Applications in Space
NASA Technical Reports Server (NTRS)
Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg
1999-01-01
Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.
NASA Astrophysics Data System (ADS)
Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.
2018-02-01
Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.
Solid state, S-band, power amplifier
NASA Technical Reports Server (NTRS)
Digrindakis, M.
1973-01-01
The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.
Improved-Bandwidth Transimpedance Amplifier
NASA Technical Reports Server (NTRS)
Chapsky, Jacob
2009-01-01
The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.
Evaluation of Silicon-on-Insulator HTOP-01 Operational Amplifier for Wide Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronics capable of operation under extreme temperatures are required in many of NASA space exploration missions. Aerospace and military applications, as well as some terrestrial industries constitute environments where electronic systems are anticipated to be exposed to extreme temperatures and wide-range thermal swings. Electronics that are able to withstand and operate efficiently in such harsh environments would simplify, if not eliminate, traditional thermal control elements and their associated structures for proper ambient operation. As a result, overall system mass would be reduced, design would be simplified, and reliability would be improved. Electronic parts that are built utilizing silicon-on-insulator (SOI) technology are known to offer better radiation-tolerance compared to their conventional silicon counterparts, provide faster switching, and consume less power. They also exhibit reduced leakage current and, thus, they are often tailored for high temperature operation. These attributes make SOI-based devices suitable for use in harsh environments where extreme temperatures and wide thermal swings are anticipated. A new operational amplifier, based on silicon-on-insulator technology and geared for high temperature well-logging applications, was recently introduced by Honeywell Corporation. This HTOP-01 dual precision operational amplifier is a low power device, operates on a single supply, and has an internal oscillator and an external clocking option [1]. It is rated for operation from -55 C to +225 C with a maximum output current capability of 50 mA. The amplifier chip is designed as a 14-pin, hermetically-sealed device in a ceramic package. Table I shows some of the device manufacturer s specifications.
Wide-band current preamplifier for conductance measurements with large input capacitance.
Kretinin, Andrey V; Chung, Yunchul
2012-08-01
A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain. The described 10(7) V/A current gain preamplifier had the bandwidth of about 100 kHz with the 1 nF input shunt capacitance. The measured preamplifier current noise was 46 fA/√Hz at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/√Hz at 1 kHz, which is in a good agreement with the value expected for the particular operational amplifier used in the input stage. By analysing the total produced noise we found that the optimal frequency range suitable for the fast lock-in measurements is from 1 kHz to 2 kHz. To obtain the same signal-to-noise ratio, the reported preamplifier requires ~10% of the integration time needed in measurements made with a conventional preamplifier.
Post-Fragmentation Whole Genome Amplification-Based Method
NASA Technical Reports Server (NTRS)
Benardini, James; LaDuc, Myron T.; Langmore, John
2011-01-01
This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at practically every step, particularly nucleic acid extraction. In engineering a molecular means of amplifying nucleic acids directly from single cells in their native state within the sample matrix, this innovation has circumvented entirely the need for DNA extraction regimes in the sample processing scheme.
Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
NASA Astrophysics Data System (ADS)
Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
Integration & Validation of LCU with Different Sub-systems for Diacrode based amplifier
NASA Astrophysics Data System (ADS)
Rajnish, Kumar; Verma, Sriprakash; Soni, Dipal; Patel, Hriday; Suthar, Gajendra; Dalicha, Hrushikesh; Dhola, Hitesh; Patel, Amit; Upadhayay, Dishang; Jha, Akhil; Patel, Manoj; Trivedi, Rajesh; Machchhar, Harsha; Singh, Raghuraj; Mukherjee, Aparajita
2017-04-01
ITER-India is responsible to deliver nine (8+1 spare) ICH & CD Power Sources to ITER. Each power source is capable to deliver 2.5 MW at 35 to 65 MHz frequency range with a load condition up to VSWR 2:1. For remote operation of different subsystems, Local Control Unit (LCU) is developed. LCU is developed using PXI hardware and Schneider PLC with Lab VIEW-RT developmental environment. All the protection function of the amplifier is running on PXI 7841 R module that ensures hard wired protection logic. There are three level of protection function- first by power supply itself that detects overcurrent/overvoltage and trips itself and generate trip signal for further action. There are some direct hardwired signal interfaces between power supplies to protect the amplifier. Second level of protection is generated through integrated controller of amplifier i.e. Command Control Embedded (CCE) against arc and Anode over current. Third level of Protection is through LCU where different fault signals are received and processed to generate off command for different sub-systems. Before connecting different subsystem with High power RF amplifiers (Driver & Final stage), each subsystem is individually tested through LCU. All protection functions are tested before hooking up the subsystems with main amplifier and initiating RF operation.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.
2009-01-01
This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.
Method for reducing snap in magnetic amplifiers
NASA Technical Reports Server (NTRS)
Fischer, R. L. E.; Word, J. L.
1968-01-01
Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.
Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu
2016-04-01
The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.
Study of complete interconnect reliability for a GaAs MMIC power amplifier
NASA Astrophysics Data System (ADS)
Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao
2018-05-01
By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.
Inan, O T; Kovacs, G T A
2010-04-01
A novel two-electrode biosignal amplifier circuit is demonstrated by using a composite transimpedance amplifier input stage with active current feedback. Micropower, low gain-bandwidth product operational amplifiers can be used, leading to the lowest reported overall power consumption in the literature for a design implemented with off-the-shelf commercial integrated circuits (11 μW). Active current feedback forces the common-mode input voltage to stay within the supply rails, reducing baseline drift and amplifier saturation problems that can be present in two-electrode systems. The bandwidth of the amplifier extends from 0.05-200 Hz and the midband voltage gain (assuming an electrode-to-skin resistance of 100 kΩ) is 48 dB. The measured output noise level is 1.2 mV pp, corresponding to a voltage signal-to-noise ratio approaching 50 dB for a typical electrocardiogram (ECG) level input of 1 mVpp. Recordings were taken from a subject by using the proposed two-electrode circuit and, simultaneously, a three-electrode standard ECG circuit. The residual of the normalized ensemble averages for both measurements was computed, and the power of this residual was 0.54% of the power of the standard ECG measurement output. While this paper primarily focuses on ECG applications, the circuit can also be used for amplifying other biosignals, such as the electroencephalogram.
Low Noise Amplifiers Based on Lattice Engineered Substrates
2004-11-01
the base contacts. To overcome this deficiency, a current aperture must be adopted in the emitter to properly channel the carriers. Appendix V is a...Appendix V "Design and Fabrication of Collector-up Heterojunction BipolarTransistors with Oxide Confined Current Apertures," James G. Champlain and Umesh K...a consequence of the [110] elimination of steps which were produced during plastic re- o, .A,,A A A A’YAL , V IA VP ’ \\P4 laxation of the misfit strain
Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.
1997-12-02
Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.
Page, Ralph H.; Schaffers, Kathleen I.; Payne, Stephen A.; Krupke, William F.; Beach, Raymond J.
1997-01-01
Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.
Stoecklin, S; Volk, T; Yousaf, A; Reindl, L
2015-01-01
In this paper, an enhanced approach of a class E amplifier being insensitive to coil impedance variations is presented. While state of the art class E amplifiers widely being used to supply implanted systems show a strong degradation of efficiency when powering distance, coil orientation or the implant current consumption deviate from the nominal design, the presented concept is able to detect these deviations on-line and to reconfigure the amplifier automatically. The concept is facilitated by a new approach of sensing the load impedance without interruption of the power supply to the implant, while the main components of the class E amplifier are programmable by software. Therefore, the device is able to perform dynamic impedance matching. Besides presenting the operational principle and the design equations, we show an adaptive prototype reader system which achieves a drain efficiency of up to 92% for a wide range of reflected coil impedances from 1 to 40 Ω. The integrated communication concept allows downlink data rates of up to 500 kBit/s, while the load modulation based uplink from implant to reader was verified of providing up to 1.35 MBit/s.
Implementation of a digital evaluation platform to analyze bifurcation based nonlinear amplifiers
NASA Astrophysics Data System (ADS)
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2016-09-01
Recently, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have become a focus of attention, especially in the modeling of the mammalian hearing organ. In general, to gain deeper insights in the input-output behavior, the analysis of bifurcation based amplifiers requires a flexible framework to exchange equations and adjust certain parameters. A DSP implementation is presented which is capable to analyze various amplifier systems. Amplifiers based on the Andronov-Hopf and Neimark-Sacker bifurcations are implemented and compared exemplarily. It is shown that the Neimark-Sacker system remarkably outperforms the Andronov-Hopf amplifier regarding the CPU usage. Nevertheless, both show a similar input-output behavior over a wide parameter range. Combined with an USB-based control interface connected to a PC, the digital framework provides a powerful instrument to analyze bifurcation based amplifiers.
Up-converted 1/f PM and AM noise in linear HBT amplifiers.
Ferre-Pikal, Eva S; Savage, Frederick H
2008-08-01
In this paper we describe a technique to predict the 1/f phase modulation (PM) and 1/f amplitude modulation (AM) noise due to up-conversion of 1/f baseband current noise in microwave heterojunction bipolar transistor (HBT) amplifiers. We obtain an accurate model for the amplifier and find the expression for voltage gain in terms of DC bias, transistor parameters, and circuit components. Theoretical 1/f PM and AM noise sensitivities to 1/f baseband current noise are then found by applying the definitions of PM and AM noise to the gain expression of the amplifier. Measurements of PM and AM sensitivities at 500 MHz and 1 GHz were in good agreement with the values predicted by theory, verifying the validity of this technique. This method can be used to optimize amplifier design for low PM and AM noise. We show that the amplifier PM noise can be reduced by 9 dB by adjusting the value of the input coupling capacitor.
Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor
NASA Technical Reports Server (NTRS)
Eichholz, J. J.
1969-01-01
Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.
Silicon Carbide MOSFET-Based Switching Power Amplifier for Precision Magnet Control
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Picard, Julian
2016-10-01
Eagle Harbor Technologies, Inc. (EHT) is using the latest in solid-state switching technologies to advance the state-of-the-art in magnet control for fusion science. Silicon carbide (SiC) MOSFETs offer advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. To validate the design, EHT has developed a low-power switching power amplifier (SPA), which has been used for precision control of magnetic fields, including rapidly changing the fields in coils. This design has been incorporated in to a high power SPA, which has been bench tested. This high power SPA will be tested at the Helicity Injected Torus (HIT) at the University of Washington. Following successful testing, EHT will produce enough SiC MOSFET-based SPAs to replace all of the units at HIT, which allows for higher frequency operation and an overall increase in pulsed current levels.
Miniaturized FDDA and CMOS Based Potentiostat for Bio-Applications
Ghodsevali, Elnaz; Morneau-Gamache, Samuel; Mathault, Jessy; Landari, Hamza; Boisselier, Élodie; Boukadoum, Mounir; Gosselin, Benoit; Miled, Amine
2017-01-01
A novel fully differential difference CMOS potentiostat suitable for neurotransmitter sensing is presented. The described architecture relies on a fully differential difference amplifier (FDDA) circuit to detect a wide range of reduction-oxidation currents, while exhibiting low-power consumption and low-noise operation. This is made possible thanks to the fully differential feature of the FDDA, which allows to increase the source voltage swing without the need for additional dedicated circuitry. The FDDA also reduces the number of amplifiers and passive elements in the potentiostat design, which lowers the overall power consumption and noise. The proposed potentiostat was fabricated in 0.18 µm CMOS, with 1.8 V supply voltage. The device achieved 5 µA sensitivity and 0.99 linearity. The input-referred noise was 6.9 µVrms and the flicker noise was negligible. The total power consumption was under 55 µW. The complete system was assembled on a 20 mm × 20 mm platform that includes the potentiostat chip, the electrode terminals and an instrumentation amplifier for redox current buffering, once converted to a voltage by a series resistor. the chip dimensions were 1 mm × 0.5 mm and the other PCB components were off-chip resistors, capacitors and amplifiers for data acquisition. The system was successfully tested with ferricyanide, a stable electroactive compound, and validated with dopamine, a popular neurotransmitter. PMID:28394289
E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.
Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less
E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber
Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.; ...
2017-03-13
Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less
NASA Astrophysics Data System (ADS)
Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.
2016-02-01
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.
The Noise Level Optimization for Induction Magnetometer of SEP System
NASA Astrophysics Data System (ADS)
Zhu, W.; Fang, G.
2011-12-01
The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.
NASA Astrophysics Data System (ADS)
Morasse, Bertrand; Plourde, Estéban
2017-02-01
We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.
Simple two-electrode biosignal amplifier.
Dobrev, D; Neycheva, T; Mudrov, N
2005-11-01
A simple, cost effective circuit for a two-electrode non-differential biopotential amplifier is proposed. It uses a 'virtual ground' transimpedance amplifier and a parallel RC network for input common mode current equalisation, while the signal input impedance preserves its high value. With this innovative interface circuit, a simple non-inverting amplifier fully emulates high CMRR differential. The amplifier equivalent CMRR (typical range from 70-100 dB) is equal to the open loop gain of the operational amplifier used in the transimpedance interface stage. The circuit has very simple structure and utilises a small number of popular components. The amplifier is intended for use in various two-electrode applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek
2005-02-01
Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.
Maroju, Pranay Amruth; Yadav, Sonu; Kolipakam, Vishnupriya; Singh, Shweta; Qureshi, Qamar; Jhala, Yadvendradev
2016-02-09
Non-invasive sampling has opened avenues for the genetic study of elusive species, which has contributed significantly to their conservation. Where field based identity of non-invasive sample is ambiguous (e.g. carnivore scats), it is essential to establish identity of the species through molecular approaches. A cost effective procedure to ascertain species identity is to use species specific primers (SSP) for PCR amplification and subsequent resolution through agarose gel electrophoresis. However, SSPs if ill designed can often cross amplify non-target sympatric species. Herein we report the problem of cross amplification with currently published SSPs, which have been used in several recent scientific articles on tigers (Panthera tigris) and leopards (Panthera pardus) in India. Since these papers form pioneering research on which future work will be based, an early rectification is required so as to not propagate this error further. We conclusively show cross amplification of three of the four SSPs, in sympatric non-target species like tiger SSP amplifying leopard and striped hyena (Hyaena hyaena), and leopard SSP amplifying tiger, lion (Panthera leo persica) and clouded leopard (Neofelis nebulosa), with the same product size. We develop and test a non-cross-amplifying leopard specific primer pair within the mitochondrial cytochrome b region. We also standardize a duplex PCR method to screen tiger and leopard samples simultaneously in one PCR reaction to reduce cost and time. These findings suggest the importance of an often overlooked preliminary protocol of conclusive identification of species from non-invasive samples. The cross amplification of published primers in conspecifics suggests the need to revisit inferences drawn by earlier work.
Cryogenic transimpedance amplifier for micromechanical capacitive sensors.
Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P
2008-08-01
We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.
Nanomicrointerface to read molecular potentials into current-voltage based electronics.
Rangel, Norma L; Seminario, Jorge M
2008-03-21
Molecular potentials are unreadable and unaddressable by any present technology. It is known that the proper assembly of molecules can implement an entire numerical processing system based on digital or even analogical computation. In turn, the outputs of this molecular processing unit need to be amplified in order to be useful. We have developed a nanomicrointerface to read information encoded in molecular level potentials and to amplify this signal to microelectronic levels. The amplification is performed by making the output molecular potential slightly twist the torsional angle between two rings of a pyridazine, 3,6-bis(phenylethynyl) (aza-OPE) molecule, requiring only fractions of kcal/mol energies. In addition, even if the signal from the molecular potentials is not enough to turn the ring or even if the angles are the same for different combinations of outputs, still the current output yields results that resemble the device as a field effect transistor, providing the possibility to reduce channel lengths to the range of just 1 or 2 nm. The slight change in the torsional angle yields readable changes in the current through the aza-OPE biased by an external applied voltage. Using ab initio methods, we computationally demonstrate the amplification of molecular potential signals into currents that can be read by standard circuits.
Landauer-Datta-Lundstrom model for terahertz transistor amplifier based on graphene
NASA Astrophysics Data System (ADS)
Davidovich, M. V.
2017-08-01
A transistor has been considered in the form of three electrodes connected by graphene ribbons or by metal quantum wires (nanowires) that operate on the principle of the current control by the changing voltage at the central electrode (gate). The analysis has been carried out according to the Landauer-Datta-Lundstrom model in equilibrium approximation for electrodes while fixing their potentials. We have obtained linear models and nonlinear terms in the determining current, and calculated the nonlinear current-voltage performances of graphene nanoribbons.
Note: A high dynamic range, linear response transimpedance amplifier.
Eckel, S; Sushkov, A O; Lamoreaux, S K
2012-02-01
We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.
NASA developments in solid state power amplifiers
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1990-01-01
Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin
2015-07-21
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin
2015-01-01
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105
Wideband low-noise variable-gain BiCMOS transimpedance amplifier
NASA Astrophysics Data System (ADS)
Meyer, Robert G.; Mack, William D.
1994-06-01
A new monolithic variable gain transimpedance amplifier is described. The circuit is realized in BiCMOS technology and has measured gain of 98 kilo ohms, bandwidth of 128 MHz, input noise current spectral density of 1.17 pA/square root of Hz and input signal-current handling capability of 3 mA.
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
A computerized Langmuir probe system
NASA Astrophysics Data System (ADS)
Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.
2003-07-01
For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong
2006-12-01
The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.
NASA Astrophysics Data System (ADS)
Siyuan, He; Changhong, Zhang; Liang, Tao; Weifeng, Zhang; Longyue, Zeng; Wei, Lü; Haijun, Wu
2013-03-01
A CMOS long-term evolution (LTE) direct convert receiver that eliminates the interstage SAW filter is presented. The receiver consists of a low noise variable gain transconductance amplifier (TCA), a quadrature passive current commutating mixer with a 25% duty-cycle LO, a trans-impedance amplifier (TIA), a 7th-order Chebyshev filter and programmable gain amplifiers (PGAs). A wide dynamic gain range is allocated in the RF and analog parts. A current commutating passive mixer with a 25% duty-cycle LO improves gain, noise, and linearity. An LPF based on a Tow-Thomas biquad suppresses out-of-band interference. Fabricated in a 0.13 μm CMOS process, the receiver chain achieves a 107 dB maximum voltage gain, 2.7 dB DSB NF (from PAD port), -11 dBm IIP3, and > +65 dBm IIP2 after calibration, 96 dB dynamic control range with 1 dB steps, less than 2% error vector magnitude (EVM) from 2.3 to 2.7 GHz. The total receiver (total I Q path) draws 89 mA from a 1.2-V LDO on chip supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, Kenji; et al.
We proposed a new high-resolution single-photon infrared spectrometer for search for radiative decay of cosmic neutrino background (CνB). The superconducting-tunnel-junctions(STJs) are used as a single-photon counting device. Each STJ consists of Nb/Al/Al xO y/Al/Nb layers, and their thicknesses are optimized for the operation temperature at 370 mK cooled by a 3He sorption refrigerator. Our STJs achieved the leak current 250 pA, and the measured data implies that a smaller area STJ fulfills our requirement. FD-SOI MOSFETs are employed to amplify the STJ signal current in order to increase signal-to-noise ratio (S/N). FD-SOI MOSFETs can be operated at cryogenic temperature ofmore » 370 mK, which reduces the noise of the signal amplification system. FD-SOI MOSFET characteristics are measured at cryogenic temperature. The Id-Vgs curve shows a sharper turn on with a higher threshold voltage and the Id-Vds curve shows a nonlinear shape in linear region at cryogenic temperature. Taking into account these effects, FD-SOI MOSFETs are available for read-out circuit of STJ detectors. The bias voltage for STJ detectors is 0.4 mV, and it must be well stabilized to deliver high performance. We proposed an FD-SOI MOSFET-based charge integrated amplifier design as a read-out circuit of STJ detectors. The requirements for an operational amplifier used in the amplifier is estimated using SPICE simulation. The op-amp is required to have a fast response (GBW ≥ 100 MHz), and it must have low power dissipation as compared to the cooling power of refrigerator.« less
Voltage Amplifier Based on Organic Electrochemical Transistor.
Braendlein, Marcel; Lonjaret, Thomas; Leleux, Pierre; Badier, Jean-Michel; Malliaras, George G
2017-01-01
Organic electrochemical transistors (OECTs) are receiving a great deal of attention as amplifying transducers for electrophysiology. A key limitation of this type of transistors, however, lies in the fact that their output is a current, while most electrophysiology equipment requires a voltage input. A simple circuit is built and modeled that uses a drain resistor to produce a voltage output. It is shown that operating the OECT in the saturation regime provides increased sensitivity while maintaining a linear signal transduction. It is demonstrated that this circuit provides high quality recordings of the human heart using readily available electrophysiology equipment, paving the way for the use of OECTs in the clinic.
Improved modeling of GaN HEMTs for predicting thermal and trapping-induced-kink effects
NASA Astrophysics Data System (ADS)
Jarndal, Anwar; Ghannouchi, Fadhel M.
2016-09-01
In this paper, an improved modeling approach has been developed and validated for GaN high electron mobility transistors (HEMTs). The proposed analytical model accurately simulates the drain current and its inherent trapping and thermal effects. Genetic-algorithm-based procedure is developed to automatically find the fitting parameters of the model. The developed modeling technique is implemented on a packaged GaN-on-Si HEMT and validated by DC and small-/large-signal RF measurements. The model is also employed for designing and realizing a switch-mode inverse class-F power amplifier. The amplifier simulations showed a very good agreement with RF large-signal measurements.
Chen, Han
2017-04-01
An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
Smith, D N
1992-01-01
Multiple applied current impedance measurement systems require numbers of current sources which operate simultaneously at the same frequency and within the same phase but at variable amplitudes. Investigations into the performance of some integrated operational transconductance amplifiers as variable current sources are described. Measurements of breakthrough, non-linearity and common-mode output levels for LM13600, NE5517 and CA3280 were carried out. The effects of such errors on the overall performance and stability of multiple current systems when driving floating loads are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less
Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...
2016-02-08
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less
Class E/F switching power amplifiers
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)
2004-01-01
The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.
SiC MOSFET Switching Power Amplifier Project Summary
NASA Astrophysics Data System (ADS)
Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex
2017-10-01
Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.
Jung's equation of the ground of being with the ground of psyche.
Dourley, John
2011-09-01
The paper amplifies Jung's psychology of ground associated with the culmination of the alchemical process in the unus mundus. It argues that Jung and Dorn identify the experience of the ground with the experience of divinity as the common originary source of individual and totality. It notes the monistic and pantheistic implications of the experience and goes on to amplify the experience through Eckhart's mediaeval mysticism of ground and Paul Tillich's modern philosophical/theological understanding of ground. It concludes that the Jung/Dorn psychological understanding of ground supersedes monotheistic consciousness. Their vision supports the emergence of a societal myth based on the identification of the ground as the source of all divinities and faith in them. This source currently urges a mythic consciousness that would surpass its past and current concretions and so alleviate the threat that monotheistic consciousness in any domain now poses to human survival. © 2011, The Society of Analytical Psychology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Krishnamoorthy, Sriram
We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm{sup 2}. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.
Self-amplifying mRNA vaccines.
Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J
2015-01-01
This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio-signal amplifier tailored for EVestG and ECOG. The increase in SNR for the implemented amplifier will reduce variability associated with bio-features extracted from such recordings; hence sensitivity and specificity measures associated with disease classification are expected to increase. Furthermore, immunity to PLI has enabled EVestG and ECOG recordings to be carried out in a non-shielded clinical environment. PMID:24468042
Low-noise front-end electronics for detection of intermediate-frequency weak light signals
NASA Astrophysics Data System (ADS)
Lin, Cunbao; Yan, Shuhua; Du, Zhiguang; Wei, Chunhua; Wang, Guochao
2015-02-01
A novel low-noise front-end electronics was proposed for detection of light signals with intensity about 10 μW and frequency above 2.7 MHz. The direct current (DC) power supply, pre-amplifier and main-amplifier were first designed, simulated and then realized. Small-size components were used to make the power supply small, and the pre-amplifier and main-amplifier were the least capacitors to avoid the phase shift of the signals. The performance of the developed front-end electronics was verified in cross-grating diffraction experiments. The results indicated that the output peak-topeak noise of the +/-5 V DC power supply was about 2 mV, and the total output current was 1.25 A. The signal-to-noise ratio (SNR) of the output signal of the pre-amplifier was about 50 dB, and it increased to nearly 60 dB after the mainamplifier, which means this front-end electronics was especially suitable for using in the phase-sensitive and integrated precision measurement systems.
Amplifiers dedicated for large area SiC photodiodes
NASA Astrophysics Data System (ADS)
Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.
2016-09-01
Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.
Amplifier based broadband pixel for sub-millimeter wave imaging
NASA Astrophysics Data System (ADS)
Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.
2012-09-01
Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.
Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem
NASA Technical Reports Server (NTRS)
Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.
2011-01-01
A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.
Lees, G.W.; McCormick, E.D.
1962-05-22
A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)
ERIC Educational Resources Information Center
Paulik, G. F.; Mayer, R. P.
2012-01-01
A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, P.
1996-12-31
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, P.
1995-10-10
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal-to-noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.
Mode control in a high-gain relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang
2010-05-01
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, Peter
1995-01-01
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, Peter
1996-01-01
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.
Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-11-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.
We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.
DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK
Bell, P.R. Jr.
1958-10-21
An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.
A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor
NASA Astrophysics Data System (ADS)
Kim, Jungsuk
2016-12-01
This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.
Development of a switched integrator amplifier for high-accuracy optical measurements.
Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav
2008-11-01
In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.
NASA Technical Reports Server (NTRS)
Hamlet, J. F. (Inventor)
1974-01-01
A stable excitation supply for measurement transducers is described. It consists of a single-transistor oscillator with a coil connected to the collector and a capacitor connected from the collector to the emitter. The output of the oscillator is rectified and the rectified signal acts as one input to a differential amplifier; the other input being a reference potential. The output of the amplifier is connected at a point between the emitter of the transistor and ground. When the rectified signal is greater than the reference signal, the differential amplifier produces a signal of polarity to reduce bias current and, consequently, amplification.
Small-signal amplifier based on single-layer MoS2
NASA Astrophysics Data System (ADS)
Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras
2012-07-01
In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.
Transfluxor circuit amplifies sensing current for computer memories
NASA Technical Reports Server (NTRS)
Milligan, G. C.
1964-01-01
To transfer data from the magnetic memory core to an independent core, a reliable sensing amplifier has been developed. Later the data in the independent core is transferred to the arithmetical section of the computer.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
NRL (Naval Research Laboratory) Review
1989-07-01
newmatrial. Vriou difracion The division has recently developed the 475-ftto invent new materials. Various diffraction e-hdel(S- 5 noa dacdfr...study sample between 4 and 400 K without breaking the fabrication methods by using new and/or unusual vacuum. The facility is currently used for...combine the output of multiaperture HF laser amplifiers. 24 . 4 Relativistic Klystron Amplifier New , high-power RF klystron-like amplifiers have been
An RF amplifier for ICRF studies in the LAPD
NASA Astrophysics Data System (ADS)
Martin, M. J.; Pribyl, P.; Gekelman, W.; Lucky, Z.
2015-12-01
An RF amplifier system was designed and is under construction at the UCLA Basic Plasma Science Facility. The system is designed to output 200 kW peak RMS power at 1% duty cycle with a 1 Hz rep rate at frequencies of 2-6 MHz. This paper describes the RF amplifier system with preliminary benchmarks. Current design challenges and future work are discussed.
Current status of Kumgang laser system
NASA Astrophysics Data System (ADS)
Kong, Hong Jin; Park, Sangwoo; Ahn, HeeKyung; Lee, Hwihyeong; Oh, Jungsuk; Kim, Jom Sool
2015-02-01
In KAIST, Kumgang laser is being developed for demonstration of the kW level coherent beam combination using stimulated Brillouin scattering phase conjugation mirrors. It will combine 4 modules of DPSSL rod amplifier which produces 1 kW output power. It is composed of the single frequency front-end, pre-amplifier module, and main amplifier. The output powers of the pre-amp and main amplifier module are 200 W (20 mJ @ 10 kHz / 10 ns) and 1.07kW (107 mJ @ 10 kHz / 10 ns), respectively.
Modeling a Common-Source Amplifier Using a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Sayyah, Rana; Hunt, Mitchell; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
This paper presents a mathematical model characterizing the behavior of a common-source amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the common-source amplifier is the most widely used amplifier in MOS technology, understanding and modeling the behavior of the FeFET-based common-source amplifier will help in the integration of FeFETs into many circuits.
A Simple Method for Amplifying RNA Targets (SMART)
McCalla, Stephanie E.; Ong, Carmichael; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav
2012-01-01
We present a novel and simple method for amplifying RNA targets (named by its acronym, SMART), and for detection, using engineered amplification probes that overcome existing limitations of current RNA-based technologies. This system amplifies and detects optimal engineered ssDNA probes that hybridize to target RNA. The amplifiable probe-target RNA complex is captured on magnetic beads using a sequence-specific capture probe and is separated from unbound probe using a novel microfluidic technique. Hybridization sequences are not constrained as they are in conventional target-amplification reactions such as nucleic acid sequence amplification (NASBA). Our engineered ssDNA probe was amplified both off-chip and in a microchip reservoir at the end of the separation microchannel using isothermal NASBA. Optimal solution conditions for ssDNA amplification were investigated. Although KCl and MgCl2 are typically found in NASBA reactions, replacing 70 mmol/L of the 82 mmol/L total chloride ions with acetate resulted in optimal reaction conditions, particularly for low but clinically relevant probe concentrations (≤100 fmol/L). With the optimal probe design and solution conditions, we also successfully removed the initial heating step of NASBA, thus achieving a true isothermal reaction. The SMART assay using a synthetic model influenza DNA target sequence served as a fundamental demonstration of the efficacy of the capture and microfluidic separation system, thus bridging our system to a clinically relevant detection problem. PMID:22691910
FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu; Xie, Xiaoyan
Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cellmore » lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.« less
Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong
2014-08-04
We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.
A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar
NASA Astrophysics Data System (ADS)
Ma, Rui; Zheng, Hao; Zhu, Zhangming
2017-08-01
This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.
The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System
NASA Astrophysics Data System (ADS)
Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin
2018-03-01
The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.
Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota
2014-01-01
Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.
Assessment of commercial optical amplifiers for potential use in space applications
NASA Astrophysics Data System (ADS)
Barbero, Juan; Sotom, Michel; Benazet, Benoit; Esquivias, Ignacio; López Hernández, Francisco José
2017-11-01
This paper describes the activities and results of an ESA-funded project concerned with the assessment of optical amplifier technologies and products for applications in fiber optic subsystems of future satellite payloads. On-board applications are briefly introduced, together with associated system-level requirements. Optical amplifier technologies, research achievements and products are reviewed. They are compared in terms of current performance, perspectives and suitability for the target space applications. Optical fibre amplifiers, not limited to Erbium-doped amplifiers, Erbium-doped waveguide amplifiers and Semiconductor Optical Amplifiers are covered. The review includes analysis and trade-off of all performance parameters including saturation output power, noise figure, polarisation maintaining capability, wall-plug efficiency, and mass and size. A selection of optical amplifier products for further evaluation and testing is presented. Results of extensive testing covering both functional performance and environmental behaviour (mechanical, thermal vacuum, radiations) aspects are reported. Most of the work has been completed, but an extension has been proposed for checking and comparing the behaviour of doped fibers under gamma radiation.
Nearly noiseless amplification of microwave signals with a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Castellanos-Beltran, Manuel
2009-03-01
A degenerate parametric amplifier transforms an incident coherent state by amplifying one of its quadrature components while deamplifying the other. This transformation, when performed by an ideal parametric amplifier, is completely deterministic and reversible; therefore the amplifier in principle can be noiseless. We attempt to realize a noiseless amplifier of this type at microwave frequencies with a Josephson parametric amplifier (JPA). To this end, we have built a superconducting microwave cavity containing many dc-SQUIDs. This arrangement creates a non-linear medium in a cavity and it is closely analogous to an optical parametric amplifier. In my talk, I will describe the current performance of this circuit, where I show I can amplify signals with less added noise than a quantum-limited amplifier that amplifies both quadratures. In addition, the JPA also squeezes the electromagnetic vacuum fluctuations by 10 dB. Finally, I will discuss our effort to put two such amplifiers in series in order to undo the first stage of squeezing with a second stage of amplification, demonstrating that the amplification process is truly reversible.[4pt] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale and K. W. Lehnert, Nature Physics, published on line, http://dx.doi.org/10.1038/nphys1090 (2008).
Korekar, Girish; Sharma, Ram Kumar; Kumar, Rahul; Meenu; Bisht, Naveen C; Srivastava, Ravi B; Ahuja, Paramvir Singh; Stobdan, Tsering
2012-05-01
The actinorhizal plant seabuckthorn (Hippophae rhamnoides L., Elaeagnaceae) is a wind pollinated dioecious crop. To distinguish male genotypes from female genotypes early in the vegetative growth phase, we have developed robust PCR-based marker(s). DNA bulk samples from 20 male and 20 female plants each were screened with 60 RAPD primers. Two primers, OPA-04 and OPT-06 consistently amplified female-specific (FS) polymorphic fragments of 1,164 and 868 bp, respectively, that were absent in the male samples. DNA sequence of the two markers did not exhibit significant similarity to previously characterized sequences. A sequence-characterized amplified region marker HrX1 (JQ284019) and HrX2 (JQ284020) designed for the two fragments, continued to amplify the FS allele in 120 female plants but not in 100 male plants tested in the current study. Thus, HrX1 and HrX2 are FS markers that can determine the sex of seabuckthorn plants in an early stage and expedite cultivations for industrial applications.
Primer sets for cloning the human repertoire of T cell Receptor Variable regions.
Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele
2008-08-29
Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.
Testing methodologies and systems for semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Wieckowski, Michael
Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.
Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices
NASA Astrophysics Data System (ADS)
Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Ooi, Boon S.
2014-11-01
The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building blocks of EPIC and ICT. Alternatively, these optical sources are potential candidates for other multi-disciplinary field applications.
System and circuitry to provide stable transconductance for biasing
NASA Technical Reports Server (NTRS)
Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor)
2012-01-01
An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications.
An integrated CMOS bio-potential amplifier with a feed-forward DC cancellation topology.
Parthasarathy, Jayant; Erdman, Arthur G; Redish, Aaron D; Ziaie, Babak
2006-01-01
This paper describes a novel technique to realize an integrated CMOS bio-potential amplifier with a feedforward DC cancellation topology. The amplifier is designed to provide substantial DC cancellation even while amplifying very low frequency signals. More than 80 dB offset rejection ratio is achieved without any external capacitors. The cancellation scheme is robust against process and temperature variations. The amplifier is fabricated through MOSIS AMI 1.5 microm technology (0.05 mm2 area). Measurement results show a gain of 43.5 dB in the pass band (<1 mHz-5 KHz), an input referred noise of 3.66 microVrms, and a current consumption of 22 microA.
NASA Astrophysics Data System (ADS)
Zubrzycka, W.; Kasinski, K.
2018-04-01
Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier feedback resistor independent of the leakage current level and polarity. The simulation results of the double, switchable, Krummenacher circuit-based feedback application in the CSA with a pulsed reset functionality are presented.
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
Theory, Design and Operation of a High-Power Second - Gyro-Twt Amplifier.
NASA Astrophysics Data System (ADS)
Wang, Qinsong
1995-01-01
Based on the cyclotron resonance maser (CRM) instability, the gyrotron traveling wave tube (gyro-TWT) amplifier is an efficient high power microwave and millimeter wave coherent radiation source. As evidenced in previous experiments, gyro-TWTs, however, can be very susceptible to spontaneous oscillations, and their output powers have thus been limited to relatively low levels. In this dissertation work, thorough theoretical and experimental studies have been conducted to demonstrate and confirm a novel "marginal stability design" (MSD) concept that a harmonic gyro-TWT amplifier is more stable to spontaneous oscillation than a fundamental harmonic gyro-TWT amplifier. Since their interactions are, in general, weaker and allow higher levels of electron beam current, harmonic gyro-TWTs can yield, in principle, a significantly higher RF output power than a fundamental gyro-TWT. The study results also show that a magnetron injection gun (MIG) type electron beam is applicable to harmonic gyro-TWTs. A complete analytic linear theory employing Laplace transforms and a three dimensional nonlinear theory using a slow time-scale formalism are developed in Chapt. 2 for the general CRM interaction to address the issue of stability. Two designs were developed to demonstrate the MSD procedure. The design and development of the proof -of-principle experiment are discussed in Chapt. 3. The accompanying cold test results indicate that all the components have met their respective design goals. The RF diagnostic circuit employed to characterize the gyro-TWT amplifier is also described. Chapter 4 presents the hot-test results of the second-harmonic TE_{21} gyro-TWT amplifier experiment in which an 80 kV, 20 A MIG beam with alpha(equivupsilon _|/upsilon_|) = 1 was used to generate a peak RF output power of 207 kW in Ku-band with an efficiency of 12.9%. In addition, the saturated gain is 16 dB, the small signal gain is 22 dB, the measured bandwidth is 2.1%, and the amplifier was zero-drive stable. As pointed out in Chapt. 5, the theoretical and experimental studies conducted in this work have successfully realized their objectives. Further improvements to the current proof-of-principle experiment and an increase in the operating frequency by operating at an even higher cyclotron harmonic are promising and worthy of future efforts.
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.
Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole
2016-08-01
This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.
Tatai, Ildiko; Zaharie, Ioan
2012-11-01
In this paper a gyrator implementation using a LM13700 operational transconductance amplifier is analyzed. It was first verified under PSpice simulation and experimentally the antireciprocity of this gyrator, i.e., its properties. This type of gyrator can be used for controlling the energy transfer from one port to the other by modifying the bias currents of the operational transconductance amplifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing
2016-04-15
The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less
High-Efficiency Microwave Power Amplifier
NASA Technical Reports Server (NTRS)
Sims, Williams H.
2005-01-01
A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages
NASA Astrophysics Data System (ADS)
McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio
2015-01-01
An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.
Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon
NASA Astrophysics Data System (ADS)
Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.
2018-06-01
We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Li, D.; Irwin, K. D.; Bockstiegel, C.; Hubmayr, J.; Ullom, J. N.; Vissers, M. R.; Gao, J.
2017-04-01
We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.
An improved model to predict bandwidth enhancement in an inductively tuned common source amplifier.
Reza, Ashif; Misra, Anuraag; Das, Parnika
2016-05-01
This paper presents an improved model for the prediction of bandwidth enhancement factor (BWEF) in an inductively tuned common source amplifier. In this model, we have included the effect of drain-source channel resistance of field effect transistor along with load inductance and output capacitance on BWEF of the amplifier. A frequency domain analysis of the model is performed and a closed-form expression is derived for BWEF of the amplifier. A prototype common source amplifier is designed and tested. The BWEF of amplifier is obtained from the measured frequency response as a function of drain current and load inductance. In the present work, we have clearly demonstrated that inclusion of drain-source channel resistance in the proposed model helps to estimate the BWEF, which is accurate to less than 5% as compared to the measured results.
Portable Amplifier Design for a Novel EEG Monitor in Point-of-Care Applications.
Luan, Bo; Sun, Mingui; Jia, Wenyan
2012-01-01
The Electroencephalography (EEG) is a common diagnostic tool for neurological diseases and dysfunctions, such as epilepsy and insomnia. However, the current EEG technology cannot be utilized quickly and conveniently at the point of care due to the complex skin preparation procedures required and the inconvenient EEG data acquisition systems. This work presents a portable amplifier design that integrates a set of skin screw electrodes and a wireless data link. The battery-operated amplifier contains an instrumentation amplifier, two noninverting amplifiers, two high-pass filters, and a low-pass filter. It is able to magnify the EEG signals over 10,000 times and has a high impedance, low noise, small size and low weight. Our electrode and amplifier are ideal for point-of-care applications, especially during transportation of patients suffering from traumatic brain injury or stroke.
Koutilellis, G D; Economou, A; Efstathiou, C E
2016-03-01
This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.
To identify candidate drugs targets for neuroblastoma with MYCN amplification we performed parallel siRNA screens with a druggable genome collection of ~6,700 genes comparing MYCN amplified and non-MYCN amplified cell lines: SK-N-BE2 (MYCN amplified) and SK-N-AS (non amplified). The Hits from each cell lines were determined based on their significance with respect to their differential activity in the presence or absence of RA within each cell line. Hits for each cell line were also ranked according to their P-value, based on the three replicates. Integration with gene exp
To identify candidate drugs targets for neuroblastoma with MYCN amplification we performed parallel siRNA screens with a druggable genome collection of ~6,700 genes comparing MYCN amplified and non-MYCN amplified cell lines: SK-N-BE2 (MYCN amplified) and SK-N-AS (non amplified). The Hits from each cell lines were determined based on their significance with respect to their differential activity in the presence or absence of RA within each cell line. Hits for each cell line were also ranked according to their P-value, based on the three replicates. Integration with gene expres
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
Amarillo, Yimy; Mato, Germán; Nadal, Marcela S
2015-01-01
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.
NASA Astrophysics Data System (ADS)
Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing
2016-10-01
Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong
2018-03-01
We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.
Multi-turn transmit coil to increase b1 efficiency in current source amplification.
Gudino, N; Griswold, M A
2013-04-01
A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system. Copyright © 2013 Wiley Periodicals, Inc.
Multi-turn transmit coil to increase B1 efficiency in current source amplification
Gudino, N.; Griswold, M.A.
2013-01-01
Purpose A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Methods Three different coil designs driven by an on-coil current-mode class-D (CMCD) amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor (FET) at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. Results As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost three-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated FET to the multi-turn coil. Conclusion In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of FETs with lower current ratings and lower port capacitances which could improve the overall performance of the on-coil current source transmit system. PMID:23401060
Current pulse amplifier transmits detector signals with minimum distortion and attenuation
NASA Technical Reports Server (NTRS)
Bush, N. E.
1967-01-01
Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.
NASA Astrophysics Data System (ADS)
Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai
1999-09-01
The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.
Beev, Nikolai; Kiviranta, Mikko
2012-06-01
Silicon-germanium heterojunction bipolar transistors can be used to construct low-noise cryogenic amplifiers. We present a dc-coupled differential amplifier capable of operating down to 10 K. In this temperature regime it has bandwidth of 15 MHz and noise temperature as low as 1.3 K. When operated at liquid nitrogen temperature of 77 K, the measured noise temperature is lower than 3 K. The amplifier is based on the commercially available transistors NESG3031 and operational amplifier OPA836 and is capable of standalone operation without any additional stages at room temperature.
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
Chaudhuri, S.; Li, D.; Irwin, K. D.; ...
2017-04-10
Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, S.; Li, D.; Irwin, K. D.
Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less
High voltage electrical amplifier having a short rise time
Christie, David J.; Dallum, Gregory E.
1991-01-01
A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.
Bandwidth tunable amplifier for recording biopotential signals.
Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer
2010-01-01
This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Programmable electronic synthesized capacitance
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
The 30 GHz solid state amplifier for low cost low data rate ground terminals
NASA Technical Reports Server (NTRS)
Ngan, Y. C.; Quijije, M. A.
1984-01-01
This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.
A Mathematical Model of a Simple Amplifier Using a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Sayyah, Rana; Hunt, Mitchell; MacLeod, Todd C.; Ho, Fat D.
2009-01-01
This paper presents a mathematical model characterizing the behavior of a simple amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the amplifier is the basis of many circuit configurations, a mathematical model that describes the behavior of a FeFET-based amplifier will help in the integration of FeFETs into many other circuits.
Isolated thermocouple amplifier system for stirred fixed-bed gasifier
Fasching, George E.
1992-01-01
A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.
A parallel input composite transimpedance amplifier.
Kim, D J; Kim, C
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
A parallel input composite transimpedance amplifier
NASA Astrophysics Data System (ADS)
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network
NASA Technical Reports Server (NTRS)
Bautista, J. J.
1993-01-01
The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.
Experimental investigation of electron guns for THz microwave vacuum amplifiers
NASA Astrophysics Data System (ADS)
Burtsev, A. A.; Grigor'ev, Yu. A.; Navrotsky, I. A.; Rogovin, V. I.; Sakhadzhi, G. V.; Shumikhin, K. V.
2016-05-01
Single-sheet and multiple beam electron emitters based on thermionic minicathodes for terahertz traveling-wave tubes have been studied. Data are presented for impregnated blade thermionic cathode with dimensions 0.1 × 0.7 mm and a maximum current density of 114 A/cm2 in a pulsed mode. A variant of the five-beam electron gun with 0.25-mm-diameter cylindrical minicathodes in cells of a control grid is proposed that provides a current density of 85.5 A/cm2 at a grid potential of 900-1000 V.
Transistor biased amplifier minimizes diode discriminator threshold attenuation
NASA Technical Reports Server (NTRS)
Larsen, R. N.
1967-01-01
Transistor biased amplifier has a biased diode discriminator driven by a high impedance /several megohms/ current source, rather than a voltage source with several hundred ohms output impedance. This high impedance input arrangement makes the incremental impedance of the threshold diode negligible relative to the input impedance.
Ultrasensitive low noise voltage amplifier for spectral analysis.
Giusi, G; Crupi, F; Pace, C
2008-08-01
Recently we have proposed several voltage noise measurement methods that allow, at least in principle, the complete elimination of the noise introduced by the measurement amplifier. The most severe drawback of these methods is that they require a multistep measurement procedure. Since environmental conditions may change in the different measurement steps, the final result could be affected by these changes. This problem is solved by the one-step voltage noise measurement methodology based on a novel amplifier topology proposed in this paper. Circuit implementations for the amplifier building blocks based on operational amplifiers are critically discussed. The proposed approach is validated through measurements performed on a prototype circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombigit, L., E-mail: lojius@nm.gov.my; Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai
A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.
NASA Astrophysics Data System (ADS)
Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.
2012-12-01
Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.
Markovian Dynamics of Josephson Parametric Amplification
NASA Astrophysics Data System (ADS)
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Josephson junction microwave amplifier in self-organized noise compression mode
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Seppä, Heikki; Hakonen, Pertti
2012-01-01
The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation. PMID:22355788
NASA Technical Reports Server (NTRS)
Vishida, J. M.; Brodersen, L. K.
1974-01-01
An analytical and experimental program is described, for studying design techniques for optimizing the conversion efficiency of klystron amplifiers, and to utilize these techniques in the development and fabrication of an X-band 4 kW cw klystron, for use in satellite-borne television broadcast transmitters. The design is based on a technique for increasing the RF beam current by using the second harmonic space charge forces in the bunched beam. Experimental analysis was also made of a method to enhance circuit efficiency in the klystron cavities. The design incorporates a collector which is demountable from the tube to facilitate multistage depressed collector experiments employing an axisymmetric, electrostatic collector for linear beam microwave tubes.
NASA Astrophysics Data System (ADS)
Chiong, Chau-Ching; Chiang, Po-Han; Hwang, Yuh-Jing; Huang, Yau-De
2016-07-01
ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
NASA Astrophysics Data System (ADS)
Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.
2016-03-01
This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.
Small signal amplifiers and converters for millimeter wave Satcom systems
NASA Technical Reports Server (NTRS)
Okean, H. C.
1979-01-01
This paper describes the current state of the art and the various design tradeoffs encompassing the variety of small signal active circuit 'building blocks' deployed in millimeter wave Satcom receivers and transmitters. Included in this catagory are such low noise receiver components as parametric and FET amplifiers and low loss mixer downconverters as well as low level transmitter driver components such as resistive and varactor upconverters. Current and projected state of the art performance data will be presented along with specific examples of operating hardware.
NASA Astrophysics Data System (ADS)
Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David
2016-07-01
This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.
Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers
NASA Astrophysics Data System (ADS)
Nikandish, Gholamreza; Medi, Ali
2015-02-01
The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.
Jia, Xianbo; Lin, Xinjian; Chen, Jichen
2017-11-02
Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
Primer sets for cloning the human repertoire of T cell Receptor Variable regions
Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele
2008-01-01
Background Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets. PMID:18759974
Efficient spin-current injection in single-molecule magnet junctions
NASA Astrophysics Data System (ADS)
Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.
2018-01-01
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
Whole genome amplification and real-time PCR in forensic casework
Giardina, Emiliano; Pietrangeli, Ilenia; Martone, Claudia; Zampatti, Stefania; Marsala, Patrizio; Gabriele, Luciano; Ricci, Omero; Solla, Gianluca; Asili, Paola; Arcudi, Giovanni; Spinella, Aldo; Novelli, Giuseppe
2009-01-01
Background WGA (Whole Genome Amplification) in forensic genetics can eliminate the technical limitations arising from low amounts of genomic DNA (gDNA). However, it has not been used to date because any amplification bias generated may complicate the interpretation of results. Our aim in this paper was to assess the applicability of MDA to forensic SNP genotyping by performing a comparative analysis of genomic and amplified DNA samples. A 26-SNPs TaqMan panel specifically designed for low copy number (LCN) and/or severely degraded genomic DNA was typed on 100 genomic as well as amplified DNA samples. Results Aliquots containing 1, 0.1 and 0.01 ng each of 100 DNA samples were typed for a 26-SNPs panel. Similar aliquots of the same DNA samples underwent multiple displacement amplification (MDA) before being typed for the same panel. Genomic DNA samples showed 0% PCR failure rate for all three dilutions, whilst the PCR failure rate of the amplified DNA samples was 0% for the 1 ng and 0.1 ng dilutions and 0.077% for the 0.01 ng dilution. The genotyping results of both the amplified and genomic DNA samples were also compared with reference genotypes of the same samples obtained by direct sequencing. The genomic DNA samples showed genotype concordance rates of 100% for all three dilutions while the concordance rates of the amplified DNA samples were 100% for the 1 ng and 0.1 ng dilutions and 99.923% for the 0.01 ng dilution. Moreover, ten artificially-degraded DNA samples, which gave no results when analyzed by current forensic methods, were also amplified by MDA and genotyped with 100% concordance. Conclusion We investigated the suitability of MDA material for forensic SNP typing. Comparative analysis of amplified and genomic DNA samples showed that a large number of SNPs could be accurately typed starting from just 0.01 ng of template. We found that the MDA genotyping call and accuracy rates were only slightly lower than those for genomic DNA. Indeed, when 10 pg of input DNA was used in MDA, we obtained 99.923% concordance, indicating a genotyping error rate of 1/1299 (7.7 × 10-4). This is quite similar to the genotyping error rate of STRs used in current forensic analysis. Such efficiency and accuracy of SNP typing of amplified DNA suggest that MDA can also generate large amounts of genome-equivalent DNA from a minimal amount of input DNA. These results show for the first time that MDA material is suitable for SNP-based forensic protocols and in general when samples fail to give interpretable STR results. PMID:19366436
Visual neurophysiology: a field-effect amplifier designed and built by R. L. De Valois.
Albrecht, Duane G; Creeger, Carl P; Crane, Alison M
2005-10-01
In the middle of the last century, R. L. De Valois designed and built a unique and effective amplifier based on the newly developed field-effect transistor (FET). This amplifier has many beneficial qualities for amplifying the signals of neurons with minimal disturbance. We have used this amplifier successfully for more than three decades. We describe the circuitry of the De Valois amplifier and provide performance specifications. The FET amplifier is one of De Valois's contributions to visual neurophysiology; we share the design in his honor, with the hope that it might prove useful to others.
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Photonic-band-gap gyrotron amplifier with picosecond pulses.
Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J
2017-12-04
We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.
Photonic-band-gap gyrotron amplifier with picosecond pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.
Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less
Photonic-band-gap gyrotron amplifier with picosecond pulses
Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...
2017-12-05
Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less
A 1-W, 30-ghz, CPW Amplifier for ACTS Small Terminal Uplink
NASA Technical Reports Server (NTRS)
Taub, Susan R.; Simons, Rainee N.
1992-01-01
The progress is described of the development of a 1 W, 30 GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS)Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three stage, low power amplifier, and a single stage, high power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three stage and one stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.
A compact rail-to-rail CMOS buffer amplifier with very low quiescent current
NASA Astrophysics Data System (ADS)
Arslan, Emre; Yıldız, Merih; Minaei, Shahram
2015-06-01
In this work, a very compact, rail-to-rail, high-speed buffer amplifier for liquid crystal display (LCD) applications is proposed. Compared to other buffer amplifiers, the proposed circuit has a very simple architecture, occupies a small number of transistors and also has a large driving capacity with very low quiescent current. It is composed of two complementary differential input stages to provide rail-to-rail driving capacity. The push-pull transistors are directly connected to the differential input stage, and the output is taken from an inverter. The proposed buffer circuit is laid out using Mentor Graphics IC Station layout editor using AMS 0.35 μm process parameters. It is shown by post-layout simulations that the proposed buffer can drive a 1 nF capacitive load within a small settling time under a full voltage swing, while drawing only 1.6 μA quiescent current from a 3.3 V power supply.
Amplifiers for bioelectric events: a design with a minimal number of parts.
MettingVanRijn, A C; Peper, A; Grimbergen, C A
1994-05-01
A design for an amplifier for bioelectric events is presented that has fewer parts than conventional designs. The design allows the construction of amplifiers of a high quality in terms of noise and common mode rejection, with reduced dimensions and with a lower power consumption. Gain, bandwidth and number of channels are easily adapted to a wide range of biomedical applications. An application example is given in the form of a multichannel EEG amplifier (gain is 20,000), in which each channel consists of three operational amplifiers (one single and one dual), six resistors and two capacitors. The equivalent input noise voltage and current are 0.15 microVrms and 1 pArms, respectively, in a bandwidth of 0.2-40 Hz, and a common mode rejection ratio of 136 dB is achieved without trimming.
93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology
NASA Astrophysics Data System (ADS)
Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki
2013-04-01
In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.
MMIC DHBT Common-Base Amplifier for 172 GHz
NASA Technical Reports Server (NTRS)
Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich
2006-01-01
Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this frequency band. The performance of the amplifier as measured in the aforementioned tests suggests that InP/InGaAs HBTs may be superior to high-electron-mobility (HEMT) transistors in that the HBTs may offer more gain per stage and more output power per transistor.
SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, P
Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to amore » digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.« less
Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1989-01-01
The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.
NASA Astrophysics Data System (ADS)
Lu, Xiaoming; Leng, Yuxin; Sui, Zhan; Li, Yanyan; Zhang, Zongxin; Xu, Yi; Guo, Xiaoyang; Liu, Yanqi; Li, Ruxin; Xu, Zhizhan
2014-02-01
We demonstrate high amplified spontaneous emission (ASE) contrast pulses in a Nd:glass laser system based on the hybrid double chirped pulse amplification (double CPA) scheme. By an OPA temporal cleaning device, ~100 uJ/46 fs/ 1011 clean pulses are generated and amplified in the next Nd:glass laser. After compressor, >150 mJ/~0.5 ps/1 Hz pulses can be obtained. The ASE temporal contrast of amplified pulses is ~1011 with energy gain ~2.5×104 in the Nd:glass amplifiers.
Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz
2013-10-01
This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.
High-Power, High-Frequency Si-Based (SiGe) Transistors Developed
NASA Technical Reports Server (NTRS)
Ponchak, George E.
2002-01-01
Future NASA, DOD, and commercial products will require electronic circuits that have greater functionality and versatility but occupy less space and cost less money to build and integrate than current products. System on a Chip (SOAC), a single semiconductor substrate containing circuits that perform many functions or containing an entire system, is widely recognized as the best technology for achieving low-cost, small-sized systems. Thus, a circuit technology is required that can gather, process, store, and transmit data or communications. Since silicon-integrated circuits are already used for data processing and storage and the infrastructure that supports silicon circuit fabrication is very large, it is sensible to develop communication circuits on silicon so that all the system functions can be integrated onto a single wafer. Until recently, silicon integrated circuits did not function well at the frequencies required for wireless or microwave communications, but with the introduction of small amounts of germanium into the silicon to make silicon-germanium (SiGe) transistors, silicon-based communication circuits are possible. Although microwavefrequency SiGe circuits have been demonstrated, there has been difficulty in obtaining the high power from their transistors that is required for the amplifiers of a transmitter, and many researchers have thought that this could not be done. The NASA Glenn Research Center and collaborators at the University of Michigan have developed SiGe transistors and amplifiers with state-of-the-art output power at microwave frequencies from 8 to 20 GHz. These transistors are fabricated using standard silicon processing and may be integrated with CMOS integrated circuits on a single chip. A scanning electron microscope image of a typical SiGe heterojunction bipolar transistor is shown in the preceding photomicrograph. This transistor achieved a record output power of 550 mW and an associated power-added efficiency of 33 percent at 8.4 GHz, as shown. Record performance was also demonstrated at 12.6 and 18 GHz. Developers have combined these state-of-the-art transistors with transmission lines and micromachined passive circuit components, such as inductors and capacitors, to build multistage amplifiers. Currently, a 1-W, 8.4-GHz power amplifier is being built for NASA deep space communication architectures.
Appropriate and inappropriate uses of classroom amplification
NASA Astrophysics Data System (ADS)
Lubman, David; Sutherland, Louis C.
2005-09-01
Currently, classroom amplifiers are being aggressively advocated as substitutes for good acoustics in small mainstream classrooms. Amplifiers are routinely installed without regard to unoccupied classroom noise levels and reverberation times. Amplifiers are being specified by some school districts as a money-saving alternative to mandating compliance with the ANSI standard on classroom acoustics, S12.60-2002. Manufacturers of portable classrooms and noisy wall mounted HVAC systems have joined in supporting the use of classroom amplifiers, claiming that low (35 dBA) classroom noise levels specified by the ANSI standard are unaffordable and unnecessary given amplifiers. The authors believe that the routine use of classroom amplification is appropriate in very large lecture rooms, in special education classrooms for hearing impaired students, for voice-impaired occupants, and perhaps in certain other limited circumstances. The authors explain why they believe the routine use of amplifiers in small mainstream classrooms is an inappropriate substitute for the good classroom acoustics specified in the ANSI standard.
Operational amplifier with adjustable frequency response.
Gulisek, D; Hencek, M
1978-01-01
The authors describe an operational amplifier with an adjustable frequency response and its use in membrane physiology, using the voltage clamp and current clamp method. The amplifier eliminates feedback poles causing oscillation. It consists of a follower with a high input resistance in the form of a tube and of an actual amplifier with an adjustable frequency response allowing the abolition of clicks by one pole and of oscillation by two poles in the 500 Hz divided by infinity range. Further properties of the amplifier: a long-term voltage drift of 1 mv, a temperature voltage drift of 0.5 mv/degrees K, input resistance greater than 1 GOhm, amplification greater than 80 dB, output +/- 12 v, 25 ma, noise, measured from the width of the oscilloscope track in the presence of a ray of normal brightness, not exceeding 50 muv in the 0-250 kHz band, f1 = 1 MHz. A short report on the amplifier was published a few years ago (Gulísek and Hencek 1973).
Measurement of characteristic parameters of 10 Gb/s bidirectional optical amplifier for XG-PON
NASA Astrophysics Data System (ADS)
Rakkammee, Suchaj; Boriboon, Budsara; Worasucheep, Duang-rudee; Wada, Naoya
2018-03-01
This research experimentally measured the characteristic parameters of 10 Gb/s bidirectional optical amplifier: (1) operating wavelength range, (2) small signal gain, (3) Polarization Dependent Loss (PDL), and (4) power consumption. Bidirectional amplifiers are the key component to extend coverage area as well as increase a number of users in Passive Optical Networks (PON). According to 10-Gigabit-capable PON or XG-PON standard, the downstream and upstream wavelengths are 1577 nm and 1270 nm respectively. Thus, our bidirectional amplifier consists of an Erbium Doped Fiber Amplifier (EDFA) and a Semiconductor Optical Amplifier (SOA) for downstream and upstream wavelength transmissions respectively. The operating wavelengths of EDFA and SOA are measured to be from 1570 nm to 1588 nm and 1263 nm to 1280 nm respectively. To measure gain, the input wavelengths of EDFA and SOA were fixed at 1577 nm and 1271 nm respectively, while their input powers were reduced by a variable optical attenuator. The small signal gain of EDFA is 22.5 dB at 0.15 Ampere pump current, whereas the small signal gain of SOA is 7.06 dB at 0.325 Ampere pump current. To measure PDL, which is a difference in output powers at various State of Polarization (SoP) of input signal, a polarization controller was inserted before amplifier to alter input SoP. The measured PDL of EDFA is insignificant with less than 0.1 dB. In contrast, the measured PDL of SOA is as large as 33 dB, indicating its strong polarization dependence. The total power consumptions were measured to be 1.5675 Watt.
AL-Huqail, Asma A.; Abdelhaliem, Ekram
2015-01-01
The current study analyzed proteins and nuclear DNA of electric fields (ELF) exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isozymes, random amplified polymorphic DNA (RAPD), and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100%) based on zymograms number, relative front (R f), and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08%) based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38%) and tail moment unit (5.36) at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors. PMID:26180815
Dual current readout for precision plating
NASA Technical Reports Server (NTRS)
Iceland, W. F.
1970-01-01
Bistable amplifier prevents damage in the low range circuitry of a dual scale ammeter. It senses the current and switches automatically to the high range circuitry as the current rises above a preset level.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.
2010-07-07
Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less
Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, M.; Cunningham, P.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.
Amarillo, Yimy; Mato, Germán; Nadal, Marcela S.
2015-01-01
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1–4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation. PMID:25999847
'Soft' amplifier circuits based on field-effect ionic transistors.
Boon, Niels; Olvera de la Cruz, Monica
2015-06-28
Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.
Light Optics for Optical Stochastic Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, Matthew; Lebedev, Valeri; Piot, Philippe
2016-06-01
In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.
Advanced Concepts in Josephson Junction Reflection Amplifiers
NASA Astrophysics Data System (ADS)
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Simple BiCMOS CCCTA design and resistorless analog function realization.
Tangsrirat, Worapong
2014-01-01
The simple realization of the current-controlled conveyor transconductance amplifier (CCCTA) in BiCMOS technology is introduced. The proposed BiCMOS CCCTA realization is based on the use of differential pair and basic current mirror, which results in simple structure. Its characteristics, that is, parasitic resistance (R x) and current transfer (i o/i z), are also tunable electronically by external bias currents. The realized circuit is suitable for fabrication using standard 0.35 μm BiCMOS technology. Some simple and compact resistorless applications employing the proposed CCCTA as active elements are also suggested, which show that their circuit characteristics with electronic controllability are obtained. PSPICE simulation results demonstrating the circuit behaviors and confirming the theoretical analysis are performed.
Towards a THz backward wave amplifier in European OPTHER project
NASA Astrophysics Data System (ADS)
Dispenza, M.; Brunetti, F.; Cojocaru, C.-S.; de Rossi, A.; Di Carlo, A.; Dolfi, D.; Durand, A.; Fiorello, A. M.; Gohier, A.; Guiset, P.; Kotiranta, M.; Krozer, V.; Legagneux, P.; Marchesin, R.; Megtert, S.; Bouamrane, F.; Mineo, M.; Paoloni, C.; Pham, K.; Schnell, J. P.; Secchi, A.; Tamburri, E.; Terranova, M. L.; Ulisse, G.; Zhurbenko, V.
2010-10-01
Within the EC funded international project OPTHER (OPtically Driven TeraHertz AmplifiERs) a considerable technological effort is being undertaken, in terms of technological development, THz device design and integration. The ultimate goal is to develop a miniaturised THz amplifier based on vacuum-tube principles The main target specifications of the OPTHER amplifier are the following: - Operating frequency: in the band 0.3 to 2 THz - Output power: > 10 mW ( 10 dBm ) - Gain: 10 to 20 dB. The project is in the middle of its duration. Design and simulations have shown that these targets can be met with a proper device configuration and careful optimization of the different parts of the amplifier. Two parallel schemes will be employed for amplifier realisation: THz Drive Signal Amplifier and Optically Modulated Beam THz Amplifier.
X-band inverse class-F GaN internally-matched power amplifier
NASA Astrophysics Data System (ADS)
Zhao, Bo-Chao; Lu, Yang; Han, Wen-Zhe; Zheng, Jia-Xin; Zhang, Heng-Shuang; Ma, Pei-jun; Ma, Xiao-Hua; Hao, Yue
2016-09-01
An X-band inverse class-F power amplifier is realized by a 1-mm AlGaN/GaN high electron mobility transistor (HEMT). The intrinsic and parasitic components inside the transistor, especially output capacitor Cds, influence the harmonic impedance heavily at the X-band, so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane. Experiment results show that, in the continuous-wave mode, the power amplifier achieves 61.7% power added efficiency (PAE), which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT. To the best of our knowledge, this is the first inverse class-F GaN internally-matched power amplifier, and the PAE is quite high at the X-band. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016801).
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Mode control in a high gain relativistic klystron amplifier with 3 GW output power
NASA Astrophysics Data System (ADS)
Wu, Yang; Xie, Hong-Quan; Xu, Zhou
2014-01-01
Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.
Active cooling of an audio-frequency electrical resonator to microkelvin temperatures
NASA Astrophysics Data System (ADS)
Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.
2010-11-01
We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.
Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang
2015-02-09
We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.
Molecular Technique to Understand Deep Microbial Diversity
NASA Technical Reports Server (NTRS)
Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.
2012-01-01
Current sequencing-based and DNA microarray techniques to study microbial diversity are based on an initial PCR (polymerase chain reaction) amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of the minor template appears to be suppressed by the exponential amplification of the more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck has overlooked the presence of the less abundant minority population, and underestimated their role in the ecosystem maintenance. To generate PCR amplicons for subsequent diversity analysis, bacterial l6S rRNA genes are amplified by PCR using universal primers. Two distinct PCR regimes are employed in parallel: one using normal and the other using biotinlabeled universal primers. PCR products obtained with biotin-labeled primers are mixed with streptavidin-labeled magnetic beads and selectively captured in the presence of a magnetic field. Less-abundant DNA templates that fail to amplify in this first round of PCR amplification are subjected to a second round of PCR using normal universal primers. These PCR products are then subjected to downstream diversity analyses such as conventional cloning and sequencing. A second round of PCR amplified the minority population and completed the deep diversity picture of the environmental sample.
USDA-ARS?s Scientific Manuscript database
The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...
Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon
NASA Astrophysics Data System (ADS)
Di Giovanni, A.
2018-03-01
This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.
Fabrication and Characterization of a Long Wavelength InP HBT-Based Optical Receiver
NASA Technical Reports Server (NTRS)
Roenker, Kenneth P.
1997-01-01
Development of a high speed photodetector - the InP-based phototransistor (HPT) for use in optical receivers for microwave signal distribution for satellite phased array antennas is addressed. Currently, p-i-n photodetectors are used because of their compatibility with the heterojunction bipolar transistor (HBT), but their performance limits the bandwidth of these optical receivers. The HPT photodetector was investigated here as an alternative photodetector for monolithic integration with heterojunction bipolar transistor amplifiers in long wavelength (1.3 micron), gigahertz (GHz) frequency optical receivers.
Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco
2014-07-01
Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Fault Tolerant Homopolar Magnetic Bearings
NASA Technical Reports Server (NTRS)
Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert
2003-01-01
Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.
X-Band, 17-Watt Solid-State Power Amplifier
NASA Technical Reports Server (NTRS)
Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl
2005-01-01
An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.
Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.
2004-01-01
We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.
Ion bipolar junction transistors
Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus
2010-01-01
Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274
High-frequency graphene voltage amplifier.
Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried
2011-09-14
While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.
A low-power wide range transimpedance amplifier for biochemical sensing.
Rodriguez-Villegas, Esther
2007-01-01
This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.
High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.
Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok
2016-01-26
The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
NASA Astrophysics Data System (ADS)
Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.
2016-01-01
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.
Design of a CMOS integrated on-chip oscilloscope for spin wave characterization
NASA Astrophysics Data System (ADS)
Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan
2017-05-01
Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.
NASA Astrophysics Data System (ADS)
Gang, Jin; Yiqi, Zhuang; Yue, Yin; Miao, Cui
2015-03-01
A novel digitally controlled automatic gain control (AGC) loop circuitry for the global navigation satellite system (GNSS) receiver chip is presented. The entire AGC loop contains a programmable gain amplifier (PGA), an AGC circuit and an analog-to-digital converter (ADC), which is implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and measured. A binary-weighted approach is proposed in the PGA to achieve wide dB-linear gain control with small gain error. With binary-weighted cascaded amplifiers for coarse gain control, and parallel binary-weighted trans-conductance amplifier array for fine gain control, the PGA can provide a 64 dB dynamic range from -4 to 60 dB in 1.14 dB gain steps with a less than 0.15 dB gain error. Based on the Gaussian noise statistic characteristic of the GNSS signal, a digital AGC circuit is also proposed with low area and fast settling. The feed-backward AGC loop occupies an area of 0.27 mm2 and settles within less than 165 μs while consuming an average current of 1.92 mA at 1.8 V.
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vissers, M. R.; Erickson, R. P.; Ku, H.-S.
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approachesmore » the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.« less
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Highly Efficient Amplifier for Ka-Band Communications
NASA Technical Reports Server (NTRS)
1996-01-01
An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power level of 1.1 W was achieved with a 12-dB gain and a 36-percent efficiency. This represents the best reported combination of power and efficiency at this frequency. In addition to delivering excellent power and gain, this Ka-band MMIC power amplifier has an efficiency that is 10 percent greater than existing designs. The unique design offers an excellent match for spacecraft applications since the amplifier supply voltage is closely matched to the typical value of spacecraft bus voltage. These amplifiers may be used alone in applications of 1 W or less, or several may be combined or used in an array to produce moderate power, Ka-band transmitters with minimal power combining and less thermal stress owing to the combination of excellent efficiency and power output. The higher voltage operation of this design may also save mass and power because the dc-dc power converter is replaced with a simpler voltage regulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capineri, Lorenzo, E-mail: lorenzo.capineri@unifi.it
2014-10-01
This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented.
Menderes, Gulden; Bonazzoli, Elena; Bellone, Stefania; Black, Jonathan D; Lopez, Salvatore; Pettinella, Francesca; Masserdotti, Alice; Zammataro, Luca; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D
2017-05-01
Epithelial ovarian carcinoma is the most lethal of gynecologic malignancies. There is a need to optimize the currently available treatment strategies and to urgently develop novel therapeutic agents against chemotherapy-resistant disease. The objective of our study was to evaluate neratinib's preclinical efficacy in treating HER2-amplified ovarian cancer. Neratinib's efficacy in treating HER2-amplified ovarian cancer was studied in vitro utilizing six primary tumor cell lines with differential HER2/neu expression. Flow cytometry was utilized to assess IC 50 , cell signaling changes, and cell cycle distribution. Neratinib's in vivo efficacy was evaluated in HER2-amplified epithelial ovarian carcinoma xenografts. Three of six (50%) ovarian cancer cell lines were HER2/neu-amplified. Neratinib showed significantly higher efficacy in treating HER2/neu-amplified cell lines when compared to the non-HER2/neu-amplified tumor cell lines (mean ± SEM IC 50 :0.010 μM ± 0.0003 vs. 0.076 μM ± 0.005 p < 0.0001). Neratinib treatment significantly decreased the phosphorylation of the transcription factor S6, leading to arrest of the cell cycle in G0/G1 phase. Neratinib prolonged survival in mice harboring HER2-amplified epithelial ovarian carcinoma xenografts (p = 0.003). Neratinib inhibits proliferation, signaling, cell cycle progression and tumor growth of HER2-amplified epithelial ovarian carcinoma in vitro. Neratinib inhibits xenograft growth and improves overall survival in HER2/neu-amplified ovarian cancer in vivo. Clinical trials are warranted.
Menderes, Gulden; Bonazzoli, Elena; Bellone, Stefania; Black, Jonathan D.; Lopez, Salvatore; Pettinella, Francesca; Masserdotti, Alice; Zammataro, Luca; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.
2018-01-01
Epithelial ovarian carcinoma is the most lethal of gynecologic malignancies. There is a need to optimize the currently available treatment strategies and to urgently develop novel therapeutic agents against chemotherapy-resistant disease. The objective of our study was to evaluate neratinib’s preclinical efficacy in treating HER2-amplified ovarian cancer. Neratinib’s efficacy in treating HER2-amplified ovarian cancer was studied in vitro utilizing six primary tumor cell lines with differential HER2/neu expression. Flow cytometry was utilized to assess IC50, cell signaling changes, and cell cycle distribution. Neratinib’s in vivo efficacy was evaluated in HER2-amplified epithelial ovarian carcinoma xenografts. Three of six (50%) ovarian cancer cell lines were HER2/neu-amplified. Neratinib showed significantly higher efficacy in treating HER2/neu-amplified cell lines when compared to the non-HER2/neu-amplified tumor cell lines (mean ± SEM IC50:0.010 μM ± 0.0003 vs. 0.076 μM ± 0.005 p < 0.0001). Neratinib treatment significantly decreased the phosphorylation of the transcription factor S6, leading to arrest of the cell cycle in G0/G1 phase. Neratinib prolonged survival in mice harboring HER2-amplified epithelial ovarian carcinoma xenografts (p = 0.003). Neratinib inhibits proliferation, signaling, cell cycle progression and tumor growth of HER2-amplified epithelial ovarian carcinoma in vitro. Neratinib inhibits xenograft growth and improves overall survival in HER2/neu-amplified ovarian cancer in vivo. Clinical trials are warranted. PMID:28397106
Digital lock-in amplifier based on soundcard interface for physics laboratory
NASA Astrophysics Data System (ADS)
Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.
2017-09-01
The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.
Microwave power amplifiers based on AlGaN/GaN transistors with a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Vendik, O. G.; Vendik, I. B.; Tural'chuk, P. A.; Parnes, Ya. M.; Parnes, M. D.
2016-11-01
A technique for synthesis of microwave power amplifiers based on transistors with a AlGaN/GaN heterojunction is discussed. Special focus is on the development of a technique for synthesis of transformation circuits of the power amplifier to increase efficiency with a retained high output power. The use of independent matching at the harmonic frequencies and fundamental frequency makes it possible to control the attainable efficiency in a wide frequency band along with the total suppression of harmonics beyond the operational band. Microwave power amplifiers for operation at 4 and 9 GHz have been developed and experimentally investigated.
A microwave cryogenic low-noise amplifier based on sige heterostructures
NASA Astrophysics Data System (ADS)
Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.
2016-04-01
A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.
Room-temperature electron spin amplifier based on Ga(In)NAs alloys.
Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M
2013-02-06
The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On-Ramp: Improving students' understanding of lock-in amplifiers
NASA Astrophysics Data System (ADS)
DeVore, Seth; Singh, Chandralekha; Levy, Jeremy
2013-03-01
A lock-in amplifier is a powerful and versatile instrument which is used frequently in condensed matter physics research. However, many students struggle with the basics of a lock-in amplifier and they have difficulty in interpreting the data obtained with this device in diverse applications. To improve students' understanding, we are developing an ``On-Ramp'' tutorial based on physics education research which makes use of a computer simulation of a lock-in amplifier. During the development of the tutorial we interviewed several faculty members and graduate students. The tutorial is based on a field-tested approach in which students realize their difficulties after predicting the outcome of experiments that use a lock-in amplifier; students can check their predictions using simulations. The tutorial then guides students toward a coherent understanding of the basics of a lock-in amplifier. This poster will discuss the development and assessment process. This work is supported by NSF NEB (DMR-1124131) and NSF (PHY-1202909).
Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength
NASA Technical Reports Server (NTRS)
Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.
1974-01-01
The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
Fishbine, H.L.; Sewell, C. Jr.
1957-08-01
Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.
Improvements to tapered semiconductor MOPA laser design and testing
NASA Astrophysics Data System (ADS)
Beil, James A.; Shimomoto, Lisa; Swertfeger, Rebecca B.; Misak, Stephen M.; Campbell, Jenna; Thomas, Jeremy; Renner, Daniel; Mashanovitch, Milan; Leisher, Paul O.; Liptak, Richard W.
2018-02-01
This paper expands on previous work in the field of high power tapered semiconductor amplifiers and integrated master oscillator power amplifier (MOPA) devices. The devices are designed for watt-class power output and single-mode operation for free-space optical communication. This paper reports on improvements to the fabrication of these devices resulting in doubled electrical-to-optical efficiency, improved thermal properties, and improved spectral properties. A newly manufactured device yielded a peak power output of 375 mW continuous-wave (CW) at 3000 mA of current to the power amplifier and 300 mA of current to the master oscillator. This device had a peak power conversion efficiency of 11.6% at 15° C, compared to the previous device, which yielded a peak power conversion efficiency of only 5.0% at 15° C. The new device also exhibited excellent thermal and spectral properties, with minimal redshift up to 3 A CW on the power amplifier. The new device shows great improvement upon the excessive self-heating and resultant redshift of the previous device. Such spectral improvements are desirable for free-space optical communications, as variation in wavelength can degrade signal quality depending on the detectors being used and the medium of propagation.
Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers
Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.
2010-01-01
A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450
Device, system and method for a sensing electrical circuit
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2009-01-01
The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
NASA Astrophysics Data System (ADS)
Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang
2018-03-01
This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.
A low power low noise analog front end for portable healthcare system
NASA Astrophysics Data System (ADS)
Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong
2015-10-01
The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.
Angle amplifier based on multiplexed volume holographic gratings
NASA Astrophysics Data System (ADS)
Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan
2008-03-01
Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
In order to identify candidate drugs targets that exhibit lethality only in the context of MYCN amplification, we carried out a set of siRNA screens focused on the kinome, targeting ~713 kinases, utilizing human neuroblastoma cells lines with or without MYCN amplification. The neuroblastoma cell lines were: SK-N-BE2 (MYCN amplified) and SK-N-AS (non-amplified). The kinase Hits for the MYCN amplified cell line were selected using a combination of their differential activity when compared to the non-MYCN amplified cells and also ranked by P-values, based on the replicates.
In order to identify candidate drugs targets that exhibit lethality only in the context of MYCN amplification, we carried out a set of siRNA screens focused on the kinome, targeting ~713 kinases, utilizing human neuroblastoma cells lines with or without MYCN amplification. The neuroblastoma cell lines were: SK-N-BE2 (MYCN amplified) and SK-N-AS (non-amplified). The kinase Hits for the MYCN amplified cell line were selected using a combination of their differential activity when compared to the non-MYCN amplified cells and also ranked by P-values, based on the replicates.
Broadband laser amplifier based on gas-phase dimer molecules pumped by the Sun.
Pe'er, I; Vishnevitsky, I; Naftali, N; Yogev, A
2001-09-01
We report the design and experimental realization of a solar-pumped dimer gas-laser amplifier. The amplifying medium is Te(2) gas, which is capable of amplifying laser signals over a broad spectral range. A gain of 42% was measured at a wavelength of 632.8 nm. We also present studies of the material characteristics and a brief review of the study of other candidate materials for solar pumping.
Solid-state X-band Combiner Study
NASA Technical Reports Server (NTRS)
Pitzalis, O., Jr.; Russell, K. J.
1979-01-01
The feasibility of developing solid-state amplifiers at 4 and 10 GHz for application in spacecraft altimeters was studied. Bipolar-transistor, field-effect-transistor, and Impatt-diode amplifier designs based on 1980 solid-state technology are investigated. Several output power levels of the pulsed, low-duty-factor amplifiers are considered at each frequency. Proposed transistor and diode amplifier designs are illustrated in block diagrams. Projections of size, weight, and primary power requirements are given for each design.
S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, H; Zulkifli, M Z; Hassan, N A
2013-10-31
We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum withmore » a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)« less
Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin
2013-03-01
Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.
Phillips, Nathan; Bond, Barbara J.
1999-07-01
To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light. A small 9-V battery thus powers the amplifier for more than 1000 h of continuous operation. Correlations between photometer readings and voltage output from the current-to-voltage converter were high and linear at both high and low PAR. Sixteen Li-Cor LI-190SA quantum sensors each equipped with current-to-voltage converters and connected to a miniature data logger were deployed in the upper branches of a Panamanian tropical rainforest canopy. Each unit performed reliably during a one- or two-week evaluation.
Directly amplified redox sensor for on-chip chemical analysis
NASA Astrophysics Data System (ADS)
Takahashi, Sou; Futagawa, Masato; Ishida, Makoto; Sawada, Kazuaki
2014-03-01
In recent years, many groups have studied redox sensors for chemical analysis. A redox sensor has certain powerful advantages, such as its ability to detect multiple ions inside the sensing area, and its ability to measure concentrations of materials by using voltage and current signals. However, the output current signal of a redox sensor decreases when either concentration or sensing area decreases. Therefore, we propose the use of an amplified redox sensor (ARS) for measuring small current signals. The proposed sensor consists of a working electrode combined with a bipolar transistor. In this study, we fabricated an ARS sensor and performed low-concentration measurements using current signal amplification with an integrated bipolar transistor. The sensor chip successfully detected a potassium ferricyanide (K3[Fe(CN)6]) concentration of as low as 10 µM using cyclic voltammetry.
The Development of SiC MOSFET-based Switching Power Amplifiers for Fusion Science
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian
2015-11-01
Eagle Harbor Technologies (EHT), Inc. is developing a switching power amplifier (SPA) based on silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET). SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. EHT has conducted single device testing that directly compares the capabilities of SiC MOSFETs and IGBTs to demonstrate the utility of SiC MOSFETs for fusion science applications. These devices have been built into a SPA that can drive resistive loads and resonant tank loads at 800 V, 4.25 kA at pulse repetition frequencies up to 1 MHz. During the Phase II program, EHT will finalize the design of the SPA. In Year 2, EHT will replace the SPAs used in the HIT-SI lab at the University of Washington to allow for operation over 100 kHz. SPA prototype results will be presented. This work is supported under DOE Grant # DE-SC0011907.
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Stable passive optical clock generation in SOA-based fiber lasers.
Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren
2015-02-15
Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.
NASA Astrophysics Data System (ADS)
Kagawa, Keiichiro; Furumiya, Tetsuo; Ng, David C.; Uehara, Akihiro; Ohta, Jun; Nunoshita, Masahiro
2004-06-01
We are exploring the application of pulse-frequency-modulation (PFM) photosensor to retinal prosthesis for the blind because behavior of PFM photosensors is similar to retinal ganglion cells, from which visual data are transmitted from the retina toward the brain. We have developed retinal-prosthesis vision chips that reshape the output pulses of the PFM photosensor to biphasic current pulses suitable for electric stimulation of retinal cells. In this paper, we introduce image-processing functions to the pixel circuits. We have designed a 16x16-pixel retinal-prosthesis vision chip with several kinds of in-pixel digital image processing such as edge enhancement, edge detection, and low-pass filtering. This chip is a prototype demonstrator of the retinal prosthesis vision chip applicable to in-vitro experiments. By utilizing the feature of PFM photosensor, we propose a new scheme to implement the above image processing in a frequency domain by digital circuitry. Intensity of incident light is converted to a 1-bit data stream by a PFM photosensor, and then image processing is executed by a 1-bit image processor based on joint and annihilation of pulses. The retinal prosthesis vision chip is composed of four blocks: a pixels array block, a row-parallel stimulation current amplifiers array block, a decoder block, and a base current generators block. All blocks except PFM photosensors and stimulation current amplifiers are embodied as digital circuitry. This fact contributes to robustness against noises and fluctuation of power lines. With our vision chip, we can control photosensitivity and intensity and durations of stimulus biphasic currents, which are necessary for retinal prosthesis vision chip. The designed dynamic range is more than 100 dB. The amplitude of the stimulus current is given by a base current, which is common for all pixels, multiplied by a value in an amplitude memory of pixel. Base currents of the negative and positive pulses are common for the all pixels, and they are set in a linear manner. Otherwise, the value in the amplitude memory of the pixel is presented in an exponential manner to cover the wide range. The stimulus currents are put out column by column by scanning. The pixel size is 240um x 240um. Each pixel has a bonding pad on which stimulus electrode is to be formed. We will show the experimental results of the test chip.
Free electron lasers for transmission of energy in space
NASA Technical Reports Server (NTRS)
Segall, S. B.; Hiddleston, H. R.; Catella, G. C.
1981-01-01
A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.
Focke, Felix; Haase, Ilka; Fischer, Markus
2011-01-26
Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Christophe; Robichaud, Louis-Rafaël; Fortin, Vincent; Vallée, Réal; Bernier, Martin
2018-06-01
The quest for a compact and efficient broadband laser source able to probe the numerous fundamental molecular absorption lines in the mid-infrared (3-8 µm) for various applications has been going on for more than a decade. While robust commercial fiber-based supercontinuum (SC) systems have started to appear on the market, they still exhibit poor energy conversion into the mid-infrared (typically under 30%) and are generally not producing wavelengths exceeding 4.7 µm. Here, we present an overview of the results obtained from a novel approach to SC generation based on spectral broadening inside of an erbium-doped fluoride fiber amplifier seeded directly at 2.8 µm, allowing mid-infrared conversion efficiencies reaching up to 95% and spectral coverage approaching the transparency limit of ZrF4 (4.2 µm) and InF3 (5.5 µm) fibers. The general concept of the approach and the physical mechanisms involved are presented alongside the various configurations of the system to adjust the output characteristics in terms of spectral coverage and output power for different applications.
NASA Astrophysics Data System (ADS)
de O. Rocha, Helder R.; Castellani, Carlos E. S.; Silva, Jair A. L.; Pontes, Maria J.; Segatto, Marcelo E. V.
2015-01-01
We report a simple budget heuristic for a fast optimization of multipump Raman amplifiers based on the reallocation of the pump wavelengths and the optical powers. A set of different optical fibers are analyzed as the Raman gain medium, and a four-pump amplifier setup is optimized for each of them in order to achieve ripples close to 1 dB and gains up to 20 dB in the C band. Later, a comparison between our proposed heuristic and a multiobjective optimization based on a nondominated sorting genetic algorithm is made, highlighting the fact that our new approach can give similar solutions after at least an order of magnitude fewer iterations. The results shown in this paper can potentially pave the way for real-time optimization of multipump Raman amplifier systems.
Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model
NASA Astrophysics Data System (ADS)
Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong
2015-01-01
This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Koronovskii, A. A.; Saratov State Technical University, Politechnicheskaja 77, Saratov 410028
2015-04-13
The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with themore » following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.« less
Design update and recent results of the Apollon 10 PW facility
NASA Astrophysics Data System (ADS)
Le Garrec, B.; Papadopoulos, D. N.; Le Blanc, C.; Zou, J. P.; Chériaux, G.; Georges, P.; Druon, F.; Martin, L.; Fréneaux, L.; Beluze, A.; Lebas, N.; Mathieu, F.; Audebert, P.
2017-05-01
In this paper we are giving a summary of the Apollon 10 PW facility laser design together with updated laser performance. The Apollon facility is currently under construction in France. The APOLLON laser system is a laser designed for delivering pulses as short as 15 fs (10-15 s) with an energy exceeding 150 Joules on target. The peak power delivered by this laser system will be 10 Petawatts (1016W). The Apollon laser system will be delivering 4 beams: one 10 PW beam (F1 beam 400 mm diameter), one 1 PW beam (F2 beam 140 mm diameter) and two additional probe beams (F3 and F4) at a repetition rate of 1 shot per minute. The laser system is based on Ti-sapphire amplifiers pumped by frequency doubled solid-state lasers. The repetition rate of the high energy part will be 1 shot per minute. The main beam at the output of the last amplifier will be split and dispatched to two experimental areas. The main laser beam is delivering 30 J before compression at a repetition rate of 1 shot per minute and we are currently increasing to get 100J.
NASA Astrophysics Data System (ADS)
Castro, N.; Reis, S.; Silva, M. P.; Correia, V.; Lanceros-Mendez, S.; Martins, P.
2018-06-01
The magnetoelectric (ME) effect is increasingly being considered an attractive alternative for magnetic field and smart current sensing, being able to sense static and dynamic magnetic fields. This work reports on a contactless DC current sensor device based on a ME PVDF/Metglas composite, a solenoid and the corresponding electronic instrumentation. The ME sample shows a maximum resonant ME coefficient (α 33) of 34.48 V cm‑1 Oe‑1, a linear response (R 2 = 0.998) and a sensitivity of 6.7 mV A‑1. With the incorporation of a charge amplifier, an AC-RMS converter and a microcontroller the linearity is maintained (R 2 = 0.997), the ME output voltage increases to a maximum of 2320 mV and the sensitivity rises to 476.5 mV A‑1. Such features allied to the highest sensitivity reported in the literature on polymer-based ME composites provide to the reported ME sensing device suitable characteristics to be used in non-contact electric current measurement, motor operational status checking, and condition monitoring of rechargeable batteries, among others.
NASA Astrophysics Data System (ADS)
Sarkar, Jayanta; Puska, Antti; Hassel, Juha; Hakonen, Pertti
2014-03-01
Bloch oscillating transistor (BOT) is mesoscopic current amplier based on a combination of a Josephson junction or a squid connected with a large resistor and a NIS junction. We have studied the dynamics of BOT near the bifurcation threshold. This is an important feature for an amplifier as this can be utilized to improve its performance characteristics. We have measured the I - V characteristics of the BOT with different base currents (IB) over a wide range of Josephson coupling energies (EJ) . The current gain (β) is found to be increasing with increasing IB and eventually diverging. We have found a record large β = 50 in our experiment. In order to determine the common mode rejection ratio (CMRR) of a differential pair BOT we have used two BOTs fabricated on the same chip. The common mode port is connected to the bases of the two BOTs and fed with varying voltages; simultaneously emitter currents of the two BOTs are recorded. In our experiment we found a 20dB of CMRR.
1.8V Operation Power Amplifier IC for Bluetooth Class 1 Utilizing p+-GaAs Gate Hetero-Junction FET
NASA Astrophysics Data System (ADS)
Harima, Fumio; Bito, Yasunori; Takahashi, Hidemasa; Iwata, Naotaka
We have developed a power amplifier IC for Bluetooth Class 1 operating at single low voltage of 1.8V for both control and drain voltages. We can realize it due to fully enhancement-mode hetero-junction FETs utilizing a re-grown p+-GaAs gate technology. The power amplifier is a highly compact design as a small package of 1.5mm×1.5mm×0.4mm with fully integrated gain control and shutdown functions. An impressive power added efficiency of 52% at an output power of 20dBm is achieved with an associated gain of 22dB. Also, sufficiently low leakage current of 0.25μA at 27°C is exhibited, which is comparable to conventional HBT power amplifiers.
Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying
2007-03-19
A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.
Self-amplified CMOS image sensor using a current-mode readout circuit
NASA Astrophysics Data System (ADS)
Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick
2014-05-01
The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.
Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing
NASA Astrophysics Data System (ADS)
Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2018-04-01
A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.
NASA Astrophysics Data System (ADS)
Legg, Thomas; Farries, Mark
2017-02-01
Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-12-23
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-01-01
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530
A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band
Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.
2016-01-01
It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592
Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads
NASA Astrophysics Data System (ADS)
Liu, Huiqin; Ao, Zheng; Cai, Bo; Shu, Xi; Chen, Keke; Rao, Lang; Luo, Changliang; Wang, Fu-Bin; Liu, Wei; Bondesson, Maria; Guo, Shishang; Guo, Feng
2018-06-01
Isolation and analysis of rare circulating tumor cells (CTCs) is of great interest in cancer diagnosis, prognosis, and treatment efficacy evaluation. Acoustofluidic cell separation becomes an attractive method due to its contactless, noninvasive, simple, and versatile features. However, the indistinctive physical difference between CTCs and normal blood cells limits the purity of CTCs using current acoustic methods. Herein, we demonstrate a size-amplified acoustic separation and release of CTCs with removable microbeads. CTCs selectively bound to size-amplifiers (40 μm-diameter anti-EpCAM/gelatin-coated SiO2 microbeads) have significant physical differences (size and mechanics) compared to normal blood cells, resulting in an amplification of acoustic radiation force approximately a hundredfold over that of bare CTCs or normal blood cells. Therefore, CTCs can be efficiently sorted out with size-amplifiers in a traveling surface acoustic wave microfluidic device and released from size-amplifiers by enzymatic degradation for further purification or downstream analysis. We demonstrate a cell separation from blood samples with a total efficiency (E total) of ∼ 77%, purity (P) of ∼ 96%, and viability (V) of ∼83% after releasing cells from size-amplifiers. Our method substantially improves the emerging application of rare cell purification for translational medicine.
Zhang, J; Zhang, L G
2014-02-14
Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.
C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance
1994-01-01
Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...
Power-Amplifier Module for 145 to 165 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Peralta, Alejandro
2007-01-01
A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.
Charge amplifier with bias compensation
Johnson, Gary W.
2002-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
Analog phase lock between two lasers at LISA power levels
NASA Astrophysics Data System (ADS)
Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten
2009-03-01
This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 μW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.
2008-01-01
There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.
Improved Design Concepts for Millimeter Wave Power Sources
1993-03-14
depicted in Gun current 14 A Fig. 6 (see also Fig. 2). This is a helical mode launcaer. similar to those used in conventional helix TWTs . The helix ... broadband gyro- TWT amplifiers, magnetically tunable gyro-BWAs, and phase-locked inverted gyro-twystron. The realization of high efficiency and stable...inverted gyto-twistron, known as the phigtron. The phigtron combines a subharmonic gyro- TWT amplifier input sectioq with a gyroklystron type output
2016-04-01
research has been that the feedback amplifiers are sensitive to many controllable and some, as of yet, uncontrollable environmental factors. Many of these...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...41 3.2.3 Design , construction, and testing of GEN-1 feedback amplifier
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
Adjustable electronic load-alarm relay
Mason, Charles H.; Sitton, Roy S.
1976-01-01
This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.
NASA Astrophysics Data System (ADS)
Krzempek, Karol; Sobon, Grzegorz; Sotor, Jaroslaw; Dudzik, Grzegorz; Abramski, Krzysztof M.
2014-10-01
We present a difference frequency generation based (DFG) mid-infrared (mid-IR) laser source using an all-polarization-maintaining-fiber (all-PM) amplifier capable of simultaneous amplification of 1064 nm and 1550 nm signals. The amplifier incorporates a single piece of a standard erbium:ytterbium (Er:Yb) co-doped double-clad (DC) active fiber and a limited number of off-the-shelf fiber-based components. Excited by a single 9 W multimode pump, the amplifier delivered over 12.1 dB and 17.8 dB gain at 1 µm and 1.55 µm, respectively. Due to an all-PM configuration, the amplifier was exceptionally convenient for DFG of mid-IR radiation in periodically polled lithium niobate (PPLN) crystal, yielding an output power of ~200 µW in a wide spectral range spanning from 3300 to 3470 nm.
A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications
NASA Astrophysics Data System (ADS)
Gaspar, M.; Pedrozzi, M.; Ferreira, L. F. R.; Garvey, T.
2011-05-01
We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.
NASA Technical Reports Server (NTRS)
Benet, James
1994-01-01
This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.
Electronic thermometry in tunable tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksymovych, Petro
A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may bemore » measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.« less
Analytical design equations for self-tuned Class-E power amplifier.
Hu, Zhe; Troyk, Philip
2011-01-01
For many emerging neural prosthesis designs that are powered by inductive coupling, their small physical size requires large current in the extracorporeal transmitter coil, and the Class-E power amplifier topology is often used for the transmitter design. Tuning of Class-E circuits for efficient operation is difficult and a self-tuned circuit can facilitate the tuning. The coil current is sensed and used to tune the switching of the transistor switch in the Class-E circuit in order to maintain its high-efficiency operation. Although mathematically complex, the analysis and design procedure for the self-tuned Class-E circuit can be simplified due to the current feedback control, which makes the phase angle between the switching pulse and the coil current predetermined. In this paper explicit analytical design equations are derived and a detailed design procedure is presented and compared with the conventional Class-E design approaches.
Cadmium telluride photovoltaic radiation detector
Agouridis, D.C.; Fox, R.J.
A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.
A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation
NASA Astrophysics Data System (ADS)
Suadet, Apirak; Kasemsuwan, Varakorn
2011-03-01
This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18
Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor
NASA Astrophysics Data System (ADS)
Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke
2018-04-01
In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.
Cadmium telluride photovoltaic radiation detector
Agouridis, Dimitrios C.; Fox, Richard J.
1981-01-01
A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.
Is there a role for amplifiers in sexual selection?
Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio
2008-05-21
The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information transfer at the emitter level due to the increased stereotypy of male advertising strategy.
An Evaluation of Bipolar Junction Transistors as Dosimeter for Megavoltage Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Renan Garcia de; Vidal da Silva, Rogerio Matias; Silva, Malana Marcelina Almeida
Dosimetry is an extremely important field in medical applications of radiation and nowadays, electron beam is a good option for superficial tumor radiotherapy. Normally, the applied dose to the patient both in diagnostic and therapy must be monitored to prevent injuries and ensure the success of the treatment, therefore, we should always look for improving of the dosimetric methods. Accordingly, the aim of this work is about the use of a bipolar junction transistor (BJT) for electron beam dosimetry. After previous studies, such an electronic device can work as a dosimeter when submitted to ionizing radiation of photon beam. Actually,more » a typical BJT consists of two PN semiconductor junctions resulting in the NPN structure device, for while, and each semiconductor is named as collector (C), base (B) and emitter (E), respectively. Although the transistor effect, which corresponds to the current amplification, be accurately described by the quantum physics, one can utilize a simple concept from the circuit theory: the base current IB (input signal) is amplified by a factor of β resulting in the collector current IC (output signal) at least one hundred times greater the IB. In fact, the BJT is commonly used as a current amplifier with gain β=I{sub C}/I{sub B}, therefore, it was noticed that this parameter is altered when the device is exposed to ionizing radiation. The current gain alteration can be explained by the trap creation and the positive charges build up, beside the degradation of the lattice structure. Then, variations of the gain of irradiated transistors may justify their use as a dosimeter. Actually, the methodology is based on the measurements of the I{sub C} variations whereas I{sub B} is maintained constant. BC846 BJT type was used for dose monitoring from passive-mode measurements: evaluation of its electrical characteristic before and after irradiation procedure. Thus, IC readings were plotted as a function of the applied dose in 6 MeV electron beam from a linear accelerator, Clinac iX. The results show that this new methodology could be an alternative to study the dose in superficial tumors in radiation oncology. (authors)« less
High dynamic range charge measurements
De Geronimo, Gianluigi
2012-09-04
A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.
Construction, Calibration, and Validation of a Simple Patch-Clamp Amplifier for Physiology Education
ERIC Educational Resources Information Center
Rouzrokh, Ali; Ebrahimi, Soltan Ahmed; Mahmoudian, Massoud
2009-01-01
A modular patch-clamp amplifier was constructed based on the Strickholm design, which was initially published in 1995. Various parts of the amplifier such as the power supply, input circuit, headstage, feedback circuit, output and nulling circuits were redesigned to use recent software advances and fabricated using the common lithographic printed…
Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm
NASA Astrophysics Data System (ADS)
Simons, D. R.; Faber, A. J.; de Waal, H.
1995-03-01
The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.
High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays
Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok
2016-01-01
The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029
NASA Astrophysics Data System (ADS)
Marchisone, Massimiliano
2017-09-01
ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. At forward rapidity a muon spectrometer detects muons from low mass mesons, quarkonia (c\\bar{c} and b\\bar{b} mesons), open heavy-flavor hadrons (D and B mesons) as well as from weak bosons. A muon selection based on transverse momentum is made by a trigger system composed of 72 Resistive Plate Chambers (RPCs). For the LHC Run 1 and the ongoing Run 2 the RPCs have been equipped with a non-amplified Front-End Electronics (FEE) called ADULT. However, in view of an increase in luminosity expected for Run 3 (foreseen to start in 2021) the possibility to use an amplified FEE has been explored in order to improve the counting rate limitation and to prevent the aging of the detector by reducing the charge per hit. A prototype of this new electronics (FEERIC) has been developed and tested first with cosmic rays before equipping one RPC in the ALICE cavern with it. In this proceeding the most important performance indicators (such as efficiency, dark current, dark rate, cluster size, total charge and charge per hit) of the RPC equipped with this new FEE will be reviewed and compared to the others read out with ADULT.
NASA Astrophysics Data System (ADS)
Marchisone, Massimiliano
2016-06-01
ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. At forward rapidity a muon spectrometer detects muons from low mass mesons, quarkonia, open heavy-flavor hadrons as well as weak bosons. A muon selection based on transverse momentum is made by a trigger system composed of 72 resistive plate chambers (RPCs). For the LHC Run 1 and the ongoing Run 2 the RPCs have been equipped with a non-amplified FEE called ADULT. However, in view of an increase in luminosity expected for Run 3 (2021-2023) the possibility to use an amplified FEE has been explored in order to improve the counting rate limitation and to prevent the aging of the detector, by reducing the charge per hit. A prototype of this new electronics (FEERIC) has been developed and tested first with cosmic rays before equipping one RPC in the ALICE cavern with it. In this paper the most important performance indicators— efficiency, dark current, dark rate, cluster size and total charge —of an RPC equipped with this new FEE will be reviewed and compared to the others read out with ADULT, in pp collisions at √s=5 and 13 TeV and in Pb-Pb collisions at √sNN=5 TeV.
NASA Astrophysics Data System (ADS)
Kulkarni, R. D.; Agarwal, Vivek
2008-08-01
An ion chamber amplifier (ICA) is used as a safety device for neutronic power (flux) measurement in regulation and protection systems of nuclear reactors. Therefore, performance reliability of an ICA is an important issue. Appropriate quality engineering is essential to achieve a robust design and performance of the ICA circuit. It is observed that the low input bias current operational amplifiers used in the input stage of the ICA circuit are the most critical devices for proper functioning of the ICA. They are very sensitive to the gamma radiation present in their close vicinity. Therefore, the response of the ICA deteriorates with exposure to gamma radiation resulting in a decrease in the overall reliability, unless desired performance is ensured under all conditions. This paper presents a performance enhancement scheme for an ICA operated in the nuclear environment. The Taguchi method, which is a proven technique for reliability enhancement, has been used in this work. It is demonstrated that if a statistical, optimal design approach, like the Taguchi method is used, the cost of high quality and reliability may be brought down drastically. The complete methodology and statistical calculations involved are presented, as are the experimental and simulation results to arrive at a robust design of the ICA.
A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring.
Zhou, Zhijun; Warr, Paul A
2016-12-01
Within neural monitoring systems, the front-end amplifier forms the critical element for signal detection and pre-processing, which determines not only the fidelity of the biosignal, but also impacts power consumption and detector size. In this paper, a novel combined feedback loop-controlled approach is proposed to compensate for input leakage currents generated by low noise amplifiers when in integrated circuit form alongside signal leakage into the input bias network. This loop topology ensures the Front-End Amplifier (FEA) maintains a high input impedance across all manufacturing and operational variations. Measured results from a prototype manufactured on the AMS 0.35 [Formula: see text] CMOS technology is provided. This FEA consumes 3.1 [Formula: see text] in 0.042 [Formula: see text], achieves input impedance of 42 [Formula: see text], and 18.2 [Formula: see text] input-referred noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, M. B.; Lebedev, V. A.; Piot, P.
2015-06-01
Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphiremore » crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier« less
Two-electrode low supply voltage electrocardiogram signal amplifier.
Dobrev, D
2004-03-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation, including telemedicine applications. Low-voltage and low-power design tendencies prevail. Modern battery cell voltages in the range of 3-3.6 V require appropriate circuit solutions. A two-electrode biopotential amplifier design is presented, with a high common-mode rejection ratio (CMRR), high input voltage tolerance and standard first-order high-pass characteristic. Most of these features are due to a high-gain first stage design. The circuit makes use of passive components of popular values and tolerances. Powered by a single 3 V source, the amplifier tolerates +/- 1 V common mode voltage, +/- 50 microA common mode current and 2 V input DC voltage, and its worst-case CMRR is 60 dB. The amplifier is intended for use in various applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes
Atalar, Ergin; McVeigh, Elliot R.
2007-01-01
With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900
Characterization of a measurement-based noiseless linear amplifier and its applications
NASA Astrophysics Data System (ADS)
Zhao, Jie; Haw, Jing Yan; Symul, Thomas; Lam, Ping Koy; Assad, Syed M.
2017-07-01
A noiseless linear amplifier (NLA) adds no noise to the signals it processes, which works only in a probabilistic way. It can be realized approximately with either a physical implementation that truncates the working space of the NLA on a photon-number basis or a measurement-based implementation that realizes the truncation virtually by a bounded postselection filter. To examine the relationship between these two approximate NLAs, we characterize in detail the measurement-based NLA and compare it with its physical counterpart in terms of their abilities to preserve the state Gaussianity and their probability of success. The link between these amplifiers is further clarified by integrating them into a measure-and-prepare setup. We stress the equivalence between the physical and the measurement-based approaches holds only when the effective parameters, the amplification gain, the cutoff, and the amplitude of the input state, are taken into account. Finally, we construct a 1-to-infinity cloner using the two amplifiers and show that a fidelity surpassing the no-cloning limit is achievable with the measurement-based NLA.
Power source selection for neutral particle beam systems
NASA Astrophysics Data System (ADS)
Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory
Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.
Four-wave-mixing suppression in Er 3+-fiber amplifiers by backward pumping
NASA Astrophysics Data System (ADS)
Adel, P.; Engelbrecht, M.; Wandt, D.; Fallnich, C.
2007-03-01
Amplification of chirped fs-pulses in an Erbium doped fiber amplifier upto 0.8 μJ resulted in an additional peak in the spectrum at 1584 nm. This peak, attributable to four-wave-mixing between the signal centered at 1559 nm and amplified spontaneous emission at 1534 nm, hinders the temporal recompression of the amplified chirped pulse. Compared to the forward pumping configuration, this four-wave-mixing in the amplifier was largely reduced in a backward pumping configuration. Based on simulations, explanations for the observed influence of the pump direction on the four-wave-mixing efficiency are presented. The results pointed out that the gain spectrum distribution along the fiber strongly influences four-wave-mixing effects in fiber amplifiers even for constant overall gain spectrum.
Suppression of Gain Ripples in Superconducting Traveling-Wave Kinetic Inductance Amplifiers
NASA Astrophysics Data System (ADS)
Bal, Mustafa; Erickson, Robert P.; Ku, Hsiang Sheng; Wu, Xian; Pappas, David P.
Superconducting traveling-wave kinetic inductance (KIT) amplifiers demonstrated gain over a wide bandwidth with high dynamic range and low noise. However, the gain curve exhibits ripples. Impedance mismatch at the input and output ports of the KIT amplifier as wells as split ground planes of the coplanar waveguide (CPW) geometry are potential contributors to the ripple in the gain curve. Here we study the origin of these ripples in KIT amplifiers configured in CPW geometry using approximately 20 nm thick NbTiN films grown by reactive co-sputtering of NbN and TiN. Our NbTiN films have non-linear kinetic inductance as a function of current, described by L =L0 (1 +(I /I*) 2) , where I* = 15 . 96 +/- 0 . 11 mA measured by time domain reflectometry. We report the results of implementing an impedance taper that takes into account a significantly reduced phase velocity as it narrows, adding Au onto the CPW split grounds, as well as employing different designs of dispersion engineering. Qubit Measurements using KIT amplifiers will also be reported.
NASA Astrophysics Data System (ADS)
Rivard, Maxime; Villeneuve, Alain; Lamouche, Guy
2017-02-01
For bioimaging applications, commercial swept-sources currently provide enough power (tens of milliwatts) insuring good imaging condition without damaging the tissues. For industrial applications, more power is needed since the amount of light collected can be very low due to challenging measurement conditions or due to poor sample reflectivity. To address this challenge, we explore three different setups to externally amplify the output of a commercial swept-source: a booster semiconductor optical amplifier (BOA), an erbium-doped fiber amplifier (EDFA) and a combination of both. These external amplification setups allow the exploration of emerging OCT applications without the need to develop new hardware.
Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier
NASA Astrophysics Data System (ADS)
Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.
2018-02-01
An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.
Finite element BPM fiber modal instability modeling
NASA Astrophysics Data System (ADS)
Ward, Benjamin G.
2018-02-01
Two approaches are presented for detailed analysis of transverse mode instability in fiber amplifiers based on a scalar finite element beam propagation method (BPM). The first employs two beams: one propagating at a fundamental frequency and one de-tuned to the middle of the stimulated thermal Rayleigh scattering (STRS) gain peak. This method was found to suffer from a computational artifact causing it to converge in some cases to an unphysical solution. The second was based on the steady periodic method. This required more computational resources but was found to be reliable and not susceptible to the artifact mentioned above. This method was used to simulate step-index fiber amplifiers, large pitch photonic crystal fiber amplifiers, and a hybrid large pitch photonic bandgap fiber amplifier with reduced symmetry. Results for reference step index fiber amplifiers were found to be consistent with those obtained by other methods. The simulated instability threshold values all fell between 200 and 310 Watts showing relatively little variation among designs. Some areas for improvement in the method are discussed.
Simulation of energy buildups in solid-state regenerative amplifiers for 2-μm emitting lasers
NASA Astrophysics Data System (ADS)
Springer, Ramon; Alexeev, Ilya; Heberle, Johannes; Pflaum, Christoph
2018-02-01
A numerical model for solid-state regenerative amplifiers is presented, which is able to precisely simulate the quantitative energy buildup of stretched femtosecond pulses over passed roundtrips in the cavity. In detail, this model is experimentally validated with a Ti:Sapphire regenerative amplifier. Additionally, the simulation of a Ho:YAG based regenerative amplifier is conducted and compared to experimental data from literature. Furthermore, a bifurcation study of the investigated Ho:YAG system is performed, which leads to the identification of stable and instable operation regimes. The presented numerical model exhibits a well agreement to the experimental results from the Ti:Sapphire regenerative amplifier. Also, the gained pulse energy from the Ho:YAG system could be approximated closely, while the mismatch is explained with the monochromatic calculation of pulse amplification. Since the model is applicable to other solid-state gain media, it allows for the efficient design of future amplification systems based on regenerative amplification.
Photoconducting positions monitor and imaging detector
Shu, Deming; Kuzay, Tuncer M.
2000-01-01
A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.
Frequency-Agile LIDAR Receiver for Chemical and Biological Agent Sensing
2010-06-01
transimpedance preamplifier architecture was optimized around the selected IR detector diode – Input-referenced noise density of 0.8 nV/ Hz0.5 A portion of...objectives: • Reduce baseline (background) photon flux on detector : Tunable Fabry-Perot etalon in optical train • Reduce input-referenced amplifier noise ...custom amplifier • Reduce detector dark current: High impedance detector Performance Metrics: – Noise equivalent power of receiver system (NEP
The measurement system of birefringence and Verdet constant of optical fiber
NASA Astrophysics Data System (ADS)
Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun
2013-12-01
The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.
NASA Astrophysics Data System (ADS)
Allen, C. D.; Williams, P.
2012-12-01
Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A
2012-07-01
We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.
1997 Technology Applications Report,
1997-01-01
handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases
Development and Evaluation of a Tutorial to Improve Students' Understanding of a Lock-in Amplifier
ERIC Educational Resources Information Center
DeVore, Seth; Gauthier, Alexandre; Levy, Jeremy; Singh, Chandralekha
2016-01-01
A lock-in amplifier is a versatile instrument frequently used in physics research. However, many students struggle with the basic operating principles of a lock-in amplifier which can lead to a variety of difficulties. To improve students' understanding, we have been developing and evaluating a research-based tutorial which makes use of a computer…
A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications
NASA Astrophysics Data System (ADS)
Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang
2018-06-01
This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
Circuit for Communication over DC Power Line Using High Temperature Electronics
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2014-01-01
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.
Korolev, A M; Shnyrkov, V I; Shulga, V M
2011-01-01
We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
Low Voltage Current-Reused Pseudo-Differential Programmable Gain Amplifier
NASA Astrophysics Data System (ADS)
Nguyen, Huy-Hieu; Lee, Jeong-Seon; Lee, Sang-Gug
This paper reports a current-reused pseudo-differential (CRPD) programmable gain amplifier (PGA) that demonstrates small size, low power, wide band, low noise, and high linearity operation with 4 control bits. Implemented in 0.18um CMOS technology, the PGA shows the gain range from -9.9 to 8.3dB with gain error of less than ±0.38dB. The IIP3, P1dB, and smallest 3-dB bandwidth are 10.5 to 27dBm, -9 to 9.5dBm, and 250MHz, respectively. The PGA occupies the chip area of 0.04mm2 and consumes only 460 µA from a 1.2V supply.
High sensitivity charge amplifier for ion beam uniformity monitor
Johnson, Gary W.
2001-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
NASA Technical Reports Server (NTRS)
Sullivan, Gerry
2001-01-01
For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.
Simple constant-current-regulated power supply
NASA Technical Reports Server (NTRS)
Priebe, D. H. E.; Sturman, J. C.
1977-01-01
Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.
A transistor based on 2D material and silicon junction
NASA Astrophysics Data System (ADS)
Kim, Sanghoek; Lee, Seunghyun
2017-07-01
A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.
Apparatus for measuring high frequency currents
NASA Technical Reports Server (NTRS)
Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)
2003-01-01
An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.;
2001-01-01
Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.
Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Chu-Kung, B.; Walter, G.; Chan, R.
2004-06-01
We report radiative recombination in the base layer of Type-II InP/GaAsSb/InP double heterojunction bipolar light-emitting transistors (HBLET) operating in the common-emitter configuration. The typical current gain, β, for a 120×120 μm2 emitter area of the HBLET is 38. The optical emission wavelength from a 30 nm GaAs0.51Sb0.49 base is centered at λpeak=1600 nm. Three-port operation of the Type-II HBLET with simultaneously an amplified electrical output and an optical output with signal modulation is demonstrated at 10 kHz.
Analytical techniques for mechanistic characterization of EUV photoresists
NASA Astrophysics Data System (ADS)
Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg
2017-03-01
Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
USDA-ARS?s Scientific Manuscript database
The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier
Joye, Colin D.; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.
2009-01-01
The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE06 mode of an overmoded quasi-optical waveguide using a gyrating electron beam. The electromagnetic theory, interaction theory, design processes, and experimental procedures are described in detail. At 37.7 kV and a 2.7-A beam current, the experiment has produced over 820 W of peak power with a –3-dB bandwidth of 0.8 GHz and a linear gain of 34 dB at 34.7 kV. In addition, the amplifier produced a –3-dB bandwidth of over 1.5 GHz (1.1%) with a peak power of 570 W from a 38.5-kV 2.5-A electron beam. The electron beam is estimated to have a pitch factor of 0.55–0.6, a radius of 1.9 mm, and a calculated perpendicular momentum spread of approximately 9%. The gyro-amplifier was nominally operated at a pulselength of 2 μs but was tested to amplify pulses as short as 4 ns with no noticeable pulse broadening. Internal reflections in the amplifier were identified using these short pulses by time-domain reflectometry. The demonstrated performance of this amplifier shows that it can be applied to dynamic nuclear polarization and electron paramagnetic resonance spectroscopy. PMID:20054451
Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging
NASA Astrophysics Data System (ADS)
Fattahi, Hanieh
2016-10-01
This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
Power Amplifier Module with 734-mW Continuous Wave Output Power
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara
2010-01-01
Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.
M Naresh Kumar, C V; Anthony Johnson, A M; R Sai Gopal, D V
2007-12-01
Chikungunya virus has caused numerous large outbreaks in India. Suspected blood samples from the epidemic were collected and characterized for the identification of the responsible causative from Rayalaseema region of Andhra Pradesh. RT-PCR was used for screening of suspected blood samples. Primers were designed to amplify partial E1 gene and the amplified fragment was cloned and sequenced. The sequence was analyzed and compared with other geographical isolates to find the phylogenetic relationship. The sequence was submitted to the Gen bank DNA database (accession DQ888620). Comparative nucleotide homology analysis of the AP Ra-CTR isolate with the other isolates revealed 94.7+/-3.6 per cent of homology of CHIKAPRa-CTR with other isolates of Chikungunya virus at nucleotide level and 96.8+/-3.2 per cent of homology at amino acid level. The current epidemic was caused by the Central African genotype of CHIKV, grouped in Central Africa cluster in phylogenetic trees generated based on nucleotide and amino acid sequences.
Spheromak reactor with poloidal flux-amplifying transformer
Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki
1987-01-01
An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.
NASA Astrophysics Data System (ADS)
Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.
1986-11-01
In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.
Data acquisition channel apparatus
NASA Astrophysics Data System (ADS)
Higgins, C. H.; Skipper, J. D.
1985-10-01
Dicussed is a hybrid integrated circuit data acquisition channel apparatus employing an operational amplifier fed by a low current differential bipolar transistor preamplifier having separate feedback gain and signal gain determining elements and providing an amplified signal output to a sample and hold and analog-to-digital converter circuits. The disclosed apparatus operates with low energy and small space requirements and is capable of operations without the sample and hold circuit where the nature of the applied input signal permits.
NECTAR: New electronics for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.
2012-12-01
The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.
Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†
Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku
2018-01-01
A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776
Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J
2014-01-01
The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.
Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A
2016-07-01
Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. Copyright © 2016 Elsevier GmbH. All rights reserved.
Organic electrochemical transistors for cell-based impedance sensing
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.
2015-01-01
Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.
Magnetic nano-oscillator driven by pure spin current.
Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O
2012-12-01
With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.
NASA Astrophysics Data System (ADS)
Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WATANABE, T.; LIU, D.; MURPHY, J.B.
The strong focusing VISA undulator is presented in this report. The proposed FEL will operate at the 1 {micro}m water window. Extensive simulations were performed to optimize an FEL amplifier based on the two-meter long VISA undulator which has a period of 1.8 cm and an undulator parameter K = 1.26. The betatron function inside the VISA undulator is about 30 cm. For an electron beam with a peak current {approx}1 kA and a normalized emittance of 5 mm-mrad, the FEL peak power can exceed 1 GW within the 2 m VISA undulator using a 5 kW peak power seedmore » laser. Such a device can produce a megawatt of average power for a 700 MHz rep rate. The transverse distribution of the FEL radiation along the undulator, as well as after the undulator, is explored by numerical simulation. The FEL power density at 5 m downstream from the undulator is less than 100 kW/cm{sup 2} for this MW-class FEL. We will also discuss the feasibility of an experimental demonstration of the laser seeded FEL amplifier based on the 2-m VISA undulator at the NSLS Source Development Lab (SDL).« less
Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C
2009-03-01
The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffers, K I
It has recently been reported that several high power, diode-pumped laser systems have been developed based on crystals of Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F]. The Mercury Laser, at Lawrence Livermore National Laboratory, is the most prominent system using Yb:S-FAP and is currently producing 23J at 5 Hz in a 15 nsec pulse, based on partial activation of the system. In addition, a regenerative amplifier is being developed at Waseda University in Japan and has produced greater than 12 mJ with high beam quality at 50Hz repetition rate. Q-peak has demonstrated 16 mJ of maximum energy/output pulse in a multi-pass,more » diode side-pumped amplifier and ELSA in France is implementing Yb:S-FAP in a 985 nm pump for an EDFA, producing 250 mW. Growth of high optical quality crystals of Yb:S-FAP is a challenge due to multiple crystalline defects. However, at this time, a growth process has been developed to produce high quality 3.5 cm diameter Yb:S-FAP crystals and a process is under development for producing 6.5 cm diameter crystals.« less
1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier
NASA Astrophysics Data System (ADS)
Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi
2018-01-01
A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
1978-06-01
Type N Female Power - AMP 201298-3 Female The TWT amplifier will output a fault signal when the TWT is over temperature, when the helix current is...Control Section 3-24 3.2.1.5.2 Monitor Section 3-26 3.2.1.6 TWT Amplifier 3-28 3.2.1.7 RF Unit 3-29 3.2.1.7.1 C-Band Exciter 3-29 3.2.1.7.2 Bi-Phase...3-60 3.2.2.5.1 Control Section 3-66 3.2.2.5.2 Monitor Section 3-66 3.2.2.6 TWT Amplifier 3-66 3.2.2.7 RF Unit 3-66 3.2.2.8 Local Control/Status 3-66
Integrated amplifying nanowire FET for surface and bulk sensing
NASA Astrophysics Data System (ADS)
Chui, Chi On; Shin, Kyeong-Sik
2011-10-01
For over one decade, numerous research have been performed on field-effect transistor (FET) sensors with a quasi-onedimensional (1D) nanostructure channel demonstrating highly sensitive surface and bulk sensing. The high surface and bulk sensing sensitivity respectively arises from the inherently large surface area-to-volume ratio and tiny channel volume. The generic nanowire FET sensors, however, have limitations such as impractically low output current levels especially near the limit of detection (LOD) that would require downstream remote amplification with an appreciable amount of added noise. We have recently proposed and experimentally demonstrated an innovative amplifying nanowire FET sensor structure that seamlessly integrates therein a sensing nanowire and a nanowire FET amplifier. This novel sensor structure embraces the same geometrical advantage in quasi-1D nanostructure yet it offers unprecedented closeproximity signal amplification with the lowest possible added noise. In this paper, we review the device operating principle and amplification mechanism. We also present the prototype fabrication procedures, and surface and bulk sensing experimental results showing significantly enhanced output current level difference as predicted.
Amplified OTDR systems for multipoint corrosion monitoring.
Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.
Amplified OTDR Systems for Multipoint Corrosion Monitoring
Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017
NASA Astrophysics Data System (ADS)
Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.
10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE
NASA Astrophysics Data System (ADS)
Sobon, G.; Sliwinska, D.; Abramski, K. M.; Kaczmarek, P.
2014-02-01
In this work we demonstrate a single-frequency, single-mode all-fiber master oscillator power amplifier (MOPA) source, based on erbium-ytterbium co-doped double-clad fiber emitting 10 W of continuous wave power at 1565 nm. In the power amplifier stage, the amplified spontaneous emission from Yb3+ ions (Yb-ASE) is forced to recirculate in a loop resonator in order to provide stable lasing at 1060 nm. The generated signal acts as an additional pump source for the amplifier and is reabsorbed by the Yb3+ ions in the active fiber, allowing an increase in the efficiency and boosting the output power. The feedback loop also protects the amplifier from parasitic lasing or self-pulsing at a wavelength of 1 μm. This allows one to significantly scale the output power in comparison to a conventional setup without any Yb-ASE control.
Frequency stabilization in nonlinear MEMS and NEMS oscillators
Lopez, Omar Daniel; Antonio, Dario
2014-09-16
An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
Methods and compositions for efficient nucleic acid sequencing
Drmanac, Radoje
2006-07-04
Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.
Methods and compositions for efficient nucleic acid sequencing
Drmanac, Radoje
2002-01-01
Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.
Feedforward, high density, programmable read only neural network based memory system
NASA Technical Reports Server (NTRS)
Daud, Taher; Moopenn, Alex; Lamb, James; Thakoor, Anil; Khanna, Satish
1988-01-01
Neural network-inspired, nonvolatile, programmable associative memory using thin-film technology is demonstrated. The details of the architecture, which uses programmable resistive connection matrices in synaptic arrays and current summing and thresholding amplifiers as neurons, are described. Several synapse configurations for a high-density array of a binary connection matrix are also described. Test circuits are evaluated for operational feasibility and to demonstrate the speed of the read operation. The results are discussed to highlight the potential for a read data rate exceeding 10 megabits/sec.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling
NASA Astrophysics Data System (ADS)
He, F.; Price, J. H.; Vu, K. T.; Malinowski, A.; Sahu, J. K.; Richardson, D. J.
2006-12-01
We show that it is possible to adapt existing software packages developed originally for modeling telecommunication devices and systems to reliably predict and optimize the performance of high-power Ytterbium-doped fiber amplifier and laser systems. The ready availability of a flexible, user-friendly design tool should be of considerable practical interest to scientists and engineers working with this important new laser technology since Ytterbium amplifier and amplifier cascades are often difficult to optimize experimentally due to the three-level nature of the Ytterbium laser transition. As examples of the utility and accuracy of the software, as well as the complexity of the systems and amplifier properties that can be successfully modeled, we present a comparison of experimental and theoretical results for individual core and cladding pumped amplifiers, and also for an ultra-short pulse four-stage amplifier system optimized both to provide a broad gain bandwidth and to minimize nonlinear effects. We also show how high energy 100 ns pulses with complex user definable temporal profiles can be created in a gain-saturated amplifier by suitable pre-shaping of the low-energy input pulses. Furthermore, with appropriate modifications the same software package can be applied to fiber amplifiers based on other rare-earth elements and glass hosts.
The generation of amplified spontaneous emission in high-power CPA laser systems.
Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph
2016-03-01
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.
A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver
NASA Astrophysics Data System (ADS)
Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng
2012-03-01
A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.
Chen, Chang Hao; McCullagh, Elizabeth A.; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C.
2017-01-01
The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design. PMID:28221990
Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.
Ives, John R; Mirsattari, Seyed M; Jones, D
2007-07-01
Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, C. L.; Lian, Y. H.; Cheng, N. H.
2012-11-15
The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less
The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems
NASA Astrophysics Data System (ADS)
Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.
2007-02-01
We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.
Energy-signal quality trade-offs in a WiMAX mobile station with a booster amplifier
NASA Astrophysics Data System (ADS)
Suherman; Mubarakah, N.; Wiranata, O.; Kasim, S. T.
2018-02-01
Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless access technology that is able to provide high bit rate mobile internet services. Battery endurance remains a problem in current mobile communication. On the other hand, signal quality determines the successful run of the mobile applications. Energy consumption optimization cannot sacrifice the signal level required by the application to run smoothly. On the contrary, the application should consider battery life time. This paper examines the tradeoffs between energy and signal quality in WiMAX subscriber station by adjusting signal level using a booster amplifier. Simulation evaluations show that an increment of 0.00000104% energy consumption on using amplifier adaptively produces 16.411% signal to noise ratio (SNR) increment and 10.7% bit error rate (BER) decrement. By keeping the amplifier turned on, energy consumption increases up to 0.00000136%, causing the SNR rises to 17.2638% and BER drops to 11.13%. The evaluated application is video streaming, other application may behave differently.
Christo, Steven Basil
2006-12-19
Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.
Tumor Content Chart-Assisted HER2/CEP17 Digital PCR Analysis of Gastric Cancer Biopsy Specimens.
Matsusaka, Keisuke; Ishikawa, Shumpei; Nakayama, Atsuhito; Ushiku, Tetsuo; Nishimoto, Aiko; Urabe, Masayuki; Kaneko, Nobuyuki; Kunita, Akiko; Kaneda, Atsushi; Aburatani, Hiroyuki; Fujishiro, Mitsuhiro; Seto, Yasuyuki; Fukayama, Masashi
2016-01-01
Evaluating HER2 gene amplification is an essential component of therapeutic decision-making for advanced or metastatic gastric cancer. A simple method that is applicable to small, formalin-fixed, paraffin-embedded biopsy specimens is desirable as an adjunct to or as a substitute for currently used HER2 immunohistochemistry and in situ hybridization protocols. In this study, we developed a microfluidics-based digital PCR method for determining HER2 and chromosome 17 centromere (CEP17) copy numbers and estimating tumor content ratio (TCR). The HER2/CEP17 ratio is determined by three variables-TCR and absolute copy numbers of HER2 and CEP17-by examining tumor cells; only the ratio of the latter two can be obtained by digital PCR using the whole specimen without purifying tumor cells. TCR was determined by semi-automatic image analysis. We developed a Tumor Content chart, which is a plane of rectangular coordinates consisting of HER2/CEP17 digital PCR data and TCR that delineates amplified, non-amplified, and equivocal areas. By applying this method, 44 clinical gastric cancer biopsy samples were classified as amplified (n = 13), non-amplified (n = 25), or equivocal (n = 6). By comparison, 11 samples were positive, 11 were negative, and 22 were equivocally immunohistochemistry. Thus, our novel method reduced the number of equivocal samples from 22 to 6, thereby obviating the need for confirmation by fluorescence or dual-probe in situ hybridization to < 30% of cases. Tumor content chart-assisted digital PCR analysis is also applicable to multiple sites in surgically resected tissues. These results indicate that this analysis is a useful alternative to HER2 immunohistochemistry in gastric cancers that can serve as a basis for the automated evaluation of HER2 status.
Tumor Content Chart-Assisted HER2/CEP17 Digital PCR Analysis of Gastric Cancer Biopsy Specimens
Matsusaka, Keisuke; Ishikawa, Shumpei; Nakayama, Atsuhito; Ushiku, Tetsuo; Nishimoto, Aiko; Urabe, Masayuki; Kaneko, Nobuyuki; Kunita, Akiko; Kaneda, Atsushi; Aburatani, Hiroyuki; Fujishiro, Mitsuhiro; Seto, Yasuyuki; Fukayama, Masashi
2016-01-01
Evaluating HER2 gene amplification is an essential component of therapeutic decision-making for advanced or metastatic gastric cancer. A simple method that is applicable to small, formalin-fixed, paraffin-embedded biopsy specimens is desirable as an adjunct to or as a substitute for currently used HER2 immunohistochemistry and in situ hybridization protocols. In this study, we developed a microfluidics-based digital PCR method for determining HER2 and chromosome 17 centromere (CEP17) copy numbers and estimating tumor content ratio (TCR). The HER2/CEP17 ratio is determined by three variables—TCR and absolute copy numbers of HER2 and CEP17—by examining tumor cells; only the ratio of the latter two can be obtained by digital PCR using the whole specimen without purifying tumor cells. TCR was determined by semi-automatic image analysis. We developed a Tumor Content chart, which is a plane of rectangular coordinates consisting of HER2/CEP17 digital PCR data and TCR that delineates amplified, non-amplified, and equivocal areas. By applying this method, 44 clinical gastric cancer biopsy samples were classified as amplified (n = 13), non-amplified (n = 25), or equivocal (n = 6). By comparison, 11 samples were positive, 11 were negative, and 22 were equivocally immunohistochemistry. Thus, our novel method reduced the number of equivocal samples from 22 to 6, thereby obviating the need for confirmation by fluorescence or dual-probe in situ hybridization to < 30% of cases. Tumor content chart-assisted digital PCR analysis is also applicable to multiple sites in surgically resected tissues. These results indicate that this analysis is a useful alternative to HER2 immunohistochemistry in gastric cancers that can serve as a basis for the automated evaluation of HER2 status. PMID:27119558
High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers
NASA Technical Reports Server (NTRS)
Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.
2005-01-01
Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).
Instrumentation for measurement of aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1975-01-01
A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
Capacitive detection of micromotions: Monitoring ballistics of a developing avian embryo
NASA Astrophysics Data System (ADS)
Szymanski, Jan A.; Pawlak, Krzysztof; Wasowicz, Pawel; Moscicki, Jozef K.
2002-09-01
An instrument for noninvasive monitoring of very weak biomechanical activities of small living organisms is described. The construction is sufficiently flexible to permit a range of studies including developing embryos of oviparous animals, pests that live in loose materials and timber, and insects that develop in cocoons. Motions are detected by monitoring a current generated by the fluctuating position of the object-loaded electrode of a capacitive sensor. To maximize the signal, oscillations of the electrode are mechanically enhanced and the current is amplified and filtered by a two-stage signal amplifier and a bank of six active Butterworth filters. The device is optimized to ballistocardiography of hen embryos. The sensitivity achieved makes possible quantitative studies of heart activity of 7-day-old embryos.
Uprating the Frontal Thrust of a Spherical Gas-Dynamical Resonator-Pulse Amplifier
NASA Astrophysics Data System (ADS)
Bogdanov, V. I.; Khantalin, D. S.
2017-01-01
Calculations were carried out with application of current numerical methods and with the use of scientific-technical developments of a gas-dynamical resonator-thrust amplifier. The possibility of creating an exit device with a resonator for a small-size gas-turbine engine that in flight provides for thrust uprating by no less than 6% via gas mass attachment in the pulsating process is shown. In this way the size-mass characteristics of the exit device are preserved in the process.
Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade
NASA Astrophysics Data System (ADS)
Manuilov, V. N.; Samsonov, S. V.; Mishakin, S. V.; Klimov, A. V.; Leshcheva, K. A.
2018-02-01
The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.
Anti-Le-Chatelet behavior driven by strong natural light
NASA Astrophysics Data System (ADS)
Antonyuk, B. P.
2007-01-01
We show that strong incoherent broad band light causes positive feedback in response to a static electric field in random media: electric current flows in opposite to a voltage drop direction; static polarization is induced in opposition to an applied electric field. This type of the electron motion amplifies the external action revealing anti-Le-Chatelet behavior. The applied static electric field is amplified up to the domain of optical damage of a silica glass ≈10 7 V/cm.
Instrumentation for measuring aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1976-01-01
Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.
Quantum Device Applications of Mesoscopic Superconductivity
NASA Astrophysics Data System (ADS)
Hakonen, P. J.
2006-08-01
A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.
2010-07-27
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently... PERSON A. GAVRIELIDES a. REPORT UNCLAS b. ABSTRACT UNCLAS c. THIS PAGE UNCLAS 19b. TELEPHONE NUMBER (Include area code) +44 (0)1895 616205...PS) FOPAs are discussed, and the phase-squeezing behavior of PS-FOPAs is characterized in Sec V. In Sec. VI, we present measurements of the noise
NASA Astrophysics Data System (ADS)
Lohmeyer, Whitney; Carlton, Ashley; Wong, Frankie; Bodeau, Michael; Kennedy, Andrew; Cahoy, Kerri
2015-05-01
The key components in communications satellite payloads are the high-power amplifiers that amplify the received signal so that it can be accurately transmitted to the intended end user. In this study, we examine 26 amplifier anomalies and quantify the high-energy electron environment for periods of time prior to the anomalies. Building on the work of Lohmeyer and Cahoy (2013), we find that anomalies occur at a rate higher than just by chance when the >2 MeV electron fluence accumulated over 14 and 21 days is elevated. To try to understand "why," we model the amplifier subsystem to assess whether the dielectric material in the radio frequency (RF) coaxial cables, which are the most exposed part of the system, is liable to experience electrical breakdown due to internal charging. We find that the accumulated electric field over the 14 and 21 days leading up to the anomalies is high enough to cause the dielectric material in the coax to breakdown. We also find that the accumulated voltages reached are high enough to compromise components in the amplifier system, for example, the direct current (DC) blocking capacitor. An electron beam test using a representative coaxial cable terminated in a blocking capacitor showed that discharges could occur with peak voltages and energies sufficient to damage active RF semiconductor devices.
Ways to suppress click and pop for class D amplifiers
NASA Astrophysics Data System (ADS)
Haishi, Wang; Bo, Zhang; Jiang, Sun
2012-08-01
Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.
CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing.
Karimi-Bidhendi, Alireza; Malekzadeh-Arasteh, Omid; Lee, Mao-Cheng; McCrimmon, Colin M; Wang, Po T; Mahajan, Akshay; Liu, Charles Yu; Nenadic, Zoran; Do, An H; Heydari, Payam
2017-08-01
Two brain signal acquisition (BSA) front-ends incorporating two CMOS ultralow power, low-noise amplifier arrays and serializers operating in mosfet weak inversion region are presented. To boost the amplifier's gain for a given current budget, cross-coupled-pair active load topology is used in the first stages of these two amplifiers. These two BSA front-ends are fabricated in 130 and 180 nm CMOS processes, occupying 5.45 mm 2 and 0.352 mm 2 of die areas, respectively (excluding pad rings). The CMOS 130-nm amplifier array is comprised of 64 elements, where each amplifier element consumes 0.216 μW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 μV[Formula: see text] corresponding to a power efficiency factor (PEF) of 11.7, and occupies 0.044 mm 2 of die area. The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69 μW from 0.6 V supply with IRNoise of 2.3 μV[Formula: see text] (corresponding to a PEF of 31.3) and 0.051 mm 2 of die area. Noninvasive electroencephalographic and invasive electrocorticographic signals were recorded real time directly on able-bodied human subjects, showing feasibility of using these analog front-ends for future fully implantable BSA and brain- computer interface systems.
Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection
NASA Astrophysics Data System (ADS)
Lin, Jun; Zhang, Yang; Yang, Yujing; Sun, Yong; Lin, Tingting
2017-06-01
Compared to other geophysical techniques, the surface nuclear magnetic resonance (SNMR) method could provide unique insights into the hydrologic properties of groundwater in the subsurface. However, the SNMR signal is in the order of nanovolts (10-9 V), and the complex environmental noise, i.e., the spike and the harmony noise (10-4 V), can reach up to 105 times the signal amplitude. Saturation of the amplifier is therefore a serious problem in current SNMR systems. In this study, we propose an anti-saturation method based on an instantaneous floating-point amplifier. The gain of a programmable amplifier is controlled by the value of the input signal. A regulating speed of 50 kS/s is thus achieved to satisfy the self-adaptive adjustment of the real-time SNMR system, which replaces the original man-made setting gain. A large dynamic range of 192.65 dB with a 24-bit high speed analog-digital converter module is then implemented. Compared to traditional SNMR instruments, whose magnification factor is fixed during the experiment, our system can effectively inhibit the distortion of the SNMR signal in both laboratory and field settings. Furthermore, an improved SNR, which is realized by the real-time SNMR system, enables the accurate inversion of the aquifer. Our study broadens the applicability of SNMR systems to use in and around developed areas.
Thibierge, C; L'Hôte, D; Ladieu, F; Tourbot, R
2008-10-01
We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz < or = f < or = 3x10(4) Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10(-7). We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.